• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 #define pr_fmt(fmt)     "DMAR-IR: " fmt
3 
4 #include <linux/interrupt.h>
5 #include <linux/dmar.h>
6 #include <linux/spinlock.h>
7 #include <linux/slab.h>
8 #include <linux/jiffies.h>
9 #include <linux/hpet.h>
10 #include <linux/pci.h>
11 #include <linux/irq.h>
12 #include <linux/intel-iommu.h>
13 #include <linux/acpi.h>
14 #include <linux/irqdomain.h>
15 #include <linux/crash_dump.h>
16 #include <asm/io_apic.h>
17 #include <asm/smp.h>
18 #include <asm/cpu.h>
19 #include <asm/irq_remapping.h>
20 #include <asm/pci-direct.h>
21 #include <asm/msidef.h>
22 
23 #include "irq_remapping.h"
24 
25 enum irq_mode {
26 	IRQ_REMAPPING,
27 	IRQ_POSTING,
28 };
29 
30 struct ioapic_scope {
31 	struct intel_iommu *iommu;
32 	unsigned int id;
33 	unsigned int bus;	/* PCI bus number */
34 	unsigned int devfn;	/* PCI devfn number */
35 };
36 
37 struct hpet_scope {
38 	struct intel_iommu *iommu;
39 	u8 id;
40 	unsigned int bus;
41 	unsigned int devfn;
42 };
43 
44 struct irq_2_iommu {
45 	struct intel_iommu *iommu;
46 	u16 irte_index;
47 	u16 sub_handle;
48 	u8  irte_mask;
49 	enum irq_mode mode;
50 };
51 
52 struct intel_ir_data {
53 	struct irq_2_iommu			irq_2_iommu;
54 	struct irte				irte_entry;
55 	union {
56 		struct msi_msg			msi_entry;
57 	};
58 };
59 
60 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
61 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
62 
63 static int __read_mostly eim_mode;
64 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
65 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
66 
67 /*
68  * Lock ordering:
69  * ->dmar_global_lock
70  *	->irq_2_ir_lock
71  *		->qi->q_lock
72  *	->iommu->register_lock
73  * Note:
74  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
75  * in single-threaded environment with interrupt disabled, so no need to tabke
76  * the dmar_global_lock.
77  */
78 static DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
79 static struct irq_domain_ops intel_ir_domain_ops;
80 
81 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
82 static int __init parse_ioapics_under_ir(void);
83 
ir_pre_enabled(struct intel_iommu * iommu)84 static bool ir_pre_enabled(struct intel_iommu *iommu)
85 {
86 	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
87 }
88 
clear_ir_pre_enabled(struct intel_iommu * iommu)89 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
90 {
91 	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
92 }
93 
init_ir_status(struct intel_iommu * iommu)94 static void init_ir_status(struct intel_iommu *iommu)
95 {
96 	u32 gsts;
97 
98 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
99 	if (gsts & DMA_GSTS_IRES)
100 		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
101 }
102 
alloc_irte(struct intel_iommu * iommu,int irq,struct irq_2_iommu * irq_iommu,u16 count)103 static int alloc_irte(struct intel_iommu *iommu, int irq,
104 		      struct irq_2_iommu *irq_iommu, u16 count)
105 {
106 	struct ir_table *table = iommu->ir_table;
107 	unsigned int mask = 0;
108 	unsigned long flags;
109 	int index;
110 
111 	if (!count || !irq_iommu)
112 		return -1;
113 
114 	if (count > 1) {
115 		count = __roundup_pow_of_two(count);
116 		mask = ilog2(count);
117 	}
118 
119 	if (mask > ecap_max_handle_mask(iommu->ecap)) {
120 		pr_err("Requested mask %x exceeds the max invalidation handle"
121 		       " mask value %Lx\n", mask,
122 		       ecap_max_handle_mask(iommu->ecap));
123 		return -1;
124 	}
125 
126 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
127 	index = bitmap_find_free_region(table->bitmap,
128 					INTR_REMAP_TABLE_ENTRIES, mask);
129 	if (index < 0) {
130 		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
131 	} else {
132 		irq_iommu->iommu = iommu;
133 		irq_iommu->irte_index =  index;
134 		irq_iommu->sub_handle = 0;
135 		irq_iommu->irte_mask = mask;
136 		irq_iommu->mode = IRQ_REMAPPING;
137 	}
138 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
139 
140 	return index;
141 }
142 
qi_flush_iec(struct intel_iommu * iommu,int index,int mask)143 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
144 {
145 	struct qi_desc desc;
146 
147 	desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
148 		   | QI_IEC_SELECTIVE;
149 	desc.high = 0;
150 
151 	return qi_submit_sync(&desc, iommu);
152 }
153 
modify_irte(struct irq_2_iommu * irq_iommu,struct irte * irte_modified)154 static int modify_irte(struct irq_2_iommu *irq_iommu,
155 		       struct irte *irte_modified)
156 {
157 	struct intel_iommu *iommu;
158 	unsigned long flags;
159 	struct irte *irte;
160 	int rc, index;
161 
162 	if (!irq_iommu)
163 		return -1;
164 
165 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
166 
167 	iommu = irq_iommu->iommu;
168 
169 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
170 	irte = &iommu->ir_table->base[index];
171 
172 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
173 	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
174 		bool ret;
175 
176 		ret = cmpxchg_double(&irte->low, &irte->high,
177 				     irte->low, irte->high,
178 				     irte_modified->low, irte_modified->high);
179 		/*
180 		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
181 		 * and it cannot be updated by the hardware or other processors
182 		 * behind us, so the return value of cmpxchg16 should be the
183 		 * same as the old value.
184 		 */
185 		WARN_ON(!ret);
186 	} else
187 #endif
188 	{
189 		set_64bit(&irte->low, irte_modified->low);
190 		set_64bit(&irte->high, irte_modified->high);
191 	}
192 	__iommu_flush_cache(iommu, irte, sizeof(*irte));
193 
194 	rc = qi_flush_iec(iommu, index, 0);
195 
196 	/* Update iommu mode according to the IRTE mode */
197 	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
198 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
199 
200 	return rc;
201 }
202 
map_hpet_to_ir(u8 hpet_id)203 static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
204 {
205 	int i;
206 
207 	for (i = 0; i < MAX_HPET_TBS; i++)
208 		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
209 			return ir_hpet[i].iommu;
210 	return NULL;
211 }
212 
map_ioapic_to_ir(int apic)213 static struct intel_iommu *map_ioapic_to_ir(int apic)
214 {
215 	int i;
216 
217 	for (i = 0; i < MAX_IO_APICS; i++)
218 		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
219 			return ir_ioapic[i].iommu;
220 	return NULL;
221 }
222 
map_dev_to_ir(struct pci_dev * dev)223 static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
224 {
225 	struct dmar_drhd_unit *drhd;
226 
227 	drhd = dmar_find_matched_drhd_unit(dev);
228 	if (!drhd)
229 		return NULL;
230 
231 	return drhd->iommu;
232 }
233 
clear_entries(struct irq_2_iommu * irq_iommu)234 static int clear_entries(struct irq_2_iommu *irq_iommu)
235 {
236 	struct irte *start, *entry, *end;
237 	struct intel_iommu *iommu;
238 	int index;
239 
240 	if (irq_iommu->sub_handle)
241 		return 0;
242 
243 	iommu = irq_iommu->iommu;
244 	index = irq_iommu->irte_index;
245 
246 	start = iommu->ir_table->base + index;
247 	end = start + (1 << irq_iommu->irte_mask);
248 
249 	for (entry = start; entry < end; entry++) {
250 		set_64bit(&entry->low, 0);
251 		set_64bit(&entry->high, 0);
252 	}
253 	bitmap_release_region(iommu->ir_table->bitmap, index,
254 			      irq_iommu->irte_mask);
255 
256 	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
257 }
258 
259 /*
260  * source validation type
261  */
262 #define SVT_NO_VERIFY		0x0  /* no verification is required */
263 #define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
264 #define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
265 
266 /*
267  * source-id qualifier
268  */
269 #define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
270 #define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
271 			      * the third least significant bit
272 			      */
273 #define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
274 			      * the second and third least significant bits
275 			      */
276 #define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
277 			      * the least three significant bits
278 			      */
279 
280 /*
281  * set SVT, SQ and SID fields of irte to verify
282  * source ids of interrupt requests
283  */
set_irte_sid(struct irte * irte,unsigned int svt,unsigned int sq,unsigned int sid)284 static void set_irte_sid(struct irte *irte, unsigned int svt,
285 			 unsigned int sq, unsigned int sid)
286 {
287 	if (disable_sourceid_checking)
288 		svt = SVT_NO_VERIFY;
289 	irte->svt = svt;
290 	irte->sq = sq;
291 	irte->sid = sid;
292 }
293 
set_ioapic_sid(struct irte * irte,int apic)294 static int set_ioapic_sid(struct irte *irte, int apic)
295 {
296 	int i;
297 	u16 sid = 0;
298 
299 	if (!irte)
300 		return -1;
301 
302 	down_read(&dmar_global_lock);
303 	for (i = 0; i < MAX_IO_APICS; i++) {
304 		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
305 			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
306 			break;
307 		}
308 	}
309 	up_read(&dmar_global_lock);
310 
311 	if (sid == 0) {
312 		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
313 		return -1;
314 	}
315 
316 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
317 
318 	return 0;
319 }
320 
set_hpet_sid(struct irte * irte,u8 id)321 static int set_hpet_sid(struct irte *irte, u8 id)
322 {
323 	int i;
324 	u16 sid = 0;
325 
326 	if (!irte)
327 		return -1;
328 
329 	down_read(&dmar_global_lock);
330 	for (i = 0; i < MAX_HPET_TBS; i++) {
331 		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
332 			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
333 			break;
334 		}
335 	}
336 	up_read(&dmar_global_lock);
337 
338 	if (sid == 0) {
339 		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
340 		return -1;
341 	}
342 
343 	/*
344 	 * Should really use SQ_ALL_16. Some platforms are broken.
345 	 * While we figure out the right quirks for these broken platforms, use
346 	 * SQ_13_IGNORE_3 for now.
347 	 */
348 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
349 
350 	return 0;
351 }
352 
353 struct set_msi_sid_data {
354 	struct pci_dev *pdev;
355 	u16 alias;
356 };
357 
set_msi_sid_cb(struct pci_dev * pdev,u16 alias,void * opaque)358 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
359 {
360 	struct set_msi_sid_data *data = opaque;
361 
362 	data->pdev = pdev;
363 	data->alias = alias;
364 
365 	return 0;
366 }
367 
set_msi_sid(struct irte * irte,struct pci_dev * dev)368 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
369 {
370 	struct set_msi_sid_data data;
371 
372 	if (!irte || !dev)
373 		return -1;
374 
375 	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
376 
377 	/*
378 	 * DMA alias provides us with a PCI device and alias.  The only case
379 	 * where the it will return an alias on a different bus than the
380 	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
381 	 * the subordinate bus.  In this case we can only verify the bus.
382 	 *
383 	 * If the alias device is on a different bus than our source device
384 	 * then we have a topology based alias, use it.
385 	 *
386 	 * Otherwise, the alias is for a device DMA quirk and we cannot
387 	 * assume that MSI uses the same requester ID.  Therefore use the
388 	 * original device.
389 	 */
390 	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
391 		set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
392 			     PCI_DEVID(PCI_BUS_NUM(data.alias),
393 				       dev->bus->number));
394 	else if (data.pdev->bus->number != dev->bus->number)
395 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
396 	else
397 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
398 			     PCI_DEVID(dev->bus->number, dev->devfn));
399 
400 	return 0;
401 }
402 
iommu_load_old_irte(struct intel_iommu * iommu)403 static int iommu_load_old_irte(struct intel_iommu *iommu)
404 {
405 	struct irte *old_ir_table;
406 	phys_addr_t irt_phys;
407 	unsigned int i;
408 	size_t size;
409 	u64 irta;
410 
411 	if (!is_kdump_kernel()) {
412 		pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
413 			iommu->name);
414 		clear_ir_pre_enabled(iommu);
415 		iommu_disable_irq_remapping(iommu);
416 		return -EINVAL;
417 	}
418 
419 	/* Check whether the old ir-table has the same size as ours */
420 	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
421 	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
422 	     != INTR_REMAP_TABLE_REG_SIZE)
423 		return -EINVAL;
424 
425 	irt_phys = irta & VTD_PAGE_MASK;
426 	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
427 
428 	/* Map the old IR table */
429 	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
430 	if (!old_ir_table)
431 		return -ENOMEM;
432 
433 	/* Copy data over */
434 	memcpy(iommu->ir_table->base, old_ir_table, size);
435 
436 	__iommu_flush_cache(iommu, iommu->ir_table->base, size);
437 
438 	/*
439 	 * Now check the table for used entries and mark those as
440 	 * allocated in the bitmap
441 	 */
442 	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
443 		if (iommu->ir_table->base[i].present)
444 			bitmap_set(iommu->ir_table->bitmap, i, 1);
445 	}
446 
447 	memunmap(old_ir_table);
448 
449 	return 0;
450 }
451 
452 
iommu_set_irq_remapping(struct intel_iommu * iommu,int mode)453 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
454 {
455 	unsigned long flags;
456 	u64 addr;
457 	u32 sts;
458 
459 	addr = virt_to_phys((void *)iommu->ir_table->base);
460 
461 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
462 
463 	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
464 		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
465 
466 	/* Set interrupt-remapping table pointer */
467 	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
468 
469 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
470 		      readl, (sts & DMA_GSTS_IRTPS), sts);
471 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
472 
473 	/*
474 	 * Global invalidation of interrupt entry cache to make sure the
475 	 * hardware uses the new irq remapping table.
476 	 */
477 	qi_global_iec(iommu);
478 }
479 
iommu_enable_irq_remapping(struct intel_iommu * iommu)480 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
481 {
482 	unsigned long flags;
483 	u32 sts;
484 
485 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
486 
487 	/* Enable interrupt-remapping */
488 	iommu->gcmd |= DMA_GCMD_IRE;
489 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
490 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
491 		      readl, (sts & DMA_GSTS_IRES), sts);
492 
493 	/* Block compatibility-format MSIs */
494 	if (sts & DMA_GSTS_CFIS) {
495 		iommu->gcmd &= ~DMA_GCMD_CFI;
496 		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
497 		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
498 			      readl, !(sts & DMA_GSTS_CFIS), sts);
499 	}
500 
501 	/*
502 	 * With CFI clear in the Global Command register, we should be
503 	 * protected from dangerous (i.e. compatibility) interrupts
504 	 * regardless of x2apic status.  Check just to be sure.
505 	 */
506 	if (sts & DMA_GSTS_CFIS)
507 		WARN(1, KERN_WARNING
508 			"Compatibility-format IRQs enabled despite intr remapping;\n"
509 			"you are vulnerable to IRQ injection.\n");
510 
511 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
512 }
513 
intel_setup_irq_remapping(struct intel_iommu * iommu)514 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
515 {
516 	struct ir_table *ir_table;
517 	struct page *pages;
518 	unsigned long *bitmap;
519 
520 	if (iommu->ir_table)
521 		return 0;
522 
523 	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
524 	if (!ir_table)
525 		return -ENOMEM;
526 
527 	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
528 				 INTR_REMAP_PAGE_ORDER);
529 	if (!pages) {
530 		pr_err("IR%d: failed to allocate pages of order %d\n",
531 		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
532 		goto out_free_table;
533 	}
534 
535 	bitmap = kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES),
536 			 sizeof(long), GFP_ATOMIC);
537 	if (bitmap == NULL) {
538 		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
539 		goto out_free_pages;
540 	}
541 
542 	iommu->ir_domain = irq_domain_add_hierarchy(arch_get_ir_parent_domain(),
543 						    0, INTR_REMAP_TABLE_ENTRIES,
544 						    NULL, &intel_ir_domain_ops,
545 						    iommu);
546 	if (!iommu->ir_domain) {
547 		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
548 		goto out_free_bitmap;
549 	}
550 	iommu->ir_msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
551 
552 	ir_table->base = page_address(pages);
553 	ir_table->bitmap = bitmap;
554 	iommu->ir_table = ir_table;
555 
556 	/*
557 	 * If the queued invalidation is already initialized,
558 	 * shouldn't disable it.
559 	 */
560 	if (!iommu->qi) {
561 		/*
562 		 * Clear previous faults.
563 		 */
564 		dmar_fault(-1, iommu);
565 		dmar_disable_qi(iommu);
566 
567 		if (dmar_enable_qi(iommu)) {
568 			pr_err("Failed to enable queued invalidation\n");
569 			goto out_free_bitmap;
570 		}
571 	}
572 
573 	init_ir_status(iommu);
574 
575 	if (ir_pre_enabled(iommu)) {
576 		if (iommu_load_old_irte(iommu))
577 			pr_err("Failed to copy IR table for %s from previous kernel\n",
578 			       iommu->name);
579 		else
580 			pr_info("Copied IR table for %s from previous kernel\n",
581 				iommu->name);
582 	}
583 
584 	iommu_set_irq_remapping(iommu, eim_mode);
585 
586 	return 0;
587 
588 out_free_bitmap:
589 	kfree(bitmap);
590 out_free_pages:
591 	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
592 out_free_table:
593 	kfree(ir_table);
594 
595 	iommu->ir_table  = NULL;
596 
597 	return -ENOMEM;
598 }
599 
intel_teardown_irq_remapping(struct intel_iommu * iommu)600 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
601 {
602 	if (iommu && iommu->ir_table) {
603 		if (iommu->ir_msi_domain) {
604 			irq_domain_remove(iommu->ir_msi_domain);
605 			iommu->ir_msi_domain = NULL;
606 		}
607 		if (iommu->ir_domain) {
608 			irq_domain_remove(iommu->ir_domain);
609 			iommu->ir_domain = NULL;
610 		}
611 		free_pages((unsigned long)iommu->ir_table->base,
612 			   INTR_REMAP_PAGE_ORDER);
613 		kfree(iommu->ir_table->bitmap);
614 		kfree(iommu->ir_table);
615 		iommu->ir_table = NULL;
616 	}
617 }
618 
619 /*
620  * Disable Interrupt Remapping.
621  */
iommu_disable_irq_remapping(struct intel_iommu * iommu)622 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
623 {
624 	unsigned long flags;
625 	u32 sts;
626 
627 	if (!ecap_ir_support(iommu->ecap))
628 		return;
629 
630 	/*
631 	 * global invalidation of interrupt entry cache before disabling
632 	 * interrupt-remapping.
633 	 */
634 	qi_global_iec(iommu);
635 
636 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
637 
638 	sts = readl(iommu->reg + DMAR_GSTS_REG);
639 	if (!(sts & DMA_GSTS_IRES))
640 		goto end;
641 
642 	iommu->gcmd &= ~DMA_GCMD_IRE;
643 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
644 
645 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
646 		      readl, !(sts & DMA_GSTS_IRES), sts);
647 
648 end:
649 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
650 }
651 
dmar_x2apic_optout(void)652 static int __init dmar_x2apic_optout(void)
653 {
654 	struct acpi_table_dmar *dmar;
655 	dmar = (struct acpi_table_dmar *)dmar_tbl;
656 	if (!dmar || no_x2apic_optout)
657 		return 0;
658 	return dmar->flags & DMAR_X2APIC_OPT_OUT;
659 }
660 
intel_cleanup_irq_remapping(void)661 static void __init intel_cleanup_irq_remapping(void)
662 {
663 	struct dmar_drhd_unit *drhd;
664 	struct intel_iommu *iommu;
665 
666 	for_each_iommu(iommu, drhd) {
667 		if (ecap_ir_support(iommu->ecap)) {
668 			iommu_disable_irq_remapping(iommu);
669 			intel_teardown_irq_remapping(iommu);
670 		}
671 	}
672 
673 	if (x2apic_supported())
674 		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
675 }
676 
intel_prepare_irq_remapping(void)677 static int __init intel_prepare_irq_remapping(void)
678 {
679 	struct dmar_drhd_unit *drhd;
680 	struct intel_iommu *iommu;
681 	int eim = 0;
682 
683 	if (irq_remap_broken) {
684 		pr_warn("This system BIOS has enabled interrupt remapping\n"
685 			"on a chipset that contains an erratum making that\n"
686 			"feature unstable.  To maintain system stability\n"
687 			"interrupt remapping is being disabled.  Please\n"
688 			"contact your BIOS vendor for an update\n");
689 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
690 		return -ENODEV;
691 	}
692 
693 	if (dmar_table_init() < 0)
694 		return -ENODEV;
695 
696 	if (!dmar_ir_support())
697 		return -ENODEV;
698 
699 	if (parse_ioapics_under_ir()) {
700 		pr_info("Not enabling interrupt remapping\n");
701 		goto error;
702 	}
703 
704 	/* First make sure all IOMMUs support IRQ remapping */
705 	for_each_iommu(iommu, drhd)
706 		if (!ecap_ir_support(iommu->ecap))
707 			goto error;
708 
709 	/* Detect remapping mode: lapic or x2apic */
710 	if (x2apic_supported()) {
711 		eim = !dmar_x2apic_optout();
712 		if (!eim) {
713 			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
714 			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
715 		}
716 	}
717 
718 	for_each_iommu(iommu, drhd) {
719 		if (eim && !ecap_eim_support(iommu->ecap)) {
720 			pr_info("%s does not support EIM\n", iommu->name);
721 			eim = 0;
722 		}
723 	}
724 
725 	eim_mode = eim;
726 	if (eim)
727 		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
728 
729 	/* Do the initializations early */
730 	for_each_iommu(iommu, drhd) {
731 		if (intel_setup_irq_remapping(iommu)) {
732 			pr_err("Failed to setup irq remapping for %s\n",
733 			       iommu->name);
734 			goto error;
735 		}
736 	}
737 
738 	return 0;
739 
740 error:
741 	intel_cleanup_irq_remapping();
742 	return -ENODEV;
743 }
744 
745 /*
746  * Set Posted-Interrupts capability.
747  */
set_irq_posting_cap(void)748 static inline void set_irq_posting_cap(void)
749 {
750 	struct dmar_drhd_unit *drhd;
751 	struct intel_iommu *iommu;
752 
753 	if (!disable_irq_post) {
754 		/*
755 		 * If IRTE is in posted format, the 'pda' field goes across the
756 		 * 64-bit boundary, we need use cmpxchg16b to atomically update
757 		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
758 		 * is supported. Actually, hardware platforms supporting PI
759 		 * should have X86_FEATURE_CX16 support, this has been confirmed
760 		 * with Intel hardware guys.
761 		 */
762 		if (boot_cpu_has(X86_FEATURE_CX16))
763 			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
764 
765 		for_each_iommu(iommu, drhd)
766 			if (!cap_pi_support(iommu->cap)) {
767 				intel_irq_remap_ops.capability &=
768 						~(1 << IRQ_POSTING_CAP);
769 				break;
770 			}
771 	}
772 }
773 
intel_enable_irq_remapping(void)774 static int __init intel_enable_irq_remapping(void)
775 {
776 	struct dmar_drhd_unit *drhd;
777 	struct intel_iommu *iommu;
778 	bool setup = false;
779 
780 	/*
781 	 * Setup Interrupt-remapping for all the DRHD's now.
782 	 */
783 	for_each_iommu(iommu, drhd) {
784 		if (!ir_pre_enabled(iommu))
785 			iommu_enable_irq_remapping(iommu);
786 		setup = true;
787 	}
788 
789 	if (!setup)
790 		goto error;
791 
792 	irq_remapping_enabled = 1;
793 
794 	set_irq_posting_cap();
795 
796 	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
797 
798 	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
799 
800 error:
801 	intel_cleanup_irq_remapping();
802 	return -1;
803 }
804 
ir_parse_one_hpet_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)805 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
806 				   struct intel_iommu *iommu,
807 				   struct acpi_dmar_hardware_unit *drhd)
808 {
809 	struct acpi_dmar_pci_path *path;
810 	u8 bus;
811 	int count, free = -1;
812 
813 	bus = scope->bus;
814 	path = (struct acpi_dmar_pci_path *)(scope + 1);
815 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
816 		/ sizeof(struct acpi_dmar_pci_path);
817 
818 	while (--count > 0) {
819 		/*
820 		 * Access PCI directly due to the PCI
821 		 * subsystem isn't initialized yet.
822 		 */
823 		bus = read_pci_config_byte(bus, path->device, path->function,
824 					   PCI_SECONDARY_BUS);
825 		path++;
826 	}
827 
828 	for (count = 0; count < MAX_HPET_TBS; count++) {
829 		if (ir_hpet[count].iommu == iommu &&
830 		    ir_hpet[count].id == scope->enumeration_id)
831 			return 0;
832 		else if (ir_hpet[count].iommu == NULL && free == -1)
833 			free = count;
834 	}
835 	if (free == -1) {
836 		pr_warn("Exceeded Max HPET blocks\n");
837 		return -ENOSPC;
838 	}
839 
840 	ir_hpet[free].iommu = iommu;
841 	ir_hpet[free].id    = scope->enumeration_id;
842 	ir_hpet[free].bus   = bus;
843 	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
844 	pr_info("HPET id %d under DRHD base 0x%Lx\n",
845 		scope->enumeration_id, drhd->address);
846 
847 	return 0;
848 }
849 
ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)850 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
851 				     struct intel_iommu *iommu,
852 				     struct acpi_dmar_hardware_unit *drhd)
853 {
854 	struct acpi_dmar_pci_path *path;
855 	u8 bus;
856 	int count, free = -1;
857 
858 	bus = scope->bus;
859 	path = (struct acpi_dmar_pci_path *)(scope + 1);
860 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
861 		/ sizeof(struct acpi_dmar_pci_path);
862 
863 	while (--count > 0) {
864 		/*
865 		 * Access PCI directly due to the PCI
866 		 * subsystem isn't initialized yet.
867 		 */
868 		bus = read_pci_config_byte(bus, path->device, path->function,
869 					   PCI_SECONDARY_BUS);
870 		path++;
871 	}
872 
873 	for (count = 0; count < MAX_IO_APICS; count++) {
874 		if (ir_ioapic[count].iommu == iommu &&
875 		    ir_ioapic[count].id == scope->enumeration_id)
876 			return 0;
877 		else if (ir_ioapic[count].iommu == NULL && free == -1)
878 			free = count;
879 	}
880 	if (free == -1) {
881 		pr_warn("Exceeded Max IO APICS\n");
882 		return -ENOSPC;
883 	}
884 
885 	ir_ioapic[free].bus   = bus;
886 	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
887 	ir_ioapic[free].iommu = iommu;
888 	ir_ioapic[free].id    = scope->enumeration_id;
889 	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
890 		scope->enumeration_id, drhd->address, iommu->seq_id);
891 
892 	return 0;
893 }
894 
ir_parse_ioapic_hpet_scope(struct acpi_dmar_header * header,struct intel_iommu * iommu)895 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
896 				      struct intel_iommu *iommu)
897 {
898 	int ret = 0;
899 	struct acpi_dmar_hardware_unit *drhd;
900 	struct acpi_dmar_device_scope *scope;
901 	void *start, *end;
902 
903 	drhd = (struct acpi_dmar_hardware_unit *)header;
904 	start = (void *)(drhd + 1);
905 	end = ((void *)drhd) + header->length;
906 
907 	while (start < end && ret == 0) {
908 		scope = start;
909 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
910 			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
911 		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
912 			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
913 		start += scope->length;
914 	}
915 
916 	return ret;
917 }
918 
ir_remove_ioapic_hpet_scope(struct intel_iommu * iommu)919 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
920 {
921 	int i;
922 
923 	for (i = 0; i < MAX_HPET_TBS; i++)
924 		if (ir_hpet[i].iommu == iommu)
925 			ir_hpet[i].iommu = NULL;
926 
927 	for (i = 0; i < MAX_IO_APICS; i++)
928 		if (ir_ioapic[i].iommu == iommu)
929 			ir_ioapic[i].iommu = NULL;
930 }
931 
932 /*
933  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
934  * hardware unit.
935  */
parse_ioapics_under_ir(void)936 static int __init parse_ioapics_under_ir(void)
937 {
938 	struct dmar_drhd_unit *drhd;
939 	struct intel_iommu *iommu;
940 	bool ir_supported = false;
941 	int ioapic_idx;
942 
943 	for_each_iommu(iommu, drhd) {
944 		int ret;
945 
946 		if (!ecap_ir_support(iommu->ecap))
947 			continue;
948 
949 		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
950 		if (ret)
951 			return ret;
952 
953 		ir_supported = true;
954 	}
955 
956 	if (!ir_supported)
957 		return -ENODEV;
958 
959 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
960 		int ioapic_id = mpc_ioapic_id(ioapic_idx);
961 		if (!map_ioapic_to_ir(ioapic_id)) {
962 			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
963 			       "interrupt remapping will be disabled\n",
964 			       ioapic_id);
965 			return -1;
966 		}
967 	}
968 
969 	return 0;
970 }
971 
ir_dev_scope_init(void)972 static int __init ir_dev_scope_init(void)
973 {
974 	int ret;
975 
976 	if (!irq_remapping_enabled)
977 		return 0;
978 
979 	down_write(&dmar_global_lock);
980 	ret = dmar_dev_scope_init();
981 	up_write(&dmar_global_lock);
982 
983 	return ret;
984 }
985 rootfs_initcall(ir_dev_scope_init);
986 
disable_irq_remapping(void)987 static void disable_irq_remapping(void)
988 {
989 	struct dmar_drhd_unit *drhd;
990 	struct intel_iommu *iommu = NULL;
991 
992 	/*
993 	 * Disable Interrupt-remapping for all the DRHD's now.
994 	 */
995 	for_each_iommu(iommu, drhd) {
996 		if (!ecap_ir_support(iommu->ecap))
997 			continue;
998 
999 		iommu_disable_irq_remapping(iommu);
1000 	}
1001 
1002 	/*
1003 	 * Clear Posted-Interrupts capability.
1004 	 */
1005 	if (!disable_irq_post)
1006 		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1007 }
1008 
reenable_irq_remapping(int eim)1009 static int reenable_irq_remapping(int eim)
1010 {
1011 	struct dmar_drhd_unit *drhd;
1012 	bool setup = false;
1013 	struct intel_iommu *iommu = NULL;
1014 
1015 	for_each_iommu(iommu, drhd)
1016 		if (iommu->qi)
1017 			dmar_reenable_qi(iommu);
1018 
1019 	/*
1020 	 * Setup Interrupt-remapping for all the DRHD's now.
1021 	 */
1022 	for_each_iommu(iommu, drhd) {
1023 		if (!ecap_ir_support(iommu->ecap))
1024 			continue;
1025 
1026 		/* Set up interrupt remapping for iommu.*/
1027 		iommu_set_irq_remapping(iommu, eim);
1028 		iommu_enable_irq_remapping(iommu);
1029 		setup = true;
1030 	}
1031 
1032 	if (!setup)
1033 		goto error;
1034 
1035 	set_irq_posting_cap();
1036 
1037 	return 0;
1038 
1039 error:
1040 	/*
1041 	 * handle error condition gracefully here!
1042 	 */
1043 	return -1;
1044 }
1045 
prepare_irte(struct irte * irte,int vector,unsigned int dest)1046 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1047 {
1048 	memset(irte, 0, sizeof(*irte));
1049 
1050 	irte->present = 1;
1051 	irte->dst_mode = apic->irq_dest_mode;
1052 	/*
1053 	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1054 	 * actual level or edge trigger will be setup in the IO-APIC
1055 	 * RTE. This will help simplify level triggered irq migration.
1056 	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1057 	 * irq migration in the presence of interrupt-remapping.
1058 	*/
1059 	irte->trigger_mode = 0;
1060 	irte->dlvry_mode = apic->irq_delivery_mode;
1061 	irte->vector = vector;
1062 	irte->dest_id = IRTE_DEST(dest);
1063 	irte->redir_hint = 1;
1064 }
1065 
intel_get_ir_irq_domain(struct irq_alloc_info * info)1066 static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
1067 {
1068 	struct intel_iommu *iommu = NULL;
1069 
1070 	if (!info)
1071 		return NULL;
1072 
1073 	switch (info->type) {
1074 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1075 		iommu = map_ioapic_to_ir(info->ioapic_id);
1076 		break;
1077 	case X86_IRQ_ALLOC_TYPE_HPET:
1078 		iommu = map_hpet_to_ir(info->hpet_id);
1079 		break;
1080 	case X86_IRQ_ALLOC_TYPE_MSI:
1081 	case X86_IRQ_ALLOC_TYPE_MSIX:
1082 		iommu = map_dev_to_ir(info->msi_dev);
1083 		break;
1084 	default:
1085 		BUG_ON(1);
1086 		break;
1087 	}
1088 
1089 	return iommu ? iommu->ir_domain : NULL;
1090 }
1091 
intel_get_irq_domain(struct irq_alloc_info * info)1092 static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1093 {
1094 	struct intel_iommu *iommu;
1095 
1096 	if (!info)
1097 		return NULL;
1098 
1099 	switch (info->type) {
1100 	case X86_IRQ_ALLOC_TYPE_MSI:
1101 	case X86_IRQ_ALLOC_TYPE_MSIX:
1102 		iommu = map_dev_to_ir(info->msi_dev);
1103 		if (iommu)
1104 			return iommu->ir_msi_domain;
1105 		break;
1106 	default:
1107 		break;
1108 	}
1109 
1110 	return NULL;
1111 }
1112 
1113 struct irq_remap_ops intel_irq_remap_ops = {
1114 	.prepare		= intel_prepare_irq_remapping,
1115 	.enable			= intel_enable_irq_remapping,
1116 	.disable		= disable_irq_remapping,
1117 	.reenable		= reenable_irq_remapping,
1118 	.enable_faulting	= enable_drhd_fault_handling,
1119 	.get_ir_irq_domain	= intel_get_ir_irq_domain,
1120 	.get_irq_domain		= intel_get_irq_domain,
1121 };
1122 
1123 /*
1124  * Migrate the IO-APIC irq in the presence of intr-remapping.
1125  *
1126  * For both level and edge triggered, irq migration is a simple atomic
1127  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1128  *
1129  * For level triggered, we eliminate the io-apic RTE modification (with the
1130  * updated vector information), by using a virtual vector (io-apic pin number).
1131  * Real vector that is used for interrupting cpu will be coming from
1132  * the interrupt-remapping table entry.
1133  *
1134  * As the migration is a simple atomic update of IRTE, the same mechanism
1135  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1136  */
1137 static int
intel_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)1138 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1139 		      bool force)
1140 {
1141 	struct intel_ir_data *ir_data = data->chip_data;
1142 	struct irte *irte = &ir_data->irte_entry;
1143 	struct irq_cfg *cfg = irqd_cfg(data);
1144 	struct irq_data *parent = data->parent_data;
1145 	int ret;
1146 
1147 	ret = parent->chip->irq_set_affinity(parent, mask, force);
1148 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1149 		return ret;
1150 
1151 	/*
1152 	 * Atomically updates the IRTE with the new destination, vector
1153 	 * and flushes the interrupt entry cache.
1154 	 */
1155 	irte->vector = cfg->vector;
1156 	irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1157 
1158 	/* Update the hardware only if the interrupt is in remapped mode. */
1159 	if (ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1160 		modify_irte(&ir_data->irq_2_iommu, irte);
1161 
1162 	/*
1163 	 * After this point, all the interrupts will start arriving
1164 	 * at the new destination. So, time to cleanup the previous
1165 	 * vector allocation.
1166 	 */
1167 	send_cleanup_vector(cfg);
1168 
1169 	return IRQ_SET_MASK_OK_DONE;
1170 }
1171 
intel_ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)1172 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1173 				     struct msi_msg *msg)
1174 {
1175 	struct intel_ir_data *ir_data = irq_data->chip_data;
1176 
1177 	*msg = ir_data->msi_entry;
1178 }
1179 
intel_ir_set_vcpu_affinity(struct irq_data * data,void * info)1180 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1181 {
1182 	struct intel_ir_data *ir_data = data->chip_data;
1183 	struct vcpu_data *vcpu_pi_info = info;
1184 
1185 	/* stop posting interrupts, back to remapping mode */
1186 	if (!vcpu_pi_info) {
1187 		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1188 	} else {
1189 		struct irte irte_pi;
1190 
1191 		/*
1192 		 * We are not caching the posted interrupt entry. We
1193 		 * copy the data from the remapped entry and modify
1194 		 * the fields which are relevant for posted mode. The
1195 		 * cached remapped entry is used for switching back to
1196 		 * remapped mode.
1197 		 */
1198 		memset(&irte_pi, 0, sizeof(irte_pi));
1199 		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1200 
1201 		/* Update the posted mode fields */
1202 		irte_pi.p_pst = 1;
1203 		irte_pi.p_urgent = 0;
1204 		irte_pi.p_vector = vcpu_pi_info->vector;
1205 		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1206 				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1207 		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1208 				~(-1UL << PDA_HIGH_BIT);
1209 
1210 		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1211 	}
1212 
1213 	return 0;
1214 }
1215 
1216 static struct irq_chip intel_ir_chip = {
1217 	.irq_ack = ir_ack_apic_edge,
1218 	.irq_set_affinity = intel_ir_set_affinity,
1219 	.irq_compose_msi_msg = intel_ir_compose_msi_msg,
1220 	.irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1221 };
1222 
intel_irq_remapping_prepare_irte(struct intel_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int index,int sub_handle)1223 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1224 					     struct irq_cfg *irq_cfg,
1225 					     struct irq_alloc_info *info,
1226 					     int index, int sub_handle)
1227 {
1228 	struct IR_IO_APIC_route_entry *entry;
1229 	struct irte *irte = &data->irte_entry;
1230 	struct msi_msg *msg = &data->msi_entry;
1231 
1232 	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1233 	switch (info->type) {
1234 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1235 		/* Set source-id of interrupt request */
1236 		set_ioapic_sid(irte, info->ioapic_id);
1237 		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1238 			info->ioapic_id, irte->present, irte->fpd,
1239 			irte->dst_mode, irte->redir_hint,
1240 			irte->trigger_mode, irte->dlvry_mode,
1241 			irte->avail, irte->vector, irte->dest_id,
1242 			irte->sid, irte->sq, irte->svt);
1243 
1244 		entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
1245 		info->ioapic_entry = NULL;
1246 		memset(entry, 0, sizeof(*entry));
1247 		entry->index2	= (index >> 15) & 0x1;
1248 		entry->zero	= 0;
1249 		entry->format	= 1;
1250 		entry->index	= (index & 0x7fff);
1251 		/*
1252 		 * IO-APIC RTE will be configured with virtual vector.
1253 		 * irq handler will do the explicit EOI to the io-apic.
1254 		 */
1255 		entry->vector	= info->ioapic_pin;
1256 		entry->mask	= 0;			/* enable IRQ */
1257 		entry->trigger	= info->ioapic_trigger;
1258 		entry->polarity	= info->ioapic_polarity;
1259 		if (info->ioapic_trigger)
1260 			entry->mask = 1; /* Mask level triggered irqs. */
1261 		break;
1262 
1263 	case X86_IRQ_ALLOC_TYPE_HPET:
1264 	case X86_IRQ_ALLOC_TYPE_MSI:
1265 	case X86_IRQ_ALLOC_TYPE_MSIX:
1266 		if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1267 			set_hpet_sid(irte, info->hpet_id);
1268 		else
1269 			set_msi_sid(irte, info->msi_dev);
1270 
1271 		msg->address_hi = MSI_ADDR_BASE_HI;
1272 		msg->data = sub_handle;
1273 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1274 				  MSI_ADDR_IR_SHV |
1275 				  MSI_ADDR_IR_INDEX1(index) |
1276 				  MSI_ADDR_IR_INDEX2(index);
1277 		break;
1278 
1279 	default:
1280 		BUG_ON(1);
1281 		break;
1282 	}
1283 }
1284 
intel_free_irq_resources(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1285 static void intel_free_irq_resources(struct irq_domain *domain,
1286 				     unsigned int virq, unsigned int nr_irqs)
1287 {
1288 	struct irq_data *irq_data;
1289 	struct intel_ir_data *data;
1290 	struct irq_2_iommu *irq_iommu;
1291 	unsigned long flags;
1292 	int i;
1293 	for (i = 0; i < nr_irqs; i++) {
1294 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
1295 		if (irq_data && irq_data->chip_data) {
1296 			data = irq_data->chip_data;
1297 			irq_iommu = &data->irq_2_iommu;
1298 			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1299 			clear_entries(irq_iommu);
1300 			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1301 			irq_domain_reset_irq_data(irq_data);
1302 			kfree(data);
1303 		}
1304 	}
1305 }
1306 
intel_irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1307 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1308 				     unsigned int virq, unsigned int nr_irqs,
1309 				     void *arg)
1310 {
1311 	struct intel_iommu *iommu = domain->host_data;
1312 	struct irq_alloc_info *info = arg;
1313 	struct intel_ir_data *data, *ird;
1314 	struct irq_data *irq_data;
1315 	struct irq_cfg *irq_cfg;
1316 	int i, ret, index;
1317 
1318 	if (!info || !iommu)
1319 		return -EINVAL;
1320 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
1321 	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
1322 		return -EINVAL;
1323 
1324 	/*
1325 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
1326 	 * to support multiple MSI interrupts.
1327 	 */
1328 	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
1329 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1330 
1331 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1332 	if (ret < 0)
1333 		return ret;
1334 
1335 	ret = -ENOMEM;
1336 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1337 	if (!data)
1338 		goto out_free_parent;
1339 
1340 	down_read(&dmar_global_lock);
1341 	index = alloc_irte(iommu, virq, &data->irq_2_iommu, nr_irqs);
1342 	up_read(&dmar_global_lock);
1343 	if (index < 0) {
1344 		pr_warn("Failed to allocate IRTE\n");
1345 		kfree(data);
1346 		goto out_free_parent;
1347 	}
1348 
1349 	for (i = 0; i < nr_irqs; i++) {
1350 		irq_data = irq_domain_get_irq_data(domain, virq + i);
1351 		irq_cfg = irqd_cfg(irq_data);
1352 		if (!irq_data || !irq_cfg) {
1353 			if (!i)
1354 				kfree(data);
1355 			ret = -EINVAL;
1356 			goto out_free_data;
1357 		}
1358 
1359 		if (i > 0) {
1360 			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1361 			if (!ird)
1362 				goto out_free_data;
1363 			/* Initialize the common data */
1364 			ird->irq_2_iommu = data->irq_2_iommu;
1365 			ird->irq_2_iommu.sub_handle = i;
1366 		} else {
1367 			ird = data;
1368 		}
1369 
1370 		irq_data->hwirq = (index << 16) + i;
1371 		irq_data->chip_data = ird;
1372 		irq_data->chip = &intel_ir_chip;
1373 		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1374 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1375 	}
1376 	return 0;
1377 
1378 out_free_data:
1379 	intel_free_irq_resources(domain, virq, i);
1380 out_free_parent:
1381 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1382 	return ret;
1383 }
1384 
intel_irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1385 static void intel_irq_remapping_free(struct irq_domain *domain,
1386 				     unsigned int virq, unsigned int nr_irqs)
1387 {
1388 	intel_free_irq_resources(domain, virq, nr_irqs);
1389 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1390 }
1391 
intel_irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data)1392 static void intel_irq_remapping_activate(struct irq_domain *domain,
1393 					 struct irq_data *irq_data)
1394 {
1395 	struct intel_ir_data *data = irq_data->chip_data;
1396 
1397 	modify_irte(&data->irq_2_iommu, &data->irte_entry);
1398 }
1399 
intel_irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)1400 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1401 					   struct irq_data *irq_data)
1402 {
1403 	struct intel_ir_data *data = irq_data->chip_data;
1404 	struct irte entry;
1405 
1406 	memset(&entry, 0, sizeof(entry));
1407 	modify_irte(&data->irq_2_iommu, &entry);
1408 }
1409 
1410 static struct irq_domain_ops intel_ir_domain_ops = {
1411 	.alloc = intel_irq_remapping_alloc,
1412 	.free = intel_irq_remapping_free,
1413 	.activate = intel_irq_remapping_activate,
1414 	.deactivate = intel_irq_remapping_deactivate,
1415 };
1416 
1417 /*
1418  * Support of Interrupt Remapping Unit Hotplug
1419  */
dmar_ir_add(struct dmar_drhd_unit * dmaru,struct intel_iommu * iommu)1420 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1421 {
1422 	int ret;
1423 	int eim = x2apic_enabled();
1424 
1425 	if (eim && !ecap_eim_support(iommu->ecap)) {
1426 		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1427 			iommu->reg_phys, iommu->ecap);
1428 		return -ENODEV;
1429 	}
1430 
1431 	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1432 		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1433 			iommu->reg_phys);
1434 		return -ENODEV;
1435 	}
1436 
1437 	/* TODO: check all IOAPICs are covered by IOMMU */
1438 
1439 	/* Setup Interrupt-remapping now. */
1440 	ret = intel_setup_irq_remapping(iommu);
1441 	if (ret) {
1442 		pr_err("Failed to setup irq remapping for %s\n",
1443 		       iommu->name);
1444 		intel_teardown_irq_remapping(iommu);
1445 		ir_remove_ioapic_hpet_scope(iommu);
1446 	} else {
1447 		iommu_enable_irq_remapping(iommu);
1448 	}
1449 
1450 	return ret;
1451 }
1452 
dmar_ir_hotplug(struct dmar_drhd_unit * dmaru,bool insert)1453 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1454 {
1455 	int ret = 0;
1456 	struct intel_iommu *iommu = dmaru->iommu;
1457 
1458 	if (!irq_remapping_enabled)
1459 		return 0;
1460 	if (iommu == NULL)
1461 		return -EINVAL;
1462 	if (!ecap_ir_support(iommu->ecap))
1463 		return 0;
1464 	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1465 	    !cap_pi_support(iommu->cap))
1466 		return -EBUSY;
1467 
1468 	if (insert) {
1469 		if (!iommu->ir_table)
1470 			ret = dmar_ir_add(dmaru, iommu);
1471 	} else {
1472 		if (iommu->ir_table) {
1473 			if (!bitmap_empty(iommu->ir_table->bitmap,
1474 					  INTR_REMAP_TABLE_ENTRIES)) {
1475 				ret = -EBUSY;
1476 			} else {
1477 				iommu_disable_irq_remapping(iommu);
1478 				intel_teardown_irq_remapping(iommu);
1479 				ir_remove_ioapic_hpet_scope(iommu);
1480 			}
1481 		}
1482 	}
1483 
1484 	return ret;
1485 }
1486