• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*P:500
2  * Just as userspace programs request kernel operations through a system
3  * call, the Guest requests Host operations through a "hypercall".  You might
4  * notice this nomenclature doesn't really follow any logic, but the name has
5  * been around for long enough that we're stuck with it.  As you'd expect, this
6  * code is basically a one big switch statement.
7 :*/
8 
9 /*  Copyright (C) 2006 Rusty Russell IBM Corporation
10 
11     This program is free software; you can redistribute it and/or modify
12     it under the terms of the GNU General Public License as published by
13     the Free Software Foundation; either version 2 of the License, or
14     (at your option) any later version.
15 
16     This program is distributed in the hope that it will be useful,
17     but WITHOUT ANY WARRANTY; without even the implied warranty of
18     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19     GNU General Public License for more details.
20 
21     You should have received a copy of the GNU General Public License
22     along with this program; if not, write to the Free Software
23     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
24 */
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/mm.h>
28 #include <linux/ktime.h>
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include "lg.h"
32 
33 /*H:120
34  * This is the core hypercall routine: where the Guest gets what it wants.
35  * Or gets killed.  Or, in the case of LHCALL_SHUTDOWN, both.
36  */
do_hcall(struct lg_cpu * cpu,struct hcall_args * args)37 static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
38 {
39 	switch (args->arg0) {
40 	case LHCALL_FLUSH_ASYNC:
41 		/*
42 		 * This call does nothing, except by breaking out of the Guest
43 		 * it makes us process all the asynchronous hypercalls.
44 		 */
45 		break;
46 	case LHCALL_SEND_INTERRUPTS:
47 		/*
48 		 * This call does nothing too, but by breaking out of the Guest
49 		 * it makes us process any pending interrupts.
50 		 */
51 		break;
52 	case LHCALL_LGUEST_INIT:
53 		/*
54 		 * You can't get here unless you're already initialized.  Don't
55 		 * do that.
56 		 */
57 		kill_guest(cpu, "already have lguest_data");
58 		break;
59 	case LHCALL_SHUTDOWN: {
60 		char msg[128];
61 		/*
62 		 * Shutdown is such a trivial hypercall that we do it in five
63 		 * lines right here.
64 		 *
65 		 * If the lgread fails, it will call kill_guest() itself; the
66 		 * kill_guest() with the message will be ignored.
67 		 */
68 		__lgread(cpu, msg, args->arg1, sizeof(msg));
69 		msg[sizeof(msg)-1] = '\0';
70 		kill_guest(cpu, "CRASH: %s", msg);
71 		if (args->arg2 == LGUEST_SHUTDOWN_RESTART)
72 			cpu->lg->dead = ERR_PTR(-ERESTART);
73 		break;
74 	}
75 	case LHCALL_FLUSH_TLB:
76 		/* FLUSH_TLB comes in two flavors, depending on the argument: */
77 		if (args->arg1)
78 			guest_pagetable_clear_all(cpu);
79 		else
80 			guest_pagetable_flush_user(cpu);
81 		break;
82 
83 	/*
84 	 * All these calls simply pass the arguments through to the right
85 	 * routines.
86 	 */
87 	case LHCALL_NEW_PGTABLE:
88 		guest_new_pagetable(cpu, args->arg1);
89 		break;
90 	case LHCALL_SET_STACK:
91 		guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
92 		break;
93 	case LHCALL_SET_PTE:
94 #ifdef CONFIG_X86_PAE
95 		guest_set_pte(cpu, args->arg1, args->arg2,
96 				__pte(args->arg3 | (u64)args->arg4 << 32));
97 #else
98 		guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3));
99 #endif
100 		break;
101 	case LHCALL_SET_PGD:
102 		guest_set_pgd(cpu->lg, args->arg1, args->arg2);
103 		break;
104 #ifdef CONFIG_X86_PAE
105 	case LHCALL_SET_PMD:
106 		guest_set_pmd(cpu->lg, args->arg1, args->arg2);
107 		break;
108 #endif
109 	case LHCALL_SET_CLOCKEVENT:
110 		guest_set_clockevent(cpu, args->arg1);
111 		break;
112 	case LHCALL_TS:
113 		/* This sets the TS flag, as we saw used in run_guest(). */
114 		cpu->ts = args->arg1;
115 		break;
116 	case LHCALL_HALT:
117 		/* Similarly, this sets the halted flag for run_guest(). */
118 		cpu->halted = 1;
119 		break;
120 	default:
121 		/* It should be an architecture-specific hypercall. */
122 		if (lguest_arch_do_hcall(cpu, args))
123 			kill_guest(cpu, "Bad hypercall %li\n", args->arg0);
124 	}
125 }
126 
127 /*H:124
128  * Asynchronous hypercalls are easy: we just look in the array in the
129  * Guest's "struct lguest_data" to see if any new ones are marked "ready".
130  *
131  * We are careful to do these in order: obviously we respect the order the
132  * Guest put them in the ring, but we also promise the Guest that they will
133  * happen before any normal hypercall (which is why we check this before
134  * checking for a normal hcall).
135  */
do_async_hcalls(struct lg_cpu * cpu)136 static void do_async_hcalls(struct lg_cpu *cpu)
137 {
138 	unsigned int i;
139 	u8 st[LHCALL_RING_SIZE];
140 
141 	/* For simplicity, we copy the entire call status array in at once. */
142 	if (copy_from_user(&st, &cpu->lg->lguest_data->hcall_status, sizeof(st)))
143 		return;
144 
145 	/* We process "struct lguest_data"s hcalls[] ring once. */
146 	for (i = 0; i < ARRAY_SIZE(st); i++) {
147 		struct hcall_args args;
148 		/*
149 		 * We remember where we were up to from last time.  This makes
150 		 * sure that the hypercalls are done in the order the Guest
151 		 * places them in the ring.
152 		 */
153 		unsigned int n = cpu->next_hcall;
154 
155 		/* 0xFF means there's no call here (yet). */
156 		if (st[n] == 0xFF)
157 			break;
158 
159 		/*
160 		 * OK, we have hypercall.  Increment the "next_hcall" cursor,
161 		 * and wrap back to 0 if we reach the end.
162 		 */
163 		if (++cpu->next_hcall == LHCALL_RING_SIZE)
164 			cpu->next_hcall = 0;
165 
166 		/*
167 		 * Copy the hypercall arguments into a local copy of the
168 		 * hcall_args struct.
169 		 */
170 		if (copy_from_user(&args, &cpu->lg->lguest_data->hcalls[n],
171 				   sizeof(struct hcall_args))) {
172 			kill_guest(cpu, "Fetching async hypercalls");
173 			break;
174 		}
175 
176 		/* Do the hypercall, same as a normal one. */
177 		do_hcall(cpu, &args);
178 
179 		/* Mark the hypercall done. */
180 		if (put_user(0xFF, &cpu->lg->lguest_data->hcall_status[n])) {
181 			kill_guest(cpu, "Writing result for async hypercall");
182 			break;
183 		}
184 
185 		/*
186 		 * Stop doing hypercalls if they want to notify the Launcher:
187 		 * it needs to service this first.
188 		 */
189 		if (cpu->pending.trap)
190 			break;
191 	}
192 }
193 
194 /*
195  * Last of all, we look at what happens first of all.  The very first time the
196  * Guest makes a hypercall, we end up here to set things up:
197  */
initialize(struct lg_cpu * cpu)198 static void initialize(struct lg_cpu *cpu)
199 {
200 	/*
201 	 * You can't do anything until you're initialized.  The Guest knows the
202 	 * rules, so we're unforgiving here.
203 	 */
204 	if (cpu->hcall->arg0 != LHCALL_LGUEST_INIT) {
205 		kill_guest(cpu, "hypercall %li before INIT", cpu->hcall->arg0);
206 		return;
207 	}
208 
209 	if (lguest_arch_init_hypercalls(cpu))
210 		kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
211 
212 	/*
213 	 * The Guest tells us where we're not to deliver interrupts by putting
214 	 * the instruction address into "struct lguest_data".
215 	 */
216 	if (get_user(cpu->lg->noirq_iret, &cpu->lg->lguest_data->noirq_iret))
217 		kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
218 
219 	/*
220 	 * We write the current time into the Guest's data page once so it can
221 	 * set its clock.
222 	 */
223 	write_timestamp(cpu);
224 
225 	/* page_tables.c will also do some setup. */
226 	page_table_guest_data_init(cpu);
227 
228 	/*
229 	 * This is the one case where the above accesses might have been the
230 	 * first write to a Guest page.  This may have caused a copy-on-write
231 	 * fault, but the old page might be (read-only) in the Guest
232 	 * pagetable.
233 	 */
234 	guest_pagetable_clear_all(cpu);
235 }
236 /*:*/
237 
238 /*M:013
239  * If a Guest reads from a page (so creates a mapping) that it has never
240  * written to, and then the Launcher writes to it (ie. the output of a virtual
241  * device), the Guest will still see the old page.  In practice, this never
242  * happens: why would the Guest read a page which it has never written to?  But
243  * a similar scenario might one day bite us, so it's worth mentioning.
244  *
245  * Note that if we used a shared anonymous mapping in the Launcher instead of
246  * mapping /dev/zero private, we wouldn't worry about cop-on-write.  And we
247  * need that to switch the Launcher to processes (away from threads) anyway.
248 :*/
249 
250 /*H:100
251  * Hypercalls
252  *
253  * Remember from the Guest, hypercalls come in two flavors: normal and
254  * asynchronous.  This file handles both of types.
255  */
do_hypercalls(struct lg_cpu * cpu)256 void do_hypercalls(struct lg_cpu *cpu)
257 {
258 	/* Not initialized yet?  This hypercall must do it. */
259 	if (unlikely(!cpu->lg->lguest_data)) {
260 		/* Set up the "struct lguest_data" */
261 		initialize(cpu);
262 		/* Hcall is done. */
263 		cpu->hcall = NULL;
264 		return;
265 	}
266 
267 	/*
268 	 * The Guest has initialized.
269 	 *
270 	 * Look in the hypercall ring for the async hypercalls:
271 	 */
272 	do_async_hcalls(cpu);
273 
274 	/*
275 	 * If we stopped reading the hypercall ring because the Guest did a
276 	 * NOTIFY to the Launcher, we want to return now.  Otherwise we do
277 	 * the hypercall.
278 	 */
279 	if (!cpu->pending.trap) {
280 		do_hcall(cpu, cpu->hcall);
281 		/*
282 		 * Tricky point: we reset the hcall pointer to mark the
283 		 * hypercall as "done".  We use the hcall pointer rather than
284 		 * the trap number to indicate a hypercall is pending.
285 		 * Normally it doesn't matter: the Guest will run again and
286 		 * update the trap number before we come back here.
287 		 *
288 		 * However, if we are signalled or the Guest sends I/O to the
289 		 * Launcher, the run_guest() loop will exit without running the
290 		 * Guest.  When it comes back it would try to re-run the
291 		 * hypercall.  Finding that bug sucked.
292 		 */
293 		cpu->hcall = NULL;
294 	}
295 }
296 
297 /*
298  * This routine supplies the Guest with time: it's used for wallclock time at
299  * initial boot and as a rough time source if the TSC isn't available.
300  */
write_timestamp(struct lg_cpu * cpu)301 void write_timestamp(struct lg_cpu *cpu)
302 {
303 	struct timespec now;
304 	ktime_get_real_ts(&now);
305 	if (copy_to_user(&cpu->lg->lguest_data->time,
306 			 &now, sizeof(struct timespec)))
307 		kill_guest(cpu, "Writing timestamp");
308 }
309