• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 Google, Inc.
3  *
4  * Author: Sami Tolvanen <samitolvanen@google.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  */
11 
12 #include "dm-verity-fec.h"
13 #include <linux/math64.h>
14 #include <linux/sysfs.h>
15 
16 #define DM_MSG_PREFIX	"verity-fec"
17 
18 /*
19  * If error correction has been configured, returns true.
20  */
verity_fec_is_enabled(struct dm_verity * v)21 bool verity_fec_is_enabled(struct dm_verity *v)
22 {
23 	return v->fec && v->fec->dev;
24 }
25 
26 /*
27  * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
28  * length fields.
29  */
fec_io(struct dm_verity_io * io)30 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
31 {
32 	return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
33 }
34 
35 /*
36  * Return an interleaved offset for a byte in RS block.
37  */
fec_interleave(struct dm_verity * v,u64 offset)38 static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
39 {
40 	u32 mod;
41 
42 	mod = do_div(offset, v->fec->rsn);
43 	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
44 }
45 
46 /*
47  * Decode an RS block using Reed-Solomon.
48  */
fec_decode_rs8(struct dm_verity * v,struct dm_verity_fec_io * fio,u8 * data,u8 * fec,int neras)49 static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
50 			  u8 *data, u8 *fec, int neras)
51 {
52 	int i;
53 	uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
54 
55 	for (i = 0; i < v->fec->roots; i++)
56 		par[i] = fec[i];
57 
58 	return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
59 			  fio->erasures, 0, NULL);
60 }
61 
62 /*
63  * Read error-correcting codes for the requested RS block. Returns a pointer
64  * to the data block. Caller is responsible for releasing buf.
65  */
fec_read_parity(struct dm_verity * v,u64 rsb,int index,unsigned * offset,struct dm_buffer ** buf)66 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
67 			   unsigned *offset, struct dm_buffer **buf)
68 {
69 	u64 position, block;
70 	u8 *res;
71 
72 	position = (index + rsb) * v->fec->roots;
73 	block = position >> v->data_dev_block_bits;
74 	*offset = (unsigned)(position - (block << v->data_dev_block_bits));
75 
76 	res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf);
77 	if (unlikely(IS_ERR(res))) {
78 		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
79 		      v->data_dev->name, (unsigned long long)rsb,
80 		      (unsigned long long)(v->fec->start + block),
81 		      PTR_ERR(res));
82 		*buf = NULL;
83 	}
84 
85 	return res;
86 }
87 
88 /* Loop over each preallocated buffer slot. */
89 #define fec_for_each_prealloc_buffer(__i) \
90 	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
91 
92 /* Loop over each extra buffer slot. */
93 #define fec_for_each_extra_buffer(io, __i) \
94 	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
95 
96 /* Loop over each allocated buffer. */
97 #define fec_for_each_buffer(io, __i) \
98 	for (__i = 0; __i < (io)->nbufs; __i++)
99 
100 /* Loop over each RS block in each allocated buffer. */
101 #define fec_for_each_buffer_rs_block(io, __i, __j) \
102 	fec_for_each_buffer(io, __i) \
103 		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
104 
105 /*
106  * Return a pointer to the current RS block when called inside
107  * fec_for_each_buffer_rs_block.
108  */
fec_buffer_rs_block(struct dm_verity * v,struct dm_verity_fec_io * fio,unsigned i,unsigned j)109 static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
110 				      struct dm_verity_fec_io *fio,
111 				      unsigned i, unsigned j)
112 {
113 	return &fio->bufs[i][j * v->fec->rsn];
114 }
115 
116 /*
117  * Return an index to the current RS block when called inside
118  * fec_for_each_buffer_rs_block.
119  */
fec_buffer_rs_index(unsigned i,unsigned j)120 static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
121 {
122 	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
123 }
124 
125 /*
126  * Decode all RS blocks from buffers and copy corrected bytes into fio->output
127  * starting from block_offset.
128  */
fec_decode_bufs(struct dm_verity * v,struct dm_verity_fec_io * fio,u64 rsb,int byte_index,unsigned block_offset,int neras)129 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
130 			   u64 rsb, int byte_index, unsigned block_offset,
131 			   int neras)
132 {
133 	int r, corrected = 0, res;
134 	struct dm_buffer *buf;
135 	unsigned n, i, offset;
136 	u8 *par, *block;
137 
138 	par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
139 	if (IS_ERR(par))
140 		return PTR_ERR(par);
141 
142 	/*
143 	 * Decode the RS blocks we have in bufs. Each RS block results in
144 	 * one corrected target byte and consumes fec->roots parity bytes.
145 	 */
146 	fec_for_each_buffer_rs_block(fio, n, i) {
147 		block = fec_buffer_rs_block(v, fio, n, i);
148 		res = fec_decode_rs8(v, fio, block, &par[offset], neras);
149 		if (res < 0) {
150 			r = res;
151 			goto error;
152 		}
153 
154 		corrected += res;
155 		fio->output[block_offset] = block[byte_index];
156 
157 		block_offset++;
158 		if (block_offset >= 1 << v->data_dev_block_bits)
159 			goto done;
160 
161 		/* read the next block when we run out of parity bytes */
162 		offset += v->fec->roots;
163 		if (offset >= 1 << v->data_dev_block_bits) {
164 			dm_bufio_release(buf);
165 
166 			par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
167 			if (unlikely(IS_ERR(par)))
168 				return PTR_ERR(par);
169 		}
170 	}
171 done:
172 	r = corrected;
173 error:
174 	dm_bufio_release(buf);
175 
176 	if (r < 0 && neras)
177 		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
178 			    v->data_dev->name, (unsigned long long)rsb, r);
179 	else if (r > 0) {
180 		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
181 			     v->data_dev->name, (unsigned long long)rsb, r);
182 		atomic_add_unless(&v->fec->corrected, 1, INT_MAX);
183 	}
184 
185 	return r;
186 }
187 
188 /*
189  * Locate data block erasures using verity hashes.
190  */
fec_is_erasure(struct dm_verity * v,struct dm_verity_io * io,u8 * want_digest,u8 * data)191 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
192 			  u8 *want_digest, u8 *data)
193 {
194 	if (unlikely(verity_hash(v, verity_io_hash_desc(v, io),
195 				 data, 1 << v->data_dev_block_bits,
196 				 verity_io_real_digest(v, io))))
197 		return 0;
198 
199 	return memcmp(verity_io_real_digest(v, io), want_digest,
200 		      v->digest_size) != 0;
201 }
202 
203 /*
204  * Read data blocks that are part of the RS block and deinterleave as much as
205  * fits into buffers. Check for erasure locations if @neras is non-NULL.
206  */
fec_read_bufs(struct dm_verity * v,struct dm_verity_io * io,u64 rsb,u64 target,unsigned block_offset,int * neras)207 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
208 			 u64 rsb, u64 target, unsigned block_offset,
209 			 int *neras)
210 {
211 	bool is_zero;
212 	int i, j, target_index = -1;
213 	struct dm_buffer *buf;
214 	struct dm_bufio_client *bufio;
215 	struct dm_verity_fec_io *fio = fec_io(io);
216 	u64 block, ileaved;
217 	u8 *bbuf, *rs_block;
218 	u8 want_digest[v->digest_size];
219 	unsigned n, k;
220 
221 	if (neras)
222 		*neras = 0;
223 
224 	/*
225 	 * read each of the rsn data blocks that are part of the RS block, and
226 	 * interleave contents to available bufs
227 	 */
228 	for (i = 0; i < v->fec->rsn; i++) {
229 		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
230 
231 		/*
232 		 * target is the data block we want to correct, target_index is
233 		 * the index of this block within the rsn RS blocks
234 		 */
235 		if (ileaved == target)
236 			target_index = i;
237 
238 		block = ileaved >> v->data_dev_block_bits;
239 		bufio = v->fec->data_bufio;
240 
241 		if (block >= v->data_blocks) {
242 			block -= v->data_blocks;
243 
244 			/*
245 			 * blocks outside the area were assumed to contain
246 			 * zeros when encoding data was generated
247 			 */
248 			if (unlikely(block >= v->fec->hash_blocks))
249 				continue;
250 
251 			block += v->hash_start;
252 			bufio = v->bufio;
253 		}
254 
255 		bbuf = dm_bufio_read(bufio, block, &buf);
256 		if (unlikely(IS_ERR(bbuf))) {
257 			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
258 				     v->data_dev->name,
259 				     (unsigned long long)rsb,
260 				     (unsigned long long)block, PTR_ERR(bbuf));
261 
262 			/* assume the block is corrupted */
263 			if (neras && *neras <= v->fec->roots)
264 				fio->erasures[(*neras)++] = i;
265 
266 			continue;
267 		}
268 
269 		/* locate erasures if the block is on the data device */
270 		if (bufio == v->fec->data_bufio &&
271 		    verity_hash_for_block(v, io, block, want_digest,
272 					  &is_zero) == 0) {
273 			/* skip known zero blocks entirely */
274 			if (is_zero)
275 				goto done;
276 
277 			/*
278 			 * skip if we have already found the theoretical
279 			 * maximum number (i.e. fec->roots) of erasures
280 			 */
281 			if (neras && *neras <= v->fec->roots &&
282 			    fec_is_erasure(v, io, want_digest, bbuf))
283 				fio->erasures[(*neras)++] = i;
284 		}
285 
286 		/*
287 		 * deinterleave and copy the bytes that fit into bufs,
288 		 * starting from block_offset
289 		 */
290 		fec_for_each_buffer_rs_block(fio, n, j) {
291 			k = fec_buffer_rs_index(n, j) + block_offset;
292 
293 			if (k >= 1 << v->data_dev_block_bits)
294 				goto done;
295 
296 			rs_block = fec_buffer_rs_block(v, fio, n, j);
297 			rs_block[i] = bbuf[k];
298 		}
299 done:
300 		dm_bufio_release(buf);
301 	}
302 
303 	return target_index;
304 }
305 
306 /*
307  * Allocate RS control structure and FEC buffers from preallocated mempools,
308  * and attempt to allocate as many extra buffers as available.
309  */
fec_alloc_bufs(struct dm_verity * v,struct dm_verity_fec_io * fio)310 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
311 {
312 	unsigned n;
313 
314 	if (!fio->rs) {
315 		fio->rs = mempool_alloc(v->fec->rs_pool, 0);
316 		if (unlikely(!fio->rs)) {
317 			DMERR("failed to allocate RS");
318 			return -ENOMEM;
319 		}
320 	}
321 
322 	fec_for_each_prealloc_buffer(n) {
323 		if (fio->bufs[n])
324 			continue;
325 
326 		fio->bufs[n] = mempool_alloc(v->fec->prealloc_pool, GFP_NOIO);
327 		if (unlikely(!fio->bufs[n])) {
328 			DMERR("failed to allocate FEC buffer");
329 			return -ENOMEM;
330 		}
331 	}
332 
333 	/* try to allocate the maximum number of buffers */
334 	fec_for_each_extra_buffer(fio, n) {
335 		if (fio->bufs[n])
336 			continue;
337 
338 		fio->bufs[n] = mempool_alloc(v->fec->extra_pool, GFP_NOIO);
339 		/* we can manage with even one buffer if necessary */
340 		if (unlikely(!fio->bufs[n]))
341 			break;
342 	}
343 	fio->nbufs = n;
344 
345 	if (!fio->output) {
346 		fio->output = mempool_alloc(v->fec->output_pool, GFP_NOIO);
347 
348 		if (!fio->output) {
349 			DMERR("failed to allocate FEC page");
350 			return -ENOMEM;
351 		}
352 	}
353 
354 	return 0;
355 }
356 
357 /*
358  * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
359  * zeroed before deinterleaving.
360  */
fec_init_bufs(struct dm_verity * v,struct dm_verity_fec_io * fio)361 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
362 {
363 	unsigned n;
364 
365 	fec_for_each_buffer(fio, n)
366 		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
367 
368 	memset(fio->erasures, 0, sizeof(fio->erasures));
369 }
370 
371 /*
372  * Decode all RS blocks in a single data block and return the target block
373  * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
374  * hashes to locate erasures.
375  */
fec_decode_rsb(struct dm_verity * v,struct dm_verity_io * io,struct dm_verity_fec_io * fio,u64 rsb,u64 offset,bool use_erasures)376 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
377 			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
378 			  bool use_erasures)
379 {
380 	int r, neras = 0;
381 	unsigned pos;
382 
383 	r = fec_alloc_bufs(v, fio);
384 	if (unlikely(r < 0))
385 		return r;
386 
387 	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
388 		fec_init_bufs(v, fio);
389 
390 		r = fec_read_bufs(v, io, rsb, offset, pos,
391 				  use_erasures ? &neras : NULL);
392 		if (unlikely(r < 0))
393 			return r;
394 
395 		r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
396 		if (r < 0)
397 			return r;
398 
399 		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
400 	}
401 
402 	/* Always re-validate the corrected block against the expected hash */
403 	r = verity_hash(v, verity_io_hash_desc(v, io), fio->output,
404 			1 << v->data_dev_block_bits,
405 			verity_io_real_digest(v, io));
406 	if (unlikely(r < 0))
407 		return r;
408 
409 	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
410 		   v->digest_size)) {
411 		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
412 			    v->data_dev->name, (unsigned long long)rsb, neras);
413 		return -EILSEQ;
414 	}
415 
416 	return 0;
417 }
418 
fec_bv_copy(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len)419 static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
420 		       size_t len)
421 {
422 	struct dm_verity_fec_io *fio = fec_io(io);
423 
424 	memcpy(data, &fio->output[fio->output_pos], len);
425 	fio->output_pos += len;
426 
427 	return 0;
428 }
429 
430 /*
431  * Correct errors in a block. Copies corrected block to dest if non-NULL,
432  * otherwise to a bio_vec starting from iter.
433  */
verity_fec_decode(struct dm_verity * v,struct dm_verity_io * io,enum verity_block_type type,sector_t block,u8 * dest,struct bvec_iter * iter)434 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
435 		      enum verity_block_type type, sector_t block, u8 *dest,
436 		      struct bvec_iter *iter)
437 {
438 	int r;
439 	struct dm_verity_fec_io *fio = fec_io(io);
440 	u64 offset, res, rsb;
441 
442 	if (!verity_fec_is_enabled(v))
443 		return -EOPNOTSUPP;
444 
445 	if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
446 		DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
447 		return -EIO;
448 	}
449 
450 	fio->level++;
451 
452 	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
453 		block = block - v->hash_start + v->data_blocks;
454 
455 	/*
456 	 * For RS(M, N), the continuous FEC data is divided into blocks of N
457 	 * bytes. Since block size may not be divisible by N, the last block
458 	 * is zero padded when decoding.
459 	 *
460 	 * Each byte of the block is covered by a different RS(M, N) code,
461 	 * and each code is interleaved over N blocks to make it less likely
462 	 * that bursty corruption will leave us in unrecoverable state.
463 	 */
464 
465 	offset = block << v->data_dev_block_bits;
466 	res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
467 
468 	/*
469 	 * The base RS block we can feed to the interleaver to find out all
470 	 * blocks required for decoding.
471 	 */
472 	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
473 
474 	/*
475 	 * Locating erasures is slow, so attempt to recover the block without
476 	 * them first. Do a second attempt with erasures if the corruption is
477 	 * bad enough.
478 	 */
479 	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
480 	if (r < 0) {
481 		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
482 		if (r < 0)
483 			goto done;
484 	}
485 
486 	if (dest)
487 		memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
488 	else if (iter) {
489 		fio->output_pos = 0;
490 		r = verity_for_bv_block(v, io, iter, fec_bv_copy);
491 	}
492 
493 done:
494 	fio->level--;
495 	return r;
496 }
497 
498 /*
499  * Clean up per-bio data.
500  */
verity_fec_finish_io(struct dm_verity_io * io)501 void verity_fec_finish_io(struct dm_verity_io *io)
502 {
503 	unsigned n;
504 	struct dm_verity_fec *f = io->v->fec;
505 	struct dm_verity_fec_io *fio = fec_io(io);
506 
507 	if (!verity_fec_is_enabled(io->v))
508 		return;
509 
510 	mempool_free(fio->rs, f->rs_pool);
511 
512 	fec_for_each_prealloc_buffer(n)
513 		mempool_free(fio->bufs[n], f->prealloc_pool);
514 
515 	fec_for_each_extra_buffer(fio, n)
516 		mempool_free(fio->bufs[n], f->extra_pool);
517 
518 	mempool_free(fio->output, f->output_pool);
519 }
520 
521 /*
522  * Initialize per-bio data.
523  */
verity_fec_init_io(struct dm_verity_io * io)524 void verity_fec_init_io(struct dm_verity_io *io)
525 {
526 	struct dm_verity_fec_io *fio = fec_io(io);
527 
528 	if (!verity_fec_is_enabled(io->v))
529 		return;
530 
531 	fio->rs = NULL;
532 	memset(fio->bufs, 0, sizeof(fio->bufs));
533 	fio->nbufs = 0;
534 	fio->output = NULL;
535 	fio->level = 0;
536 }
537 
538 /*
539  * Append feature arguments and values to the status table.
540  */
verity_fec_status_table(struct dm_verity * v,unsigned sz,char * result,unsigned maxlen)541 unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
542 				 char *result, unsigned maxlen)
543 {
544 	if (!verity_fec_is_enabled(v))
545 		return sz;
546 
547 	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
548 	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
549 	       DM_VERITY_OPT_FEC_START " %llu "
550 	       DM_VERITY_OPT_FEC_ROOTS " %d",
551 	       v->fec->dev->name,
552 	       (unsigned long long)v->fec->blocks,
553 	       (unsigned long long)v->fec->start,
554 	       v->fec->roots);
555 
556 	return sz;
557 }
558 
verity_fec_dtr(struct dm_verity * v)559 void verity_fec_dtr(struct dm_verity *v)
560 {
561 	struct dm_verity_fec *f = v->fec;
562 	struct kobject *kobj = &f->kobj_holder.kobj;
563 
564 	if (!verity_fec_is_enabled(v))
565 		goto out;
566 
567 	mempool_destroy(f->rs_pool);
568 	mempool_destroy(f->prealloc_pool);
569 	mempool_destroy(f->extra_pool);
570 	kmem_cache_destroy(f->cache);
571 
572 	if (f->data_bufio)
573 		dm_bufio_client_destroy(f->data_bufio);
574 	if (f->bufio)
575 		dm_bufio_client_destroy(f->bufio);
576 
577 	if (f->dev)
578 		dm_put_device(v->ti, f->dev);
579 
580 	if (kobj->state_initialized) {
581 		kobject_put(kobj);
582 		wait_for_completion(dm_get_completion_from_kobject(kobj));
583 	}
584 
585 out:
586 	kfree(f);
587 	v->fec = NULL;
588 }
589 
fec_rs_alloc(gfp_t gfp_mask,void * pool_data)590 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
591 {
592 	struct dm_verity *v = (struct dm_verity *)pool_data;
593 
594 	return init_rs(8, 0x11d, 0, 1, v->fec->roots);
595 }
596 
fec_rs_free(void * element,void * pool_data)597 static void fec_rs_free(void *element, void *pool_data)
598 {
599 	struct rs_control *rs = (struct rs_control *)element;
600 
601 	if (rs)
602 		free_rs(rs);
603 }
604 
verity_is_fec_opt_arg(const char * arg_name)605 bool verity_is_fec_opt_arg(const char *arg_name)
606 {
607 	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
608 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
609 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
610 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
611 }
612 
verity_fec_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,unsigned * argc,const char * arg_name)613 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
614 			      unsigned *argc, const char *arg_name)
615 {
616 	int r;
617 	struct dm_target *ti = v->ti;
618 	const char *arg_value;
619 	unsigned long long num_ll;
620 	unsigned char num_c;
621 	char dummy;
622 
623 	if (!*argc) {
624 		ti->error = "FEC feature arguments require a value";
625 		return -EINVAL;
626 	}
627 
628 	arg_value = dm_shift_arg(as);
629 	(*argc)--;
630 
631 	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
632 		r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
633 		if (r) {
634 			ti->error = "FEC device lookup failed";
635 			return r;
636 		}
637 
638 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
639 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
640 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
641 		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
642 			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
643 			return -EINVAL;
644 		}
645 		v->fec->blocks = num_ll;
646 
647 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
648 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
649 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
650 		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
651 			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
652 			return -EINVAL;
653 		}
654 		v->fec->start = num_ll;
655 
656 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
657 		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
658 		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
659 		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
660 			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
661 			return -EINVAL;
662 		}
663 		v->fec->roots = num_c;
664 
665 	} else {
666 		ti->error = "Unrecognized verity FEC feature request";
667 		return -EINVAL;
668 	}
669 
670 	return 0;
671 }
672 
corrected_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)673 static ssize_t corrected_show(struct kobject *kobj, struct kobj_attribute *attr,
674 			      char *buf)
675 {
676 	struct dm_verity_fec *f = container_of(kobj, struct dm_verity_fec,
677 					       kobj_holder.kobj);
678 
679 	return sprintf(buf, "%d\n", atomic_read(&f->corrected));
680 }
681 
682 static struct kobj_attribute attr_corrected = __ATTR_RO(corrected);
683 
684 static struct attribute *fec_attrs[] = {
685 	&attr_corrected.attr,
686 	NULL
687 };
688 
689 static struct kobj_type fec_ktype = {
690 	.sysfs_ops = &kobj_sysfs_ops,
691 	.default_attrs = fec_attrs,
692 	.release = dm_kobject_release
693 };
694 
695 /*
696  * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
697  */
verity_fec_ctr_alloc(struct dm_verity * v)698 int verity_fec_ctr_alloc(struct dm_verity *v)
699 {
700 	struct dm_verity_fec *f;
701 
702 	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
703 	if (!f) {
704 		v->ti->error = "Cannot allocate FEC structure";
705 		return -ENOMEM;
706 	}
707 	v->fec = f;
708 
709 	return 0;
710 }
711 
712 /*
713  * Validate arguments and preallocate memory. Must be called after arguments
714  * have been parsed using verity_fec_parse_opt_args.
715  */
verity_fec_ctr(struct dm_verity * v)716 int verity_fec_ctr(struct dm_verity *v)
717 {
718 	int r;
719 	struct dm_verity_fec *f = v->fec;
720 	struct dm_target *ti = v->ti;
721 	struct mapped_device *md = dm_table_get_md(ti->table);
722 	u64 hash_blocks;
723 
724 	if (!verity_fec_is_enabled(v)) {
725 		verity_fec_dtr(v);
726 		return 0;
727 	}
728 
729 	/* Create a kobject and sysfs attributes */
730 	init_completion(&f->kobj_holder.completion);
731 
732 	r = kobject_init_and_add(&f->kobj_holder.kobj, &fec_ktype,
733 				 &disk_to_dev(dm_disk(md))->kobj, "%s", "fec");
734 	if (r) {
735 		ti->error = "Cannot create kobject";
736 		return r;
737 	}
738 
739 	/*
740 	 * FEC is computed over data blocks, possible metadata, and
741 	 * hash blocks. In other words, FEC covers total of fec_blocks
742 	 * blocks consisting of the following:
743 	 *
744 	 *  data blocks | hash blocks | metadata (optional)
745 	 *
746 	 * We allow metadata after hash blocks to support a use case
747 	 * where all data is stored on the same device and FEC covers
748 	 * the entire area.
749 	 *
750 	 * If metadata is included, we require it to be available on the
751 	 * hash device after the hash blocks.
752 	 */
753 
754 	hash_blocks = v->hash_blocks - v->hash_start;
755 
756 	/*
757 	 * Require matching block sizes for data and hash devices for
758 	 * simplicity.
759 	 */
760 	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
761 		ti->error = "Block sizes must match to use FEC";
762 		return -EINVAL;
763 	}
764 
765 	if (!f->roots) {
766 		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
767 		return -EINVAL;
768 	}
769 	f->rsn = DM_VERITY_FEC_RSM - f->roots;
770 
771 	if (!f->blocks) {
772 		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
773 		return -EINVAL;
774 	}
775 
776 	f->rounds = f->blocks;
777 	if (sector_div(f->rounds, f->rsn))
778 		f->rounds++;
779 
780 	/*
781 	 * Due to optional metadata, f->blocks can be larger than
782 	 * data_blocks and hash_blocks combined.
783 	 */
784 	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
785 		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
786 		return -EINVAL;
787 	}
788 
789 	/*
790 	 * Metadata is accessed through the hash device, so we require
791 	 * it to be large enough.
792 	 */
793 	f->hash_blocks = f->blocks - v->data_blocks;
794 	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
795 		ti->error = "Hash device is too small for "
796 			DM_VERITY_OPT_FEC_BLOCKS;
797 		return -E2BIG;
798 	}
799 
800 	f->bufio = dm_bufio_client_create(f->dev->bdev,
801 					  1 << v->data_dev_block_bits,
802 					  1, 0, NULL, NULL);
803 	if (IS_ERR(f->bufio)) {
804 		ti->error = "Cannot initialize FEC bufio client";
805 		return PTR_ERR(f->bufio);
806 	}
807 
808 	if (dm_bufio_get_device_size(f->bufio) <
809 	    ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) {
810 		ti->error = "FEC device is too small";
811 		return -E2BIG;
812 	}
813 
814 	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
815 					       1 << v->data_dev_block_bits,
816 					       1, 0, NULL, NULL);
817 	if (IS_ERR(f->data_bufio)) {
818 		ti->error = "Cannot initialize FEC data bufio client";
819 		return PTR_ERR(f->data_bufio);
820 	}
821 
822 	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
823 		ti->error = "Data device is too small";
824 		return -E2BIG;
825 	}
826 
827 	/* Preallocate an rs_control structure for each worker thread */
828 	f->rs_pool = mempool_create(num_online_cpus(), fec_rs_alloc,
829 				    fec_rs_free, (void *) v);
830 	if (!f->rs_pool) {
831 		ti->error = "Cannot allocate RS pool";
832 		return -ENOMEM;
833 	}
834 
835 	f->cache = kmem_cache_create("dm_verity_fec_buffers",
836 				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
837 				     0, 0, NULL);
838 	if (!f->cache) {
839 		ti->error = "Cannot create FEC buffer cache";
840 		return -ENOMEM;
841 	}
842 
843 	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
844 	f->prealloc_pool = mempool_create_slab_pool(num_online_cpus() *
845 						    DM_VERITY_FEC_BUF_PREALLOC,
846 						    f->cache);
847 	if (!f->prealloc_pool) {
848 		ti->error = "Cannot allocate FEC buffer prealloc pool";
849 		return -ENOMEM;
850 	}
851 
852 	f->extra_pool = mempool_create_slab_pool(0, f->cache);
853 	if (!f->extra_pool) {
854 		ti->error = "Cannot allocate FEC buffer extra pool";
855 		return -ENOMEM;
856 	}
857 
858 	/* Preallocate an output buffer for each thread */
859 	f->output_pool = mempool_create_kmalloc_pool(num_online_cpus(),
860 						     1 << v->data_dev_block_bits);
861 	if (!f->output_pool) {
862 		ti->error = "Cannot allocate FEC output pool";
863 		return -ENOMEM;
864 	}
865 
866 	/* Reserve space for our per-bio data */
867 	ti->per_bio_data_size += sizeof(struct dm_verity_fec_io);
868 
869 	return 0;
870 }
871