1 /*
2 * Copyright (C) 2012 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-array.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13
14 #define DM_MSG_PREFIX "array"
15
16 /*----------------------------------------------------------------*/
17
18 /*
19 * The array is implemented as a fully populated btree, which points to
20 * blocks that contain the packed values. This is more space efficient
21 * than just using a btree since we don't store 1 key per value.
22 */
23 struct array_block {
24 __le32 csum;
25 __le32 max_entries;
26 __le32 nr_entries;
27 __le32 value_size;
28 __le64 blocknr; /* Block this node is supposed to live in. */
29 } __packed;
30
31 /*----------------------------------------------------------------*/
32
33 /*
34 * Validator methods. As usual we calculate a checksum, and also write the
35 * block location into the header (paranoia about ssds remapping areas by
36 * mistake).
37 */
38 #define CSUM_XOR 595846735
39
array_block_prepare_for_write(struct dm_block_validator * v,struct dm_block * b,size_t size_of_block)40 static void array_block_prepare_for_write(struct dm_block_validator *v,
41 struct dm_block *b,
42 size_t size_of_block)
43 {
44 struct array_block *bh_le = dm_block_data(b);
45
46 bh_le->blocknr = cpu_to_le64(dm_block_location(b));
47 bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
48 size_of_block - sizeof(__le32),
49 CSUM_XOR));
50 }
51
array_block_check(struct dm_block_validator * v,struct dm_block * b,size_t size_of_block)52 static int array_block_check(struct dm_block_validator *v,
53 struct dm_block *b,
54 size_t size_of_block)
55 {
56 struct array_block *bh_le = dm_block_data(b);
57 __le32 csum_disk;
58
59 if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) {
60 DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu",
61 (unsigned long long) le64_to_cpu(bh_le->blocknr),
62 (unsigned long long) dm_block_location(b));
63 return -ENOTBLK;
64 }
65
66 csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
67 size_of_block - sizeof(__le32),
68 CSUM_XOR));
69 if (csum_disk != bh_le->csum) {
70 DMERR_LIMIT("array_block_check failed: csum %u != wanted %u",
71 (unsigned) le32_to_cpu(csum_disk),
72 (unsigned) le32_to_cpu(bh_le->csum));
73 return -EILSEQ;
74 }
75
76 return 0;
77 }
78
79 static struct dm_block_validator array_validator = {
80 .name = "array",
81 .prepare_for_write = array_block_prepare_for_write,
82 .check = array_block_check
83 };
84
85 /*----------------------------------------------------------------*/
86
87 /*
88 * Functions for manipulating the array blocks.
89 */
90
91 /*
92 * Returns a pointer to a value within an array block.
93 *
94 * index - The index into _this_ specific block.
95 */
element_at(struct dm_array_info * info,struct array_block * ab,unsigned index)96 static void *element_at(struct dm_array_info *info, struct array_block *ab,
97 unsigned index)
98 {
99 unsigned char *entry = (unsigned char *) (ab + 1);
100
101 entry += index * info->value_type.size;
102
103 return entry;
104 }
105
106 /*
107 * Utility function that calls one of the value_type methods on every value
108 * in an array block.
109 */
on_entries(struct dm_array_info * info,struct array_block * ab,void (* fn)(void *,const void *))110 static void on_entries(struct dm_array_info *info, struct array_block *ab,
111 void (*fn)(void *, const void *))
112 {
113 unsigned i, nr_entries = le32_to_cpu(ab->nr_entries);
114
115 for (i = 0; i < nr_entries; i++)
116 fn(info->value_type.context, element_at(info, ab, i));
117 }
118
119 /*
120 * Increment every value in an array block.
121 */
inc_ablock_entries(struct dm_array_info * info,struct array_block * ab)122 static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab)
123 {
124 struct dm_btree_value_type *vt = &info->value_type;
125
126 if (vt->inc)
127 on_entries(info, ab, vt->inc);
128 }
129
130 /*
131 * Decrement every value in an array block.
132 */
dec_ablock_entries(struct dm_array_info * info,struct array_block * ab)133 static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab)
134 {
135 struct dm_btree_value_type *vt = &info->value_type;
136
137 if (vt->dec)
138 on_entries(info, ab, vt->dec);
139 }
140
141 /*
142 * Each array block can hold this many values.
143 */
calc_max_entries(size_t value_size,size_t size_of_block)144 static uint32_t calc_max_entries(size_t value_size, size_t size_of_block)
145 {
146 return (size_of_block - sizeof(struct array_block)) / value_size;
147 }
148
149 /*
150 * Allocate a new array block. The caller will need to unlock block.
151 */
alloc_ablock(struct dm_array_info * info,size_t size_of_block,uint32_t max_entries,struct dm_block ** block,struct array_block ** ab)152 static int alloc_ablock(struct dm_array_info *info, size_t size_of_block,
153 uint32_t max_entries,
154 struct dm_block **block, struct array_block **ab)
155 {
156 int r;
157
158 r = dm_tm_new_block(info->btree_info.tm, &array_validator, block);
159 if (r)
160 return r;
161
162 (*ab) = dm_block_data(*block);
163 (*ab)->max_entries = cpu_to_le32(max_entries);
164 (*ab)->nr_entries = cpu_to_le32(0);
165 (*ab)->value_size = cpu_to_le32(info->value_type.size);
166
167 return 0;
168 }
169
170 /*
171 * Pad an array block out with a particular value. Every instance will
172 * cause an increment of the value_type. new_nr must always be more than
173 * the current number of entries.
174 */
fill_ablock(struct dm_array_info * info,struct array_block * ab,const void * value,unsigned new_nr)175 static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
176 const void *value, unsigned new_nr)
177 {
178 unsigned i;
179 uint32_t nr_entries;
180 struct dm_btree_value_type *vt = &info->value_type;
181
182 BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
183 BUG_ON(new_nr < le32_to_cpu(ab->nr_entries));
184
185 nr_entries = le32_to_cpu(ab->nr_entries);
186 for (i = nr_entries; i < new_nr; i++) {
187 if (vt->inc)
188 vt->inc(vt->context, value);
189 memcpy(element_at(info, ab, i), value, vt->size);
190 }
191 ab->nr_entries = cpu_to_le32(new_nr);
192 }
193
194 /*
195 * Remove some entries from the back of an array block. Every value
196 * removed will be decremented. new_nr must be <= the current number of
197 * entries.
198 */
trim_ablock(struct dm_array_info * info,struct array_block * ab,unsigned new_nr)199 static void trim_ablock(struct dm_array_info *info, struct array_block *ab,
200 unsigned new_nr)
201 {
202 unsigned i;
203 uint32_t nr_entries;
204 struct dm_btree_value_type *vt = &info->value_type;
205
206 BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
207 BUG_ON(new_nr > le32_to_cpu(ab->nr_entries));
208
209 nr_entries = le32_to_cpu(ab->nr_entries);
210 for (i = nr_entries; i > new_nr; i--)
211 if (vt->dec)
212 vt->dec(vt->context, element_at(info, ab, i - 1));
213 ab->nr_entries = cpu_to_le32(new_nr);
214 }
215
216 /*
217 * Read locks a block, and coerces it to an array block. The caller must
218 * unlock 'block' when finished.
219 */
get_ablock(struct dm_array_info * info,dm_block_t b,struct dm_block ** block,struct array_block ** ab)220 static int get_ablock(struct dm_array_info *info, dm_block_t b,
221 struct dm_block **block, struct array_block **ab)
222 {
223 int r;
224
225 r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block);
226 if (r)
227 return r;
228
229 *ab = dm_block_data(*block);
230 return 0;
231 }
232
233 /*
234 * Unlocks an array block.
235 */
unlock_ablock(struct dm_array_info * info,struct dm_block * block)236 static void unlock_ablock(struct dm_array_info *info, struct dm_block *block)
237 {
238 dm_tm_unlock(info->btree_info.tm, block);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 /*
244 * Btree manipulation.
245 */
246
247 /*
248 * Looks up an array block in the btree, and then read locks it.
249 *
250 * index is the index of the index of the array_block, (ie. the array index
251 * / max_entries).
252 */
lookup_ablock(struct dm_array_info * info,dm_block_t root,unsigned index,struct dm_block ** block,struct array_block ** ab)253 static int lookup_ablock(struct dm_array_info *info, dm_block_t root,
254 unsigned index, struct dm_block **block,
255 struct array_block **ab)
256 {
257 int r;
258 uint64_t key = index;
259 __le64 block_le;
260
261 r = dm_btree_lookup(&info->btree_info, root, &key, &block_le);
262 if (r)
263 return r;
264
265 return get_ablock(info, le64_to_cpu(block_le), block, ab);
266 }
267
268 /*
269 * Insert an array block into the btree. The block is _not_ unlocked.
270 */
insert_ablock(struct dm_array_info * info,uint64_t index,struct dm_block * block,dm_block_t * root)271 static int insert_ablock(struct dm_array_info *info, uint64_t index,
272 struct dm_block *block, dm_block_t *root)
273 {
274 __le64 block_le = cpu_to_le64(dm_block_location(block));
275
276 __dm_bless_for_disk(block_le);
277 return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root);
278 }
279
280 /*
281 * Looks up an array block in the btree. Then shadows it, and updates the
282 * btree to point to this new shadow. 'root' is an input/output parameter
283 * for both the current root block, and the new one.
284 */
shadow_ablock(struct dm_array_info * info,dm_block_t * root,unsigned index,struct dm_block ** block,struct array_block ** ab)285 static int shadow_ablock(struct dm_array_info *info, dm_block_t *root,
286 unsigned index, struct dm_block **block,
287 struct array_block **ab)
288 {
289 int r, inc;
290 uint64_t key = index;
291 dm_block_t b;
292 __le64 block_le;
293
294 /*
295 * lookup
296 */
297 r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le);
298 if (r)
299 return r;
300 b = le64_to_cpu(block_le);
301
302 /*
303 * shadow
304 */
305 r = dm_tm_shadow_block(info->btree_info.tm, b,
306 &array_validator, block, &inc);
307 if (r)
308 return r;
309
310 *ab = dm_block_data(*block);
311 if (inc)
312 inc_ablock_entries(info, *ab);
313
314 /*
315 * Reinsert.
316 *
317 * The shadow op will often be a noop. Only insert if it really
318 * copied data.
319 */
320 if (dm_block_location(*block) != b) {
321 /*
322 * dm_tm_shadow_block will have already decremented the old
323 * block, but it is still referenced by the btree. We
324 * increment to stop the insert decrementing it below zero
325 * when overwriting the old value.
326 */
327 dm_tm_inc(info->btree_info.tm, b);
328 r = insert_ablock(info, index, *block, root);
329 }
330
331 return r;
332 }
333
334 /*
335 * Allocate an new array block, and fill it with some values.
336 */
insert_new_ablock(struct dm_array_info * info,size_t size_of_block,uint32_t max_entries,unsigned block_index,uint32_t nr,const void * value,dm_block_t * root)337 static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block,
338 uint32_t max_entries,
339 unsigned block_index, uint32_t nr,
340 const void *value, dm_block_t *root)
341 {
342 int r;
343 struct dm_block *block;
344 struct array_block *ab;
345
346 r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
347 if (r)
348 return r;
349
350 fill_ablock(info, ab, value, nr);
351 r = insert_ablock(info, block_index, block, root);
352 unlock_ablock(info, block);
353
354 return r;
355 }
356
insert_full_ablocks(struct dm_array_info * info,size_t size_of_block,unsigned begin_block,unsigned end_block,unsigned max_entries,const void * value,dm_block_t * root)357 static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block,
358 unsigned begin_block, unsigned end_block,
359 unsigned max_entries, const void *value,
360 dm_block_t *root)
361 {
362 int r = 0;
363
364 for (; !r && begin_block != end_block; begin_block++)
365 r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root);
366
367 return r;
368 }
369
370 /*
371 * There are a bunch of functions involved with resizing an array. This
372 * structure holds information that commonly needed by them. Purely here
373 * to reduce parameter count.
374 */
375 struct resize {
376 /*
377 * Describes the array.
378 */
379 struct dm_array_info *info;
380
381 /*
382 * The current root of the array. This gets updated.
383 */
384 dm_block_t root;
385
386 /*
387 * Metadata block size. Used to calculate the nr entries in an
388 * array block.
389 */
390 size_t size_of_block;
391
392 /*
393 * Maximum nr entries in an array block.
394 */
395 unsigned max_entries;
396
397 /*
398 * nr of completely full blocks in the array.
399 *
400 * 'old' refers to before the resize, 'new' after.
401 */
402 unsigned old_nr_full_blocks, new_nr_full_blocks;
403
404 /*
405 * Number of entries in the final block. 0 iff only full blocks in
406 * the array.
407 */
408 unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block;
409
410 /*
411 * The default value used when growing the array.
412 */
413 const void *value;
414 };
415
416 /*
417 * Removes a consecutive set of array blocks from the btree. The values
418 * in block are decremented as a side effect of the btree remove.
419 *
420 * begin_index - the index of the first array block to remove.
421 * end_index - the one-past-the-end value. ie. this block is not removed.
422 */
drop_blocks(struct resize * resize,unsigned begin_index,unsigned end_index)423 static int drop_blocks(struct resize *resize, unsigned begin_index,
424 unsigned end_index)
425 {
426 int r;
427
428 while (begin_index != end_index) {
429 uint64_t key = begin_index++;
430 r = dm_btree_remove(&resize->info->btree_info, resize->root,
431 &key, &resize->root);
432 if (r)
433 return r;
434 }
435
436 return 0;
437 }
438
439 /*
440 * Calculates how many blocks are needed for the array.
441 */
total_nr_blocks_needed(unsigned nr_full_blocks,unsigned nr_entries_in_last_block)442 static unsigned total_nr_blocks_needed(unsigned nr_full_blocks,
443 unsigned nr_entries_in_last_block)
444 {
445 return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0);
446 }
447
448 /*
449 * Shrink an array.
450 */
shrink(struct resize * resize)451 static int shrink(struct resize *resize)
452 {
453 int r;
454 unsigned begin, end;
455 struct dm_block *block;
456 struct array_block *ab;
457
458 /*
459 * Lose some blocks from the back?
460 */
461 if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) {
462 begin = total_nr_blocks_needed(resize->new_nr_full_blocks,
463 resize->new_nr_entries_in_last_block);
464 end = total_nr_blocks_needed(resize->old_nr_full_blocks,
465 resize->old_nr_entries_in_last_block);
466
467 r = drop_blocks(resize, begin, end);
468 if (r)
469 return r;
470 }
471
472 /*
473 * Trim the new tail block
474 */
475 if (resize->new_nr_entries_in_last_block) {
476 r = shadow_ablock(resize->info, &resize->root,
477 resize->new_nr_full_blocks, &block, &ab);
478 if (r)
479 return r;
480
481 trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block);
482 unlock_ablock(resize->info, block);
483 }
484
485 return 0;
486 }
487
488 /*
489 * Grow an array.
490 */
grow_extend_tail_block(struct resize * resize,uint32_t new_nr_entries)491 static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries)
492 {
493 int r;
494 struct dm_block *block;
495 struct array_block *ab;
496
497 r = shadow_ablock(resize->info, &resize->root,
498 resize->old_nr_full_blocks, &block, &ab);
499 if (r)
500 return r;
501
502 fill_ablock(resize->info, ab, resize->value, new_nr_entries);
503 unlock_ablock(resize->info, block);
504
505 return r;
506 }
507
grow_add_tail_block(struct resize * resize)508 static int grow_add_tail_block(struct resize *resize)
509 {
510 return insert_new_ablock(resize->info, resize->size_of_block,
511 resize->max_entries,
512 resize->new_nr_full_blocks,
513 resize->new_nr_entries_in_last_block,
514 resize->value, &resize->root);
515 }
516
grow_needs_more_blocks(struct resize * resize)517 static int grow_needs_more_blocks(struct resize *resize)
518 {
519 int r;
520 unsigned old_nr_blocks = resize->old_nr_full_blocks;
521
522 if (resize->old_nr_entries_in_last_block > 0) {
523 old_nr_blocks++;
524
525 r = grow_extend_tail_block(resize, resize->max_entries);
526 if (r)
527 return r;
528 }
529
530 r = insert_full_ablocks(resize->info, resize->size_of_block,
531 old_nr_blocks,
532 resize->new_nr_full_blocks,
533 resize->max_entries, resize->value,
534 &resize->root);
535 if (r)
536 return r;
537
538 if (resize->new_nr_entries_in_last_block)
539 r = grow_add_tail_block(resize);
540
541 return r;
542 }
543
grow(struct resize * resize)544 static int grow(struct resize *resize)
545 {
546 if (resize->new_nr_full_blocks > resize->old_nr_full_blocks)
547 return grow_needs_more_blocks(resize);
548
549 else if (resize->old_nr_entries_in_last_block)
550 return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block);
551
552 else
553 return grow_add_tail_block(resize);
554 }
555
556 /*----------------------------------------------------------------*/
557
558 /*
559 * These are the value_type functions for the btree elements, which point
560 * to array blocks.
561 */
block_inc(void * context,const void * value)562 static void block_inc(void *context, const void *value)
563 {
564 __le64 block_le;
565 struct dm_array_info *info = context;
566
567 memcpy(&block_le, value, sizeof(block_le));
568 dm_tm_inc(info->btree_info.tm, le64_to_cpu(block_le));
569 }
570
block_dec(void * context,const void * value)571 static void block_dec(void *context, const void *value)
572 {
573 int r;
574 uint64_t b;
575 __le64 block_le;
576 uint32_t ref_count;
577 struct dm_block *block;
578 struct array_block *ab;
579 struct dm_array_info *info = context;
580
581 memcpy(&block_le, value, sizeof(block_le));
582 b = le64_to_cpu(block_le);
583
584 r = dm_tm_ref(info->btree_info.tm, b, &ref_count);
585 if (r) {
586 DMERR_LIMIT("couldn't get reference count for block %llu",
587 (unsigned long long) b);
588 return;
589 }
590
591 if (ref_count == 1) {
592 /*
593 * We're about to drop the last reference to this ablock.
594 * So we need to decrement the ref count of the contents.
595 */
596 r = get_ablock(info, b, &block, &ab);
597 if (r) {
598 DMERR_LIMIT("couldn't get array block %llu",
599 (unsigned long long) b);
600 return;
601 }
602
603 dec_ablock_entries(info, ab);
604 unlock_ablock(info, block);
605 }
606
607 dm_tm_dec(info->btree_info.tm, b);
608 }
609
block_equal(void * context,const void * value1,const void * value2)610 static int block_equal(void *context, const void *value1, const void *value2)
611 {
612 return !memcmp(value1, value2, sizeof(__le64));
613 }
614
615 /*----------------------------------------------------------------*/
616
dm_array_info_init(struct dm_array_info * info,struct dm_transaction_manager * tm,struct dm_btree_value_type * vt)617 void dm_array_info_init(struct dm_array_info *info,
618 struct dm_transaction_manager *tm,
619 struct dm_btree_value_type *vt)
620 {
621 struct dm_btree_value_type *bvt = &info->btree_info.value_type;
622
623 memcpy(&info->value_type, vt, sizeof(info->value_type));
624 info->btree_info.tm = tm;
625 info->btree_info.levels = 1;
626
627 bvt->context = info;
628 bvt->size = sizeof(__le64);
629 bvt->inc = block_inc;
630 bvt->dec = block_dec;
631 bvt->equal = block_equal;
632 }
633 EXPORT_SYMBOL_GPL(dm_array_info_init);
634
dm_array_empty(struct dm_array_info * info,dm_block_t * root)635 int dm_array_empty(struct dm_array_info *info, dm_block_t *root)
636 {
637 return dm_btree_empty(&info->btree_info, root);
638 }
639 EXPORT_SYMBOL_GPL(dm_array_empty);
640
array_resize(struct dm_array_info * info,dm_block_t root,uint32_t old_size,uint32_t new_size,const void * value,dm_block_t * new_root)641 static int array_resize(struct dm_array_info *info, dm_block_t root,
642 uint32_t old_size, uint32_t new_size,
643 const void *value, dm_block_t *new_root)
644 {
645 int r;
646 struct resize resize;
647
648 if (old_size == new_size) {
649 *new_root = root;
650 return 0;
651 }
652
653 resize.info = info;
654 resize.root = root;
655 resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
656 resize.max_entries = calc_max_entries(info->value_type.size,
657 resize.size_of_block);
658
659 resize.old_nr_full_blocks = old_size / resize.max_entries;
660 resize.old_nr_entries_in_last_block = old_size % resize.max_entries;
661 resize.new_nr_full_blocks = new_size / resize.max_entries;
662 resize.new_nr_entries_in_last_block = new_size % resize.max_entries;
663 resize.value = value;
664
665 r = ((new_size > old_size) ? grow : shrink)(&resize);
666 if (r)
667 return r;
668
669 *new_root = resize.root;
670 return 0;
671 }
672
dm_array_resize(struct dm_array_info * info,dm_block_t root,uint32_t old_size,uint32_t new_size,const void * value,dm_block_t * new_root)673 int dm_array_resize(struct dm_array_info *info, dm_block_t root,
674 uint32_t old_size, uint32_t new_size,
675 const void *value, dm_block_t *new_root)
676 __dm_written_to_disk(value)
677 {
678 int r = array_resize(info, root, old_size, new_size, value, new_root);
679 __dm_unbless_for_disk(value);
680 return r;
681 }
682 EXPORT_SYMBOL_GPL(dm_array_resize);
683
dm_array_del(struct dm_array_info * info,dm_block_t root)684 int dm_array_del(struct dm_array_info *info, dm_block_t root)
685 {
686 return dm_btree_del(&info->btree_info, root);
687 }
688 EXPORT_SYMBOL_GPL(dm_array_del);
689
dm_array_get_value(struct dm_array_info * info,dm_block_t root,uint32_t index,void * value_le)690 int dm_array_get_value(struct dm_array_info *info, dm_block_t root,
691 uint32_t index, void *value_le)
692 {
693 int r;
694 struct dm_block *block;
695 struct array_block *ab;
696 size_t size_of_block;
697 unsigned entry, max_entries;
698
699 size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
700 max_entries = calc_max_entries(info->value_type.size, size_of_block);
701
702 r = lookup_ablock(info, root, index / max_entries, &block, &ab);
703 if (r)
704 return r;
705
706 entry = index % max_entries;
707 if (entry >= le32_to_cpu(ab->nr_entries))
708 r = -ENODATA;
709 else
710 memcpy(value_le, element_at(info, ab, entry),
711 info->value_type.size);
712
713 unlock_ablock(info, block);
714 return r;
715 }
716 EXPORT_SYMBOL_GPL(dm_array_get_value);
717
array_set_value(struct dm_array_info * info,dm_block_t root,uint32_t index,const void * value,dm_block_t * new_root)718 static int array_set_value(struct dm_array_info *info, dm_block_t root,
719 uint32_t index, const void *value, dm_block_t *new_root)
720 {
721 int r;
722 struct dm_block *block;
723 struct array_block *ab;
724 size_t size_of_block;
725 unsigned max_entries;
726 unsigned entry;
727 void *old_value;
728 struct dm_btree_value_type *vt = &info->value_type;
729
730 size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
731 max_entries = calc_max_entries(info->value_type.size, size_of_block);
732
733 r = shadow_ablock(info, &root, index / max_entries, &block, &ab);
734 if (r)
735 return r;
736 *new_root = root;
737
738 entry = index % max_entries;
739 if (entry >= le32_to_cpu(ab->nr_entries)) {
740 r = -ENODATA;
741 goto out;
742 }
743
744 old_value = element_at(info, ab, entry);
745 if (vt->dec &&
746 (!vt->equal || !vt->equal(vt->context, old_value, value))) {
747 vt->dec(vt->context, old_value);
748 if (vt->inc)
749 vt->inc(vt->context, value);
750 }
751
752 memcpy(old_value, value, info->value_type.size);
753
754 out:
755 unlock_ablock(info, block);
756 return r;
757 }
758
dm_array_set_value(struct dm_array_info * info,dm_block_t root,uint32_t index,const void * value,dm_block_t * new_root)759 int dm_array_set_value(struct dm_array_info *info, dm_block_t root,
760 uint32_t index, const void *value, dm_block_t *new_root)
761 __dm_written_to_disk(value)
762 {
763 int r;
764
765 r = array_set_value(info, root, index, value, new_root);
766 __dm_unbless_for_disk(value);
767 return r;
768 }
769 EXPORT_SYMBOL_GPL(dm_array_set_value);
770
771 struct walk_info {
772 struct dm_array_info *info;
773 int (*fn)(void *context, uint64_t key, void *leaf);
774 void *context;
775 };
776
walk_ablock(void * context,uint64_t * keys,void * leaf)777 static int walk_ablock(void *context, uint64_t *keys, void *leaf)
778 {
779 struct walk_info *wi = context;
780
781 int r;
782 unsigned i;
783 __le64 block_le;
784 unsigned nr_entries, max_entries;
785 struct dm_block *block;
786 struct array_block *ab;
787
788 memcpy(&block_le, leaf, sizeof(block_le));
789 r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab);
790 if (r)
791 return r;
792
793 max_entries = le32_to_cpu(ab->max_entries);
794 nr_entries = le32_to_cpu(ab->nr_entries);
795 for (i = 0; i < nr_entries; i++) {
796 r = wi->fn(wi->context, keys[0] * max_entries + i,
797 element_at(wi->info, ab, i));
798
799 if (r)
800 break;
801 }
802
803 unlock_ablock(wi->info, block);
804 return r;
805 }
806
dm_array_walk(struct dm_array_info * info,dm_block_t root,int (* fn)(void *,uint64_t key,void * leaf),void * context)807 int dm_array_walk(struct dm_array_info *info, dm_block_t root,
808 int (*fn)(void *, uint64_t key, void *leaf),
809 void *context)
810 {
811 struct walk_info wi;
812
813 wi.info = info;
814 wi.fn = fn;
815 wi.context = context;
816
817 return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi);
818 }
819 EXPORT_SYMBOL_GPL(dm_array_walk);
820
821 /*----------------------------------------------------------------*/
822