• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
r1bio_pool_alloc(gfp_t gfp_flags,void * data)73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
r1bio_pool_free(void * r1_bio,void * data)82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96 
r1buf_pool_alloc(gfp_t gfp_flags,void * data)97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 	struct pool_info *pi = data;
100 	struct r1bio *r1_bio;
101 	struct bio *bio;
102 	int need_pages;
103 	int i, j;
104 
105 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 	if (!r1_bio)
107 		return NULL;
108 
109 	/*
110 	 * Allocate bios : 1 for reading, n-1 for writing
111 	 */
112 	for (j = pi->raid_disks ; j-- ; ) {
113 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 		if (!bio)
115 			goto out_free_bio;
116 		r1_bio->bios[j] = bio;
117 	}
118 	/*
119 	 * Allocate RESYNC_PAGES data pages and attach them to
120 	 * the first bio.
121 	 * If this is a user-requested check/repair, allocate
122 	 * RESYNC_PAGES for each bio.
123 	 */
124 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 		need_pages = pi->raid_disks;
126 	else
127 		need_pages = 1;
128 	for (j = 0; j < need_pages; j++) {
129 		bio = r1_bio->bios[j];
130 		bio->bi_vcnt = RESYNC_PAGES;
131 
132 		if (bio_alloc_pages(bio, gfp_flags))
133 			goto out_free_pages;
134 	}
135 	/* If not user-requests, copy the page pointers to all bios */
136 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 		for (i=0; i<RESYNC_PAGES ; i++)
138 			for (j=1; j<pi->raid_disks; j++)
139 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 	}
142 
143 	r1_bio->master_bio = NULL;
144 
145 	return r1_bio;
146 
147 out_free_pages:
148 	while (--j >= 0) {
149 		struct bio_vec *bv;
150 
151 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152 			__free_page(bv->bv_page);
153 	}
154 
155 out_free_bio:
156 	while (++j < pi->raid_disks)
157 		bio_put(r1_bio->bios[j]);
158 	r1bio_pool_free(r1_bio, data);
159 	return NULL;
160 }
161 
r1buf_pool_free(void * __r1_bio,void * data)162 static void r1buf_pool_free(void *__r1_bio, void *data)
163 {
164 	struct pool_info *pi = data;
165 	int i,j;
166 	struct r1bio *r1bio = __r1_bio;
167 
168 	for (i = 0; i < RESYNC_PAGES; i++)
169 		for (j = pi->raid_disks; j-- ;) {
170 			if (j == 0 ||
171 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
173 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
174 		}
175 	for (i=0 ; i < pi->raid_disks; i++)
176 		bio_put(r1bio->bios[i]);
177 
178 	r1bio_pool_free(r1bio, data);
179 }
180 
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
182 {
183 	int i;
184 
185 	for (i = 0; i < conf->raid_disks * 2; i++) {
186 		struct bio **bio = r1_bio->bios + i;
187 		if (!BIO_SPECIAL(*bio))
188 			bio_put(*bio);
189 		*bio = NULL;
190 	}
191 }
192 
free_r1bio(struct r1bio * r1_bio)193 static void free_r1bio(struct r1bio *r1_bio)
194 {
195 	struct r1conf *conf = r1_bio->mddev->private;
196 
197 	put_all_bios(conf, r1_bio);
198 	mempool_free(r1_bio, conf->r1bio_pool);
199 }
200 
put_buf(struct r1bio * r1_bio)201 static void put_buf(struct r1bio *r1_bio)
202 {
203 	struct r1conf *conf = r1_bio->mddev->private;
204 	int i;
205 
206 	for (i = 0; i < conf->raid_disks * 2; i++) {
207 		struct bio *bio = r1_bio->bios[i];
208 		if (bio->bi_end_io)
209 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 	}
211 
212 	mempool_free(r1_bio, conf->r1buf_pool);
213 
214 	lower_barrier(conf);
215 }
216 
reschedule_retry(struct r1bio * r1_bio)217 static void reschedule_retry(struct r1bio *r1_bio)
218 {
219 	unsigned long flags;
220 	struct mddev *mddev = r1_bio->mddev;
221 	struct r1conf *conf = mddev->private;
222 
223 	spin_lock_irqsave(&conf->device_lock, flags);
224 	list_add(&r1_bio->retry_list, &conf->retry_list);
225 	conf->nr_queued ++;
226 	spin_unlock_irqrestore(&conf->device_lock, flags);
227 
228 	wake_up(&conf->wait_barrier);
229 	md_wakeup_thread(mddev->thread);
230 }
231 
232 /*
233  * raid_end_bio_io() is called when we have finished servicing a mirrored
234  * operation and are ready to return a success/failure code to the buffer
235  * cache layer.
236  */
call_bio_endio(struct r1bio * r1_bio)237 static void call_bio_endio(struct r1bio *r1_bio)
238 {
239 	struct bio *bio = r1_bio->master_bio;
240 	int done;
241 	struct r1conf *conf = r1_bio->mddev->private;
242 	sector_t start_next_window = r1_bio->start_next_window;
243 	sector_t bi_sector = bio->bi_iter.bi_sector;
244 
245 	if (bio->bi_phys_segments) {
246 		unsigned long flags;
247 		spin_lock_irqsave(&conf->device_lock, flags);
248 		bio->bi_phys_segments--;
249 		done = (bio->bi_phys_segments == 0);
250 		spin_unlock_irqrestore(&conf->device_lock, flags);
251 		/*
252 		 * make_request() might be waiting for
253 		 * bi_phys_segments to decrease
254 		 */
255 		wake_up(&conf->wait_barrier);
256 	} else
257 		done = 1;
258 
259 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260 		bio->bi_error = -EIO;
261 
262 	if (done) {
263 		bio_endio(bio);
264 		/*
265 		 * Wake up any possible resync thread that waits for the device
266 		 * to go idle.
267 		 */
268 		allow_barrier(conf, start_next_window, bi_sector);
269 	}
270 }
271 
raid_end_bio_io(struct r1bio * r1_bio)272 static void raid_end_bio_io(struct r1bio *r1_bio)
273 {
274 	struct bio *bio = r1_bio->master_bio;
275 
276 	/* if nobody has done the final endio yet, do it now */
277 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
280 			 (unsigned long long) bio->bi_iter.bi_sector,
281 			 (unsigned long long) bio_end_sector(bio) - 1);
282 
283 		call_bio_endio(r1_bio);
284 	}
285 	free_r1bio(r1_bio);
286 }
287 
288 /*
289  * Update disk head position estimator based on IRQ completion info.
290  */
update_head_pos(int disk,struct r1bio * r1_bio)291 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
292 {
293 	struct r1conf *conf = r1_bio->mddev->private;
294 
295 	conf->mirrors[disk].head_position =
296 		r1_bio->sector + (r1_bio->sectors);
297 }
298 
299 /*
300  * Find the disk number which triggered given bio
301  */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
303 {
304 	int mirror;
305 	struct r1conf *conf = r1_bio->mddev->private;
306 	int raid_disks = conf->raid_disks;
307 
308 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
309 		if (r1_bio->bios[mirror] == bio)
310 			break;
311 
312 	BUG_ON(mirror == raid_disks * 2);
313 	update_head_pos(mirror, r1_bio);
314 
315 	return mirror;
316 }
317 
raid1_end_read_request(struct bio * bio)318 static void raid1_end_read_request(struct bio *bio)
319 {
320 	int uptodate = !bio->bi_error;
321 	struct r1bio *r1_bio = bio->bi_private;
322 	int mirror;
323 	struct r1conf *conf = r1_bio->mddev->private;
324 
325 	mirror = r1_bio->read_disk;
326 	/*
327 	 * this branch is our 'one mirror IO has finished' event handler:
328 	 */
329 	update_head_pos(mirror, r1_bio);
330 
331 	if (uptodate)
332 		set_bit(R1BIO_Uptodate, &r1_bio->state);
333 	else {
334 		/* If all other devices have failed, we want to return
335 		 * the error upwards rather than fail the last device.
336 		 * Here we redefine "uptodate" to mean "Don't want to retry"
337 		 */
338 		unsigned long flags;
339 		spin_lock_irqsave(&conf->device_lock, flags);
340 		if (r1_bio->mddev->degraded == conf->raid_disks ||
341 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
342 		     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
343 			uptodate = 1;
344 		spin_unlock_irqrestore(&conf->device_lock, flags);
345 	}
346 
347 	if (uptodate) {
348 		raid_end_bio_io(r1_bio);
349 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
350 	} else {
351 		/*
352 		 * oops, read error:
353 		 */
354 		char b[BDEVNAME_SIZE];
355 		printk_ratelimited(
356 			KERN_ERR "md/raid1:%s: %s: "
357 			"rescheduling sector %llu\n",
358 			mdname(conf->mddev),
359 			bdevname(conf->mirrors[mirror].rdev->bdev,
360 				 b),
361 			(unsigned long long)r1_bio->sector);
362 		set_bit(R1BIO_ReadError, &r1_bio->state);
363 		reschedule_retry(r1_bio);
364 		/* don't drop the reference on read_disk yet */
365 	}
366 }
367 
close_write(struct r1bio * r1_bio)368 static void close_write(struct r1bio *r1_bio)
369 {
370 	/* it really is the end of this request */
371 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
372 		/* free extra copy of the data pages */
373 		int i = r1_bio->behind_page_count;
374 		while (i--)
375 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
376 		kfree(r1_bio->behind_bvecs);
377 		r1_bio->behind_bvecs = NULL;
378 	}
379 	/* clear the bitmap if all writes complete successfully */
380 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
381 			r1_bio->sectors,
382 			!test_bit(R1BIO_Degraded, &r1_bio->state),
383 			test_bit(R1BIO_BehindIO, &r1_bio->state));
384 	md_write_end(r1_bio->mddev);
385 }
386 
r1_bio_write_done(struct r1bio * r1_bio)387 static void r1_bio_write_done(struct r1bio *r1_bio)
388 {
389 	if (!atomic_dec_and_test(&r1_bio->remaining))
390 		return;
391 
392 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
393 		reschedule_retry(r1_bio);
394 	else {
395 		close_write(r1_bio);
396 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
397 			reschedule_retry(r1_bio);
398 		else
399 			raid_end_bio_io(r1_bio);
400 	}
401 }
402 
raid1_end_write_request(struct bio * bio)403 static void raid1_end_write_request(struct bio *bio)
404 {
405 	struct r1bio *r1_bio = bio->bi_private;
406 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
407 	struct r1conf *conf = r1_bio->mddev->private;
408 	struct bio *to_put = NULL;
409 
410 	mirror = find_bio_disk(r1_bio, bio);
411 
412 	/*
413 	 * 'one mirror IO has finished' event handler:
414 	 */
415 	if (bio->bi_error) {
416 		set_bit(WriteErrorSeen,
417 			&conf->mirrors[mirror].rdev->flags);
418 		if (!test_and_set_bit(WantReplacement,
419 				      &conf->mirrors[mirror].rdev->flags))
420 			set_bit(MD_RECOVERY_NEEDED, &
421 				conf->mddev->recovery);
422 
423 		set_bit(R1BIO_WriteError, &r1_bio->state);
424 	} else {
425 		/*
426 		 * Set R1BIO_Uptodate in our master bio, so that we
427 		 * will return a good error code for to the higher
428 		 * levels even if IO on some other mirrored buffer
429 		 * fails.
430 		 *
431 		 * The 'master' represents the composite IO operation
432 		 * to user-side. So if something waits for IO, then it
433 		 * will wait for the 'master' bio.
434 		 */
435 		sector_t first_bad;
436 		int bad_sectors;
437 
438 		r1_bio->bios[mirror] = NULL;
439 		to_put = bio;
440 		/*
441 		 * Do not set R1BIO_Uptodate if the current device is
442 		 * rebuilding or Faulty. This is because we cannot use
443 		 * such device for properly reading the data back (we could
444 		 * potentially use it, if the current write would have felt
445 		 * before rdev->recovery_offset, but for simplicity we don't
446 		 * check this here.
447 		 */
448 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
449 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
450 			set_bit(R1BIO_Uptodate, &r1_bio->state);
451 
452 		/* Maybe we can clear some bad blocks. */
453 		if (is_badblock(conf->mirrors[mirror].rdev,
454 				r1_bio->sector, r1_bio->sectors,
455 				&first_bad, &bad_sectors)) {
456 			r1_bio->bios[mirror] = IO_MADE_GOOD;
457 			set_bit(R1BIO_MadeGood, &r1_bio->state);
458 		}
459 	}
460 
461 	if (behind) {
462 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
463 			atomic_dec(&r1_bio->behind_remaining);
464 
465 		/*
466 		 * In behind mode, we ACK the master bio once the I/O
467 		 * has safely reached all non-writemostly
468 		 * disks. Setting the Returned bit ensures that this
469 		 * gets done only once -- we don't ever want to return
470 		 * -EIO here, instead we'll wait
471 		 */
472 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
473 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
474 			/* Maybe we can return now */
475 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
476 				struct bio *mbio = r1_bio->master_bio;
477 				pr_debug("raid1: behind end write sectors"
478 					 " %llu-%llu\n",
479 					 (unsigned long long) mbio->bi_iter.bi_sector,
480 					 (unsigned long long) bio_end_sector(mbio) - 1);
481 				call_bio_endio(r1_bio);
482 			}
483 		}
484 	}
485 	if (r1_bio->bios[mirror] == NULL)
486 		rdev_dec_pending(conf->mirrors[mirror].rdev,
487 				 conf->mddev);
488 
489 	/*
490 	 * Let's see if all mirrored write operations have finished
491 	 * already.
492 	 */
493 	r1_bio_write_done(r1_bio);
494 
495 	if (to_put)
496 		bio_put(to_put);
497 }
498 
499 /*
500  * This routine returns the disk from which the requested read should
501  * be done. There is a per-array 'next expected sequential IO' sector
502  * number - if this matches on the next IO then we use the last disk.
503  * There is also a per-disk 'last know head position' sector that is
504  * maintained from IRQ contexts, both the normal and the resync IO
505  * completion handlers update this position correctly. If there is no
506  * perfect sequential match then we pick the disk whose head is closest.
507  *
508  * If there are 2 mirrors in the same 2 devices, performance degrades
509  * because position is mirror, not device based.
510  *
511  * The rdev for the device selected will have nr_pending incremented.
512  */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)513 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
514 {
515 	const sector_t this_sector = r1_bio->sector;
516 	int sectors;
517 	int best_good_sectors;
518 	int best_disk, best_dist_disk, best_pending_disk;
519 	int has_nonrot_disk;
520 	int disk;
521 	sector_t best_dist;
522 	unsigned int min_pending;
523 	struct md_rdev *rdev;
524 	int choose_first;
525 	int choose_next_idle;
526 
527 	rcu_read_lock();
528 	/*
529 	 * Check if we can balance. We can balance on the whole
530 	 * device if no resync is going on, or below the resync window.
531 	 * We take the first readable disk when above the resync window.
532 	 */
533  retry:
534 	sectors = r1_bio->sectors;
535 	best_disk = -1;
536 	best_dist_disk = -1;
537 	best_dist = MaxSector;
538 	best_pending_disk = -1;
539 	min_pending = UINT_MAX;
540 	best_good_sectors = 0;
541 	has_nonrot_disk = 0;
542 	choose_next_idle = 0;
543 
544 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
545 	    (mddev_is_clustered(conf->mddev) &&
546 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
547 		    this_sector + sectors)))
548 		choose_first = 1;
549 	else
550 		choose_first = 0;
551 
552 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
553 		sector_t dist;
554 		sector_t first_bad;
555 		int bad_sectors;
556 		unsigned int pending;
557 		bool nonrot;
558 
559 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
560 		if (r1_bio->bios[disk] == IO_BLOCKED
561 		    || rdev == NULL
562 		    || test_bit(Faulty, &rdev->flags))
563 			continue;
564 		if (!test_bit(In_sync, &rdev->flags) &&
565 		    rdev->recovery_offset < this_sector + sectors)
566 			continue;
567 		if (test_bit(WriteMostly, &rdev->flags)) {
568 			/* Don't balance among write-mostly, just
569 			 * use the first as a last resort */
570 			if (best_dist_disk < 0) {
571 				if (is_badblock(rdev, this_sector, sectors,
572 						&first_bad, &bad_sectors)) {
573 					if (first_bad <= this_sector)
574 						/* Cannot use this */
575 						continue;
576 					best_good_sectors = first_bad - this_sector;
577 				} else
578 					best_good_sectors = sectors;
579 				best_dist_disk = disk;
580 				best_pending_disk = disk;
581 			}
582 			continue;
583 		}
584 		/* This is a reasonable device to use.  It might
585 		 * even be best.
586 		 */
587 		if (is_badblock(rdev, this_sector, sectors,
588 				&first_bad, &bad_sectors)) {
589 			if (best_dist < MaxSector)
590 				/* already have a better device */
591 				continue;
592 			if (first_bad <= this_sector) {
593 				/* cannot read here. If this is the 'primary'
594 				 * device, then we must not read beyond
595 				 * bad_sectors from another device..
596 				 */
597 				bad_sectors -= (this_sector - first_bad);
598 				if (choose_first && sectors > bad_sectors)
599 					sectors = bad_sectors;
600 				if (best_good_sectors > sectors)
601 					best_good_sectors = sectors;
602 
603 			} else {
604 				sector_t good_sectors = first_bad - this_sector;
605 				if (good_sectors > best_good_sectors) {
606 					best_good_sectors = good_sectors;
607 					best_disk = disk;
608 				}
609 				if (choose_first)
610 					break;
611 			}
612 			continue;
613 		} else
614 			best_good_sectors = sectors;
615 
616 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
617 		has_nonrot_disk |= nonrot;
618 		pending = atomic_read(&rdev->nr_pending);
619 		dist = abs(this_sector - conf->mirrors[disk].head_position);
620 		if (choose_first) {
621 			best_disk = disk;
622 			break;
623 		}
624 		/* Don't change to another disk for sequential reads */
625 		if (conf->mirrors[disk].next_seq_sect == this_sector
626 		    || dist == 0) {
627 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
628 			struct raid1_info *mirror = &conf->mirrors[disk];
629 
630 			best_disk = disk;
631 			/*
632 			 * If buffered sequential IO size exceeds optimal
633 			 * iosize, check if there is idle disk. If yes, choose
634 			 * the idle disk. read_balance could already choose an
635 			 * idle disk before noticing it's a sequential IO in
636 			 * this disk. This doesn't matter because this disk
637 			 * will idle, next time it will be utilized after the
638 			 * first disk has IO size exceeds optimal iosize. In
639 			 * this way, iosize of the first disk will be optimal
640 			 * iosize at least. iosize of the second disk might be
641 			 * small, but not a big deal since when the second disk
642 			 * starts IO, the first disk is likely still busy.
643 			 */
644 			if (nonrot && opt_iosize > 0 &&
645 			    mirror->seq_start != MaxSector &&
646 			    mirror->next_seq_sect > opt_iosize &&
647 			    mirror->next_seq_sect - opt_iosize >=
648 			    mirror->seq_start) {
649 				choose_next_idle = 1;
650 				continue;
651 			}
652 			break;
653 		}
654 		/* If device is idle, use it */
655 		if (pending == 0) {
656 			best_disk = disk;
657 			break;
658 		}
659 
660 		if (choose_next_idle)
661 			continue;
662 
663 		if (min_pending > pending) {
664 			min_pending = pending;
665 			best_pending_disk = disk;
666 		}
667 
668 		if (dist < best_dist) {
669 			best_dist = dist;
670 			best_dist_disk = disk;
671 		}
672 	}
673 
674 	/*
675 	 * If all disks are rotational, choose the closest disk. If any disk is
676 	 * non-rotational, choose the disk with less pending request even the
677 	 * disk is rotational, which might/might not be optimal for raids with
678 	 * mixed ratation/non-rotational disks depending on workload.
679 	 */
680 	if (best_disk == -1) {
681 		if (has_nonrot_disk)
682 			best_disk = best_pending_disk;
683 		else
684 			best_disk = best_dist_disk;
685 	}
686 
687 	if (best_disk >= 0) {
688 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
689 		if (!rdev)
690 			goto retry;
691 		atomic_inc(&rdev->nr_pending);
692 		if (test_bit(Faulty, &rdev->flags)) {
693 			/* cannot risk returning a device that failed
694 			 * before we inc'ed nr_pending
695 			 */
696 			rdev_dec_pending(rdev, conf->mddev);
697 			goto retry;
698 		}
699 		sectors = best_good_sectors;
700 
701 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
702 			conf->mirrors[best_disk].seq_start = this_sector;
703 
704 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
705 	}
706 	rcu_read_unlock();
707 	*max_sectors = sectors;
708 
709 	return best_disk;
710 }
711 
raid1_congested(struct mddev * mddev,int bits)712 static int raid1_congested(struct mddev *mddev, int bits)
713 {
714 	struct r1conf *conf = mddev->private;
715 	int i, ret = 0;
716 
717 	if ((bits & (1 << WB_async_congested)) &&
718 	    conf->pending_count >= max_queued_requests)
719 		return 1;
720 
721 	rcu_read_lock();
722 	for (i = 0; i < conf->raid_disks * 2; i++) {
723 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
724 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
725 			struct request_queue *q = bdev_get_queue(rdev->bdev);
726 
727 			BUG_ON(!q);
728 
729 			/* Note the '|| 1' - when read_balance prefers
730 			 * non-congested targets, it can be removed
731 			 */
732 			if ((bits & (1 << WB_async_congested)) || 1)
733 				ret |= bdi_congested(&q->backing_dev_info, bits);
734 			else
735 				ret &= bdi_congested(&q->backing_dev_info, bits);
736 		}
737 	}
738 	rcu_read_unlock();
739 	return ret;
740 }
741 
flush_pending_writes(struct r1conf * conf)742 static void flush_pending_writes(struct r1conf *conf)
743 {
744 	/* Any writes that have been queued but are awaiting
745 	 * bitmap updates get flushed here.
746 	 */
747 	spin_lock_irq(&conf->device_lock);
748 
749 	if (conf->pending_bio_list.head) {
750 		struct bio *bio;
751 		bio = bio_list_get(&conf->pending_bio_list);
752 		conf->pending_count = 0;
753 		spin_unlock_irq(&conf->device_lock);
754 		/* flush any pending bitmap writes to
755 		 * disk before proceeding w/ I/O */
756 		bitmap_unplug(conf->mddev->bitmap);
757 		wake_up(&conf->wait_barrier);
758 
759 		while (bio) { /* submit pending writes */
760 			struct bio *next = bio->bi_next;
761 			bio->bi_next = NULL;
762 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
763 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
764 				/* Just ignore it */
765 				bio_endio(bio);
766 			else
767 				generic_make_request(bio);
768 			bio = next;
769 		}
770 	} else
771 		spin_unlock_irq(&conf->device_lock);
772 }
773 
774 /* Barriers....
775  * Sometimes we need to suspend IO while we do something else,
776  * either some resync/recovery, or reconfigure the array.
777  * To do this we raise a 'barrier'.
778  * The 'barrier' is a counter that can be raised multiple times
779  * to count how many activities are happening which preclude
780  * normal IO.
781  * We can only raise the barrier if there is no pending IO.
782  * i.e. if nr_pending == 0.
783  * We choose only to raise the barrier if no-one is waiting for the
784  * barrier to go down.  This means that as soon as an IO request
785  * is ready, no other operations which require a barrier will start
786  * until the IO request has had a chance.
787  *
788  * So: regular IO calls 'wait_barrier'.  When that returns there
789  *    is no backgroup IO happening,  It must arrange to call
790  *    allow_barrier when it has finished its IO.
791  * backgroup IO calls must call raise_barrier.  Once that returns
792  *    there is no normal IO happeing.  It must arrange to call
793  *    lower_barrier when the particular background IO completes.
794  */
raise_barrier(struct r1conf * conf,sector_t sector_nr)795 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
796 {
797 	spin_lock_irq(&conf->resync_lock);
798 
799 	/* Wait until no block IO is waiting */
800 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
801 			    conf->resync_lock);
802 
803 	/* block any new IO from starting */
804 	conf->barrier++;
805 	conf->next_resync = sector_nr;
806 
807 	/* For these conditions we must wait:
808 	 * A: while the array is in frozen state
809 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
810 	 *    the max count which allowed.
811 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
812 	 *    next resync will reach to the window which normal bios are
813 	 *    handling.
814 	 * D: while there are any active requests in the current window.
815 	 */
816 	wait_event_lock_irq(conf->wait_barrier,
817 			    !conf->array_frozen &&
818 			    conf->barrier < RESYNC_DEPTH &&
819 			    conf->current_window_requests == 0 &&
820 			    (conf->start_next_window >=
821 			     conf->next_resync + RESYNC_SECTORS),
822 			    conf->resync_lock);
823 
824 	conf->nr_pending++;
825 	spin_unlock_irq(&conf->resync_lock);
826 }
827 
lower_barrier(struct r1conf * conf)828 static void lower_barrier(struct r1conf *conf)
829 {
830 	unsigned long flags;
831 	BUG_ON(conf->barrier <= 0);
832 	spin_lock_irqsave(&conf->resync_lock, flags);
833 	conf->barrier--;
834 	conf->nr_pending--;
835 	spin_unlock_irqrestore(&conf->resync_lock, flags);
836 	wake_up(&conf->wait_barrier);
837 }
838 
need_to_wait_for_sync(struct r1conf * conf,struct bio * bio)839 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
840 {
841 	bool wait = false;
842 
843 	if (conf->array_frozen || !bio)
844 		wait = true;
845 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
846 		if ((conf->mddev->curr_resync_completed
847 		     >= bio_end_sector(bio)) ||
848 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
849 		     <= bio->bi_iter.bi_sector))
850 			wait = false;
851 		else
852 			wait = true;
853 	}
854 
855 	return wait;
856 }
857 
wait_barrier(struct r1conf * conf,struct bio * bio)858 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
859 {
860 	sector_t sector = 0;
861 
862 	spin_lock_irq(&conf->resync_lock);
863 	if (need_to_wait_for_sync(conf, bio)) {
864 		conf->nr_waiting++;
865 		/* Wait for the barrier to drop.
866 		 * However if there are already pending
867 		 * requests (preventing the barrier from
868 		 * rising completely), and the
869 		 * per-process bio queue isn't empty,
870 		 * then don't wait, as we need to empty
871 		 * that queue to allow conf->start_next_window
872 		 * to increase.
873 		 */
874 		wait_event_lock_irq(conf->wait_barrier,
875 				    !conf->array_frozen &&
876 				    (!conf->barrier ||
877 				     ((conf->start_next_window <
878 				       conf->next_resync + RESYNC_SECTORS) &&
879 				      current->bio_list &&
880 				     (!bio_list_empty(&current->bio_list[0]) ||
881 				      !bio_list_empty(&current->bio_list[1])))),
882 				    conf->resync_lock);
883 		conf->nr_waiting--;
884 	}
885 
886 	if (bio && bio_data_dir(bio) == WRITE) {
887 		if (bio->bi_iter.bi_sector >= conf->next_resync) {
888 			if (conf->start_next_window == MaxSector)
889 				conf->start_next_window =
890 					conf->next_resync +
891 					NEXT_NORMALIO_DISTANCE;
892 
893 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
894 			    <= bio->bi_iter.bi_sector)
895 				conf->next_window_requests++;
896 			else
897 				conf->current_window_requests++;
898 			sector = conf->start_next_window;
899 		}
900 	}
901 
902 	conf->nr_pending++;
903 	spin_unlock_irq(&conf->resync_lock);
904 	return sector;
905 }
906 
allow_barrier(struct r1conf * conf,sector_t start_next_window,sector_t bi_sector)907 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
908 			  sector_t bi_sector)
909 {
910 	unsigned long flags;
911 
912 	spin_lock_irqsave(&conf->resync_lock, flags);
913 	conf->nr_pending--;
914 	if (start_next_window) {
915 		if (start_next_window == conf->start_next_window) {
916 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
917 			    <= bi_sector)
918 				conf->next_window_requests--;
919 			else
920 				conf->current_window_requests--;
921 		} else
922 			conf->current_window_requests--;
923 
924 		if (!conf->current_window_requests) {
925 			if (conf->next_window_requests) {
926 				conf->current_window_requests =
927 					conf->next_window_requests;
928 				conf->next_window_requests = 0;
929 				conf->start_next_window +=
930 					NEXT_NORMALIO_DISTANCE;
931 			} else
932 				conf->start_next_window = MaxSector;
933 		}
934 	}
935 	spin_unlock_irqrestore(&conf->resync_lock, flags);
936 	wake_up(&conf->wait_barrier);
937 }
938 
freeze_array(struct r1conf * conf,int extra)939 static void freeze_array(struct r1conf *conf, int extra)
940 {
941 	/* stop syncio and normal IO and wait for everything to
942 	 * go quite.
943 	 * We wait until nr_pending match nr_queued+extra
944 	 * This is called in the context of one normal IO request
945 	 * that has failed. Thus any sync request that might be pending
946 	 * will be blocked by nr_pending, and we need to wait for
947 	 * pending IO requests to complete or be queued for re-try.
948 	 * Thus the number queued (nr_queued) plus this request (extra)
949 	 * must match the number of pending IOs (nr_pending) before
950 	 * we continue.
951 	 */
952 	spin_lock_irq(&conf->resync_lock);
953 	conf->array_frozen = 1;
954 	wait_event_lock_irq_cmd(conf->wait_barrier,
955 				conf->nr_pending == conf->nr_queued+extra,
956 				conf->resync_lock,
957 				flush_pending_writes(conf));
958 	spin_unlock_irq(&conf->resync_lock);
959 }
unfreeze_array(struct r1conf * conf)960 static void unfreeze_array(struct r1conf *conf)
961 {
962 	/* reverse the effect of the freeze */
963 	spin_lock_irq(&conf->resync_lock);
964 	conf->array_frozen = 0;
965 	wake_up(&conf->wait_barrier);
966 	spin_unlock_irq(&conf->resync_lock);
967 }
968 
969 /* duplicate the data pages for behind I/O
970  */
alloc_behind_pages(struct bio * bio,struct r1bio * r1_bio)971 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
972 {
973 	int i;
974 	struct bio_vec *bvec;
975 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
976 					GFP_NOIO);
977 	if (unlikely(!bvecs))
978 		return;
979 
980 	bio_for_each_segment_all(bvec, bio, i) {
981 		bvecs[i] = *bvec;
982 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
983 		if (unlikely(!bvecs[i].bv_page))
984 			goto do_sync_io;
985 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
986 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
987 		kunmap(bvecs[i].bv_page);
988 		kunmap(bvec->bv_page);
989 	}
990 	r1_bio->behind_bvecs = bvecs;
991 	r1_bio->behind_page_count = bio->bi_vcnt;
992 	set_bit(R1BIO_BehindIO, &r1_bio->state);
993 	return;
994 
995 do_sync_io:
996 	for (i = 0; i < bio->bi_vcnt; i++)
997 		if (bvecs[i].bv_page)
998 			put_page(bvecs[i].bv_page);
999 	kfree(bvecs);
1000 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1001 		 bio->bi_iter.bi_size);
1002 }
1003 
1004 struct raid1_plug_cb {
1005 	struct blk_plug_cb	cb;
1006 	struct bio_list		pending;
1007 	int			pending_cnt;
1008 };
1009 
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1010 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1011 {
1012 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1013 						  cb);
1014 	struct mddev *mddev = plug->cb.data;
1015 	struct r1conf *conf = mddev->private;
1016 	struct bio *bio;
1017 
1018 	if (from_schedule || current->bio_list) {
1019 		spin_lock_irq(&conf->device_lock);
1020 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1021 		conf->pending_count += plug->pending_cnt;
1022 		spin_unlock_irq(&conf->device_lock);
1023 		wake_up(&conf->wait_barrier);
1024 		md_wakeup_thread(mddev->thread);
1025 		kfree(plug);
1026 		return;
1027 	}
1028 
1029 	/* we aren't scheduling, so we can do the write-out directly. */
1030 	bio = bio_list_get(&plug->pending);
1031 	bitmap_unplug(mddev->bitmap);
1032 	wake_up(&conf->wait_barrier);
1033 
1034 	while (bio) { /* submit pending writes */
1035 		struct bio *next = bio->bi_next;
1036 		bio->bi_next = NULL;
1037 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1038 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1039 			/* Just ignore it */
1040 			bio_endio(bio);
1041 		else
1042 			generic_make_request(bio);
1043 		bio = next;
1044 	}
1045 	kfree(plug);
1046 }
1047 
make_request(struct mddev * mddev,struct bio * bio)1048 static void make_request(struct mddev *mddev, struct bio * bio)
1049 {
1050 	struct r1conf *conf = mddev->private;
1051 	struct raid1_info *mirror;
1052 	struct r1bio *r1_bio;
1053 	struct bio *read_bio;
1054 	int i, disks;
1055 	struct bitmap *bitmap;
1056 	unsigned long flags;
1057 	const int rw = bio_data_dir(bio);
1058 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1059 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1060 	const unsigned long do_discard = (bio->bi_rw
1061 					  & (REQ_DISCARD | REQ_SECURE));
1062 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1063 	struct md_rdev *blocked_rdev;
1064 	struct blk_plug_cb *cb;
1065 	struct raid1_plug_cb *plug = NULL;
1066 	int first_clone;
1067 	int sectors_handled;
1068 	int max_sectors;
1069 	sector_t start_next_window;
1070 
1071 	/*
1072 	 * Register the new request and wait if the reconstruction
1073 	 * thread has put up a bar for new requests.
1074 	 * Continue immediately if no resync is active currently.
1075 	 */
1076 
1077 	md_write_start(mddev, bio); /* wait on superblock update early */
1078 
1079 	if (bio_data_dir(bio) == WRITE &&
1080 	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1081 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1082 	    (mddev_is_clustered(mddev) &&
1083 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1084 		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1085 		/* As the suspend_* range is controlled by
1086 		 * userspace, we want an interruptible
1087 		 * wait.
1088 		 */
1089 		DEFINE_WAIT(w);
1090 		for (;;) {
1091 			sigset_t full, old;
1092 			prepare_to_wait(&conf->wait_barrier,
1093 					&w, TASK_INTERRUPTIBLE);
1094 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1095 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1096 			    (mddev_is_clustered(mddev) &&
1097 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1098 				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1099 				break;
1100 			sigfillset(&full);
1101 			sigprocmask(SIG_BLOCK, &full, &old);
1102 			schedule();
1103 			sigprocmask(SIG_SETMASK, &old, NULL);
1104 		}
1105 		finish_wait(&conf->wait_barrier, &w);
1106 	}
1107 
1108 	start_next_window = wait_barrier(conf, bio);
1109 
1110 	bitmap = mddev->bitmap;
1111 
1112 	/*
1113 	 * make_request() can abort the operation when READA is being
1114 	 * used and no empty request is available.
1115 	 *
1116 	 */
1117 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1118 
1119 	r1_bio->master_bio = bio;
1120 	r1_bio->sectors = bio_sectors(bio);
1121 	r1_bio->state = 0;
1122 	r1_bio->mddev = mddev;
1123 	r1_bio->sector = bio->bi_iter.bi_sector;
1124 
1125 	/* We might need to issue multiple reads to different
1126 	 * devices if there are bad blocks around, so we keep
1127 	 * track of the number of reads in bio->bi_phys_segments.
1128 	 * If this is 0, there is only one r1_bio and no locking
1129 	 * will be needed when requests complete.  If it is
1130 	 * non-zero, then it is the number of not-completed requests.
1131 	 */
1132 	bio->bi_phys_segments = 0;
1133 	bio_clear_flag(bio, BIO_SEG_VALID);
1134 
1135 	if (rw == READ) {
1136 		/*
1137 		 * read balancing logic:
1138 		 */
1139 		int rdisk;
1140 
1141 read_again:
1142 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1143 
1144 		if (rdisk < 0) {
1145 			/* couldn't find anywhere to read from */
1146 			raid_end_bio_io(r1_bio);
1147 			return;
1148 		}
1149 		mirror = conf->mirrors + rdisk;
1150 
1151 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1152 		    bitmap) {
1153 			/* Reading from a write-mostly device must
1154 			 * take care not to over-take any writes
1155 			 * that are 'behind'
1156 			 */
1157 			wait_event(bitmap->behind_wait,
1158 				   atomic_read(&bitmap->behind_writes) == 0);
1159 		}
1160 		r1_bio->read_disk = rdisk;
1161 		r1_bio->start_next_window = 0;
1162 
1163 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1164 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1165 			 max_sectors);
1166 
1167 		r1_bio->bios[rdisk] = read_bio;
1168 
1169 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1170 			mirror->rdev->data_offset;
1171 		read_bio->bi_bdev = mirror->rdev->bdev;
1172 		read_bio->bi_end_io = raid1_end_read_request;
1173 		read_bio->bi_rw = READ | do_sync;
1174 		read_bio->bi_private = r1_bio;
1175 
1176 		if (max_sectors < r1_bio->sectors) {
1177 			/* could not read all from this device, so we will
1178 			 * need another r1_bio.
1179 			 */
1180 
1181 			sectors_handled = (r1_bio->sector + max_sectors
1182 					   - bio->bi_iter.bi_sector);
1183 			r1_bio->sectors = max_sectors;
1184 			spin_lock_irq(&conf->device_lock);
1185 			if (bio->bi_phys_segments == 0)
1186 				bio->bi_phys_segments = 2;
1187 			else
1188 				bio->bi_phys_segments++;
1189 			spin_unlock_irq(&conf->device_lock);
1190 			/* Cannot call generic_make_request directly
1191 			 * as that will be queued in __make_request
1192 			 * and subsequent mempool_alloc might block waiting
1193 			 * for it.  So hand bio over to raid1d.
1194 			 */
1195 			reschedule_retry(r1_bio);
1196 
1197 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1198 
1199 			r1_bio->master_bio = bio;
1200 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1201 			r1_bio->state = 0;
1202 			r1_bio->mddev = mddev;
1203 			r1_bio->sector = bio->bi_iter.bi_sector +
1204 				sectors_handled;
1205 			goto read_again;
1206 		} else
1207 			generic_make_request(read_bio);
1208 		return;
1209 	}
1210 
1211 	/*
1212 	 * WRITE:
1213 	 */
1214 	if (conf->pending_count >= max_queued_requests) {
1215 		md_wakeup_thread(mddev->thread);
1216 		wait_event(conf->wait_barrier,
1217 			   conf->pending_count < max_queued_requests);
1218 	}
1219 	/* first select target devices under rcu_lock and
1220 	 * inc refcount on their rdev.  Record them by setting
1221 	 * bios[x] to bio
1222 	 * If there are known/acknowledged bad blocks on any device on
1223 	 * which we have seen a write error, we want to avoid writing those
1224 	 * blocks.
1225 	 * This potentially requires several writes to write around
1226 	 * the bad blocks.  Each set of writes gets it's own r1bio
1227 	 * with a set of bios attached.
1228 	 */
1229 
1230 	disks = conf->raid_disks * 2;
1231  retry_write:
1232 	r1_bio->start_next_window = start_next_window;
1233 	blocked_rdev = NULL;
1234 	rcu_read_lock();
1235 	max_sectors = r1_bio->sectors;
1236 	for (i = 0;  i < disks; i++) {
1237 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1238 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1239 			atomic_inc(&rdev->nr_pending);
1240 			blocked_rdev = rdev;
1241 			break;
1242 		}
1243 		r1_bio->bios[i] = NULL;
1244 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1245 			if (i < conf->raid_disks)
1246 				set_bit(R1BIO_Degraded, &r1_bio->state);
1247 			continue;
1248 		}
1249 
1250 		atomic_inc(&rdev->nr_pending);
1251 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1252 			sector_t first_bad;
1253 			int bad_sectors;
1254 			int is_bad;
1255 
1256 			is_bad = is_badblock(rdev, r1_bio->sector,
1257 					     max_sectors,
1258 					     &first_bad, &bad_sectors);
1259 			if (is_bad < 0) {
1260 				/* mustn't write here until the bad block is
1261 				 * acknowledged*/
1262 				set_bit(BlockedBadBlocks, &rdev->flags);
1263 				blocked_rdev = rdev;
1264 				break;
1265 			}
1266 			if (is_bad && first_bad <= r1_bio->sector) {
1267 				/* Cannot write here at all */
1268 				bad_sectors -= (r1_bio->sector - first_bad);
1269 				if (bad_sectors < max_sectors)
1270 					/* mustn't write more than bad_sectors
1271 					 * to other devices yet
1272 					 */
1273 					max_sectors = bad_sectors;
1274 				rdev_dec_pending(rdev, mddev);
1275 				/* We don't set R1BIO_Degraded as that
1276 				 * only applies if the disk is
1277 				 * missing, so it might be re-added,
1278 				 * and we want to know to recover this
1279 				 * chunk.
1280 				 * In this case the device is here,
1281 				 * and the fact that this chunk is not
1282 				 * in-sync is recorded in the bad
1283 				 * block log
1284 				 */
1285 				continue;
1286 			}
1287 			if (is_bad) {
1288 				int good_sectors = first_bad - r1_bio->sector;
1289 				if (good_sectors < max_sectors)
1290 					max_sectors = good_sectors;
1291 			}
1292 		}
1293 		r1_bio->bios[i] = bio;
1294 	}
1295 	rcu_read_unlock();
1296 
1297 	if (unlikely(blocked_rdev)) {
1298 		/* Wait for this device to become unblocked */
1299 		int j;
1300 		sector_t old = start_next_window;
1301 
1302 		for (j = 0; j < i; j++)
1303 			if (r1_bio->bios[j])
1304 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1305 		r1_bio->state = 0;
1306 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1307 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1308 		start_next_window = wait_barrier(conf, bio);
1309 		/*
1310 		 * We must make sure the multi r1bios of bio have
1311 		 * the same value of bi_phys_segments
1312 		 */
1313 		if (bio->bi_phys_segments && old &&
1314 		    old != start_next_window)
1315 			/* Wait for the former r1bio(s) to complete */
1316 			wait_event(conf->wait_barrier,
1317 				   bio->bi_phys_segments == 1);
1318 		goto retry_write;
1319 	}
1320 
1321 	if (max_sectors < r1_bio->sectors) {
1322 		/* We are splitting this write into multiple parts, so
1323 		 * we need to prepare for allocating another r1_bio.
1324 		 */
1325 		r1_bio->sectors = max_sectors;
1326 		spin_lock_irq(&conf->device_lock);
1327 		if (bio->bi_phys_segments == 0)
1328 			bio->bi_phys_segments = 2;
1329 		else
1330 			bio->bi_phys_segments++;
1331 		spin_unlock_irq(&conf->device_lock);
1332 	}
1333 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1334 
1335 	atomic_set(&r1_bio->remaining, 1);
1336 	atomic_set(&r1_bio->behind_remaining, 0);
1337 
1338 	first_clone = 1;
1339 	for (i = 0; i < disks; i++) {
1340 		struct bio *mbio;
1341 		if (!r1_bio->bios[i])
1342 			continue;
1343 
1344 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1345 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1346 
1347 		if (first_clone) {
1348 			/* do behind I/O ?
1349 			 * Not if there are too many, or cannot
1350 			 * allocate memory, or a reader on WriteMostly
1351 			 * is waiting for behind writes to flush */
1352 			if (bitmap &&
1353 			    (atomic_read(&bitmap->behind_writes)
1354 			     < mddev->bitmap_info.max_write_behind) &&
1355 			    !waitqueue_active(&bitmap->behind_wait))
1356 				alloc_behind_pages(mbio, r1_bio);
1357 
1358 			bitmap_startwrite(bitmap, r1_bio->sector,
1359 					  r1_bio->sectors,
1360 					  test_bit(R1BIO_BehindIO,
1361 						   &r1_bio->state));
1362 			first_clone = 0;
1363 		}
1364 		if (r1_bio->behind_bvecs) {
1365 			struct bio_vec *bvec;
1366 			int j;
1367 
1368 			/*
1369 			 * We trimmed the bio, so _all is legit
1370 			 */
1371 			bio_for_each_segment_all(bvec, mbio, j)
1372 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1373 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1374 				atomic_inc(&r1_bio->behind_remaining);
1375 		}
1376 
1377 		r1_bio->bios[i] = mbio;
1378 
1379 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1380 				   conf->mirrors[i].rdev->data_offset);
1381 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1382 		mbio->bi_end_io	= raid1_end_write_request;
1383 		mbio->bi_rw =
1384 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1385 		mbio->bi_private = r1_bio;
1386 
1387 		atomic_inc(&r1_bio->remaining);
1388 
1389 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1390 		if (cb)
1391 			plug = container_of(cb, struct raid1_plug_cb, cb);
1392 		else
1393 			plug = NULL;
1394 		spin_lock_irqsave(&conf->device_lock, flags);
1395 		if (plug) {
1396 			bio_list_add(&plug->pending, mbio);
1397 			plug->pending_cnt++;
1398 		} else {
1399 			bio_list_add(&conf->pending_bio_list, mbio);
1400 			conf->pending_count++;
1401 		}
1402 		spin_unlock_irqrestore(&conf->device_lock, flags);
1403 		if (!plug)
1404 			md_wakeup_thread(mddev->thread);
1405 	}
1406 	/* Mustn't call r1_bio_write_done before this next test,
1407 	 * as it could result in the bio being freed.
1408 	 */
1409 	if (sectors_handled < bio_sectors(bio)) {
1410 		r1_bio_write_done(r1_bio);
1411 		/* We need another r1_bio.  It has already been counted
1412 		 * in bio->bi_phys_segments
1413 		 */
1414 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1415 		r1_bio->master_bio = bio;
1416 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1417 		r1_bio->state = 0;
1418 		r1_bio->mddev = mddev;
1419 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1420 		goto retry_write;
1421 	}
1422 
1423 	r1_bio_write_done(r1_bio);
1424 
1425 	/* In case raid1d snuck in to freeze_array */
1426 	wake_up(&conf->wait_barrier);
1427 }
1428 
status(struct seq_file * seq,struct mddev * mddev)1429 static void status(struct seq_file *seq, struct mddev *mddev)
1430 {
1431 	struct r1conf *conf = mddev->private;
1432 	int i;
1433 
1434 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1435 		   conf->raid_disks - mddev->degraded);
1436 	rcu_read_lock();
1437 	for (i = 0; i < conf->raid_disks; i++) {
1438 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1439 		seq_printf(seq, "%s",
1440 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1441 	}
1442 	rcu_read_unlock();
1443 	seq_printf(seq, "]");
1444 }
1445 
error(struct mddev * mddev,struct md_rdev * rdev)1446 static void error(struct mddev *mddev, struct md_rdev *rdev)
1447 {
1448 	char b[BDEVNAME_SIZE];
1449 	struct r1conf *conf = mddev->private;
1450 	unsigned long flags;
1451 
1452 	/*
1453 	 * If it is not operational, then we have already marked it as dead
1454 	 * else if it is the last working disks, ignore the error, let the
1455 	 * next level up know.
1456 	 * else mark the drive as failed
1457 	 */
1458 	if (test_bit(In_sync, &rdev->flags)
1459 	    && (conf->raid_disks - mddev->degraded) == 1) {
1460 		/*
1461 		 * Don't fail the drive, act as though we were just a
1462 		 * normal single drive.
1463 		 * However don't try a recovery from this drive as
1464 		 * it is very likely to fail.
1465 		 */
1466 		conf->recovery_disabled = mddev->recovery_disabled;
1467 		return;
1468 	}
1469 	set_bit(Blocked, &rdev->flags);
1470 	spin_lock_irqsave(&conf->device_lock, flags);
1471 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1472 		mddev->degraded++;
1473 		set_bit(Faulty, &rdev->flags);
1474 	} else
1475 		set_bit(Faulty, &rdev->flags);
1476 	spin_unlock_irqrestore(&conf->device_lock, flags);
1477 	/*
1478 	 * if recovery is running, make sure it aborts.
1479 	 */
1480 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1481 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1482 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1483 	printk(KERN_ALERT
1484 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1485 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1486 	       mdname(mddev), bdevname(rdev->bdev, b),
1487 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1488 }
1489 
print_conf(struct r1conf * conf)1490 static void print_conf(struct r1conf *conf)
1491 {
1492 	int i;
1493 
1494 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1495 	if (!conf) {
1496 		printk(KERN_DEBUG "(!conf)\n");
1497 		return;
1498 	}
1499 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1500 		conf->raid_disks);
1501 
1502 	rcu_read_lock();
1503 	for (i = 0; i < conf->raid_disks; i++) {
1504 		char b[BDEVNAME_SIZE];
1505 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1506 		if (rdev)
1507 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1508 			       i, !test_bit(In_sync, &rdev->flags),
1509 			       !test_bit(Faulty, &rdev->flags),
1510 			       bdevname(rdev->bdev,b));
1511 	}
1512 	rcu_read_unlock();
1513 }
1514 
close_sync(struct r1conf * conf)1515 static void close_sync(struct r1conf *conf)
1516 {
1517 	wait_barrier(conf, NULL);
1518 	allow_barrier(conf, 0, 0);
1519 
1520 	mempool_destroy(conf->r1buf_pool);
1521 	conf->r1buf_pool = NULL;
1522 
1523 	spin_lock_irq(&conf->resync_lock);
1524 	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1525 	conf->start_next_window = MaxSector;
1526 	conf->current_window_requests +=
1527 		conf->next_window_requests;
1528 	conf->next_window_requests = 0;
1529 	spin_unlock_irq(&conf->resync_lock);
1530 }
1531 
raid1_spare_active(struct mddev * mddev)1532 static int raid1_spare_active(struct mddev *mddev)
1533 {
1534 	int i;
1535 	struct r1conf *conf = mddev->private;
1536 	int count = 0;
1537 	unsigned long flags;
1538 
1539 	/*
1540 	 * Find all failed disks within the RAID1 configuration
1541 	 * and mark them readable.
1542 	 * Called under mddev lock, so rcu protection not needed.
1543 	 * device_lock used to avoid races with raid1_end_read_request
1544 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1545 	 */
1546 	spin_lock_irqsave(&conf->device_lock, flags);
1547 	for (i = 0; i < conf->raid_disks; i++) {
1548 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1549 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1550 		if (repl
1551 		    && !test_bit(Candidate, &repl->flags)
1552 		    && repl->recovery_offset == MaxSector
1553 		    && !test_bit(Faulty, &repl->flags)
1554 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1555 			/* replacement has just become active */
1556 			if (!rdev ||
1557 			    !test_and_clear_bit(In_sync, &rdev->flags))
1558 				count++;
1559 			if (rdev) {
1560 				/* Replaced device not technically
1561 				 * faulty, but we need to be sure
1562 				 * it gets removed and never re-added
1563 				 */
1564 				set_bit(Faulty, &rdev->flags);
1565 				sysfs_notify_dirent_safe(
1566 					rdev->sysfs_state);
1567 			}
1568 		}
1569 		if (rdev
1570 		    && rdev->recovery_offset == MaxSector
1571 		    && !test_bit(Faulty, &rdev->flags)
1572 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1573 			count++;
1574 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1575 		}
1576 	}
1577 	mddev->degraded -= count;
1578 	spin_unlock_irqrestore(&conf->device_lock, flags);
1579 
1580 	print_conf(conf);
1581 	return count;
1582 }
1583 
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1584 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1585 {
1586 	struct r1conf *conf = mddev->private;
1587 	int err = -EEXIST;
1588 	int mirror = 0;
1589 	struct raid1_info *p;
1590 	int first = 0;
1591 	int last = conf->raid_disks - 1;
1592 
1593 	if (mddev->recovery_disabled == conf->recovery_disabled)
1594 		return -EBUSY;
1595 
1596 	if (md_integrity_add_rdev(rdev, mddev))
1597 		return -ENXIO;
1598 
1599 	if (rdev->raid_disk >= 0)
1600 		first = last = rdev->raid_disk;
1601 
1602 	/*
1603 	 * find the disk ... but prefer rdev->saved_raid_disk
1604 	 * if possible.
1605 	 */
1606 	if (rdev->saved_raid_disk >= 0 &&
1607 	    rdev->saved_raid_disk >= first &&
1608 	    rdev->saved_raid_disk < conf->raid_disks &&
1609 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1610 		first = last = rdev->saved_raid_disk;
1611 
1612 	for (mirror = first; mirror <= last; mirror++) {
1613 		p = conf->mirrors+mirror;
1614 		if (!p->rdev) {
1615 
1616 			if (mddev->gendisk)
1617 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1618 						  rdev->data_offset << 9);
1619 
1620 			p->head_position = 0;
1621 			rdev->raid_disk = mirror;
1622 			err = 0;
1623 			/* As all devices are equivalent, we don't need a full recovery
1624 			 * if this was recently any drive of the array
1625 			 */
1626 			if (rdev->saved_raid_disk < 0)
1627 				conf->fullsync = 1;
1628 			rcu_assign_pointer(p->rdev, rdev);
1629 			break;
1630 		}
1631 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1632 		    p[conf->raid_disks].rdev == NULL) {
1633 			/* Add this device as a replacement */
1634 			clear_bit(In_sync, &rdev->flags);
1635 			set_bit(Replacement, &rdev->flags);
1636 			rdev->raid_disk = mirror;
1637 			err = 0;
1638 			conf->fullsync = 1;
1639 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1640 			break;
1641 		}
1642 	}
1643 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1644 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1645 	print_conf(conf);
1646 	return err;
1647 }
1648 
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1649 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1650 {
1651 	struct r1conf *conf = mddev->private;
1652 	int err = 0;
1653 	int number = rdev->raid_disk;
1654 	struct raid1_info *p = conf->mirrors + number;
1655 
1656 	if (rdev != p->rdev)
1657 		p = conf->mirrors + conf->raid_disks + number;
1658 
1659 	print_conf(conf);
1660 	if (rdev == p->rdev) {
1661 		if (test_bit(In_sync, &rdev->flags) ||
1662 		    atomic_read(&rdev->nr_pending)) {
1663 			err = -EBUSY;
1664 			goto abort;
1665 		}
1666 		/* Only remove non-faulty devices if recovery
1667 		 * is not possible.
1668 		 */
1669 		if (!test_bit(Faulty, &rdev->flags) &&
1670 		    mddev->recovery_disabled != conf->recovery_disabled &&
1671 		    mddev->degraded < conf->raid_disks) {
1672 			err = -EBUSY;
1673 			goto abort;
1674 		}
1675 		p->rdev = NULL;
1676 		synchronize_rcu();
1677 		if (atomic_read(&rdev->nr_pending)) {
1678 			/* lost the race, try later */
1679 			err = -EBUSY;
1680 			p->rdev = rdev;
1681 			goto abort;
1682 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1683 			/* We just removed a device that is being replaced.
1684 			 * Move down the replacement.  We drain all IO before
1685 			 * doing this to avoid confusion.
1686 			 */
1687 			struct md_rdev *repl =
1688 				conf->mirrors[conf->raid_disks + number].rdev;
1689 			freeze_array(conf, 0);
1690 			if (atomic_read(&repl->nr_pending)) {
1691 				/* It means that some queued IO of retry_list
1692 				 * hold repl. Thus, we cannot set replacement
1693 				 * as NULL, avoiding rdev NULL pointer
1694 				 * dereference in sync_request_write and
1695 				 * handle_write_finished.
1696 				 */
1697 				err = -EBUSY;
1698 				unfreeze_array(conf);
1699 				goto abort;
1700 			}
1701 			clear_bit(Replacement, &repl->flags);
1702 			p->rdev = repl;
1703 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1704 			unfreeze_array(conf);
1705 			clear_bit(WantReplacement, &rdev->flags);
1706 		} else
1707 			clear_bit(WantReplacement, &rdev->flags);
1708 		err = md_integrity_register(mddev);
1709 	}
1710 abort:
1711 
1712 	print_conf(conf);
1713 	return err;
1714 }
1715 
end_sync_read(struct bio * bio)1716 static void end_sync_read(struct bio *bio)
1717 {
1718 	struct r1bio *r1_bio = bio->bi_private;
1719 
1720 	update_head_pos(r1_bio->read_disk, r1_bio);
1721 
1722 	/*
1723 	 * we have read a block, now it needs to be re-written,
1724 	 * or re-read if the read failed.
1725 	 * We don't do much here, just schedule handling by raid1d
1726 	 */
1727 	if (!bio->bi_error)
1728 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1729 
1730 	if (atomic_dec_and_test(&r1_bio->remaining))
1731 		reschedule_retry(r1_bio);
1732 }
1733 
end_sync_write(struct bio * bio)1734 static void end_sync_write(struct bio *bio)
1735 {
1736 	int uptodate = !bio->bi_error;
1737 	struct r1bio *r1_bio = bio->bi_private;
1738 	struct mddev *mddev = r1_bio->mddev;
1739 	struct r1conf *conf = mddev->private;
1740 	int mirror=0;
1741 	sector_t first_bad;
1742 	int bad_sectors;
1743 
1744 	mirror = find_bio_disk(r1_bio, bio);
1745 
1746 	if (!uptodate) {
1747 		sector_t sync_blocks = 0;
1748 		sector_t s = r1_bio->sector;
1749 		long sectors_to_go = r1_bio->sectors;
1750 		/* make sure these bits doesn't get cleared. */
1751 		do {
1752 			bitmap_end_sync(mddev->bitmap, s,
1753 					&sync_blocks, 1);
1754 			s += sync_blocks;
1755 			sectors_to_go -= sync_blocks;
1756 		} while (sectors_to_go > 0);
1757 		set_bit(WriteErrorSeen,
1758 			&conf->mirrors[mirror].rdev->flags);
1759 		if (!test_and_set_bit(WantReplacement,
1760 				      &conf->mirrors[mirror].rdev->flags))
1761 			set_bit(MD_RECOVERY_NEEDED, &
1762 				mddev->recovery);
1763 		set_bit(R1BIO_WriteError, &r1_bio->state);
1764 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1765 			       r1_bio->sector,
1766 			       r1_bio->sectors,
1767 			       &first_bad, &bad_sectors) &&
1768 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1769 				r1_bio->sector,
1770 				r1_bio->sectors,
1771 				&first_bad, &bad_sectors)
1772 		)
1773 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1774 
1775 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1776 		int s = r1_bio->sectors;
1777 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1778 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1779 			reschedule_retry(r1_bio);
1780 		else {
1781 			put_buf(r1_bio);
1782 			md_done_sync(mddev, s, uptodate);
1783 		}
1784 	}
1785 }
1786 
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)1787 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1788 			    int sectors, struct page *page, int rw)
1789 {
1790 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1791 		/* success */
1792 		return 1;
1793 	if (rw == WRITE) {
1794 		set_bit(WriteErrorSeen, &rdev->flags);
1795 		if (!test_and_set_bit(WantReplacement,
1796 				      &rdev->flags))
1797 			set_bit(MD_RECOVERY_NEEDED, &
1798 				rdev->mddev->recovery);
1799 	}
1800 	/* need to record an error - either for the block or the device */
1801 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1802 		md_error(rdev->mddev, rdev);
1803 	return 0;
1804 }
1805 
fix_sync_read_error(struct r1bio * r1_bio)1806 static int fix_sync_read_error(struct r1bio *r1_bio)
1807 {
1808 	/* Try some synchronous reads of other devices to get
1809 	 * good data, much like with normal read errors.  Only
1810 	 * read into the pages we already have so we don't
1811 	 * need to re-issue the read request.
1812 	 * We don't need to freeze the array, because being in an
1813 	 * active sync request, there is no normal IO, and
1814 	 * no overlapping syncs.
1815 	 * We don't need to check is_badblock() again as we
1816 	 * made sure that anything with a bad block in range
1817 	 * will have bi_end_io clear.
1818 	 */
1819 	struct mddev *mddev = r1_bio->mddev;
1820 	struct r1conf *conf = mddev->private;
1821 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1822 	sector_t sect = r1_bio->sector;
1823 	int sectors = r1_bio->sectors;
1824 	int idx = 0;
1825 
1826 	while(sectors) {
1827 		int s = sectors;
1828 		int d = r1_bio->read_disk;
1829 		int success = 0;
1830 		struct md_rdev *rdev;
1831 		int start;
1832 
1833 		if (s > (PAGE_SIZE>>9))
1834 			s = PAGE_SIZE >> 9;
1835 		do {
1836 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1837 				/* No rcu protection needed here devices
1838 				 * can only be removed when no resync is
1839 				 * active, and resync is currently active
1840 				 */
1841 				rdev = conf->mirrors[d].rdev;
1842 				if (sync_page_io(rdev, sect, s<<9,
1843 						 bio->bi_io_vec[idx].bv_page,
1844 						 READ, false)) {
1845 					success = 1;
1846 					break;
1847 				}
1848 			}
1849 			d++;
1850 			if (d == conf->raid_disks * 2)
1851 				d = 0;
1852 		} while (!success && d != r1_bio->read_disk);
1853 
1854 		if (!success) {
1855 			char b[BDEVNAME_SIZE];
1856 			int abort = 0;
1857 			/* Cannot read from anywhere, this block is lost.
1858 			 * Record a bad block on each device.  If that doesn't
1859 			 * work just disable and interrupt the recovery.
1860 			 * Don't fail devices as that won't really help.
1861 			 */
1862 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1863 			       " for block %llu\n",
1864 			       mdname(mddev),
1865 			       bdevname(bio->bi_bdev, b),
1866 			       (unsigned long long)r1_bio->sector);
1867 			for (d = 0; d < conf->raid_disks * 2; d++) {
1868 				rdev = conf->mirrors[d].rdev;
1869 				if (!rdev || test_bit(Faulty, &rdev->flags))
1870 					continue;
1871 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1872 					abort = 1;
1873 			}
1874 			if (abort) {
1875 				conf->recovery_disabled =
1876 					mddev->recovery_disabled;
1877 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1878 				md_done_sync(mddev, r1_bio->sectors, 0);
1879 				put_buf(r1_bio);
1880 				return 0;
1881 			}
1882 			/* Try next page */
1883 			sectors -= s;
1884 			sect += s;
1885 			idx++;
1886 			continue;
1887 		}
1888 
1889 		start = d;
1890 		/* write it back and re-read */
1891 		while (d != r1_bio->read_disk) {
1892 			if (d == 0)
1893 				d = conf->raid_disks * 2;
1894 			d--;
1895 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1896 				continue;
1897 			rdev = conf->mirrors[d].rdev;
1898 			if (r1_sync_page_io(rdev, sect, s,
1899 					    bio->bi_io_vec[idx].bv_page,
1900 					    WRITE) == 0) {
1901 				r1_bio->bios[d]->bi_end_io = NULL;
1902 				rdev_dec_pending(rdev, mddev);
1903 			}
1904 		}
1905 		d = start;
1906 		while (d != r1_bio->read_disk) {
1907 			if (d == 0)
1908 				d = conf->raid_disks * 2;
1909 			d--;
1910 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1911 				continue;
1912 			rdev = conf->mirrors[d].rdev;
1913 			if (r1_sync_page_io(rdev, sect, s,
1914 					    bio->bi_io_vec[idx].bv_page,
1915 					    READ) != 0)
1916 				atomic_add(s, &rdev->corrected_errors);
1917 		}
1918 		sectors -= s;
1919 		sect += s;
1920 		idx ++;
1921 	}
1922 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1923 	bio->bi_error = 0;
1924 	return 1;
1925 }
1926 
process_checks(struct r1bio * r1_bio)1927 static void process_checks(struct r1bio *r1_bio)
1928 {
1929 	/* We have read all readable devices.  If we haven't
1930 	 * got the block, then there is no hope left.
1931 	 * If we have, then we want to do a comparison
1932 	 * and skip the write if everything is the same.
1933 	 * If any blocks failed to read, then we need to
1934 	 * attempt an over-write
1935 	 */
1936 	struct mddev *mddev = r1_bio->mddev;
1937 	struct r1conf *conf = mddev->private;
1938 	int primary;
1939 	int i;
1940 	int vcnt;
1941 
1942 	/* Fix variable parts of all bios */
1943 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1944 	for (i = 0; i < conf->raid_disks * 2; i++) {
1945 		int j;
1946 		int size;
1947 		int error;
1948 		struct bio *b = r1_bio->bios[i];
1949 		if (b->bi_end_io != end_sync_read)
1950 			continue;
1951 		/* fixup the bio for reuse, but preserve errno */
1952 		error = b->bi_error;
1953 		bio_reset(b);
1954 		b->bi_error = error;
1955 		b->bi_vcnt = vcnt;
1956 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1957 		b->bi_iter.bi_sector = r1_bio->sector +
1958 			conf->mirrors[i].rdev->data_offset;
1959 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1960 		b->bi_end_io = end_sync_read;
1961 		b->bi_private = r1_bio;
1962 
1963 		size = b->bi_iter.bi_size;
1964 		for (j = 0; j < vcnt ; j++) {
1965 			struct bio_vec *bi;
1966 			bi = &b->bi_io_vec[j];
1967 			bi->bv_offset = 0;
1968 			if (size > PAGE_SIZE)
1969 				bi->bv_len = PAGE_SIZE;
1970 			else
1971 				bi->bv_len = size;
1972 			size -= PAGE_SIZE;
1973 		}
1974 	}
1975 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1976 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1977 		    !r1_bio->bios[primary]->bi_error) {
1978 			r1_bio->bios[primary]->bi_end_io = NULL;
1979 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1980 			break;
1981 		}
1982 	r1_bio->read_disk = primary;
1983 	for (i = 0; i < conf->raid_disks * 2; i++) {
1984 		int j;
1985 		struct bio *pbio = r1_bio->bios[primary];
1986 		struct bio *sbio = r1_bio->bios[i];
1987 		int error = sbio->bi_error;
1988 
1989 		if (sbio->bi_end_io != end_sync_read)
1990 			continue;
1991 		/* Now we can 'fixup' the error value */
1992 		sbio->bi_error = 0;
1993 
1994 		if (!error) {
1995 			for (j = vcnt; j-- ; ) {
1996 				struct page *p, *s;
1997 				p = pbio->bi_io_vec[j].bv_page;
1998 				s = sbio->bi_io_vec[j].bv_page;
1999 				if (memcmp(page_address(p),
2000 					   page_address(s),
2001 					   sbio->bi_io_vec[j].bv_len))
2002 					break;
2003 			}
2004 		} else
2005 			j = 0;
2006 		if (j >= 0)
2007 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2008 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2009 			      && !error)) {
2010 			/* No need to write to this device. */
2011 			sbio->bi_end_io = NULL;
2012 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2013 			continue;
2014 		}
2015 
2016 		bio_copy_data(sbio, pbio);
2017 	}
2018 }
2019 
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2020 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2021 {
2022 	struct r1conf *conf = mddev->private;
2023 	int i;
2024 	int disks = conf->raid_disks * 2;
2025 	struct bio *bio, *wbio;
2026 
2027 	bio = r1_bio->bios[r1_bio->read_disk];
2028 
2029 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2030 		/* ouch - failed to read all of that. */
2031 		if (!fix_sync_read_error(r1_bio))
2032 			return;
2033 
2034 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2035 		process_checks(r1_bio);
2036 
2037 	/*
2038 	 * schedule writes
2039 	 */
2040 	atomic_set(&r1_bio->remaining, 1);
2041 	for (i = 0; i < disks ; i++) {
2042 		wbio = r1_bio->bios[i];
2043 		if (wbio->bi_end_io == NULL ||
2044 		    (wbio->bi_end_io == end_sync_read &&
2045 		     (i == r1_bio->read_disk ||
2046 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2047 			continue;
2048 
2049 		wbio->bi_rw = WRITE;
2050 		wbio->bi_end_io = end_sync_write;
2051 		atomic_inc(&r1_bio->remaining);
2052 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2053 
2054 		generic_make_request(wbio);
2055 	}
2056 
2057 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2058 		/* if we're here, all write(s) have completed, so clean up */
2059 		int s = r1_bio->sectors;
2060 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2061 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2062 			reschedule_retry(r1_bio);
2063 		else {
2064 			put_buf(r1_bio);
2065 			md_done_sync(mddev, s, 1);
2066 		}
2067 	}
2068 }
2069 
2070 /*
2071  * This is a kernel thread which:
2072  *
2073  *	1.	Retries failed read operations on working mirrors.
2074  *	2.	Updates the raid superblock when problems encounter.
2075  *	3.	Performs writes following reads for array synchronising.
2076  */
2077 
fix_read_error(struct r1conf * conf,int read_disk,sector_t sect,int sectors)2078 static void fix_read_error(struct r1conf *conf, int read_disk,
2079 			   sector_t sect, int sectors)
2080 {
2081 	struct mddev *mddev = conf->mddev;
2082 	while(sectors) {
2083 		int s = sectors;
2084 		int d = read_disk;
2085 		int success = 0;
2086 		int start;
2087 		struct md_rdev *rdev;
2088 
2089 		if (s > (PAGE_SIZE>>9))
2090 			s = PAGE_SIZE >> 9;
2091 
2092 		do {
2093 			/* Note: no rcu protection needed here
2094 			 * as this is synchronous in the raid1d thread
2095 			 * which is the thread that might remove
2096 			 * a device.  If raid1d ever becomes multi-threaded....
2097 			 */
2098 			sector_t first_bad;
2099 			int bad_sectors;
2100 
2101 			rdev = conf->mirrors[d].rdev;
2102 			if (rdev &&
2103 			    (test_bit(In_sync, &rdev->flags) ||
2104 			     (!test_bit(Faulty, &rdev->flags) &&
2105 			      rdev->recovery_offset >= sect + s)) &&
2106 			    is_badblock(rdev, sect, s,
2107 					&first_bad, &bad_sectors) == 0 &&
2108 			    sync_page_io(rdev, sect, s<<9,
2109 					 conf->tmppage, READ, false))
2110 				success = 1;
2111 			else {
2112 				d++;
2113 				if (d == conf->raid_disks * 2)
2114 					d = 0;
2115 			}
2116 		} while (!success && d != read_disk);
2117 
2118 		if (!success) {
2119 			/* Cannot read from anywhere - mark it bad */
2120 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2121 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2122 				md_error(mddev, rdev);
2123 			break;
2124 		}
2125 		/* write it back and re-read */
2126 		start = d;
2127 		while (d != read_disk) {
2128 			if (d==0)
2129 				d = conf->raid_disks * 2;
2130 			d--;
2131 			rdev = conf->mirrors[d].rdev;
2132 			if (rdev &&
2133 			    !test_bit(Faulty, &rdev->flags))
2134 				r1_sync_page_io(rdev, sect, s,
2135 						conf->tmppage, WRITE);
2136 		}
2137 		d = start;
2138 		while (d != read_disk) {
2139 			char b[BDEVNAME_SIZE];
2140 			if (d==0)
2141 				d = conf->raid_disks * 2;
2142 			d--;
2143 			rdev = conf->mirrors[d].rdev;
2144 			if (rdev &&
2145 			    !test_bit(Faulty, &rdev->flags)) {
2146 				if (r1_sync_page_io(rdev, sect, s,
2147 						    conf->tmppage, READ)) {
2148 					atomic_add(s, &rdev->corrected_errors);
2149 					printk(KERN_INFO
2150 					       "md/raid1:%s: read error corrected "
2151 					       "(%d sectors at %llu on %s)\n",
2152 					       mdname(mddev), s,
2153 					       (unsigned long long)(sect +
2154 					           rdev->data_offset),
2155 					       bdevname(rdev->bdev, b));
2156 				}
2157 			}
2158 		}
2159 		sectors -= s;
2160 		sect += s;
2161 	}
2162 }
2163 
narrow_write_error(struct r1bio * r1_bio,int i)2164 static int narrow_write_error(struct r1bio *r1_bio, int i)
2165 {
2166 	struct mddev *mddev = r1_bio->mddev;
2167 	struct r1conf *conf = mddev->private;
2168 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2169 
2170 	/* bio has the data to be written to device 'i' where
2171 	 * we just recently had a write error.
2172 	 * We repeatedly clone the bio and trim down to one block,
2173 	 * then try the write.  Where the write fails we record
2174 	 * a bad block.
2175 	 * It is conceivable that the bio doesn't exactly align with
2176 	 * blocks.  We must handle this somehow.
2177 	 *
2178 	 * We currently own a reference on the rdev.
2179 	 */
2180 
2181 	int block_sectors;
2182 	sector_t sector;
2183 	int sectors;
2184 	int sect_to_write = r1_bio->sectors;
2185 	int ok = 1;
2186 
2187 	if (rdev->badblocks.shift < 0)
2188 		return 0;
2189 
2190 	block_sectors = roundup(1 << rdev->badblocks.shift,
2191 				bdev_logical_block_size(rdev->bdev) >> 9);
2192 	sector = r1_bio->sector;
2193 	sectors = ((sector + block_sectors)
2194 		   & ~(sector_t)(block_sectors - 1))
2195 		- sector;
2196 
2197 	while (sect_to_write) {
2198 		struct bio *wbio;
2199 		if (sectors > sect_to_write)
2200 			sectors = sect_to_write;
2201 		/* Write at 'sector' for 'sectors'*/
2202 
2203 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2204 			unsigned vcnt = r1_bio->behind_page_count;
2205 			struct bio_vec *vec = r1_bio->behind_bvecs;
2206 
2207 			while (!vec->bv_page) {
2208 				vec++;
2209 				vcnt--;
2210 			}
2211 
2212 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2213 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2214 
2215 			wbio->bi_vcnt = vcnt;
2216 		} else {
2217 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2218 		}
2219 
2220 		wbio->bi_rw = WRITE;
2221 		wbio->bi_iter.bi_sector = r1_bio->sector;
2222 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2223 
2224 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2225 		wbio->bi_iter.bi_sector += rdev->data_offset;
2226 		wbio->bi_bdev = rdev->bdev;
2227 		if (submit_bio_wait(WRITE, wbio) < 0)
2228 			/* failure! */
2229 			ok = rdev_set_badblocks(rdev, sector,
2230 						sectors, 0)
2231 				&& ok;
2232 
2233 		bio_put(wbio);
2234 		sect_to_write -= sectors;
2235 		sector += sectors;
2236 		sectors = block_sectors;
2237 	}
2238 	return ok;
2239 }
2240 
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2241 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2242 {
2243 	int m;
2244 	int s = r1_bio->sectors;
2245 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2246 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2247 		struct bio *bio = r1_bio->bios[m];
2248 		if (bio->bi_end_io == NULL)
2249 			continue;
2250 		if (!bio->bi_error &&
2251 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2252 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2253 		}
2254 		if (bio->bi_error &&
2255 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2256 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2257 				md_error(conf->mddev, rdev);
2258 		}
2259 	}
2260 	put_buf(r1_bio);
2261 	md_done_sync(conf->mddev, s, 1);
2262 }
2263 
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2264 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2265 {
2266 	int m;
2267 	bool fail = false;
2268 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2269 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2270 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2271 			rdev_clear_badblocks(rdev,
2272 					     r1_bio->sector,
2273 					     r1_bio->sectors, 0);
2274 			rdev_dec_pending(rdev, conf->mddev);
2275 		} else if (r1_bio->bios[m] != NULL) {
2276 			/* This drive got a write error.  We need to
2277 			 * narrow down and record precise write
2278 			 * errors.
2279 			 */
2280 			fail = true;
2281 			if (!narrow_write_error(r1_bio, m)) {
2282 				md_error(conf->mddev,
2283 					 conf->mirrors[m].rdev);
2284 				/* an I/O failed, we can't clear the bitmap */
2285 				set_bit(R1BIO_Degraded, &r1_bio->state);
2286 			}
2287 			rdev_dec_pending(conf->mirrors[m].rdev,
2288 					 conf->mddev);
2289 		}
2290 	if (fail) {
2291 		spin_lock_irq(&conf->device_lock);
2292 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2293 		conf->nr_queued++;
2294 		spin_unlock_irq(&conf->device_lock);
2295 		md_wakeup_thread(conf->mddev->thread);
2296 	} else {
2297 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2298 			close_write(r1_bio);
2299 		raid_end_bio_io(r1_bio);
2300 	}
2301 }
2302 
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2303 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2304 {
2305 	int disk;
2306 	int max_sectors;
2307 	struct mddev *mddev = conf->mddev;
2308 	struct bio *bio;
2309 	char b[BDEVNAME_SIZE];
2310 	struct md_rdev *rdev;
2311 
2312 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2313 	/* we got a read error. Maybe the drive is bad.  Maybe just
2314 	 * the block and we can fix it.
2315 	 * We freeze all other IO, and try reading the block from
2316 	 * other devices.  When we find one, we re-write
2317 	 * and check it that fixes the read error.
2318 	 * This is all done synchronously while the array is
2319 	 * frozen
2320 	 */
2321 	if (mddev->ro == 0) {
2322 		freeze_array(conf, 1);
2323 		fix_read_error(conf, r1_bio->read_disk,
2324 			       r1_bio->sector, r1_bio->sectors);
2325 		unfreeze_array(conf);
2326 	} else
2327 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2328 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2329 
2330 	bio = r1_bio->bios[r1_bio->read_disk];
2331 	bdevname(bio->bi_bdev, b);
2332 read_more:
2333 	disk = read_balance(conf, r1_bio, &max_sectors);
2334 	if (disk == -1) {
2335 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2336 		       " read error for block %llu\n",
2337 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2338 		raid_end_bio_io(r1_bio);
2339 	} else {
2340 		const unsigned long do_sync
2341 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2342 		if (bio) {
2343 			r1_bio->bios[r1_bio->read_disk] =
2344 				mddev->ro ? IO_BLOCKED : NULL;
2345 			bio_put(bio);
2346 		}
2347 		r1_bio->read_disk = disk;
2348 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2349 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2350 			 max_sectors);
2351 		r1_bio->bios[r1_bio->read_disk] = bio;
2352 		rdev = conf->mirrors[disk].rdev;
2353 		printk_ratelimited(KERN_ERR
2354 				   "md/raid1:%s: redirecting sector %llu"
2355 				   " to other mirror: %s\n",
2356 				   mdname(mddev),
2357 				   (unsigned long long)r1_bio->sector,
2358 				   bdevname(rdev->bdev, b));
2359 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2360 		bio->bi_bdev = rdev->bdev;
2361 		bio->bi_end_io = raid1_end_read_request;
2362 		bio->bi_rw = READ | do_sync;
2363 		bio->bi_private = r1_bio;
2364 		if (max_sectors < r1_bio->sectors) {
2365 			/* Drat - have to split this up more */
2366 			struct bio *mbio = r1_bio->master_bio;
2367 			int sectors_handled = (r1_bio->sector + max_sectors
2368 					       - mbio->bi_iter.bi_sector);
2369 			r1_bio->sectors = max_sectors;
2370 			spin_lock_irq(&conf->device_lock);
2371 			if (mbio->bi_phys_segments == 0)
2372 				mbio->bi_phys_segments = 2;
2373 			else
2374 				mbio->bi_phys_segments++;
2375 			spin_unlock_irq(&conf->device_lock);
2376 			generic_make_request(bio);
2377 			bio = NULL;
2378 
2379 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2380 
2381 			r1_bio->master_bio = mbio;
2382 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2383 			r1_bio->state = 0;
2384 			set_bit(R1BIO_ReadError, &r1_bio->state);
2385 			r1_bio->mddev = mddev;
2386 			r1_bio->sector = mbio->bi_iter.bi_sector +
2387 				sectors_handled;
2388 
2389 			goto read_more;
2390 		} else
2391 			generic_make_request(bio);
2392 	}
2393 }
2394 
raid1d(struct md_thread * thread)2395 static void raid1d(struct md_thread *thread)
2396 {
2397 	struct mddev *mddev = thread->mddev;
2398 	struct r1bio *r1_bio;
2399 	unsigned long flags;
2400 	struct r1conf *conf = mddev->private;
2401 	struct list_head *head = &conf->retry_list;
2402 	struct blk_plug plug;
2403 
2404 	md_check_recovery(mddev);
2405 
2406 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2407 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2408 		LIST_HEAD(tmp);
2409 		spin_lock_irqsave(&conf->device_lock, flags);
2410 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2411 			while (!list_empty(&conf->bio_end_io_list)) {
2412 				list_move(conf->bio_end_io_list.prev, &tmp);
2413 				conf->nr_queued--;
2414 			}
2415 		}
2416 		spin_unlock_irqrestore(&conf->device_lock, flags);
2417 		while (!list_empty(&tmp)) {
2418 			r1_bio = list_first_entry(&tmp, struct r1bio,
2419 						  retry_list);
2420 			list_del(&r1_bio->retry_list);
2421 			if (mddev->degraded)
2422 				set_bit(R1BIO_Degraded, &r1_bio->state);
2423 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2424 				close_write(r1_bio);
2425 			raid_end_bio_io(r1_bio);
2426 		}
2427 	}
2428 
2429 	blk_start_plug(&plug);
2430 	for (;;) {
2431 
2432 		flush_pending_writes(conf);
2433 
2434 		spin_lock_irqsave(&conf->device_lock, flags);
2435 		if (list_empty(head)) {
2436 			spin_unlock_irqrestore(&conf->device_lock, flags);
2437 			break;
2438 		}
2439 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2440 		list_del(head->prev);
2441 		conf->nr_queued--;
2442 		spin_unlock_irqrestore(&conf->device_lock, flags);
2443 
2444 		mddev = r1_bio->mddev;
2445 		conf = mddev->private;
2446 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2447 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2448 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2449 				handle_sync_write_finished(conf, r1_bio);
2450 			else
2451 				sync_request_write(mddev, r1_bio);
2452 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2453 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2454 			handle_write_finished(conf, r1_bio);
2455 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2456 			handle_read_error(conf, r1_bio);
2457 		else
2458 			/* just a partial read to be scheduled from separate
2459 			 * context
2460 			 */
2461 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2462 
2463 		cond_resched();
2464 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2465 			md_check_recovery(mddev);
2466 	}
2467 	blk_finish_plug(&plug);
2468 }
2469 
init_resync(struct r1conf * conf)2470 static int init_resync(struct r1conf *conf)
2471 {
2472 	int buffs;
2473 
2474 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2475 	BUG_ON(conf->r1buf_pool);
2476 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2477 					  conf->poolinfo);
2478 	if (!conf->r1buf_pool)
2479 		return -ENOMEM;
2480 	conf->next_resync = 0;
2481 	return 0;
2482 }
2483 
2484 /*
2485  * perform a "sync" on one "block"
2486  *
2487  * We need to make sure that no normal I/O request - particularly write
2488  * requests - conflict with active sync requests.
2489  *
2490  * This is achieved by tracking pending requests and a 'barrier' concept
2491  * that can be installed to exclude normal IO requests.
2492  */
2493 
sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)2494 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2495 {
2496 	struct r1conf *conf = mddev->private;
2497 	struct r1bio *r1_bio;
2498 	struct bio *bio;
2499 	sector_t max_sector, nr_sectors;
2500 	int disk = -1;
2501 	int i;
2502 	int wonly = -1;
2503 	int write_targets = 0, read_targets = 0;
2504 	sector_t sync_blocks;
2505 	int still_degraded = 0;
2506 	int good_sectors = RESYNC_SECTORS;
2507 	int min_bad = 0; /* number of sectors that are bad in all devices */
2508 
2509 	if (!conf->r1buf_pool)
2510 		if (init_resync(conf))
2511 			return 0;
2512 
2513 	max_sector = mddev->dev_sectors;
2514 	if (sector_nr >= max_sector) {
2515 		/* If we aborted, we need to abort the
2516 		 * sync on the 'current' bitmap chunk (there will
2517 		 * only be one in raid1 resync.
2518 		 * We can find the current addess in mddev->curr_resync
2519 		 */
2520 		if (mddev->curr_resync < max_sector) /* aborted */
2521 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2522 						&sync_blocks, 1);
2523 		else /* completed sync */
2524 			conf->fullsync = 0;
2525 
2526 		bitmap_close_sync(mddev->bitmap);
2527 		close_sync(conf);
2528 
2529 		if (mddev_is_clustered(mddev)) {
2530 			conf->cluster_sync_low = 0;
2531 			conf->cluster_sync_high = 0;
2532 		}
2533 		return 0;
2534 	}
2535 
2536 	if (mddev->bitmap == NULL &&
2537 	    mddev->recovery_cp == MaxSector &&
2538 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2539 	    conf->fullsync == 0) {
2540 		*skipped = 1;
2541 		return max_sector - sector_nr;
2542 	}
2543 	/* before building a request, check if we can skip these blocks..
2544 	 * This call the bitmap_start_sync doesn't actually record anything
2545 	 */
2546 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2547 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2548 		/* We can skip this block, and probably several more */
2549 		*skipped = 1;
2550 		return sync_blocks;
2551 	}
2552 
2553 	/* we are incrementing sector_nr below. To be safe, we check against
2554 	 * sector_nr + two times RESYNC_SECTORS
2555 	 */
2556 
2557 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2558 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2559 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2560 
2561 	raise_barrier(conf, sector_nr);
2562 
2563 	rcu_read_lock();
2564 	/*
2565 	 * If we get a correctably read error during resync or recovery,
2566 	 * we might want to read from a different device.  So we
2567 	 * flag all drives that could conceivably be read from for READ,
2568 	 * and any others (which will be non-In_sync devices) for WRITE.
2569 	 * If a read fails, we try reading from something else for which READ
2570 	 * is OK.
2571 	 */
2572 
2573 	r1_bio->mddev = mddev;
2574 	r1_bio->sector = sector_nr;
2575 	r1_bio->state = 0;
2576 	set_bit(R1BIO_IsSync, &r1_bio->state);
2577 
2578 	for (i = 0; i < conf->raid_disks * 2; i++) {
2579 		struct md_rdev *rdev;
2580 		bio = r1_bio->bios[i];
2581 		bio_reset(bio);
2582 
2583 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2584 		if (rdev == NULL ||
2585 		    test_bit(Faulty, &rdev->flags)) {
2586 			if (i < conf->raid_disks)
2587 				still_degraded = 1;
2588 		} else if (!test_bit(In_sync, &rdev->flags)) {
2589 			bio->bi_rw = WRITE;
2590 			bio->bi_end_io = end_sync_write;
2591 			write_targets ++;
2592 		} else {
2593 			/* may need to read from here */
2594 			sector_t first_bad = MaxSector;
2595 			int bad_sectors;
2596 
2597 			if (is_badblock(rdev, sector_nr, good_sectors,
2598 					&first_bad, &bad_sectors)) {
2599 				if (first_bad > sector_nr)
2600 					good_sectors = first_bad - sector_nr;
2601 				else {
2602 					bad_sectors -= (sector_nr - first_bad);
2603 					if (min_bad == 0 ||
2604 					    min_bad > bad_sectors)
2605 						min_bad = bad_sectors;
2606 				}
2607 			}
2608 			if (sector_nr < first_bad) {
2609 				if (test_bit(WriteMostly, &rdev->flags)) {
2610 					if (wonly < 0)
2611 						wonly = i;
2612 				} else {
2613 					if (disk < 0)
2614 						disk = i;
2615 				}
2616 				bio->bi_rw = READ;
2617 				bio->bi_end_io = end_sync_read;
2618 				read_targets++;
2619 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2620 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2621 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2622 				/*
2623 				 * The device is suitable for reading (InSync),
2624 				 * but has bad block(s) here. Let's try to correct them,
2625 				 * if we are doing resync or repair. Otherwise, leave
2626 				 * this device alone for this sync request.
2627 				 */
2628 				bio->bi_rw = WRITE;
2629 				bio->bi_end_io = end_sync_write;
2630 				write_targets++;
2631 			}
2632 		}
2633 		if (rdev && bio->bi_end_io) {
2634 			atomic_inc(&rdev->nr_pending);
2635 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2636 			bio->bi_bdev = rdev->bdev;
2637 			bio->bi_private = r1_bio;
2638 		}
2639 	}
2640 	rcu_read_unlock();
2641 	if (disk < 0)
2642 		disk = wonly;
2643 	r1_bio->read_disk = disk;
2644 
2645 	if (read_targets == 0 && min_bad > 0) {
2646 		/* These sectors are bad on all InSync devices, so we
2647 		 * need to mark them bad on all write targets
2648 		 */
2649 		int ok = 1;
2650 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2651 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2652 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2653 				ok = rdev_set_badblocks(rdev, sector_nr,
2654 							min_bad, 0
2655 					) && ok;
2656 			}
2657 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2658 		*skipped = 1;
2659 		put_buf(r1_bio);
2660 
2661 		if (!ok) {
2662 			/* Cannot record the badblocks, so need to
2663 			 * abort the resync.
2664 			 * If there are multiple read targets, could just
2665 			 * fail the really bad ones ???
2666 			 */
2667 			conf->recovery_disabled = mddev->recovery_disabled;
2668 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2669 			return 0;
2670 		} else
2671 			return min_bad;
2672 
2673 	}
2674 	if (min_bad > 0 && min_bad < good_sectors) {
2675 		/* only resync enough to reach the next bad->good
2676 		 * transition */
2677 		good_sectors = min_bad;
2678 	}
2679 
2680 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2681 		/* extra read targets are also write targets */
2682 		write_targets += read_targets-1;
2683 
2684 	if (write_targets == 0 || read_targets == 0) {
2685 		/* There is nowhere to write, so all non-sync
2686 		 * drives must be failed - so we are finished
2687 		 */
2688 		sector_t rv;
2689 		if (min_bad > 0)
2690 			max_sector = sector_nr + min_bad;
2691 		rv = max_sector - sector_nr;
2692 		*skipped = 1;
2693 		put_buf(r1_bio);
2694 		return rv;
2695 	}
2696 
2697 	if (max_sector > mddev->resync_max)
2698 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2699 	if (max_sector > sector_nr + good_sectors)
2700 		max_sector = sector_nr + good_sectors;
2701 	nr_sectors = 0;
2702 	sync_blocks = 0;
2703 	do {
2704 		struct page *page;
2705 		int len = PAGE_SIZE;
2706 		if (sector_nr + (len>>9) > max_sector)
2707 			len = (max_sector - sector_nr) << 9;
2708 		if (len == 0)
2709 			break;
2710 		if (sync_blocks == 0) {
2711 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2712 					       &sync_blocks, still_degraded) &&
2713 			    !conf->fullsync &&
2714 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2715 				break;
2716 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2717 			if ((len >> 9) > sync_blocks)
2718 				len = sync_blocks<<9;
2719 		}
2720 
2721 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2722 			bio = r1_bio->bios[i];
2723 			if (bio->bi_end_io) {
2724 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2725 				if (bio_add_page(bio, page, len, 0) == 0) {
2726 					/* stop here */
2727 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2728 					while (i > 0) {
2729 						i--;
2730 						bio = r1_bio->bios[i];
2731 						if (bio->bi_end_io==NULL)
2732 							continue;
2733 						/* remove last page from this bio */
2734 						bio->bi_vcnt--;
2735 						bio->bi_iter.bi_size -= len;
2736 						bio_clear_flag(bio, BIO_SEG_VALID);
2737 					}
2738 					goto bio_full;
2739 				}
2740 			}
2741 		}
2742 		nr_sectors += len>>9;
2743 		sector_nr += len>>9;
2744 		sync_blocks -= (len>>9);
2745 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2746  bio_full:
2747 	r1_bio->sectors = nr_sectors;
2748 
2749 	if (mddev_is_clustered(mddev) &&
2750 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2751 		conf->cluster_sync_low = mddev->curr_resync_completed;
2752 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2753 		/* Send resync message */
2754 		md_cluster_ops->resync_info_update(mddev,
2755 				conf->cluster_sync_low,
2756 				conf->cluster_sync_high);
2757 	}
2758 
2759 	/* For a user-requested sync, we read all readable devices and do a
2760 	 * compare
2761 	 */
2762 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2763 		atomic_set(&r1_bio->remaining, read_targets);
2764 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2765 			bio = r1_bio->bios[i];
2766 			if (bio->bi_end_io == end_sync_read) {
2767 				read_targets--;
2768 				md_sync_acct(bio->bi_bdev, nr_sectors);
2769 				generic_make_request(bio);
2770 			}
2771 		}
2772 	} else {
2773 		atomic_set(&r1_bio->remaining, 1);
2774 		bio = r1_bio->bios[r1_bio->read_disk];
2775 		md_sync_acct(bio->bi_bdev, nr_sectors);
2776 		generic_make_request(bio);
2777 
2778 	}
2779 	return nr_sectors;
2780 }
2781 
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)2782 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2783 {
2784 	if (sectors)
2785 		return sectors;
2786 
2787 	return mddev->dev_sectors;
2788 }
2789 
setup_conf(struct mddev * mddev)2790 static struct r1conf *setup_conf(struct mddev *mddev)
2791 {
2792 	struct r1conf *conf;
2793 	int i;
2794 	struct raid1_info *disk;
2795 	struct md_rdev *rdev;
2796 	int err = -ENOMEM;
2797 
2798 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2799 	if (!conf)
2800 		goto abort;
2801 
2802 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2803 				* mddev->raid_disks * 2,
2804 				 GFP_KERNEL);
2805 	if (!conf->mirrors)
2806 		goto abort;
2807 
2808 	conf->tmppage = alloc_page(GFP_KERNEL);
2809 	if (!conf->tmppage)
2810 		goto abort;
2811 
2812 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2813 	if (!conf->poolinfo)
2814 		goto abort;
2815 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2816 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2817 					  r1bio_pool_free,
2818 					  conf->poolinfo);
2819 	if (!conf->r1bio_pool)
2820 		goto abort;
2821 
2822 	conf->poolinfo->mddev = mddev;
2823 
2824 	err = -EINVAL;
2825 	spin_lock_init(&conf->device_lock);
2826 	rdev_for_each(rdev, mddev) {
2827 		struct request_queue *q;
2828 		int disk_idx = rdev->raid_disk;
2829 		if (disk_idx >= mddev->raid_disks
2830 		    || disk_idx < 0)
2831 			continue;
2832 		if (test_bit(Replacement, &rdev->flags))
2833 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2834 		else
2835 			disk = conf->mirrors + disk_idx;
2836 
2837 		if (disk->rdev)
2838 			goto abort;
2839 		disk->rdev = rdev;
2840 		q = bdev_get_queue(rdev->bdev);
2841 
2842 		disk->head_position = 0;
2843 		disk->seq_start = MaxSector;
2844 	}
2845 	conf->raid_disks = mddev->raid_disks;
2846 	conf->mddev = mddev;
2847 	INIT_LIST_HEAD(&conf->retry_list);
2848 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2849 
2850 	spin_lock_init(&conf->resync_lock);
2851 	init_waitqueue_head(&conf->wait_barrier);
2852 
2853 	bio_list_init(&conf->pending_bio_list);
2854 	conf->pending_count = 0;
2855 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2856 
2857 	conf->start_next_window = MaxSector;
2858 	conf->current_window_requests = conf->next_window_requests = 0;
2859 
2860 	err = -EIO;
2861 	for (i = 0; i < conf->raid_disks * 2; i++) {
2862 
2863 		disk = conf->mirrors + i;
2864 
2865 		if (i < conf->raid_disks &&
2866 		    disk[conf->raid_disks].rdev) {
2867 			/* This slot has a replacement. */
2868 			if (!disk->rdev) {
2869 				/* No original, just make the replacement
2870 				 * a recovering spare
2871 				 */
2872 				disk->rdev =
2873 					disk[conf->raid_disks].rdev;
2874 				disk[conf->raid_disks].rdev = NULL;
2875 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2876 				/* Original is not in_sync - bad */
2877 				goto abort;
2878 		}
2879 
2880 		if (!disk->rdev ||
2881 		    !test_bit(In_sync, &disk->rdev->flags)) {
2882 			disk->head_position = 0;
2883 			if (disk->rdev &&
2884 			    (disk->rdev->saved_raid_disk < 0))
2885 				conf->fullsync = 1;
2886 		}
2887 	}
2888 
2889 	err = -ENOMEM;
2890 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2891 	if (!conf->thread) {
2892 		printk(KERN_ERR
2893 		       "md/raid1:%s: couldn't allocate thread\n",
2894 		       mdname(mddev));
2895 		goto abort;
2896 	}
2897 
2898 	return conf;
2899 
2900  abort:
2901 	if (conf) {
2902 		mempool_destroy(conf->r1bio_pool);
2903 		kfree(conf->mirrors);
2904 		safe_put_page(conf->tmppage);
2905 		kfree(conf->poolinfo);
2906 		kfree(conf);
2907 	}
2908 	return ERR_PTR(err);
2909 }
2910 
2911 static void raid1_free(struct mddev *mddev, void *priv);
run(struct mddev * mddev)2912 static int run(struct mddev *mddev)
2913 {
2914 	struct r1conf *conf;
2915 	int i;
2916 	struct md_rdev *rdev;
2917 	int ret;
2918 	bool discard_supported = false;
2919 
2920 	if (mddev->level != 1) {
2921 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2922 		       mdname(mddev), mddev->level);
2923 		return -EIO;
2924 	}
2925 	if (mddev->reshape_position != MaxSector) {
2926 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2927 		       mdname(mddev));
2928 		return -EIO;
2929 	}
2930 	/*
2931 	 * copy the already verified devices into our private RAID1
2932 	 * bookkeeping area. [whatever we allocate in run(),
2933 	 * should be freed in raid1_free()]
2934 	 */
2935 	if (mddev->private == NULL)
2936 		conf = setup_conf(mddev);
2937 	else
2938 		conf = mddev->private;
2939 
2940 	if (IS_ERR(conf))
2941 		return PTR_ERR(conf);
2942 
2943 	if (mddev->queue)
2944 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2945 
2946 	rdev_for_each(rdev, mddev) {
2947 		if (!mddev->gendisk)
2948 			continue;
2949 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2950 				  rdev->data_offset << 9);
2951 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2952 			discard_supported = true;
2953 	}
2954 
2955 	mddev->degraded = 0;
2956 	for (i=0; i < conf->raid_disks; i++)
2957 		if (conf->mirrors[i].rdev == NULL ||
2958 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2959 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2960 			mddev->degraded++;
2961 	/*
2962 	 * RAID1 needs at least one disk in active
2963 	 */
2964 	if (conf->raid_disks - mddev->degraded < 1) {
2965 		ret = -EINVAL;
2966 		goto abort;
2967 	}
2968 
2969 	if (conf->raid_disks - mddev->degraded == 1)
2970 		mddev->recovery_cp = MaxSector;
2971 
2972 	if (mddev->recovery_cp != MaxSector)
2973 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2974 		       " -- starting background reconstruction\n",
2975 		       mdname(mddev));
2976 	printk(KERN_INFO
2977 		"md/raid1:%s: active with %d out of %d mirrors\n",
2978 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2979 		mddev->raid_disks);
2980 
2981 	/*
2982 	 * Ok, everything is just fine now
2983 	 */
2984 	mddev->thread = conf->thread;
2985 	conf->thread = NULL;
2986 	mddev->private = conf;
2987 
2988 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2989 
2990 	if (mddev->queue) {
2991 		if (discard_supported)
2992 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2993 						mddev->queue);
2994 		else
2995 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2996 						  mddev->queue);
2997 	}
2998 
2999 	ret =  md_integrity_register(mddev);
3000 	if (ret) {
3001 		md_unregister_thread(&mddev->thread);
3002 		goto abort;
3003 	}
3004 	return 0;
3005 
3006 abort:
3007 	raid1_free(mddev, conf);
3008 	return ret;
3009 }
3010 
raid1_free(struct mddev * mddev,void * priv)3011 static void raid1_free(struct mddev *mddev, void *priv)
3012 {
3013 	struct r1conf *conf = priv;
3014 
3015 	mempool_destroy(conf->r1bio_pool);
3016 	kfree(conf->mirrors);
3017 	safe_put_page(conf->tmppage);
3018 	kfree(conf->poolinfo);
3019 	kfree(conf);
3020 }
3021 
raid1_resize(struct mddev * mddev,sector_t sectors)3022 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3023 {
3024 	/* no resync is happening, and there is enough space
3025 	 * on all devices, so we can resize.
3026 	 * We need to make sure resync covers any new space.
3027 	 * If the array is shrinking we should possibly wait until
3028 	 * any io in the removed space completes, but it hardly seems
3029 	 * worth it.
3030 	 */
3031 	sector_t newsize = raid1_size(mddev, sectors, 0);
3032 	if (mddev->external_size &&
3033 	    mddev->array_sectors > newsize)
3034 		return -EINVAL;
3035 	if (mddev->bitmap) {
3036 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3037 		if (ret)
3038 			return ret;
3039 	}
3040 	md_set_array_sectors(mddev, newsize);
3041 	set_capacity(mddev->gendisk, mddev->array_sectors);
3042 	revalidate_disk(mddev->gendisk);
3043 	if (sectors > mddev->dev_sectors &&
3044 	    mddev->recovery_cp > mddev->dev_sectors) {
3045 		mddev->recovery_cp = mddev->dev_sectors;
3046 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3047 	}
3048 	mddev->dev_sectors = sectors;
3049 	mddev->resync_max_sectors = sectors;
3050 	return 0;
3051 }
3052 
raid1_reshape(struct mddev * mddev)3053 static int raid1_reshape(struct mddev *mddev)
3054 {
3055 	/* We need to:
3056 	 * 1/ resize the r1bio_pool
3057 	 * 2/ resize conf->mirrors
3058 	 *
3059 	 * We allocate a new r1bio_pool if we can.
3060 	 * Then raise a device barrier and wait until all IO stops.
3061 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3062 	 *
3063 	 * At the same time, we "pack" the devices so that all the missing
3064 	 * devices have the higher raid_disk numbers.
3065 	 */
3066 	mempool_t *newpool, *oldpool;
3067 	struct pool_info *newpoolinfo;
3068 	struct raid1_info *newmirrors;
3069 	struct r1conf *conf = mddev->private;
3070 	int cnt, raid_disks;
3071 	unsigned long flags;
3072 	int d, d2, err;
3073 
3074 	/* Cannot change chunk_size, layout, or level */
3075 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3076 	    mddev->layout != mddev->new_layout ||
3077 	    mddev->level != mddev->new_level) {
3078 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3079 		mddev->new_layout = mddev->layout;
3080 		mddev->new_level = mddev->level;
3081 		return -EINVAL;
3082 	}
3083 
3084 	if (!mddev_is_clustered(mddev)) {
3085 		err = md_allow_write(mddev);
3086 		if (err)
3087 			return err;
3088 	}
3089 
3090 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3091 
3092 	if (raid_disks < conf->raid_disks) {
3093 		cnt=0;
3094 		for (d= 0; d < conf->raid_disks; d++)
3095 			if (conf->mirrors[d].rdev)
3096 				cnt++;
3097 		if (cnt > raid_disks)
3098 			return -EBUSY;
3099 	}
3100 
3101 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3102 	if (!newpoolinfo)
3103 		return -ENOMEM;
3104 	newpoolinfo->mddev = mddev;
3105 	newpoolinfo->raid_disks = raid_disks * 2;
3106 
3107 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3108 				 r1bio_pool_free, newpoolinfo);
3109 	if (!newpool) {
3110 		kfree(newpoolinfo);
3111 		return -ENOMEM;
3112 	}
3113 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3114 			     GFP_KERNEL);
3115 	if (!newmirrors) {
3116 		kfree(newpoolinfo);
3117 		mempool_destroy(newpool);
3118 		return -ENOMEM;
3119 	}
3120 
3121 	freeze_array(conf, 0);
3122 
3123 	/* ok, everything is stopped */
3124 	oldpool = conf->r1bio_pool;
3125 	conf->r1bio_pool = newpool;
3126 
3127 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3128 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3129 		if (rdev && rdev->raid_disk != d2) {
3130 			sysfs_unlink_rdev(mddev, rdev);
3131 			rdev->raid_disk = d2;
3132 			sysfs_unlink_rdev(mddev, rdev);
3133 			if (sysfs_link_rdev(mddev, rdev))
3134 				printk(KERN_WARNING
3135 				       "md/raid1:%s: cannot register rd%d\n",
3136 				       mdname(mddev), rdev->raid_disk);
3137 		}
3138 		if (rdev)
3139 			newmirrors[d2++].rdev = rdev;
3140 	}
3141 	kfree(conf->mirrors);
3142 	conf->mirrors = newmirrors;
3143 	kfree(conf->poolinfo);
3144 	conf->poolinfo = newpoolinfo;
3145 
3146 	spin_lock_irqsave(&conf->device_lock, flags);
3147 	mddev->degraded += (raid_disks - conf->raid_disks);
3148 	spin_unlock_irqrestore(&conf->device_lock, flags);
3149 	conf->raid_disks = mddev->raid_disks = raid_disks;
3150 	mddev->delta_disks = 0;
3151 
3152 	unfreeze_array(conf);
3153 
3154 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3155 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3156 	md_wakeup_thread(mddev->thread);
3157 
3158 	mempool_destroy(oldpool);
3159 	return 0;
3160 }
3161 
raid1_quiesce(struct mddev * mddev,int state)3162 static void raid1_quiesce(struct mddev *mddev, int state)
3163 {
3164 	struct r1conf *conf = mddev->private;
3165 
3166 	switch(state) {
3167 	case 2: /* wake for suspend */
3168 		wake_up(&conf->wait_barrier);
3169 		break;
3170 	case 1:
3171 		freeze_array(conf, 0);
3172 		break;
3173 	case 0:
3174 		unfreeze_array(conf);
3175 		break;
3176 	}
3177 }
3178 
raid1_takeover(struct mddev * mddev)3179 static void *raid1_takeover(struct mddev *mddev)
3180 {
3181 	/* raid1 can take over:
3182 	 *  raid5 with 2 devices, any layout or chunk size
3183 	 */
3184 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3185 		struct r1conf *conf;
3186 		mddev->new_level = 1;
3187 		mddev->new_layout = 0;
3188 		mddev->new_chunk_sectors = 0;
3189 		conf = setup_conf(mddev);
3190 		if (!IS_ERR(conf))
3191 			/* Array must appear to be quiesced */
3192 			conf->array_frozen = 1;
3193 		return conf;
3194 	}
3195 	return ERR_PTR(-EINVAL);
3196 }
3197 
3198 static struct md_personality raid1_personality =
3199 {
3200 	.name		= "raid1",
3201 	.level		= 1,
3202 	.owner		= THIS_MODULE,
3203 	.make_request	= make_request,
3204 	.run		= run,
3205 	.free		= raid1_free,
3206 	.status		= status,
3207 	.error_handler	= error,
3208 	.hot_add_disk	= raid1_add_disk,
3209 	.hot_remove_disk= raid1_remove_disk,
3210 	.spare_active	= raid1_spare_active,
3211 	.sync_request	= sync_request,
3212 	.resize		= raid1_resize,
3213 	.size		= raid1_size,
3214 	.check_reshape	= raid1_reshape,
3215 	.quiesce	= raid1_quiesce,
3216 	.takeover	= raid1_takeover,
3217 	.congested	= raid1_congested,
3218 };
3219 
raid_init(void)3220 static int __init raid_init(void)
3221 {
3222 	return register_md_personality(&raid1_personality);
3223 }
3224 
raid_exit(void)3225 static void raid_exit(void)
3226 {
3227 	unregister_md_personality(&raid1_personality);
3228 }
3229 
3230 module_init(raid_init);
3231 module_exit(raid_exit);
3232 MODULE_LICENSE("GPL");
3233 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3234 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3235 MODULE_ALIAS("md-raid1");
3236 MODULE_ALIAS("md-level-1");
3237 
3238 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3239