1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 * use_far_sets_bugfixed (stored in bit 18 of layout )
43 *
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
56 *
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64 * on a device):
65 * A B C D A B C D E
66 * ... ...
67 * D A B C E A B C D
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
72 */
73
74 /*
75 * Number of guaranteed r10bios in case of extreme VM load:
76 */
77 #define NR_RAID10_BIOS 256
78
79 /* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83 */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
88 */
89 #define IO_MADE_GOOD ((struct bio *)2)
90
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93 /* When there are this many requests queued to be written by
94 * the raid10 thread, we become 'congested' to provide back-pressure
95 * for writeback.
96 */
97 static int max_queued_requests = 1024;
98
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107
r10bio_pool_alloc(gfp_t gfp_flags,void * data)108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110 struct r10conf *conf = data;
111 int size = offsetof(struct r10bio, devs[conf->copies]);
112
113 /* allocate a r10bio with room for raid_disks entries in the
114 * bios array */
115 return kzalloc(size, gfp_flags);
116 }
117
r10bio_pool_free(void * r10_bio,void * data)118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120 kfree(r10_bio);
121 }
122
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130
131 /*
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
136 *
137 */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140 struct r10conf *conf = data;
141 struct page *page;
142 struct r10bio *r10_bio;
143 struct bio *bio;
144 int i, j;
145 int nalloc;
146
147 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148 if (!r10_bio)
149 return NULL;
150
151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153 nalloc = conf->copies; /* resync */
154 else
155 nalloc = 2; /* recovery */
156
157 /*
158 * Allocate bios.
159 */
160 for (j = nalloc ; j-- ; ) {
161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162 if (!bio)
163 goto out_free_bio;
164 r10_bio->devs[j].bio = bio;
165 if (!conf->have_replacement)
166 continue;
167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 if (!bio)
169 goto out_free_bio;
170 r10_bio->devs[j].repl_bio = bio;
171 }
172 /*
173 * Allocate RESYNC_PAGES data pages and attach them
174 * where needed.
175 */
176 for (j = 0 ; j < nalloc; j++) {
177 struct bio *rbio = r10_bio->devs[j].repl_bio;
178 bio = r10_bio->devs[j].bio;
179 for (i = 0; i < RESYNC_PAGES; i++) {
180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 &conf->mddev->recovery)) {
182 /* we can share bv_page's during recovery
183 * and reshape */
184 struct bio *rbio = r10_bio->devs[0].bio;
185 page = rbio->bi_io_vec[i].bv_page;
186 get_page(page);
187 } else
188 page = alloc_page(gfp_flags);
189 if (unlikely(!page))
190 goto out_free_pages;
191
192 bio->bi_io_vec[i].bv_page = page;
193 if (rbio)
194 rbio->bi_io_vec[i].bv_page = page;
195 }
196 }
197
198 return r10_bio;
199
200 out_free_pages:
201 for ( ; i > 0 ; i--)
202 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 while (j--)
204 for (i = 0; i < RESYNC_PAGES ; i++)
205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206 j = 0;
207 out_free_bio:
208 for ( ; j < nalloc; j++) {
209 if (r10_bio->devs[j].bio)
210 bio_put(r10_bio->devs[j].bio);
211 if (r10_bio->devs[j].repl_bio)
212 bio_put(r10_bio->devs[j].repl_bio);
213 }
214 r10bio_pool_free(r10_bio, conf);
215 return NULL;
216 }
217
r10buf_pool_free(void * __r10_bio,void * data)218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220 int i;
221 struct r10conf *conf = data;
222 struct r10bio *r10bio = __r10_bio;
223 int j;
224
225 for (j=0; j < conf->copies; j++) {
226 struct bio *bio = r10bio->devs[j].bio;
227 if (bio) {
228 for (i = 0; i < RESYNC_PAGES; i++) {
229 safe_put_page(bio->bi_io_vec[i].bv_page);
230 bio->bi_io_vec[i].bv_page = NULL;
231 }
232 bio_put(bio);
233 }
234 bio = r10bio->devs[j].repl_bio;
235 if (bio)
236 bio_put(bio);
237 }
238 r10bio_pool_free(r10bio, conf);
239 }
240
put_all_bios(struct r10conf * conf,struct r10bio * r10_bio)241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243 int i;
244
245 for (i = 0; i < conf->copies; i++) {
246 struct bio **bio = & r10_bio->devs[i].bio;
247 if (!BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 bio = &r10_bio->devs[i].repl_bio;
251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 bio_put(*bio);
253 *bio = NULL;
254 }
255 }
256
free_r10bio(struct r10bio * r10_bio)257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259 struct r10conf *conf = r10_bio->mddev->private;
260
261 put_all_bios(conf, r10_bio);
262 mempool_free(r10_bio, conf->r10bio_pool);
263 }
264
put_buf(struct r10bio * r10_bio)265 static void put_buf(struct r10bio *r10_bio)
266 {
267 struct r10conf *conf = r10_bio->mddev->private;
268
269 mempool_free(r10_bio, conf->r10buf_pool);
270
271 lower_barrier(conf);
272 }
273
reschedule_retry(struct r10bio * r10_bio)274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276 unsigned long flags;
277 struct mddev *mddev = r10_bio->mddev;
278 struct r10conf *conf = mddev->private;
279
280 spin_lock_irqsave(&conf->device_lock, flags);
281 list_add(&r10_bio->retry_list, &conf->retry_list);
282 conf->nr_queued ++;
283 spin_unlock_irqrestore(&conf->device_lock, flags);
284
285 /* wake up frozen array... */
286 wake_up(&conf->wait_barrier);
287
288 md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
raid_end_bio_io(struct r10bio * r10_bio)296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298 struct bio *bio = r10_bio->master_bio;
299 int done;
300 struct r10conf *conf = r10_bio->mddev->private;
301
302 if (bio->bi_phys_segments) {
303 unsigned long flags;
304 spin_lock_irqsave(&conf->device_lock, flags);
305 bio->bi_phys_segments--;
306 done = (bio->bi_phys_segments == 0);
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308 } else
309 done = 1;
310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311 bio->bi_error = -EIO;
312 if (done) {
313 bio_endio(bio);
314 /*
315 * Wake up any possible resync thread that waits for the device
316 * to go idle.
317 */
318 allow_barrier(conf);
319 }
320 free_r10bio(r10_bio);
321 }
322
323 /*
324 * Update disk head position estimator based on IRQ completion info.
325 */
update_head_pos(int slot,struct r10bio * r10_bio)326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328 struct r10conf *conf = r10_bio->mddev->private;
329
330 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333
334 /*
335 * Find the disk number which triggered given bio
336 */
find_bio_disk(struct r10conf * conf,struct r10bio * r10_bio,struct bio * bio,int * slotp,int * replp)337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338 struct bio *bio, int *slotp, int *replp)
339 {
340 int slot;
341 int repl = 0;
342
343 for (slot = 0; slot < conf->copies; slot++) {
344 if (r10_bio->devs[slot].bio == bio)
345 break;
346 if (r10_bio->devs[slot].repl_bio == bio) {
347 repl = 1;
348 break;
349 }
350 }
351
352 BUG_ON(slot == conf->copies);
353 update_head_pos(slot, r10_bio);
354
355 if (slotp)
356 *slotp = slot;
357 if (replp)
358 *replp = repl;
359 return r10_bio->devs[slot].devnum;
360 }
361
raid10_end_read_request(struct bio * bio)362 static void raid10_end_read_request(struct bio *bio)
363 {
364 int uptodate = !bio->bi_error;
365 struct r10bio *r10_bio = bio->bi_private;
366 int slot, dev;
367 struct md_rdev *rdev;
368 struct r10conf *conf = r10_bio->mddev->private;
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
397 uptodate = 1;
398 }
399 if (uptodate) {
400 raid_end_bio_io(r10_bio);
401 rdev_dec_pending(rdev, conf->mddev);
402 } else {
403 /*
404 * oops, read error - keep the refcount on the rdev
405 */
406 char b[BDEVNAME_SIZE];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
410 bdevname(rdev->bdev, b),
411 (unsigned long long)r10_bio->sector);
412 set_bit(R10BIO_ReadError, &r10_bio->state);
413 reschedule_retry(r10_bio);
414 }
415 }
416
close_write(struct r10bio * r10_bio)417 static void close_write(struct r10bio *r10_bio)
418 {
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425 }
426
one_write_done(struct r10bio * r10_bio)427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440 }
441
raid10_end_write_request(struct bio * bio)442 static void raid10_end_write_request(struct bio *bio)
443 {
444 struct r10bio *r10_bio = bio->bi_private;
445 int dev;
446 int dec_rdev = 1;
447 struct r10conf *conf = r10_bio->mddev->private;
448 int slot, repl;
449 struct md_rdev *rdev = NULL;
450
451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
458 rdev = conf->mirrors[dev].rdev;
459 }
460 /*
461 * this branch is our 'one mirror IO has finished' event handler:
462 */
463 if (bio->bi_error) {
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
467 */
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
476 }
477 } else {
478 /*
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
482 *
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
486 */
487 sector_t first_bad;
488 int bad_sectors;
489
490 /*
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
497 */
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev,
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
514 }
515 }
516
517 /*
518 *
519 * Let's see if all mirrored write operations have finished
520 * already.
521 */
522 one_write_done(r10_bio);
523 if (dec_rdev)
524 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
__raid10_find_phys(struct geom * geo,struct r10bio * r10bio)552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
559 int slot = 0;
560 int last_far_set_start, last_far_set_size;
561
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
564
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568 /* now calculate first sector/dev */
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
571
572 chunk *= geo->near_copies;
573 stripe = chunk;
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
577
578 sector += stripe << geo->chunk_shift;
579
580 /* and calculate all the others */
581 for (n = 0; n < geo->near_copies; n++) {
582 int d = dev;
583 int set;
584 sector_t s = sector;
585 r10bio->devs[slot].devnum = d;
586 r10bio->devs[slot].addr = s;
587 slot++;
588
589 for (f = 1; f < geo->far_copies; f++) {
590 set = d / geo->far_set_size;
591 d += geo->near_copies;
592
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
601 }
602 s += geo->stride;
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
606 }
607 dev++;
608 if (dev >= geo->raid_disks) {
609 dev = 0;
610 sector += (geo->chunk_mask + 1);
611 }
612 }
613 }
614
raid10_find_phys(struct r10conf * conf,struct r10bio * r10bio)615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 struct geom *geo = &conf->geo;
618
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
626
627 __raid10_find_phys(geo, r10bio);
628 }
629
raid10_find_virt(struct r10conf * conf,sector_t sector,int dev)630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 sector_t offset, chunk, vchunk;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
635 */
636 struct geom *geo = &conf->geo;
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
639 int last_far_set_start;
640
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
644
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
649 }
650 }
651
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
654 int fc;
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
658 if (dev < far_set_start)
659 dev += far_set_size;
660 } else {
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
665 else
666 dev -= geo->near_copies;
667 }
668 chunk = sector >> geo->chunk_shift;
669 }
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /*
676 * This routine returns the disk from which the requested read should
677 * be done. There is a per-array 'next expected sequential IO' sector
678 * number - if this matches on the next IO then we use the last disk.
679 * There is also a per-disk 'last know head position' sector that is
680 * maintained from IRQ contexts, both the normal and the resync IO
681 * completion handlers update this position correctly. If there is no
682 * perfect sequential match then we pick the disk whose head is closest.
683 *
684 * If there are 2 mirrors in the same 2 devices, performance degrades
685 * because position is mirror, not device based.
686 *
687 * The rdev for the device selected will have nr_pending incremented.
688 */
689
690 /*
691 * FIXME: possibly should rethink readbalancing and do it differently
692 * depending on near_copies / far_copies geometry.
693 */
read_balance(struct r10conf * conf,struct r10bio * r10_bio,int * max_sectors)694 static struct md_rdev *read_balance(struct r10conf *conf,
695 struct r10bio *r10_bio,
696 int *max_sectors)
697 {
698 const sector_t this_sector = r10_bio->sector;
699 int disk, slot;
700 int sectors = r10_bio->sectors;
701 int best_good_sectors;
702 sector_t new_distance, best_dist;
703 struct md_rdev *best_rdev, *rdev = NULL;
704 int do_balance;
705 int best_slot;
706 struct geom *geo = &conf->geo;
707
708 raid10_find_phys(conf, r10_bio);
709 rcu_read_lock();
710 retry:
711 sectors = r10_bio->sectors;
712 best_slot = -1;
713 best_rdev = NULL;
714 best_dist = MaxSector;
715 best_good_sectors = 0;
716 do_balance = 1;
717 /*
718 * Check if we can balance. We can balance on the whole
719 * device if no resync is going on (recovery is ok), or below
720 * the resync window. We take the first readable disk when
721 * above the resync window.
722 */
723 if (conf->mddev->recovery_cp < MaxSector
724 && (this_sector + sectors >= conf->next_resync))
725 do_balance = 0;
726
727 for (slot = 0; slot < conf->copies ; slot++) {
728 sector_t first_bad;
729 int bad_sectors;
730 sector_t dev_sector;
731
732 if (r10_bio->devs[slot].bio == IO_BLOCKED)
733 continue;
734 disk = r10_bio->devs[slot].devnum;
735 rdev = rcu_dereference(conf->mirrors[disk].replacement);
736 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
737 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
738 rdev = rcu_dereference(conf->mirrors[disk].rdev);
739 if (rdev == NULL ||
740 test_bit(Faulty, &rdev->flags))
741 continue;
742 if (!test_bit(In_sync, &rdev->flags) &&
743 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
744 continue;
745
746 dev_sector = r10_bio->devs[slot].addr;
747 if (is_badblock(rdev, dev_sector, sectors,
748 &first_bad, &bad_sectors)) {
749 if (best_dist < MaxSector)
750 /* Already have a better slot */
751 continue;
752 if (first_bad <= dev_sector) {
753 /* Cannot read here. If this is the
754 * 'primary' device, then we must not read
755 * beyond 'bad_sectors' from another device.
756 */
757 bad_sectors -= (dev_sector - first_bad);
758 if (!do_balance && sectors > bad_sectors)
759 sectors = bad_sectors;
760 if (best_good_sectors > sectors)
761 best_good_sectors = sectors;
762 } else {
763 sector_t good_sectors =
764 first_bad - dev_sector;
765 if (good_sectors > best_good_sectors) {
766 best_good_sectors = good_sectors;
767 best_slot = slot;
768 best_rdev = rdev;
769 }
770 if (!do_balance)
771 /* Must read from here */
772 break;
773 }
774 continue;
775 } else
776 best_good_sectors = sectors;
777
778 if (!do_balance)
779 break;
780
781 /* This optimisation is debatable, and completely destroys
782 * sequential read speed for 'far copies' arrays. So only
783 * keep it for 'near' arrays, and review those later.
784 */
785 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
786 break;
787
788 /* for far > 1 always use the lowest address */
789 if (geo->far_copies > 1)
790 new_distance = r10_bio->devs[slot].addr;
791 else
792 new_distance = abs(r10_bio->devs[slot].addr -
793 conf->mirrors[disk].head_position);
794 if (new_distance < best_dist) {
795 best_dist = new_distance;
796 best_slot = slot;
797 best_rdev = rdev;
798 }
799 }
800 if (slot >= conf->copies) {
801 slot = best_slot;
802 rdev = best_rdev;
803 }
804
805 if (slot >= 0) {
806 atomic_inc(&rdev->nr_pending);
807 if (test_bit(Faulty, &rdev->flags)) {
808 /* Cannot risk returning a device that failed
809 * before we inc'ed nr_pending
810 */
811 rdev_dec_pending(rdev, conf->mddev);
812 goto retry;
813 }
814 r10_bio->read_slot = slot;
815 } else
816 rdev = NULL;
817 rcu_read_unlock();
818 *max_sectors = best_good_sectors;
819
820 return rdev;
821 }
822
raid10_congested(struct mddev * mddev,int bits)823 static int raid10_congested(struct mddev *mddev, int bits)
824 {
825 struct r10conf *conf = mddev->private;
826 int i, ret = 0;
827
828 if ((bits & (1 << WB_async_congested)) &&
829 conf->pending_count >= max_queued_requests)
830 return 1;
831
832 rcu_read_lock();
833 for (i = 0;
834 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
835 && ret == 0;
836 i++) {
837 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
838 if (rdev && !test_bit(Faulty, &rdev->flags)) {
839 struct request_queue *q = bdev_get_queue(rdev->bdev);
840
841 ret |= bdi_congested(&q->backing_dev_info, bits);
842 }
843 }
844 rcu_read_unlock();
845 return ret;
846 }
847
flush_pending_writes(struct r10conf * conf)848 static void flush_pending_writes(struct r10conf *conf)
849 {
850 /* Any writes that have been queued but are awaiting
851 * bitmap updates get flushed here.
852 */
853 spin_lock_irq(&conf->device_lock);
854
855 if (conf->pending_bio_list.head) {
856 struct bio *bio;
857 bio = bio_list_get(&conf->pending_bio_list);
858 conf->pending_count = 0;
859 spin_unlock_irq(&conf->device_lock);
860 /* flush any pending bitmap writes to disk
861 * before proceeding w/ I/O */
862 bitmap_unplug(conf->mddev->bitmap);
863 wake_up(&conf->wait_barrier);
864
865 while (bio) { /* submit pending writes */
866 struct bio *next = bio->bi_next;
867 bio->bi_next = NULL;
868 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
869 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
870 /* Just ignore it */
871 bio_endio(bio);
872 else
873 generic_make_request(bio);
874 bio = next;
875 }
876 } else
877 spin_unlock_irq(&conf->device_lock);
878 }
879
880 /* Barriers....
881 * Sometimes we need to suspend IO while we do something else,
882 * either some resync/recovery, or reconfigure the array.
883 * To do this we raise a 'barrier'.
884 * The 'barrier' is a counter that can be raised multiple times
885 * to count how many activities are happening which preclude
886 * normal IO.
887 * We can only raise the barrier if there is no pending IO.
888 * i.e. if nr_pending == 0.
889 * We choose only to raise the barrier if no-one is waiting for the
890 * barrier to go down. This means that as soon as an IO request
891 * is ready, no other operations which require a barrier will start
892 * until the IO request has had a chance.
893 *
894 * So: regular IO calls 'wait_barrier'. When that returns there
895 * is no backgroup IO happening, It must arrange to call
896 * allow_barrier when it has finished its IO.
897 * backgroup IO calls must call raise_barrier. Once that returns
898 * there is no normal IO happeing. It must arrange to call
899 * lower_barrier when the particular background IO completes.
900 */
901
raise_barrier(struct r10conf * conf,int force)902 static void raise_barrier(struct r10conf *conf, int force)
903 {
904 BUG_ON(force && !conf->barrier);
905 spin_lock_irq(&conf->resync_lock);
906
907 /* Wait until no block IO is waiting (unless 'force') */
908 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
909 conf->resync_lock);
910
911 /* block any new IO from starting */
912 conf->barrier++;
913
914 /* Now wait for all pending IO to complete */
915 wait_event_lock_irq(conf->wait_barrier,
916 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
917 conf->resync_lock);
918
919 spin_unlock_irq(&conf->resync_lock);
920 }
921
lower_barrier(struct r10conf * conf)922 static void lower_barrier(struct r10conf *conf)
923 {
924 unsigned long flags;
925 spin_lock_irqsave(&conf->resync_lock, flags);
926 conf->barrier--;
927 spin_unlock_irqrestore(&conf->resync_lock, flags);
928 wake_up(&conf->wait_barrier);
929 }
930
wait_barrier(struct r10conf * conf)931 static void wait_barrier(struct r10conf *conf)
932 {
933 spin_lock_irq(&conf->resync_lock);
934 if (conf->barrier) {
935 conf->nr_waiting++;
936 /* Wait for the barrier to drop.
937 * However if there are already pending
938 * requests (preventing the barrier from
939 * rising completely), and the
940 * pre-process bio queue isn't empty,
941 * then don't wait, as we need to empty
942 * that queue to get the nr_pending
943 * count down.
944 */
945 wait_event_lock_irq(conf->wait_barrier,
946 !conf->barrier ||
947 (conf->nr_pending &&
948 current->bio_list &&
949 (!bio_list_empty(¤t->bio_list[0]) ||
950 !bio_list_empty(¤t->bio_list[1]))),
951 conf->resync_lock);
952 conf->nr_waiting--;
953 }
954 conf->nr_pending++;
955 spin_unlock_irq(&conf->resync_lock);
956 }
957
allow_barrier(struct r10conf * conf)958 static void allow_barrier(struct r10conf *conf)
959 {
960 unsigned long flags;
961 spin_lock_irqsave(&conf->resync_lock, flags);
962 conf->nr_pending--;
963 spin_unlock_irqrestore(&conf->resync_lock, flags);
964 wake_up(&conf->wait_barrier);
965 }
966
freeze_array(struct r10conf * conf,int extra)967 static void freeze_array(struct r10conf *conf, int extra)
968 {
969 /* stop syncio and normal IO and wait for everything to
970 * go quiet.
971 * We increment barrier and nr_waiting, and then
972 * wait until nr_pending match nr_queued+extra
973 * This is called in the context of one normal IO request
974 * that has failed. Thus any sync request that might be pending
975 * will be blocked by nr_pending, and we need to wait for
976 * pending IO requests to complete or be queued for re-try.
977 * Thus the number queued (nr_queued) plus this request (extra)
978 * must match the number of pending IOs (nr_pending) before
979 * we continue.
980 */
981 spin_lock_irq(&conf->resync_lock);
982 conf->barrier++;
983 conf->nr_waiting++;
984 wait_event_lock_irq_cmd(conf->wait_barrier,
985 conf->nr_pending == conf->nr_queued+extra,
986 conf->resync_lock,
987 flush_pending_writes(conf));
988
989 spin_unlock_irq(&conf->resync_lock);
990 }
991
unfreeze_array(struct r10conf * conf)992 static void unfreeze_array(struct r10conf *conf)
993 {
994 /* reverse the effect of the freeze */
995 spin_lock_irq(&conf->resync_lock);
996 conf->barrier--;
997 conf->nr_waiting--;
998 wake_up(&conf->wait_barrier);
999 spin_unlock_irq(&conf->resync_lock);
1000 }
1001
choose_data_offset(struct r10bio * r10_bio,struct md_rdev * rdev)1002 static sector_t choose_data_offset(struct r10bio *r10_bio,
1003 struct md_rdev *rdev)
1004 {
1005 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1006 test_bit(R10BIO_Previous, &r10_bio->state))
1007 return rdev->data_offset;
1008 else
1009 return rdev->new_data_offset;
1010 }
1011
1012 struct raid10_plug_cb {
1013 struct blk_plug_cb cb;
1014 struct bio_list pending;
1015 int pending_cnt;
1016 };
1017
raid10_unplug(struct blk_plug_cb * cb,bool from_schedule)1018 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1019 {
1020 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1021 cb);
1022 struct mddev *mddev = plug->cb.data;
1023 struct r10conf *conf = mddev->private;
1024 struct bio *bio;
1025
1026 if (from_schedule || current->bio_list) {
1027 spin_lock_irq(&conf->device_lock);
1028 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1029 conf->pending_count += plug->pending_cnt;
1030 spin_unlock_irq(&conf->device_lock);
1031 wake_up(&conf->wait_barrier);
1032 md_wakeup_thread(mddev->thread);
1033 kfree(plug);
1034 return;
1035 }
1036
1037 /* we aren't scheduling, so we can do the write-out directly. */
1038 bio = bio_list_get(&plug->pending);
1039 bitmap_unplug(mddev->bitmap);
1040 wake_up(&conf->wait_barrier);
1041
1042 while (bio) { /* submit pending writes */
1043 struct bio *next = bio->bi_next;
1044 bio->bi_next = NULL;
1045 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1046 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1047 /* Just ignore it */
1048 bio_endio(bio);
1049 else
1050 generic_make_request(bio);
1051 bio = next;
1052 }
1053 kfree(plug);
1054 }
1055
__make_request(struct mddev * mddev,struct bio * bio)1056 static void __make_request(struct mddev *mddev, struct bio *bio)
1057 {
1058 struct r10conf *conf = mddev->private;
1059 struct r10bio *r10_bio;
1060 struct bio *read_bio;
1061 int i;
1062 const int rw = bio_data_dir(bio);
1063 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1064 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1065 const unsigned long do_discard = (bio->bi_rw
1066 & (REQ_DISCARD | REQ_SECURE));
1067 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1068 unsigned long flags;
1069 struct md_rdev *blocked_rdev;
1070 struct blk_plug_cb *cb;
1071 struct raid10_plug_cb *plug = NULL;
1072 int sectors_handled;
1073 int max_sectors;
1074 int sectors;
1075
1076 md_write_start(mddev, bio);
1077
1078 /*
1079 * Register the new request and wait if the reconstruction
1080 * thread has put up a bar for new requests.
1081 * Continue immediately if no resync is active currently.
1082 */
1083 wait_barrier(conf);
1084
1085 sectors = bio_sectors(bio);
1086 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1087 bio->bi_iter.bi_sector < conf->reshape_progress &&
1088 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1089 /* IO spans the reshape position. Need to wait for
1090 * reshape to pass
1091 */
1092 allow_barrier(conf);
1093 wait_event(conf->wait_barrier,
1094 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1095 conf->reshape_progress >= bio->bi_iter.bi_sector +
1096 sectors);
1097 wait_barrier(conf);
1098 }
1099 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1100 bio_data_dir(bio) == WRITE &&
1101 (mddev->reshape_backwards
1102 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1103 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1104 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1105 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1106 /* Need to update reshape_position in metadata */
1107 mddev->reshape_position = conf->reshape_progress;
1108 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1109 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1110 md_wakeup_thread(mddev->thread);
1111 wait_event(mddev->sb_wait,
1112 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1113
1114 conf->reshape_safe = mddev->reshape_position;
1115 }
1116
1117 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1118
1119 r10_bio->master_bio = bio;
1120 r10_bio->sectors = sectors;
1121
1122 r10_bio->mddev = mddev;
1123 r10_bio->sector = bio->bi_iter.bi_sector;
1124 r10_bio->state = 0;
1125
1126 /* We might need to issue multiple reads to different
1127 * devices if there are bad blocks around, so we keep
1128 * track of the number of reads in bio->bi_phys_segments.
1129 * If this is 0, there is only one r10_bio and no locking
1130 * will be needed when the request completes. If it is
1131 * non-zero, then it is the number of not-completed requests.
1132 */
1133 bio->bi_phys_segments = 0;
1134 bio_clear_flag(bio, BIO_SEG_VALID);
1135
1136 if (rw == READ) {
1137 /*
1138 * read balancing logic:
1139 */
1140 struct md_rdev *rdev;
1141 int slot;
1142
1143 read_again:
1144 rdev = read_balance(conf, r10_bio, &max_sectors);
1145 if (!rdev) {
1146 raid_end_bio_io(r10_bio);
1147 return;
1148 }
1149 slot = r10_bio->read_slot;
1150
1151 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1152 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1153 max_sectors);
1154
1155 r10_bio->devs[slot].bio = read_bio;
1156 r10_bio->devs[slot].rdev = rdev;
1157
1158 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1159 choose_data_offset(r10_bio, rdev);
1160 read_bio->bi_bdev = rdev->bdev;
1161 read_bio->bi_end_io = raid10_end_read_request;
1162 read_bio->bi_rw = READ | do_sync;
1163 read_bio->bi_private = r10_bio;
1164
1165 if (max_sectors < r10_bio->sectors) {
1166 /* Could not read all from this device, so we will
1167 * need another r10_bio.
1168 */
1169 sectors_handled = (r10_bio->sector + max_sectors
1170 - bio->bi_iter.bi_sector);
1171 r10_bio->sectors = max_sectors;
1172 spin_lock_irq(&conf->device_lock);
1173 if (bio->bi_phys_segments == 0)
1174 bio->bi_phys_segments = 2;
1175 else
1176 bio->bi_phys_segments++;
1177 spin_unlock_irq(&conf->device_lock);
1178 /* Cannot call generic_make_request directly
1179 * as that will be queued in __generic_make_request
1180 * and subsequent mempool_alloc might block
1181 * waiting for it. so hand bio over to raid10d.
1182 */
1183 reschedule_retry(r10_bio);
1184
1185 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1186
1187 r10_bio->master_bio = bio;
1188 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1189 r10_bio->state = 0;
1190 r10_bio->mddev = mddev;
1191 r10_bio->sector = bio->bi_iter.bi_sector +
1192 sectors_handled;
1193 goto read_again;
1194 } else
1195 generic_make_request(read_bio);
1196 return;
1197 }
1198
1199 /*
1200 * WRITE:
1201 */
1202 if (conf->pending_count >= max_queued_requests) {
1203 md_wakeup_thread(mddev->thread);
1204 wait_event(conf->wait_barrier,
1205 conf->pending_count < max_queued_requests);
1206 }
1207 /* first select target devices under rcu_lock and
1208 * inc refcount on their rdev. Record them by setting
1209 * bios[x] to bio
1210 * If there are known/acknowledged bad blocks on any device
1211 * on which we have seen a write error, we want to avoid
1212 * writing to those blocks. This potentially requires several
1213 * writes to write around the bad blocks. Each set of writes
1214 * gets its own r10_bio with a set of bios attached. The number
1215 * of r10_bios is recored in bio->bi_phys_segments just as with
1216 * the read case.
1217 */
1218
1219 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1220 raid10_find_phys(conf, r10_bio);
1221 retry_write:
1222 blocked_rdev = NULL;
1223 rcu_read_lock();
1224 max_sectors = r10_bio->sectors;
1225
1226 for (i = 0; i < conf->copies; i++) {
1227 int d = r10_bio->devs[i].devnum;
1228 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1229 struct md_rdev *rrdev = rcu_dereference(
1230 conf->mirrors[d].replacement);
1231 if (rdev == rrdev)
1232 rrdev = NULL;
1233 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1234 atomic_inc(&rdev->nr_pending);
1235 blocked_rdev = rdev;
1236 break;
1237 }
1238 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1239 atomic_inc(&rrdev->nr_pending);
1240 blocked_rdev = rrdev;
1241 break;
1242 }
1243 if (rdev && (test_bit(Faulty, &rdev->flags)))
1244 rdev = NULL;
1245 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1246 rrdev = NULL;
1247
1248 r10_bio->devs[i].bio = NULL;
1249 r10_bio->devs[i].repl_bio = NULL;
1250
1251 if (!rdev && !rrdev) {
1252 set_bit(R10BIO_Degraded, &r10_bio->state);
1253 continue;
1254 }
1255 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1256 sector_t first_bad;
1257 sector_t dev_sector = r10_bio->devs[i].addr;
1258 int bad_sectors;
1259 int is_bad;
1260
1261 is_bad = is_badblock(rdev, dev_sector,
1262 max_sectors,
1263 &first_bad, &bad_sectors);
1264 if (is_bad < 0) {
1265 /* Mustn't write here until the bad block
1266 * is acknowledged
1267 */
1268 atomic_inc(&rdev->nr_pending);
1269 set_bit(BlockedBadBlocks, &rdev->flags);
1270 blocked_rdev = rdev;
1271 break;
1272 }
1273 if (is_bad && first_bad <= dev_sector) {
1274 /* Cannot write here at all */
1275 bad_sectors -= (dev_sector - first_bad);
1276 if (bad_sectors < max_sectors)
1277 /* Mustn't write more than bad_sectors
1278 * to other devices yet
1279 */
1280 max_sectors = bad_sectors;
1281 /* We don't set R10BIO_Degraded as that
1282 * only applies if the disk is missing,
1283 * so it might be re-added, and we want to
1284 * know to recover this chunk.
1285 * In this case the device is here, and the
1286 * fact that this chunk is not in-sync is
1287 * recorded in the bad block log.
1288 */
1289 continue;
1290 }
1291 if (is_bad) {
1292 int good_sectors = first_bad - dev_sector;
1293 if (good_sectors < max_sectors)
1294 max_sectors = good_sectors;
1295 }
1296 }
1297 if (rdev) {
1298 r10_bio->devs[i].bio = bio;
1299 atomic_inc(&rdev->nr_pending);
1300 }
1301 if (rrdev) {
1302 r10_bio->devs[i].repl_bio = bio;
1303 atomic_inc(&rrdev->nr_pending);
1304 }
1305 }
1306 rcu_read_unlock();
1307
1308 if (unlikely(blocked_rdev)) {
1309 /* Have to wait for this device to get unblocked, then retry */
1310 int j;
1311 int d;
1312
1313 for (j = 0; j < i; j++) {
1314 if (r10_bio->devs[j].bio) {
1315 d = r10_bio->devs[j].devnum;
1316 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1317 }
1318 if (r10_bio->devs[j].repl_bio) {
1319 struct md_rdev *rdev;
1320 d = r10_bio->devs[j].devnum;
1321 rdev = conf->mirrors[d].replacement;
1322 if (!rdev) {
1323 /* Race with remove_disk */
1324 smp_mb();
1325 rdev = conf->mirrors[d].rdev;
1326 }
1327 rdev_dec_pending(rdev, mddev);
1328 }
1329 }
1330 allow_barrier(conf);
1331 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1332 wait_barrier(conf);
1333 goto retry_write;
1334 }
1335
1336 if (max_sectors < r10_bio->sectors) {
1337 /* We are splitting this into multiple parts, so
1338 * we need to prepare for allocating another r10_bio.
1339 */
1340 r10_bio->sectors = max_sectors;
1341 spin_lock_irq(&conf->device_lock);
1342 if (bio->bi_phys_segments == 0)
1343 bio->bi_phys_segments = 2;
1344 else
1345 bio->bi_phys_segments++;
1346 spin_unlock_irq(&conf->device_lock);
1347 }
1348 sectors_handled = r10_bio->sector + max_sectors -
1349 bio->bi_iter.bi_sector;
1350
1351 atomic_set(&r10_bio->remaining, 1);
1352 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1353
1354 for (i = 0; i < conf->copies; i++) {
1355 struct bio *mbio;
1356 int d = r10_bio->devs[i].devnum;
1357 if (r10_bio->devs[i].bio) {
1358 struct md_rdev *rdev = conf->mirrors[d].rdev;
1359 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1360 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1361 max_sectors);
1362 r10_bio->devs[i].bio = mbio;
1363
1364 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1365 choose_data_offset(r10_bio,
1366 rdev));
1367 mbio->bi_bdev = rdev->bdev;
1368 mbio->bi_end_io = raid10_end_write_request;
1369 mbio->bi_rw =
1370 WRITE | do_sync | do_fua | do_discard | do_same;
1371 mbio->bi_private = r10_bio;
1372
1373 atomic_inc(&r10_bio->remaining);
1374
1375 cb = blk_check_plugged(raid10_unplug, mddev,
1376 sizeof(*plug));
1377 if (cb)
1378 plug = container_of(cb, struct raid10_plug_cb,
1379 cb);
1380 else
1381 plug = NULL;
1382 spin_lock_irqsave(&conf->device_lock, flags);
1383 if (plug) {
1384 bio_list_add(&plug->pending, mbio);
1385 plug->pending_cnt++;
1386 } else {
1387 bio_list_add(&conf->pending_bio_list, mbio);
1388 conf->pending_count++;
1389 }
1390 spin_unlock_irqrestore(&conf->device_lock, flags);
1391 if (!plug)
1392 md_wakeup_thread(mddev->thread);
1393 }
1394
1395 if (r10_bio->devs[i].repl_bio) {
1396 struct md_rdev *rdev = conf->mirrors[d].replacement;
1397 if (rdev == NULL) {
1398 /* Replacement just got moved to main 'rdev' */
1399 smp_mb();
1400 rdev = conf->mirrors[d].rdev;
1401 }
1402 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1403 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1404 max_sectors);
1405 r10_bio->devs[i].repl_bio = mbio;
1406
1407 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1408 choose_data_offset(
1409 r10_bio, rdev));
1410 mbio->bi_bdev = rdev->bdev;
1411 mbio->bi_end_io = raid10_end_write_request;
1412 mbio->bi_rw =
1413 WRITE | do_sync | do_fua | do_discard | do_same;
1414 mbio->bi_private = r10_bio;
1415
1416 atomic_inc(&r10_bio->remaining);
1417
1418 cb = blk_check_plugged(raid10_unplug, mddev,
1419 sizeof(*plug));
1420 if (cb)
1421 plug = container_of(cb, struct raid10_plug_cb,
1422 cb);
1423 else
1424 plug = NULL;
1425 spin_lock_irqsave(&conf->device_lock, flags);
1426 if (plug) {
1427 bio_list_add(&plug->pending, mbio);
1428 plug->pending_cnt++;
1429 } else {
1430 bio_list_add(&conf->pending_bio_list, mbio);
1431 conf->pending_count++;
1432 }
1433 spin_unlock_irqrestore(&conf->device_lock, flags);
1434 if (!plug)
1435 md_wakeup_thread(mddev->thread);
1436 }
1437 }
1438
1439 /* Don't remove the bias on 'remaining' (one_write_done) until
1440 * after checking if we need to go around again.
1441 */
1442
1443 if (sectors_handled < bio_sectors(bio)) {
1444 one_write_done(r10_bio);
1445 /* We need another r10_bio. It has already been counted
1446 * in bio->bi_phys_segments.
1447 */
1448 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1449
1450 r10_bio->master_bio = bio;
1451 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1452
1453 r10_bio->mddev = mddev;
1454 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1455 r10_bio->state = 0;
1456 goto retry_write;
1457 }
1458 one_write_done(r10_bio);
1459 }
1460
make_request(struct mddev * mddev,struct bio * bio)1461 static void make_request(struct mddev *mddev, struct bio *bio)
1462 {
1463 struct r10conf *conf = mddev->private;
1464 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1465 int chunk_sects = chunk_mask + 1;
1466
1467 struct bio *split;
1468
1469 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1470 md_flush_request(mddev, bio);
1471 return;
1472 }
1473
1474 do {
1475
1476 /*
1477 * If this request crosses a chunk boundary, we need to split
1478 * it.
1479 */
1480 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1481 bio_sectors(bio) > chunk_sects
1482 && (conf->geo.near_copies < conf->geo.raid_disks
1483 || conf->prev.near_copies <
1484 conf->prev.raid_disks))) {
1485 split = bio_split(bio, chunk_sects -
1486 (bio->bi_iter.bi_sector &
1487 (chunk_sects - 1)),
1488 GFP_NOIO, fs_bio_set);
1489 bio_chain(split, bio);
1490 } else {
1491 split = bio;
1492 }
1493
1494 /*
1495 * If a bio is splitted, the first part of bio will pass
1496 * barrier but the bio is queued in current->bio_list (see
1497 * generic_make_request). If there is a raise_barrier() called
1498 * here, the second part of bio can't pass barrier. But since
1499 * the first part bio isn't dispatched to underlaying disks
1500 * yet, the barrier is never released, hence raise_barrier will
1501 * alays wait. We have a deadlock.
1502 * Note, this only happens in read path. For write path, the
1503 * first part of bio is dispatched in a schedule() call
1504 * (because of blk plug) or offloaded to raid10d.
1505 * Quitting from the function immediately can change the bio
1506 * order queued in bio_list and avoid the deadlock.
1507 */
1508 __make_request(mddev, split);
1509 if (split != bio && bio_data_dir(bio) == READ) {
1510 generic_make_request(bio);
1511 break;
1512 }
1513 } while (split != bio);
1514
1515 /* In case raid10d snuck in to freeze_array */
1516 wake_up(&conf->wait_barrier);
1517 }
1518
status(struct seq_file * seq,struct mddev * mddev)1519 static void status(struct seq_file *seq, struct mddev *mddev)
1520 {
1521 struct r10conf *conf = mddev->private;
1522 int i;
1523
1524 if (conf->geo.near_copies < conf->geo.raid_disks)
1525 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1526 if (conf->geo.near_copies > 1)
1527 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1528 if (conf->geo.far_copies > 1) {
1529 if (conf->geo.far_offset)
1530 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1531 else
1532 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1533 if (conf->geo.far_set_size != conf->geo.raid_disks)
1534 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1535 }
1536 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1537 conf->geo.raid_disks - mddev->degraded);
1538 for (i = 0; i < conf->geo.raid_disks; i++)
1539 seq_printf(seq, "%s",
1540 conf->mirrors[i].rdev &&
1541 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1542 seq_printf(seq, "]");
1543 }
1544
1545 /* check if there are enough drives for
1546 * every block to appear on atleast one.
1547 * Don't consider the device numbered 'ignore'
1548 * as we might be about to remove it.
1549 */
_enough(struct r10conf * conf,int previous,int ignore)1550 static int _enough(struct r10conf *conf, int previous, int ignore)
1551 {
1552 int first = 0;
1553 int has_enough = 0;
1554 int disks, ncopies;
1555 if (previous) {
1556 disks = conf->prev.raid_disks;
1557 ncopies = conf->prev.near_copies;
1558 } else {
1559 disks = conf->geo.raid_disks;
1560 ncopies = conf->geo.near_copies;
1561 }
1562
1563 rcu_read_lock();
1564 do {
1565 int n = conf->copies;
1566 int cnt = 0;
1567 int this = first;
1568 while (n--) {
1569 struct md_rdev *rdev;
1570 if (this != ignore &&
1571 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1572 test_bit(In_sync, &rdev->flags))
1573 cnt++;
1574 this = (this+1) % disks;
1575 }
1576 if (cnt == 0)
1577 goto out;
1578 first = (first + ncopies) % disks;
1579 } while (first != 0);
1580 has_enough = 1;
1581 out:
1582 rcu_read_unlock();
1583 return has_enough;
1584 }
1585
enough(struct r10conf * conf,int ignore)1586 static int enough(struct r10conf *conf, int ignore)
1587 {
1588 /* when calling 'enough', both 'prev' and 'geo' must
1589 * be stable.
1590 * This is ensured if ->reconfig_mutex or ->device_lock
1591 * is held.
1592 */
1593 return _enough(conf, 0, ignore) &&
1594 _enough(conf, 1, ignore);
1595 }
1596
error(struct mddev * mddev,struct md_rdev * rdev)1597 static void error(struct mddev *mddev, struct md_rdev *rdev)
1598 {
1599 char b[BDEVNAME_SIZE];
1600 struct r10conf *conf = mddev->private;
1601 unsigned long flags;
1602
1603 /*
1604 * If it is not operational, then we have already marked it as dead
1605 * else if it is the last working disks, ignore the error, let the
1606 * next level up know.
1607 * else mark the drive as failed
1608 */
1609 spin_lock_irqsave(&conf->device_lock, flags);
1610 if (test_bit(In_sync, &rdev->flags)
1611 && !enough(conf, rdev->raid_disk)) {
1612 /*
1613 * Don't fail the drive, just return an IO error.
1614 */
1615 spin_unlock_irqrestore(&conf->device_lock, flags);
1616 return;
1617 }
1618 if (test_and_clear_bit(In_sync, &rdev->flags))
1619 mddev->degraded++;
1620 /*
1621 * If recovery is running, make sure it aborts.
1622 */
1623 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1624 set_bit(Blocked, &rdev->flags);
1625 set_bit(Faulty, &rdev->flags);
1626 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1627 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1628 spin_unlock_irqrestore(&conf->device_lock, flags);
1629 printk(KERN_ALERT
1630 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1631 "md/raid10:%s: Operation continuing on %d devices.\n",
1632 mdname(mddev), bdevname(rdev->bdev, b),
1633 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1634 }
1635
print_conf(struct r10conf * conf)1636 static void print_conf(struct r10conf *conf)
1637 {
1638 int i;
1639 struct raid10_info *tmp;
1640
1641 printk(KERN_DEBUG "RAID10 conf printout:\n");
1642 if (!conf) {
1643 printk(KERN_DEBUG "(!conf)\n");
1644 return;
1645 }
1646 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1647 conf->geo.raid_disks);
1648
1649 for (i = 0; i < conf->geo.raid_disks; i++) {
1650 char b[BDEVNAME_SIZE];
1651 tmp = conf->mirrors + i;
1652 if (tmp->rdev)
1653 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1654 i, !test_bit(In_sync, &tmp->rdev->flags),
1655 !test_bit(Faulty, &tmp->rdev->flags),
1656 bdevname(tmp->rdev->bdev,b));
1657 }
1658 }
1659
close_sync(struct r10conf * conf)1660 static void close_sync(struct r10conf *conf)
1661 {
1662 wait_barrier(conf);
1663 allow_barrier(conf);
1664
1665 mempool_destroy(conf->r10buf_pool);
1666 conf->r10buf_pool = NULL;
1667 }
1668
raid10_spare_active(struct mddev * mddev)1669 static int raid10_spare_active(struct mddev *mddev)
1670 {
1671 int i;
1672 struct r10conf *conf = mddev->private;
1673 struct raid10_info *tmp;
1674 int count = 0;
1675 unsigned long flags;
1676
1677 /*
1678 * Find all non-in_sync disks within the RAID10 configuration
1679 * and mark them in_sync
1680 */
1681 for (i = 0; i < conf->geo.raid_disks; i++) {
1682 tmp = conf->mirrors + i;
1683 if (tmp->replacement
1684 && tmp->replacement->recovery_offset == MaxSector
1685 && !test_bit(Faulty, &tmp->replacement->flags)
1686 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1687 /* Replacement has just become active */
1688 if (!tmp->rdev
1689 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1690 count++;
1691 if (tmp->rdev) {
1692 /* Replaced device not technically faulty,
1693 * but we need to be sure it gets removed
1694 * and never re-added.
1695 */
1696 set_bit(Faulty, &tmp->rdev->flags);
1697 sysfs_notify_dirent_safe(
1698 tmp->rdev->sysfs_state);
1699 }
1700 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1701 } else if (tmp->rdev
1702 && tmp->rdev->recovery_offset == MaxSector
1703 && !test_bit(Faulty, &tmp->rdev->flags)
1704 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1705 count++;
1706 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1707 }
1708 }
1709 spin_lock_irqsave(&conf->device_lock, flags);
1710 mddev->degraded -= count;
1711 spin_unlock_irqrestore(&conf->device_lock, flags);
1712
1713 print_conf(conf);
1714 return count;
1715 }
1716
raid10_add_disk(struct mddev * mddev,struct md_rdev * rdev)1717 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1718 {
1719 struct r10conf *conf = mddev->private;
1720 int err = -EEXIST;
1721 int mirror;
1722 int first = 0;
1723 int last = conf->geo.raid_disks - 1;
1724
1725 if (mddev->recovery_cp < MaxSector)
1726 /* only hot-add to in-sync arrays, as recovery is
1727 * very different from resync
1728 */
1729 return -EBUSY;
1730 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1731 return -EINVAL;
1732
1733 if (md_integrity_add_rdev(rdev, mddev))
1734 return -ENXIO;
1735
1736 if (rdev->raid_disk >= 0)
1737 first = last = rdev->raid_disk;
1738
1739 if (rdev->saved_raid_disk >= first &&
1740 rdev->saved_raid_disk < conf->geo.raid_disks &&
1741 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1742 mirror = rdev->saved_raid_disk;
1743 else
1744 mirror = first;
1745 for ( ; mirror <= last ; mirror++) {
1746 struct raid10_info *p = &conf->mirrors[mirror];
1747 if (p->recovery_disabled == mddev->recovery_disabled)
1748 continue;
1749 if (p->rdev) {
1750 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1751 p->replacement != NULL)
1752 continue;
1753 clear_bit(In_sync, &rdev->flags);
1754 set_bit(Replacement, &rdev->flags);
1755 rdev->raid_disk = mirror;
1756 err = 0;
1757 if (mddev->gendisk)
1758 disk_stack_limits(mddev->gendisk, rdev->bdev,
1759 rdev->data_offset << 9);
1760 conf->fullsync = 1;
1761 rcu_assign_pointer(p->replacement, rdev);
1762 break;
1763 }
1764
1765 if (mddev->gendisk)
1766 disk_stack_limits(mddev->gendisk, rdev->bdev,
1767 rdev->data_offset << 9);
1768
1769 p->head_position = 0;
1770 p->recovery_disabled = mddev->recovery_disabled - 1;
1771 rdev->raid_disk = mirror;
1772 err = 0;
1773 if (rdev->saved_raid_disk != mirror)
1774 conf->fullsync = 1;
1775 rcu_assign_pointer(p->rdev, rdev);
1776 break;
1777 }
1778 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1779 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1780
1781 print_conf(conf);
1782 return err;
1783 }
1784
raid10_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1785 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1786 {
1787 struct r10conf *conf = mddev->private;
1788 int err = 0;
1789 int number = rdev->raid_disk;
1790 struct md_rdev **rdevp;
1791 struct raid10_info *p = conf->mirrors + number;
1792
1793 print_conf(conf);
1794 if (rdev == p->rdev)
1795 rdevp = &p->rdev;
1796 else if (rdev == p->replacement)
1797 rdevp = &p->replacement;
1798 else
1799 return 0;
1800
1801 if (test_bit(In_sync, &rdev->flags) ||
1802 atomic_read(&rdev->nr_pending)) {
1803 err = -EBUSY;
1804 goto abort;
1805 }
1806 /* Only remove faulty devices if recovery
1807 * is not possible.
1808 */
1809 if (!test_bit(Faulty, &rdev->flags) &&
1810 mddev->recovery_disabled != p->recovery_disabled &&
1811 (!p->replacement || p->replacement == rdev) &&
1812 number < conf->geo.raid_disks &&
1813 enough(conf, -1)) {
1814 err = -EBUSY;
1815 goto abort;
1816 }
1817 *rdevp = NULL;
1818 synchronize_rcu();
1819 if (atomic_read(&rdev->nr_pending)) {
1820 /* lost the race, try later */
1821 err = -EBUSY;
1822 *rdevp = rdev;
1823 goto abort;
1824 } else if (p->replacement) {
1825 /* We must have just cleared 'rdev' */
1826 p->rdev = p->replacement;
1827 clear_bit(Replacement, &p->replacement->flags);
1828 smp_mb(); /* Make sure other CPUs may see both as identical
1829 * but will never see neither -- if they are careful.
1830 */
1831 p->replacement = NULL;
1832 clear_bit(WantReplacement, &rdev->flags);
1833 } else
1834 /* We might have just remove the Replacement as faulty
1835 * Clear the flag just in case
1836 */
1837 clear_bit(WantReplacement, &rdev->flags);
1838
1839 err = md_integrity_register(mddev);
1840
1841 abort:
1842
1843 print_conf(conf);
1844 return err;
1845 }
1846
end_sync_read(struct bio * bio)1847 static void end_sync_read(struct bio *bio)
1848 {
1849 struct r10bio *r10_bio = bio->bi_private;
1850 struct r10conf *conf = r10_bio->mddev->private;
1851 int d;
1852
1853 if (bio == r10_bio->master_bio) {
1854 /* this is a reshape read */
1855 d = r10_bio->read_slot; /* really the read dev */
1856 } else
1857 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1858
1859 if (!bio->bi_error)
1860 set_bit(R10BIO_Uptodate, &r10_bio->state);
1861 else
1862 /* The write handler will notice the lack of
1863 * R10BIO_Uptodate and record any errors etc
1864 */
1865 atomic_add(r10_bio->sectors,
1866 &conf->mirrors[d].rdev->corrected_errors);
1867
1868 /* for reconstruct, we always reschedule after a read.
1869 * for resync, only after all reads
1870 */
1871 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1872 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1873 atomic_dec_and_test(&r10_bio->remaining)) {
1874 /* we have read all the blocks,
1875 * do the comparison in process context in raid10d
1876 */
1877 reschedule_retry(r10_bio);
1878 }
1879 }
1880
end_sync_request(struct r10bio * r10_bio)1881 static void end_sync_request(struct r10bio *r10_bio)
1882 {
1883 struct mddev *mddev = r10_bio->mddev;
1884
1885 while (atomic_dec_and_test(&r10_bio->remaining)) {
1886 if (r10_bio->master_bio == NULL) {
1887 /* the primary of several recovery bios */
1888 sector_t s = r10_bio->sectors;
1889 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1890 test_bit(R10BIO_WriteError, &r10_bio->state))
1891 reschedule_retry(r10_bio);
1892 else
1893 put_buf(r10_bio);
1894 md_done_sync(mddev, s, 1);
1895 break;
1896 } else {
1897 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1898 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1899 test_bit(R10BIO_WriteError, &r10_bio->state))
1900 reschedule_retry(r10_bio);
1901 else
1902 put_buf(r10_bio);
1903 r10_bio = r10_bio2;
1904 }
1905 }
1906 }
1907
end_sync_write(struct bio * bio)1908 static void end_sync_write(struct bio *bio)
1909 {
1910 struct r10bio *r10_bio = bio->bi_private;
1911 struct mddev *mddev = r10_bio->mddev;
1912 struct r10conf *conf = mddev->private;
1913 int d;
1914 sector_t first_bad;
1915 int bad_sectors;
1916 int slot;
1917 int repl;
1918 struct md_rdev *rdev = NULL;
1919
1920 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1921 if (repl)
1922 rdev = conf->mirrors[d].replacement;
1923 else
1924 rdev = conf->mirrors[d].rdev;
1925
1926 if (bio->bi_error) {
1927 if (repl)
1928 md_error(mddev, rdev);
1929 else {
1930 set_bit(WriteErrorSeen, &rdev->flags);
1931 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1932 set_bit(MD_RECOVERY_NEEDED,
1933 &rdev->mddev->recovery);
1934 set_bit(R10BIO_WriteError, &r10_bio->state);
1935 }
1936 } else if (is_badblock(rdev,
1937 r10_bio->devs[slot].addr,
1938 r10_bio->sectors,
1939 &first_bad, &bad_sectors))
1940 set_bit(R10BIO_MadeGood, &r10_bio->state);
1941
1942 rdev_dec_pending(rdev, mddev);
1943
1944 end_sync_request(r10_bio);
1945 }
1946
1947 /*
1948 * Note: sync and recover and handled very differently for raid10
1949 * This code is for resync.
1950 * For resync, we read through virtual addresses and read all blocks.
1951 * If there is any error, we schedule a write. The lowest numbered
1952 * drive is authoritative.
1953 * However requests come for physical address, so we need to map.
1954 * For every physical address there are raid_disks/copies virtual addresses,
1955 * which is always are least one, but is not necessarly an integer.
1956 * This means that a physical address can span multiple chunks, so we may
1957 * have to submit multiple io requests for a single sync request.
1958 */
1959 /*
1960 * We check if all blocks are in-sync and only write to blocks that
1961 * aren't in sync
1962 */
sync_request_write(struct mddev * mddev,struct r10bio * r10_bio)1963 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1964 {
1965 struct r10conf *conf = mddev->private;
1966 int i, first;
1967 struct bio *tbio, *fbio;
1968 int vcnt;
1969
1970 atomic_set(&r10_bio->remaining, 1);
1971
1972 /* find the first device with a block */
1973 for (i=0; i<conf->copies; i++)
1974 if (!r10_bio->devs[i].bio->bi_error)
1975 break;
1976
1977 if (i == conf->copies)
1978 goto done;
1979
1980 first = i;
1981 fbio = r10_bio->devs[i].bio;
1982 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1983 fbio->bi_iter.bi_idx = 0;
1984
1985 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1986 /* now find blocks with errors */
1987 for (i=0 ; i < conf->copies ; i++) {
1988 int j, d;
1989
1990 tbio = r10_bio->devs[i].bio;
1991
1992 if (tbio->bi_end_io != end_sync_read)
1993 continue;
1994 if (i == first)
1995 continue;
1996 if (!r10_bio->devs[i].bio->bi_error) {
1997 /* We know that the bi_io_vec layout is the same for
1998 * both 'first' and 'i', so we just compare them.
1999 * All vec entries are PAGE_SIZE;
2000 */
2001 int sectors = r10_bio->sectors;
2002 for (j = 0; j < vcnt; j++) {
2003 int len = PAGE_SIZE;
2004 if (sectors < (len / 512))
2005 len = sectors * 512;
2006 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2007 page_address(tbio->bi_io_vec[j].bv_page),
2008 len))
2009 break;
2010 sectors -= len/512;
2011 }
2012 if (j == vcnt)
2013 continue;
2014 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2015 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2016 /* Don't fix anything. */
2017 continue;
2018 }
2019 /* Ok, we need to write this bio, either to correct an
2020 * inconsistency or to correct an unreadable block.
2021 * First we need to fixup bv_offset, bv_len and
2022 * bi_vecs, as the read request might have corrupted these
2023 */
2024 bio_reset(tbio);
2025
2026 tbio->bi_vcnt = vcnt;
2027 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2028 tbio->bi_rw = WRITE;
2029 tbio->bi_private = r10_bio;
2030 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2031 tbio->bi_end_io = end_sync_write;
2032
2033 bio_copy_data(tbio, fbio);
2034
2035 d = r10_bio->devs[i].devnum;
2036 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2037 atomic_inc(&r10_bio->remaining);
2038 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2039
2040 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2041 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2042 generic_make_request(tbio);
2043 }
2044
2045 /* Now write out to any replacement devices
2046 * that are active
2047 */
2048 for (i = 0; i < conf->copies; i++) {
2049 int d;
2050
2051 tbio = r10_bio->devs[i].repl_bio;
2052 if (!tbio || !tbio->bi_end_io)
2053 continue;
2054 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2055 && r10_bio->devs[i].bio != fbio)
2056 bio_copy_data(tbio, fbio);
2057 d = r10_bio->devs[i].devnum;
2058 atomic_inc(&r10_bio->remaining);
2059 md_sync_acct(conf->mirrors[d].replacement->bdev,
2060 bio_sectors(tbio));
2061 generic_make_request(tbio);
2062 }
2063
2064 done:
2065 if (atomic_dec_and_test(&r10_bio->remaining)) {
2066 md_done_sync(mddev, r10_bio->sectors, 1);
2067 put_buf(r10_bio);
2068 }
2069 }
2070
2071 /*
2072 * Now for the recovery code.
2073 * Recovery happens across physical sectors.
2074 * We recover all non-is_sync drives by finding the virtual address of
2075 * each, and then choose a working drive that also has that virt address.
2076 * There is a separate r10_bio for each non-in_sync drive.
2077 * Only the first two slots are in use. The first for reading,
2078 * The second for writing.
2079 *
2080 */
fix_recovery_read_error(struct r10bio * r10_bio)2081 static void fix_recovery_read_error(struct r10bio *r10_bio)
2082 {
2083 /* We got a read error during recovery.
2084 * We repeat the read in smaller page-sized sections.
2085 * If a read succeeds, write it to the new device or record
2086 * a bad block if we cannot.
2087 * If a read fails, record a bad block on both old and
2088 * new devices.
2089 */
2090 struct mddev *mddev = r10_bio->mddev;
2091 struct r10conf *conf = mddev->private;
2092 struct bio *bio = r10_bio->devs[0].bio;
2093 sector_t sect = 0;
2094 int sectors = r10_bio->sectors;
2095 int idx = 0;
2096 int dr = r10_bio->devs[0].devnum;
2097 int dw = r10_bio->devs[1].devnum;
2098
2099 while (sectors) {
2100 int s = sectors;
2101 struct md_rdev *rdev;
2102 sector_t addr;
2103 int ok;
2104
2105 if (s > (PAGE_SIZE>>9))
2106 s = PAGE_SIZE >> 9;
2107
2108 rdev = conf->mirrors[dr].rdev;
2109 addr = r10_bio->devs[0].addr + sect,
2110 ok = sync_page_io(rdev,
2111 addr,
2112 s << 9,
2113 bio->bi_io_vec[idx].bv_page,
2114 READ, false);
2115 if (ok) {
2116 rdev = conf->mirrors[dw].rdev;
2117 addr = r10_bio->devs[1].addr + sect;
2118 ok = sync_page_io(rdev,
2119 addr,
2120 s << 9,
2121 bio->bi_io_vec[idx].bv_page,
2122 WRITE, false);
2123 if (!ok) {
2124 set_bit(WriteErrorSeen, &rdev->flags);
2125 if (!test_and_set_bit(WantReplacement,
2126 &rdev->flags))
2127 set_bit(MD_RECOVERY_NEEDED,
2128 &rdev->mddev->recovery);
2129 }
2130 }
2131 if (!ok) {
2132 /* We don't worry if we cannot set a bad block -
2133 * it really is bad so there is no loss in not
2134 * recording it yet
2135 */
2136 rdev_set_badblocks(rdev, addr, s, 0);
2137
2138 if (rdev != conf->mirrors[dw].rdev) {
2139 /* need bad block on destination too */
2140 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2141 addr = r10_bio->devs[1].addr + sect;
2142 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2143 if (!ok) {
2144 /* just abort the recovery */
2145 printk(KERN_NOTICE
2146 "md/raid10:%s: recovery aborted"
2147 " due to read error\n",
2148 mdname(mddev));
2149
2150 conf->mirrors[dw].recovery_disabled
2151 = mddev->recovery_disabled;
2152 set_bit(MD_RECOVERY_INTR,
2153 &mddev->recovery);
2154 break;
2155 }
2156 }
2157 }
2158
2159 sectors -= s;
2160 sect += s;
2161 idx++;
2162 }
2163 }
2164
recovery_request_write(struct mddev * mddev,struct r10bio * r10_bio)2165 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2166 {
2167 struct r10conf *conf = mddev->private;
2168 int d;
2169 struct bio *wbio, *wbio2;
2170
2171 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2172 fix_recovery_read_error(r10_bio);
2173 end_sync_request(r10_bio);
2174 return;
2175 }
2176
2177 /*
2178 * share the pages with the first bio
2179 * and submit the write request
2180 */
2181 d = r10_bio->devs[1].devnum;
2182 wbio = r10_bio->devs[1].bio;
2183 wbio2 = r10_bio->devs[1].repl_bio;
2184 /* Need to test wbio2->bi_end_io before we call
2185 * generic_make_request as if the former is NULL,
2186 * the latter is free to free wbio2.
2187 */
2188 if (wbio2 && !wbio2->bi_end_io)
2189 wbio2 = NULL;
2190 if (wbio->bi_end_io) {
2191 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2192 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2193 generic_make_request(wbio);
2194 }
2195 if (wbio2) {
2196 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2197 md_sync_acct(conf->mirrors[d].replacement->bdev,
2198 bio_sectors(wbio2));
2199 generic_make_request(wbio2);
2200 }
2201 }
2202
2203 /*
2204 * Used by fix_read_error() to decay the per rdev read_errors.
2205 * We halve the read error count for every hour that has elapsed
2206 * since the last recorded read error.
2207 *
2208 */
check_decay_read_errors(struct mddev * mddev,struct md_rdev * rdev)2209 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2210 {
2211 struct timespec cur_time_mon;
2212 unsigned long hours_since_last;
2213 unsigned int read_errors = atomic_read(&rdev->read_errors);
2214
2215 ktime_get_ts(&cur_time_mon);
2216
2217 if (rdev->last_read_error.tv_sec == 0 &&
2218 rdev->last_read_error.tv_nsec == 0) {
2219 /* first time we've seen a read error */
2220 rdev->last_read_error = cur_time_mon;
2221 return;
2222 }
2223
2224 hours_since_last = (cur_time_mon.tv_sec -
2225 rdev->last_read_error.tv_sec) / 3600;
2226
2227 rdev->last_read_error = cur_time_mon;
2228
2229 /*
2230 * if hours_since_last is > the number of bits in read_errors
2231 * just set read errors to 0. We do this to avoid
2232 * overflowing the shift of read_errors by hours_since_last.
2233 */
2234 if (hours_since_last >= 8 * sizeof(read_errors))
2235 atomic_set(&rdev->read_errors, 0);
2236 else
2237 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2238 }
2239
r10_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)2240 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2241 int sectors, struct page *page, int rw)
2242 {
2243 sector_t first_bad;
2244 int bad_sectors;
2245
2246 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2247 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2248 return -1;
2249 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2250 /* success */
2251 return 1;
2252 if (rw == WRITE) {
2253 set_bit(WriteErrorSeen, &rdev->flags);
2254 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2255 set_bit(MD_RECOVERY_NEEDED,
2256 &rdev->mddev->recovery);
2257 }
2258 /* need to record an error - either for the block or the device */
2259 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2260 md_error(rdev->mddev, rdev);
2261 return 0;
2262 }
2263
2264 /*
2265 * This is a kernel thread which:
2266 *
2267 * 1. Retries failed read operations on working mirrors.
2268 * 2. Updates the raid superblock when problems encounter.
2269 * 3. Performs writes following reads for array synchronising.
2270 */
2271
fix_read_error(struct r10conf * conf,struct mddev * mddev,struct r10bio * r10_bio)2272 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2273 {
2274 int sect = 0; /* Offset from r10_bio->sector */
2275 int sectors = r10_bio->sectors;
2276 struct md_rdev*rdev;
2277 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2278 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2279
2280 /* still own a reference to this rdev, so it cannot
2281 * have been cleared recently.
2282 */
2283 rdev = conf->mirrors[d].rdev;
2284
2285 if (test_bit(Faulty, &rdev->flags))
2286 /* drive has already been failed, just ignore any
2287 more fix_read_error() attempts */
2288 return;
2289
2290 check_decay_read_errors(mddev, rdev);
2291 atomic_inc(&rdev->read_errors);
2292 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2293 char b[BDEVNAME_SIZE];
2294 bdevname(rdev->bdev, b);
2295
2296 printk(KERN_NOTICE
2297 "md/raid10:%s: %s: Raid device exceeded "
2298 "read_error threshold [cur %d:max %d]\n",
2299 mdname(mddev), b,
2300 atomic_read(&rdev->read_errors), max_read_errors);
2301 printk(KERN_NOTICE
2302 "md/raid10:%s: %s: Failing raid device\n",
2303 mdname(mddev), b);
2304 md_error(mddev, conf->mirrors[d].rdev);
2305 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2306 return;
2307 }
2308
2309 while(sectors) {
2310 int s = sectors;
2311 int sl = r10_bio->read_slot;
2312 int success = 0;
2313 int start;
2314
2315 if (s > (PAGE_SIZE>>9))
2316 s = PAGE_SIZE >> 9;
2317
2318 rcu_read_lock();
2319 do {
2320 sector_t first_bad;
2321 int bad_sectors;
2322
2323 d = r10_bio->devs[sl].devnum;
2324 rdev = rcu_dereference(conf->mirrors[d].rdev);
2325 if (rdev &&
2326 test_bit(In_sync, &rdev->flags) &&
2327 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2328 &first_bad, &bad_sectors) == 0) {
2329 atomic_inc(&rdev->nr_pending);
2330 rcu_read_unlock();
2331 success = sync_page_io(rdev,
2332 r10_bio->devs[sl].addr +
2333 sect,
2334 s<<9,
2335 conf->tmppage, READ, false);
2336 rdev_dec_pending(rdev, mddev);
2337 rcu_read_lock();
2338 if (success)
2339 break;
2340 }
2341 sl++;
2342 if (sl == conf->copies)
2343 sl = 0;
2344 } while (!success && sl != r10_bio->read_slot);
2345 rcu_read_unlock();
2346
2347 if (!success) {
2348 /* Cannot read from anywhere, just mark the block
2349 * as bad on the first device to discourage future
2350 * reads.
2351 */
2352 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2353 rdev = conf->mirrors[dn].rdev;
2354
2355 if (!rdev_set_badblocks(
2356 rdev,
2357 r10_bio->devs[r10_bio->read_slot].addr
2358 + sect,
2359 s, 0)) {
2360 md_error(mddev, rdev);
2361 r10_bio->devs[r10_bio->read_slot].bio
2362 = IO_BLOCKED;
2363 }
2364 break;
2365 }
2366
2367 start = sl;
2368 /* write it back and re-read */
2369 rcu_read_lock();
2370 while (sl != r10_bio->read_slot) {
2371 char b[BDEVNAME_SIZE];
2372
2373 if (sl==0)
2374 sl = conf->copies;
2375 sl--;
2376 d = r10_bio->devs[sl].devnum;
2377 rdev = rcu_dereference(conf->mirrors[d].rdev);
2378 if (!rdev ||
2379 !test_bit(In_sync, &rdev->flags))
2380 continue;
2381
2382 atomic_inc(&rdev->nr_pending);
2383 rcu_read_unlock();
2384 if (r10_sync_page_io(rdev,
2385 r10_bio->devs[sl].addr +
2386 sect,
2387 s, conf->tmppage, WRITE)
2388 == 0) {
2389 /* Well, this device is dead */
2390 printk(KERN_NOTICE
2391 "md/raid10:%s: read correction "
2392 "write failed"
2393 " (%d sectors at %llu on %s)\n",
2394 mdname(mddev), s,
2395 (unsigned long long)(
2396 sect +
2397 choose_data_offset(r10_bio,
2398 rdev)),
2399 bdevname(rdev->bdev, b));
2400 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2401 "drive\n",
2402 mdname(mddev),
2403 bdevname(rdev->bdev, b));
2404 }
2405 rdev_dec_pending(rdev, mddev);
2406 rcu_read_lock();
2407 }
2408 sl = start;
2409 while (sl != r10_bio->read_slot) {
2410 char b[BDEVNAME_SIZE];
2411
2412 if (sl==0)
2413 sl = conf->copies;
2414 sl--;
2415 d = r10_bio->devs[sl].devnum;
2416 rdev = rcu_dereference(conf->mirrors[d].rdev);
2417 if (!rdev ||
2418 !test_bit(In_sync, &rdev->flags))
2419 continue;
2420
2421 atomic_inc(&rdev->nr_pending);
2422 rcu_read_unlock();
2423 switch (r10_sync_page_io(rdev,
2424 r10_bio->devs[sl].addr +
2425 sect,
2426 s, conf->tmppage,
2427 READ)) {
2428 case 0:
2429 /* Well, this device is dead */
2430 printk(KERN_NOTICE
2431 "md/raid10:%s: unable to read back "
2432 "corrected sectors"
2433 " (%d sectors at %llu on %s)\n",
2434 mdname(mddev), s,
2435 (unsigned long long)(
2436 sect +
2437 choose_data_offset(r10_bio, rdev)),
2438 bdevname(rdev->bdev, b));
2439 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2440 "drive\n",
2441 mdname(mddev),
2442 bdevname(rdev->bdev, b));
2443 break;
2444 case 1:
2445 printk(KERN_INFO
2446 "md/raid10:%s: read error corrected"
2447 " (%d sectors at %llu on %s)\n",
2448 mdname(mddev), s,
2449 (unsigned long long)(
2450 sect +
2451 choose_data_offset(r10_bio, rdev)),
2452 bdevname(rdev->bdev, b));
2453 atomic_add(s, &rdev->corrected_errors);
2454 }
2455
2456 rdev_dec_pending(rdev, mddev);
2457 rcu_read_lock();
2458 }
2459 rcu_read_unlock();
2460
2461 sectors -= s;
2462 sect += s;
2463 }
2464 }
2465
narrow_write_error(struct r10bio * r10_bio,int i)2466 static int narrow_write_error(struct r10bio *r10_bio, int i)
2467 {
2468 struct bio *bio = r10_bio->master_bio;
2469 struct mddev *mddev = r10_bio->mddev;
2470 struct r10conf *conf = mddev->private;
2471 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2472 /* bio has the data to be written to slot 'i' where
2473 * we just recently had a write error.
2474 * We repeatedly clone the bio and trim down to one block,
2475 * then try the write. Where the write fails we record
2476 * a bad block.
2477 * It is conceivable that the bio doesn't exactly align with
2478 * blocks. We must handle this.
2479 *
2480 * We currently own a reference to the rdev.
2481 */
2482
2483 int block_sectors;
2484 sector_t sector;
2485 int sectors;
2486 int sect_to_write = r10_bio->sectors;
2487 int ok = 1;
2488
2489 if (rdev->badblocks.shift < 0)
2490 return 0;
2491
2492 block_sectors = roundup(1 << rdev->badblocks.shift,
2493 bdev_logical_block_size(rdev->bdev) >> 9);
2494 sector = r10_bio->sector;
2495 sectors = ((r10_bio->sector + block_sectors)
2496 & ~(sector_t)(block_sectors - 1))
2497 - sector;
2498
2499 while (sect_to_write) {
2500 struct bio *wbio;
2501 if (sectors > sect_to_write)
2502 sectors = sect_to_write;
2503 /* Write at 'sector' for 'sectors' */
2504 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2505 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2506 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2507 choose_data_offset(r10_bio, rdev) +
2508 (sector - r10_bio->sector));
2509 wbio->bi_bdev = rdev->bdev;
2510 if (submit_bio_wait(WRITE, wbio) < 0)
2511 /* Failure! */
2512 ok = rdev_set_badblocks(rdev, sector,
2513 sectors, 0)
2514 && ok;
2515
2516 bio_put(wbio);
2517 sect_to_write -= sectors;
2518 sector += sectors;
2519 sectors = block_sectors;
2520 }
2521 return ok;
2522 }
2523
handle_read_error(struct mddev * mddev,struct r10bio * r10_bio)2524 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2525 {
2526 int slot = r10_bio->read_slot;
2527 struct bio *bio;
2528 struct r10conf *conf = mddev->private;
2529 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2530 char b[BDEVNAME_SIZE];
2531 unsigned long do_sync;
2532 int max_sectors;
2533
2534 /* we got a read error. Maybe the drive is bad. Maybe just
2535 * the block and we can fix it.
2536 * We freeze all other IO, and try reading the block from
2537 * other devices. When we find one, we re-write
2538 * and check it that fixes the read error.
2539 * This is all done synchronously while the array is
2540 * frozen.
2541 */
2542 bio = r10_bio->devs[slot].bio;
2543 bdevname(bio->bi_bdev, b);
2544 bio_put(bio);
2545 r10_bio->devs[slot].bio = NULL;
2546
2547 if (mddev->ro == 0) {
2548 freeze_array(conf, 1);
2549 fix_read_error(conf, mddev, r10_bio);
2550 unfreeze_array(conf);
2551 } else
2552 r10_bio->devs[slot].bio = IO_BLOCKED;
2553
2554 rdev_dec_pending(rdev, mddev);
2555
2556 read_more:
2557 rdev = read_balance(conf, r10_bio, &max_sectors);
2558 if (rdev == NULL) {
2559 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2560 " read error for block %llu\n",
2561 mdname(mddev), b,
2562 (unsigned long long)r10_bio->sector);
2563 raid_end_bio_io(r10_bio);
2564 return;
2565 }
2566
2567 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2568 slot = r10_bio->read_slot;
2569 printk_ratelimited(
2570 KERN_ERR
2571 "md/raid10:%s: %s: redirecting "
2572 "sector %llu to another mirror\n",
2573 mdname(mddev),
2574 bdevname(rdev->bdev, b),
2575 (unsigned long long)r10_bio->sector);
2576 bio = bio_clone_mddev(r10_bio->master_bio,
2577 GFP_NOIO, mddev);
2578 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2579 r10_bio->devs[slot].bio = bio;
2580 r10_bio->devs[slot].rdev = rdev;
2581 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2582 + choose_data_offset(r10_bio, rdev);
2583 bio->bi_bdev = rdev->bdev;
2584 bio->bi_rw = READ | do_sync;
2585 bio->bi_private = r10_bio;
2586 bio->bi_end_io = raid10_end_read_request;
2587 if (max_sectors < r10_bio->sectors) {
2588 /* Drat - have to split this up more */
2589 struct bio *mbio = r10_bio->master_bio;
2590 int sectors_handled =
2591 r10_bio->sector + max_sectors
2592 - mbio->bi_iter.bi_sector;
2593 r10_bio->sectors = max_sectors;
2594 spin_lock_irq(&conf->device_lock);
2595 if (mbio->bi_phys_segments == 0)
2596 mbio->bi_phys_segments = 2;
2597 else
2598 mbio->bi_phys_segments++;
2599 spin_unlock_irq(&conf->device_lock);
2600 generic_make_request(bio);
2601
2602 r10_bio = mempool_alloc(conf->r10bio_pool,
2603 GFP_NOIO);
2604 r10_bio->master_bio = mbio;
2605 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2606 r10_bio->state = 0;
2607 set_bit(R10BIO_ReadError,
2608 &r10_bio->state);
2609 r10_bio->mddev = mddev;
2610 r10_bio->sector = mbio->bi_iter.bi_sector
2611 + sectors_handled;
2612
2613 goto read_more;
2614 } else
2615 generic_make_request(bio);
2616 }
2617
handle_write_completed(struct r10conf * conf,struct r10bio * r10_bio)2618 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2619 {
2620 /* Some sort of write request has finished and it
2621 * succeeded in writing where we thought there was a
2622 * bad block. So forget the bad block.
2623 * Or possibly if failed and we need to record
2624 * a bad block.
2625 */
2626 int m;
2627 struct md_rdev *rdev;
2628
2629 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2630 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2631 for (m = 0; m < conf->copies; m++) {
2632 int dev = r10_bio->devs[m].devnum;
2633 rdev = conf->mirrors[dev].rdev;
2634 if (r10_bio->devs[m].bio == NULL ||
2635 r10_bio->devs[m].bio->bi_end_io == NULL)
2636 continue;
2637 if (!r10_bio->devs[m].bio->bi_error) {
2638 rdev_clear_badblocks(
2639 rdev,
2640 r10_bio->devs[m].addr,
2641 r10_bio->sectors, 0);
2642 } else {
2643 if (!rdev_set_badblocks(
2644 rdev,
2645 r10_bio->devs[m].addr,
2646 r10_bio->sectors, 0))
2647 md_error(conf->mddev, rdev);
2648 }
2649 rdev = conf->mirrors[dev].replacement;
2650 if (r10_bio->devs[m].repl_bio == NULL ||
2651 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2652 continue;
2653
2654 if (!r10_bio->devs[m].repl_bio->bi_error) {
2655 rdev_clear_badblocks(
2656 rdev,
2657 r10_bio->devs[m].addr,
2658 r10_bio->sectors, 0);
2659 } else {
2660 if (!rdev_set_badblocks(
2661 rdev,
2662 r10_bio->devs[m].addr,
2663 r10_bio->sectors, 0))
2664 md_error(conf->mddev, rdev);
2665 }
2666 }
2667 put_buf(r10_bio);
2668 } else {
2669 bool fail = false;
2670 for (m = 0; m < conf->copies; m++) {
2671 int dev = r10_bio->devs[m].devnum;
2672 struct bio *bio = r10_bio->devs[m].bio;
2673 rdev = conf->mirrors[dev].rdev;
2674 if (bio == IO_MADE_GOOD) {
2675 rdev_clear_badblocks(
2676 rdev,
2677 r10_bio->devs[m].addr,
2678 r10_bio->sectors, 0);
2679 rdev_dec_pending(rdev, conf->mddev);
2680 } else if (bio != NULL && bio->bi_error) {
2681 fail = true;
2682 if (!narrow_write_error(r10_bio, m)) {
2683 md_error(conf->mddev, rdev);
2684 set_bit(R10BIO_Degraded,
2685 &r10_bio->state);
2686 }
2687 rdev_dec_pending(rdev, conf->mddev);
2688 }
2689 bio = r10_bio->devs[m].repl_bio;
2690 rdev = conf->mirrors[dev].replacement;
2691 if (rdev && bio == IO_MADE_GOOD) {
2692 rdev_clear_badblocks(
2693 rdev,
2694 r10_bio->devs[m].addr,
2695 r10_bio->sectors, 0);
2696 rdev_dec_pending(rdev, conf->mddev);
2697 }
2698 }
2699 if (fail) {
2700 spin_lock_irq(&conf->device_lock);
2701 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2702 conf->nr_queued++;
2703 spin_unlock_irq(&conf->device_lock);
2704 /*
2705 * In case freeze_array() is waiting for condition
2706 * nr_pending == nr_queued + extra to be true.
2707 */
2708 wake_up(&conf->wait_barrier);
2709 md_wakeup_thread(conf->mddev->thread);
2710 } else {
2711 if (test_bit(R10BIO_WriteError,
2712 &r10_bio->state))
2713 close_write(r10_bio);
2714 raid_end_bio_io(r10_bio);
2715 }
2716 }
2717 }
2718
raid10d(struct md_thread * thread)2719 static void raid10d(struct md_thread *thread)
2720 {
2721 struct mddev *mddev = thread->mddev;
2722 struct r10bio *r10_bio;
2723 unsigned long flags;
2724 struct r10conf *conf = mddev->private;
2725 struct list_head *head = &conf->retry_list;
2726 struct blk_plug plug;
2727
2728 md_check_recovery(mddev);
2729
2730 if (!list_empty_careful(&conf->bio_end_io_list) &&
2731 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2732 LIST_HEAD(tmp);
2733 spin_lock_irqsave(&conf->device_lock, flags);
2734 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2735 while (!list_empty(&conf->bio_end_io_list)) {
2736 list_move(conf->bio_end_io_list.prev, &tmp);
2737 conf->nr_queued--;
2738 }
2739 }
2740 spin_unlock_irqrestore(&conf->device_lock, flags);
2741 while (!list_empty(&tmp)) {
2742 r10_bio = list_first_entry(&tmp, struct r10bio,
2743 retry_list);
2744 list_del(&r10_bio->retry_list);
2745 if (mddev->degraded)
2746 set_bit(R10BIO_Degraded, &r10_bio->state);
2747
2748 if (test_bit(R10BIO_WriteError,
2749 &r10_bio->state))
2750 close_write(r10_bio);
2751 raid_end_bio_io(r10_bio);
2752 }
2753 }
2754
2755 blk_start_plug(&plug);
2756 for (;;) {
2757
2758 flush_pending_writes(conf);
2759
2760 spin_lock_irqsave(&conf->device_lock, flags);
2761 if (list_empty(head)) {
2762 spin_unlock_irqrestore(&conf->device_lock, flags);
2763 break;
2764 }
2765 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2766 list_del(head->prev);
2767 conf->nr_queued--;
2768 spin_unlock_irqrestore(&conf->device_lock, flags);
2769
2770 mddev = r10_bio->mddev;
2771 conf = mddev->private;
2772 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2773 test_bit(R10BIO_WriteError, &r10_bio->state))
2774 handle_write_completed(conf, r10_bio);
2775 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2776 reshape_request_write(mddev, r10_bio);
2777 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2778 sync_request_write(mddev, r10_bio);
2779 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2780 recovery_request_write(mddev, r10_bio);
2781 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2782 handle_read_error(mddev, r10_bio);
2783 else {
2784 /* just a partial read to be scheduled from a
2785 * separate context
2786 */
2787 int slot = r10_bio->read_slot;
2788 generic_make_request(r10_bio->devs[slot].bio);
2789 }
2790
2791 cond_resched();
2792 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2793 md_check_recovery(mddev);
2794 }
2795 blk_finish_plug(&plug);
2796 }
2797
init_resync(struct r10conf * conf)2798 static int init_resync(struct r10conf *conf)
2799 {
2800 int buffs;
2801 int i;
2802
2803 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2804 BUG_ON(conf->r10buf_pool);
2805 conf->have_replacement = 0;
2806 for (i = 0; i < conf->geo.raid_disks; i++)
2807 if (conf->mirrors[i].replacement)
2808 conf->have_replacement = 1;
2809 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2810 if (!conf->r10buf_pool)
2811 return -ENOMEM;
2812 conf->next_resync = 0;
2813 return 0;
2814 }
2815
2816 /*
2817 * perform a "sync" on one "block"
2818 *
2819 * We need to make sure that no normal I/O request - particularly write
2820 * requests - conflict with active sync requests.
2821 *
2822 * This is achieved by tracking pending requests and a 'barrier' concept
2823 * that can be installed to exclude normal IO requests.
2824 *
2825 * Resync and recovery are handled very differently.
2826 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2827 *
2828 * For resync, we iterate over virtual addresses, read all copies,
2829 * and update if there are differences. If only one copy is live,
2830 * skip it.
2831 * For recovery, we iterate over physical addresses, read a good
2832 * value for each non-in_sync drive, and over-write.
2833 *
2834 * So, for recovery we may have several outstanding complex requests for a
2835 * given address, one for each out-of-sync device. We model this by allocating
2836 * a number of r10_bio structures, one for each out-of-sync device.
2837 * As we setup these structures, we collect all bio's together into a list
2838 * which we then process collectively to add pages, and then process again
2839 * to pass to generic_make_request.
2840 *
2841 * The r10_bio structures are linked using a borrowed master_bio pointer.
2842 * This link is counted in ->remaining. When the r10_bio that points to NULL
2843 * has its remaining count decremented to 0, the whole complex operation
2844 * is complete.
2845 *
2846 */
2847
sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)2848 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2849 int *skipped)
2850 {
2851 struct r10conf *conf = mddev->private;
2852 struct r10bio *r10_bio;
2853 struct bio *biolist = NULL, *bio;
2854 sector_t max_sector, nr_sectors;
2855 int i;
2856 int max_sync;
2857 sector_t sync_blocks;
2858 sector_t sectors_skipped = 0;
2859 int chunks_skipped = 0;
2860 sector_t chunk_mask = conf->geo.chunk_mask;
2861
2862 if (!conf->r10buf_pool)
2863 if (init_resync(conf))
2864 return 0;
2865
2866 /*
2867 * Allow skipping a full rebuild for incremental assembly
2868 * of a clean array, like RAID1 does.
2869 */
2870 if (mddev->bitmap == NULL &&
2871 mddev->recovery_cp == MaxSector &&
2872 mddev->reshape_position == MaxSector &&
2873 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2874 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2875 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2876 conf->fullsync == 0) {
2877 *skipped = 1;
2878 return mddev->dev_sectors - sector_nr;
2879 }
2880
2881 skipped:
2882 max_sector = mddev->dev_sectors;
2883 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2884 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2885 max_sector = mddev->resync_max_sectors;
2886 if (sector_nr >= max_sector) {
2887 /* If we aborted, we need to abort the
2888 * sync on the 'current' bitmap chucks (there can
2889 * be several when recovering multiple devices).
2890 * as we may have started syncing it but not finished.
2891 * We can find the current address in
2892 * mddev->curr_resync, but for recovery,
2893 * we need to convert that to several
2894 * virtual addresses.
2895 */
2896 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2897 end_reshape(conf);
2898 close_sync(conf);
2899 return 0;
2900 }
2901
2902 if (mddev->curr_resync < max_sector) { /* aborted */
2903 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2904 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2905 &sync_blocks, 1);
2906 else for (i = 0; i < conf->geo.raid_disks; i++) {
2907 sector_t sect =
2908 raid10_find_virt(conf, mddev->curr_resync, i);
2909 bitmap_end_sync(mddev->bitmap, sect,
2910 &sync_blocks, 1);
2911 }
2912 } else {
2913 /* completed sync */
2914 if ((!mddev->bitmap || conf->fullsync)
2915 && conf->have_replacement
2916 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2917 /* Completed a full sync so the replacements
2918 * are now fully recovered.
2919 */
2920 for (i = 0; i < conf->geo.raid_disks; i++)
2921 if (conf->mirrors[i].replacement)
2922 conf->mirrors[i].replacement
2923 ->recovery_offset
2924 = MaxSector;
2925 }
2926 conf->fullsync = 0;
2927 }
2928 bitmap_close_sync(mddev->bitmap);
2929 close_sync(conf);
2930 *skipped = 1;
2931 return sectors_skipped;
2932 }
2933
2934 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2935 return reshape_request(mddev, sector_nr, skipped);
2936
2937 if (chunks_skipped >= conf->geo.raid_disks) {
2938 /* if there has been nothing to do on any drive,
2939 * then there is nothing to do at all..
2940 */
2941 *skipped = 1;
2942 return (max_sector - sector_nr) + sectors_skipped;
2943 }
2944
2945 if (max_sector > mddev->resync_max)
2946 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2947
2948 /* make sure whole request will fit in a chunk - if chunks
2949 * are meaningful
2950 */
2951 if (conf->geo.near_copies < conf->geo.raid_disks &&
2952 max_sector > (sector_nr | chunk_mask))
2953 max_sector = (sector_nr | chunk_mask) + 1;
2954
2955 /* Again, very different code for resync and recovery.
2956 * Both must result in an r10bio with a list of bios that
2957 * have bi_end_io, bi_sector, bi_bdev set,
2958 * and bi_private set to the r10bio.
2959 * For recovery, we may actually create several r10bios
2960 * with 2 bios in each, that correspond to the bios in the main one.
2961 * In this case, the subordinate r10bios link back through a
2962 * borrowed master_bio pointer, and the counter in the master
2963 * includes a ref from each subordinate.
2964 */
2965 /* First, we decide what to do and set ->bi_end_io
2966 * To end_sync_read if we want to read, and
2967 * end_sync_write if we will want to write.
2968 */
2969
2970 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2971 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2972 /* recovery... the complicated one */
2973 int j;
2974 r10_bio = NULL;
2975
2976 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2977 int still_degraded;
2978 struct r10bio *rb2;
2979 sector_t sect;
2980 int must_sync;
2981 int any_working;
2982 struct raid10_info *mirror = &conf->mirrors[i];
2983
2984 if ((mirror->rdev == NULL ||
2985 test_bit(In_sync, &mirror->rdev->flags))
2986 &&
2987 (mirror->replacement == NULL ||
2988 test_bit(Faulty,
2989 &mirror->replacement->flags)))
2990 continue;
2991
2992 still_degraded = 0;
2993 /* want to reconstruct this device */
2994 rb2 = r10_bio;
2995 sect = raid10_find_virt(conf, sector_nr, i);
2996 if (sect >= mddev->resync_max_sectors) {
2997 /* last stripe is not complete - don't
2998 * try to recover this sector.
2999 */
3000 continue;
3001 }
3002 /* Unless we are doing a full sync, or a replacement
3003 * we only need to recover the block if it is set in
3004 * the bitmap
3005 */
3006 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3007 &sync_blocks, 1);
3008 if (sync_blocks < max_sync)
3009 max_sync = sync_blocks;
3010 if (!must_sync &&
3011 mirror->replacement == NULL &&
3012 !conf->fullsync) {
3013 /* yep, skip the sync_blocks here, but don't assume
3014 * that there will never be anything to do here
3015 */
3016 chunks_skipped = -1;
3017 continue;
3018 }
3019
3020 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3021 r10_bio->state = 0;
3022 raise_barrier(conf, rb2 != NULL);
3023 atomic_set(&r10_bio->remaining, 0);
3024
3025 r10_bio->master_bio = (struct bio*)rb2;
3026 if (rb2)
3027 atomic_inc(&rb2->remaining);
3028 r10_bio->mddev = mddev;
3029 set_bit(R10BIO_IsRecover, &r10_bio->state);
3030 r10_bio->sector = sect;
3031
3032 raid10_find_phys(conf, r10_bio);
3033
3034 /* Need to check if the array will still be
3035 * degraded
3036 */
3037 for (j = 0; j < conf->geo.raid_disks; j++)
3038 if (conf->mirrors[j].rdev == NULL ||
3039 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3040 still_degraded = 1;
3041 break;
3042 }
3043
3044 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3045 &sync_blocks, still_degraded);
3046
3047 any_working = 0;
3048 for (j=0; j<conf->copies;j++) {
3049 int k;
3050 int d = r10_bio->devs[j].devnum;
3051 sector_t from_addr, to_addr;
3052 struct md_rdev *rdev;
3053 sector_t sector, first_bad;
3054 int bad_sectors;
3055 if (!conf->mirrors[d].rdev ||
3056 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3057 continue;
3058 /* This is where we read from */
3059 any_working = 1;
3060 rdev = conf->mirrors[d].rdev;
3061 sector = r10_bio->devs[j].addr;
3062
3063 if (is_badblock(rdev, sector, max_sync,
3064 &first_bad, &bad_sectors)) {
3065 if (first_bad > sector)
3066 max_sync = first_bad - sector;
3067 else {
3068 bad_sectors -= (sector
3069 - first_bad);
3070 if (max_sync > bad_sectors)
3071 max_sync = bad_sectors;
3072 continue;
3073 }
3074 }
3075 bio = r10_bio->devs[0].bio;
3076 bio_reset(bio);
3077 bio->bi_next = biolist;
3078 biolist = bio;
3079 bio->bi_private = r10_bio;
3080 bio->bi_end_io = end_sync_read;
3081 bio->bi_rw = READ;
3082 from_addr = r10_bio->devs[j].addr;
3083 bio->bi_iter.bi_sector = from_addr +
3084 rdev->data_offset;
3085 bio->bi_bdev = rdev->bdev;
3086 atomic_inc(&rdev->nr_pending);
3087 /* and we write to 'i' (if not in_sync) */
3088
3089 for (k=0; k<conf->copies; k++)
3090 if (r10_bio->devs[k].devnum == i)
3091 break;
3092 BUG_ON(k == conf->copies);
3093 to_addr = r10_bio->devs[k].addr;
3094 r10_bio->devs[0].devnum = d;
3095 r10_bio->devs[0].addr = from_addr;
3096 r10_bio->devs[1].devnum = i;
3097 r10_bio->devs[1].addr = to_addr;
3098
3099 rdev = mirror->rdev;
3100 if (!test_bit(In_sync, &rdev->flags)) {
3101 bio = r10_bio->devs[1].bio;
3102 bio_reset(bio);
3103 bio->bi_next = biolist;
3104 biolist = bio;
3105 bio->bi_private = r10_bio;
3106 bio->bi_end_io = end_sync_write;
3107 bio->bi_rw = WRITE;
3108 bio->bi_iter.bi_sector = to_addr
3109 + rdev->data_offset;
3110 bio->bi_bdev = rdev->bdev;
3111 atomic_inc(&r10_bio->remaining);
3112 } else
3113 r10_bio->devs[1].bio->bi_end_io = NULL;
3114
3115 /* and maybe write to replacement */
3116 bio = r10_bio->devs[1].repl_bio;
3117 if (bio)
3118 bio->bi_end_io = NULL;
3119 rdev = mirror->replacement;
3120 /* Note: if rdev != NULL, then bio
3121 * cannot be NULL as r10buf_pool_alloc will
3122 * have allocated it.
3123 * So the second test here is pointless.
3124 * But it keeps semantic-checkers happy, and
3125 * this comment keeps human reviewers
3126 * happy.
3127 */
3128 if (rdev == NULL || bio == NULL ||
3129 test_bit(Faulty, &rdev->flags))
3130 break;
3131 bio_reset(bio);
3132 bio->bi_next = biolist;
3133 biolist = bio;
3134 bio->bi_private = r10_bio;
3135 bio->bi_end_io = end_sync_write;
3136 bio->bi_rw = WRITE;
3137 bio->bi_iter.bi_sector = to_addr +
3138 rdev->data_offset;
3139 bio->bi_bdev = rdev->bdev;
3140 atomic_inc(&r10_bio->remaining);
3141 break;
3142 }
3143 if (j == conf->copies) {
3144 /* Cannot recover, so abort the recovery or
3145 * record a bad block */
3146 if (any_working) {
3147 /* problem is that there are bad blocks
3148 * on other device(s)
3149 */
3150 int k;
3151 for (k = 0; k < conf->copies; k++)
3152 if (r10_bio->devs[k].devnum == i)
3153 break;
3154 if (!test_bit(In_sync,
3155 &mirror->rdev->flags)
3156 && !rdev_set_badblocks(
3157 mirror->rdev,
3158 r10_bio->devs[k].addr,
3159 max_sync, 0))
3160 any_working = 0;
3161 if (mirror->replacement &&
3162 !rdev_set_badblocks(
3163 mirror->replacement,
3164 r10_bio->devs[k].addr,
3165 max_sync, 0))
3166 any_working = 0;
3167 }
3168 if (!any_working) {
3169 if (!test_and_set_bit(MD_RECOVERY_INTR,
3170 &mddev->recovery))
3171 printk(KERN_INFO "md/raid10:%s: insufficient "
3172 "working devices for recovery.\n",
3173 mdname(mddev));
3174 mirror->recovery_disabled
3175 = mddev->recovery_disabled;
3176 }
3177 put_buf(r10_bio);
3178 if (rb2)
3179 atomic_dec(&rb2->remaining);
3180 r10_bio = rb2;
3181 break;
3182 }
3183 }
3184 if (biolist == NULL) {
3185 while (r10_bio) {
3186 struct r10bio *rb2 = r10_bio;
3187 r10_bio = (struct r10bio*) rb2->master_bio;
3188 rb2->master_bio = NULL;
3189 put_buf(rb2);
3190 }
3191 goto giveup;
3192 }
3193 } else {
3194 /* resync. Schedule a read for every block at this virt offset */
3195 int count = 0;
3196
3197 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3198
3199 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3200 &sync_blocks, mddev->degraded) &&
3201 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3202 &mddev->recovery)) {
3203 /* We can skip this block */
3204 *skipped = 1;
3205 return sync_blocks + sectors_skipped;
3206 }
3207 if (sync_blocks < max_sync)
3208 max_sync = sync_blocks;
3209 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3210 r10_bio->state = 0;
3211
3212 r10_bio->mddev = mddev;
3213 atomic_set(&r10_bio->remaining, 0);
3214 raise_barrier(conf, 0);
3215 conf->next_resync = sector_nr;
3216
3217 r10_bio->master_bio = NULL;
3218 r10_bio->sector = sector_nr;
3219 set_bit(R10BIO_IsSync, &r10_bio->state);
3220 raid10_find_phys(conf, r10_bio);
3221 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3222
3223 for (i = 0; i < conf->copies; i++) {
3224 int d = r10_bio->devs[i].devnum;
3225 sector_t first_bad, sector;
3226 int bad_sectors;
3227
3228 if (r10_bio->devs[i].repl_bio)
3229 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3230
3231 bio = r10_bio->devs[i].bio;
3232 bio_reset(bio);
3233 bio->bi_error = -EIO;
3234 if (conf->mirrors[d].rdev == NULL ||
3235 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3236 continue;
3237 sector = r10_bio->devs[i].addr;
3238 if (is_badblock(conf->mirrors[d].rdev,
3239 sector, max_sync,
3240 &first_bad, &bad_sectors)) {
3241 if (first_bad > sector)
3242 max_sync = first_bad - sector;
3243 else {
3244 bad_sectors -= (sector - first_bad);
3245 if (max_sync > bad_sectors)
3246 max_sync = bad_sectors;
3247 continue;
3248 }
3249 }
3250 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3251 atomic_inc(&r10_bio->remaining);
3252 bio->bi_next = biolist;
3253 biolist = bio;
3254 bio->bi_private = r10_bio;
3255 bio->bi_end_io = end_sync_read;
3256 bio->bi_rw = READ;
3257 bio->bi_iter.bi_sector = sector +
3258 conf->mirrors[d].rdev->data_offset;
3259 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3260 count++;
3261
3262 if (conf->mirrors[d].replacement == NULL ||
3263 test_bit(Faulty,
3264 &conf->mirrors[d].replacement->flags))
3265 continue;
3266
3267 /* Need to set up for writing to the replacement */
3268 bio = r10_bio->devs[i].repl_bio;
3269 bio_reset(bio);
3270 bio->bi_error = -EIO;
3271
3272 sector = r10_bio->devs[i].addr;
3273 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3274 bio->bi_next = biolist;
3275 biolist = bio;
3276 bio->bi_private = r10_bio;
3277 bio->bi_end_io = end_sync_write;
3278 bio->bi_rw = WRITE;
3279 bio->bi_iter.bi_sector = sector +
3280 conf->mirrors[d].replacement->data_offset;
3281 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3282 count++;
3283 }
3284
3285 if (count < 2) {
3286 for (i=0; i<conf->copies; i++) {
3287 int d = r10_bio->devs[i].devnum;
3288 if (r10_bio->devs[i].bio->bi_end_io)
3289 rdev_dec_pending(conf->mirrors[d].rdev,
3290 mddev);
3291 if (r10_bio->devs[i].repl_bio &&
3292 r10_bio->devs[i].repl_bio->bi_end_io)
3293 rdev_dec_pending(
3294 conf->mirrors[d].replacement,
3295 mddev);
3296 }
3297 put_buf(r10_bio);
3298 biolist = NULL;
3299 goto giveup;
3300 }
3301 }
3302
3303 nr_sectors = 0;
3304 if (sector_nr + max_sync < max_sector)
3305 max_sector = sector_nr + max_sync;
3306 do {
3307 struct page *page;
3308 int len = PAGE_SIZE;
3309 if (sector_nr + (len>>9) > max_sector)
3310 len = (max_sector - sector_nr) << 9;
3311 if (len == 0)
3312 break;
3313 for (bio= biolist ; bio ; bio=bio->bi_next) {
3314 struct bio *bio2;
3315 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3316 if (bio_add_page(bio, page, len, 0))
3317 continue;
3318
3319 /* stop here */
3320 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3321 for (bio2 = biolist;
3322 bio2 && bio2 != bio;
3323 bio2 = bio2->bi_next) {
3324 /* remove last page from this bio */
3325 bio2->bi_vcnt--;
3326 bio2->bi_iter.bi_size -= len;
3327 bio_clear_flag(bio2, BIO_SEG_VALID);
3328 }
3329 goto bio_full;
3330 }
3331 nr_sectors += len>>9;
3332 sector_nr += len>>9;
3333 } while (biolist->bi_vcnt < RESYNC_PAGES);
3334 bio_full:
3335 r10_bio->sectors = nr_sectors;
3336
3337 while (biolist) {
3338 bio = biolist;
3339 biolist = biolist->bi_next;
3340
3341 bio->bi_next = NULL;
3342 r10_bio = bio->bi_private;
3343 r10_bio->sectors = nr_sectors;
3344
3345 if (bio->bi_end_io == end_sync_read) {
3346 md_sync_acct(bio->bi_bdev, nr_sectors);
3347 bio->bi_error = 0;
3348 generic_make_request(bio);
3349 }
3350 }
3351
3352 if (sectors_skipped)
3353 /* pretend they weren't skipped, it makes
3354 * no important difference in this case
3355 */
3356 md_done_sync(mddev, sectors_skipped, 1);
3357
3358 return sectors_skipped + nr_sectors;
3359 giveup:
3360 /* There is nowhere to write, so all non-sync
3361 * drives must be failed or in resync, all drives
3362 * have a bad block, so try the next chunk...
3363 */
3364 if (sector_nr + max_sync < max_sector)
3365 max_sector = sector_nr + max_sync;
3366
3367 sectors_skipped += (max_sector - sector_nr);
3368 chunks_skipped ++;
3369 sector_nr = max_sector;
3370 goto skipped;
3371 }
3372
3373 static sector_t
raid10_size(struct mddev * mddev,sector_t sectors,int raid_disks)3374 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3375 {
3376 sector_t size;
3377 struct r10conf *conf = mddev->private;
3378
3379 if (!raid_disks)
3380 raid_disks = min(conf->geo.raid_disks,
3381 conf->prev.raid_disks);
3382 if (!sectors)
3383 sectors = conf->dev_sectors;
3384
3385 size = sectors >> conf->geo.chunk_shift;
3386 sector_div(size, conf->geo.far_copies);
3387 size = size * raid_disks;
3388 sector_div(size, conf->geo.near_copies);
3389
3390 return size << conf->geo.chunk_shift;
3391 }
3392
calc_sectors(struct r10conf * conf,sector_t size)3393 static void calc_sectors(struct r10conf *conf, sector_t size)
3394 {
3395 /* Calculate the number of sectors-per-device that will
3396 * actually be used, and set conf->dev_sectors and
3397 * conf->stride
3398 */
3399
3400 size = size >> conf->geo.chunk_shift;
3401 sector_div(size, conf->geo.far_copies);
3402 size = size * conf->geo.raid_disks;
3403 sector_div(size, conf->geo.near_copies);
3404 /* 'size' is now the number of chunks in the array */
3405 /* calculate "used chunks per device" */
3406 size = size * conf->copies;
3407
3408 /* We need to round up when dividing by raid_disks to
3409 * get the stride size.
3410 */
3411 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3412
3413 conf->dev_sectors = size << conf->geo.chunk_shift;
3414
3415 if (conf->geo.far_offset)
3416 conf->geo.stride = 1 << conf->geo.chunk_shift;
3417 else {
3418 sector_div(size, conf->geo.far_copies);
3419 conf->geo.stride = size << conf->geo.chunk_shift;
3420 }
3421 }
3422
3423 enum geo_type {geo_new, geo_old, geo_start};
setup_geo(struct geom * geo,struct mddev * mddev,enum geo_type new)3424 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3425 {
3426 int nc, fc, fo;
3427 int layout, chunk, disks;
3428 switch (new) {
3429 case geo_old:
3430 layout = mddev->layout;
3431 chunk = mddev->chunk_sectors;
3432 disks = mddev->raid_disks - mddev->delta_disks;
3433 break;
3434 case geo_new:
3435 layout = mddev->new_layout;
3436 chunk = mddev->new_chunk_sectors;
3437 disks = mddev->raid_disks;
3438 break;
3439 default: /* avoid 'may be unused' warnings */
3440 case geo_start: /* new when starting reshape - raid_disks not
3441 * updated yet. */
3442 layout = mddev->new_layout;
3443 chunk = mddev->new_chunk_sectors;
3444 disks = mddev->raid_disks + mddev->delta_disks;
3445 break;
3446 }
3447 if (layout >> 19)
3448 return -1;
3449 if (chunk < (PAGE_SIZE >> 9) ||
3450 !is_power_of_2(chunk))
3451 return -2;
3452 nc = layout & 255;
3453 fc = (layout >> 8) & 255;
3454 fo = layout & (1<<16);
3455 geo->raid_disks = disks;
3456 geo->near_copies = nc;
3457 geo->far_copies = fc;
3458 geo->far_offset = fo;
3459 switch (layout >> 17) {
3460 case 0: /* original layout. simple but not always optimal */
3461 geo->far_set_size = disks;
3462 break;
3463 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3464 * actually using this, but leave code here just in case.*/
3465 geo->far_set_size = disks/fc;
3466 WARN(geo->far_set_size < fc,
3467 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3468 break;
3469 case 2: /* "improved" layout fixed to match documentation */
3470 geo->far_set_size = fc * nc;
3471 break;
3472 default: /* Not a valid layout */
3473 return -1;
3474 }
3475 geo->chunk_mask = chunk - 1;
3476 geo->chunk_shift = ffz(~chunk);
3477 return nc*fc;
3478 }
3479
setup_conf(struct mddev * mddev)3480 static struct r10conf *setup_conf(struct mddev *mddev)
3481 {
3482 struct r10conf *conf = NULL;
3483 int err = -EINVAL;
3484 struct geom geo;
3485 int copies;
3486
3487 copies = setup_geo(&geo, mddev, geo_new);
3488
3489 if (copies == -2) {
3490 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3491 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3492 mdname(mddev), PAGE_SIZE);
3493 goto out;
3494 }
3495
3496 if (copies < 2 || copies > mddev->raid_disks) {
3497 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3498 mdname(mddev), mddev->new_layout);
3499 goto out;
3500 }
3501
3502 err = -ENOMEM;
3503 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3504 if (!conf)
3505 goto out;
3506
3507 /* FIXME calc properly */
3508 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3509 max(0,-mddev->delta_disks)),
3510 GFP_KERNEL);
3511 if (!conf->mirrors)
3512 goto out;
3513
3514 conf->tmppage = alloc_page(GFP_KERNEL);
3515 if (!conf->tmppage)
3516 goto out;
3517
3518 conf->geo = geo;
3519 conf->copies = copies;
3520 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3521 r10bio_pool_free, conf);
3522 if (!conf->r10bio_pool)
3523 goto out;
3524
3525 calc_sectors(conf, mddev->dev_sectors);
3526 if (mddev->reshape_position == MaxSector) {
3527 conf->prev = conf->geo;
3528 conf->reshape_progress = MaxSector;
3529 } else {
3530 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3531 err = -EINVAL;
3532 goto out;
3533 }
3534 conf->reshape_progress = mddev->reshape_position;
3535 if (conf->prev.far_offset)
3536 conf->prev.stride = 1 << conf->prev.chunk_shift;
3537 else
3538 /* far_copies must be 1 */
3539 conf->prev.stride = conf->dev_sectors;
3540 }
3541 conf->reshape_safe = conf->reshape_progress;
3542 spin_lock_init(&conf->device_lock);
3543 INIT_LIST_HEAD(&conf->retry_list);
3544 INIT_LIST_HEAD(&conf->bio_end_io_list);
3545
3546 spin_lock_init(&conf->resync_lock);
3547 init_waitqueue_head(&conf->wait_barrier);
3548
3549 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3550 if (!conf->thread)
3551 goto out;
3552
3553 conf->mddev = mddev;
3554 return conf;
3555
3556 out:
3557 if (err == -ENOMEM)
3558 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3559 mdname(mddev));
3560 if (conf) {
3561 mempool_destroy(conf->r10bio_pool);
3562 kfree(conf->mirrors);
3563 safe_put_page(conf->tmppage);
3564 kfree(conf);
3565 }
3566 return ERR_PTR(err);
3567 }
3568
run(struct mddev * mddev)3569 static int run(struct mddev *mddev)
3570 {
3571 struct r10conf *conf;
3572 int i, disk_idx, chunk_size;
3573 struct raid10_info *disk;
3574 struct md_rdev *rdev;
3575 sector_t size;
3576 sector_t min_offset_diff = 0;
3577 int first = 1;
3578 bool discard_supported = false;
3579
3580 if (mddev->private == NULL) {
3581 conf = setup_conf(mddev);
3582 if (IS_ERR(conf))
3583 return PTR_ERR(conf);
3584 mddev->private = conf;
3585 }
3586 conf = mddev->private;
3587 if (!conf)
3588 goto out;
3589
3590 mddev->thread = conf->thread;
3591 conf->thread = NULL;
3592
3593 chunk_size = mddev->chunk_sectors << 9;
3594 if (mddev->queue) {
3595 blk_queue_max_discard_sectors(mddev->queue,
3596 mddev->chunk_sectors);
3597 blk_queue_max_write_same_sectors(mddev->queue, 0);
3598 blk_queue_io_min(mddev->queue, chunk_size);
3599 if (conf->geo.raid_disks % conf->geo.near_copies)
3600 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3601 else
3602 blk_queue_io_opt(mddev->queue, chunk_size *
3603 (conf->geo.raid_disks / conf->geo.near_copies));
3604 }
3605
3606 rdev_for_each(rdev, mddev) {
3607 long long diff;
3608 struct request_queue *q;
3609
3610 disk_idx = rdev->raid_disk;
3611 if (disk_idx < 0)
3612 continue;
3613 if (disk_idx >= conf->geo.raid_disks &&
3614 disk_idx >= conf->prev.raid_disks)
3615 continue;
3616 disk = conf->mirrors + disk_idx;
3617
3618 if (test_bit(Replacement, &rdev->flags)) {
3619 if (disk->replacement)
3620 goto out_free_conf;
3621 disk->replacement = rdev;
3622 } else {
3623 if (disk->rdev)
3624 goto out_free_conf;
3625 disk->rdev = rdev;
3626 }
3627 q = bdev_get_queue(rdev->bdev);
3628 diff = (rdev->new_data_offset - rdev->data_offset);
3629 if (!mddev->reshape_backwards)
3630 diff = -diff;
3631 if (diff < 0)
3632 diff = 0;
3633 if (first || diff < min_offset_diff)
3634 min_offset_diff = diff;
3635
3636 if (mddev->gendisk)
3637 disk_stack_limits(mddev->gendisk, rdev->bdev,
3638 rdev->data_offset << 9);
3639
3640 disk->head_position = 0;
3641
3642 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3643 discard_supported = true;
3644 first = 0;
3645 }
3646
3647 if (mddev->queue) {
3648 if (discard_supported)
3649 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3650 mddev->queue);
3651 else
3652 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3653 mddev->queue);
3654 }
3655 /* need to check that every block has at least one working mirror */
3656 if (!enough(conf, -1)) {
3657 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3658 mdname(mddev));
3659 goto out_free_conf;
3660 }
3661
3662 if (conf->reshape_progress != MaxSector) {
3663 /* must ensure that shape change is supported */
3664 if (conf->geo.far_copies != 1 &&
3665 conf->geo.far_offset == 0)
3666 goto out_free_conf;
3667 if (conf->prev.far_copies != 1 &&
3668 conf->prev.far_offset == 0)
3669 goto out_free_conf;
3670 }
3671
3672 mddev->degraded = 0;
3673 for (i = 0;
3674 i < conf->geo.raid_disks
3675 || i < conf->prev.raid_disks;
3676 i++) {
3677
3678 disk = conf->mirrors + i;
3679
3680 if (!disk->rdev && disk->replacement) {
3681 /* The replacement is all we have - use it */
3682 disk->rdev = disk->replacement;
3683 disk->replacement = NULL;
3684 clear_bit(Replacement, &disk->rdev->flags);
3685 }
3686
3687 if (!disk->rdev ||
3688 !test_bit(In_sync, &disk->rdev->flags)) {
3689 disk->head_position = 0;
3690 mddev->degraded++;
3691 if (disk->rdev &&
3692 disk->rdev->saved_raid_disk < 0)
3693 conf->fullsync = 1;
3694 }
3695
3696 if (disk->replacement &&
3697 !test_bit(In_sync, &disk->replacement->flags) &&
3698 disk->replacement->saved_raid_disk < 0) {
3699 conf->fullsync = 1;
3700 }
3701
3702 disk->recovery_disabled = mddev->recovery_disabled - 1;
3703 }
3704
3705 if (mddev->recovery_cp != MaxSector)
3706 printk(KERN_NOTICE "md/raid10:%s: not clean"
3707 " -- starting background reconstruction\n",
3708 mdname(mddev));
3709 printk(KERN_INFO
3710 "md/raid10:%s: active with %d out of %d devices\n",
3711 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3712 conf->geo.raid_disks);
3713 /*
3714 * Ok, everything is just fine now
3715 */
3716 mddev->dev_sectors = conf->dev_sectors;
3717 size = raid10_size(mddev, 0, 0);
3718 md_set_array_sectors(mddev, size);
3719 mddev->resync_max_sectors = size;
3720
3721 if (mddev->queue) {
3722 int stripe = conf->geo.raid_disks *
3723 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3724
3725 /* Calculate max read-ahead size.
3726 * We need to readahead at least twice a whole stripe....
3727 * maybe...
3728 */
3729 stripe /= conf->geo.near_copies;
3730 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3731 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3732 }
3733
3734 if (md_integrity_register(mddev))
3735 goto out_free_conf;
3736
3737 if (conf->reshape_progress != MaxSector) {
3738 unsigned long before_length, after_length;
3739
3740 before_length = ((1 << conf->prev.chunk_shift) *
3741 conf->prev.far_copies);
3742 after_length = ((1 << conf->geo.chunk_shift) *
3743 conf->geo.far_copies);
3744
3745 if (max(before_length, after_length) > min_offset_diff) {
3746 /* This cannot work */
3747 printk("md/raid10: offset difference not enough to continue reshape\n");
3748 goto out_free_conf;
3749 }
3750 conf->offset_diff = min_offset_diff;
3751
3752 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3753 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3754 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3755 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3756 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3757 "reshape");
3758 if (!mddev->sync_thread)
3759 goto out_free_conf;
3760 }
3761
3762 return 0;
3763
3764 out_free_conf:
3765 md_unregister_thread(&mddev->thread);
3766 mempool_destroy(conf->r10bio_pool);
3767 safe_put_page(conf->tmppage);
3768 kfree(conf->mirrors);
3769 kfree(conf);
3770 mddev->private = NULL;
3771 out:
3772 return -EIO;
3773 }
3774
raid10_free(struct mddev * mddev,void * priv)3775 static void raid10_free(struct mddev *mddev, void *priv)
3776 {
3777 struct r10conf *conf = priv;
3778
3779 mempool_destroy(conf->r10bio_pool);
3780 safe_put_page(conf->tmppage);
3781 kfree(conf->mirrors);
3782 kfree(conf->mirrors_old);
3783 kfree(conf->mirrors_new);
3784 kfree(conf);
3785 }
3786
raid10_quiesce(struct mddev * mddev,int state)3787 static void raid10_quiesce(struct mddev *mddev, int state)
3788 {
3789 struct r10conf *conf = mddev->private;
3790
3791 switch(state) {
3792 case 1:
3793 raise_barrier(conf, 0);
3794 break;
3795 case 0:
3796 lower_barrier(conf);
3797 break;
3798 }
3799 }
3800
raid10_resize(struct mddev * mddev,sector_t sectors)3801 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3802 {
3803 /* Resize of 'far' arrays is not supported.
3804 * For 'near' and 'offset' arrays we can set the
3805 * number of sectors used to be an appropriate multiple
3806 * of the chunk size.
3807 * For 'offset', this is far_copies*chunksize.
3808 * For 'near' the multiplier is the LCM of
3809 * near_copies and raid_disks.
3810 * So if far_copies > 1 && !far_offset, fail.
3811 * Else find LCM(raid_disks, near_copy)*far_copies and
3812 * multiply by chunk_size. Then round to this number.
3813 * This is mostly done by raid10_size()
3814 */
3815 struct r10conf *conf = mddev->private;
3816 sector_t oldsize, size;
3817
3818 if (mddev->reshape_position != MaxSector)
3819 return -EBUSY;
3820
3821 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3822 return -EINVAL;
3823
3824 oldsize = raid10_size(mddev, 0, 0);
3825 size = raid10_size(mddev, sectors, 0);
3826 if (mddev->external_size &&
3827 mddev->array_sectors > size)
3828 return -EINVAL;
3829 if (mddev->bitmap) {
3830 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3831 if (ret)
3832 return ret;
3833 }
3834 md_set_array_sectors(mddev, size);
3835 set_capacity(mddev->gendisk, mddev->array_sectors);
3836 revalidate_disk(mddev->gendisk);
3837 if (sectors > mddev->dev_sectors &&
3838 mddev->recovery_cp > oldsize) {
3839 mddev->recovery_cp = oldsize;
3840 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3841 }
3842 calc_sectors(conf, sectors);
3843 mddev->dev_sectors = conf->dev_sectors;
3844 mddev->resync_max_sectors = size;
3845 return 0;
3846 }
3847
raid10_takeover_raid0(struct mddev * mddev,sector_t size,int devs)3848 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3849 {
3850 struct md_rdev *rdev;
3851 struct r10conf *conf;
3852
3853 if (mddev->degraded > 0) {
3854 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3855 mdname(mddev));
3856 return ERR_PTR(-EINVAL);
3857 }
3858 sector_div(size, devs);
3859
3860 /* Set new parameters */
3861 mddev->new_level = 10;
3862 /* new layout: far_copies = 1, near_copies = 2 */
3863 mddev->new_layout = (1<<8) + 2;
3864 mddev->new_chunk_sectors = mddev->chunk_sectors;
3865 mddev->delta_disks = mddev->raid_disks;
3866 mddev->raid_disks *= 2;
3867 /* make sure it will be not marked as dirty */
3868 mddev->recovery_cp = MaxSector;
3869 mddev->dev_sectors = size;
3870
3871 conf = setup_conf(mddev);
3872 if (!IS_ERR(conf)) {
3873 rdev_for_each(rdev, mddev)
3874 if (rdev->raid_disk >= 0) {
3875 rdev->new_raid_disk = rdev->raid_disk * 2;
3876 rdev->sectors = size;
3877 }
3878 conf->barrier = 1;
3879 }
3880
3881 return conf;
3882 }
3883
raid10_takeover(struct mddev * mddev)3884 static void *raid10_takeover(struct mddev *mddev)
3885 {
3886 struct r0conf *raid0_conf;
3887
3888 /* raid10 can take over:
3889 * raid0 - providing it has only two drives
3890 */
3891 if (mddev->level == 0) {
3892 /* for raid0 takeover only one zone is supported */
3893 raid0_conf = mddev->private;
3894 if (raid0_conf->nr_strip_zones > 1) {
3895 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3896 " with more than one zone.\n",
3897 mdname(mddev));
3898 return ERR_PTR(-EINVAL);
3899 }
3900 return raid10_takeover_raid0(mddev,
3901 raid0_conf->strip_zone->zone_end,
3902 raid0_conf->strip_zone->nb_dev);
3903 }
3904 return ERR_PTR(-EINVAL);
3905 }
3906
raid10_check_reshape(struct mddev * mddev)3907 static int raid10_check_reshape(struct mddev *mddev)
3908 {
3909 /* Called when there is a request to change
3910 * - layout (to ->new_layout)
3911 * - chunk size (to ->new_chunk_sectors)
3912 * - raid_disks (by delta_disks)
3913 * or when trying to restart a reshape that was ongoing.
3914 *
3915 * We need to validate the request and possibly allocate
3916 * space if that might be an issue later.
3917 *
3918 * Currently we reject any reshape of a 'far' mode array,
3919 * allow chunk size to change if new is generally acceptable,
3920 * allow raid_disks to increase, and allow
3921 * a switch between 'near' mode and 'offset' mode.
3922 */
3923 struct r10conf *conf = mddev->private;
3924 struct geom geo;
3925
3926 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3927 return -EINVAL;
3928
3929 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3930 /* mustn't change number of copies */
3931 return -EINVAL;
3932 if (geo.far_copies > 1 && !geo.far_offset)
3933 /* Cannot switch to 'far' mode */
3934 return -EINVAL;
3935
3936 if (mddev->array_sectors & geo.chunk_mask)
3937 /* not factor of array size */
3938 return -EINVAL;
3939
3940 if (!enough(conf, -1))
3941 return -EINVAL;
3942
3943 kfree(conf->mirrors_new);
3944 conf->mirrors_new = NULL;
3945 if (mddev->delta_disks > 0) {
3946 /* allocate new 'mirrors' list */
3947 conf->mirrors_new = kzalloc(
3948 sizeof(struct raid10_info)
3949 *(mddev->raid_disks +
3950 mddev->delta_disks),
3951 GFP_KERNEL);
3952 if (!conf->mirrors_new)
3953 return -ENOMEM;
3954 }
3955 return 0;
3956 }
3957
3958 /*
3959 * Need to check if array has failed when deciding whether to:
3960 * - start an array
3961 * - remove non-faulty devices
3962 * - add a spare
3963 * - allow a reshape
3964 * This determination is simple when no reshape is happening.
3965 * However if there is a reshape, we need to carefully check
3966 * both the before and after sections.
3967 * This is because some failed devices may only affect one
3968 * of the two sections, and some non-in_sync devices may
3969 * be insync in the section most affected by failed devices.
3970 */
calc_degraded(struct r10conf * conf)3971 static int calc_degraded(struct r10conf *conf)
3972 {
3973 int degraded, degraded2;
3974 int i;
3975
3976 rcu_read_lock();
3977 degraded = 0;
3978 /* 'prev' section first */
3979 for (i = 0; i < conf->prev.raid_disks; i++) {
3980 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3981 if (!rdev || test_bit(Faulty, &rdev->flags))
3982 degraded++;
3983 else if (!test_bit(In_sync, &rdev->flags))
3984 /* When we can reduce the number of devices in
3985 * an array, this might not contribute to
3986 * 'degraded'. It does now.
3987 */
3988 degraded++;
3989 }
3990 rcu_read_unlock();
3991 if (conf->geo.raid_disks == conf->prev.raid_disks)
3992 return degraded;
3993 rcu_read_lock();
3994 degraded2 = 0;
3995 for (i = 0; i < conf->geo.raid_disks; i++) {
3996 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3997 if (!rdev || test_bit(Faulty, &rdev->flags))
3998 degraded2++;
3999 else if (!test_bit(In_sync, &rdev->flags)) {
4000 /* If reshape is increasing the number of devices,
4001 * this section has already been recovered, so
4002 * it doesn't contribute to degraded.
4003 * else it does.
4004 */
4005 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4006 degraded2++;
4007 }
4008 }
4009 rcu_read_unlock();
4010 if (degraded2 > degraded)
4011 return degraded2;
4012 return degraded;
4013 }
4014
raid10_start_reshape(struct mddev * mddev)4015 static int raid10_start_reshape(struct mddev *mddev)
4016 {
4017 /* A 'reshape' has been requested. This commits
4018 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4019 * This also checks if there are enough spares and adds them
4020 * to the array.
4021 * We currently require enough spares to make the final
4022 * array non-degraded. We also require that the difference
4023 * between old and new data_offset - on each device - is
4024 * enough that we never risk over-writing.
4025 */
4026
4027 unsigned long before_length, after_length;
4028 sector_t min_offset_diff = 0;
4029 int first = 1;
4030 struct geom new;
4031 struct r10conf *conf = mddev->private;
4032 struct md_rdev *rdev;
4033 int spares = 0;
4034 int ret;
4035
4036 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4037 return -EBUSY;
4038
4039 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4040 return -EINVAL;
4041
4042 before_length = ((1 << conf->prev.chunk_shift) *
4043 conf->prev.far_copies);
4044 after_length = ((1 << conf->geo.chunk_shift) *
4045 conf->geo.far_copies);
4046
4047 rdev_for_each(rdev, mddev) {
4048 if (!test_bit(In_sync, &rdev->flags)
4049 && !test_bit(Faulty, &rdev->flags))
4050 spares++;
4051 if (rdev->raid_disk >= 0) {
4052 long long diff = (rdev->new_data_offset
4053 - rdev->data_offset);
4054 if (!mddev->reshape_backwards)
4055 diff = -diff;
4056 if (diff < 0)
4057 diff = 0;
4058 if (first || diff < min_offset_diff)
4059 min_offset_diff = diff;
4060 first = 0;
4061 }
4062 }
4063
4064 if (max(before_length, after_length) > min_offset_diff)
4065 return -EINVAL;
4066
4067 if (spares < mddev->delta_disks)
4068 return -EINVAL;
4069
4070 conf->offset_diff = min_offset_diff;
4071 spin_lock_irq(&conf->device_lock);
4072 if (conf->mirrors_new) {
4073 memcpy(conf->mirrors_new, conf->mirrors,
4074 sizeof(struct raid10_info)*conf->prev.raid_disks);
4075 smp_mb();
4076 kfree(conf->mirrors_old);
4077 conf->mirrors_old = conf->mirrors;
4078 conf->mirrors = conf->mirrors_new;
4079 conf->mirrors_new = NULL;
4080 }
4081 setup_geo(&conf->geo, mddev, geo_start);
4082 smp_mb();
4083 if (mddev->reshape_backwards) {
4084 sector_t size = raid10_size(mddev, 0, 0);
4085 if (size < mddev->array_sectors) {
4086 spin_unlock_irq(&conf->device_lock);
4087 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4088 mdname(mddev));
4089 return -EINVAL;
4090 }
4091 mddev->resync_max_sectors = size;
4092 conf->reshape_progress = size;
4093 } else
4094 conf->reshape_progress = 0;
4095 conf->reshape_safe = conf->reshape_progress;
4096 spin_unlock_irq(&conf->device_lock);
4097
4098 if (mddev->delta_disks && mddev->bitmap) {
4099 ret = bitmap_resize(mddev->bitmap,
4100 raid10_size(mddev, 0,
4101 conf->geo.raid_disks),
4102 0, 0);
4103 if (ret)
4104 goto abort;
4105 }
4106 if (mddev->delta_disks > 0) {
4107 rdev_for_each(rdev, mddev)
4108 if (rdev->raid_disk < 0 &&
4109 !test_bit(Faulty, &rdev->flags)) {
4110 if (raid10_add_disk(mddev, rdev) == 0) {
4111 if (rdev->raid_disk >=
4112 conf->prev.raid_disks)
4113 set_bit(In_sync, &rdev->flags);
4114 else
4115 rdev->recovery_offset = 0;
4116
4117 if (sysfs_link_rdev(mddev, rdev))
4118 /* Failure here is OK */;
4119 }
4120 } else if (rdev->raid_disk >= conf->prev.raid_disks
4121 && !test_bit(Faulty, &rdev->flags)) {
4122 /* This is a spare that was manually added */
4123 set_bit(In_sync, &rdev->flags);
4124 }
4125 }
4126 /* When a reshape changes the number of devices,
4127 * ->degraded is measured against the larger of the
4128 * pre and post numbers.
4129 */
4130 spin_lock_irq(&conf->device_lock);
4131 mddev->degraded = calc_degraded(conf);
4132 spin_unlock_irq(&conf->device_lock);
4133 mddev->raid_disks = conf->geo.raid_disks;
4134 mddev->reshape_position = conf->reshape_progress;
4135 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4136
4137 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4138 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4139 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4140 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4141 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4142
4143 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4144 "reshape");
4145 if (!mddev->sync_thread) {
4146 ret = -EAGAIN;
4147 goto abort;
4148 }
4149 conf->reshape_checkpoint = jiffies;
4150 md_wakeup_thread(mddev->sync_thread);
4151 md_new_event(mddev);
4152 return 0;
4153
4154 abort:
4155 mddev->recovery = 0;
4156 spin_lock_irq(&conf->device_lock);
4157 conf->geo = conf->prev;
4158 mddev->raid_disks = conf->geo.raid_disks;
4159 rdev_for_each(rdev, mddev)
4160 rdev->new_data_offset = rdev->data_offset;
4161 smp_wmb();
4162 conf->reshape_progress = MaxSector;
4163 conf->reshape_safe = MaxSector;
4164 mddev->reshape_position = MaxSector;
4165 spin_unlock_irq(&conf->device_lock);
4166 return ret;
4167 }
4168
4169 /* Calculate the last device-address that could contain
4170 * any block from the chunk that includes the array-address 's'
4171 * and report the next address.
4172 * i.e. the address returned will be chunk-aligned and after
4173 * any data that is in the chunk containing 's'.
4174 */
last_dev_address(sector_t s,struct geom * geo)4175 static sector_t last_dev_address(sector_t s, struct geom *geo)
4176 {
4177 s = (s | geo->chunk_mask) + 1;
4178 s >>= geo->chunk_shift;
4179 s *= geo->near_copies;
4180 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4181 s *= geo->far_copies;
4182 s <<= geo->chunk_shift;
4183 return s;
4184 }
4185
4186 /* Calculate the first device-address that could contain
4187 * any block from the chunk that includes the array-address 's'.
4188 * This too will be the start of a chunk
4189 */
first_dev_address(sector_t s,struct geom * geo)4190 static sector_t first_dev_address(sector_t s, struct geom *geo)
4191 {
4192 s >>= geo->chunk_shift;
4193 s *= geo->near_copies;
4194 sector_div(s, geo->raid_disks);
4195 s *= geo->far_copies;
4196 s <<= geo->chunk_shift;
4197 return s;
4198 }
4199
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)4200 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4201 int *skipped)
4202 {
4203 /* We simply copy at most one chunk (smallest of old and new)
4204 * at a time, possibly less if that exceeds RESYNC_PAGES,
4205 * or we hit a bad block or something.
4206 * This might mean we pause for normal IO in the middle of
4207 * a chunk, but that is not a problem as mddev->reshape_position
4208 * can record any location.
4209 *
4210 * If we will want to write to a location that isn't
4211 * yet recorded as 'safe' (i.e. in metadata on disk) then
4212 * we need to flush all reshape requests and update the metadata.
4213 *
4214 * When reshaping forwards (e.g. to more devices), we interpret
4215 * 'safe' as the earliest block which might not have been copied
4216 * down yet. We divide this by previous stripe size and multiply
4217 * by previous stripe length to get lowest device offset that we
4218 * cannot write to yet.
4219 * We interpret 'sector_nr' as an address that we want to write to.
4220 * From this we use last_device_address() to find where we might
4221 * write to, and first_device_address on the 'safe' position.
4222 * If this 'next' write position is after the 'safe' position,
4223 * we must update the metadata to increase the 'safe' position.
4224 *
4225 * When reshaping backwards, we round in the opposite direction
4226 * and perform the reverse test: next write position must not be
4227 * less than current safe position.
4228 *
4229 * In all this the minimum difference in data offsets
4230 * (conf->offset_diff - always positive) allows a bit of slack,
4231 * so next can be after 'safe', but not by more than offset_diff
4232 *
4233 * We need to prepare all the bios here before we start any IO
4234 * to ensure the size we choose is acceptable to all devices.
4235 * The means one for each copy for write-out and an extra one for
4236 * read-in.
4237 * We store the read-in bio in ->master_bio and the others in
4238 * ->devs[x].bio and ->devs[x].repl_bio.
4239 */
4240 struct r10conf *conf = mddev->private;
4241 struct r10bio *r10_bio;
4242 sector_t next, safe, last;
4243 int max_sectors;
4244 int nr_sectors;
4245 int s;
4246 struct md_rdev *rdev;
4247 int need_flush = 0;
4248 struct bio *blist;
4249 struct bio *bio, *read_bio;
4250 int sectors_done = 0;
4251
4252 if (sector_nr == 0) {
4253 /* If restarting in the middle, skip the initial sectors */
4254 if (mddev->reshape_backwards &&
4255 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4256 sector_nr = (raid10_size(mddev, 0, 0)
4257 - conf->reshape_progress);
4258 } else if (!mddev->reshape_backwards &&
4259 conf->reshape_progress > 0)
4260 sector_nr = conf->reshape_progress;
4261 if (sector_nr) {
4262 mddev->curr_resync_completed = sector_nr;
4263 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4264 *skipped = 1;
4265 return sector_nr;
4266 }
4267 }
4268
4269 /* We don't use sector_nr to track where we are up to
4270 * as that doesn't work well for ->reshape_backwards.
4271 * So just use ->reshape_progress.
4272 */
4273 if (mddev->reshape_backwards) {
4274 /* 'next' is the earliest device address that we might
4275 * write to for this chunk in the new layout
4276 */
4277 next = first_dev_address(conf->reshape_progress - 1,
4278 &conf->geo);
4279
4280 /* 'safe' is the last device address that we might read from
4281 * in the old layout after a restart
4282 */
4283 safe = last_dev_address(conf->reshape_safe - 1,
4284 &conf->prev);
4285
4286 if (next + conf->offset_diff < safe)
4287 need_flush = 1;
4288
4289 last = conf->reshape_progress - 1;
4290 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4291 & conf->prev.chunk_mask);
4292 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4293 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4294 } else {
4295 /* 'next' is after the last device address that we
4296 * might write to for this chunk in the new layout
4297 */
4298 next = last_dev_address(conf->reshape_progress, &conf->geo);
4299
4300 /* 'safe' is the earliest device address that we might
4301 * read from in the old layout after a restart
4302 */
4303 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4304
4305 /* Need to update metadata if 'next' might be beyond 'safe'
4306 * as that would possibly corrupt data
4307 */
4308 if (next > safe + conf->offset_diff)
4309 need_flush = 1;
4310
4311 sector_nr = conf->reshape_progress;
4312 last = sector_nr | (conf->geo.chunk_mask
4313 & conf->prev.chunk_mask);
4314
4315 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4316 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4317 }
4318
4319 if (need_flush ||
4320 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4321 /* Need to update reshape_position in metadata */
4322 wait_barrier(conf);
4323 mddev->reshape_position = conf->reshape_progress;
4324 if (mddev->reshape_backwards)
4325 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4326 - conf->reshape_progress;
4327 else
4328 mddev->curr_resync_completed = conf->reshape_progress;
4329 conf->reshape_checkpoint = jiffies;
4330 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4331 md_wakeup_thread(mddev->thread);
4332 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4333 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4334 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4335 allow_barrier(conf);
4336 return sectors_done;
4337 }
4338 conf->reshape_safe = mddev->reshape_position;
4339 allow_barrier(conf);
4340 }
4341
4342 raise_barrier(conf, 0);
4343 read_more:
4344 /* Now schedule reads for blocks from sector_nr to last */
4345 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4346 r10_bio->state = 0;
4347 raise_barrier(conf, 1);
4348 atomic_set(&r10_bio->remaining, 0);
4349 r10_bio->mddev = mddev;
4350 r10_bio->sector = sector_nr;
4351 set_bit(R10BIO_IsReshape, &r10_bio->state);
4352 r10_bio->sectors = last - sector_nr + 1;
4353 rdev = read_balance(conf, r10_bio, &max_sectors);
4354 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4355
4356 if (!rdev) {
4357 /* Cannot read from here, so need to record bad blocks
4358 * on all the target devices.
4359 */
4360 // FIXME
4361 mempool_free(r10_bio, conf->r10buf_pool);
4362 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4363 return sectors_done;
4364 }
4365
4366 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4367
4368 read_bio->bi_bdev = rdev->bdev;
4369 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4370 + rdev->data_offset);
4371 read_bio->bi_private = r10_bio;
4372 read_bio->bi_end_io = end_sync_read;
4373 read_bio->bi_rw = READ;
4374 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4375 read_bio->bi_error = 0;
4376 read_bio->bi_vcnt = 0;
4377 read_bio->bi_iter.bi_size = 0;
4378 r10_bio->master_bio = read_bio;
4379 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4380
4381 /* Now find the locations in the new layout */
4382 __raid10_find_phys(&conf->geo, r10_bio);
4383
4384 blist = read_bio;
4385 read_bio->bi_next = NULL;
4386
4387 for (s = 0; s < conf->copies*2; s++) {
4388 struct bio *b;
4389 int d = r10_bio->devs[s/2].devnum;
4390 struct md_rdev *rdev2;
4391 if (s&1) {
4392 rdev2 = conf->mirrors[d].replacement;
4393 b = r10_bio->devs[s/2].repl_bio;
4394 } else {
4395 rdev2 = conf->mirrors[d].rdev;
4396 b = r10_bio->devs[s/2].bio;
4397 }
4398 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4399 continue;
4400
4401 bio_reset(b);
4402 b->bi_bdev = rdev2->bdev;
4403 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4404 rdev2->new_data_offset;
4405 b->bi_private = r10_bio;
4406 b->bi_end_io = end_reshape_write;
4407 b->bi_rw = WRITE;
4408 b->bi_next = blist;
4409 blist = b;
4410 }
4411
4412 /* Now add as many pages as possible to all of these bios. */
4413
4414 nr_sectors = 0;
4415 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4416 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4417 int len = (max_sectors - s) << 9;
4418 if (len > PAGE_SIZE)
4419 len = PAGE_SIZE;
4420 for (bio = blist; bio ; bio = bio->bi_next) {
4421 struct bio *bio2;
4422 if (bio_add_page(bio, page, len, 0))
4423 continue;
4424
4425 /* Didn't fit, must stop */
4426 for (bio2 = blist;
4427 bio2 && bio2 != bio;
4428 bio2 = bio2->bi_next) {
4429 /* Remove last page from this bio */
4430 bio2->bi_vcnt--;
4431 bio2->bi_iter.bi_size -= len;
4432 bio_clear_flag(bio2, BIO_SEG_VALID);
4433 }
4434 goto bio_full;
4435 }
4436 sector_nr += len >> 9;
4437 nr_sectors += len >> 9;
4438 }
4439 bio_full:
4440 r10_bio->sectors = nr_sectors;
4441
4442 /* Now submit the read */
4443 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4444 atomic_inc(&r10_bio->remaining);
4445 read_bio->bi_next = NULL;
4446 generic_make_request(read_bio);
4447 sectors_done += nr_sectors;
4448 if (sector_nr <= last)
4449 goto read_more;
4450
4451 lower_barrier(conf);
4452
4453 /* Now that we have done the whole section we can
4454 * update reshape_progress
4455 */
4456 if (mddev->reshape_backwards)
4457 conf->reshape_progress -= sectors_done;
4458 else
4459 conf->reshape_progress += sectors_done;
4460
4461 return sectors_done;
4462 }
4463
4464 static void end_reshape_request(struct r10bio *r10_bio);
4465 static int handle_reshape_read_error(struct mddev *mddev,
4466 struct r10bio *r10_bio);
reshape_request_write(struct mddev * mddev,struct r10bio * r10_bio)4467 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4468 {
4469 /* Reshape read completed. Hopefully we have a block
4470 * to write out.
4471 * If we got a read error then we do sync 1-page reads from
4472 * elsewhere until we find the data - or give up.
4473 */
4474 struct r10conf *conf = mddev->private;
4475 int s;
4476
4477 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4478 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4479 /* Reshape has been aborted */
4480 md_done_sync(mddev, r10_bio->sectors, 0);
4481 return;
4482 }
4483
4484 /* We definitely have the data in the pages, schedule the
4485 * writes.
4486 */
4487 atomic_set(&r10_bio->remaining, 1);
4488 for (s = 0; s < conf->copies*2; s++) {
4489 struct bio *b;
4490 int d = r10_bio->devs[s/2].devnum;
4491 struct md_rdev *rdev;
4492 if (s&1) {
4493 rdev = conf->mirrors[d].replacement;
4494 b = r10_bio->devs[s/2].repl_bio;
4495 } else {
4496 rdev = conf->mirrors[d].rdev;
4497 b = r10_bio->devs[s/2].bio;
4498 }
4499 if (!rdev || test_bit(Faulty, &rdev->flags))
4500 continue;
4501 atomic_inc(&rdev->nr_pending);
4502 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4503 atomic_inc(&r10_bio->remaining);
4504 b->bi_next = NULL;
4505 generic_make_request(b);
4506 }
4507 end_reshape_request(r10_bio);
4508 }
4509
end_reshape(struct r10conf * conf)4510 static void end_reshape(struct r10conf *conf)
4511 {
4512 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4513 return;
4514
4515 spin_lock_irq(&conf->device_lock);
4516 conf->prev = conf->geo;
4517 md_finish_reshape(conf->mddev);
4518 smp_wmb();
4519 conf->reshape_progress = MaxSector;
4520 conf->reshape_safe = MaxSector;
4521 spin_unlock_irq(&conf->device_lock);
4522
4523 /* read-ahead size must cover two whole stripes, which is
4524 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4525 */
4526 if (conf->mddev->queue) {
4527 int stripe = conf->geo.raid_disks *
4528 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4529 stripe /= conf->geo.near_copies;
4530 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4531 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4532 }
4533 conf->fullsync = 0;
4534 }
4535
handle_reshape_read_error(struct mddev * mddev,struct r10bio * r10_bio)4536 static int handle_reshape_read_error(struct mddev *mddev,
4537 struct r10bio *r10_bio)
4538 {
4539 /* Use sync reads to get the blocks from somewhere else */
4540 int sectors = r10_bio->sectors;
4541 struct r10conf *conf = mddev->private;
4542 struct {
4543 struct r10bio r10_bio;
4544 struct r10dev devs[conf->copies];
4545 } on_stack;
4546 struct r10bio *r10b = &on_stack.r10_bio;
4547 int slot = 0;
4548 int idx = 0;
4549 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4550
4551 r10b->sector = r10_bio->sector;
4552 __raid10_find_phys(&conf->prev, r10b);
4553
4554 while (sectors) {
4555 int s = sectors;
4556 int success = 0;
4557 int first_slot = slot;
4558
4559 if (s > (PAGE_SIZE >> 9))
4560 s = PAGE_SIZE >> 9;
4561
4562 while (!success) {
4563 int d = r10b->devs[slot].devnum;
4564 struct md_rdev *rdev = conf->mirrors[d].rdev;
4565 sector_t addr;
4566 if (rdev == NULL ||
4567 test_bit(Faulty, &rdev->flags) ||
4568 !test_bit(In_sync, &rdev->flags))
4569 goto failed;
4570
4571 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4572 success = sync_page_io(rdev,
4573 addr,
4574 s << 9,
4575 bvec[idx].bv_page,
4576 READ, false);
4577 if (success)
4578 break;
4579 failed:
4580 slot++;
4581 if (slot >= conf->copies)
4582 slot = 0;
4583 if (slot == first_slot)
4584 break;
4585 }
4586 if (!success) {
4587 /* couldn't read this block, must give up */
4588 set_bit(MD_RECOVERY_INTR,
4589 &mddev->recovery);
4590 return -EIO;
4591 }
4592 sectors -= s;
4593 idx++;
4594 }
4595 return 0;
4596 }
4597
end_reshape_write(struct bio * bio)4598 static void end_reshape_write(struct bio *bio)
4599 {
4600 struct r10bio *r10_bio = bio->bi_private;
4601 struct mddev *mddev = r10_bio->mddev;
4602 struct r10conf *conf = mddev->private;
4603 int d;
4604 int slot;
4605 int repl;
4606 struct md_rdev *rdev = NULL;
4607
4608 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4609 if (repl)
4610 rdev = conf->mirrors[d].replacement;
4611 if (!rdev) {
4612 smp_mb();
4613 rdev = conf->mirrors[d].rdev;
4614 }
4615
4616 if (bio->bi_error) {
4617 /* FIXME should record badblock */
4618 md_error(mddev, rdev);
4619 }
4620
4621 rdev_dec_pending(rdev, mddev);
4622 end_reshape_request(r10_bio);
4623 }
4624
end_reshape_request(struct r10bio * r10_bio)4625 static void end_reshape_request(struct r10bio *r10_bio)
4626 {
4627 if (!atomic_dec_and_test(&r10_bio->remaining))
4628 return;
4629 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4630 bio_put(r10_bio->master_bio);
4631 put_buf(r10_bio);
4632 }
4633
raid10_finish_reshape(struct mddev * mddev)4634 static void raid10_finish_reshape(struct mddev *mddev)
4635 {
4636 struct r10conf *conf = mddev->private;
4637
4638 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4639 return;
4640
4641 if (mddev->delta_disks > 0) {
4642 sector_t size = raid10_size(mddev, 0, 0);
4643 md_set_array_sectors(mddev, size);
4644 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4645 mddev->recovery_cp = mddev->resync_max_sectors;
4646 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4647 }
4648 mddev->resync_max_sectors = size;
4649 set_capacity(mddev->gendisk, mddev->array_sectors);
4650 revalidate_disk(mddev->gendisk);
4651 } else {
4652 int d;
4653 for (d = conf->geo.raid_disks ;
4654 d < conf->geo.raid_disks - mddev->delta_disks;
4655 d++) {
4656 struct md_rdev *rdev = conf->mirrors[d].rdev;
4657 if (rdev)
4658 clear_bit(In_sync, &rdev->flags);
4659 rdev = conf->mirrors[d].replacement;
4660 if (rdev)
4661 clear_bit(In_sync, &rdev->flags);
4662 }
4663 }
4664 mddev->layout = mddev->new_layout;
4665 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4666 mddev->reshape_position = MaxSector;
4667 mddev->delta_disks = 0;
4668 mddev->reshape_backwards = 0;
4669 }
4670
4671 static struct md_personality raid10_personality =
4672 {
4673 .name = "raid10",
4674 .level = 10,
4675 .owner = THIS_MODULE,
4676 .make_request = make_request,
4677 .run = run,
4678 .free = raid10_free,
4679 .status = status,
4680 .error_handler = error,
4681 .hot_add_disk = raid10_add_disk,
4682 .hot_remove_disk= raid10_remove_disk,
4683 .spare_active = raid10_spare_active,
4684 .sync_request = sync_request,
4685 .quiesce = raid10_quiesce,
4686 .size = raid10_size,
4687 .resize = raid10_resize,
4688 .takeover = raid10_takeover,
4689 .check_reshape = raid10_check_reshape,
4690 .start_reshape = raid10_start_reshape,
4691 .finish_reshape = raid10_finish_reshape,
4692 .congested = raid10_congested,
4693 };
4694
raid_init(void)4695 static int __init raid_init(void)
4696 {
4697 return register_md_personality(&raid10_personality);
4698 }
4699
raid_exit(void)4700 static void raid_exit(void)
4701 {
4702 unregister_md_personality(&raid10_personality);
4703 }
4704
4705 module_init(raid_init);
4706 module_exit(raid_exit);
4707 MODULE_LICENSE("GPL");
4708 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4709 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4710 MODULE_ALIAS("md-raid10");
4711 MODULE_ALIAS("md-level-10");
4712
4713 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4714