• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
stripe_hash(struct r5conf * conf,sector_t sect)87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
stripe_hash_locks_hash(sector_t sect)93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
lock_device_hash_lock(struct r5conf * conf,int hash)98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
unlock_device_hash_lock(struct r5conf * conf,int hash)104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
lock_all_device_hash_locks_irq(struct r5conf * conf)110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	spin_lock_irq(conf->hash_locks);
114 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
115 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
116 	spin_lock(&conf->device_lock);
117 }
118 
unlock_all_device_hash_locks_irq(struct r5conf * conf)119 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
120 {
121 	int i;
122 	spin_unlock(&conf->device_lock);
123 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
124 		spin_unlock(conf->hash_locks + i);
125 	spin_unlock_irq(conf->hash_locks);
126 }
127 
128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
129  * order without overlap.  There may be several bio's per stripe+device, and
130  * a bio could span several devices.
131  * When walking this list for a particular stripe+device, we must never proceed
132  * beyond a bio that extends past this device, as the next bio might no longer
133  * be valid.
134  * This function is used to determine the 'next' bio in the list, given the sector
135  * of the current stripe+device
136  */
r5_next_bio(struct bio * bio,sector_t sector)137 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
138 {
139 	int sectors = bio_sectors(bio);
140 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
141 		return bio->bi_next;
142 	else
143 		return NULL;
144 }
145 
146 /*
147  * We maintain a biased count of active stripes in the bottom 16 bits of
148  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
149  */
raid5_bi_processed_stripes(struct bio * bio)150 static inline int raid5_bi_processed_stripes(struct bio *bio)
151 {
152 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
153 	return (atomic_read(segments) >> 16) & 0xffff;
154 }
155 
raid5_dec_bi_active_stripes(struct bio * bio)156 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
157 {
158 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
159 	return atomic_sub_return(1, segments) & 0xffff;
160 }
161 
raid5_inc_bi_active_stripes(struct bio * bio)162 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
163 {
164 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
165 	atomic_inc(segments);
166 }
167 
raid5_set_bi_processed_stripes(struct bio * bio,unsigned int cnt)168 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
169 	unsigned int cnt)
170 {
171 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
172 	int old, new;
173 
174 	do {
175 		old = atomic_read(segments);
176 		new = (old & 0xffff) | (cnt << 16);
177 	} while (atomic_cmpxchg(segments, old, new) != old);
178 }
179 
raid5_set_bi_stripes(struct bio * bio,unsigned int cnt)180 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
181 {
182 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
183 	atomic_set(segments, cnt);
184 }
185 
186 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)187 static inline int raid6_d0(struct stripe_head *sh)
188 {
189 	if (sh->ddf_layout)
190 		/* ddf always start from first device */
191 		return 0;
192 	/* md starts just after Q block */
193 	if (sh->qd_idx == sh->disks - 1)
194 		return 0;
195 	else
196 		return sh->qd_idx + 1;
197 }
raid6_next_disk(int disk,int raid_disks)198 static inline int raid6_next_disk(int disk, int raid_disks)
199 {
200 	disk++;
201 	return (disk < raid_disks) ? disk : 0;
202 }
203 
204 /* When walking through the disks in a raid5, starting at raid6_d0,
205  * We need to map each disk to a 'slot', where the data disks are slot
206  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
207  * is raid_disks-1.  This help does that mapping.
208  */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)209 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
210 			     int *count, int syndrome_disks)
211 {
212 	int slot = *count;
213 
214 	if (sh->ddf_layout)
215 		(*count)++;
216 	if (idx == sh->pd_idx)
217 		return syndrome_disks;
218 	if (idx == sh->qd_idx)
219 		return syndrome_disks + 1;
220 	if (!sh->ddf_layout)
221 		(*count)++;
222 	return slot;
223 }
224 
return_io(struct bio_list * return_bi)225 static void return_io(struct bio_list *return_bi)
226 {
227 	struct bio *bi;
228 	while ((bi = bio_list_pop(return_bi)) != NULL) {
229 		bi->bi_iter.bi_size = 0;
230 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
231 					 bi, 0);
232 		bio_endio(bi);
233 	}
234 }
235 
236 static void print_raid5_conf (struct r5conf *conf);
237 
stripe_operations_active(struct stripe_head * sh)238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240 	return sh->check_state || sh->reconstruct_state ||
241 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244 
raid5_wakeup_stripe_thread(struct stripe_head * sh)245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247 	struct r5conf *conf = sh->raid_conf;
248 	struct r5worker_group *group;
249 	int thread_cnt;
250 	int i, cpu = sh->cpu;
251 
252 	if (!cpu_online(cpu)) {
253 		cpu = cpumask_any(cpu_online_mask);
254 		sh->cpu = cpu;
255 	}
256 
257 	if (list_empty(&sh->lru)) {
258 		struct r5worker_group *group;
259 		group = conf->worker_groups + cpu_to_group(cpu);
260 		list_add_tail(&sh->lru, &group->handle_list);
261 		group->stripes_cnt++;
262 		sh->group = group;
263 	}
264 
265 	if (conf->worker_cnt_per_group == 0) {
266 		md_wakeup_thread(conf->mddev->thread);
267 		return;
268 	}
269 
270 	group = conf->worker_groups + cpu_to_group(sh->cpu);
271 
272 	group->workers[0].working = true;
273 	/* at least one worker should run to avoid race */
274 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275 
276 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 	/* wakeup more workers */
278 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 		if (group->workers[i].working == false) {
280 			group->workers[i].working = true;
281 			queue_work_on(sh->cpu, raid5_wq,
282 				      &group->workers[i].work);
283 			thread_cnt--;
284 		}
285 	}
286 }
287 
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 			      struct list_head *temp_inactive_list)
290 {
291 	BUG_ON(!list_empty(&sh->lru));
292 	BUG_ON(atomic_read(&conf->active_stripes)==0);
293 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
295 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296 			list_add_tail(&sh->lru, &conf->delayed_list);
297 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298 			   sh->bm_seq - conf->seq_write > 0)
299 			list_add_tail(&sh->lru, &conf->bitmap_list);
300 		else {
301 			clear_bit(STRIPE_DELAYED, &sh->state);
302 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
303 			if (conf->worker_cnt_per_group == 0) {
304 				list_add_tail(&sh->lru, &conf->handle_list);
305 			} else {
306 				raid5_wakeup_stripe_thread(sh);
307 				return;
308 			}
309 		}
310 		md_wakeup_thread(conf->mddev->thread);
311 	} else {
312 		BUG_ON(stripe_operations_active(sh));
313 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314 			if (atomic_dec_return(&conf->preread_active_stripes)
315 			    < IO_THRESHOLD)
316 				md_wakeup_thread(conf->mddev->thread);
317 		atomic_dec(&conf->active_stripes);
318 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
319 			list_add_tail(&sh->lru, temp_inactive_list);
320 	}
321 }
322 
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324 			     struct list_head *temp_inactive_list)
325 {
326 	if (atomic_dec_and_test(&sh->count))
327 		do_release_stripe(conf, sh, temp_inactive_list);
328 }
329 
330 /*
331  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332  *
333  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334  * given time. Adding stripes only takes device lock, while deleting stripes
335  * only takes hash lock.
336  */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)337 static void release_inactive_stripe_list(struct r5conf *conf,
338 					 struct list_head *temp_inactive_list,
339 					 int hash)
340 {
341 	int size;
342 	bool do_wakeup = false;
343 	unsigned long flags;
344 
345 	if (hash == NR_STRIPE_HASH_LOCKS) {
346 		size = NR_STRIPE_HASH_LOCKS;
347 		hash = NR_STRIPE_HASH_LOCKS - 1;
348 	} else
349 		size = 1;
350 	while (size) {
351 		struct list_head *list = &temp_inactive_list[size - 1];
352 
353 		/*
354 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
355 		 * remove stripes from the list
356 		 */
357 		if (!list_empty_careful(list)) {
358 			spin_lock_irqsave(conf->hash_locks + hash, flags);
359 			if (list_empty(conf->inactive_list + hash) &&
360 			    !list_empty(list))
361 				atomic_dec(&conf->empty_inactive_list_nr);
362 			list_splice_tail_init(list, conf->inactive_list + hash);
363 			do_wakeup = true;
364 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365 		}
366 		size--;
367 		hash--;
368 	}
369 
370 	if (do_wakeup) {
371 		wake_up(&conf->wait_for_stripe);
372 		if (atomic_read(&conf->active_stripes) == 0)
373 			wake_up(&conf->wait_for_quiescent);
374 		if (conf->retry_read_aligned)
375 			md_wakeup_thread(conf->mddev->thread);
376 	}
377 }
378 
379 /* should hold conf->device_lock already */
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)380 static int release_stripe_list(struct r5conf *conf,
381 			       struct list_head *temp_inactive_list)
382 {
383 	struct stripe_head *sh;
384 	int count = 0;
385 	struct llist_node *head;
386 
387 	head = llist_del_all(&conf->released_stripes);
388 	head = llist_reverse_order(head);
389 	while (head) {
390 		int hash;
391 
392 		sh = llist_entry(head, struct stripe_head, release_list);
393 		head = llist_next(head);
394 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
395 		smp_mb();
396 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
397 		/*
398 		 * Don't worry the bit is set here, because if the bit is set
399 		 * again, the count is always > 1. This is true for
400 		 * STRIPE_ON_UNPLUG_LIST bit too.
401 		 */
402 		hash = sh->hash_lock_index;
403 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
404 		count++;
405 	}
406 
407 	return count;
408 }
409 
raid5_release_stripe(struct stripe_head * sh)410 void raid5_release_stripe(struct stripe_head *sh)
411 {
412 	struct r5conf *conf = sh->raid_conf;
413 	unsigned long flags;
414 	struct list_head list;
415 	int hash;
416 	bool wakeup;
417 
418 	/* Avoid release_list until the last reference.
419 	 */
420 	if (atomic_add_unless(&sh->count, -1, 1))
421 		return;
422 
423 	if (unlikely(!conf->mddev->thread) ||
424 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
425 		goto slow_path;
426 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
427 	if (wakeup)
428 		md_wakeup_thread(conf->mddev->thread);
429 	return;
430 slow_path:
431 	local_irq_save(flags);
432 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
433 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
434 		INIT_LIST_HEAD(&list);
435 		hash = sh->hash_lock_index;
436 		do_release_stripe(conf, sh, &list);
437 		spin_unlock(&conf->device_lock);
438 		release_inactive_stripe_list(conf, &list, hash);
439 	}
440 	local_irq_restore(flags);
441 }
442 
remove_hash(struct stripe_head * sh)443 static inline void remove_hash(struct stripe_head *sh)
444 {
445 	pr_debug("remove_hash(), stripe %llu\n",
446 		(unsigned long long)sh->sector);
447 
448 	hlist_del_init(&sh->hash);
449 }
450 
insert_hash(struct r5conf * conf,struct stripe_head * sh)451 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
452 {
453 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
454 
455 	pr_debug("insert_hash(), stripe %llu\n",
456 		(unsigned long long)sh->sector);
457 
458 	hlist_add_head(&sh->hash, hp);
459 }
460 
461 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)462 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
463 {
464 	struct stripe_head *sh = NULL;
465 	struct list_head *first;
466 
467 	if (list_empty(conf->inactive_list + hash))
468 		goto out;
469 	first = (conf->inactive_list + hash)->next;
470 	sh = list_entry(first, struct stripe_head, lru);
471 	list_del_init(first);
472 	remove_hash(sh);
473 	atomic_inc(&conf->active_stripes);
474 	BUG_ON(hash != sh->hash_lock_index);
475 	if (list_empty(conf->inactive_list + hash))
476 		atomic_inc(&conf->empty_inactive_list_nr);
477 out:
478 	return sh;
479 }
480 
shrink_buffers(struct stripe_head * sh)481 static void shrink_buffers(struct stripe_head *sh)
482 {
483 	struct page *p;
484 	int i;
485 	int num = sh->raid_conf->pool_size;
486 
487 	for (i = 0; i < num ; i++) {
488 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
489 		p = sh->dev[i].page;
490 		if (!p)
491 			continue;
492 		sh->dev[i].page = NULL;
493 		put_page(p);
494 	}
495 }
496 
grow_buffers(struct stripe_head * sh,gfp_t gfp)497 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
498 {
499 	int i;
500 	int num = sh->raid_conf->pool_size;
501 
502 	for (i = 0; i < num; i++) {
503 		struct page *page;
504 
505 		if (!(page = alloc_page(gfp))) {
506 			return 1;
507 		}
508 		sh->dev[i].page = page;
509 		sh->dev[i].orig_page = page;
510 	}
511 	return 0;
512 }
513 
514 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
515 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
516 			    struct stripe_head *sh);
517 
init_stripe(struct stripe_head * sh,sector_t sector,int previous)518 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
519 {
520 	struct r5conf *conf = sh->raid_conf;
521 	int i, seq;
522 
523 	BUG_ON(atomic_read(&sh->count) != 0);
524 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
525 	BUG_ON(stripe_operations_active(sh));
526 	BUG_ON(sh->batch_head);
527 
528 	pr_debug("init_stripe called, stripe %llu\n",
529 		(unsigned long long)sector);
530 retry:
531 	seq = read_seqcount_begin(&conf->gen_lock);
532 	sh->generation = conf->generation - previous;
533 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
534 	sh->sector = sector;
535 	stripe_set_idx(sector, conf, previous, sh);
536 	sh->state = 0;
537 
538 	for (i = sh->disks; i--; ) {
539 		struct r5dev *dev = &sh->dev[i];
540 
541 		if (dev->toread || dev->read || dev->towrite || dev->written ||
542 		    test_bit(R5_LOCKED, &dev->flags)) {
543 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
544 			       (unsigned long long)sh->sector, i, dev->toread,
545 			       dev->read, dev->towrite, dev->written,
546 			       test_bit(R5_LOCKED, &dev->flags));
547 			WARN_ON(1);
548 		}
549 		dev->flags = 0;
550 		raid5_build_block(sh, i, previous);
551 	}
552 	if (read_seqcount_retry(&conf->gen_lock, seq))
553 		goto retry;
554 	sh->overwrite_disks = 0;
555 	insert_hash(conf, sh);
556 	sh->cpu = smp_processor_id();
557 	set_bit(STRIPE_BATCH_READY, &sh->state);
558 }
559 
__find_stripe(struct r5conf * conf,sector_t sector,short generation)560 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
561 					 short generation)
562 {
563 	struct stripe_head *sh;
564 
565 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
566 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
567 		if (sh->sector == sector && sh->generation == generation)
568 			return sh;
569 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
570 	return NULL;
571 }
572 
573 /*
574  * Need to check if array has failed when deciding whether to:
575  *  - start an array
576  *  - remove non-faulty devices
577  *  - add a spare
578  *  - allow a reshape
579  * This determination is simple when no reshape is happening.
580  * However if there is a reshape, we need to carefully check
581  * both the before and after sections.
582  * This is because some failed devices may only affect one
583  * of the two sections, and some non-in_sync devices may
584  * be insync in the section most affected by failed devices.
585  */
calc_degraded(struct r5conf * conf)586 static int calc_degraded(struct r5conf *conf)
587 {
588 	int degraded, degraded2;
589 	int i;
590 
591 	rcu_read_lock();
592 	degraded = 0;
593 	for (i = 0; i < conf->previous_raid_disks; i++) {
594 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
595 		if (rdev && test_bit(Faulty, &rdev->flags))
596 			rdev = rcu_dereference(conf->disks[i].replacement);
597 		if (!rdev || test_bit(Faulty, &rdev->flags))
598 			degraded++;
599 		else if (test_bit(In_sync, &rdev->flags))
600 			;
601 		else
602 			/* not in-sync or faulty.
603 			 * If the reshape increases the number of devices,
604 			 * this is being recovered by the reshape, so
605 			 * this 'previous' section is not in_sync.
606 			 * If the number of devices is being reduced however,
607 			 * the device can only be part of the array if
608 			 * we are reverting a reshape, so this section will
609 			 * be in-sync.
610 			 */
611 			if (conf->raid_disks >= conf->previous_raid_disks)
612 				degraded++;
613 	}
614 	rcu_read_unlock();
615 	if (conf->raid_disks == conf->previous_raid_disks)
616 		return degraded;
617 	rcu_read_lock();
618 	degraded2 = 0;
619 	for (i = 0; i < conf->raid_disks; i++) {
620 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
621 		if (rdev && test_bit(Faulty, &rdev->flags))
622 			rdev = rcu_dereference(conf->disks[i].replacement);
623 		if (!rdev || test_bit(Faulty, &rdev->flags))
624 			degraded2++;
625 		else if (test_bit(In_sync, &rdev->flags))
626 			;
627 		else
628 			/* not in-sync or faulty.
629 			 * If reshape increases the number of devices, this
630 			 * section has already been recovered, else it
631 			 * almost certainly hasn't.
632 			 */
633 			if (conf->raid_disks <= conf->previous_raid_disks)
634 				degraded2++;
635 	}
636 	rcu_read_unlock();
637 	if (degraded2 > degraded)
638 		return degraded2;
639 	return degraded;
640 }
641 
has_failed(struct r5conf * conf)642 static int has_failed(struct r5conf *conf)
643 {
644 	int degraded;
645 
646 	if (conf->mddev->reshape_position == MaxSector)
647 		return conf->mddev->degraded > conf->max_degraded;
648 
649 	degraded = calc_degraded(conf);
650 	if (degraded > conf->max_degraded)
651 		return 1;
652 	return 0;
653 }
654 
655 struct stripe_head *
raid5_get_active_stripe(struct r5conf * conf,sector_t sector,int previous,int noblock,int noquiesce)656 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
657 			int previous, int noblock, int noquiesce)
658 {
659 	struct stripe_head *sh;
660 	int hash = stripe_hash_locks_hash(sector);
661 
662 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
663 
664 	spin_lock_irq(conf->hash_locks + hash);
665 
666 	do {
667 		wait_event_lock_irq(conf->wait_for_quiescent,
668 				    conf->quiesce == 0 || noquiesce,
669 				    *(conf->hash_locks + hash));
670 		sh = __find_stripe(conf, sector, conf->generation - previous);
671 		if (!sh) {
672 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
673 				sh = get_free_stripe(conf, hash);
674 				if (!sh && !test_bit(R5_DID_ALLOC,
675 						     &conf->cache_state))
676 					set_bit(R5_ALLOC_MORE,
677 						&conf->cache_state);
678 			}
679 			if (noblock && sh == NULL)
680 				break;
681 			if (!sh) {
682 				set_bit(R5_INACTIVE_BLOCKED,
683 					&conf->cache_state);
684 				wait_event_lock_irq(
685 					conf->wait_for_stripe,
686 					!list_empty(conf->inactive_list + hash) &&
687 					(atomic_read(&conf->active_stripes)
688 					 < (conf->max_nr_stripes * 3 / 4)
689 					 || !test_bit(R5_INACTIVE_BLOCKED,
690 						      &conf->cache_state)),
691 					*(conf->hash_locks + hash));
692 				clear_bit(R5_INACTIVE_BLOCKED,
693 					  &conf->cache_state);
694 			} else {
695 				init_stripe(sh, sector, previous);
696 				atomic_inc(&sh->count);
697 			}
698 		} else if (!atomic_inc_not_zero(&sh->count)) {
699 			spin_lock(&conf->device_lock);
700 			if (!atomic_read(&sh->count)) {
701 				if (!test_bit(STRIPE_HANDLE, &sh->state))
702 					atomic_inc(&conf->active_stripes);
703 				BUG_ON(list_empty(&sh->lru) &&
704 				       !test_bit(STRIPE_EXPANDING, &sh->state));
705 				list_del_init(&sh->lru);
706 				if (sh->group) {
707 					sh->group->stripes_cnt--;
708 					sh->group = NULL;
709 				}
710 			}
711 			atomic_inc(&sh->count);
712 			spin_unlock(&conf->device_lock);
713 		}
714 	} while (sh == NULL);
715 
716 	spin_unlock_irq(conf->hash_locks + hash);
717 	return sh;
718 }
719 
is_full_stripe_write(struct stripe_head * sh)720 static bool is_full_stripe_write(struct stripe_head *sh)
721 {
722 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
723 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
724 }
725 
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)726 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
727 {
728 	if (sh1 > sh2) {
729 		spin_lock_irq(&sh2->stripe_lock);
730 		spin_lock_nested(&sh1->stripe_lock, 1);
731 	} else {
732 		spin_lock_irq(&sh1->stripe_lock);
733 		spin_lock_nested(&sh2->stripe_lock, 1);
734 	}
735 }
736 
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)737 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
738 {
739 	spin_unlock(&sh1->stripe_lock);
740 	spin_unlock_irq(&sh2->stripe_lock);
741 }
742 
743 /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)744 static bool stripe_can_batch(struct stripe_head *sh)
745 {
746 	struct r5conf *conf = sh->raid_conf;
747 
748 	if (conf->log)
749 		return false;
750 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
751 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
752 		is_full_stripe_write(sh);
753 }
754 
755 /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh)756 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
757 {
758 	struct stripe_head *head;
759 	sector_t head_sector, tmp_sec;
760 	int hash;
761 	int dd_idx;
762 
763 	if (!stripe_can_batch(sh))
764 		return;
765 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
766 	tmp_sec = sh->sector;
767 	if (!sector_div(tmp_sec, conf->chunk_sectors))
768 		return;
769 	head_sector = sh->sector - STRIPE_SECTORS;
770 
771 	hash = stripe_hash_locks_hash(head_sector);
772 	spin_lock_irq(conf->hash_locks + hash);
773 	head = __find_stripe(conf, head_sector, conf->generation);
774 	if (head && !atomic_inc_not_zero(&head->count)) {
775 		spin_lock(&conf->device_lock);
776 		if (!atomic_read(&head->count)) {
777 			if (!test_bit(STRIPE_HANDLE, &head->state))
778 				atomic_inc(&conf->active_stripes);
779 			BUG_ON(list_empty(&head->lru) &&
780 			       !test_bit(STRIPE_EXPANDING, &head->state));
781 			list_del_init(&head->lru);
782 			if (head->group) {
783 				head->group->stripes_cnt--;
784 				head->group = NULL;
785 			}
786 		}
787 		atomic_inc(&head->count);
788 		spin_unlock(&conf->device_lock);
789 	}
790 	spin_unlock_irq(conf->hash_locks + hash);
791 
792 	if (!head)
793 		return;
794 	if (!stripe_can_batch(head))
795 		goto out;
796 
797 	lock_two_stripes(head, sh);
798 	/* clear_batch_ready clear the flag */
799 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
800 		goto unlock_out;
801 
802 	if (sh->batch_head)
803 		goto unlock_out;
804 
805 	dd_idx = 0;
806 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
807 		dd_idx++;
808 	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
809 		goto unlock_out;
810 
811 	if (head->batch_head) {
812 		spin_lock(&head->batch_head->batch_lock);
813 		/* This batch list is already running */
814 		if (!stripe_can_batch(head)) {
815 			spin_unlock(&head->batch_head->batch_lock);
816 			goto unlock_out;
817 		}
818 		/*
819 		 * We must assign batch_head of this stripe within the
820 		 * batch_lock, otherwise clear_batch_ready of batch head
821 		 * stripe could clear BATCH_READY bit of this stripe and
822 		 * this stripe->batch_head doesn't get assigned, which
823 		 * could confuse clear_batch_ready for this stripe
824 		 */
825 		sh->batch_head = head->batch_head;
826 
827 		/*
828 		 * at this point, head's BATCH_READY could be cleared, but we
829 		 * can still add the stripe to batch list
830 		 */
831 		list_add(&sh->batch_list, &head->batch_list);
832 		spin_unlock(&head->batch_head->batch_lock);
833 	} else {
834 		head->batch_head = head;
835 		sh->batch_head = head->batch_head;
836 		spin_lock(&head->batch_lock);
837 		list_add_tail(&sh->batch_list, &head->batch_list);
838 		spin_unlock(&head->batch_lock);
839 	}
840 
841 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
842 		if (atomic_dec_return(&conf->preread_active_stripes)
843 		    < IO_THRESHOLD)
844 			md_wakeup_thread(conf->mddev->thread);
845 
846 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
847 		int seq = sh->bm_seq;
848 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
849 		    sh->batch_head->bm_seq > seq)
850 			seq = sh->batch_head->bm_seq;
851 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
852 		sh->batch_head->bm_seq = seq;
853 	}
854 
855 	atomic_inc(&sh->count);
856 unlock_out:
857 	unlock_two_stripes(head, sh);
858 out:
859 	raid5_release_stripe(head);
860 }
861 
862 /* Determine if 'data_offset' or 'new_data_offset' should be used
863  * in this stripe_head.
864  */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)865 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
866 {
867 	sector_t progress = conf->reshape_progress;
868 	/* Need a memory barrier to make sure we see the value
869 	 * of conf->generation, or ->data_offset that was set before
870 	 * reshape_progress was updated.
871 	 */
872 	smp_rmb();
873 	if (progress == MaxSector)
874 		return 0;
875 	if (sh->generation == conf->generation - 1)
876 		return 0;
877 	/* We are in a reshape, and this is a new-generation stripe,
878 	 * so use new_data_offset.
879 	 */
880 	return 1;
881 }
882 
883 static void
884 raid5_end_read_request(struct bio *bi);
885 static void
886 raid5_end_write_request(struct bio *bi);
887 
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)888 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
889 {
890 	struct r5conf *conf = sh->raid_conf;
891 	int i, disks = sh->disks;
892 	struct stripe_head *head_sh = sh;
893 
894 	might_sleep();
895 
896 	if (r5l_write_stripe(conf->log, sh) == 0)
897 		return;
898 	for (i = disks; i--; ) {
899 		int rw;
900 		int replace_only = 0;
901 		struct bio *bi, *rbi;
902 		struct md_rdev *rdev, *rrdev = NULL;
903 
904 		sh = head_sh;
905 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
906 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
907 				rw = WRITE_FUA;
908 			else
909 				rw = WRITE;
910 			if (test_bit(R5_Discard, &sh->dev[i].flags))
911 				rw |= REQ_DISCARD;
912 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
913 			rw = READ;
914 		else if (test_and_clear_bit(R5_WantReplace,
915 					    &sh->dev[i].flags)) {
916 			rw = WRITE;
917 			replace_only = 1;
918 		} else
919 			continue;
920 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
921 			rw |= REQ_SYNC;
922 
923 again:
924 		bi = &sh->dev[i].req;
925 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
926 
927 		rcu_read_lock();
928 		rrdev = rcu_dereference(conf->disks[i].replacement);
929 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
930 		rdev = rcu_dereference(conf->disks[i].rdev);
931 		if (!rdev) {
932 			rdev = rrdev;
933 			rrdev = NULL;
934 		}
935 		if (rw & WRITE) {
936 			if (replace_only)
937 				rdev = NULL;
938 			if (rdev == rrdev)
939 				/* We raced and saw duplicates */
940 				rrdev = NULL;
941 		} else {
942 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
943 				rdev = rrdev;
944 			rrdev = NULL;
945 		}
946 
947 		if (rdev && test_bit(Faulty, &rdev->flags))
948 			rdev = NULL;
949 		if (rdev)
950 			atomic_inc(&rdev->nr_pending);
951 		if (rrdev && test_bit(Faulty, &rrdev->flags))
952 			rrdev = NULL;
953 		if (rrdev)
954 			atomic_inc(&rrdev->nr_pending);
955 		rcu_read_unlock();
956 
957 		/* We have already checked bad blocks for reads.  Now
958 		 * need to check for writes.  We never accept write errors
959 		 * on the replacement, so we don't to check rrdev.
960 		 */
961 		while ((rw & WRITE) && rdev &&
962 		       test_bit(WriteErrorSeen, &rdev->flags)) {
963 			sector_t first_bad;
964 			int bad_sectors;
965 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
966 					      &first_bad, &bad_sectors);
967 			if (!bad)
968 				break;
969 
970 			if (bad < 0) {
971 				set_bit(BlockedBadBlocks, &rdev->flags);
972 				if (!conf->mddev->external &&
973 				    conf->mddev->flags) {
974 					/* It is very unlikely, but we might
975 					 * still need to write out the
976 					 * bad block log - better give it
977 					 * a chance*/
978 					md_check_recovery(conf->mddev);
979 				}
980 				/*
981 				 * Because md_wait_for_blocked_rdev
982 				 * will dec nr_pending, we must
983 				 * increment it first.
984 				 */
985 				atomic_inc(&rdev->nr_pending);
986 				md_wait_for_blocked_rdev(rdev, conf->mddev);
987 			} else {
988 				/* Acknowledged bad block - skip the write */
989 				rdev_dec_pending(rdev, conf->mddev);
990 				rdev = NULL;
991 			}
992 		}
993 
994 		if (rdev) {
995 			if (s->syncing || s->expanding || s->expanded
996 			    || s->replacing)
997 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
998 
999 			set_bit(STRIPE_IO_STARTED, &sh->state);
1000 
1001 			bio_reset(bi);
1002 			bi->bi_bdev = rdev->bdev;
1003 			bi->bi_rw = rw;
1004 			bi->bi_end_io = (rw & WRITE)
1005 				? raid5_end_write_request
1006 				: raid5_end_read_request;
1007 			bi->bi_private = sh;
1008 
1009 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1010 				__func__, (unsigned long long)sh->sector,
1011 				bi->bi_rw, i);
1012 			atomic_inc(&sh->count);
1013 			if (sh != head_sh)
1014 				atomic_inc(&head_sh->count);
1015 			if (use_new_offset(conf, sh))
1016 				bi->bi_iter.bi_sector = (sh->sector
1017 						 + rdev->new_data_offset);
1018 			else
1019 				bi->bi_iter.bi_sector = (sh->sector
1020 						 + rdev->data_offset);
1021 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1022 				bi->bi_rw |= REQ_NOMERGE;
1023 
1024 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1025 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1026 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1027 			bi->bi_vcnt = 1;
1028 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1029 			bi->bi_io_vec[0].bv_offset = 0;
1030 			bi->bi_iter.bi_size = STRIPE_SIZE;
1031 			/*
1032 			 * If this is discard request, set bi_vcnt 0. We don't
1033 			 * want to confuse SCSI because SCSI will replace payload
1034 			 */
1035 			if (rw & REQ_DISCARD)
1036 				bi->bi_vcnt = 0;
1037 			if (rrdev)
1038 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1039 
1040 			if (conf->mddev->gendisk)
1041 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1042 						      bi, disk_devt(conf->mddev->gendisk),
1043 						      sh->dev[i].sector);
1044 			generic_make_request(bi);
1045 		}
1046 		if (rrdev) {
1047 			if (s->syncing || s->expanding || s->expanded
1048 			    || s->replacing)
1049 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1050 
1051 			set_bit(STRIPE_IO_STARTED, &sh->state);
1052 
1053 			bio_reset(rbi);
1054 			rbi->bi_bdev = rrdev->bdev;
1055 			rbi->bi_rw = rw;
1056 			BUG_ON(!(rw & WRITE));
1057 			rbi->bi_end_io = raid5_end_write_request;
1058 			rbi->bi_private = sh;
1059 
1060 			pr_debug("%s: for %llu schedule op %ld on "
1061 				 "replacement disc %d\n",
1062 				__func__, (unsigned long long)sh->sector,
1063 				rbi->bi_rw, i);
1064 			atomic_inc(&sh->count);
1065 			if (sh != head_sh)
1066 				atomic_inc(&head_sh->count);
1067 			if (use_new_offset(conf, sh))
1068 				rbi->bi_iter.bi_sector = (sh->sector
1069 						  + rrdev->new_data_offset);
1070 			else
1071 				rbi->bi_iter.bi_sector = (sh->sector
1072 						  + rrdev->data_offset);
1073 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1074 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1075 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1076 			rbi->bi_vcnt = 1;
1077 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1078 			rbi->bi_io_vec[0].bv_offset = 0;
1079 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1080 			/*
1081 			 * If this is discard request, set bi_vcnt 0. We don't
1082 			 * want to confuse SCSI because SCSI will replace payload
1083 			 */
1084 			if (rw & REQ_DISCARD)
1085 				rbi->bi_vcnt = 0;
1086 			if (conf->mddev->gendisk)
1087 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1088 						      rbi, disk_devt(conf->mddev->gendisk),
1089 						      sh->dev[i].sector);
1090 			generic_make_request(rbi);
1091 		}
1092 		if (!rdev && !rrdev) {
1093 			if (rw & WRITE)
1094 				set_bit(STRIPE_DEGRADED, &sh->state);
1095 			pr_debug("skip op %ld on disc %d for sector %llu\n",
1096 				bi->bi_rw, i, (unsigned long long)sh->sector);
1097 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1098 			set_bit(STRIPE_HANDLE, &sh->state);
1099 		}
1100 
1101 		if (!head_sh->batch_head)
1102 			continue;
1103 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1104 				      batch_list);
1105 		if (sh != head_sh)
1106 			goto again;
1107 	}
1108 }
1109 
1110 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh)1111 async_copy_data(int frombio, struct bio *bio, struct page **page,
1112 	sector_t sector, struct dma_async_tx_descriptor *tx,
1113 	struct stripe_head *sh)
1114 {
1115 	struct bio_vec bvl;
1116 	struct bvec_iter iter;
1117 	struct page *bio_page;
1118 	int page_offset;
1119 	struct async_submit_ctl submit;
1120 	enum async_tx_flags flags = 0;
1121 
1122 	if (bio->bi_iter.bi_sector >= sector)
1123 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1124 	else
1125 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1126 
1127 	if (frombio)
1128 		flags |= ASYNC_TX_FENCE;
1129 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1130 
1131 	bio_for_each_segment(bvl, bio, iter) {
1132 		int len = bvl.bv_len;
1133 		int clen;
1134 		int b_offset = 0;
1135 
1136 		if (page_offset < 0) {
1137 			b_offset = -page_offset;
1138 			page_offset += b_offset;
1139 			len -= b_offset;
1140 		}
1141 
1142 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1143 			clen = STRIPE_SIZE - page_offset;
1144 		else
1145 			clen = len;
1146 
1147 		if (clen > 0) {
1148 			b_offset += bvl.bv_offset;
1149 			bio_page = bvl.bv_page;
1150 			if (frombio) {
1151 				if (sh->raid_conf->skip_copy &&
1152 				    b_offset == 0 && page_offset == 0 &&
1153 				    clen == STRIPE_SIZE)
1154 					*page = bio_page;
1155 				else
1156 					tx = async_memcpy(*page, bio_page, page_offset,
1157 						  b_offset, clen, &submit);
1158 			} else
1159 				tx = async_memcpy(bio_page, *page, b_offset,
1160 						  page_offset, clen, &submit);
1161 		}
1162 		/* chain the operations */
1163 		submit.depend_tx = tx;
1164 
1165 		if (clen < len) /* hit end of page */
1166 			break;
1167 		page_offset +=  len;
1168 	}
1169 
1170 	return tx;
1171 }
1172 
ops_complete_biofill(void * stripe_head_ref)1173 static void ops_complete_biofill(void *stripe_head_ref)
1174 {
1175 	struct stripe_head *sh = stripe_head_ref;
1176 	struct bio_list return_bi = BIO_EMPTY_LIST;
1177 	int i;
1178 
1179 	pr_debug("%s: stripe %llu\n", __func__,
1180 		(unsigned long long)sh->sector);
1181 
1182 	/* clear completed biofills */
1183 	for (i = sh->disks; i--; ) {
1184 		struct r5dev *dev = &sh->dev[i];
1185 
1186 		/* acknowledge completion of a biofill operation */
1187 		/* and check if we need to reply to a read request,
1188 		 * new R5_Wantfill requests are held off until
1189 		 * !STRIPE_BIOFILL_RUN
1190 		 */
1191 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1192 			struct bio *rbi, *rbi2;
1193 
1194 			BUG_ON(!dev->read);
1195 			rbi = dev->read;
1196 			dev->read = NULL;
1197 			while (rbi && rbi->bi_iter.bi_sector <
1198 				dev->sector + STRIPE_SECTORS) {
1199 				rbi2 = r5_next_bio(rbi, dev->sector);
1200 				if (!raid5_dec_bi_active_stripes(rbi))
1201 					bio_list_add(&return_bi, rbi);
1202 				rbi = rbi2;
1203 			}
1204 		}
1205 	}
1206 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1207 
1208 	return_io(&return_bi);
1209 
1210 	set_bit(STRIPE_HANDLE, &sh->state);
1211 	raid5_release_stripe(sh);
1212 }
1213 
ops_run_biofill(struct stripe_head * sh)1214 static void ops_run_biofill(struct stripe_head *sh)
1215 {
1216 	struct dma_async_tx_descriptor *tx = NULL;
1217 	struct async_submit_ctl submit;
1218 	int i;
1219 
1220 	BUG_ON(sh->batch_head);
1221 	pr_debug("%s: stripe %llu\n", __func__,
1222 		(unsigned long long)sh->sector);
1223 
1224 	for (i = sh->disks; i--; ) {
1225 		struct r5dev *dev = &sh->dev[i];
1226 		if (test_bit(R5_Wantfill, &dev->flags)) {
1227 			struct bio *rbi;
1228 			spin_lock_irq(&sh->stripe_lock);
1229 			dev->read = rbi = dev->toread;
1230 			dev->toread = NULL;
1231 			spin_unlock_irq(&sh->stripe_lock);
1232 			while (rbi && rbi->bi_iter.bi_sector <
1233 				dev->sector + STRIPE_SECTORS) {
1234 				tx = async_copy_data(0, rbi, &dev->page,
1235 					dev->sector, tx, sh);
1236 				rbi = r5_next_bio(rbi, dev->sector);
1237 			}
1238 		}
1239 	}
1240 
1241 	atomic_inc(&sh->count);
1242 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1243 	async_trigger_callback(&submit);
1244 }
1245 
mark_target_uptodate(struct stripe_head * sh,int target)1246 static void mark_target_uptodate(struct stripe_head *sh, int target)
1247 {
1248 	struct r5dev *tgt;
1249 
1250 	if (target < 0)
1251 		return;
1252 
1253 	tgt = &sh->dev[target];
1254 	set_bit(R5_UPTODATE, &tgt->flags);
1255 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1256 	clear_bit(R5_Wantcompute, &tgt->flags);
1257 }
1258 
ops_complete_compute(void * stripe_head_ref)1259 static void ops_complete_compute(void *stripe_head_ref)
1260 {
1261 	struct stripe_head *sh = stripe_head_ref;
1262 
1263 	pr_debug("%s: stripe %llu\n", __func__,
1264 		(unsigned long long)sh->sector);
1265 
1266 	/* mark the computed target(s) as uptodate */
1267 	mark_target_uptodate(sh, sh->ops.target);
1268 	mark_target_uptodate(sh, sh->ops.target2);
1269 
1270 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1271 	if (sh->check_state == check_state_compute_run)
1272 		sh->check_state = check_state_compute_result;
1273 	set_bit(STRIPE_HANDLE, &sh->state);
1274 	raid5_release_stripe(sh);
1275 }
1276 
1277 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1278 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1279 				 struct raid5_percpu *percpu, int i)
1280 {
1281 	void *addr;
1282 
1283 	addr = flex_array_get(percpu->scribble, i);
1284 	return addr + sizeof(struct page *) * (sh->disks + 2);
1285 }
1286 
1287 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1288 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1289 {
1290 	void *addr;
1291 
1292 	addr = flex_array_get(percpu->scribble, i);
1293 	return addr;
1294 }
1295 
1296 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1297 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1298 {
1299 	int disks = sh->disks;
1300 	struct page **xor_srcs = to_addr_page(percpu, 0);
1301 	int target = sh->ops.target;
1302 	struct r5dev *tgt = &sh->dev[target];
1303 	struct page *xor_dest = tgt->page;
1304 	int count = 0;
1305 	struct dma_async_tx_descriptor *tx;
1306 	struct async_submit_ctl submit;
1307 	int i;
1308 
1309 	BUG_ON(sh->batch_head);
1310 
1311 	pr_debug("%s: stripe %llu block: %d\n",
1312 		__func__, (unsigned long long)sh->sector, target);
1313 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1314 
1315 	for (i = disks; i--; )
1316 		if (i != target)
1317 			xor_srcs[count++] = sh->dev[i].page;
1318 
1319 	atomic_inc(&sh->count);
1320 
1321 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1322 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1323 	if (unlikely(count == 1))
1324 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1325 	else
1326 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1327 
1328 	return tx;
1329 }
1330 
1331 /* set_syndrome_sources - populate source buffers for gen_syndrome
1332  * @srcs - (struct page *) array of size sh->disks
1333  * @sh - stripe_head to parse
1334  *
1335  * Populates srcs in proper layout order for the stripe and returns the
1336  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1337  * destination buffer is recorded in srcs[count] and the Q destination
1338  * is recorded in srcs[count+1]].
1339  */
set_syndrome_sources(struct page ** srcs,struct stripe_head * sh,int srctype)1340 static int set_syndrome_sources(struct page **srcs,
1341 				struct stripe_head *sh,
1342 				int srctype)
1343 {
1344 	int disks = sh->disks;
1345 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1346 	int d0_idx = raid6_d0(sh);
1347 	int count;
1348 	int i;
1349 
1350 	for (i = 0; i < disks; i++)
1351 		srcs[i] = NULL;
1352 
1353 	count = 0;
1354 	i = d0_idx;
1355 	do {
1356 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1357 		struct r5dev *dev = &sh->dev[i];
1358 
1359 		if (i == sh->qd_idx || i == sh->pd_idx ||
1360 		    (srctype == SYNDROME_SRC_ALL) ||
1361 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1362 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1363 		    (srctype == SYNDROME_SRC_WRITTEN &&
1364 		     dev->written))
1365 			srcs[slot] = sh->dev[i].page;
1366 		i = raid6_next_disk(i, disks);
1367 	} while (i != d0_idx);
1368 
1369 	return syndrome_disks;
1370 }
1371 
1372 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1373 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1374 {
1375 	int disks = sh->disks;
1376 	struct page **blocks = to_addr_page(percpu, 0);
1377 	int target;
1378 	int qd_idx = sh->qd_idx;
1379 	struct dma_async_tx_descriptor *tx;
1380 	struct async_submit_ctl submit;
1381 	struct r5dev *tgt;
1382 	struct page *dest;
1383 	int i;
1384 	int count;
1385 
1386 	BUG_ON(sh->batch_head);
1387 	if (sh->ops.target < 0)
1388 		target = sh->ops.target2;
1389 	else if (sh->ops.target2 < 0)
1390 		target = sh->ops.target;
1391 	else
1392 		/* we should only have one valid target */
1393 		BUG();
1394 	BUG_ON(target < 0);
1395 	pr_debug("%s: stripe %llu block: %d\n",
1396 		__func__, (unsigned long long)sh->sector, target);
1397 
1398 	tgt = &sh->dev[target];
1399 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1400 	dest = tgt->page;
1401 
1402 	atomic_inc(&sh->count);
1403 
1404 	if (target == qd_idx) {
1405 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1406 		blocks[count] = NULL; /* regenerating p is not necessary */
1407 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1408 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1409 				  ops_complete_compute, sh,
1410 				  to_addr_conv(sh, percpu, 0));
1411 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1412 	} else {
1413 		/* Compute any data- or p-drive using XOR */
1414 		count = 0;
1415 		for (i = disks; i-- ; ) {
1416 			if (i == target || i == qd_idx)
1417 				continue;
1418 			blocks[count++] = sh->dev[i].page;
1419 		}
1420 
1421 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1422 				  NULL, ops_complete_compute, sh,
1423 				  to_addr_conv(sh, percpu, 0));
1424 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1425 	}
1426 
1427 	return tx;
1428 }
1429 
1430 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1431 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1432 {
1433 	int i, count, disks = sh->disks;
1434 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1435 	int d0_idx = raid6_d0(sh);
1436 	int faila = -1, failb = -1;
1437 	int target = sh->ops.target;
1438 	int target2 = sh->ops.target2;
1439 	struct r5dev *tgt = &sh->dev[target];
1440 	struct r5dev *tgt2 = &sh->dev[target2];
1441 	struct dma_async_tx_descriptor *tx;
1442 	struct page **blocks = to_addr_page(percpu, 0);
1443 	struct async_submit_ctl submit;
1444 
1445 	BUG_ON(sh->batch_head);
1446 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1447 		 __func__, (unsigned long long)sh->sector, target, target2);
1448 	BUG_ON(target < 0 || target2 < 0);
1449 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1450 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1451 
1452 	/* we need to open-code set_syndrome_sources to handle the
1453 	 * slot number conversion for 'faila' and 'failb'
1454 	 */
1455 	for (i = 0; i < disks ; i++)
1456 		blocks[i] = NULL;
1457 	count = 0;
1458 	i = d0_idx;
1459 	do {
1460 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1461 
1462 		blocks[slot] = sh->dev[i].page;
1463 
1464 		if (i == target)
1465 			faila = slot;
1466 		if (i == target2)
1467 			failb = slot;
1468 		i = raid6_next_disk(i, disks);
1469 	} while (i != d0_idx);
1470 
1471 	BUG_ON(faila == failb);
1472 	if (failb < faila)
1473 		swap(faila, failb);
1474 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1475 		 __func__, (unsigned long long)sh->sector, faila, failb);
1476 
1477 	atomic_inc(&sh->count);
1478 
1479 	if (failb == syndrome_disks+1) {
1480 		/* Q disk is one of the missing disks */
1481 		if (faila == syndrome_disks) {
1482 			/* Missing P+Q, just recompute */
1483 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1484 					  ops_complete_compute, sh,
1485 					  to_addr_conv(sh, percpu, 0));
1486 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1487 						  STRIPE_SIZE, &submit);
1488 		} else {
1489 			struct page *dest;
1490 			int data_target;
1491 			int qd_idx = sh->qd_idx;
1492 
1493 			/* Missing D+Q: recompute D from P, then recompute Q */
1494 			if (target == qd_idx)
1495 				data_target = target2;
1496 			else
1497 				data_target = target;
1498 
1499 			count = 0;
1500 			for (i = disks; i-- ; ) {
1501 				if (i == data_target || i == qd_idx)
1502 					continue;
1503 				blocks[count++] = sh->dev[i].page;
1504 			}
1505 			dest = sh->dev[data_target].page;
1506 			init_async_submit(&submit,
1507 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1508 					  NULL, NULL, NULL,
1509 					  to_addr_conv(sh, percpu, 0));
1510 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1511 				       &submit);
1512 
1513 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1514 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1515 					  ops_complete_compute, sh,
1516 					  to_addr_conv(sh, percpu, 0));
1517 			return async_gen_syndrome(blocks, 0, count+2,
1518 						  STRIPE_SIZE, &submit);
1519 		}
1520 	} else {
1521 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1522 				  ops_complete_compute, sh,
1523 				  to_addr_conv(sh, percpu, 0));
1524 		if (failb == syndrome_disks) {
1525 			/* We're missing D+P. */
1526 			return async_raid6_datap_recov(syndrome_disks+2,
1527 						       STRIPE_SIZE, faila,
1528 						       blocks, &submit);
1529 		} else {
1530 			/* We're missing D+D. */
1531 			return async_raid6_2data_recov(syndrome_disks+2,
1532 						       STRIPE_SIZE, faila, failb,
1533 						       blocks, &submit);
1534 		}
1535 	}
1536 }
1537 
ops_complete_prexor(void * stripe_head_ref)1538 static void ops_complete_prexor(void *stripe_head_ref)
1539 {
1540 	struct stripe_head *sh = stripe_head_ref;
1541 
1542 	pr_debug("%s: stripe %llu\n", __func__,
1543 		(unsigned long long)sh->sector);
1544 }
1545 
1546 static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1547 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1548 		struct dma_async_tx_descriptor *tx)
1549 {
1550 	int disks = sh->disks;
1551 	struct page **xor_srcs = to_addr_page(percpu, 0);
1552 	int count = 0, pd_idx = sh->pd_idx, i;
1553 	struct async_submit_ctl submit;
1554 
1555 	/* existing parity data subtracted */
1556 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1557 
1558 	BUG_ON(sh->batch_head);
1559 	pr_debug("%s: stripe %llu\n", __func__,
1560 		(unsigned long long)sh->sector);
1561 
1562 	for (i = disks; i--; ) {
1563 		struct r5dev *dev = &sh->dev[i];
1564 		/* Only process blocks that are known to be uptodate */
1565 		if (test_bit(R5_Wantdrain, &dev->flags))
1566 			xor_srcs[count++] = dev->page;
1567 	}
1568 
1569 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1570 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1571 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1572 
1573 	return tx;
1574 }
1575 
1576 static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1577 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1578 		struct dma_async_tx_descriptor *tx)
1579 {
1580 	struct page **blocks = to_addr_page(percpu, 0);
1581 	int count;
1582 	struct async_submit_ctl submit;
1583 
1584 	pr_debug("%s: stripe %llu\n", __func__,
1585 		(unsigned long long)sh->sector);
1586 
1587 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1588 
1589 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1590 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1591 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1592 
1593 	return tx;
1594 }
1595 
1596 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1597 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1598 {
1599 	int disks = sh->disks;
1600 	int i;
1601 	struct stripe_head *head_sh = sh;
1602 
1603 	pr_debug("%s: stripe %llu\n", __func__,
1604 		(unsigned long long)sh->sector);
1605 
1606 	for (i = disks; i--; ) {
1607 		struct r5dev *dev;
1608 		struct bio *chosen;
1609 
1610 		sh = head_sh;
1611 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1612 			struct bio *wbi;
1613 
1614 again:
1615 			dev = &sh->dev[i];
1616 			spin_lock_irq(&sh->stripe_lock);
1617 			chosen = dev->towrite;
1618 			dev->towrite = NULL;
1619 			sh->overwrite_disks = 0;
1620 			BUG_ON(dev->written);
1621 			wbi = dev->written = chosen;
1622 			spin_unlock_irq(&sh->stripe_lock);
1623 			WARN_ON(dev->page != dev->orig_page);
1624 
1625 			while (wbi && wbi->bi_iter.bi_sector <
1626 				dev->sector + STRIPE_SECTORS) {
1627 				if (wbi->bi_rw & REQ_FUA)
1628 					set_bit(R5_WantFUA, &dev->flags);
1629 				if (wbi->bi_rw & REQ_SYNC)
1630 					set_bit(R5_SyncIO, &dev->flags);
1631 				if (wbi->bi_rw & REQ_DISCARD)
1632 					set_bit(R5_Discard, &dev->flags);
1633 				else {
1634 					tx = async_copy_data(1, wbi, &dev->page,
1635 						dev->sector, tx, sh);
1636 					if (dev->page != dev->orig_page) {
1637 						set_bit(R5_SkipCopy, &dev->flags);
1638 						clear_bit(R5_UPTODATE, &dev->flags);
1639 						clear_bit(R5_OVERWRITE, &dev->flags);
1640 					}
1641 				}
1642 				wbi = r5_next_bio(wbi, dev->sector);
1643 			}
1644 
1645 			if (head_sh->batch_head) {
1646 				sh = list_first_entry(&sh->batch_list,
1647 						      struct stripe_head,
1648 						      batch_list);
1649 				if (sh == head_sh)
1650 					continue;
1651 				goto again;
1652 			}
1653 		}
1654 	}
1655 
1656 	return tx;
1657 }
1658 
ops_complete_reconstruct(void * stripe_head_ref)1659 static void ops_complete_reconstruct(void *stripe_head_ref)
1660 {
1661 	struct stripe_head *sh = stripe_head_ref;
1662 	int disks = sh->disks;
1663 	int pd_idx = sh->pd_idx;
1664 	int qd_idx = sh->qd_idx;
1665 	int i;
1666 	bool fua = false, sync = false, discard = false;
1667 
1668 	pr_debug("%s: stripe %llu\n", __func__,
1669 		(unsigned long long)sh->sector);
1670 
1671 	for (i = disks; i--; ) {
1672 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1673 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1674 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1675 	}
1676 
1677 	for (i = disks; i--; ) {
1678 		struct r5dev *dev = &sh->dev[i];
1679 
1680 		if (dev->written || i == pd_idx || i == qd_idx) {
1681 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1682 				set_bit(R5_UPTODATE, &dev->flags);
1683 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1684 					set_bit(R5_Expanded, &dev->flags);
1685 			}
1686 			if (fua)
1687 				set_bit(R5_WantFUA, &dev->flags);
1688 			if (sync)
1689 				set_bit(R5_SyncIO, &dev->flags);
1690 		}
1691 	}
1692 
1693 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1694 		sh->reconstruct_state = reconstruct_state_drain_result;
1695 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1696 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1697 	else {
1698 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1699 		sh->reconstruct_state = reconstruct_state_result;
1700 	}
1701 
1702 	set_bit(STRIPE_HANDLE, &sh->state);
1703 	raid5_release_stripe(sh);
1704 }
1705 
1706 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1707 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1708 		     struct dma_async_tx_descriptor *tx)
1709 {
1710 	int disks = sh->disks;
1711 	struct page **xor_srcs;
1712 	struct async_submit_ctl submit;
1713 	int count, pd_idx = sh->pd_idx, i;
1714 	struct page *xor_dest;
1715 	int prexor = 0;
1716 	unsigned long flags;
1717 	int j = 0;
1718 	struct stripe_head *head_sh = sh;
1719 	int last_stripe;
1720 
1721 	pr_debug("%s: stripe %llu\n", __func__,
1722 		(unsigned long long)sh->sector);
1723 
1724 	for (i = 0; i < sh->disks; i++) {
1725 		if (pd_idx == i)
1726 			continue;
1727 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1728 			break;
1729 	}
1730 	if (i >= sh->disks) {
1731 		atomic_inc(&sh->count);
1732 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1733 		ops_complete_reconstruct(sh);
1734 		return;
1735 	}
1736 again:
1737 	count = 0;
1738 	xor_srcs = to_addr_page(percpu, j);
1739 	/* check if prexor is active which means only process blocks
1740 	 * that are part of a read-modify-write (written)
1741 	 */
1742 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1743 		prexor = 1;
1744 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1745 		for (i = disks; i--; ) {
1746 			struct r5dev *dev = &sh->dev[i];
1747 			if (head_sh->dev[i].written)
1748 				xor_srcs[count++] = dev->page;
1749 		}
1750 	} else {
1751 		xor_dest = sh->dev[pd_idx].page;
1752 		for (i = disks; i--; ) {
1753 			struct r5dev *dev = &sh->dev[i];
1754 			if (i != pd_idx)
1755 				xor_srcs[count++] = dev->page;
1756 		}
1757 	}
1758 
1759 	/* 1/ if we prexor'd then the dest is reused as a source
1760 	 * 2/ if we did not prexor then we are redoing the parity
1761 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1762 	 * for the synchronous xor case
1763 	 */
1764 	last_stripe = !head_sh->batch_head ||
1765 		list_first_entry(&sh->batch_list,
1766 				 struct stripe_head, batch_list) == head_sh;
1767 	if (last_stripe) {
1768 		flags = ASYNC_TX_ACK |
1769 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1770 
1771 		atomic_inc(&head_sh->count);
1772 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1773 				  to_addr_conv(sh, percpu, j));
1774 	} else {
1775 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1776 		init_async_submit(&submit, flags, tx, NULL, NULL,
1777 				  to_addr_conv(sh, percpu, j));
1778 	}
1779 
1780 	if (unlikely(count == 1))
1781 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1782 	else
1783 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1784 	if (!last_stripe) {
1785 		j++;
1786 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1787 				      batch_list);
1788 		goto again;
1789 	}
1790 }
1791 
1792 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1793 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1794 		     struct dma_async_tx_descriptor *tx)
1795 {
1796 	struct async_submit_ctl submit;
1797 	struct page **blocks;
1798 	int count, i, j = 0;
1799 	struct stripe_head *head_sh = sh;
1800 	int last_stripe;
1801 	int synflags;
1802 	unsigned long txflags;
1803 
1804 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1805 
1806 	for (i = 0; i < sh->disks; i++) {
1807 		if (sh->pd_idx == i || sh->qd_idx == i)
1808 			continue;
1809 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1810 			break;
1811 	}
1812 	if (i >= sh->disks) {
1813 		atomic_inc(&sh->count);
1814 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1815 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1816 		ops_complete_reconstruct(sh);
1817 		return;
1818 	}
1819 
1820 again:
1821 	blocks = to_addr_page(percpu, j);
1822 
1823 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1824 		synflags = SYNDROME_SRC_WRITTEN;
1825 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1826 	} else {
1827 		synflags = SYNDROME_SRC_ALL;
1828 		txflags = ASYNC_TX_ACK;
1829 	}
1830 
1831 	count = set_syndrome_sources(blocks, sh, synflags);
1832 	last_stripe = !head_sh->batch_head ||
1833 		list_first_entry(&sh->batch_list,
1834 				 struct stripe_head, batch_list) == head_sh;
1835 
1836 	if (last_stripe) {
1837 		atomic_inc(&head_sh->count);
1838 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1839 				  head_sh, to_addr_conv(sh, percpu, j));
1840 	} else
1841 		init_async_submit(&submit, 0, tx, NULL, NULL,
1842 				  to_addr_conv(sh, percpu, j));
1843 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1844 	if (!last_stripe) {
1845 		j++;
1846 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1847 				      batch_list);
1848 		goto again;
1849 	}
1850 }
1851 
ops_complete_check(void * stripe_head_ref)1852 static void ops_complete_check(void *stripe_head_ref)
1853 {
1854 	struct stripe_head *sh = stripe_head_ref;
1855 
1856 	pr_debug("%s: stripe %llu\n", __func__,
1857 		(unsigned long long)sh->sector);
1858 
1859 	sh->check_state = check_state_check_result;
1860 	set_bit(STRIPE_HANDLE, &sh->state);
1861 	raid5_release_stripe(sh);
1862 }
1863 
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)1864 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1865 {
1866 	int disks = sh->disks;
1867 	int pd_idx = sh->pd_idx;
1868 	int qd_idx = sh->qd_idx;
1869 	struct page *xor_dest;
1870 	struct page **xor_srcs = to_addr_page(percpu, 0);
1871 	struct dma_async_tx_descriptor *tx;
1872 	struct async_submit_ctl submit;
1873 	int count;
1874 	int i;
1875 
1876 	pr_debug("%s: stripe %llu\n", __func__,
1877 		(unsigned long long)sh->sector);
1878 
1879 	BUG_ON(sh->batch_head);
1880 	count = 0;
1881 	xor_dest = sh->dev[pd_idx].page;
1882 	xor_srcs[count++] = xor_dest;
1883 	for (i = disks; i--; ) {
1884 		if (i == pd_idx || i == qd_idx)
1885 			continue;
1886 		xor_srcs[count++] = sh->dev[i].page;
1887 	}
1888 
1889 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1890 			  to_addr_conv(sh, percpu, 0));
1891 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1892 			   &sh->ops.zero_sum_result, &submit);
1893 
1894 	atomic_inc(&sh->count);
1895 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1896 	tx = async_trigger_callback(&submit);
1897 }
1898 
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)1899 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1900 {
1901 	struct page **srcs = to_addr_page(percpu, 0);
1902 	struct async_submit_ctl submit;
1903 	int count;
1904 
1905 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1906 		(unsigned long long)sh->sector, checkp);
1907 
1908 	BUG_ON(sh->batch_head);
1909 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1910 	if (!checkp)
1911 		srcs[count] = NULL;
1912 
1913 	atomic_inc(&sh->count);
1914 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1915 			  sh, to_addr_conv(sh, percpu, 0));
1916 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1917 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1918 }
1919 
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)1920 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1921 {
1922 	int overlap_clear = 0, i, disks = sh->disks;
1923 	struct dma_async_tx_descriptor *tx = NULL;
1924 	struct r5conf *conf = sh->raid_conf;
1925 	int level = conf->level;
1926 	struct raid5_percpu *percpu;
1927 	unsigned long cpu;
1928 
1929 	cpu = get_cpu();
1930 	percpu = per_cpu_ptr(conf->percpu, cpu);
1931 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1932 		ops_run_biofill(sh);
1933 		overlap_clear++;
1934 	}
1935 
1936 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1937 		if (level < 6)
1938 			tx = ops_run_compute5(sh, percpu);
1939 		else {
1940 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1941 				tx = ops_run_compute6_1(sh, percpu);
1942 			else
1943 				tx = ops_run_compute6_2(sh, percpu);
1944 		}
1945 		/* terminate the chain if reconstruct is not set to be run */
1946 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1947 			async_tx_ack(tx);
1948 	}
1949 
1950 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1951 		if (level < 6)
1952 			tx = ops_run_prexor5(sh, percpu, tx);
1953 		else
1954 			tx = ops_run_prexor6(sh, percpu, tx);
1955 	}
1956 
1957 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1958 		tx = ops_run_biodrain(sh, tx);
1959 		overlap_clear++;
1960 	}
1961 
1962 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1963 		if (level < 6)
1964 			ops_run_reconstruct5(sh, percpu, tx);
1965 		else
1966 			ops_run_reconstruct6(sh, percpu, tx);
1967 	}
1968 
1969 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1970 		if (sh->check_state == check_state_run)
1971 			ops_run_check_p(sh, percpu);
1972 		else if (sh->check_state == check_state_run_q)
1973 			ops_run_check_pq(sh, percpu, 0);
1974 		else if (sh->check_state == check_state_run_pq)
1975 			ops_run_check_pq(sh, percpu, 1);
1976 		else
1977 			BUG();
1978 	}
1979 
1980 	if (overlap_clear && !sh->batch_head)
1981 		for (i = disks; i--; ) {
1982 			struct r5dev *dev = &sh->dev[i];
1983 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1984 				wake_up(&sh->raid_conf->wait_for_overlap);
1985 		}
1986 	put_cpu();
1987 }
1988 
alloc_stripe(struct kmem_cache * sc,gfp_t gfp)1989 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1990 {
1991 	struct stripe_head *sh;
1992 
1993 	sh = kmem_cache_zalloc(sc, gfp);
1994 	if (sh) {
1995 		spin_lock_init(&sh->stripe_lock);
1996 		spin_lock_init(&sh->batch_lock);
1997 		INIT_LIST_HEAD(&sh->batch_list);
1998 		INIT_LIST_HEAD(&sh->lru);
1999 		atomic_set(&sh->count, 1);
2000 	}
2001 	return sh;
2002 }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)2003 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2004 {
2005 	struct stripe_head *sh;
2006 
2007 	sh = alloc_stripe(conf->slab_cache, gfp);
2008 	if (!sh)
2009 		return 0;
2010 
2011 	sh->raid_conf = conf;
2012 
2013 	if (grow_buffers(sh, gfp)) {
2014 		shrink_buffers(sh);
2015 		kmem_cache_free(conf->slab_cache, sh);
2016 		return 0;
2017 	}
2018 	sh->hash_lock_index =
2019 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2020 	/* we just created an active stripe so... */
2021 	atomic_inc(&conf->active_stripes);
2022 
2023 	raid5_release_stripe(sh);
2024 	conf->max_nr_stripes++;
2025 	return 1;
2026 }
2027 
grow_stripes(struct r5conf * conf,int num)2028 static int grow_stripes(struct r5conf *conf, int num)
2029 {
2030 	struct kmem_cache *sc;
2031 	size_t namelen = sizeof(conf->cache_name[0]);
2032 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2033 
2034 	if (conf->mddev->gendisk)
2035 		snprintf(conf->cache_name[0], namelen,
2036 			"raid%d-%s", conf->level, mdname(conf->mddev));
2037 	else
2038 		snprintf(conf->cache_name[0], namelen,
2039 			"raid%d-%p", conf->level, conf->mddev);
2040 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2041 
2042 	conf->active_name = 0;
2043 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2044 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2045 			       0, 0, NULL);
2046 	if (!sc)
2047 		return 1;
2048 	conf->slab_cache = sc;
2049 	conf->pool_size = devs;
2050 	while (num--)
2051 		if (!grow_one_stripe(conf, GFP_KERNEL))
2052 			return 1;
2053 
2054 	return 0;
2055 }
2056 
2057 /**
2058  * scribble_len - return the required size of the scribble region
2059  * @num - total number of disks in the array
2060  *
2061  * The size must be enough to contain:
2062  * 1/ a struct page pointer for each device in the array +2
2063  * 2/ room to convert each entry in (1) to its corresponding dma
2064  *    (dma_map_page()) or page (page_address()) address.
2065  *
2066  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2067  * calculate over all devices (not just the data blocks), using zeros in place
2068  * of the P and Q blocks.
2069  */
scribble_alloc(int num,int cnt,gfp_t flags)2070 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2071 {
2072 	struct flex_array *ret;
2073 	size_t len;
2074 
2075 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2076 	ret = flex_array_alloc(len, cnt, flags);
2077 	if (!ret)
2078 		return NULL;
2079 	/* always prealloc all elements, so no locking is required */
2080 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2081 		flex_array_free(ret);
2082 		return NULL;
2083 	}
2084 	return ret;
2085 }
2086 
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2087 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2088 {
2089 	unsigned long cpu;
2090 	int err = 0;
2091 
2092 	/*
2093 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2094 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2095 	 * should equal to new_disks and new_sectors
2096 	 */
2097 	if (conf->scribble_disks >= new_disks &&
2098 	    conf->scribble_sectors >= new_sectors)
2099 		return 0;
2100 	mddev_suspend(conf->mddev);
2101 	get_online_cpus();
2102 	for_each_present_cpu(cpu) {
2103 		struct raid5_percpu *percpu;
2104 		struct flex_array *scribble;
2105 
2106 		percpu = per_cpu_ptr(conf->percpu, cpu);
2107 		scribble = scribble_alloc(new_disks,
2108 					  new_sectors / STRIPE_SECTORS,
2109 					  GFP_NOIO);
2110 
2111 		if (scribble) {
2112 			flex_array_free(percpu->scribble);
2113 			percpu->scribble = scribble;
2114 		} else {
2115 			err = -ENOMEM;
2116 			break;
2117 		}
2118 	}
2119 	put_online_cpus();
2120 	mddev_resume(conf->mddev);
2121 	if (!err) {
2122 		conf->scribble_disks = new_disks;
2123 		conf->scribble_sectors = new_sectors;
2124 	}
2125 	return err;
2126 }
2127 
resize_stripes(struct r5conf * conf,int newsize)2128 static int resize_stripes(struct r5conf *conf, int newsize)
2129 {
2130 	/* Make all the stripes able to hold 'newsize' devices.
2131 	 * New slots in each stripe get 'page' set to a new page.
2132 	 *
2133 	 * This happens in stages:
2134 	 * 1/ create a new kmem_cache and allocate the required number of
2135 	 *    stripe_heads.
2136 	 * 2/ gather all the old stripe_heads and transfer the pages across
2137 	 *    to the new stripe_heads.  This will have the side effect of
2138 	 *    freezing the array as once all stripe_heads have been collected,
2139 	 *    no IO will be possible.  Old stripe heads are freed once their
2140 	 *    pages have been transferred over, and the old kmem_cache is
2141 	 *    freed when all stripes are done.
2142 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2143 	 *    we simple return a failre status - no need to clean anything up.
2144 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2145 	 *    If this fails, we don't bother trying the shrink the
2146 	 *    stripe_heads down again, we just leave them as they are.
2147 	 *    As each stripe_head is processed the new one is released into
2148 	 *    active service.
2149 	 *
2150 	 * Once step2 is started, we cannot afford to wait for a write,
2151 	 * so we use GFP_NOIO allocations.
2152 	 */
2153 	struct stripe_head *osh, *nsh;
2154 	LIST_HEAD(newstripes);
2155 	struct disk_info *ndisks;
2156 	int err;
2157 	struct kmem_cache *sc;
2158 	int i;
2159 	int hash, cnt;
2160 
2161 	if (newsize <= conf->pool_size)
2162 		return 0; /* never bother to shrink */
2163 
2164 	err = md_allow_write(conf->mddev);
2165 	if (err)
2166 		return err;
2167 
2168 	/* Step 1 */
2169 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2170 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2171 			       0, 0, NULL);
2172 	if (!sc)
2173 		return -ENOMEM;
2174 
2175 	/* Need to ensure auto-resizing doesn't interfere */
2176 	mutex_lock(&conf->cache_size_mutex);
2177 
2178 	for (i = conf->max_nr_stripes; i; i--) {
2179 		nsh = alloc_stripe(sc, GFP_KERNEL);
2180 		if (!nsh)
2181 			break;
2182 
2183 		nsh->raid_conf = conf;
2184 		list_add(&nsh->lru, &newstripes);
2185 	}
2186 	if (i) {
2187 		/* didn't get enough, give up */
2188 		while (!list_empty(&newstripes)) {
2189 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2190 			list_del(&nsh->lru);
2191 			kmem_cache_free(sc, nsh);
2192 		}
2193 		kmem_cache_destroy(sc);
2194 		mutex_unlock(&conf->cache_size_mutex);
2195 		return -ENOMEM;
2196 	}
2197 	/* Step 2 - Must use GFP_NOIO now.
2198 	 * OK, we have enough stripes, start collecting inactive
2199 	 * stripes and copying them over
2200 	 */
2201 	hash = 0;
2202 	cnt = 0;
2203 	list_for_each_entry(nsh, &newstripes, lru) {
2204 		lock_device_hash_lock(conf, hash);
2205 		wait_event_cmd(conf->wait_for_stripe,
2206 				    !list_empty(conf->inactive_list + hash),
2207 				    unlock_device_hash_lock(conf, hash),
2208 				    lock_device_hash_lock(conf, hash));
2209 		osh = get_free_stripe(conf, hash);
2210 		unlock_device_hash_lock(conf, hash);
2211 
2212 		for(i=0; i<conf->pool_size; i++) {
2213 			nsh->dev[i].page = osh->dev[i].page;
2214 			nsh->dev[i].orig_page = osh->dev[i].page;
2215 		}
2216 		nsh->hash_lock_index = hash;
2217 		kmem_cache_free(conf->slab_cache, osh);
2218 		cnt++;
2219 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2220 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2221 			hash++;
2222 			cnt = 0;
2223 		}
2224 	}
2225 	kmem_cache_destroy(conf->slab_cache);
2226 
2227 	/* Step 3.
2228 	 * At this point, we are holding all the stripes so the array
2229 	 * is completely stalled, so now is a good time to resize
2230 	 * conf->disks and the scribble region
2231 	 */
2232 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2233 	if (ndisks) {
2234 		for (i=0; i<conf->raid_disks; i++)
2235 			ndisks[i] = conf->disks[i];
2236 		kfree(conf->disks);
2237 		conf->disks = ndisks;
2238 	} else
2239 		err = -ENOMEM;
2240 
2241 	conf->slab_cache = sc;
2242 	conf->active_name = 1-conf->active_name;
2243 
2244 	/* Step 4, return new stripes to service */
2245 	while(!list_empty(&newstripes)) {
2246 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2247 		list_del_init(&nsh->lru);
2248 
2249 		for (i=conf->raid_disks; i < newsize; i++)
2250 			if (nsh->dev[i].page == NULL) {
2251 				struct page *p = alloc_page(GFP_NOIO);
2252 				nsh->dev[i].page = p;
2253 				nsh->dev[i].orig_page = p;
2254 				if (!p)
2255 					err = -ENOMEM;
2256 			}
2257 		raid5_release_stripe(nsh);
2258 	}
2259 	/* critical section pass, GFP_NOIO no longer needed */
2260 
2261 	if (!err)
2262 		conf->pool_size = newsize;
2263 	mutex_unlock(&conf->cache_size_mutex);
2264 
2265 	return err;
2266 }
2267 
drop_one_stripe(struct r5conf * conf)2268 static int drop_one_stripe(struct r5conf *conf)
2269 {
2270 	struct stripe_head *sh;
2271 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2272 
2273 	spin_lock_irq(conf->hash_locks + hash);
2274 	sh = get_free_stripe(conf, hash);
2275 	spin_unlock_irq(conf->hash_locks + hash);
2276 	if (!sh)
2277 		return 0;
2278 	BUG_ON(atomic_read(&sh->count));
2279 	shrink_buffers(sh);
2280 	kmem_cache_free(conf->slab_cache, sh);
2281 	atomic_dec(&conf->active_stripes);
2282 	conf->max_nr_stripes--;
2283 	return 1;
2284 }
2285 
shrink_stripes(struct r5conf * conf)2286 static void shrink_stripes(struct r5conf *conf)
2287 {
2288 	while (conf->max_nr_stripes &&
2289 	       drop_one_stripe(conf))
2290 		;
2291 
2292 	kmem_cache_destroy(conf->slab_cache);
2293 	conf->slab_cache = NULL;
2294 }
2295 
raid5_end_read_request(struct bio * bi)2296 static void raid5_end_read_request(struct bio * bi)
2297 {
2298 	struct stripe_head *sh = bi->bi_private;
2299 	struct r5conf *conf = sh->raid_conf;
2300 	int disks = sh->disks, i;
2301 	char b[BDEVNAME_SIZE];
2302 	struct md_rdev *rdev = NULL;
2303 	sector_t s;
2304 
2305 	for (i=0 ; i<disks; i++)
2306 		if (bi == &sh->dev[i].req)
2307 			break;
2308 
2309 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2310 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2311 		bi->bi_error);
2312 	if (i == disks) {
2313 		BUG();
2314 		return;
2315 	}
2316 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2317 		/* If replacement finished while this request was outstanding,
2318 		 * 'replacement' might be NULL already.
2319 		 * In that case it moved down to 'rdev'.
2320 		 * rdev is not removed until all requests are finished.
2321 		 */
2322 		rdev = conf->disks[i].replacement;
2323 	if (!rdev)
2324 		rdev = conf->disks[i].rdev;
2325 
2326 	if (use_new_offset(conf, sh))
2327 		s = sh->sector + rdev->new_data_offset;
2328 	else
2329 		s = sh->sector + rdev->data_offset;
2330 	if (!bi->bi_error) {
2331 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2332 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2333 			/* Note that this cannot happen on a
2334 			 * replacement device.  We just fail those on
2335 			 * any error
2336 			 */
2337 			printk_ratelimited(
2338 				KERN_INFO
2339 				"md/raid:%s: read error corrected"
2340 				" (%lu sectors at %llu on %s)\n",
2341 				mdname(conf->mddev), STRIPE_SECTORS,
2342 				(unsigned long long)s,
2343 				bdevname(rdev->bdev, b));
2344 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2345 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2346 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2347 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2348 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2349 
2350 		if (atomic_read(&rdev->read_errors))
2351 			atomic_set(&rdev->read_errors, 0);
2352 	} else {
2353 		const char *bdn = bdevname(rdev->bdev, b);
2354 		int retry = 0;
2355 		int set_bad = 0;
2356 
2357 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2358 		atomic_inc(&rdev->read_errors);
2359 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2360 			printk_ratelimited(
2361 				KERN_WARNING
2362 				"md/raid:%s: read error on replacement device "
2363 				"(sector %llu on %s).\n",
2364 				mdname(conf->mddev),
2365 				(unsigned long long)s,
2366 				bdn);
2367 		else if (conf->mddev->degraded >= conf->max_degraded) {
2368 			set_bad = 1;
2369 			printk_ratelimited(
2370 				KERN_WARNING
2371 				"md/raid:%s: read error not correctable "
2372 				"(sector %llu on %s).\n",
2373 				mdname(conf->mddev),
2374 				(unsigned long long)s,
2375 				bdn);
2376 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2377 			/* Oh, no!!! */
2378 			set_bad = 1;
2379 			printk_ratelimited(
2380 				KERN_WARNING
2381 				"md/raid:%s: read error NOT corrected!! "
2382 				"(sector %llu on %s).\n",
2383 				mdname(conf->mddev),
2384 				(unsigned long long)s,
2385 				bdn);
2386 		} else if (atomic_read(&rdev->read_errors)
2387 			 > conf->max_nr_stripes)
2388 			printk(KERN_WARNING
2389 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2390 			       mdname(conf->mddev), bdn);
2391 		else
2392 			retry = 1;
2393 		if (set_bad && test_bit(In_sync, &rdev->flags)
2394 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2395 			retry = 1;
2396 		if (retry)
2397 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2398 				set_bit(R5_ReadError, &sh->dev[i].flags);
2399 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2400 				set_bit(R5_ReadError, &sh->dev[i].flags);
2401 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2402 			} else
2403 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2404 		else {
2405 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2406 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2407 			if (!(set_bad
2408 			      && test_bit(In_sync, &rdev->flags)
2409 			      && rdev_set_badblocks(
2410 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2411 				md_error(conf->mddev, rdev);
2412 		}
2413 	}
2414 	rdev_dec_pending(rdev, conf->mddev);
2415 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2416 	set_bit(STRIPE_HANDLE, &sh->state);
2417 	raid5_release_stripe(sh);
2418 }
2419 
raid5_end_write_request(struct bio * bi)2420 static void raid5_end_write_request(struct bio *bi)
2421 {
2422 	struct stripe_head *sh = bi->bi_private;
2423 	struct r5conf *conf = sh->raid_conf;
2424 	int disks = sh->disks, i;
2425 	struct md_rdev *uninitialized_var(rdev);
2426 	sector_t first_bad;
2427 	int bad_sectors;
2428 	int replacement = 0;
2429 
2430 	for (i = 0 ; i < disks; i++) {
2431 		if (bi == &sh->dev[i].req) {
2432 			rdev = conf->disks[i].rdev;
2433 			break;
2434 		}
2435 		if (bi == &sh->dev[i].rreq) {
2436 			rdev = conf->disks[i].replacement;
2437 			if (rdev)
2438 				replacement = 1;
2439 			else
2440 				/* rdev was removed and 'replacement'
2441 				 * replaced it.  rdev is not removed
2442 				 * until all requests are finished.
2443 				 */
2444 				rdev = conf->disks[i].rdev;
2445 			break;
2446 		}
2447 	}
2448 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2449 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2450 		bi->bi_error);
2451 	if (i == disks) {
2452 		BUG();
2453 		return;
2454 	}
2455 
2456 	if (replacement) {
2457 		if (bi->bi_error)
2458 			md_error(conf->mddev, rdev);
2459 		else if (is_badblock(rdev, sh->sector,
2460 				     STRIPE_SECTORS,
2461 				     &first_bad, &bad_sectors))
2462 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2463 	} else {
2464 		if (bi->bi_error) {
2465 			set_bit(STRIPE_DEGRADED, &sh->state);
2466 			set_bit(WriteErrorSeen, &rdev->flags);
2467 			set_bit(R5_WriteError, &sh->dev[i].flags);
2468 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2469 				set_bit(MD_RECOVERY_NEEDED,
2470 					&rdev->mddev->recovery);
2471 		} else if (is_badblock(rdev, sh->sector,
2472 				       STRIPE_SECTORS,
2473 				       &first_bad, &bad_sectors)) {
2474 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2475 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2476 				/* That was a successful write so make
2477 				 * sure it looks like we already did
2478 				 * a re-write.
2479 				 */
2480 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2481 		}
2482 	}
2483 	rdev_dec_pending(rdev, conf->mddev);
2484 
2485 	if (sh->batch_head && bi->bi_error && !replacement)
2486 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2487 
2488 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2489 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2490 	set_bit(STRIPE_HANDLE, &sh->state);
2491 	raid5_release_stripe(sh);
2492 
2493 	if (sh->batch_head && sh != sh->batch_head)
2494 		raid5_release_stripe(sh->batch_head);
2495 }
2496 
raid5_build_block(struct stripe_head * sh,int i,int previous)2497 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2498 {
2499 	struct r5dev *dev = &sh->dev[i];
2500 
2501 	bio_init(&dev->req);
2502 	dev->req.bi_io_vec = &dev->vec;
2503 	dev->req.bi_max_vecs = 1;
2504 	dev->req.bi_private = sh;
2505 
2506 	bio_init(&dev->rreq);
2507 	dev->rreq.bi_io_vec = &dev->rvec;
2508 	dev->rreq.bi_max_vecs = 1;
2509 	dev->rreq.bi_private = sh;
2510 
2511 	dev->flags = 0;
2512 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2513 }
2514 
error(struct mddev * mddev,struct md_rdev * rdev)2515 static void error(struct mddev *mddev, struct md_rdev *rdev)
2516 {
2517 	char b[BDEVNAME_SIZE];
2518 	struct r5conf *conf = mddev->private;
2519 	unsigned long flags;
2520 	pr_debug("raid456: error called\n");
2521 
2522 	spin_lock_irqsave(&conf->device_lock, flags);
2523 	clear_bit(In_sync, &rdev->flags);
2524 	mddev->degraded = calc_degraded(conf);
2525 	spin_unlock_irqrestore(&conf->device_lock, flags);
2526 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2527 
2528 	set_bit(Blocked, &rdev->flags);
2529 	set_bit(Faulty, &rdev->flags);
2530 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2531 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
2532 	printk(KERN_ALERT
2533 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2534 	       "md/raid:%s: Operation continuing on %d devices.\n",
2535 	       mdname(mddev),
2536 	       bdevname(rdev->bdev, b),
2537 	       mdname(mddev),
2538 	       conf->raid_disks - mddev->degraded);
2539 }
2540 
2541 /*
2542  * Input: a 'big' sector number,
2543  * Output: index of the data and parity disk, and the sector # in them.
2544  */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2545 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2546 			      int previous, int *dd_idx,
2547 			      struct stripe_head *sh)
2548 {
2549 	sector_t stripe, stripe2;
2550 	sector_t chunk_number;
2551 	unsigned int chunk_offset;
2552 	int pd_idx, qd_idx;
2553 	int ddf_layout = 0;
2554 	sector_t new_sector;
2555 	int algorithm = previous ? conf->prev_algo
2556 				 : conf->algorithm;
2557 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2558 					 : conf->chunk_sectors;
2559 	int raid_disks = previous ? conf->previous_raid_disks
2560 				  : conf->raid_disks;
2561 	int data_disks = raid_disks - conf->max_degraded;
2562 
2563 	/* First compute the information on this sector */
2564 
2565 	/*
2566 	 * Compute the chunk number and the sector offset inside the chunk
2567 	 */
2568 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2569 	chunk_number = r_sector;
2570 
2571 	/*
2572 	 * Compute the stripe number
2573 	 */
2574 	stripe = chunk_number;
2575 	*dd_idx = sector_div(stripe, data_disks);
2576 	stripe2 = stripe;
2577 	/*
2578 	 * Select the parity disk based on the user selected algorithm.
2579 	 */
2580 	pd_idx = qd_idx = -1;
2581 	switch(conf->level) {
2582 	case 4:
2583 		pd_idx = data_disks;
2584 		break;
2585 	case 5:
2586 		switch (algorithm) {
2587 		case ALGORITHM_LEFT_ASYMMETRIC:
2588 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2589 			if (*dd_idx >= pd_idx)
2590 				(*dd_idx)++;
2591 			break;
2592 		case ALGORITHM_RIGHT_ASYMMETRIC:
2593 			pd_idx = sector_div(stripe2, raid_disks);
2594 			if (*dd_idx >= pd_idx)
2595 				(*dd_idx)++;
2596 			break;
2597 		case ALGORITHM_LEFT_SYMMETRIC:
2598 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2599 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2600 			break;
2601 		case ALGORITHM_RIGHT_SYMMETRIC:
2602 			pd_idx = sector_div(stripe2, raid_disks);
2603 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2604 			break;
2605 		case ALGORITHM_PARITY_0:
2606 			pd_idx = 0;
2607 			(*dd_idx)++;
2608 			break;
2609 		case ALGORITHM_PARITY_N:
2610 			pd_idx = data_disks;
2611 			break;
2612 		default:
2613 			BUG();
2614 		}
2615 		break;
2616 	case 6:
2617 
2618 		switch (algorithm) {
2619 		case ALGORITHM_LEFT_ASYMMETRIC:
2620 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2621 			qd_idx = pd_idx + 1;
2622 			if (pd_idx == raid_disks-1) {
2623 				(*dd_idx)++;	/* Q D D D P */
2624 				qd_idx = 0;
2625 			} else if (*dd_idx >= pd_idx)
2626 				(*dd_idx) += 2; /* D D P Q D */
2627 			break;
2628 		case ALGORITHM_RIGHT_ASYMMETRIC:
2629 			pd_idx = sector_div(stripe2, raid_disks);
2630 			qd_idx = pd_idx + 1;
2631 			if (pd_idx == raid_disks-1) {
2632 				(*dd_idx)++;	/* Q D D D P */
2633 				qd_idx = 0;
2634 			} else if (*dd_idx >= pd_idx)
2635 				(*dd_idx) += 2; /* D D P Q D */
2636 			break;
2637 		case ALGORITHM_LEFT_SYMMETRIC:
2638 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2639 			qd_idx = (pd_idx + 1) % raid_disks;
2640 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2641 			break;
2642 		case ALGORITHM_RIGHT_SYMMETRIC:
2643 			pd_idx = sector_div(stripe2, raid_disks);
2644 			qd_idx = (pd_idx + 1) % raid_disks;
2645 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2646 			break;
2647 
2648 		case ALGORITHM_PARITY_0:
2649 			pd_idx = 0;
2650 			qd_idx = 1;
2651 			(*dd_idx) += 2;
2652 			break;
2653 		case ALGORITHM_PARITY_N:
2654 			pd_idx = data_disks;
2655 			qd_idx = data_disks + 1;
2656 			break;
2657 
2658 		case ALGORITHM_ROTATING_ZERO_RESTART:
2659 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2660 			 * of blocks for computing Q is different.
2661 			 */
2662 			pd_idx = sector_div(stripe2, raid_disks);
2663 			qd_idx = pd_idx + 1;
2664 			if (pd_idx == raid_disks-1) {
2665 				(*dd_idx)++;	/* Q D D D P */
2666 				qd_idx = 0;
2667 			} else if (*dd_idx >= pd_idx)
2668 				(*dd_idx) += 2; /* D D P Q D */
2669 			ddf_layout = 1;
2670 			break;
2671 
2672 		case ALGORITHM_ROTATING_N_RESTART:
2673 			/* Same a left_asymmetric, by first stripe is
2674 			 * D D D P Q  rather than
2675 			 * Q D D D P
2676 			 */
2677 			stripe2 += 1;
2678 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2679 			qd_idx = pd_idx + 1;
2680 			if (pd_idx == raid_disks-1) {
2681 				(*dd_idx)++;	/* Q D D D P */
2682 				qd_idx = 0;
2683 			} else if (*dd_idx >= pd_idx)
2684 				(*dd_idx) += 2; /* D D P Q D */
2685 			ddf_layout = 1;
2686 			break;
2687 
2688 		case ALGORITHM_ROTATING_N_CONTINUE:
2689 			/* Same as left_symmetric but Q is before P */
2690 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2691 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2692 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2693 			ddf_layout = 1;
2694 			break;
2695 
2696 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2697 			/* RAID5 left_asymmetric, with Q on last device */
2698 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2699 			if (*dd_idx >= pd_idx)
2700 				(*dd_idx)++;
2701 			qd_idx = raid_disks - 1;
2702 			break;
2703 
2704 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2705 			pd_idx = sector_div(stripe2, raid_disks-1);
2706 			if (*dd_idx >= pd_idx)
2707 				(*dd_idx)++;
2708 			qd_idx = raid_disks - 1;
2709 			break;
2710 
2711 		case ALGORITHM_LEFT_SYMMETRIC_6:
2712 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2713 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2714 			qd_idx = raid_disks - 1;
2715 			break;
2716 
2717 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2718 			pd_idx = sector_div(stripe2, raid_disks-1);
2719 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2720 			qd_idx = raid_disks - 1;
2721 			break;
2722 
2723 		case ALGORITHM_PARITY_0_6:
2724 			pd_idx = 0;
2725 			(*dd_idx)++;
2726 			qd_idx = raid_disks - 1;
2727 			break;
2728 
2729 		default:
2730 			BUG();
2731 		}
2732 		break;
2733 	}
2734 
2735 	if (sh) {
2736 		sh->pd_idx = pd_idx;
2737 		sh->qd_idx = qd_idx;
2738 		sh->ddf_layout = ddf_layout;
2739 	}
2740 	/*
2741 	 * Finally, compute the new sector number
2742 	 */
2743 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2744 	return new_sector;
2745 }
2746 
raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)2747 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2748 {
2749 	struct r5conf *conf = sh->raid_conf;
2750 	int raid_disks = sh->disks;
2751 	int data_disks = raid_disks - conf->max_degraded;
2752 	sector_t new_sector = sh->sector, check;
2753 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2754 					 : conf->chunk_sectors;
2755 	int algorithm = previous ? conf->prev_algo
2756 				 : conf->algorithm;
2757 	sector_t stripe;
2758 	int chunk_offset;
2759 	sector_t chunk_number;
2760 	int dummy1, dd_idx = i;
2761 	sector_t r_sector;
2762 	struct stripe_head sh2;
2763 
2764 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2765 	stripe = new_sector;
2766 
2767 	if (i == sh->pd_idx)
2768 		return 0;
2769 	switch(conf->level) {
2770 	case 4: break;
2771 	case 5:
2772 		switch (algorithm) {
2773 		case ALGORITHM_LEFT_ASYMMETRIC:
2774 		case ALGORITHM_RIGHT_ASYMMETRIC:
2775 			if (i > sh->pd_idx)
2776 				i--;
2777 			break;
2778 		case ALGORITHM_LEFT_SYMMETRIC:
2779 		case ALGORITHM_RIGHT_SYMMETRIC:
2780 			if (i < sh->pd_idx)
2781 				i += raid_disks;
2782 			i -= (sh->pd_idx + 1);
2783 			break;
2784 		case ALGORITHM_PARITY_0:
2785 			i -= 1;
2786 			break;
2787 		case ALGORITHM_PARITY_N:
2788 			break;
2789 		default:
2790 			BUG();
2791 		}
2792 		break;
2793 	case 6:
2794 		if (i == sh->qd_idx)
2795 			return 0; /* It is the Q disk */
2796 		switch (algorithm) {
2797 		case ALGORITHM_LEFT_ASYMMETRIC:
2798 		case ALGORITHM_RIGHT_ASYMMETRIC:
2799 		case ALGORITHM_ROTATING_ZERO_RESTART:
2800 		case ALGORITHM_ROTATING_N_RESTART:
2801 			if (sh->pd_idx == raid_disks-1)
2802 				i--;	/* Q D D D P */
2803 			else if (i > sh->pd_idx)
2804 				i -= 2; /* D D P Q D */
2805 			break;
2806 		case ALGORITHM_LEFT_SYMMETRIC:
2807 		case ALGORITHM_RIGHT_SYMMETRIC:
2808 			if (sh->pd_idx == raid_disks-1)
2809 				i--; /* Q D D D P */
2810 			else {
2811 				/* D D P Q D */
2812 				if (i < sh->pd_idx)
2813 					i += raid_disks;
2814 				i -= (sh->pd_idx + 2);
2815 			}
2816 			break;
2817 		case ALGORITHM_PARITY_0:
2818 			i -= 2;
2819 			break;
2820 		case ALGORITHM_PARITY_N:
2821 			break;
2822 		case ALGORITHM_ROTATING_N_CONTINUE:
2823 			/* Like left_symmetric, but P is before Q */
2824 			if (sh->pd_idx == 0)
2825 				i--;	/* P D D D Q */
2826 			else {
2827 				/* D D Q P D */
2828 				if (i < sh->pd_idx)
2829 					i += raid_disks;
2830 				i -= (sh->pd_idx + 1);
2831 			}
2832 			break;
2833 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2834 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2835 			if (i > sh->pd_idx)
2836 				i--;
2837 			break;
2838 		case ALGORITHM_LEFT_SYMMETRIC_6:
2839 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2840 			if (i < sh->pd_idx)
2841 				i += data_disks + 1;
2842 			i -= (sh->pd_idx + 1);
2843 			break;
2844 		case ALGORITHM_PARITY_0_6:
2845 			i -= 1;
2846 			break;
2847 		default:
2848 			BUG();
2849 		}
2850 		break;
2851 	}
2852 
2853 	chunk_number = stripe * data_disks + i;
2854 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2855 
2856 	check = raid5_compute_sector(conf, r_sector,
2857 				     previous, &dummy1, &sh2);
2858 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2859 		|| sh2.qd_idx != sh->qd_idx) {
2860 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2861 		       mdname(conf->mddev));
2862 		return 0;
2863 	}
2864 	return r_sector;
2865 }
2866 
2867 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)2868 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2869 			 int rcw, int expand)
2870 {
2871 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2872 	struct r5conf *conf = sh->raid_conf;
2873 	int level = conf->level;
2874 
2875 	if (rcw) {
2876 
2877 		for (i = disks; i--; ) {
2878 			struct r5dev *dev = &sh->dev[i];
2879 
2880 			if (dev->towrite) {
2881 				set_bit(R5_LOCKED, &dev->flags);
2882 				set_bit(R5_Wantdrain, &dev->flags);
2883 				if (!expand)
2884 					clear_bit(R5_UPTODATE, &dev->flags);
2885 				s->locked++;
2886 			}
2887 		}
2888 		/* if we are not expanding this is a proper write request, and
2889 		 * there will be bios with new data to be drained into the
2890 		 * stripe cache
2891 		 */
2892 		if (!expand) {
2893 			if (!s->locked)
2894 				/* False alarm, nothing to do */
2895 				return;
2896 			sh->reconstruct_state = reconstruct_state_drain_run;
2897 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2898 		} else
2899 			sh->reconstruct_state = reconstruct_state_run;
2900 
2901 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2902 
2903 		if (s->locked + conf->max_degraded == disks)
2904 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2905 				atomic_inc(&conf->pending_full_writes);
2906 	} else {
2907 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2908 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2909 		BUG_ON(level == 6 &&
2910 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2911 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2912 
2913 		for (i = disks; i--; ) {
2914 			struct r5dev *dev = &sh->dev[i];
2915 			if (i == pd_idx || i == qd_idx)
2916 				continue;
2917 
2918 			if (dev->towrite &&
2919 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2920 			     test_bit(R5_Wantcompute, &dev->flags))) {
2921 				set_bit(R5_Wantdrain, &dev->flags);
2922 				set_bit(R5_LOCKED, &dev->flags);
2923 				clear_bit(R5_UPTODATE, &dev->flags);
2924 				s->locked++;
2925 			}
2926 		}
2927 		if (!s->locked)
2928 			/* False alarm - nothing to do */
2929 			return;
2930 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2931 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2932 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2933 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2934 	}
2935 
2936 	/* keep the parity disk(s) locked while asynchronous operations
2937 	 * are in flight
2938 	 */
2939 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2940 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2941 	s->locked++;
2942 
2943 	if (level == 6) {
2944 		int qd_idx = sh->qd_idx;
2945 		struct r5dev *dev = &sh->dev[qd_idx];
2946 
2947 		set_bit(R5_LOCKED, &dev->flags);
2948 		clear_bit(R5_UPTODATE, &dev->flags);
2949 		s->locked++;
2950 	}
2951 
2952 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2953 		__func__, (unsigned long long)sh->sector,
2954 		s->locked, s->ops_request);
2955 }
2956 
2957 /*
2958  * Each stripe/dev can have one or more bion attached.
2959  * toread/towrite point to the first in a chain.
2960  * The bi_next chain must be in order.
2961  */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)2962 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2963 			  int forwrite, int previous)
2964 {
2965 	struct bio **bip;
2966 	struct r5conf *conf = sh->raid_conf;
2967 	int firstwrite=0;
2968 
2969 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2970 		(unsigned long long)bi->bi_iter.bi_sector,
2971 		(unsigned long long)sh->sector);
2972 
2973 	/*
2974 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2975 	 * reference count to avoid race. The reference count should already be
2976 	 * increased before this function is called (for example, in
2977 	 * make_request()), so other bio sharing this stripe will not free the
2978 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2979 	 * protect it.
2980 	 */
2981 	spin_lock_irq(&sh->stripe_lock);
2982 	/* Don't allow new IO added to stripes in batch list */
2983 	if (sh->batch_head)
2984 		goto overlap;
2985 	if (forwrite) {
2986 		bip = &sh->dev[dd_idx].towrite;
2987 		if (*bip == NULL)
2988 			firstwrite = 1;
2989 	} else
2990 		bip = &sh->dev[dd_idx].toread;
2991 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2992 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2993 			goto overlap;
2994 		bip = & (*bip)->bi_next;
2995 	}
2996 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2997 		goto overlap;
2998 
2999 	if (!forwrite || previous)
3000 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3001 
3002 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3003 	if (*bip)
3004 		bi->bi_next = *bip;
3005 	*bip = bi;
3006 	raid5_inc_bi_active_stripes(bi);
3007 
3008 	if (forwrite) {
3009 		/* check if page is covered */
3010 		sector_t sector = sh->dev[dd_idx].sector;
3011 		for (bi=sh->dev[dd_idx].towrite;
3012 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3013 			     bi && bi->bi_iter.bi_sector <= sector;
3014 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3015 			if (bio_end_sector(bi) >= sector)
3016 				sector = bio_end_sector(bi);
3017 		}
3018 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3019 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3020 				sh->overwrite_disks++;
3021 	}
3022 
3023 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3024 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3025 		(unsigned long long)sh->sector, dd_idx);
3026 
3027 	if (conf->mddev->bitmap && firstwrite) {
3028 		/* Cannot hold spinlock over bitmap_startwrite,
3029 		 * but must ensure this isn't added to a batch until
3030 		 * we have added to the bitmap and set bm_seq.
3031 		 * So set STRIPE_BITMAP_PENDING to prevent
3032 		 * batching.
3033 		 * If multiple add_stripe_bio() calls race here they
3034 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3035 		 * to complete "bitmap_startwrite" gets to set
3036 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3037 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3038 		 * any more.
3039 		 */
3040 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3041 		spin_unlock_irq(&sh->stripe_lock);
3042 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3043 				  STRIPE_SECTORS, 0);
3044 		spin_lock_irq(&sh->stripe_lock);
3045 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3046 		if (!sh->batch_head) {
3047 			sh->bm_seq = conf->seq_flush+1;
3048 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3049 		}
3050 	}
3051 	spin_unlock_irq(&sh->stripe_lock);
3052 
3053 	if (stripe_can_batch(sh))
3054 		stripe_add_to_batch_list(conf, sh);
3055 	return 1;
3056 
3057  overlap:
3058 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3059 	spin_unlock_irq(&sh->stripe_lock);
3060 	return 0;
3061 }
3062 
3063 static void end_reshape(struct r5conf *conf);
3064 
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3065 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3066 			    struct stripe_head *sh)
3067 {
3068 	int sectors_per_chunk =
3069 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3070 	int dd_idx;
3071 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3072 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3073 
3074 	raid5_compute_sector(conf,
3075 			     stripe * (disks - conf->max_degraded)
3076 			     *sectors_per_chunk + chunk_offset,
3077 			     previous,
3078 			     &dd_idx, sh);
3079 }
3080 
3081 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks,struct bio_list * return_bi)3082 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3083 				struct stripe_head_state *s, int disks,
3084 				struct bio_list *return_bi)
3085 {
3086 	int i;
3087 	BUG_ON(sh->batch_head);
3088 	for (i = disks; i--; ) {
3089 		struct bio *bi;
3090 		int bitmap_end = 0;
3091 
3092 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3093 			struct md_rdev *rdev;
3094 			rcu_read_lock();
3095 			rdev = rcu_dereference(conf->disks[i].rdev);
3096 			if (rdev && test_bit(In_sync, &rdev->flags))
3097 				atomic_inc(&rdev->nr_pending);
3098 			else
3099 				rdev = NULL;
3100 			rcu_read_unlock();
3101 			if (rdev) {
3102 				if (!rdev_set_badblocks(
3103 					    rdev,
3104 					    sh->sector,
3105 					    STRIPE_SECTORS, 0))
3106 					md_error(conf->mddev, rdev);
3107 				rdev_dec_pending(rdev, conf->mddev);
3108 			}
3109 		}
3110 		spin_lock_irq(&sh->stripe_lock);
3111 		/* fail all writes first */
3112 		bi = sh->dev[i].towrite;
3113 		sh->dev[i].towrite = NULL;
3114 		sh->overwrite_disks = 0;
3115 		spin_unlock_irq(&sh->stripe_lock);
3116 		if (bi)
3117 			bitmap_end = 1;
3118 
3119 		r5l_stripe_write_finished(sh);
3120 
3121 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3122 			wake_up(&conf->wait_for_overlap);
3123 
3124 		while (bi && bi->bi_iter.bi_sector <
3125 			sh->dev[i].sector + STRIPE_SECTORS) {
3126 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3127 
3128 			bi->bi_error = -EIO;
3129 			if (!raid5_dec_bi_active_stripes(bi)) {
3130 				md_write_end(conf->mddev);
3131 				bio_list_add(return_bi, bi);
3132 			}
3133 			bi = nextbi;
3134 		}
3135 		if (bitmap_end)
3136 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3137 				STRIPE_SECTORS, 0, 0);
3138 		bitmap_end = 0;
3139 		/* and fail all 'written' */
3140 		bi = sh->dev[i].written;
3141 		sh->dev[i].written = NULL;
3142 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3143 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3144 			sh->dev[i].page = sh->dev[i].orig_page;
3145 		}
3146 
3147 		if (bi) bitmap_end = 1;
3148 		while (bi && bi->bi_iter.bi_sector <
3149 		       sh->dev[i].sector + STRIPE_SECTORS) {
3150 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3151 
3152 			bi->bi_error = -EIO;
3153 			if (!raid5_dec_bi_active_stripes(bi)) {
3154 				md_write_end(conf->mddev);
3155 				bio_list_add(return_bi, bi);
3156 			}
3157 			bi = bi2;
3158 		}
3159 
3160 		/* fail any reads if this device is non-operational and
3161 		 * the data has not reached the cache yet.
3162 		 */
3163 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3164 		    s->failed > conf->max_degraded &&
3165 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3166 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3167 			spin_lock_irq(&sh->stripe_lock);
3168 			bi = sh->dev[i].toread;
3169 			sh->dev[i].toread = NULL;
3170 			spin_unlock_irq(&sh->stripe_lock);
3171 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3172 				wake_up(&conf->wait_for_overlap);
3173 			if (bi)
3174 				s->to_read--;
3175 			while (bi && bi->bi_iter.bi_sector <
3176 			       sh->dev[i].sector + STRIPE_SECTORS) {
3177 				struct bio *nextbi =
3178 					r5_next_bio(bi, sh->dev[i].sector);
3179 
3180 				bi->bi_error = -EIO;
3181 				if (!raid5_dec_bi_active_stripes(bi))
3182 					bio_list_add(return_bi, bi);
3183 				bi = nextbi;
3184 			}
3185 		}
3186 		if (bitmap_end)
3187 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3188 					STRIPE_SECTORS, 0, 0);
3189 		/* If we were in the middle of a write the parity block might
3190 		 * still be locked - so just clear all R5_LOCKED flags
3191 		 */
3192 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3193 	}
3194 	s->to_write = 0;
3195 	s->written = 0;
3196 
3197 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3198 		if (atomic_dec_and_test(&conf->pending_full_writes))
3199 			md_wakeup_thread(conf->mddev->thread);
3200 }
3201 
3202 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3203 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3204 		   struct stripe_head_state *s)
3205 {
3206 	int abort = 0;
3207 	int i;
3208 
3209 	BUG_ON(sh->batch_head);
3210 	clear_bit(STRIPE_SYNCING, &sh->state);
3211 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3212 		wake_up(&conf->wait_for_overlap);
3213 	s->syncing = 0;
3214 	s->replacing = 0;
3215 	/* There is nothing more to do for sync/check/repair.
3216 	 * Don't even need to abort as that is handled elsewhere
3217 	 * if needed, and not always wanted e.g. if there is a known
3218 	 * bad block here.
3219 	 * For recover/replace we need to record a bad block on all
3220 	 * non-sync devices, or abort the recovery
3221 	 */
3222 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3223 		/* During recovery devices cannot be removed, so
3224 		 * locking and refcounting of rdevs is not needed
3225 		 */
3226 		for (i = 0; i < conf->raid_disks; i++) {
3227 			struct md_rdev *rdev = conf->disks[i].rdev;
3228 			if (rdev
3229 			    && !test_bit(Faulty, &rdev->flags)
3230 			    && !test_bit(In_sync, &rdev->flags)
3231 			    && !rdev_set_badblocks(rdev, sh->sector,
3232 						   STRIPE_SECTORS, 0))
3233 				abort = 1;
3234 			rdev = conf->disks[i].replacement;
3235 			if (rdev
3236 			    && !test_bit(Faulty, &rdev->flags)
3237 			    && !test_bit(In_sync, &rdev->flags)
3238 			    && !rdev_set_badblocks(rdev, sh->sector,
3239 						   STRIPE_SECTORS, 0))
3240 				abort = 1;
3241 		}
3242 		if (abort)
3243 			conf->recovery_disabled =
3244 				conf->mddev->recovery_disabled;
3245 	}
3246 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3247 }
3248 
want_replace(struct stripe_head * sh,int disk_idx)3249 static int want_replace(struct stripe_head *sh, int disk_idx)
3250 {
3251 	struct md_rdev *rdev;
3252 	int rv = 0;
3253 	/* Doing recovery so rcu locking not required */
3254 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3255 	if (rdev
3256 	    && !test_bit(Faulty, &rdev->flags)
3257 	    && !test_bit(In_sync, &rdev->flags)
3258 	    && (rdev->recovery_offset <= sh->sector
3259 		|| rdev->mddev->recovery_cp <= sh->sector))
3260 		rv = 1;
3261 
3262 	return rv;
3263 }
3264 
3265 /* fetch_block - checks the given member device to see if its data needs
3266  * to be read or computed to satisfy a request.
3267  *
3268  * Returns 1 when no more member devices need to be checked, otherwise returns
3269  * 0 to tell the loop in handle_stripe_fill to continue
3270  */
3271 
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3272 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3273 			   int disk_idx, int disks)
3274 {
3275 	struct r5dev *dev = &sh->dev[disk_idx];
3276 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3277 				  &sh->dev[s->failed_num[1]] };
3278 	int i;
3279 
3280 
3281 	if (test_bit(R5_LOCKED, &dev->flags) ||
3282 	    test_bit(R5_UPTODATE, &dev->flags))
3283 		/* No point reading this as we already have it or have
3284 		 * decided to get it.
3285 		 */
3286 		return 0;
3287 
3288 	if (dev->toread ||
3289 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3290 		/* We need this block to directly satisfy a request */
3291 		return 1;
3292 
3293 	if (s->syncing || s->expanding ||
3294 	    (s->replacing && want_replace(sh, disk_idx)))
3295 		/* When syncing, or expanding we read everything.
3296 		 * When replacing, we need the replaced block.
3297 		 */
3298 		return 1;
3299 
3300 	if ((s->failed >= 1 && fdev[0]->toread) ||
3301 	    (s->failed >= 2 && fdev[1]->toread))
3302 		/* If we want to read from a failed device, then
3303 		 * we need to actually read every other device.
3304 		 */
3305 		return 1;
3306 
3307 	/* Sometimes neither read-modify-write nor reconstruct-write
3308 	 * cycles can work.  In those cases we read every block we
3309 	 * can.  Then the parity-update is certain to have enough to
3310 	 * work with.
3311 	 * This can only be a problem when we need to write something,
3312 	 * and some device has failed.  If either of those tests
3313 	 * fail we need look no further.
3314 	 */
3315 	if (!s->failed || !s->to_write)
3316 		return 0;
3317 
3318 	if (test_bit(R5_Insync, &dev->flags) &&
3319 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3320 		/* Pre-reads at not permitted until after short delay
3321 		 * to gather multiple requests.  However if this
3322 		 * device is no Insync, the block could only be be computed
3323 		 * and there is no need to delay that.
3324 		 */
3325 		return 0;
3326 
3327 	for (i = 0; i < s->failed && i < 2; i++) {
3328 		if (fdev[i]->towrite &&
3329 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3330 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3331 			/* If we have a partial write to a failed
3332 			 * device, then we will need to reconstruct
3333 			 * the content of that device, so all other
3334 			 * devices must be read.
3335 			 */
3336 			return 1;
3337 	}
3338 
3339 	/* If we are forced to do a reconstruct-write, either because
3340 	 * the current RAID6 implementation only supports that, or
3341 	 * or because parity cannot be trusted and we are currently
3342 	 * recovering it, there is extra need to be careful.
3343 	 * If one of the devices that we would need to read, because
3344 	 * it is not being overwritten (and maybe not written at all)
3345 	 * is missing/faulty, then we need to read everything we can.
3346 	 */
3347 	if (sh->raid_conf->level != 6 &&
3348 	    sh->raid_conf->rmw_level != PARITY_DISABLE_RMW &&
3349 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3350 		/* reconstruct-write isn't being forced */
3351 		return 0;
3352 	for (i = 0; i < s->failed && i < 2; i++) {
3353 		if (s->failed_num[i] != sh->pd_idx &&
3354 		    s->failed_num[i] != sh->qd_idx &&
3355 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3356 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3357 			return 1;
3358 	}
3359 
3360 	return 0;
3361 }
3362 
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3363 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3364 		       int disk_idx, int disks)
3365 {
3366 	struct r5dev *dev = &sh->dev[disk_idx];
3367 
3368 	/* is the data in this block needed, and can we get it? */
3369 	if (need_this_block(sh, s, disk_idx, disks)) {
3370 		/* we would like to get this block, possibly by computing it,
3371 		 * otherwise read it if the backing disk is insync
3372 		 */
3373 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3374 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3375 		BUG_ON(sh->batch_head);
3376 
3377 		/*
3378 		 * In the raid6 case if the only non-uptodate disk is P
3379 		 * then we already trusted P to compute the other failed
3380 		 * drives. It is safe to compute rather than re-read P.
3381 		 * In other cases we only compute blocks from failed
3382 		 * devices, otherwise check/repair might fail to detect
3383 		 * a real inconsistency.
3384 		 */
3385 
3386 		if ((s->uptodate == disks - 1) &&
3387 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3388 		    (s->failed && (disk_idx == s->failed_num[0] ||
3389 				   disk_idx == s->failed_num[1])))) {
3390 			/* have disk failed, and we're requested to fetch it;
3391 			 * do compute it
3392 			 */
3393 			pr_debug("Computing stripe %llu block %d\n",
3394 			       (unsigned long long)sh->sector, disk_idx);
3395 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3396 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3397 			set_bit(R5_Wantcompute, &dev->flags);
3398 			sh->ops.target = disk_idx;
3399 			sh->ops.target2 = -1; /* no 2nd target */
3400 			s->req_compute = 1;
3401 			/* Careful: from this point on 'uptodate' is in the eye
3402 			 * of raid_run_ops which services 'compute' operations
3403 			 * before writes. R5_Wantcompute flags a block that will
3404 			 * be R5_UPTODATE by the time it is needed for a
3405 			 * subsequent operation.
3406 			 */
3407 			s->uptodate++;
3408 			return 1;
3409 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3410 			/* Computing 2-failure is *very* expensive; only
3411 			 * do it if failed >= 2
3412 			 */
3413 			int other;
3414 			for (other = disks; other--; ) {
3415 				if (other == disk_idx)
3416 					continue;
3417 				if (!test_bit(R5_UPTODATE,
3418 				      &sh->dev[other].flags))
3419 					break;
3420 			}
3421 			BUG_ON(other < 0);
3422 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3423 			       (unsigned long long)sh->sector,
3424 			       disk_idx, other);
3425 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3426 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3427 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3428 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3429 			sh->ops.target = disk_idx;
3430 			sh->ops.target2 = other;
3431 			s->uptodate += 2;
3432 			s->req_compute = 1;
3433 			return 1;
3434 		} else if (test_bit(R5_Insync, &dev->flags)) {
3435 			set_bit(R5_LOCKED, &dev->flags);
3436 			set_bit(R5_Wantread, &dev->flags);
3437 			s->locked++;
3438 			pr_debug("Reading block %d (sync=%d)\n",
3439 				disk_idx, s->syncing);
3440 		}
3441 	}
3442 
3443 	return 0;
3444 }
3445 
3446 /**
3447  * handle_stripe_fill - read or compute data to satisfy pending requests.
3448  */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)3449 static void handle_stripe_fill(struct stripe_head *sh,
3450 			       struct stripe_head_state *s,
3451 			       int disks)
3452 {
3453 	int i;
3454 
3455 	/* look for blocks to read/compute, skip this if a compute
3456 	 * is already in flight, or if the stripe contents are in the
3457 	 * midst of changing due to a write
3458 	 */
3459 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3460 	    !sh->reconstruct_state)
3461 		for (i = disks; i--; )
3462 			if (fetch_block(sh, s, i, disks))
3463 				break;
3464 	set_bit(STRIPE_HANDLE, &sh->state);
3465 }
3466 
3467 static void break_stripe_batch_list(struct stripe_head *head_sh,
3468 				    unsigned long handle_flags);
3469 /* handle_stripe_clean_event
3470  * any written block on an uptodate or failed drive can be returned.
3471  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3472  * never LOCKED, so we don't need to test 'failed' directly.
3473  */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks,struct bio_list * return_bi)3474 static void handle_stripe_clean_event(struct r5conf *conf,
3475 	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3476 {
3477 	int i;
3478 	struct r5dev *dev;
3479 	int discard_pending = 0;
3480 	struct stripe_head *head_sh = sh;
3481 	bool do_endio = false;
3482 
3483 	for (i = disks; i--; )
3484 		if (sh->dev[i].written) {
3485 			dev = &sh->dev[i];
3486 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3487 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3488 			     test_bit(R5_Discard, &dev->flags) ||
3489 			     test_bit(R5_SkipCopy, &dev->flags))) {
3490 				/* We can return any write requests */
3491 				struct bio *wbi, *wbi2;
3492 				pr_debug("Return write for disc %d\n", i);
3493 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3494 					clear_bit(R5_UPTODATE, &dev->flags);
3495 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3496 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3497 				}
3498 				do_endio = true;
3499 
3500 returnbi:
3501 				dev->page = dev->orig_page;
3502 				wbi = dev->written;
3503 				dev->written = NULL;
3504 				while (wbi && wbi->bi_iter.bi_sector <
3505 					dev->sector + STRIPE_SECTORS) {
3506 					wbi2 = r5_next_bio(wbi, dev->sector);
3507 					if (!raid5_dec_bi_active_stripes(wbi)) {
3508 						md_write_end(conf->mddev);
3509 						bio_list_add(return_bi, wbi);
3510 					}
3511 					wbi = wbi2;
3512 				}
3513 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3514 						STRIPE_SECTORS,
3515 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3516 						0);
3517 				if (head_sh->batch_head) {
3518 					sh = list_first_entry(&sh->batch_list,
3519 							      struct stripe_head,
3520 							      batch_list);
3521 					if (sh != head_sh) {
3522 						dev = &sh->dev[i];
3523 						goto returnbi;
3524 					}
3525 				}
3526 				sh = head_sh;
3527 				dev = &sh->dev[i];
3528 			} else if (test_bit(R5_Discard, &dev->flags))
3529 				discard_pending = 1;
3530 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3531 			WARN_ON(dev->page != dev->orig_page);
3532 		}
3533 
3534 	r5l_stripe_write_finished(sh);
3535 
3536 	if (!discard_pending &&
3537 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3538 		int hash;
3539 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3540 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3541 		if (sh->qd_idx >= 0) {
3542 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3543 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3544 		}
3545 		/* now that discard is done we can proceed with any sync */
3546 		clear_bit(STRIPE_DISCARD, &sh->state);
3547 		/*
3548 		 * SCSI discard will change some bio fields and the stripe has
3549 		 * no updated data, so remove it from hash list and the stripe
3550 		 * will be reinitialized
3551 		 */
3552 unhash:
3553 		hash = sh->hash_lock_index;
3554 		spin_lock_irq(conf->hash_locks + hash);
3555 		remove_hash(sh);
3556 		spin_unlock_irq(conf->hash_locks + hash);
3557 		if (head_sh->batch_head) {
3558 			sh = list_first_entry(&sh->batch_list,
3559 					      struct stripe_head, batch_list);
3560 			if (sh != head_sh)
3561 					goto unhash;
3562 		}
3563 		sh = head_sh;
3564 
3565 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3566 			set_bit(STRIPE_HANDLE, &sh->state);
3567 
3568 	}
3569 
3570 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3571 		if (atomic_dec_and_test(&conf->pending_full_writes))
3572 			md_wakeup_thread(conf->mddev->thread);
3573 
3574 	if (head_sh->batch_head && do_endio)
3575 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3576 }
3577 
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3578 static void handle_stripe_dirtying(struct r5conf *conf,
3579 				   struct stripe_head *sh,
3580 				   struct stripe_head_state *s,
3581 				   int disks)
3582 {
3583 	int rmw = 0, rcw = 0, i;
3584 	sector_t recovery_cp = conf->mddev->recovery_cp;
3585 
3586 	/* Check whether resync is now happening or should start.
3587 	 * If yes, then the array is dirty (after unclean shutdown or
3588 	 * initial creation), so parity in some stripes might be inconsistent.
3589 	 * In this case, we need to always do reconstruct-write, to ensure
3590 	 * that in case of drive failure or read-error correction, we
3591 	 * generate correct data from the parity.
3592 	 */
3593 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3594 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3595 	     s->failed == 0)) {
3596 		/* Calculate the real rcw later - for now make it
3597 		 * look like rcw is cheaper
3598 		 */
3599 		rcw = 1; rmw = 2;
3600 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3601 			 conf->rmw_level, (unsigned long long)recovery_cp,
3602 			 (unsigned long long)sh->sector);
3603 	} else for (i = disks; i--; ) {
3604 		/* would I have to read this buffer for read_modify_write */
3605 		struct r5dev *dev = &sh->dev[i];
3606 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3607 		    !test_bit(R5_LOCKED, &dev->flags) &&
3608 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3609 		      test_bit(R5_Wantcompute, &dev->flags))) {
3610 			if (test_bit(R5_Insync, &dev->flags))
3611 				rmw++;
3612 			else
3613 				rmw += 2*disks;  /* cannot read it */
3614 		}
3615 		/* Would I have to read this buffer for reconstruct_write */
3616 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3617 		    i != sh->pd_idx && i != sh->qd_idx &&
3618 		    !test_bit(R5_LOCKED, &dev->flags) &&
3619 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3620 		    test_bit(R5_Wantcompute, &dev->flags))) {
3621 			if (test_bit(R5_Insync, &dev->flags))
3622 				rcw++;
3623 			else
3624 				rcw += 2*disks;
3625 		}
3626 	}
3627 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3628 		(unsigned long long)sh->sector, rmw, rcw);
3629 	set_bit(STRIPE_HANDLE, &sh->state);
3630 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3631 		/* prefer read-modify-write, but need to get some data */
3632 		if (conf->mddev->queue)
3633 			blk_add_trace_msg(conf->mddev->queue,
3634 					  "raid5 rmw %llu %d",
3635 					  (unsigned long long)sh->sector, rmw);
3636 		for (i = disks; i--; ) {
3637 			struct r5dev *dev = &sh->dev[i];
3638 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3639 			    !test_bit(R5_LOCKED, &dev->flags) &&
3640 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3641 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3642 			    test_bit(R5_Insync, &dev->flags)) {
3643 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3644 					     &sh->state)) {
3645 					pr_debug("Read_old block %d for r-m-w\n",
3646 						 i);
3647 					set_bit(R5_LOCKED, &dev->flags);
3648 					set_bit(R5_Wantread, &dev->flags);
3649 					s->locked++;
3650 				} else {
3651 					set_bit(STRIPE_DELAYED, &sh->state);
3652 					set_bit(STRIPE_HANDLE, &sh->state);
3653 				}
3654 			}
3655 		}
3656 	}
3657 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3658 		/* want reconstruct write, but need to get some data */
3659 		int qread =0;
3660 		rcw = 0;
3661 		for (i = disks; i--; ) {
3662 			struct r5dev *dev = &sh->dev[i];
3663 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3664 			    i != sh->pd_idx && i != sh->qd_idx &&
3665 			    !test_bit(R5_LOCKED, &dev->flags) &&
3666 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3667 			      test_bit(R5_Wantcompute, &dev->flags))) {
3668 				rcw++;
3669 				if (test_bit(R5_Insync, &dev->flags) &&
3670 				    test_bit(STRIPE_PREREAD_ACTIVE,
3671 					     &sh->state)) {
3672 					pr_debug("Read_old block "
3673 						"%d for Reconstruct\n", i);
3674 					set_bit(R5_LOCKED, &dev->flags);
3675 					set_bit(R5_Wantread, &dev->flags);
3676 					s->locked++;
3677 					qread++;
3678 				} else {
3679 					set_bit(STRIPE_DELAYED, &sh->state);
3680 					set_bit(STRIPE_HANDLE, &sh->state);
3681 				}
3682 			}
3683 		}
3684 		if (rcw && conf->mddev->queue)
3685 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3686 					  (unsigned long long)sh->sector,
3687 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3688 	}
3689 
3690 	if (rcw > disks && rmw > disks &&
3691 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3692 		set_bit(STRIPE_DELAYED, &sh->state);
3693 
3694 	/* now if nothing is locked, and if we have enough data,
3695 	 * we can start a write request
3696 	 */
3697 	/* since handle_stripe can be called at any time we need to handle the
3698 	 * case where a compute block operation has been submitted and then a
3699 	 * subsequent call wants to start a write request.  raid_run_ops only
3700 	 * handles the case where compute block and reconstruct are requested
3701 	 * simultaneously.  If this is not the case then new writes need to be
3702 	 * held off until the compute completes.
3703 	 */
3704 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3705 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3706 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3707 		schedule_reconstruction(sh, s, rcw == 0, 0);
3708 }
3709 
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3710 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3711 				struct stripe_head_state *s, int disks)
3712 {
3713 	struct r5dev *dev = NULL;
3714 
3715 	BUG_ON(sh->batch_head);
3716 	set_bit(STRIPE_HANDLE, &sh->state);
3717 
3718 	switch (sh->check_state) {
3719 	case check_state_idle:
3720 		/* start a new check operation if there are no failures */
3721 		if (s->failed == 0) {
3722 			BUG_ON(s->uptodate != disks);
3723 			sh->check_state = check_state_run;
3724 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3725 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3726 			s->uptodate--;
3727 			break;
3728 		}
3729 		dev = &sh->dev[s->failed_num[0]];
3730 		/* fall through */
3731 	case check_state_compute_result:
3732 		sh->check_state = check_state_idle;
3733 		if (!dev)
3734 			dev = &sh->dev[sh->pd_idx];
3735 
3736 		/* check that a write has not made the stripe insync */
3737 		if (test_bit(STRIPE_INSYNC, &sh->state))
3738 			break;
3739 
3740 		/* either failed parity check, or recovery is happening */
3741 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3742 		BUG_ON(s->uptodate != disks);
3743 
3744 		set_bit(R5_LOCKED, &dev->flags);
3745 		s->locked++;
3746 		set_bit(R5_Wantwrite, &dev->flags);
3747 
3748 		clear_bit(STRIPE_DEGRADED, &sh->state);
3749 		set_bit(STRIPE_INSYNC, &sh->state);
3750 		break;
3751 	case check_state_run:
3752 		break; /* we will be called again upon completion */
3753 	case check_state_check_result:
3754 		sh->check_state = check_state_idle;
3755 
3756 		/* if a failure occurred during the check operation, leave
3757 		 * STRIPE_INSYNC not set and let the stripe be handled again
3758 		 */
3759 		if (s->failed)
3760 			break;
3761 
3762 		/* handle a successful check operation, if parity is correct
3763 		 * we are done.  Otherwise update the mismatch count and repair
3764 		 * parity if !MD_RECOVERY_CHECK
3765 		 */
3766 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3767 			/* parity is correct (on disc,
3768 			 * not in buffer any more)
3769 			 */
3770 			set_bit(STRIPE_INSYNC, &sh->state);
3771 		else {
3772 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3773 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3774 				/* don't try to repair!! */
3775 				set_bit(STRIPE_INSYNC, &sh->state);
3776 			else {
3777 				sh->check_state = check_state_compute_run;
3778 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3779 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3780 				set_bit(R5_Wantcompute,
3781 					&sh->dev[sh->pd_idx].flags);
3782 				sh->ops.target = sh->pd_idx;
3783 				sh->ops.target2 = -1;
3784 				s->uptodate++;
3785 			}
3786 		}
3787 		break;
3788 	case check_state_compute_run:
3789 		break;
3790 	default:
3791 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3792 		       __func__, sh->check_state,
3793 		       (unsigned long long) sh->sector);
3794 		BUG();
3795 	}
3796 }
3797 
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3798 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3799 				  struct stripe_head_state *s,
3800 				  int disks)
3801 {
3802 	int pd_idx = sh->pd_idx;
3803 	int qd_idx = sh->qd_idx;
3804 	struct r5dev *dev;
3805 
3806 	BUG_ON(sh->batch_head);
3807 	set_bit(STRIPE_HANDLE, &sh->state);
3808 
3809 	BUG_ON(s->failed > 2);
3810 
3811 	/* Want to check and possibly repair P and Q.
3812 	 * However there could be one 'failed' device, in which
3813 	 * case we can only check one of them, possibly using the
3814 	 * other to generate missing data
3815 	 */
3816 
3817 	switch (sh->check_state) {
3818 	case check_state_idle:
3819 		/* start a new check operation if there are < 2 failures */
3820 		if (s->failed == s->q_failed) {
3821 			/* The only possible failed device holds Q, so it
3822 			 * makes sense to check P (If anything else were failed,
3823 			 * we would have used P to recreate it).
3824 			 */
3825 			sh->check_state = check_state_run;
3826 		}
3827 		if (!s->q_failed && s->failed < 2) {
3828 			/* Q is not failed, and we didn't use it to generate
3829 			 * anything, so it makes sense to check it
3830 			 */
3831 			if (sh->check_state == check_state_run)
3832 				sh->check_state = check_state_run_pq;
3833 			else
3834 				sh->check_state = check_state_run_q;
3835 		}
3836 
3837 		/* discard potentially stale zero_sum_result */
3838 		sh->ops.zero_sum_result = 0;
3839 
3840 		if (sh->check_state == check_state_run) {
3841 			/* async_xor_zero_sum destroys the contents of P */
3842 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3843 			s->uptodate--;
3844 		}
3845 		if (sh->check_state >= check_state_run &&
3846 		    sh->check_state <= check_state_run_pq) {
3847 			/* async_syndrome_zero_sum preserves P and Q, so
3848 			 * no need to mark them !uptodate here
3849 			 */
3850 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3851 			break;
3852 		}
3853 
3854 		/* we have 2-disk failure */
3855 		BUG_ON(s->failed != 2);
3856 		/* fall through */
3857 	case check_state_compute_result:
3858 		sh->check_state = check_state_idle;
3859 
3860 		/* check that a write has not made the stripe insync */
3861 		if (test_bit(STRIPE_INSYNC, &sh->state))
3862 			break;
3863 
3864 		/* now write out any block on a failed drive,
3865 		 * or P or Q if they were recomputed
3866 		 */
3867 		dev = NULL;
3868 		if (s->failed == 2) {
3869 			dev = &sh->dev[s->failed_num[1]];
3870 			s->locked++;
3871 			set_bit(R5_LOCKED, &dev->flags);
3872 			set_bit(R5_Wantwrite, &dev->flags);
3873 		}
3874 		if (s->failed >= 1) {
3875 			dev = &sh->dev[s->failed_num[0]];
3876 			s->locked++;
3877 			set_bit(R5_LOCKED, &dev->flags);
3878 			set_bit(R5_Wantwrite, &dev->flags);
3879 		}
3880 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3881 			dev = &sh->dev[pd_idx];
3882 			s->locked++;
3883 			set_bit(R5_LOCKED, &dev->flags);
3884 			set_bit(R5_Wantwrite, &dev->flags);
3885 		}
3886 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3887 			dev = &sh->dev[qd_idx];
3888 			s->locked++;
3889 			set_bit(R5_LOCKED, &dev->flags);
3890 			set_bit(R5_Wantwrite, &dev->flags);
3891 		}
3892 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
3893 			      "%s: disk%td not up to date\n",
3894 			      mdname(conf->mddev),
3895 			      dev - (struct r5dev *) &sh->dev)) {
3896 			clear_bit(R5_LOCKED, &dev->flags);
3897 			clear_bit(R5_Wantwrite, &dev->flags);
3898 			s->locked--;
3899 		}
3900 		clear_bit(STRIPE_DEGRADED, &sh->state);
3901 
3902 		set_bit(STRIPE_INSYNC, &sh->state);
3903 		break;
3904 	case check_state_run:
3905 	case check_state_run_q:
3906 	case check_state_run_pq:
3907 		break; /* we will be called again upon completion */
3908 	case check_state_check_result:
3909 		sh->check_state = check_state_idle;
3910 
3911 		/* handle a successful check operation, if parity is correct
3912 		 * we are done.  Otherwise update the mismatch count and repair
3913 		 * parity if !MD_RECOVERY_CHECK
3914 		 */
3915 		if (sh->ops.zero_sum_result == 0) {
3916 			/* both parities are correct */
3917 			if (!s->failed)
3918 				set_bit(STRIPE_INSYNC, &sh->state);
3919 			else {
3920 				/* in contrast to the raid5 case we can validate
3921 				 * parity, but still have a failure to write
3922 				 * back
3923 				 */
3924 				sh->check_state = check_state_compute_result;
3925 				/* Returning at this point means that we may go
3926 				 * off and bring p and/or q uptodate again so
3927 				 * we make sure to check zero_sum_result again
3928 				 * to verify if p or q need writeback
3929 				 */
3930 			}
3931 		} else {
3932 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3933 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3934 				/* don't try to repair!! */
3935 				set_bit(STRIPE_INSYNC, &sh->state);
3936 			else {
3937 				int *target = &sh->ops.target;
3938 
3939 				sh->ops.target = -1;
3940 				sh->ops.target2 = -1;
3941 				sh->check_state = check_state_compute_run;
3942 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3943 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3944 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3945 					set_bit(R5_Wantcompute,
3946 						&sh->dev[pd_idx].flags);
3947 					*target = pd_idx;
3948 					target = &sh->ops.target2;
3949 					s->uptodate++;
3950 				}
3951 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3952 					set_bit(R5_Wantcompute,
3953 						&sh->dev[qd_idx].flags);
3954 					*target = qd_idx;
3955 					s->uptodate++;
3956 				}
3957 			}
3958 		}
3959 		break;
3960 	case check_state_compute_run:
3961 		break;
3962 	default:
3963 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3964 		       __func__, sh->check_state,
3965 		       (unsigned long long) sh->sector);
3966 		BUG();
3967 	}
3968 }
3969 
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)3970 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3971 {
3972 	int i;
3973 
3974 	/* We have read all the blocks in this stripe and now we need to
3975 	 * copy some of them into a target stripe for expand.
3976 	 */
3977 	struct dma_async_tx_descriptor *tx = NULL;
3978 	BUG_ON(sh->batch_head);
3979 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3980 	for (i = 0; i < sh->disks; i++)
3981 		if (i != sh->pd_idx && i != sh->qd_idx) {
3982 			int dd_idx, j;
3983 			struct stripe_head *sh2;
3984 			struct async_submit_ctl submit;
3985 
3986 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
3987 			sector_t s = raid5_compute_sector(conf, bn, 0,
3988 							  &dd_idx, NULL);
3989 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3990 			if (sh2 == NULL)
3991 				/* so far only the early blocks of this stripe
3992 				 * have been requested.  When later blocks
3993 				 * get requested, we will try again
3994 				 */
3995 				continue;
3996 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3997 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3998 				/* must have already done this block */
3999 				raid5_release_stripe(sh2);
4000 				continue;
4001 			}
4002 
4003 			/* place all the copies on one channel */
4004 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4005 			tx = async_memcpy(sh2->dev[dd_idx].page,
4006 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4007 					  &submit);
4008 
4009 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4010 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4011 			for (j = 0; j < conf->raid_disks; j++)
4012 				if (j != sh2->pd_idx &&
4013 				    j != sh2->qd_idx &&
4014 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4015 					break;
4016 			if (j == conf->raid_disks) {
4017 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4018 				set_bit(STRIPE_HANDLE, &sh2->state);
4019 			}
4020 			raid5_release_stripe(sh2);
4021 
4022 		}
4023 	/* done submitting copies, wait for them to complete */
4024 	async_tx_quiesce(&tx);
4025 }
4026 
4027 /*
4028  * handle_stripe - do things to a stripe.
4029  *
4030  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4031  * state of various bits to see what needs to be done.
4032  * Possible results:
4033  *    return some read requests which now have data
4034  *    return some write requests which are safely on storage
4035  *    schedule a read on some buffers
4036  *    schedule a write of some buffers
4037  *    return confirmation of parity correctness
4038  *
4039  */
4040 
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4041 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4042 {
4043 	struct r5conf *conf = sh->raid_conf;
4044 	int disks = sh->disks;
4045 	struct r5dev *dev;
4046 	int i;
4047 	int do_recovery = 0;
4048 
4049 	memset(s, 0, sizeof(*s));
4050 
4051 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4052 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4053 	s->failed_num[0] = -1;
4054 	s->failed_num[1] = -1;
4055 	s->log_failed = r5l_log_disk_error(conf);
4056 
4057 	/* Now to look around and see what can be done */
4058 	rcu_read_lock();
4059 	for (i=disks; i--; ) {
4060 		struct md_rdev *rdev;
4061 		sector_t first_bad;
4062 		int bad_sectors;
4063 		int is_bad = 0;
4064 
4065 		dev = &sh->dev[i];
4066 
4067 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4068 			 i, dev->flags,
4069 			 dev->toread, dev->towrite, dev->written);
4070 		/* maybe we can reply to a read
4071 		 *
4072 		 * new wantfill requests are only permitted while
4073 		 * ops_complete_biofill is guaranteed to be inactive
4074 		 */
4075 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4076 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4077 			set_bit(R5_Wantfill, &dev->flags);
4078 
4079 		/* now count some things */
4080 		if (test_bit(R5_LOCKED, &dev->flags))
4081 			s->locked++;
4082 		if (test_bit(R5_UPTODATE, &dev->flags))
4083 			s->uptodate++;
4084 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4085 			s->compute++;
4086 			BUG_ON(s->compute > 2);
4087 		}
4088 
4089 		if (test_bit(R5_Wantfill, &dev->flags))
4090 			s->to_fill++;
4091 		else if (dev->toread)
4092 			s->to_read++;
4093 		if (dev->towrite) {
4094 			s->to_write++;
4095 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4096 				s->non_overwrite++;
4097 		}
4098 		if (dev->written)
4099 			s->written++;
4100 		/* Prefer to use the replacement for reads, but only
4101 		 * if it is recovered enough and has no bad blocks.
4102 		 */
4103 		rdev = rcu_dereference(conf->disks[i].replacement);
4104 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4105 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4106 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4107 				 &first_bad, &bad_sectors))
4108 			set_bit(R5_ReadRepl, &dev->flags);
4109 		else {
4110 			if (rdev && !test_bit(Faulty, &rdev->flags))
4111 				set_bit(R5_NeedReplace, &dev->flags);
4112 			else
4113 				clear_bit(R5_NeedReplace, &dev->flags);
4114 			rdev = rcu_dereference(conf->disks[i].rdev);
4115 			clear_bit(R5_ReadRepl, &dev->flags);
4116 		}
4117 		if (rdev && test_bit(Faulty, &rdev->flags))
4118 			rdev = NULL;
4119 		if (rdev) {
4120 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4121 					     &first_bad, &bad_sectors);
4122 			if (s->blocked_rdev == NULL
4123 			    && (test_bit(Blocked, &rdev->flags)
4124 				|| is_bad < 0)) {
4125 				if (is_bad < 0)
4126 					set_bit(BlockedBadBlocks,
4127 						&rdev->flags);
4128 				s->blocked_rdev = rdev;
4129 				atomic_inc(&rdev->nr_pending);
4130 			}
4131 		}
4132 		clear_bit(R5_Insync, &dev->flags);
4133 		if (!rdev)
4134 			/* Not in-sync */;
4135 		else if (is_bad) {
4136 			/* also not in-sync */
4137 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4138 			    test_bit(R5_UPTODATE, &dev->flags)) {
4139 				/* treat as in-sync, but with a read error
4140 				 * which we can now try to correct
4141 				 */
4142 				set_bit(R5_Insync, &dev->flags);
4143 				set_bit(R5_ReadError, &dev->flags);
4144 			}
4145 		} else if (test_bit(In_sync, &rdev->flags))
4146 			set_bit(R5_Insync, &dev->flags);
4147 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4148 			/* in sync if before recovery_offset */
4149 			set_bit(R5_Insync, &dev->flags);
4150 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4151 			 test_bit(R5_Expanded, &dev->flags))
4152 			/* If we've reshaped into here, we assume it is Insync.
4153 			 * We will shortly update recovery_offset to make
4154 			 * it official.
4155 			 */
4156 			set_bit(R5_Insync, &dev->flags);
4157 
4158 		if (test_bit(R5_WriteError, &dev->flags)) {
4159 			/* This flag does not apply to '.replacement'
4160 			 * only to .rdev, so make sure to check that*/
4161 			struct md_rdev *rdev2 = rcu_dereference(
4162 				conf->disks[i].rdev);
4163 			if (rdev2 == rdev)
4164 				clear_bit(R5_Insync, &dev->flags);
4165 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4166 				s->handle_bad_blocks = 1;
4167 				atomic_inc(&rdev2->nr_pending);
4168 			} else
4169 				clear_bit(R5_WriteError, &dev->flags);
4170 		}
4171 		if (test_bit(R5_MadeGood, &dev->flags)) {
4172 			/* This flag does not apply to '.replacement'
4173 			 * only to .rdev, so make sure to check that*/
4174 			struct md_rdev *rdev2 = rcu_dereference(
4175 				conf->disks[i].rdev);
4176 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4177 				s->handle_bad_blocks = 1;
4178 				atomic_inc(&rdev2->nr_pending);
4179 			} else
4180 				clear_bit(R5_MadeGood, &dev->flags);
4181 		}
4182 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4183 			struct md_rdev *rdev2 = rcu_dereference(
4184 				conf->disks[i].replacement);
4185 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4186 				s->handle_bad_blocks = 1;
4187 				atomic_inc(&rdev2->nr_pending);
4188 			} else
4189 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4190 		}
4191 		if (!test_bit(R5_Insync, &dev->flags)) {
4192 			/* The ReadError flag will just be confusing now */
4193 			clear_bit(R5_ReadError, &dev->flags);
4194 			clear_bit(R5_ReWrite, &dev->flags);
4195 		}
4196 		if (test_bit(R5_ReadError, &dev->flags))
4197 			clear_bit(R5_Insync, &dev->flags);
4198 		if (!test_bit(R5_Insync, &dev->flags)) {
4199 			if (s->failed < 2)
4200 				s->failed_num[s->failed] = i;
4201 			s->failed++;
4202 			if (rdev && !test_bit(Faulty, &rdev->flags))
4203 				do_recovery = 1;
4204 			else if (!rdev) {
4205 				rdev = rcu_dereference(
4206 				    conf->disks[i].replacement);
4207 				if (rdev && !test_bit(Faulty, &rdev->flags))
4208 					do_recovery = 1;
4209 			}
4210 		}
4211 	}
4212 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4213 		/* If there is a failed device being replaced,
4214 		 *     we must be recovering.
4215 		 * else if we are after recovery_cp, we must be syncing
4216 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4217 		 * else we can only be replacing
4218 		 * sync and recovery both need to read all devices, and so
4219 		 * use the same flag.
4220 		 */
4221 		if (do_recovery ||
4222 		    sh->sector >= conf->mddev->recovery_cp ||
4223 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4224 			s->syncing = 1;
4225 		else
4226 			s->replacing = 1;
4227 	}
4228 	rcu_read_unlock();
4229 }
4230 
clear_batch_ready(struct stripe_head * sh)4231 static int clear_batch_ready(struct stripe_head *sh)
4232 {
4233 	/* Return '1' if this is a member of batch, or
4234 	 * '0' if it is a lone stripe or a head which can now be
4235 	 * handled.
4236 	 */
4237 	struct stripe_head *tmp;
4238 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4239 		return (sh->batch_head && sh->batch_head != sh);
4240 	spin_lock(&sh->stripe_lock);
4241 	if (!sh->batch_head) {
4242 		spin_unlock(&sh->stripe_lock);
4243 		return 0;
4244 	}
4245 
4246 	/*
4247 	 * this stripe could be added to a batch list before we check
4248 	 * BATCH_READY, skips it
4249 	 */
4250 	if (sh->batch_head != sh) {
4251 		spin_unlock(&sh->stripe_lock);
4252 		return 1;
4253 	}
4254 	spin_lock(&sh->batch_lock);
4255 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4256 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4257 	spin_unlock(&sh->batch_lock);
4258 	spin_unlock(&sh->stripe_lock);
4259 
4260 	/*
4261 	 * BATCH_READY is cleared, no new stripes can be added.
4262 	 * batch_list can be accessed without lock
4263 	 */
4264 	return 0;
4265 }
4266 
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4267 static void break_stripe_batch_list(struct stripe_head *head_sh,
4268 				    unsigned long handle_flags)
4269 {
4270 	struct stripe_head *sh, *next;
4271 	int i;
4272 	int do_wakeup = 0;
4273 
4274 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4275 
4276 		list_del_init(&sh->batch_list);
4277 
4278 		WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4279 					  (1 << STRIPE_SYNCING) |
4280 					  (1 << STRIPE_REPLACED) |
4281 					  (1 << STRIPE_DELAYED) |
4282 					  (1 << STRIPE_BIT_DELAY) |
4283 					  (1 << STRIPE_FULL_WRITE) |
4284 					  (1 << STRIPE_BIOFILL_RUN) |
4285 					  (1 << STRIPE_COMPUTE_RUN)  |
4286 					  (1 << STRIPE_OPS_REQ_PENDING) |
4287 					  (1 << STRIPE_DISCARD) |
4288 					  (1 << STRIPE_BATCH_READY) |
4289 					  (1 << STRIPE_BATCH_ERR) |
4290 					  (1 << STRIPE_BITMAP_PENDING)));
4291 		WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4292 					      (1 << STRIPE_REPLACED)));
4293 
4294 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4295 					    (1 << STRIPE_PREREAD_ACTIVE) |
4296 					    (1 << STRIPE_DEGRADED) |
4297 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4298 			      head_sh->state & (1 << STRIPE_INSYNC));
4299 
4300 		sh->check_state = head_sh->check_state;
4301 		sh->reconstruct_state = head_sh->reconstruct_state;
4302 		for (i = 0; i < sh->disks; i++) {
4303 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4304 				do_wakeup = 1;
4305 			sh->dev[i].flags = head_sh->dev[i].flags &
4306 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4307 		}
4308 		spin_lock_irq(&sh->stripe_lock);
4309 		sh->batch_head = NULL;
4310 		spin_unlock_irq(&sh->stripe_lock);
4311 		if (handle_flags == 0 ||
4312 		    sh->state & handle_flags)
4313 			set_bit(STRIPE_HANDLE, &sh->state);
4314 		raid5_release_stripe(sh);
4315 	}
4316 	spin_lock_irq(&head_sh->stripe_lock);
4317 	head_sh->batch_head = NULL;
4318 	spin_unlock_irq(&head_sh->stripe_lock);
4319 	for (i = 0; i < head_sh->disks; i++)
4320 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4321 			do_wakeup = 1;
4322 	if (head_sh->state & handle_flags)
4323 		set_bit(STRIPE_HANDLE, &head_sh->state);
4324 
4325 	if (do_wakeup)
4326 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4327 }
4328 
handle_stripe(struct stripe_head * sh)4329 static void handle_stripe(struct stripe_head *sh)
4330 {
4331 	struct stripe_head_state s;
4332 	struct r5conf *conf = sh->raid_conf;
4333 	int i;
4334 	int prexor;
4335 	int disks = sh->disks;
4336 	struct r5dev *pdev, *qdev;
4337 
4338 	clear_bit(STRIPE_HANDLE, &sh->state);
4339 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4340 		/* already being handled, ensure it gets handled
4341 		 * again when current action finishes */
4342 		set_bit(STRIPE_HANDLE, &sh->state);
4343 		return;
4344 	}
4345 
4346 	if (clear_batch_ready(sh) ) {
4347 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4348 		return;
4349 	}
4350 
4351 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4352 		break_stripe_batch_list(sh, 0);
4353 
4354 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4355 		spin_lock(&sh->stripe_lock);
4356 		/* Cannot process 'sync' concurrently with 'discard' */
4357 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4358 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4359 			set_bit(STRIPE_SYNCING, &sh->state);
4360 			clear_bit(STRIPE_INSYNC, &sh->state);
4361 			clear_bit(STRIPE_REPLACED, &sh->state);
4362 		}
4363 		spin_unlock(&sh->stripe_lock);
4364 	}
4365 	clear_bit(STRIPE_DELAYED, &sh->state);
4366 
4367 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4368 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4369 	       (unsigned long long)sh->sector, sh->state,
4370 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4371 	       sh->check_state, sh->reconstruct_state);
4372 
4373 	analyse_stripe(sh, &s);
4374 
4375 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4376 		goto finish;
4377 
4378 	if (s.handle_bad_blocks) {
4379 		set_bit(STRIPE_HANDLE, &sh->state);
4380 		goto finish;
4381 	}
4382 
4383 	if (unlikely(s.blocked_rdev)) {
4384 		if (s.syncing || s.expanding || s.expanded ||
4385 		    s.replacing || s.to_write || s.written) {
4386 			set_bit(STRIPE_HANDLE, &sh->state);
4387 			goto finish;
4388 		}
4389 		/* There is nothing for the blocked_rdev to block */
4390 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4391 		s.blocked_rdev = NULL;
4392 	}
4393 
4394 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4395 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4396 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4397 	}
4398 
4399 	pr_debug("locked=%d uptodate=%d to_read=%d"
4400 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4401 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4402 	       s.failed_num[0], s.failed_num[1]);
4403 	/* check if the array has lost more than max_degraded devices and,
4404 	 * if so, some requests might need to be failed.
4405 	 */
4406 	if (s.failed > conf->max_degraded || s.log_failed) {
4407 		sh->check_state = 0;
4408 		sh->reconstruct_state = 0;
4409 		break_stripe_batch_list(sh, 0);
4410 		if (s.to_read+s.to_write+s.written)
4411 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4412 		if (s.syncing + s.replacing)
4413 			handle_failed_sync(conf, sh, &s);
4414 	}
4415 
4416 	/* Now we check to see if any write operations have recently
4417 	 * completed
4418 	 */
4419 	prexor = 0;
4420 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4421 		prexor = 1;
4422 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4423 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4424 		sh->reconstruct_state = reconstruct_state_idle;
4425 
4426 		/* All the 'written' buffers and the parity block are ready to
4427 		 * be written back to disk
4428 		 */
4429 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4430 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4431 		BUG_ON(sh->qd_idx >= 0 &&
4432 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4433 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4434 		for (i = disks; i--; ) {
4435 			struct r5dev *dev = &sh->dev[i];
4436 			if (test_bit(R5_LOCKED, &dev->flags) &&
4437 				(i == sh->pd_idx || i == sh->qd_idx ||
4438 				 dev->written)) {
4439 				pr_debug("Writing block %d\n", i);
4440 				set_bit(R5_Wantwrite, &dev->flags);
4441 				if (prexor)
4442 					continue;
4443 				if (s.failed > 1)
4444 					continue;
4445 				if (!test_bit(R5_Insync, &dev->flags) ||
4446 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4447 				     s.failed == 0))
4448 					set_bit(STRIPE_INSYNC, &sh->state);
4449 			}
4450 		}
4451 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4452 			s.dec_preread_active = 1;
4453 	}
4454 
4455 	/*
4456 	 * might be able to return some write requests if the parity blocks
4457 	 * are safe, or on a failed drive
4458 	 */
4459 	pdev = &sh->dev[sh->pd_idx];
4460 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4461 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4462 	qdev = &sh->dev[sh->qd_idx];
4463 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4464 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4465 		|| conf->level < 6;
4466 
4467 	if (s.written &&
4468 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4469 			     && !test_bit(R5_LOCKED, &pdev->flags)
4470 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4471 				 test_bit(R5_Discard, &pdev->flags))))) &&
4472 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4473 			     && !test_bit(R5_LOCKED, &qdev->flags)
4474 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4475 				 test_bit(R5_Discard, &qdev->flags))))))
4476 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4477 
4478 	/* Now we might consider reading some blocks, either to check/generate
4479 	 * parity, or to satisfy requests
4480 	 * or to load a block that is being partially written.
4481 	 */
4482 	if (s.to_read || s.non_overwrite
4483 	    || (s.to_write && s.failed)
4484 	    || (s.syncing && (s.uptodate + s.compute < disks))
4485 	    || s.replacing
4486 	    || s.expanding)
4487 		handle_stripe_fill(sh, &s, disks);
4488 
4489 	/* Now to consider new write requests and what else, if anything
4490 	 * should be read.  We do not handle new writes when:
4491 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4492 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4493 	 *    block.
4494 	 */
4495 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4496 		handle_stripe_dirtying(conf, sh, &s, disks);
4497 
4498 	/* maybe we need to check and possibly fix the parity for this stripe
4499 	 * Any reads will already have been scheduled, so we just see if enough
4500 	 * data is available.  The parity check is held off while parity
4501 	 * dependent operations are in flight.
4502 	 */
4503 	if (sh->check_state ||
4504 	    (s.syncing && s.locked == 0 &&
4505 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4506 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4507 		if (conf->level == 6)
4508 			handle_parity_checks6(conf, sh, &s, disks);
4509 		else
4510 			handle_parity_checks5(conf, sh, &s, disks);
4511 	}
4512 
4513 	if ((s.replacing || s.syncing) && s.locked == 0
4514 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4515 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4516 		/* Write out to replacement devices where possible */
4517 		for (i = 0; i < conf->raid_disks; i++)
4518 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4519 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4520 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4521 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4522 				s.locked++;
4523 			}
4524 		if (s.replacing)
4525 			set_bit(STRIPE_INSYNC, &sh->state);
4526 		set_bit(STRIPE_REPLACED, &sh->state);
4527 	}
4528 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4529 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4530 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4531 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4532 		clear_bit(STRIPE_SYNCING, &sh->state);
4533 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4534 			wake_up(&conf->wait_for_overlap);
4535 	}
4536 
4537 	/* If the failed drives are just a ReadError, then we might need
4538 	 * to progress the repair/check process
4539 	 */
4540 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4541 		for (i = 0; i < s.failed; i++) {
4542 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4543 			if (test_bit(R5_ReadError, &dev->flags)
4544 			    && !test_bit(R5_LOCKED, &dev->flags)
4545 			    && test_bit(R5_UPTODATE, &dev->flags)
4546 				) {
4547 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4548 					set_bit(R5_Wantwrite, &dev->flags);
4549 					set_bit(R5_ReWrite, &dev->flags);
4550 					set_bit(R5_LOCKED, &dev->flags);
4551 					s.locked++;
4552 				} else {
4553 					/* let's read it back */
4554 					set_bit(R5_Wantread, &dev->flags);
4555 					set_bit(R5_LOCKED, &dev->flags);
4556 					s.locked++;
4557 				}
4558 			}
4559 		}
4560 
4561 	/* Finish reconstruct operations initiated by the expansion process */
4562 	if (sh->reconstruct_state == reconstruct_state_result) {
4563 		struct stripe_head *sh_src
4564 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4565 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4566 			/* sh cannot be written until sh_src has been read.
4567 			 * so arrange for sh to be delayed a little
4568 			 */
4569 			set_bit(STRIPE_DELAYED, &sh->state);
4570 			set_bit(STRIPE_HANDLE, &sh->state);
4571 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4572 					      &sh_src->state))
4573 				atomic_inc(&conf->preread_active_stripes);
4574 			raid5_release_stripe(sh_src);
4575 			goto finish;
4576 		}
4577 		if (sh_src)
4578 			raid5_release_stripe(sh_src);
4579 
4580 		sh->reconstruct_state = reconstruct_state_idle;
4581 		clear_bit(STRIPE_EXPANDING, &sh->state);
4582 		for (i = conf->raid_disks; i--; ) {
4583 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4584 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4585 			s.locked++;
4586 		}
4587 	}
4588 
4589 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4590 	    !sh->reconstruct_state) {
4591 		/* Need to write out all blocks after computing parity */
4592 		sh->disks = conf->raid_disks;
4593 		stripe_set_idx(sh->sector, conf, 0, sh);
4594 		schedule_reconstruction(sh, &s, 1, 1);
4595 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4596 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4597 		atomic_dec(&conf->reshape_stripes);
4598 		wake_up(&conf->wait_for_overlap);
4599 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4600 	}
4601 
4602 	if (s.expanding && s.locked == 0 &&
4603 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4604 		handle_stripe_expansion(conf, sh);
4605 
4606 finish:
4607 	/* wait for this device to become unblocked */
4608 	if (unlikely(s.blocked_rdev)) {
4609 		if (conf->mddev->external)
4610 			md_wait_for_blocked_rdev(s.blocked_rdev,
4611 						 conf->mddev);
4612 		else
4613 			/* Internal metadata will immediately
4614 			 * be written by raid5d, so we don't
4615 			 * need to wait here.
4616 			 */
4617 			rdev_dec_pending(s.blocked_rdev,
4618 					 conf->mddev);
4619 	}
4620 
4621 	if (s.handle_bad_blocks)
4622 		for (i = disks; i--; ) {
4623 			struct md_rdev *rdev;
4624 			struct r5dev *dev = &sh->dev[i];
4625 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4626 				/* We own a safe reference to the rdev */
4627 				rdev = conf->disks[i].rdev;
4628 				if (!rdev_set_badblocks(rdev, sh->sector,
4629 							STRIPE_SECTORS, 0))
4630 					md_error(conf->mddev, rdev);
4631 				rdev_dec_pending(rdev, conf->mddev);
4632 			}
4633 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4634 				rdev = conf->disks[i].rdev;
4635 				rdev_clear_badblocks(rdev, sh->sector,
4636 						     STRIPE_SECTORS, 0);
4637 				rdev_dec_pending(rdev, conf->mddev);
4638 			}
4639 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4640 				rdev = conf->disks[i].replacement;
4641 				if (!rdev)
4642 					/* rdev have been moved down */
4643 					rdev = conf->disks[i].rdev;
4644 				rdev_clear_badblocks(rdev, sh->sector,
4645 						     STRIPE_SECTORS, 0);
4646 				rdev_dec_pending(rdev, conf->mddev);
4647 			}
4648 		}
4649 
4650 	if (s.ops_request)
4651 		raid_run_ops(sh, s.ops_request);
4652 
4653 	ops_run_io(sh, &s);
4654 
4655 	if (s.dec_preread_active) {
4656 		/* We delay this until after ops_run_io so that if make_request
4657 		 * is waiting on a flush, it won't continue until the writes
4658 		 * have actually been submitted.
4659 		 */
4660 		atomic_dec(&conf->preread_active_stripes);
4661 		if (atomic_read(&conf->preread_active_stripes) <
4662 		    IO_THRESHOLD)
4663 			md_wakeup_thread(conf->mddev->thread);
4664 	}
4665 
4666 	if (!bio_list_empty(&s.return_bi)) {
4667 		if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4668 			spin_lock_irq(&conf->device_lock);
4669 			bio_list_merge(&conf->return_bi, &s.return_bi);
4670 			spin_unlock_irq(&conf->device_lock);
4671 			md_wakeup_thread(conf->mddev->thread);
4672 		} else
4673 			return_io(&s.return_bi);
4674 	}
4675 
4676 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4677 }
4678 
raid5_activate_delayed(struct r5conf * conf)4679 static void raid5_activate_delayed(struct r5conf *conf)
4680 {
4681 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4682 		while (!list_empty(&conf->delayed_list)) {
4683 			struct list_head *l = conf->delayed_list.next;
4684 			struct stripe_head *sh;
4685 			sh = list_entry(l, struct stripe_head, lru);
4686 			list_del_init(l);
4687 			clear_bit(STRIPE_DELAYED, &sh->state);
4688 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4689 				atomic_inc(&conf->preread_active_stripes);
4690 			list_add_tail(&sh->lru, &conf->hold_list);
4691 			raid5_wakeup_stripe_thread(sh);
4692 		}
4693 	}
4694 }
4695 
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)4696 static void activate_bit_delay(struct r5conf *conf,
4697 	struct list_head *temp_inactive_list)
4698 {
4699 	/* device_lock is held */
4700 	struct list_head head;
4701 	list_add(&head, &conf->bitmap_list);
4702 	list_del_init(&conf->bitmap_list);
4703 	while (!list_empty(&head)) {
4704 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4705 		int hash;
4706 		list_del_init(&sh->lru);
4707 		atomic_inc(&sh->count);
4708 		hash = sh->hash_lock_index;
4709 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4710 	}
4711 }
4712 
raid5_congested(struct mddev * mddev,int bits)4713 static int raid5_congested(struct mddev *mddev, int bits)
4714 {
4715 	struct r5conf *conf = mddev->private;
4716 
4717 	/* No difference between reads and writes.  Just check
4718 	 * how busy the stripe_cache is
4719 	 */
4720 
4721 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4722 		return 1;
4723 	if (conf->quiesce)
4724 		return 1;
4725 	if (atomic_read(&conf->empty_inactive_list_nr))
4726 		return 1;
4727 
4728 	return 0;
4729 }
4730 
in_chunk_boundary(struct mddev * mddev,struct bio * bio)4731 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4732 {
4733 	struct r5conf *conf = mddev->private;
4734 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4735 	unsigned int chunk_sectors;
4736 	unsigned int bio_sectors = bio_sectors(bio);
4737 
4738 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4739 	return  chunk_sectors >=
4740 		((sector & (chunk_sectors - 1)) + bio_sectors);
4741 }
4742 
4743 /*
4744  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4745  *  later sampled by raid5d.
4746  */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)4747 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4748 {
4749 	unsigned long flags;
4750 
4751 	spin_lock_irqsave(&conf->device_lock, flags);
4752 
4753 	bi->bi_next = conf->retry_read_aligned_list;
4754 	conf->retry_read_aligned_list = bi;
4755 
4756 	spin_unlock_irqrestore(&conf->device_lock, flags);
4757 	md_wakeup_thread(conf->mddev->thread);
4758 }
4759 
remove_bio_from_retry(struct r5conf * conf)4760 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4761 {
4762 	struct bio *bi;
4763 
4764 	bi = conf->retry_read_aligned;
4765 	if (bi) {
4766 		conf->retry_read_aligned = NULL;
4767 		return bi;
4768 	}
4769 	bi = conf->retry_read_aligned_list;
4770 	if(bi) {
4771 		conf->retry_read_aligned_list = bi->bi_next;
4772 		bi->bi_next = NULL;
4773 		/*
4774 		 * this sets the active strip count to 1 and the processed
4775 		 * strip count to zero (upper 8 bits)
4776 		 */
4777 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4778 	}
4779 
4780 	return bi;
4781 }
4782 
4783 /*
4784  *  The "raid5_align_endio" should check if the read succeeded and if it
4785  *  did, call bio_endio on the original bio (having bio_put the new bio
4786  *  first).
4787  *  If the read failed..
4788  */
raid5_align_endio(struct bio * bi)4789 static void raid5_align_endio(struct bio *bi)
4790 {
4791 	struct bio* raid_bi  = bi->bi_private;
4792 	struct mddev *mddev;
4793 	struct r5conf *conf;
4794 	struct md_rdev *rdev;
4795 	int error = bi->bi_error;
4796 
4797 	bio_put(bi);
4798 
4799 	rdev = (void*)raid_bi->bi_next;
4800 	raid_bi->bi_next = NULL;
4801 	mddev = rdev->mddev;
4802 	conf = mddev->private;
4803 
4804 	rdev_dec_pending(rdev, conf->mddev);
4805 
4806 	if (!error) {
4807 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4808 					 raid_bi, 0);
4809 		bio_endio(raid_bi);
4810 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4811 			wake_up(&conf->wait_for_quiescent);
4812 		return;
4813 	}
4814 
4815 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4816 
4817 	add_bio_to_retry(raid_bi, conf);
4818 }
4819 
raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)4820 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4821 {
4822 	struct r5conf *conf = mddev->private;
4823 	int dd_idx;
4824 	struct bio* align_bi;
4825 	struct md_rdev *rdev;
4826 	sector_t end_sector;
4827 
4828 	if (!in_chunk_boundary(mddev, raid_bio)) {
4829 		pr_debug("%s: non aligned\n", __func__);
4830 		return 0;
4831 	}
4832 	/*
4833 	 * use bio_clone_mddev to make a copy of the bio
4834 	 */
4835 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4836 	if (!align_bi)
4837 		return 0;
4838 	/*
4839 	 *   set bi_end_io to a new function, and set bi_private to the
4840 	 *     original bio.
4841 	 */
4842 	align_bi->bi_end_io  = raid5_align_endio;
4843 	align_bi->bi_private = raid_bio;
4844 	/*
4845 	 *	compute position
4846 	 */
4847 	align_bi->bi_iter.bi_sector =
4848 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4849 				     0, &dd_idx, NULL);
4850 
4851 	end_sector = bio_end_sector(align_bi);
4852 	rcu_read_lock();
4853 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4854 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4855 	    rdev->recovery_offset < end_sector) {
4856 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4857 		if (rdev &&
4858 		    (test_bit(Faulty, &rdev->flags) ||
4859 		    !(test_bit(In_sync, &rdev->flags) ||
4860 		      rdev->recovery_offset >= end_sector)))
4861 			rdev = NULL;
4862 	}
4863 	if (rdev) {
4864 		sector_t first_bad;
4865 		int bad_sectors;
4866 
4867 		atomic_inc(&rdev->nr_pending);
4868 		rcu_read_unlock();
4869 		raid_bio->bi_next = (void*)rdev;
4870 		align_bi->bi_bdev =  rdev->bdev;
4871 		bio_clear_flag(align_bi, BIO_SEG_VALID);
4872 
4873 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4874 				bio_sectors(align_bi),
4875 				&first_bad, &bad_sectors)) {
4876 			bio_put(align_bi);
4877 			rdev_dec_pending(rdev, mddev);
4878 			return 0;
4879 		}
4880 
4881 		/* No reshape active, so we can trust rdev->data_offset */
4882 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4883 
4884 		spin_lock_irq(&conf->device_lock);
4885 		wait_event_lock_irq(conf->wait_for_quiescent,
4886 				    conf->quiesce == 0,
4887 				    conf->device_lock);
4888 		atomic_inc(&conf->active_aligned_reads);
4889 		spin_unlock_irq(&conf->device_lock);
4890 
4891 		if (mddev->gendisk)
4892 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4893 					      align_bi, disk_devt(mddev->gendisk),
4894 					      raid_bio->bi_iter.bi_sector);
4895 		generic_make_request(align_bi);
4896 		return 1;
4897 	} else {
4898 		rcu_read_unlock();
4899 		bio_put(align_bi);
4900 		return 0;
4901 	}
4902 }
4903 
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)4904 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4905 {
4906 	struct bio *split;
4907 
4908 	do {
4909 		sector_t sector = raid_bio->bi_iter.bi_sector;
4910 		unsigned chunk_sects = mddev->chunk_sectors;
4911 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4912 
4913 		if (sectors < bio_sectors(raid_bio)) {
4914 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4915 			bio_chain(split, raid_bio);
4916 		} else
4917 			split = raid_bio;
4918 
4919 		if (!raid5_read_one_chunk(mddev, split)) {
4920 			if (split != raid_bio)
4921 				generic_make_request(raid_bio);
4922 			return split;
4923 		}
4924 	} while (split != raid_bio);
4925 
4926 	return NULL;
4927 }
4928 
4929 /* __get_priority_stripe - get the next stripe to process
4930  *
4931  * Full stripe writes are allowed to pass preread active stripes up until
4932  * the bypass_threshold is exceeded.  In general the bypass_count
4933  * increments when the handle_list is handled before the hold_list; however, it
4934  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4935  * stripe with in flight i/o.  The bypass_count will be reset when the
4936  * head of the hold_list has changed, i.e. the head was promoted to the
4937  * handle_list.
4938  */
__get_priority_stripe(struct r5conf * conf,int group)4939 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4940 {
4941 	struct stripe_head *sh = NULL, *tmp;
4942 	struct list_head *handle_list = NULL;
4943 	struct r5worker_group *wg = NULL;
4944 
4945 	if (conf->worker_cnt_per_group == 0) {
4946 		handle_list = &conf->handle_list;
4947 	} else if (group != ANY_GROUP) {
4948 		handle_list = &conf->worker_groups[group].handle_list;
4949 		wg = &conf->worker_groups[group];
4950 	} else {
4951 		int i;
4952 		for (i = 0; i < conf->group_cnt; i++) {
4953 			handle_list = &conf->worker_groups[i].handle_list;
4954 			wg = &conf->worker_groups[i];
4955 			if (!list_empty(handle_list))
4956 				break;
4957 		}
4958 	}
4959 
4960 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4961 		  __func__,
4962 		  list_empty(handle_list) ? "empty" : "busy",
4963 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4964 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4965 
4966 	if (!list_empty(handle_list)) {
4967 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4968 
4969 		if (list_empty(&conf->hold_list))
4970 			conf->bypass_count = 0;
4971 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4972 			if (conf->hold_list.next == conf->last_hold)
4973 				conf->bypass_count++;
4974 			else {
4975 				conf->last_hold = conf->hold_list.next;
4976 				conf->bypass_count -= conf->bypass_threshold;
4977 				if (conf->bypass_count < 0)
4978 					conf->bypass_count = 0;
4979 			}
4980 		}
4981 	} else if (!list_empty(&conf->hold_list) &&
4982 		   ((conf->bypass_threshold &&
4983 		     conf->bypass_count > conf->bypass_threshold) ||
4984 		    atomic_read(&conf->pending_full_writes) == 0)) {
4985 
4986 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4987 			if (conf->worker_cnt_per_group == 0 ||
4988 			    group == ANY_GROUP ||
4989 			    !cpu_online(tmp->cpu) ||
4990 			    cpu_to_group(tmp->cpu) == group) {
4991 				sh = tmp;
4992 				break;
4993 			}
4994 		}
4995 
4996 		if (sh) {
4997 			conf->bypass_count -= conf->bypass_threshold;
4998 			if (conf->bypass_count < 0)
4999 				conf->bypass_count = 0;
5000 		}
5001 		wg = NULL;
5002 	}
5003 
5004 	if (!sh)
5005 		return NULL;
5006 
5007 	if (wg) {
5008 		wg->stripes_cnt--;
5009 		sh->group = NULL;
5010 	}
5011 	list_del_init(&sh->lru);
5012 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5013 	return sh;
5014 }
5015 
5016 struct raid5_plug_cb {
5017 	struct blk_plug_cb	cb;
5018 	struct list_head	list;
5019 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5020 };
5021 
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)5022 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5023 {
5024 	struct raid5_plug_cb *cb = container_of(
5025 		blk_cb, struct raid5_plug_cb, cb);
5026 	struct stripe_head *sh;
5027 	struct mddev *mddev = cb->cb.data;
5028 	struct r5conf *conf = mddev->private;
5029 	int cnt = 0;
5030 	int hash;
5031 
5032 	if (cb->list.next && !list_empty(&cb->list)) {
5033 		spin_lock_irq(&conf->device_lock);
5034 		while (!list_empty(&cb->list)) {
5035 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5036 			list_del_init(&sh->lru);
5037 			/*
5038 			 * avoid race release_stripe_plug() sees
5039 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5040 			 * is still in our list
5041 			 */
5042 			smp_mb__before_atomic();
5043 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5044 			/*
5045 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5046 			 * case, the count is always > 1 here
5047 			 */
5048 			hash = sh->hash_lock_index;
5049 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5050 			cnt++;
5051 		}
5052 		spin_unlock_irq(&conf->device_lock);
5053 	}
5054 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5055 				     NR_STRIPE_HASH_LOCKS);
5056 	if (mddev->queue)
5057 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5058 	kfree(cb);
5059 }
5060 
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5061 static void release_stripe_plug(struct mddev *mddev,
5062 				struct stripe_head *sh)
5063 {
5064 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5065 		raid5_unplug, mddev,
5066 		sizeof(struct raid5_plug_cb));
5067 	struct raid5_plug_cb *cb;
5068 
5069 	if (!blk_cb) {
5070 		raid5_release_stripe(sh);
5071 		return;
5072 	}
5073 
5074 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5075 
5076 	if (cb->list.next == NULL) {
5077 		int i;
5078 		INIT_LIST_HEAD(&cb->list);
5079 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5080 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5081 	}
5082 
5083 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5084 		list_add_tail(&sh->lru, &cb->list);
5085 	else
5086 		raid5_release_stripe(sh);
5087 }
5088 
make_discard_request(struct mddev * mddev,struct bio * bi)5089 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5090 {
5091 	struct r5conf *conf = mddev->private;
5092 	sector_t logical_sector, last_sector;
5093 	struct stripe_head *sh;
5094 	int remaining;
5095 	int stripe_sectors;
5096 
5097 	if (mddev->reshape_position != MaxSector)
5098 		/* Skip discard while reshape is happening */
5099 		return;
5100 
5101 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5102 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5103 
5104 	bi->bi_next = NULL;
5105 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5106 
5107 	stripe_sectors = conf->chunk_sectors *
5108 		(conf->raid_disks - conf->max_degraded);
5109 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5110 					       stripe_sectors);
5111 	sector_div(last_sector, stripe_sectors);
5112 
5113 	logical_sector *= conf->chunk_sectors;
5114 	last_sector *= conf->chunk_sectors;
5115 
5116 	for (; logical_sector < last_sector;
5117 	     logical_sector += STRIPE_SECTORS) {
5118 		DEFINE_WAIT(w);
5119 		int d;
5120 	again:
5121 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5122 		prepare_to_wait(&conf->wait_for_overlap, &w,
5123 				TASK_UNINTERRUPTIBLE);
5124 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5125 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5126 			raid5_release_stripe(sh);
5127 			schedule();
5128 			goto again;
5129 		}
5130 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5131 		spin_lock_irq(&sh->stripe_lock);
5132 		for (d = 0; d < conf->raid_disks; d++) {
5133 			if (d == sh->pd_idx || d == sh->qd_idx)
5134 				continue;
5135 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5136 				set_bit(R5_Overlap, &sh->dev[d].flags);
5137 				spin_unlock_irq(&sh->stripe_lock);
5138 				raid5_release_stripe(sh);
5139 				schedule();
5140 				goto again;
5141 			}
5142 		}
5143 		set_bit(STRIPE_DISCARD, &sh->state);
5144 		finish_wait(&conf->wait_for_overlap, &w);
5145 		sh->overwrite_disks = 0;
5146 		for (d = 0; d < conf->raid_disks; d++) {
5147 			if (d == sh->pd_idx || d == sh->qd_idx)
5148 				continue;
5149 			sh->dev[d].towrite = bi;
5150 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5151 			raid5_inc_bi_active_stripes(bi);
5152 			sh->overwrite_disks++;
5153 		}
5154 		spin_unlock_irq(&sh->stripe_lock);
5155 		if (conf->mddev->bitmap) {
5156 			for (d = 0;
5157 			     d < conf->raid_disks - conf->max_degraded;
5158 			     d++)
5159 				bitmap_startwrite(mddev->bitmap,
5160 						  sh->sector,
5161 						  STRIPE_SECTORS,
5162 						  0);
5163 			sh->bm_seq = conf->seq_flush + 1;
5164 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5165 		}
5166 
5167 		set_bit(STRIPE_HANDLE, &sh->state);
5168 		clear_bit(STRIPE_DELAYED, &sh->state);
5169 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5170 			atomic_inc(&conf->preread_active_stripes);
5171 		release_stripe_plug(mddev, sh);
5172 	}
5173 
5174 	remaining = raid5_dec_bi_active_stripes(bi);
5175 	if (remaining == 0) {
5176 		md_write_end(mddev);
5177 		bio_endio(bi);
5178 	}
5179 }
5180 
make_request(struct mddev * mddev,struct bio * bi)5181 static void make_request(struct mddev *mddev, struct bio * bi)
5182 {
5183 	struct r5conf *conf = mddev->private;
5184 	int dd_idx;
5185 	sector_t new_sector;
5186 	sector_t logical_sector, last_sector;
5187 	struct stripe_head *sh;
5188 	const int rw = bio_data_dir(bi);
5189 	int remaining;
5190 	DEFINE_WAIT(w);
5191 	bool do_prepare;
5192 
5193 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5194 		int ret = r5l_handle_flush_request(conf->log, bi);
5195 
5196 		if (ret == 0)
5197 			return;
5198 		if (ret == -ENODEV) {
5199 			md_flush_request(mddev, bi);
5200 			return;
5201 		}
5202 		/* ret == -EAGAIN, fallback */
5203 	}
5204 
5205 	md_write_start(mddev, bi);
5206 
5207 	/*
5208 	 * If array is degraded, better not do chunk aligned read because
5209 	 * later we might have to read it again in order to reconstruct
5210 	 * data on failed drives.
5211 	 */
5212 	if (rw == READ && mddev->degraded == 0 &&
5213 	    mddev->reshape_position == MaxSector) {
5214 		bi = chunk_aligned_read(mddev, bi);
5215 		if (!bi)
5216 			return;
5217 	}
5218 
5219 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5220 		make_discard_request(mddev, bi);
5221 		return;
5222 	}
5223 
5224 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5225 	last_sector = bio_end_sector(bi);
5226 	bi->bi_next = NULL;
5227 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5228 
5229 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5230 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5231 		int previous;
5232 		int seq;
5233 
5234 		do_prepare = false;
5235 	retry:
5236 		seq = read_seqcount_begin(&conf->gen_lock);
5237 		previous = 0;
5238 		if (do_prepare)
5239 			prepare_to_wait(&conf->wait_for_overlap, &w,
5240 				TASK_UNINTERRUPTIBLE);
5241 		if (unlikely(conf->reshape_progress != MaxSector)) {
5242 			/* spinlock is needed as reshape_progress may be
5243 			 * 64bit on a 32bit platform, and so it might be
5244 			 * possible to see a half-updated value
5245 			 * Of course reshape_progress could change after
5246 			 * the lock is dropped, so once we get a reference
5247 			 * to the stripe that we think it is, we will have
5248 			 * to check again.
5249 			 */
5250 			spin_lock_irq(&conf->device_lock);
5251 			if (mddev->reshape_backwards
5252 			    ? logical_sector < conf->reshape_progress
5253 			    : logical_sector >= conf->reshape_progress) {
5254 				previous = 1;
5255 			} else {
5256 				if (mddev->reshape_backwards
5257 				    ? logical_sector < conf->reshape_safe
5258 				    : logical_sector >= conf->reshape_safe) {
5259 					spin_unlock_irq(&conf->device_lock);
5260 					schedule();
5261 					do_prepare = true;
5262 					goto retry;
5263 				}
5264 			}
5265 			spin_unlock_irq(&conf->device_lock);
5266 		}
5267 
5268 		new_sector = raid5_compute_sector(conf, logical_sector,
5269 						  previous,
5270 						  &dd_idx, NULL);
5271 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5272 			(unsigned long long)new_sector,
5273 			(unsigned long long)logical_sector);
5274 
5275 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5276 				       (bi->bi_rw&RWA_MASK), 0);
5277 		if (sh) {
5278 			if (unlikely(previous)) {
5279 				/* expansion might have moved on while waiting for a
5280 				 * stripe, so we must do the range check again.
5281 				 * Expansion could still move past after this
5282 				 * test, but as we are holding a reference to
5283 				 * 'sh', we know that if that happens,
5284 				 *  STRIPE_EXPANDING will get set and the expansion
5285 				 * won't proceed until we finish with the stripe.
5286 				 */
5287 				int must_retry = 0;
5288 				spin_lock_irq(&conf->device_lock);
5289 				if (mddev->reshape_backwards
5290 				    ? logical_sector >= conf->reshape_progress
5291 				    : logical_sector < conf->reshape_progress)
5292 					/* mismatch, need to try again */
5293 					must_retry = 1;
5294 				spin_unlock_irq(&conf->device_lock);
5295 				if (must_retry) {
5296 					raid5_release_stripe(sh);
5297 					schedule();
5298 					do_prepare = true;
5299 					goto retry;
5300 				}
5301 			}
5302 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5303 				/* Might have got the wrong stripe_head
5304 				 * by accident
5305 				 */
5306 				raid5_release_stripe(sh);
5307 				goto retry;
5308 			}
5309 
5310 			if (rw == WRITE &&
5311 			    logical_sector >= mddev->suspend_lo &&
5312 			    logical_sector < mddev->suspend_hi) {
5313 				raid5_release_stripe(sh);
5314 				/* As the suspend_* range is controlled by
5315 				 * userspace, we want an interruptible
5316 				 * wait.
5317 				 */
5318 				prepare_to_wait(&conf->wait_for_overlap,
5319 						&w, TASK_INTERRUPTIBLE);
5320 				if (logical_sector >= mddev->suspend_lo &&
5321 				    logical_sector < mddev->suspend_hi) {
5322 					sigset_t full, old;
5323 					sigfillset(&full);
5324 					sigprocmask(SIG_BLOCK, &full, &old);
5325 					schedule();
5326 					sigprocmask(SIG_SETMASK, &old, NULL);
5327 					do_prepare = true;
5328 				}
5329 				goto retry;
5330 			}
5331 
5332 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5333 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5334 				/* Stripe is busy expanding or
5335 				 * add failed due to overlap.  Flush everything
5336 				 * and wait a while
5337 				 */
5338 				md_wakeup_thread(mddev->thread);
5339 				raid5_release_stripe(sh);
5340 				schedule();
5341 				do_prepare = true;
5342 				goto retry;
5343 			}
5344 			set_bit(STRIPE_HANDLE, &sh->state);
5345 			clear_bit(STRIPE_DELAYED, &sh->state);
5346 			if ((!sh->batch_head || sh == sh->batch_head) &&
5347 			    (bi->bi_rw & REQ_SYNC) &&
5348 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5349 				atomic_inc(&conf->preread_active_stripes);
5350 			release_stripe_plug(mddev, sh);
5351 		} else {
5352 			/* cannot get stripe for read-ahead, just give-up */
5353 			bi->bi_error = -EIO;
5354 			break;
5355 		}
5356 	}
5357 	finish_wait(&conf->wait_for_overlap, &w);
5358 
5359 	remaining = raid5_dec_bi_active_stripes(bi);
5360 	if (remaining == 0) {
5361 
5362 		if ( rw == WRITE )
5363 			md_write_end(mddev);
5364 
5365 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5366 					 bi, 0);
5367 		bio_endio(bi);
5368 	}
5369 }
5370 
5371 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5372 
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)5373 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5374 {
5375 	/* reshaping is quite different to recovery/resync so it is
5376 	 * handled quite separately ... here.
5377 	 *
5378 	 * On each call to sync_request, we gather one chunk worth of
5379 	 * destination stripes and flag them as expanding.
5380 	 * Then we find all the source stripes and request reads.
5381 	 * As the reads complete, handle_stripe will copy the data
5382 	 * into the destination stripe and release that stripe.
5383 	 */
5384 	struct r5conf *conf = mddev->private;
5385 	struct stripe_head *sh;
5386 	sector_t first_sector, last_sector;
5387 	int raid_disks = conf->previous_raid_disks;
5388 	int data_disks = raid_disks - conf->max_degraded;
5389 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5390 	int i;
5391 	int dd_idx;
5392 	sector_t writepos, readpos, safepos;
5393 	sector_t stripe_addr;
5394 	int reshape_sectors;
5395 	struct list_head stripes;
5396 	sector_t retn;
5397 
5398 	if (sector_nr == 0) {
5399 		/* If restarting in the middle, skip the initial sectors */
5400 		if (mddev->reshape_backwards &&
5401 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5402 			sector_nr = raid5_size(mddev, 0, 0)
5403 				- conf->reshape_progress;
5404 		} else if (mddev->reshape_backwards &&
5405 			   conf->reshape_progress == MaxSector) {
5406 			/* shouldn't happen, but just in case, finish up.*/
5407 			sector_nr = MaxSector;
5408 		} else if (!mddev->reshape_backwards &&
5409 			   conf->reshape_progress > 0)
5410 			sector_nr = conf->reshape_progress;
5411 		sector_div(sector_nr, new_data_disks);
5412 		if (sector_nr) {
5413 			mddev->curr_resync_completed = sector_nr;
5414 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5415 			*skipped = 1;
5416 			retn = sector_nr;
5417 			goto finish;
5418 		}
5419 	}
5420 
5421 	/* We need to process a full chunk at a time.
5422 	 * If old and new chunk sizes differ, we need to process the
5423 	 * largest of these
5424 	 */
5425 
5426 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5427 
5428 	/* We update the metadata at least every 10 seconds, or when
5429 	 * the data about to be copied would over-write the source of
5430 	 * the data at the front of the range.  i.e. one new_stripe
5431 	 * along from reshape_progress new_maps to after where
5432 	 * reshape_safe old_maps to
5433 	 */
5434 	writepos = conf->reshape_progress;
5435 	sector_div(writepos, new_data_disks);
5436 	readpos = conf->reshape_progress;
5437 	sector_div(readpos, data_disks);
5438 	safepos = conf->reshape_safe;
5439 	sector_div(safepos, data_disks);
5440 	if (mddev->reshape_backwards) {
5441 		BUG_ON(writepos < reshape_sectors);
5442 		writepos -= reshape_sectors;
5443 		readpos += reshape_sectors;
5444 		safepos += reshape_sectors;
5445 	} else {
5446 		writepos += reshape_sectors;
5447 		/* readpos and safepos are worst-case calculations.
5448 		 * A negative number is overly pessimistic, and causes
5449 		 * obvious problems for unsigned storage.  So clip to 0.
5450 		 */
5451 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5452 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5453 	}
5454 
5455 	/* Having calculated the 'writepos' possibly use it
5456 	 * to set 'stripe_addr' which is where we will write to.
5457 	 */
5458 	if (mddev->reshape_backwards) {
5459 		BUG_ON(conf->reshape_progress == 0);
5460 		stripe_addr = writepos;
5461 		BUG_ON((mddev->dev_sectors &
5462 			~((sector_t)reshape_sectors - 1))
5463 		       - reshape_sectors - stripe_addr
5464 		       != sector_nr);
5465 	} else {
5466 		BUG_ON(writepos != sector_nr + reshape_sectors);
5467 		stripe_addr = sector_nr;
5468 	}
5469 
5470 	/* 'writepos' is the most advanced device address we might write.
5471 	 * 'readpos' is the least advanced device address we might read.
5472 	 * 'safepos' is the least address recorded in the metadata as having
5473 	 *     been reshaped.
5474 	 * If there is a min_offset_diff, these are adjusted either by
5475 	 * increasing the safepos/readpos if diff is negative, or
5476 	 * increasing writepos if diff is positive.
5477 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5478 	 * ensure safety in the face of a crash - that must be done by userspace
5479 	 * making a backup of the data.  So in that case there is no particular
5480 	 * rush to update metadata.
5481 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5482 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5483 	 * we can be safe in the event of a crash.
5484 	 * So we insist on updating metadata if safepos is behind writepos and
5485 	 * readpos is beyond writepos.
5486 	 * In any case, update the metadata every 10 seconds.
5487 	 * Maybe that number should be configurable, but I'm not sure it is
5488 	 * worth it.... maybe it could be a multiple of safemode_delay???
5489 	 */
5490 	if (conf->min_offset_diff < 0) {
5491 		safepos += -conf->min_offset_diff;
5492 		readpos += -conf->min_offset_diff;
5493 	} else
5494 		writepos += conf->min_offset_diff;
5495 
5496 	if ((mddev->reshape_backwards
5497 	     ? (safepos > writepos && readpos < writepos)
5498 	     : (safepos < writepos && readpos > writepos)) ||
5499 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5500 		/* Cannot proceed until we've updated the superblock... */
5501 		wait_event(conf->wait_for_overlap,
5502 			   atomic_read(&conf->reshape_stripes)==0
5503 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5504 		if (atomic_read(&conf->reshape_stripes) != 0)
5505 			return 0;
5506 		mddev->reshape_position = conf->reshape_progress;
5507 		mddev->curr_resync_completed = sector_nr;
5508 		conf->reshape_checkpoint = jiffies;
5509 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5510 		md_wakeup_thread(mddev->thread);
5511 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5512 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5513 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5514 			return 0;
5515 		spin_lock_irq(&conf->device_lock);
5516 		conf->reshape_safe = mddev->reshape_position;
5517 		spin_unlock_irq(&conf->device_lock);
5518 		wake_up(&conf->wait_for_overlap);
5519 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5520 	}
5521 
5522 	INIT_LIST_HEAD(&stripes);
5523 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5524 		int j;
5525 		int skipped_disk = 0;
5526 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5527 		set_bit(STRIPE_EXPANDING, &sh->state);
5528 		atomic_inc(&conf->reshape_stripes);
5529 		/* If any of this stripe is beyond the end of the old
5530 		 * array, then we need to zero those blocks
5531 		 */
5532 		for (j=sh->disks; j--;) {
5533 			sector_t s;
5534 			if (j == sh->pd_idx)
5535 				continue;
5536 			if (conf->level == 6 &&
5537 			    j == sh->qd_idx)
5538 				continue;
5539 			s = raid5_compute_blocknr(sh, j, 0);
5540 			if (s < raid5_size(mddev, 0, 0)) {
5541 				skipped_disk = 1;
5542 				continue;
5543 			}
5544 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5545 			set_bit(R5_Expanded, &sh->dev[j].flags);
5546 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5547 		}
5548 		if (!skipped_disk) {
5549 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5550 			set_bit(STRIPE_HANDLE, &sh->state);
5551 		}
5552 		list_add(&sh->lru, &stripes);
5553 	}
5554 	spin_lock_irq(&conf->device_lock);
5555 	if (mddev->reshape_backwards)
5556 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5557 	else
5558 		conf->reshape_progress += reshape_sectors * new_data_disks;
5559 	spin_unlock_irq(&conf->device_lock);
5560 	/* Ok, those stripe are ready. We can start scheduling
5561 	 * reads on the source stripes.
5562 	 * The source stripes are determined by mapping the first and last
5563 	 * block on the destination stripes.
5564 	 */
5565 	first_sector =
5566 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5567 				     1, &dd_idx, NULL);
5568 	last_sector =
5569 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5570 					    * new_data_disks - 1),
5571 				     1, &dd_idx, NULL);
5572 	if (last_sector >= mddev->dev_sectors)
5573 		last_sector = mddev->dev_sectors - 1;
5574 	while (first_sector <= last_sector) {
5575 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5576 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5577 		set_bit(STRIPE_HANDLE, &sh->state);
5578 		raid5_release_stripe(sh);
5579 		first_sector += STRIPE_SECTORS;
5580 	}
5581 	/* Now that the sources are clearly marked, we can release
5582 	 * the destination stripes
5583 	 */
5584 	while (!list_empty(&stripes)) {
5585 		sh = list_entry(stripes.next, struct stripe_head, lru);
5586 		list_del_init(&sh->lru);
5587 		raid5_release_stripe(sh);
5588 	}
5589 	/* If this takes us to the resync_max point where we have to pause,
5590 	 * then we need to write out the superblock.
5591 	 */
5592 	sector_nr += reshape_sectors;
5593 	retn = reshape_sectors;
5594 finish:
5595 	if (mddev->curr_resync_completed > mddev->resync_max ||
5596 	    (sector_nr - mddev->curr_resync_completed) * 2
5597 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5598 		/* Cannot proceed until we've updated the superblock... */
5599 		wait_event(conf->wait_for_overlap,
5600 			   atomic_read(&conf->reshape_stripes) == 0
5601 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5602 		if (atomic_read(&conf->reshape_stripes) != 0)
5603 			goto ret;
5604 		mddev->reshape_position = conf->reshape_progress;
5605 		mddev->curr_resync_completed = sector_nr;
5606 		conf->reshape_checkpoint = jiffies;
5607 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5608 		md_wakeup_thread(mddev->thread);
5609 		wait_event(mddev->sb_wait,
5610 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5611 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5612 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5613 			goto ret;
5614 		spin_lock_irq(&conf->device_lock);
5615 		conf->reshape_safe = mddev->reshape_position;
5616 		spin_unlock_irq(&conf->device_lock);
5617 		wake_up(&conf->wait_for_overlap);
5618 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5619 	}
5620 ret:
5621 	return retn;
5622 }
5623 
sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)5624 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5625 {
5626 	struct r5conf *conf = mddev->private;
5627 	struct stripe_head *sh;
5628 	sector_t max_sector = mddev->dev_sectors;
5629 	sector_t sync_blocks;
5630 	int still_degraded = 0;
5631 	int i;
5632 
5633 	if (sector_nr >= max_sector) {
5634 		/* just being told to finish up .. nothing much to do */
5635 
5636 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5637 			end_reshape(conf);
5638 			return 0;
5639 		}
5640 
5641 		if (mddev->curr_resync < max_sector) /* aborted */
5642 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5643 					&sync_blocks, 1);
5644 		else /* completed sync */
5645 			conf->fullsync = 0;
5646 		bitmap_close_sync(mddev->bitmap);
5647 
5648 		return 0;
5649 	}
5650 
5651 	/* Allow raid5_quiesce to complete */
5652 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5653 
5654 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5655 		return reshape_request(mddev, sector_nr, skipped);
5656 
5657 	/* No need to check resync_max as we never do more than one
5658 	 * stripe, and as resync_max will always be on a chunk boundary,
5659 	 * if the check in md_do_sync didn't fire, there is no chance
5660 	 * of overstepping resync_max here
5661 	 */
5662 
5663 	/* if there is too many failed drives and we are trying
5664 	 * to resync, then assert that we are finished, because there is
5665 	 * nothing we can do.
5666 	 */
5667 	if (mddev->degraded >= conf->max_degraded &&
5668 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5669 		sector_t rv = mddev->dev_sectors - sector_nr;
5670 		*skipped = 1;
5671 		return rv;
5672 	}
5673 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5674 	    !conf->fullsync &&
5675 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5676 	    sync_blocks >= STRIPE_SECTORS) {
5677 		/* we can skip this block, and probably more */
5678 		sync_blocks /= STRIPE_SECTORS;
5679 		*skipped = 1;
5680 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5681 	}
5682 
5683 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5684 
5685 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5686 	if (sh == NULL) {
5687 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5688 		/* make sure we don't swamp the stripe cache if someone else
5689 		 * is trying to get access
5690 		 */
5691 		schedule_timeout_uninterruptible(1);
5692 	}
5693 	/* Need to check if array will still be degraded after recovery/resync
5694 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5695 	 * one drive while leaving another faulty drive in array.
5696 	 */
5697 	rcu_read_lock();
5698 	for (i = 0; i < conf->raid_disks; i++) {
5699 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5700 
5701 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5702 			still_degraded = 1;
5703 	}
5704 	rcu_read_unlock();
5705 
5706 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5707 
5708 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5709 	set_bit(STRIPE_HANDLE, &sh->state);
5710 
5711 	raid5_release_stripe(sh);
5712 
5713 	return STRIPE_SECTORS;
5714 }
5715 
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio)5716 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5717 {
5718 	/* We may not be able to submit a whole bio at once as there
5719 	 * may not be enough stripe_heads available.
5720 	 * We cannot pre-allocate enough stripe_heads as we may need
5721 	 * more than exist in the cache (if we allow ever large chunks).
5722 	 * So we do one stripe head at a time and record in
5723 	 * ->bi_hw_segments how many have been done.
5724 	 *
5725 	 * We *know* that this entire raid_bio is in one chunk, so
5726 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5727 	 */
5728 	struct stripe_head *sh;
5729 	int dd_idx;
5730 	sector_t sector, logical_sector, last_sector;
5731 	int scnt = 0;
5732 	int remaining;
5733 	int handled = 0;
5734 
5735 	logical_sector = raid_bio->bi_iter.bi_sector &
5736 		~((sector_t)STRIPE_SECTORS-1);
5737 	sector = raid5_compute_sector(conf, logical_sector,
5738 				      0, &dd_idx, NULL);
5739 	last_sector = bio_end_sector(raid_bio);
5740 
5741 	for (; logical_sector < last_sector;
5742 	     logical_sector += STRIPE_SECTORS,
5743 		     sector += STRIPE_SECTORS,
5744 		     scnt++) {
5745 
5746 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5747 			/* already done this stripe */
5748 			continue;
5749 
5750 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5751 
5752 		if (!sh) {
5753 			/* failed to get a stripe - must wait */
5754 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5755 			conf->retry_read_aligned = raid_bio;
5756 			return handled;
5757 		}
5758 
5759 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5760 			raid5_release_stripe(sh);
5761 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5762 			conf->retry_read_aligned = raid_bio;
5763 			return handled;
5764 		}
5765 
5766 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5767 		handle_stripe(sh);
5768 		raid5_release_stripe(sh);
5769 		handled++;
5770 	}
5771 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5772 	if (remaining == 0) {
5773 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5774 					 raid_bio, 0);
5775 		bio_endio(raid_bio);
5776 	}
5777 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5778 		wake_up(&conf->wait_for_quiescent);
5779 	return handled;
5780 }
5781 
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)5782 static int handle_active_stripes(struct r5conf *conf, int group,
5783 				 struct r5worker *worker,
5784 				 struct list_head *temp_inactive_list)
5785 {
5786 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5787 	int i, batch_size = 0, hash;
5788 	bool release_inactive = false;
5789 
5790 	while (batch_size < MAX_STRIPE_BATCH &&
5791 			(sh = __get_priority_stripe(conf, group)) != NULL)
5792 		batch[batch_size++] = sh;
5793 
5794 	if (batch_size == 0) {
5795 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5796 			if (!list_empty(temp_inactive_list + i))
5797 				break;
5798 		if (i == NR_STRIPE_HASH_LOCKS) {
5799 			spin_unlock_irq(&conf->device_lock);
5800 			r5l_flush_stripe_to_raid(conf->log);
5801 			spin_lock_irq(&conf->device_lock);
5802 			return batch_size;
5803 		}
5804 		release_inactive = true;
5805 	}
5806 	spin_unlock_irq(&conf->device_lock);
5807 
5808 	release_inactive_stripe_list(conf, temp_inactive_list,
5809 				     NR_STRIPE_HASH_LOCKS);
5810 
5811 	r5l_flush_stripe_to_raid(conf->log);
5812 	if (release_inactive) {
5813 		spin_lock_irq(&conf->device_lock);
5814 		return 0;
5815 	}
5816 
5817 	for (i = 0; i < batch_size; i++)
5818 		handle_stripe(batch[i]);
5819 	r5l_write_stripe_run(conf->log);
5820 
5821 	cond_resched();
5822 
5823 	spin_lock_irq(&conf->device_lock);
5824 	for (i = 0; i < batch_size; i++) {
5825 		hash = batch[i]->hash_lock_index;
5826 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5827 	}
5828 	return batch_size;
5829 }
5830 
raid5_do_work(struct work_struct * work)5831 static void raid5_do_work(struct work_struct *work)
5832 {
5833 	struct r5worker *worker = container_of(work, struct r5worker, work);
5834 	struct r5worker_group *group = worker->group;
5835 	struct r5conf *conf = group->conf;
5836 	int group_id = group - conf->worker_groups;
5837 	int handled;
5838 	struct blk_plug plug;
5839 
5840 	pr_debug("+++ raid5worker active\n");
5841 
5842 	blk_start_plug(&plug);
5843 	handled = 0;
5844 	spin_lock_irq(&conf->device_lock);
5845 	while (1) {
5846 		int batch_size, released;
5847 
5848 		released = release_stripe_list(conf, worker->temp_inactive_list);
5849 
5850 		batch_size = handle_active_stripes(conf, group_id, worker,
5851 						   worker->temp_inactive_list);
5852 		worker->working = false;
5853 		if (!batch_size && !released)
5854 			break;
5855 		handled += batch_size;
5856 	}
5857 	pr_debug("%d stripes handled\n", handled);
5858 
5859 	spin_unlock_irq(&conf->device_lock);
5860 
5861 	r5l_flush_stripe_to_raid(conf->log);
5862 
5863 	async_tx_issue_pending_all();
5864 	blk_finish_plug(&plug);
5865 
5866 	pr_debug("--- raid5worker inactive\n");
5867 }
5868 
5869 /*
5870  * This is our raid5 kernel thread.
5871  *
5872  * We scan the hash table for stripes which can be handled now.
5873  * During the scan, completed stripes are saved for us by the interrupt
5874  * handler, so that they will not have to wait for our next wakeup.
5875  */
raid5d(struct md_thread * thread)5876 static void raid5d(struct md_thread *thread)
5877 {
5878 	struct mddev *mddev = thread->mddev;
5879 	struct r5conf *conf = mddev->private;
5880 	int handled;
5881 	struct blk_plug plug;
5882 
5883 	pr_debug("+++ raid5d active\n");
5884 
5885 	md_check_recovery(mddev);
5886 
5887 	if (!bio_list_empty(&conf->return_bi) &&
5888 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5889 		struct bio_list tmp = BIO_EMPTY_LIST;
5890 		spin_lock_irq(&conf->device_lock);
5891 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5892 			bio_list_merge(&tmp, &conf->return_bi);
5893 			bio_list_init(&conf->return_bi);
5894 		}
5895 		spin_unlock_irq(&conf->device_lock);
5896 		return_io(&tmp);
5897 	}
5898 
5899 	blk_start_plug(&plug);
5900 	handled = 0;
5901 	spin_lock_irq(&conf->device_lock);
5902 	while (1) {
5903 		struct bio *bio;
5904 		int batch_size, released;
5905 
5906 		released = release_stripe_list(conf, conf->temp_inactive_list);
5907 		if (released)
5908 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5909 
5910 		if (
5911 		    !list_empty(&conf->bitmap_list)) {
5912 			/* Now is a good time to flush some bitmap updates */
5913 			conf->seq_flush++;
5914 			spin_unlock_irq(&conf->device_lock);
5915 			bitmap_unplug(mddev->bitmap);
5916 			spin_lock_irq(&conf->device_lock);
5917 			conf->seq_write = conf->seq_flush;
5918 			activate_bit_delay(conf, conf->temp_inactive_list);
5919 		}
5920 		raid5_activate_delayed(conf);
5921 
5922 		while ((bio = remove_bio_from_retry(conf))) {
5923 			int ok;
5924 			spin_unlock_irq(&conf->device_lock);
5925 			ok = retry_aligned_read(conf, bio);
5926 			spin_lock_irq(&conf->device_lock);
5927 			if (!ok)
5928 				break;
5929 			handled++;
5930 		}
5931 
5932 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5933 						   conf->temp_inactive_list);
5934 		if (!batch_size && !released)
5935 			break;
5936 		handled += batch_size;
5937 
5938 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5939 			spin_unlock_irq(&conf->device_lock);
5940 			md_check_recovery(mddev);
5941 			spin_lock_irq(&conf->device_lock);
5942 		}
5943 	}
5944 	pr_debug("%d stripes handled\n", handled);
5945 
5946 	spin_unlock_irq(&conf->device_lock);
5947 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5948 	    mutex_trylock(&conf->cache_size_mutex)) {
5949 		grow_one_stripe(conf, __GFP_NOWARN);
5950 		/* Set flag even if allocation failed.  This helps
5951 		 * slow down allocation requests when mem is short
5952 		 */
5953 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5954 		mutex_unlock(&conf->cache_size_mutex);
5955 	}
5956 
5957 	r5l_flush_stripe_to_raid(conf->log);
5958 
5959 	async_tx_issue_pending_all();
5960 	blk_finish_plug(&plug);
5961 
5962 	pr_debug("--- raid5d inactive\n");
5963 }
5964 
5965 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)5966 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5967 {
5968 	struct r5conf *conf;
5969 	int ret = 0;
5970 	spin_lock(&mddev->lock);
5971 	conf = mddev->private;
5972 	if (conf)
5973 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5974 	spin_unlock(&mddev->lock);
5975 	return ret;
5976 }
5977 
5978 int
raid5_set_cache_size(struct mddev * mddev,int size)5979 raid5_set_cache_size(struct mddev *mddev, int size)
5980 {
5981 	struct r5conf *conf = mddev->private;
5982 	int err;
5983 
5984 	if (size <= 16 || size > 32768)
5985 		return -EINVAL;
5986 
5987 	conf->min_nr_stripes = size;
5988 	mutex_lock(&conf->cache_size_mutex);
5989 	while (size < conf->max_nr_stripes &&
5990 	       drop_one_stripe(conf))
5991 		;
5992 	mutex_unlock(&conf->cache_size_mutex);
5993 
5994 
5995 	err = md_allow_write(mddev);
5996 	if (err)
5997 		return err;
5998 
5999 	mutex_lock(&conf->cache_size_mutex);
6000 	while (size > conf->max_nr_stripes)
6001 		if (!grow_one_stripe(conf, GFP_KERNEL))
6002 			break;
6003 	mutex_unlock(&conf->cache_size_mutex);
6004 
6005 	return 0;
6006 }
6007 EXPORT_SYMBOL(raid5_set_cache_size);
6008 
6009 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)6010 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6011 {
6012 	struct r5conf *conf;
6013 	unsigned long new;
6014 	int err;
6015 
6016 	if (len >= PAGE_SIZE)
6017 		return -EINVAL;
6018 	if (kstrtoul(page, 10, &new))
6019 		return -EINVAL;
6020 	err = mddev_lock(mddev);
6021 	if (err)
6022 		return err;
6023 	conf = mddev->private;
6024 	if (!conf)
6025 		err = -ENODEV;
6026 	else
6027 		err = raid5_set_cache_size(mddev, new);
6028 	mddev_unlock(mddev);
6029 
6030 	return err ?: len;
6031 }
6032 
6033 static struct md_sysfs_entry
6034 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6035 				raid5_show_stripe_cache_size,
6036 				raid5_store_stripe_cache_size);
6037 
6038 static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)6039 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6040 {
6041 	struct r5conf *conf = mddev->private;
6042 	if (conf)
6043 		return sprintf(page, "%d\n", conf->rmw_level);
6044 	else
6045 		return 0;
6046 }
6047 
6048 static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6049 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6050 {
6051 	struct r5conf *conf = mddev->private;
6052 	unsigned long new;
6053 
6054 	if (!conf)
6055 		return -ENODEV;
6056 
6057 	if (len >= PAGE_SIZE)
6058 		return -EINVAL;
6059 
6060 	if (kstrtoul(page, 10, &new))
6061 		return -EINVAL;
6062 
6063 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6064 		return -EINVAL;
6065 
6066 	if (new != PARITY_DISABLE_RMW &&
6067 	    new != PARITY_ENABLE_RMW &&
6068 	    new != PARITY_PREFER_RMW)
6069 		return -EINVAL;
6070 
6071 	conf->rmw_level = new;
6072 	return len;
6073 }
6074 
6075 static struct md_sysfs_entry
6076 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6077 			 raid5_show_rmw_level,
6078 			 raid5_store_rmw_level);
6079 
6080 
6081 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)6082 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6083 {
6084 	struct r5conf *conf;
6085 	int ret = 0;
6086 	spin_lock(&mddev->lock);
6087 	conf = mddev->private;
6088 	if (conf)
6089 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6090 	spin_unlock(&mddev->lock);
6091 	return ret;
6092 }
6093 
6094 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)6095 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6096 {
6097 	struct r5conf *conf;
6098 	unsigned long new;
6099 	int err;
6100 
6101 	if (len >= PAGE_SIZE)
6102 		return -EINVAL;
6103 	if (kstrtoul(page, 10, &new))
6104 		return -EINVAL;
6105 
6106 	err = mddev_lock(mddev);
6107 	if (err)
6108 		return err;
6109 	conf = mddev->private;
6110 	if (!conf)
6111 		err = -ENODEV;
6112 	else if (new > conf->min_nr_stripes)
6113 		err = -EINVAL;
6114 	else
6115 		conf->bypass_threshold = new;
6116 	mddev_unlock(mddev);
6117 	return err ?: len;
6118 }
6119 
6120 static struct md_sysfs_entry
6121 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6122 					S_IRUGO | S_IWUSR,
6123 					raid5_show_preread_threshold,
6124 					raid5_store_preread_threshold);
6125 
6126 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)6127 raid5_show_skip_copy(struct mddev *mddev, char *page)
6128 {
6129 	struct r5conf *conf;
6130 	int ret = 0;
6131 	spin_lock(&mddev->lock);
6132 	conf = mddev->private;
6133 	if (conf)
6134 		ret = sprintf(page, "%d\n", conf->skip_copy);
6135 	spin_unlock(&mddev->lock);
6136 	return ret;
6137 }
6138 
6139 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)6140 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6141 {
6142 	struct r5conf *conf;
6143 	unsigned long new;
6144 	int err;
6145 
6146 	if (len >= PAGE_SIZE)
6147 		return -EINVAL;
6148 	if (kstrtoul(page, 10, &new))
6149 		return -EINVAL;
6150 	new = !!new;
6151 
6152 	err = mddev_lock(mddev);
6153 	if (err)
6154 		return err;
6155 	conf = mddev->private;
6156 	if (!conf)
6157 		err = -ENODEV;
6158 	else if (new != conf->skip_copy) {
6159 		mddev_suspend(mddev);
6160 		conf->skip_copy = new;
6161 		if (new)
6162 			mddev->queue->backing_dev_info.capabilities |=
6163 				BDI_CAP_STABLE_WRITES;
6164 		else
6165 			mddev->queue->backing_dev_info.capabilities &=
6166 				~BDI_CAP_STABLE_WRITES;
6167 		mddev_resume(mddev);
6168 	}
6169 	mddev_unlock(mddev);
6170 	return err ?: len;
6171 }
6172 
6173 static struct md_sysfs_entry
6174 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6175 					raid5_show_skip_copy,
6176 					raid5_store_skip_copy);
6177 
6178 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)6179 stripe_cache_active_show(struct mddev *mddev, char *page)
6180 {
6181 	struct r5conf *conf = mddev->private;
6182 	if (conf)
6183 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6184 	else
6185 		return 0;
6186 }
6187 
6188 static struct md_sysfs_entry
6189 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6190 
6191 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)6192 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6193 {
6194 	struct r5conf *conf;
6195 	int ret = 0;
6196 	spin_lock(&mddev->lock);
6197 	conf = mddev->private;
6198 	if (conf)
6199 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6200 	spin_unlock(&mddev->lock);
6201 	return ret;
6202 }
6203 
6204 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6205 			       int *group_cnt,
6206 			       int *worker_cnt_per_group,
6207 			       struct r5worker_group **worker_groups);
6208 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)6209 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6210 {
6211 	struct r5conf *conf;
6212 	unsigned long new;
6213 	int err;
6214 	struct r5worker_group *new_groups, *old_groups;
6215 	int group_cnt, worker_cnt_per_group;
6216 
6217 	if (len >= PAGE_SIZE)
6218 		return -EINVAL;
6219 	if (kstrtoul(page, 10, &new))
6220 		return -EINVAL;
6221 
6222 	err = mddev_lock(mddev);
6223 	if (err)
6224 		return err;
6225 	conf = mddev->private;
6226 	if (!conf)
6227 		err = -ENODEV;
6228 	else if (new != conf->worker_cnt_per_group) {
6229 		mddev_suspend(mddev);
6230 
6231 		old_groups = conf->worker_groups;
6232 		if (old_groups)
6233 			flush_workqueue(raid5_wq);
6234 
6235 		err = alloc_thread_groups(conf, new,
6236 					  &group_cnt, &worker_cnt_per_group,
6237 					  &new_groups);
6238 		if (!err) {
6239 			spin_lock_irq(&conf->device_lock);
6240 			conf->group_cnt = group_cnt;
6241 			conf->worker_cnt_per_group = worker_cnt_per_group;
6242 			conf->worker_groups = new_groups;
6243 			spin_unlock_irq(&conf->device_lock);
6244 
6245 			if (old_groups)
6246 				kfree(old_groups[0].workers);
6247 			kfree(old_groups);
6248 		}
6249 		mddev_resume(mddev);
6250 	}
6251 	mddev_unlock(mddev);
6252 
6253 	return err ?: len;
6254 }
6255 
6256 static struct md_sysfs_entry
6257 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6258 				raid5_show_group_thread_cnt,
6259 				raid5_store_group_thread_cnt);
6260 
6261 static struct attribute *raid5_attrs[] =  {
6262 	&raid5_stripecache_size.attr,
6263 	&raid5_stripecache_active.attr,
6264 	&raid5_preread_bypass_threshold.attr,
6265 	&raid5_group_thread_cnt.attr,
6266 	&raid5_skip_copy.attr,
6267 	&raid5_rmw_level.attr,
6268 	NULL,
6269 };
6270 static struct attribute_group raid5_attrs_group = {
6271 	.name = NULL,
6272 	.attrs = raid5_attrs,
6273 };
6274 
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,int * worker_cnt_per_group,struct r5worker_group ** worker_groups)6275 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6276 			       int *group_cnt,
6277 			       int *worker_cnt_per_group,
6278 			       struct r5worker_group **worker_groups)
6279 {
6280 	int i, j, k;
6281 	ssize_t size;
6282 	struct r5worker *workers;
6283 
6284 	*worker_cnt_per_group = cnt;
6285 	if (cnt == 0) {
6286 		*group_cnt = 0;
6287 		*worker_groups = NULL;
6288 		return 0;
6289 	}
6290 	*group_cnt = num_possible_nodes();
6291 	size = sizeof(struct r5worker) * cnt;
6292 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6293 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6294 				*group_cnt, GFP_NOIO);
6295 	if (!*worker_groups || !workers) {
6296 		kfree(workers);
6297 		kfree(*worker_groups);
6298 		return -ENOMEM;
6299 	}
6300 
6301 	for (i = 0; i < *group_cnt; i++) {
6302 		struct r5worker_group *group;
6303 
6304 		group = &(*worker_groups)[i];
6305 		INIT_LIST_HEAD(&group->handle_list);
6306 		group->conf = conf;
6307 		group->workers = workers + i * cnt;
6308 
6309 		for (j = 0; j < cnt; j++) {
6310 			struct r5worker *worker = group->workers + j;
6311 			worker->group = group;
6312 			INIT_WORK(&worker->work, raid5_do_work);
6313 
6314 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6315 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6316 		}
6317 	}
6318 
6319 	return 0;
6320 }
6321 
free_thread_groups(struct r5conf * conf)6322 static void free_thread_groups(struct r5conf *conf)
6323 {
6324 	if (conf->worker_groups)
6325 		kfree(conf->worker_groups[0].workers);
6326 	kfree(conf->worker_groups);
6327 	conf->worker_groups = NULL;
6328 }
6329 
6330 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)6331 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6332 {
6333 	struct r5conf *conf = mddev->private;
6334 
6335 	if (!sectors)
6336 		sectors = mddev->dev_sectors;
6337 	if (!raid_disks)
6338 		/* size is defined by the smallest of previous and new size */
6339 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6340 
6341 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6342 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6343 	return sectors * (raid_disks - conf->max_degraded);
6344 }
6345 
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)6346 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6347 {
6348 	safe_put_page(percpu->spare_page);
6349 	if (percpu->scribble)
6350 		flex_array_free(percpu->scribble);
6351 	percpu->spare_page = NULL;
6352 	percpu->scribble = NULL;
6353 }
6354 
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)6355 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6356 {
6357 	if (conf->level == 6 && !percpu->spare_page)
6358 		percpu->spare_page = alloc_page(GFP_KERNEL);
6359 	if (!percpu->scribble)
6360 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6361 						      conf->previous_raid_disks),
6362 						  max(conf->chunk_sectors,
6363 						      conf->prev_chunk_sectors)
6364 						   / STRIPE_SECTORS,
6365 						  GFP_KERNEL);
6366 
6367 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6368 		free_scratch_buffer(conf, percpu);
6369 		return -ENOMEM;
6370 	}
6371 
6372 	return 0;
6373 }
6374 
raid5_free_percpu(struct r5conf * conf)6375 static void raid5_free_percpu(struct r5conf *conf)
6376 {
6377 	unsigned long cpu;
6378 
6379 	if (!conf->percpu)
6380 		return;
6381 
6382 #ifdef CONFIG_HOTPLUG_CPU
6383 	unregister_cpu_notifier(&conf->cpu_notify);
6384 #endif
6385 
6386 	get_online_cpus();
6387 	for_each_possible_cpu(cpu)
6388 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6389 	put_online_cpus();
6390 
6391 	free_percpu(conf->percpu);
6392 }
6393 
free_conf(struct r5conf * conf)6394 static void free_conf(struct r5conf *conf)
6395 {
6396 	if (conf->log)
6397 		r5l_exit_log(conf->log);
6398 	if (conf->shrinker.seeks)
6399 		unregister_shrinker(&conf->shrinker);
6400 
6401 	free_thread_groups(conf);
6402 	shrink_stripes(conf);
6403 	raid5_free_percpu(conf);
6404 	kfree(conf->disks);
6405 	kfree(conf->stripe_hashtbl);
6406 	kfree(conf);
6407 }
6408 
6409 #ifdef CONFIG_HOTPLUG_CPU
raid456_cpu_notify(struct notifier_block * nfb,unsigned long action,void * hcpu)6410 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6411 			      void *hcpu)
6412 {
6413 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6414 	long cpu = (long)hcpu;
6415 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6416 
6417 	switch (action) {
6418 	case CPU_UP_PREPARE:
6419 	case CPU_UP_PREPARE_FROZEN:
6420 		if (alloc_scratch_buffer(conf, percpu)) {
6421 			pr_err("%s: failed memory allocation for cpu%ld\n",
6422 			       __func__, cpu);
6423 			return notifier_from_errno(-ENOMEM);
6424 		}
6425 		break;
6426 	case CPU_DEAD:
6427 	case CPU_DEAD_FROZEN:
6428 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6429 		break;
6430 	default:
6431 		break;
6432 	}
6433 	return NOTIFY_OK;
6434 }
6435 #endif
6436 
raid5_alloc_percpu(struct r5conf * conf)6437 static int raid5_alloc_percpu(struct r5conf *conf)
6438 {
6439 	unsigned long cpu;
6440 	int err = 0;
6441 
6442 	conf->percpu = alloc_percpu(struct raid5_percpu);
6443 	if (!conf->percpu)
6444 		return -ENOMEM;
6445 
6446 #ifdef CONFIG_HOTPLUG_CPU
6447 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6448 	conf->cpu_notify.priority = 0;
6449 	err = register_cpu_notifier(&conf->cpu_notify);
6450 	if (err)
6451 		return err;
6452 #endif
6453 
6454 	get_online_cpus();
6455 	for_each_present_cpu(cpu) {
6456 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6457 		if (err) {
6458 			pr_err("%s: failed memory allocation for cpu%ld\n",
6459 			       __func__, cpu);
6460 			break;
6461 		}
6462 	}
6463 	put_online_cpus();
6464 
6465 	if (!err) {
6466 		conf->scribble_disks = max(conf->raid_disks,
6467 			conf->previous_raid_disks);
6468 		conf->scribble_sectors = max(conf->chunk_sectors,
6469 			conf->prev_chunk_sectors);
6470 	}
6471 	return err;
6472 }
6473 
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)6474 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6475 				      struct shrink_control *sc)
6476 {
6477 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6478 	unsigned long ret = SHRINK_STOP;
6479 
6480 	if (mutex_trylock(&conf->cache_size_mutex)) {
6481 		ret= 0;
6482 		while (ret < sc->nr_to_scan &&
6483 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6484 			if (drop_one_stripe(conf) == 0) {
6485 				ret = SHRINK_STOP;
6486 				break;
6487 			}
6488 			ret++;
6489 		}
6490 		mutex_unlock(&conf->cache_size_mutex);
6491 	}
6492 	return ret;
6493 }
6494 
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)6495 static unsigned long raid5_cache_count(struct shrinker *shrink,
6496 				       struct shrink_control *sc)
6497 {
6498 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6499 
6500 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6501 		/* unlikely, but not impossible */
6502 		return 0;
6503 	return conf->max_nr_stripes - conf->min_nr_stripes;
6504 }
6505 
setup_conf(struct mddev * mddev)6506 static struct r5conf *setup_conf(struct mddev *mddev)
6507 {
6508 	struct r5conf *conf;
6509 	int raid_disk, memory, max_disks;
6510 	struct md_rdev *rdev;
6511 	struct disk_info *disk;
6512 	char pers_name[6];
6513 	int i;
6514 	int group_cnt, worker_cnt_per_group;
6515 	struct r5worker_group *new_group;
6516 
6517 	if (mddev->new_level != 5
6518 	    && mddev->new_level != 4
6519 	    && mddev->new_level != 6) {
6520 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6521 		       mdname(mddev), mddev->new_level);
6522 		return ERR_PTR(-EIO);
6523 	}
6524 	if ((mddev->new_level == 5
6525 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6526 	    (mddev->new_level == 6
6527 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6528 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6529 		       mdname(mddev), mddev->new_layout);
6530 		return ERR_PTR(-EIO);
6531 	}
6532 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6533 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6534 		       mdname(mddev), mddev->raid_disks);
6535 		return ERR_PTR(-EINVAL);
6536 	}
6537 
6538 	if (!mddev->new_chunk_sectors ||
6539 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6540 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6541 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6542 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6543 		return ERR_PTR(-EINVAL);
6544 	}
6545 
6546 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6547 	if (conf == NULL)
6548 		goto abort;
6549 	/* Don't enable multi-threading by default*/
6550 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6551 				 &new_group)) {
6552 		conf->group_cnt = group_cnt;
6553 		conf->worker_cnt_per_group = worker_cnt_per_group;
6554 		conf->worker_groups = new_group;
6555 	} else
6556 		goto abort;
6557 	spin_lock_init(&conf->device_lock);
6558 	seqcount_init(&conf->gen_lock);
6559 	mutex_init(&conf->cache_size_mutex);
6560 	init_waitqueue_head(&conf->wait_for_quiescent);
6561 	init_waitqueue_head(&conf->wait_for_stripe);
6562 	init_waitqueue_head(&conf->wait_for_overlap);
6563 	INIT_LIST_HEAD(&conf->handle_list);
6564 	INIT_LIST_HEAD(&conf->hold_list);
6565 	INIT_LIST_HEAD(&conf->delayed_list);
6566 	INIT_LIST_HEAD(&conf->bitmap_list);
6567 	bio_list_init(&conf->return_bi);
6568 	init_llist_head(&conf->released_stripes);
6569 	atomic_set(&conf->active_stripes, 0);
6570 	atomic_set(&conf->preread_active_stripes, 0);
6571 	atomic_set(&conf->active_aligned_reads, 0);
6572 	conf->bypass_threshold = BYPASS_THRESHOLD;
6573 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6574 
6575 	conf->raid_disks = mddev->raid_disks;
6576 	if (mddev->reshape_position == MaxSector)
6577 		conf->previous_raid_disks = mddev->raid_disks;
6578 	else
6579 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6580 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6581 
6582 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6583 			      GFP_KERNEL);
6584 	if (!conf->disks)
6585 		goto abort;
6586 
6587 	conf->mddev = mddev;
6588 
6589 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6590 		goto abort;
6591 
6592 	/* We init hash_locks[0] separately to that it can be used
6593 	 * as the reference lock in the spin_lock_nest_lock() call
6594 	 * in lock_all_device_hash_locks_irq in order to convince
6595 	 * lockdep that we know what we are doing.
6596 	 */
6597 	spin_lock_init(conf->hash_locks);
6598 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6599 		spin_lock_init(conf->hash_locks + i);
6600 
6601 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6602 		INIT_LIST_HEAD(conf->inactive_list + i);
6603 
6604 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6605 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6606 
6607 	conf->level = mddev->new_level;
6608 	conf->chunk_sectors = mddev->new_chunk_sectors;
6609 	if (raid5_alloc_percpu(conf) != 0)
6610 		goto abort;
6611 
6612 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6613 
6614 	rdev_for_each(rdev, mddev) {
6615 		raid_disk = rdev->raid_disk;
6616 		if (raid_disk >= max_disks
6617 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6618 			continue;
6619 		disk = conf->disks + raid_disk;
6620 
6621 		if (test_bit(Replacement, &rdev->flags)) {
6622 			if (disk->replacement)
6623 				goto abort;
6624 			disk->replacement = rdev;
6625 		} else {
6626 			if (disk->rdev)
6627 				goto abort;
6628 			disk->rdev = rdev;
6629 		}
6630 
6631 		if (test_bit(In_sync, &rdev->flags)) {
6632 			char b[BDEVNAME_SIZE];
6633 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6634 			       " disk %d\n",
6635 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6636 		} else if (rdev->saved_raid_disk != raid_disk)
6637 			/* Cannot rely on bitmap to complete recovery */
6638 			conf->fullsync = 1;
6639 	}
6640 
6641 	conf->level = mddev->new_level;
6642 	if (conf->level == 6) {
6643 		conf->max_degraded = 2;
6644 		if (raid6_call.xor_syndrome)
6645 			conf->rmw_level = PARITY_ENABLE_RMW;
6646 		else
6647 			conf->rmw_level = PARITY_DISABLE_RMW;
6648 	} else {
6649 		conf->max_degraded = 1;
6650 		conf->rmw_level = PARITY_ENABLE_RMW;
6651 	}
6652 	conf->algorithm = mddev->new_layout;
6653 	conf->reshape_progress = mddev->reshape_position;
6654 	if (conf->reshape_progress != MaxSector) {
6655 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6656 		conf->prev_algo = mddev->layout;
6657 	} else {
6658 		conf->prev_chunk_sectors = conf->chunk_sectors;
6659 		conf->prev_algo = conf->algorithm;
6660 	}
6661 
6662 	conf->min_nr_stripes = NR_STRIPES;
6663 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6664 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6665 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6666 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6667 		printk(KERN_ERR
6668 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6669 		       mdname(mddev), memory);
6670 		goto abort;
6671 	} else
6672 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6673 		       mdname(mddev), memory);
6674 	/*
6675 	 * Losing a stripe head costs more than the time to refill it,
6676 	 * it reduces the queue depth and so can hurt throughput.
6677 	 * So set it rather large, scaled by number of devices.
6678 	 */
6679 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6680 	conf->shrinker.scan_objects = raid5_cache_scan;
6681 	conf->shrinker.count_objects = raid5_cache_count;
6682 	conf->shrinker.batch = 128;
6683 	conf->shrinker.flags = 0;
6684 	register_shrinker(&conf->shrinker);
6685 
6686 	sprintf(pers_name, "raid%d", mddev->new_level);
6687 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6688 	if (!conf->thread) {
6689 		printk(KERN_ERR
6690 		       "md/raid:%s: couldn't allocate thread.\n",
6691 		       mdname(mddev));
6692 		goto abort;
6693 	}
6694 
6695 	return conf;
6696 
6697  abort:
6698 	if (conf) {
6699 		free_conf(conf);
6700 		return ERR_PTR(-EIO);
6701 	} else
6702 		return ERR_PTR(-ENOMEM);
6703 }
6704 
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)6705 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6706 {
6707 	switch (algo) {
6708 	case ALGORITHM_PARITY_0:
6709 		if (raid_disk < max_degraded)
6710 			return 1;
6711 		break;
6712 	case ALGORITHM_PARITY_N:
6713 		if (raid_disk >= raid_disks - max_degraded)
6714 			return 1;
6715 		break;
6716 	case ALGORITHM_PARITY_0_6:
6717 		if (raid_disk == 0 ||
6718 		    raid_disk == raid_disks - 1)
6719 			return 1;
6720 		break;
6721 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6722 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6723 	case ALGORITHM_LEFT_SYMMETRIC_6:
6724 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6725 		if (raid_disk == raid_disks - 1)
6726 			return 1;
6727 	}
6728 	return 0;
6729 }
6730 
run(struct mddev * mddev)6731 static int run(struct mddev *mddev)
6732 {
6733 	struct r5conf *conf;
6734 	int working_disks = 0;
6735 	int dirty_parity_disks = 0;
6736 	struct md_rdev *rdev;
6737 	struct md_rdev *journal_dev = NULL;
6738 	sector_t reshape_offset = 0;
6739 	int i;
6740 	long long min_offset_diff = 0;
6741 	int first = 1;
6742 
6743 	if (mddev->recovery_cp != MaxSector)
6744 		printk(KERN_NOTICE "md/raid:%s: not clean"
6745 		       " -- starting background reconstruction\n",
6746 		       mdname(mddev));
6747 
6748 	rdev_for_each(rdev, mddev) {
6749 		long long diff;
6750 
6751 		if (test_bit(Journal, &rdev->flags)) {
6752 			journal_dev = rdev;
6753 			continue;
6754 		}
6755 		if (rdev->raid_disk < 0)
6756 			continue;
6757 		diff = (rdev->new_data_offset - rdev->data_offset);
6758 		if (first) {
6759 			min_offset_diff = diff;
6760 			first = 0;
6761 		} else if (mddev->reshape_backwards &&
6762 			 diff < min_offset_diff)
6763 			min_offset_diff = diff;
6764 		else if (!mddev->reshape_backwards &&
6765 			 diff > min_offset_diff)
6766 			min_offset_diff = diff;
6767 	}
6768 
6769 	if (mddev->reshape_position != MaxSector) {
6770 		/* Check that we can continue the reshape.
6771 		 * Difficulties arise if the stripe we would write to
6772 		 * next is at or after the stripe we would read from next.
6773 		 * For a reshape that changes the number of devices, this
6774 		 * is only possible for a very short time, and mdadm makes
6775 		 * sure that time appears to have past before assembling
6776 		 * the array.  So we fail if that time hasn't passed.
6777 		 * For a reshape that keeps the number of devices the same
6778 		 * mdadm must be monitoring the reshape can keeping the
6779 		 * critical areas read-only and backed up.  It will start
6780 		 * the array in read-only mode, so we check for that.
6781 		 */
6782 		sector_t here_new, here_old;
6783 		int old_disks;
6784 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6785 		int chunk_sectors;
6786 		int new_data_disks;
6787 
6788 		if (journal_dev) {
6789 			printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6790 			       mdname(mddev));
6791 			return -EINVAL;
6792 		}
6793 
6794 		if (mddev->new_level != mddev->level) {
6795 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6796 			       "required - aborting.\n",
6797 			       mdname(mddev));
6798 			return -EINVAL;
6799 		}
6800 		old_disks = mddev->raid_disks - mddev->delta_disks;
6801 		/* reshape_position must be on a new-stripe boundary, and one
6802 		 * further up in new geometry must map after here in old
6803 		 * geometry.
6804 		 * If the chunk sizes are different, then as we perform reshape
6805 		 * in units of the largest of the two, reshape_position needs
6806 		 * be a multiple of the largest chunk size times new data disks.
6807 		 */
6808 		here_new = mddev->reshape_position;
6809 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6810 		new_data_disks = mddev->raid_disks - max_degraded;
6811 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6812 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6813 			       "on a stripe boundary\n", mdname(mddev));
6814 			return -EINVAL;
6815 		}
6816 		reshape_offset = here_new * chunk_sectors;
6817 		/* here_new is the stripe we will write to */
6818 		here_old = mddev->reshape_position;
6819 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6820 		/* here_old is the first stripe that we might need to read
6821 		 * from */
6822 		if (mddev->delta_disks == 0) {
6823 			/* We cannot be sure it is safe to start an in-place
6824 			 * reshape.  It is only safe if user-space is monitoring
6825 			 * and taking constant backups.
6826 			 * mdadm always starts a situation like this in
6827 			 * readonly mode so it can take control before
6828 			 * allowing any writes.  So just check for that.
6829 			 */
6830 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6831 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6832 				/* not really in-place - so OK */;
6833 			else if (mddev->ro == 0) {
6834 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6835 				       "must be started in read-only mode "
6836 				       "- aborting\n",
6837 				       mdname(mddev));
6838 				return -EINVAL;
6839 			}
6840 		} else if (mddev->reshape_backwards
6841 		    ? (here_new * chunk_sectors + min_offset_diff <=
6842 		       here_old * chunk_sectors)
6843 		    : (here_new * chunk_sectors >=
6844 		       here_old * chunk_sectors + (-min_offset_diff))) {
6845 			/* Reading from the same stripe as writing to - bad */
6846 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6847 			       "auto-recovery - aborting.\n",
6848 			       mdname(mddev));
6849 			return -EINVAL;
6850 		}
6851 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6852 		       mdname(mddev));
6853 		/* OK, we should be able to continue; */
6854 	} else {
6855 		BUG_ON(mddev->level != mddev->new_level);
6856 		BUG_ON(mddev->layout != mddev->new_layout);
6857 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6858 		BUG_ON(mddev->delta_disks != 0);
6859 	}
6860 
6861 	if (mddev->private == NULL)
6862 		conf = setup_conf(mddev);
6863 	else
6864 		conf = mddev->private;
6865 
6866 	if (IS_ERR(conf))
6867 		return PTR_ERR(conf);
6868 
6869 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6870 		printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6871 		       mdname(mddev));
6872 		mddev->ro = 1;
6873 		set_disk_ro(mddev->gendisk, 1);
6874 	}
6875 
6876 	conf->min_offset_diff = min_offset_diff;
6877 	mddev->thread = conf->thread;
6878 	conf->thread = NULL;
6879 	mddev->private = conf;
6880 
6881 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6882 	     i++) {
6883 		rdev = conf->disks[i].rdev;
6884 		if (!rdev && conf->disks[i].replacement) {
6885 			/* The replacement is all we have yet */
6886 			rdev = conf->disks[i].replacement;
6887 			conf->disks[i].replacement = NULL;
6888 			clear_bit(Replacement, &rdev->flags);
6889 			conf->disks[i].rdev = rdev;
6890 		}
6891 		if (!rdev)
6892 			continue;
6893 		if (conf->disks[i].replacement &&
6894 		    conf->reshape_progress != MaxSector) {
6895 			/* replacements and reshape simply do not mix. */
6896 			printk(KERN_ERR "md: cannot handle concurrent "
6897 			       "replacement and reshape.\n");
6898 			goto abort;
6899 		}
6900 		if (test_bit(In_sync, &rdev->flags)) {
6901 			working_disks++;
6902 			continue;
6903 		}
6904 		/* This disc is not fully in-sync.  However if it
6905 		 * just stored parity (beyond the recovery_offset),
6906 		 * when we don't need to be concerned about the
6907 		 * array being dirty.
6908 		 * When reshape goes 'backwards', we never have
6909 		 * partially completed devices, so we only need
6910 		 * to worry about reshape going forwards.
6911 		 */
6912 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6913 		if (mddev->major_version == 0 &&
6914 		    mddev->minor_version > 90)
6915 			rdev->recovery_offset = reshape_offset;
6916 
6917 		if (rdev->recovery_offset < reshape_offset) {
6918 			/* We need to check old and new layout */
6919 			if (!only_parity(rdev->raid_disk,
6920 					 conf->algorithm,
6921 					 conf->raid_disks,
6922 					 conf->max_degraded))
6923 				continue;
6924 		}
6925 		if (!only_parity(rdev->raid_disk,
6926 				 conf->prev_algo,
6927 				 conf->previous_raid_disks,
6928 				 conf->max_degraded))
6929 			continue;
6930 		dirty_parity_disks++;
6931 	}
6932 
6933 	/*
6934 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6935 	 */
6936 	mddev->degraded = calc_degraded(conf);
6937 
6938 	if (has_failed(conf)) {
6939 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6940 			" (%d/%d failed)\n",
6941 			mdname(mddev), mddev->degraded, conf->raid_disks);
6942 		goto abort;
6943 	}
6944 
6945 	/* device size must be a multiple of chunk size */
6946 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6947 	mddev->resync_max_sectors = mddev->dev_sectors;
6948 
6949 	if (mddev->degraded > dirty_parity_disks &&
6950 	    mddev->recovery_cp != MaxSector) {
6951 		if (mddev->ok_start_degraded)
6952 			printk(KERN_WARNING
6953 			       "md/raid:%s: starting dirty degraded array"
6954 			       " - data corruption possible.\n",
6955 			       mdname(mddev));
6956 		else {
6957 			printk(KERN_ERR
6958 			       "md/raid:%s: cannot start dirty degraded array.\n",
6959 			       mdname(mddev));
6960 			goto abort;
6961 		}
6962 	}
6963 
6964 	if (mddev->degraded == 0)
6965 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6966 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6967 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6968 		       mddev->new_layout);
6969 	else
6970 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6971 		       " out of %d devices, algorithm %d\n",
6972 		       mdname(mddev), conf->level,
6973 		       mddev->raid_disks - mddev->degraded,
6974 		       mddev->raid_disks, mddev->new_layout);
6975 
6976 	print_raid5_conf(conf);
6977 
6978 	if (conf->reshape_progress != MaxSector) {
6979 		conf->reshape_safe = conf->reshape_progress;
6980 		atomic_set(&conf->reshape_stripes, 0);
6981 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6982 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6983 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6984 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6985 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6986 							"reshape");
6987 		if (!mddev->sync_thread)
6988 			goto abort;
6989 	}
6990 
6991 	/* Ok, everything is just fine now */
6992 	if (mddev->to_remove == &raid5_attrs_group)
6993 		mddev->to_remove = NULL;
6994 	else if (mddev->kobj.sd &&
6995 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6996 		printk(KERN_WARNING
6997 		       "raid5: failed to create sysfs attributes for %s\n",
6998 		       mdname(mddev));
6999 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7000 
7001 	if (mddev->queue) {
7002 		int chunk_size;
7003 		bool discard_supported = true;
7004 		/* read-ahead size must cover two whole stripes, which
7005 		 * is 2 * (datadisks) * chunksize where 'n' is the
7006 		 * number of raid devices
7007 		 */
7008 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7009 		int stripe = data_disks *
7010 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7011 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7012 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7013 
7014 		chunk_size = mddev->chunk_sectors << 9;
7015 		blk_queue_io_min(mddev->queue, chunk_size);
7016 		blk_queue_io_opt(mddev->queue, chunk_size *
7017 				 (conf->raid_disks - conf->max_degraded));
7018 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7019 		/*
7020 		 * We can only discard a whole stripe. It doesn't make sense to
7021 		 * discard data disk but write parity disk
7022 		 */
7023 		stripe = stripe * PAGE_SIZE;
7024 		/* Round up to power of 2, as discard handling
7025 		 * currently assumes that */
7026 		while ((stripe-1) & stripe)
7027 			stripe = (stripe | (stripe-1)) + 1;
7028 		mddev->queue->limits.discard_alignment = stripe;
7029 		mddev->queue->limits.discard_granularity = stripe;
7030 
7031 		/*
7032 		 * We use 16-bit counter of active stripes in bi_phys_segments
7033 		 * (minus one for over-loaded initialization)
7034 		 */
7035 		blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
7036 		blk_queue_max_discard_sectors(mddev->queue,
7037 					      0xfffe * STRIPE_SECTORS);
7038 
7039 		/*
7040 		 * unaligned part of discard request will be ignored, so can't
7041 		 * guarantee discard_zeroes_data
7042 		 */
7043 		mddev->queue->limits.discard_zeroes_data = 0;
7044 
7045 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7046 
7047 		rdev_for_each(rdev, mddev) {
7048 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7049 					  rdev->data_offset << 9);
7050 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7051 					  rdev->new_data_offset << 9);
7052 			/*
7053 			 * discard_zeroes_data is required, otherwise data
7054 			 * could be lost. Consider a scenario: discard a stripe
7055 			 * (the stripe could be inconsistent if
7056 			 * discard_zeroes_data is 0); write one disk of the
7057 			 * stripe (the stripe could be inconsistent again
7058 			 * depending on which disks are used to calculate
7059 			 * parity); the disk is broken; The stripe data of this
7060 			 * disk is lost.
7061 			 */
7062 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7063 			    !bdev_get_queue(rdev->bdev)->
7064 						limits.discard_zeroes_data)
7065 				discard_supported = false;
7066 			/* Unfortunately, discard_zeroes_data is not currently
7067 			 * a guarantee - just a hint.  So we only allow DISCARD
7068 			 * if the sysadmin has confirmed that only safe devices
7069 			 * are in use by setting a module parameter.
7070 			 */
7071 			if (!devices_handle_discard_safely) {
7072 				if (discard_supported) {
7073 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7074 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7075 				}
7076 				discard_supported = false;
7077 			}
7078 		}
7079 
7080 		if (discard_supported &&
7081 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7082 		    mddev->queue->limits.discard_granularity >= stripe)
7083 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7084 						mddev->queue);
7085 		else
7086 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7087 						mddev->queue);
7088 	}
7089 
7090 	if (journal_dev) {
7091 		char b[BDEVNAME_SIZE];
7092 
7093 		printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7094 		       mdname(mddev), bdevname(journal_dev->bdev, b));
7095 		r5l_init_log(conf, journal_dev);
7096 	}
7097 
7098 	return 0;
7099 abort:
7100 	md_unregister_thread(&mddev->thread);
7101 	print_raid5_conf(conf);
7102 	free_conf(conf);
7103 	mddev->private = NULL;
7104 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7105 	return -EIO;
7106 }
7107 
raid5_free(struct mddev * mddev,void * priv)7108 static void raid5_free(struct mddev *mddev, void *priv)
7109 {
7110 	struct r5conf *conf = priv;
7111 
7112 	free_conf(conf);
7113 	mddev->to_remove = &raid5_attrs_group;
7114 }
7115 
status(struct seq_file * seq,struct mddev * mddev)7116 static void status(struct seq_file *seq, struct mddev *mddev)
7117 {
7118 	struct r5conf *conf = mddev->private;
7119 	int i;
7120 
7121 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7122 		conf->chunk_sectors / 2, mddev->layout);
7123 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7124 	for (i = 0; i < conf->raid_disks; i++)
7125 		seq_printf (seq, "%s",
7126 			       conf->disks[i].rdev &&
7127 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7128 	seq_printf (seq, "]");
7129 }
7130 
print_raid5_conf(struct r5conf * conf)7131 static void print_raid5_conf (struct r5conf *conf)
7132 {
7133 	int i;
7134 	struct disk_info *tmp;
7135 
7136 	printk(KERN_DEBUG "RAID conf printout:\n");
7137 	if (!conf) {
7138 		printk("(conf==NULL)\n");
7139 		return;
7140 	}
7141 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7142 	       conf->raid_disks,
7143 	       conf->raid_disks - conf->mddev->degraded);
7144 
7145 	for (i = 0; i < conf->raid_disks; i++) {
7146 		char b[BDEVNAME_SIZE];
7147 		tmp = conf->disks + i;
7148 		if (tmp->rdev)
7149 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7150 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7151 			       bdevname(tmp->rdev->bdev, b));
7152 	}
7153 }
7154 
raid5_spare_active(struct mddev * mddev)7155 static int raid5_spare_active(struct mddev *mddev)
7156 {
7157 	int i;
7158 	struct r5conf *conf = mddev->private;
7159 	struct disk_info *tmp;
7160 	int count = 0;
7161 	unsigned long flags;
7162 
7163 	for (i = 0; i < conf->raid_disks; i++) {
7164 		tmp = conf->disks + i;
7165 		if (tmp->replacement
7166 		    && tmp->replacement->recovery_offset == MaxSector
7167 		    && !test_bit(Faulty, &tmp->replacement->flags)
7168 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7169 			/* Replacement has just become active. */
7170 			if (!tmp->rdev
7171 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7172 				count++;
7173 			if (tmp->rdev) {
7174 				/* Replaced device not technically faulty,
7175 				 * but we need to be sure it gets removed
7176 				 * and never re-added.
7177 				 */
7178 				set_bit(Faulty, &tmp->rdev->flags);
7179 				sysfs_notify_dirent_safe(
7180 					tmp->rdev->sysfs_state);
7181 			}
7182 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7183 		} else if (tmp->rdev
7184 		    && tmp->rdev->recovery_offset == MaxSector
7185 		    && !test_bit(Faulty, &tmp->rdev->flags)
7186 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7187 			count++;
7188 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7189 		}
7190 	}
7191 	spin_lock_irqsave(&conf->device_lock, flags);
7192 	mddev->degraded = calc_degraded(conf);
7193 	spin_unlock_irqrestore(&conf->device_lock, flags);
7194 	print_raid5_conf(conf);
7195 	return count;
7196 }
7197 
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)7198 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7199 {
7200 	struct r5conf *conf = mddev->private;
7201 	int err = 0;
7202 	int number = rdev->raid_disk;
7203 	struct md_rdev **rdevp;
7204 	struct disk_info *p = conf->disks + number;
7205 
7206 	print_raid5_conf(conf);
7207 	if (test_bit(Journal, &rdev->flags)) {
7208 		/*
7209 		 * journal disk is not removable, but we need give a chance to
7210 		 * update superblock of other disks. Otherwise journal disk
7211 		 * will be considered as 'fresh'
7212 		 */
7213 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7214 		return -EINVAL;
7215 	}
7216 	if (rdev == p->rdev)
7217 		rdevp = &p->rdev;
7218 	else if (rdev == p->replacement)
7219 		rdevp = &p->replacement;
7220 	else
7221 		return 0;
7222 
7223 	if (number >= conf->raid_disks &&
7224 	    conf->reshape_progress == MaxSector)
7225 		clear_bit(In_sync, &rdev->flags);
7226 
7227 	if (test_bit(In_sync, &rdev->flags) ||
7228 	    atomic_read(&rdev->nr_pending)) {
7229 		err = -EBUSY;
7230 		goto abort;
7231 	}
7232 	/* Only remove non-faulty devices if recovery
7233 	 * isn't possible.
7234 	 */
7235 	if (!test_bit(Faulty, &rdev->flags) &&
7236 	    mddev->recovery_disabled != conf->recovery_disabled &&
7237 	    !has_failed(conf) &&
7238 	    (!p->replacement || p->replacement == rdev) &&
7239 	    number < conf->raid_disks) {
7240 		err = -EBUSY;
7241 		goto abort;
7242 	}
7243 	*rdevp = NULL;
7244 	synchronize_rcu();
7245 	if (atomic_read(&rdev->nr_pending)) {
7246 		/* lost the race, try later */
7247 		err = -EBUSY;
7248 		*rdevp = rdev;
7249 	} else if (p->replacement) {
7250 		/* We must have just cleared 'rdev' */
7251 		p->rdev = p->replacement;
7252 		clear_bit(Replacement, &p->replacement->flags);
7253 		smp_mb(); /* Make sure other CPUs may see both as identical
7254 			   * but will never see neither - if they are careful
7255 			   */
7256 		p->replacement = NULL;
7257 		clear_bit(WantReplacement, &rdev->flags);
7258 	} else
7259 		/* We might have just removed the Replacement as faulty-
7260 		 * clear the bit just in case
7261 		 */
7262 		clear_bit(WantReplacement, &rdev->flags);
7263 abort:
7264 
7265 	print_raid5_conf(conf);
7266 	return err;
7267 }
7268 
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)7269 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7270 {
7271 	struct r5conf *conf = mddev->private;
7272 	int err = -EEXIST;
7273 	int disk;
7274 	struct disk_info *p;
7275 	int first = 0;
7276 	int last = conf->raid_disks - 1;
7277 
7278 	if (test_bit(Journal, &rdev->flags))
7279 		return -EINVAL;
7280 	if (mddev->recovery_disabled == conf->recovery_disabled)
7281 		return -EBUSY;
7282 
7283 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7284 		/* no point adding a device */
7285 		return -EINVAL;
7286 
7287 	if (rdev->raid_disk >= 0)
7288 		first = last = rdev->raid_disk;
7289 
7290 	/*
7291 	 * find the disk ... but prefer rdev->saved_raid_disk
7292 	 * if possible.
7293 	 */
7294 	if (rdev->saved_raid_disk >= 0 &&
7295 	    rdev->saved_raid_disk >= first &&
7296 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7297 		first = rdev->saved_raid_disk;
7298 
7299 	for (disk = first; disk <= last; disk++) {
7300 		p = conf->disks + disk;
7301 		if (p->rdev == NULL) {
7302 			clear_bit(In_sync, &rdev->flags);
7303 			rdev->raid_disk = disk;
7304 			err = 0;
7305 			if (rdev->saved_raid_disk != disk)
7306 				conf->fullsync = 1;
7307 			rcu_assign_pointer(p->rdev, rdev);
7308 			goto out;
7309 		}
7310 	}
7311 	for (disk = first; disk <= last; disk++) {
7312 		p = conf->disks + disk;
7313 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7314 		    p->replacement == NULL) {
7315 			clear_bit(In_sync, &rdev->flags);
7316 			set_bit(Replacement, &rdev->flags);
7317 			rdev->raid_disk = disk;
7318 			err = 0;
7319 			conf->fullsync = 1;
7320 			rcu_assign_pointer(p->replacement, rdev);
7321 			break;
7322 		}
7323 	}
7324 out:
7325 	print_raid5_conf(conf);
7326 	return err;
7327 }
7328 
raid5_resize(struct mddev * mddev,sector_t sectors)7329 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7330 {
7331 	/* no resync is happening, and there is enough space
7332 	 * on all devices, so we can resize.
7333 	 * We need to make sure resync covers any new space.
7334 	 * If the array is shrinking we should possibly wait until
7335 	 * any io in the removed space completes, but it hardly seems
7336 	 * worth it.
7337 	 */
7338 	sector_t newsize;
7339 	struct r5conf *conf = mddev->private;
7340 
7341 	if (conf->log)
7342 		return -EINVAL;
7343 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7344 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7345 	if (mddev->external_size &&
7346 	    mddev->array_sectors > newsize)
7347 		return -EINVAL;
7348 	if (mddev->bitmap) {
7349 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7350 		if (ret)
7351 			return ret;
7352 	}
7353 	md_set_array_sectors(mddev, newsize);
7354 	set_capacity(mddev->gendisk, mddev->array_sectors);
7355 	revalidate_disk(mddev->gendisk);
7356 	if (sectors > mddev->dev_sectors &&
7357 	    mddev->recovery_cp > mddev->dev_sectors) {
7358 		mddev->recovery_cp = mddev->dev_sectors;
7359 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7360 	}
7361 	mddev->dev_sectors = sectors;
7362 	mddev->resync_max_sectors = sectors;
7363 	return 0;
7364 }
7365 
check_stripe_cache(struct mddev * mddev)7366 static int check_stripe_cache(struct mddev *mddev)
7367 {
7368 	/* Can only proceed if there are plenty of stripe_heads.
7369 	 * We need a minimum of one full stripe,, and for sensible progress
7370 	 * it is best to have about 4 times that.
7371 	 * If we require 4 times, then the default 256 4K stripe_heads will
7372 	 * allow for chunk sizes up to 256K, which is probably OK.
7373 	 * If the chunk size is greater, user-space should request more
7374 	 * stripe_heads first.
7375 	 */
7376 	struct r5conf *conf = mddev->private;
7377 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7378 	    > conf->min_nr_stripes ||
7379 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7380 	    > conf->min_nr_stripes) {
7381 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7382 		       mdname(mddev),
7383 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7384 			/ STRIPE_SIZE)*4);
7385 		return 0;
7386 	}
7387 	return 1;
7388 }
7389 
check_reshape(struct mddev * mddev)7390 static int check_reshape(struct mddev *mddev)
7391 {
7392 	struct r5conf *conf = mddev->private;
7393 
7394 	if (conf->log)
7395 		return -EINVAL;
7396 	if (mddev->delta_disks == 0 &&
7397 	    mddev->new_layout == mddev->layout &&
7398 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7399 		return 0; /* nothing to do */
7400 	if (has_failed(conf))
7401 		return -EINVAL;
7402 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7403 		/* We might be able to shrink, but the devices must
7404 		 * be made bigger first.
7405 		 * For raid6, 4 is the minimum size.
7406 		 * Otherwise 2 is the minimum
7407 		 */
7408 		int min = 2;
7409 		if (mddev->level == 6)
7410 			min = 4;
7411 		if (mddev->raid_disks + mddev->delta_disks < min)
7412 			return -EINVAL;
7413 	}
7414 
7415 	if (!check_stripe_cache(mddev))
7416 		return -ENOSPC;
7417 
7418 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7419 	    mddev->delta_disks > 0)
7420 		if (resize_chunks(conf,
7421 				  conf->previous_raid_disks
7422 				  + max(0, mddev->delta_disks),
7423 				  max(mddev->new_chunk_sectors,
7424 				      mddev->chunk_sectors)
7425 			    ) < 0)
7426 			return -ENOMEM;
7427 	return resize_stripes(conf, (conf->previous_raid_disks
7428 				     + mddev->delta_disks));
7429 }
7430 
raid5_start_reshape(struct mddev * mddev)7431 static int raid5_start_reshape(struct mddev *mddev)
7432 {
7433 	struct r5conf *conf = mddev->private;
7434 	struct md_rdev *rdev;
7435 	int spares = 0;
7436 	unsigned long flags;
7437 
7438 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7439 		return -EBUSY;
7440 
7441 	if (!check_stripe_cache(mddev))
7442 		return -ENOSPC;
7443 
7444 	if (has_failed(conf))
7445 		return -EINVAL;
7446 
7447 	rdev_for_each(rdev, mddev) {
7448 		if (!test_bit(In_sync, &rdev->flags)
7449 		    && !test_bit(Faulty, &rdev->flags))
7450 			spares++;
7451 	}
7452 
7453 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7454 		/* Not enough devices even to make a degraded array
7455 		 * of that size
7456 		 */
7457 		return -EINVAL;
7458 
7459 	/* Refuse to reduce size of the array.  Any reductions in
7460 	 * array size must be through explicit setting of array_size
7461 	 * attribute.
7462 	 */
7463 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7464 	    < mddev->array_sectors) {
7465 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7466 		       "before number of disks\n", mdname(mddev));
7467 		return -EINVAL;
7468 	}
7469 
7470 	atomic_set(&conf->reshape_stripes, 0);
7471 	spin_lock_irq(&conf->device_lock);
7472 	write_seqcount_begin(&conf->gen_lock);
7473 	conf->previous_raid_disks = conf->raid_disks;
7474 	conf->raid_disks += mddev->delta_disks;
7475 	conf->prev_chunk_sectors = conf->chunk_sectors;
7476 	conf->chunk_sectors = mddev->new_chunk_sectors;
7477 	conf->prev_algo = conf->algorithm;
7478 	conf->algorithm = mddev->new_layout;
7479 	conf->generation++;
7480 	/* Code that selects data_offset needs to see the generation update
7481 	 * if reshape_progress has been set - so a memory barrier needed.
7482 	 */
7483 	smp_mb();
7484 	if (mddev->reshape_backwards)
7485 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7486 	else
7487 		conf->reshape_progress = 0;
7488 	conf->reshape_safe = conf->reshape_progress;
7489 	write_seqcount_end(&conf->gen_lock);
7490 	spin_unlock_irq(&conf->device_lock);
7491 
7492 	/* Now make sure any requests that proceeded on the assumption
7493 	 * the reshape wasn't running - like Discard or Read - have
7494 	 * completed.
7495 	 */
7496 	mddev_suspend(mddev);
7497 	mddev_resume(mddev);
7498 
7499 	/* Add some new drives, as many as will fit.
7500 	 * We know there are enough to make the newly sized array work.
7501 	 * Don't add devices if we are reducing the number of
7502 	 * devices in the array.  This is because it is not possible
7503 	 * to correctly record the "partially reconstructed" state of
7504 	 * such devices during the reshape and confusion could result.
7505 	 */
7506 	if (mddev->delta_disks >= 0) {
7507 		rdev_for_each(rdev, mddev)
7508 			if (rdev->raid_disk < 0 &&
7509 			    !test_bit(Faulty, &rdev->flags)) {
7510 				if (raid5_add_disk(mddev, rdev) == 0) {
7511 					if (rdev->raid_disk
7512 					    >= conf->previous_raid_disks)
7513 						set_bit(In_sync, &rdev->flags);
7514 					else
7515 						rdev->recovery_offset = 0;
7516 
7517 					if (sysfs_link_rdev(mddev, rdev))
7518 						/* Failure here is OK */;
7519 				}
7520 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7521 				   && !test_bit(Faulty, &rdev->flags)) {
7522 				/* This is a spare that was manually added */
7523 				set_bit(In_sync, &rdev->flags);
7524 			}
7525 
7526 		/* When a reshape changes the number of devices,
7527 		 * ->degraded is measured against the larger of the
7528 		 * pre and post number of devices.
7529 		 */
7530 		spin_lock_irqsave(&conf->device_lock, flags);
7531 		mddev->degraded = calc_degraded(conf);
7532 		spin_unlock_irqrestore(&conf->device_lock, flags);
7533 	}
7534 	mddev->raid_disks = conf->raid_disks;
7535 	mddev->reshape_position = conf->reshape_progress;
7536 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7537 
7538 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7539 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7540 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7541 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7542 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7543 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7544 						"reshape");
7545 	if (!mddev->sync_thread) {
7546 		mddev->recovery = 0;
7547 		spin_lock_irq(&conf->device_lock);
7548 		write_seqcount_begin(&conf->gen_lock);
7549 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7550 		mddev->new_chunk_sectors =
7551 			conf->chunk_sectors = conf->prev_chunk_sectors;
7552 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7553 		rdev_for_each(rdev, mddev)
7554 			rdev->new_data_offset = rdev->data_offset;
7555 		smp_wmb();
7556 		conf->generation --;
7557 		conf->reshape_progress = MaxSector;
7558 		mddev->reshape_position = MaxSector;
7559 		write_seqcount_end(&conf->gen_lock);
7560 		spin_unlock_irq(&conf->device_lock);
7561 		return -EAGAIN;
7562 	}
7563 	conf->reshape_checkpoint = jiffies;
7564 	md_wakeup_thread(mddev->sync_thread);
7565 	md_new_event(mddev);
7566 	return 0;
7567 }
7568 
7569 /* This is called from the reshape thread and should make any
7570  * changes needed in 'conf'
7571  */
end_reshape(struct r5conf * conf)7572 static void end_reshape(struct r5conf *conf)
7573 {
7574 
7575 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7576 
7577 		spin_lock_irq(&conf->device_lock);
7578 		conf->previous_raid_disks = conf->raid_disks;
7579 		md_finish_reshape(conf->mddev);
7580 		smp_wmb();
7581 		conf->reshape_progress = MaxSector;
7582 		conf->mddev->reshape_position = MaxSector;
7583 		spin_unlock_irq(&conf->device_lock);
7584 		wake_up(&conf->wait_for_overlap);
7585 
7586 		/* read-ahead size must cover two whole stripes, which is
7587 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7588 		 */
7589 		if (conf->mddev->queue) {
7590 			int data_disks = conf->raid_disks - conf->max_degraded;
7591 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7592 						   / PAGE_SIZE);
7593 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7594 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7595 		}
7596 	}
7597 }
7598 
7599 /* This is called from the raid5d thread with mddev_lock held.
7600  * It makes config changes to the device.
7601  */
raid5_finish_reshape(struct mddev * mddev)7602 static void raid5_finish_reshape(struct mddev *mddev)
7603 {
7604 	struct r5conf *conf = mddev->private;
7605 
7606 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7607 
7608 		if (mddev->delta_disks > 0) {
7609 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7610 			set_capacity(mddev->gendisk, mddev->array_sectors);
7611 			revalidate_disk(mddev->gendisk);
7612 		} else {
7613 			int d;
7614 			spin_lock_irq(&conf->device_lock);
7615 			mddev->degraded = calc_degraded(conf);
7616 			spin_unlock_irq(&conf->device_lock);
7617 			for (d = conf->raid_disks ;
7618 			     d < conf->raid_disks - mddev->delta_disks;
7619 			     d++) {
7620 				struct md_rdev *rdev = conf->disks[d].rdev;
7621 				if (rdev)
7622 					clear_bit(In_sync, &rdev->flags);
7623 				rdev = conf->disks[d].replacement;
7624 				if (rdev)
7625 					clear_bit(In_sync, &rdev->flags);
7626 			}
7627 		}
7628 		mddev->layout = conf->algorithm;
7629 		mddev->chunk_sectors = conf->chunk_sectors;
7630 		mddev->reshape_position = MaxSector;
7631 		mddev->delta_disks = 0;
7632 		mddev->reshape_backwards = 0;
7633 	}
7634 }
7635 
raid5_quiesce(struct mddev * mddev,int state)7636 static void raid5_quiesce(struct mddev *mddev, int state)
7637 {
7638 	struct r5conf *conf = mddev->private;
7639 
7640 	switch(state) {
7641 	case 2: /* resume for a suspend */
7642 		wake_up(&conf->wait_for_overlap);
7643 		break;
7644 
7645 	case 1: /* stop all writes */
7646 		lock_all_device_hash_locks_irq(conf);
7647 		/* '2' tells resync/reshape to pause so that all
7648 		 * active stripes can drain
7649 		 */
7650 		conf->quiesce = 2;
7651 		wait_event_cmd(conf->wait_for_quiescent,
7652 				    atomic_read(&conf->active_stripes) == 0 &&
7653 				    atomic_read(&conf->active_aligned_reads) == 0,
7654 				    unlock_all_device_hash_locks_irq(conf),
7655 				    lock_all_device_hash_locks_irq(conf));
7656 		conf->quiesce = 1;
7657 		unlock_all_device_hash_locks_irq(conf);
7658 		/* allow reshape to continue */
7659 		wake_up(&conf->wait_for_overlap);
7660 		break;
7661 
7662 	case 0: /* re-enable writes */
7663 		lock_all_device_hash_locks_irq(conf);
7664 		conf->quiesce = 0;
7665 		wake_up(&conf->wait_for_quiescent);
7666 		wake_up(&conf->wait_for_overlap);
7667 		unlock_all_device_hash_locks_irq(conf);
7668 		break;
7669 	}
7670 	r5l_quiesce(conf->log, state);
7671 }
7672 
raid45_takeover_raid0(struct mddev * mddev,int level)7673 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7674 {
7675 	struct r0conf *raid0_conf = mddev->private;
7676 	sector_t sectors;
7677 
7678 	/* for raid0 takeover only one zone is supported */
7679 	if (raid0_conf->nr_strip_zones > 1) {
7680 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7681 		       mdname(mddev));
7682 		return ERR_PTR(-EINVAL);
7683 	}
7684 
7685 	sectors = raid0_conf->strip_zone[0].zone_end;
7686 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7687 	mddev->dev_sectors = sectors;
7688 	mddev->new_level = level;
7689 	mddev->new_layout = ALGORITHM_PARITY_N;
7690 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7691 	mddev->raid_disks += 1;
7692 	mddev->delta_disks = 1;
7693 	/* make sure it will be not marked as dirty */
7694 	mddev->recovery_cp = MaxSector;
7695 
7696 	return setup_conf(mddev);
7697 }
7698 
raid5_takeover_raid1(struct mddev * mddev)7699 static void *raid5_takeover_raid1(struct mddev *mddev)
7700 {
7701 	int chunksect;
7702 
7703 	if (mddev->raid_disks != 2 ||
7704 	    mddev->degraded > 1)
7705 		return ERR_PTR(-EINVAL);
7706 
7707 	/* Should check if there are write-behind devices? */
7708 
7709 	chunksect = 64*2; /* 64K by default */
7710 
7711 	/* The array must be an exact multiple of chunksize */
7712 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7713 		chunksect >>= 1;
7714 
7715 	if ((chunksect<<9) < STRIPE_SIZE)
7716 		/* array size does not allow a suitable chunk size */
7717 		return ERR_PTR(-EINVAL);
7718 
7719 	mddev->new_level = 5;
7720 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7721 	mddev->new_chunk_sectors = chunksect;
7722 
7723 	return setup_conf(mddev);
7724 }
7725 
raid5_takeover_raid6(struct mddev * mddev)7726 static void *raid5_takeover_raid6(struct mddev *mddev)
7727 {
7728 	int new_layout;
7729 
7730 	switch (mddev->layout) {
7731 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7732 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7733 		break;
7734 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7735 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7736 		break;
7737 	case ALGORITHM_LEFT_SYMMETRIC_6:
7738 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7739 		break;
7740 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7741 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7742 		break;
7743 	case ALGORITHM_PARITY_0_6:
7744 		new_layout = ALGORITHM_PARITY_0;
7745 		break;
7746 	case ALGORITHM_PARITY_N:
7747 		new_layout = ALGORITHM_PARITY_N;
7748 		break;
7749 	default:
7750 		return ERR_PTR(-EINVAL);
7751 	}
7752 	mddev->new_level = 5;
7753 	mddev->new_layout = new_layout;
7754 	mddev->delta_disks = -1;
7755 	mddev->raid_disks -= 1;
7756 	return setup_conf(mddev);
7757 }
7758 
raid5_check_reshape(struct mddev * mddev)7759 static int raid5_check_reshape(struct mddev *mddev)
7760 {
7761 	/* For a 2-drive array, the layout and chunk size can be changed
7762 	 * immediately as not restriping is needed.
7763 	 * For larger arrays we record the new value - after validation
7764 	 * to be used by a reshape pass.
7765 	 */
7766 	struct r5conf *conf = mddev->private;
7767 	int new_chunk = mddev->new_chunk_sectors;
7768 
7769 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7770 		return -EINVAL;
7771 	if (new_chunk > 0) {
7772 		if (!is_power_of_2(new_chunk))
7773 			return -EINVAL;
7774 		if (new_chunk < (PAGE_SIZE>>9))
7775 			return -EINVAL;
7776 		if (mddev->array_sectors & (new_chunk-1))
7777 			/* not factor of array size */
7778 			return -EINVAL;
7779 	}
7780 
7781 	/* They look valid */
7782 
7783 	if (mddev->raid_disks == 2) {
7784 		/* can make the change immediately */
7785 		if (mddev->new_layout >= 0) {
7786 			conf->algorithm = mddev->new_layout;
7787 			mddev->layout = mddev->new_layout;
7788 		}
7789 		if (new_chunk > 0) {
7790 			conf->chunk_sectors = new_chunk ;
7791 			mddev->chunk_sectors = new_chunk;
7792 		}
7793 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7794 		md_wakeup_thread(mddev->thread);
7795 	}
7796 	return check_reshape(mddev);
7797 }
7798 
raid6_check_reshape(struct mddev * mddev)7799 static int raid6_check_reshape(struct mddev *mddev)
7800 {
7801 	int new_chunk = mddev->new_chunk_sectors;
7802 
7803 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7804 		return -EINVAL;
7805 	if (new_chunk > 0) {
7806 		if (!is_power_of_2(new_chunk))
7807 			return -EINVAL;
7808 		if (new_chunk < (PAGE_SIZE >> 9))
7809 			return -EINVAL;
7810 		if (mddev->array_sectors & (new_chunk-1))
7811 			/* not factor of array size */
7812 			return -EINVAL;
7813 	}
7814 
7815 	/* They look valid */
7816 	return check_reshape(mddev);
7817 }
7818 
raid5_takeover(struct mddev * mddev)7819 static void *raid5_takeover(struct mddev *mddev)
7820 {
7821 	/* raid5 can take over:
7822 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7823 	 *  raid1 - if there are two drives.  We need to know the chunk size
7824 	 *  raid4 - trivial - just use a raid4 layout.
7825 	 *  raid6 - Providing it is a *_6 layout
7826 	 */
7827 	if (mddev->level == 0)
7828 		return raid45_takeover_raid0(mddev, 5);
7829 	if (mddev->level == 1)
7830 		return raid5_takeover_raid1(mddev);
7831 	if (mddev->level == 4) {
7832 		mddev->new_layout = ALGORITHM_PARITY_N;
7833 		mddev->new_level = 5;
7834 		return setup_conf(mddev);
7835 	}
7836 	if (mddev->level == 6)
7837 		return raid5_takeover_raid6(mddev);
7838 
7839 	return ERR_PTR(-EINVAL);
7840 }
7841 
raid4_takeover(struct mddev * mddev)7842 static void *raid4_takeover(struct mddev *mddev)
7843 {
7844 	/* raid4 can take over:
7845 	 *  raid0 - if there is only one strip zone
7846 	 *  raid5 - if layout is right
7847 	 */
7848 	if (mddev->level == 0)
7849 		return raid45_takeover_raid0(mddev, 4);
7850 	if (mddev->level == 5 &&
7851 	    mddev->layout == ALGORITHM_PARITY_N) {
7852 		mddev->new_layout = 0;
7853 		mddev->new_level = 4;
7854 		return setup_conf(mddev);
7855 	}
7856 	return ERR_PTR(-EINVAL);
7857 }
7858 
7859 static struct md_personality raid5_personality;
7860 
raid6_takeover(struct mddev * mddev)7861 static void *raid6_takeover(struct mddev *mddev)
7862 {
7863 	/* Currently can only take over a raid5.  We map the
7864 	 * personality to an equivalent raid6 personality
7865 	 * with the Q block at the end.
7866 	 */
7867 	int new_layout;
7868 
7869 	if (mddev->pers != &raid5_personality)
7870 		return ERR_PTR(-EINVAL);
7871 	if (mddev->degraded > 1)
7872 		return ERR_PTR(-EINVAL);
7873 	if (mddev->raid_disks > 253)
7874 		return ERR_PTR(-EINVAL);
7875 	if (mddev->raid_disks < 3)
7876 		return ERR_PTR(-EINVAL);
7877 
7878 	switch (mddev->layout) {
7879 	case ALGORITHM_LEFT_ASYMMETRIC:
7880 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7881 		break;
7882 	case ALGORITHM_RIGHT_ASYMMETRIC:
7883 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7884 		break;
7885 	case ALGORITHM_LEFT_SYMMETRIC:
7886 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7887 		break;
7888 	case ALGORITHM_RIGHT_SYMMETRIC:
7889 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7890 		break;
7891 	case ALGORITHM_PARITY_0:
7892 		new_layout = ALGORITHM_PARITY_0_6;
7893 		break;
7894 	case ALGORITHM_PARITY_N:
7895 		new_layout = ALGORITHM_PARITY_N;
7896 		break;
7897 	default:
7898 		return ERR_PTR(-EINVAL);
7899 	}
7900 	mddev->new_level = 6;
7901 	mddev->new_layout = new_layout;
7902 	mddev->delta_disks = 1;
7903 	mddev->raid_disks += 1;
7904 	return setup_conf(mddev);
7905 }
7906 
7907 static struct md_personality raid6_personality =
7908 {
7909 	.name		= "raid6",
7910 	.level		= 6,
7911 	.owner		= THIS_MODULE,
7912 	.make_request	= make_request,
7913 	.run		= run,
7914 	.free		= raid5_free,
7915 	.status		= status,
7916 	.error_handler	= error,
7917 	.hot_add_disk	= raid5_add_disk,
7918 	.hot_remove_disk= raid5_remove_disk,
7919 	.spare_active	= raid5_spare_active,
7920 	.sync_request	= sync_request,
7921 	.resize		= raid5_resize,
7922 	.size		= raid5_size,
7923 	.check_reshape	= raid6_check_reshape,
7924 	.start_reshape  = raid5_start_reshape,
7925 	.finish_reshape = raid5_finish_reshape,
7926 	.quiesce	= raid5_quiesce,
7927 	.takeover	= raid6_takeover,
7928 	.congested	= raid5_congested,
7929 };
7930 static struct md_personality raid5_personality =
7931 {
7932 	.name		= "raid5",
7933 	.level		= 5,
7934 	.owner		= THIS_MODULE,
7935 	.make_request	= make_request,
7936 	.run		= run,
7937 	.free		= raid5_free,
7938 	.status		= status,
7939 	.error_handler	= error,
7940 	.hot_add_disk	= raid5_add_disk,
7941 	.hot_remove_disk= raid5_remove_disk,
7942 	.spare_active	= raid5_spare_active,
7943 	.sync_request	= sync_request,
7944 	.resize		= raid5_resize,
7945 	.size		= raid5_size,
7946 	.check_reshape	= raid5_check_reshape,
7947 	.start_reshape  = raid5_start_reshape,
7948 	.finish_reshape = raid5_finish_reshape,
7949 	.quiesce	= raid5_quiesce,
7950 	.takeover	= raid5_takeover,
7951 	.congested	= raid5_congested,
7952 };
7953 
7954 static struct md_personality raid4_personality =
7955 {
7956 	.name		= "raid4",
7957 	.level		= 4,
7958 	.owner		= THIS_MODULE,
7959 	.make_request	= make_request,
7960 	.run		= run,
7961 	.free		= raid5_free,
7962 	.status		= status,
7963 	.error_handler	= error,
7964 	.hot_add_disk	= raid5_add_disk,
7965 	.hot_remove_disk= raid5_remove_disk,
7966 	.spare_active	= raid5_spare_active,
7967 	.sync_request	= sync_request,
7968 	.resize		= raid5_resize,
7969 	.size		= raid5_size,
7970 	.check_reshape	= raid5_check_reshape,
7971 	.start_reshape  = raid5_start_reshape,
7972 	.finish_reshape = raid5_finish_reshape,
7973 	.quiesce	= raid5_quiesce,
7974 	.takeover	= raid4_takeover,
7975 	.congested	= raid5_congested,
7976 };
7977 
raid5_init(void)7978 static int __init raid5_init(void)
7979 {
7980 	raid5_wq = alloc_workqueue("raid5wq",
7981 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7982 	if (!raid5_wq)
7983 		return -ENOMEM;
7984 	register_md_personality(&raid6_personality);
7985 	register_md_personality(&raid5_personality);
7986 	register_md_personality(&raid4_personality);
7987 	return 0;
7988 }
7989 
raid5_exit(void)7990 static void raid5_exit(void)
7991 {
7992 	unregister_md_personality(&raid6_personality);
7993 	unregister_md_personality(&raid5_personality);
7994 	unregister_md_personality(&raid4_personality);
7995 	destroy_workqueue(raid5_wq);
7996 }
7997 
7998 module_init(raid5_init);
7999 module_exit(raid5_exit);
8000 MODULE_LICENSE("GPL");
8001 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8002 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8003 MODULE_ALIAS("md-raid5");
8004 MODULE_ALIAS("md-raid4");
8005 MODULE_ALIAS("md-level-5");
8006 MODULE_ALIAS("md-level-4");
8007 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8008 MODULE_ALIAS("md-raid6");
8009 MODULE_ALIAS("md-level-6");
8010 
8011 /* This used to be two separate modules, they were: */
8012 MODULE_ALIAS("raid5");
8013 MODULE_ALIAS("raid6");
8014