1 /*
2 * drivers/media/i2c/smiapp/smiapp-core.c
3 *
4 * Generic driver for SMIA/SMIA++ compliant camera modules
5 *
6 * Copyright (C) 2010--2012 Nokia Corporation
7 * Contact: Sakari Ailus <sakari.ailus@iki.fi>
8 *
9 * Based on smiapp driver by Vimarsh Zutshi
10 * Based on jt8ev1.c by Vimarsh Zutshi
11 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * version 2 as published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 */
22
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/gpio.h>
27 #include <linux/module.h>
28 #include <linux/of_gpio.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/slab.h>
31 #include <linux/smiapp.h>
32 #include <linux/v4l2-mediabus.h>
33 #include <media/v4l2-device.h>
34 #include <media/v4l2-of.h>
35
36 #include "smiapp.h"
37
38 #define SMIAPP_ALIGN_DIM(dim, flags) \
39 ((flags) & V4L2_SEL_FLAG_GE \
40 ? ALIGN((dim), 2) \
41 : (dim) & ~1)
42
43 /*
44 * smiapp_module_idents - supported camera modules
45 */
46 static const struct smiapp_module_ident smiapp_module_idents[] = {
47 SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
48 SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
49 SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
50 SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
51 SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
52 SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
53 SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
54 SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
55 SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
56 SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
57 SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
58 };
59
60 /*
61 *
62 * Dynamic Capability Identification
63 *
64 */
65
smiapp_read_frame_fmt(struct smiapp_sensor * sensor)66 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
67 {
68 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
69 u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
70 unsigned int i;
71 int rval;
72 int line_count = 0;
73 int embedded_start = -1, embedded_end = -1;
74 int image_start = 0;
75
76 rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
77 &fmt_model_type);
78 if (rval)
79 return rval;
80
81 rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
82 &fmt_model_subtype);
83 if (rval)
84 return rval;
85
86 ncol_desc = (fmt_model_subtype
87 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
88 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
89 nrow_desc = fmt_model_subtype
90 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
91
92 dev_dbg(&client->dev, "format_model_type %s\n",
93 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
94 ? "2 byte" :
95 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
96 ? "4 byte" : "is simply bad");
97
98 for (i = 0; i < ncol_desc + nrow_desc; i++) {
99 u32 desc;
100 u32 pixelcode;
101 u32 pixels;
102 char *which;
103 char *what;
104
105 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
106 rval = smiapp_read(
107 sensor,
108 SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
109 &desc);
110 if (rval)
111 return rval;
112
113 pixelcode =
114 (desc
115 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
116 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
117 pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
118 } else if (fmt_model_type
119 == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
120 rval = smiapp_read(
121 sensor,
122 SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
123 &desc);
124 if (rval)
125 return rval;
126
127 pixelcode =
128 (desc
129 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
130 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
131 pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
132 } else {
133 dev_dbg(&client->dev,
134 "invalid frame format model type %d\n",
135 fmt_model_type);
136 return -EINVAL;
137 }
138
139 if (i < ncol_desc)
140 which = "columns";
141 else
142 which = "rows";
143
144 switch (pixelcode) {
145 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
146 what = "embedded";
147 break;
148 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
149 what = "dummy";
150 break;
151 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
152 what = "black";
153 break;
154 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
155 what = "dark";
156 break;
157 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
158 what = "visible";
159 break;
160 default:
161 what = "invalid";
162 dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
163 break;
164 }
165
166 dev_dbg(&client->dev, "%s pixels: %d %s\n",
167 what, pixels, which);
168
169 if (i < ncol_desc)
170 continue;
171
172 /* Handle row descriptors */
173 if (pixelcode
174 == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
175 embedded_start = line_count;
176 } else {
177 if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
178 || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
179 image_start = line_count;
180 if (embedded_start != -1 && embedded_end == -1)
181 embedded_end = line_count;
182 }
183 line_count += pixels;
184 }
185
186 if (embedded_start == -1 || embedded_end == -1) {
187 embedded_start = 0;
188 embedded_end = 0;
189 }
190
191 dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
192 embedded_start, embedded_end);
193 dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
194
195 return 0;
196 }
197
smiapp_pll_configure(struct smiapp_sensor * sensor)198 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
199 {
200 struct smiapp_pll *pll = &sensor->pll;
201 int rval;
202
203 rval = smiapp_write(
204 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
205 if (rval < 0)
206 return rval;
207
208 rval = smiapp_write(
209 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
210 if (rval < 0)
211 return rval;
212
213 rval = smiapp_write(
214 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
215 if (rval < 0)
216 return rval;
217
218 rval = smiapp_write(
219 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
220 if (rval < 0)
221 return rval;
222
223 /* Lane op clock ratio does not apply here. */
224 rval = smiapp_write(
225 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
226 DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
227 if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
228 return rval;
229
230 rval = smiapp_write(
231 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
232 if (rval < 0)
233 return rval;
234
235 return smiapp_write(
236 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
237 }
238
smiapp_pll_try(struct smiapp_sensor * sensor,struct smiapp_pll * pll)239 static int smiapp_pll_try(struct smiapp_sensor *sensor,
240 struct smiapp_pll *pll)
241 {
242 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
243 struct smiapp_pll_limits lim = {
244 .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
245 .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
246 .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
247 .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
248 .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
249 .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
250 .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
251 .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
252
253 .op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
254 .op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
255 .op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
256 .op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
257 .op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
258 .op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
259 .op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
260 .op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
261
262 .vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
263 .vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
264 .vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
265 .vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
266 .vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
267 .vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
268 .vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
269 .vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
270
271 .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
272 .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
273 };
274
275 return smiapp_pll_calculate(&client->dev, &lim, pll);
276 }
277
smiapp_pll_update(struct smiapp_sensor * sensor)278 static int smiapp_pll_update(struct smiapp_sensor *sensor)
279 {
280 struct smiapp_pll *pll = &sensor->pll;
281 int rval;
282
283 pll->binning_horizontal = sensor->binning_horizontal;
284 pll->binning_vertical = sensor->binning_vertical;
285 pll->link_freq =
286 sensor->link_freq->qmenu_int[sensor->link_freq->val];
287 pll->scale_m = sensor->scale_m;
288 pll->bits_per_pixel = sensor->csi_format->compressed;
289
290 rval = smiapp_pll_try(sensor, pll);
291 if (rval < 0)
292 return rval;
293
294 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
295 pll->pixel_rate_pixel_array);
296 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
297
298 return 0;
299 }
300
301
302 /*
303 *
304 * V4L2 Controls handling
305 *
306 */
307
__smiapp_update_exposure_limits(struct smiapp_sensor * sensor)308 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
309 {
310 struct v4l2_ctrl *ctrl = sensor->exposure;
311 int max;
312
313 max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
314 + sensor->vblank->val
315 - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
316
317 __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
318 }
319
320 /*
321 * Order matters.
322 *
323 * 1. Bits-per-pixel, descending.
324 * 2. Bits-per-pixel compressed, descending.
325 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
326 * orders must be defined.
327 */
328 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
329 { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
330 { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
331 { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
332 { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
333 { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
334 { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
335 { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
336 { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
337 { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
338 { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
339 { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
340 { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
341 { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
342 { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
343 { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
344 { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
345 };
346
347 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
348
349 #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
350 - (unsigned long)smiapp_csi_data_formats) \
351 / sizeof(*smiapp_csi_data_formats))
352
smiapp_pixel_order(struct smiapp_sensor * sensor)353 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
354 {
355 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
356 int flip = 0;
357
358 if (sensor->hflip) {
359 if (sensor->hflip->val)
360 flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
361
362 if (sensor->vflip->val)
363 flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
364 }
365
366 flip ^= sensor->hvflip_inv_mask;
367
368 dev_dbg(&client->dev, "flip %d\n", flip);
369 return sensor->default_pixel_order ^ flip;
370 }
371
smiapp_update_mbus_formats(struct smiapp_sensor * sensor)372 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
373 {
374 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
375 unsigned int csi_format_idx =
376 to_csi_format_idx(sensor->csi_format) & ~3;
377 unsigned int internal_csi_format_idx =
378 to_csi_format_idx(sensor->internal_csi_format) & ~3;
379 unsigned int pixel_order = smiapp_pixel_order(sensor);
380
381 sensor->mbus_frame_fmts =
382 sensor->default_mbus_frame_fmts << pixel_order;
383 sensor->csi_format =
384 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
385 sensor->internal_csi_format =
386 &smiapp_csi_data_formats[internal_csi_format_idx
387 + pixel_order];
388
389 BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
390 >= ARRAY_SIZE(smiapp_csi_data_formats));
391
392 dev_dbg(&client->dev, "new pixel order %s\n",
393 pixel_order_str[pixel_order]);
394 }
395
396 static const char * const smiapp_test_patterns[] = {
397 "Disabled",
398 "Solid Colour",
399 "Eight Vertical Colour Bars",
400 "Colour Bars With Fade to Grey",
401 "Pseudorandom Sequence (PN9)",
402 };
403
smiapp_set_ctrl(struct v4l2_ctrl * ctrl)404 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
405 {
406 struct smiapp_sensor *sensor =
407 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
408 ->sensor;
409 u32 orient = 0;
410 int exposure;
411 int rval;
412
413 switch (ctrl->id) {
414 case V4L2_CID_ANALOGUE_GAIN:
415 return smiapp_write(
416 sensor,
417 SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
418
419 case V4L2_CID_EXPOSURE:
420 return smiapp_write(
421 sensor,
422 SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
423
424 case V4L2_CID_HFLIP:
425 case V4L2_CID_VFLIP:
426 if (sensor->streaming)
427 return -EBUSY;
428
429 if (sensor->hflip->val)
430 orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
431
432 if (sensor->vflip->val)
433 orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
434
435 orient ^= sensor->hvflip_inv_mask;
436 rval = smiapp_write(sensor,
437 SMIAPP_REG_U8_IMAGE_ORIENTATION,
438 orient);
439 if (rval < 0)
440 return rval;
441
442 smiapp_update_mbus_formats(sensor);
443
444 return 0;
445
446 case V4L2_CID_VBLANK:
447 exposure = sensor->exposure->val;
448
449 __smiapp_update_exposure_limits(sensor);
450
451 if (exposure > sensor->exposure->maximum) {
452 sensor->exposure->val =
453 sensor->exposure->maximum;
454 rval = smiapp_set_ctrl(
455 sensor->exposure);
456 if (rval < 0)
457 return rval;
458 }
459
460 return smiapp_write(
461 sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
462 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
463 + ctrl->val);
464
465 case V4L2_CID_HBLANK:
466 return smiapp_write(
467 sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
468 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
469 + ctrl->val);
470
471 case V4L2_CID_LINK_FREQ:
472 if (sensor->streaming)
473 return -EBUSY;
474
475 return smiapp_pll_update(sensor);
476
477 case V4L2_CID_TEST_PATTERN: {
478 unsigned int i;
479
480 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
481 v4l2_ctrl_activate(
482 sensor->test_data[i],
483 ctrl->val ==
484 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
485
486 return smiapp_write(
487 sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
488 }
489
490 case V4L2_CID_TEST_PATTERN_RED:
491 return smiapp_write(
492 sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
493
494 case V4L2_CID_TEST_PATTERN_GREENR:
495 return smiapp_write(
496 sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
497
498 case V4L2_CID_TEST_PATTERN_BLUE:
499 return smiapp_write(
500 sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
501
502 case V4L2_CID_TEST_PATTERN_GREENB:
503 return smiapp_write(
504 sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
505
506 case V4L2_CID_PIXEL_RATE:
507 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
508 return 0;
509
510 default:
511 return -EINVAL;
512 }
513 }
514
515 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
516 .s_ctrl = smiapp_set_ctrl,
517 };
518
smiapp_init_controls(struct smiapp_sensor * sensor)519 static int smiapp_init_controls(struct smiapp_sensor *sensor)
520 {
521 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
522 int rval;
523
524 rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
525 if (rval)
526 return rval;
527
528 sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
529
530 sensor->analog_gain = v4l2_ctrl_new_std(
531 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
532 V4L2_CID_ANALOGUE_GAIN,
533 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
534 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
535 max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
536 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
537
538 /* Exposure limits will be updated soon, use just something here. */
539 sensor->exposure = v4l2_ctrl_new_std(
540 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
541 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
542
543 sensor->hflip = v4l2_ctrl_new_std(
544 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
545 V4L2_CID_HFLIP, 0, 1, 1, 0);
546 sensor->vflip = v4l2_ctrl_new_std(
547 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
548 V4L2_CID_VFLIP, 0, 1, 1, 0);
549
550 sensor->vblank = v4l2_ctrl_new_std(
551 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
552 V4L2_CID_VBLANK, 0, 1, 1, 0);
553
554 if (sensor->vblank)
555 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
556
557 sensor->hblank = v4l2_ctrl_new_std(
558 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
559 V4L2_CID_HBLANK, 0, 1, 1, 0);
560
561 if (sensor->hblank)
562 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
563
564 sensor->pixel_rate_parray = v4l2_ctrl_new_std(
565 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
566 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
567
568 v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
569 &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
570 ARRAY_SIZE(smiapp_test_patterns) - 1,
571 0, 0, smiapp_test_patterns);
572
573 if (sensor->pixel_array->ctrl_handler.error) {
574 dev_err(&client->dev,
575 "pixel array controls initialization failed (%d)\n",
576 sensor->pixel_array->ctrl_handler.error);
577 return sensor->pixel_array->ctrl_handler.error;
578 }
579
580 sensor->pixel_array->sd.ctrl_handler =
581 &sensor->pixel_array->ctrl_handler;
582
583 v4l2_ctrl_cluster(2, &sensor->hflip);
584
585 rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
586 if (rval)
587 return rval;
588
589 sensor->src->ctrl_handler.lock = &sensor->mutex;
590
591 sensor->pixel_rate_csi = v4l2_ctrl_new_std(
592 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
593 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
594
595 if (sensor->src->ctrl_handler.error) {
596 dev_err(&client->dev,
597 "src controls initialization failed (%d)\n",
598 sensor->src->ctrl_handler.error);
599 return sensor->src->ctrl_handler.error;
600 }
601
602 sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
603
604 return 0;
605 }
606
607 /*
608 * For controls that require information on available media bus codes
609 * and linke frequencies.
610 */
smiapp_init_late_controls(struct smiapp_sensor * sensor)611 static int smiapp_init_late_controls(struct smiapp_sensor *sensor)
612 {
613 unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
614 sensor->csi_format->compressed - SMIAPP_COMPRESSED_BASE];
615 unsigned int max, i;
616
617 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
618 int max_value = (1 << sensor->csi_format->width) - 1;
619
620 sensor->test_data[i] = v4l2_ctrl_new_std(
621 &sensor->pixel_array->ctrl_handler,
622 &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
623 0, max_value, 1, max_value);
624 }
625
626 for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
627
628 sensor->link_freq = v4l2_ctrl_new_int_menu(
629 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
630 V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
631 __ffs(*valid_link_freqs), sensor->platform_data->op_sys_clock);
632
633 return sensor->src->ctrl_handler.error;
634 }
635
smiapp_free_controls(struct smiapp_sensor * sensor)636 static void smiapp_free_controls(struct smiapp_sensor *sensor)
637 {
638 unsigned int i;
639
640 for (i = 0; i < sensor->ssds_used; i++)
641 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
642 }
643
smiapp_get_limits(struct smiapp_sensor * sensor,int const * limit,unsigned int n)644 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
645 unsigned int n)
646 {
647 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
648 unsigned int i;
649 u32 val;
650 int rval;
651
652 for (i = 0; i < n; i++) {
653 rval = smiapp_read(
654 sensor, smiapp_reg_limits[limit[i]].addr, &val);
655 if (rval)
656 return rval;
657 sensor->limits[limit[i]] = val;
658 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
659 smiapp_reg_limits[limit[i]].addr,
660 smiapp_reg_limits[limit[i]].what, val, val);
661 }
662
663 return 0;
664 }
665
smiapp_get_all_limits(struct smiapp_sensor * sensor)666 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
667 {
668 unsigned int i;
669 int rval;
670
671 for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
672 rval = smiapp_get_limits(sensor, &i, 1);
673 if (rval < 0)
674 return rval;
675 }
676
677 if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
678 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
679
680 return 0;
681 }
682
smiapp_get_limits_binning(struct smiapp_sensor * sensor)683 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
684 {
685 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
686 static u32 const limits[] = {
687 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
688 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
689 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
690 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
691 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
692 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
693 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
694 };
695 static u32 const limits_replace[] = {
696 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
697 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
698 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
699 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
700 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
701 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
702 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
703 };
704 unsigned int i;
705 int rval;
706
707 if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
708 SMIAPP_BINNING_CAPABILITY_NO) {
709 for (i = 0; i < ARRAY_SIZE(limits); i++)
710 sensor->limits[limits[i]] =
711 sensor->limits[limits_replace[i]];
712
713 return 0;
714 }
715
716 rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
717 if (rval < 0)
718 return rval;
719
720 /*
721 * Sanity check whether the binning limits are valid. If not,
722 * use the non-binning ones.
723 */
724 if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
725 && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
726 && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
727 return 0;
728
729 for (i = 0; i < ARRAY_SIZE(limits); i++) {
730 dev_dbg(&client->dev,
731 "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
732 smiapp_reg_limits[limits[i]].addr,
733 smiapp_reg_limits[limits[i]].what,
734 sensor->limits[limits_replace[i]],
735 sensor->limits[limits_replace[i]]);
736 sensor->limits[limits[i]] =
737 sensor->limits[limits_replace[i]];
738 }
739
740 return 0;
741 }
742
smiapp_get_mbus_formats(struct smiapp_sensor * sensor)743 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
744 {
745 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
746 struct smiapp_pll *pll = &sensor->pll;
747 unsigned int type, n;
748 unsigned int i, pixel_order;
749 int rval;
750
751 rval = smiapp_read(
752 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
753 if (rval)
754 return rval;
755
756 dev_dbg(&client->dev, "data_format_model_type %d\n", type);
757
758 rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
759 &pixel_order);
760 if (rval)
761 return rval;
762
763 if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
764 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
765 return -EINVAL;
766 }
767
768 dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
769 pixel_order_str[pixel_order]);
770
771 switch (type) {
772 case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
773 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
774 break;
775 case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
776 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
777 break;
778 default:
779 return -EINVAL;
780 }
781
782 sensor->default_pixel_order = pixel_order;
783 sensor->mbus_frame_fmts = 0;
784
785 for (i = 0; i < n; i++) {
786 unsigned int fmt, j;
787
788 rval = smiapp_read(
789 sensor,
790 SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
791 if (rval)
792 return rval;
793
794 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
795 i, fmt >> 8, (u8)fmt);
796
797 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
798 const struct smiapp_csi_data_format *f =
799 &smiapp_csi_data_formats[j];
800
801 if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
802 continue;
803
804 if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
805 continue;
806
807 dev_dbg(&client->dev, "jolly good! %d\n", j);
808
809 sensor->default_mbus_frame_fmts |= 1 << j;
810 }
811 }
812
813 /* Figure out which BPP values can be used with which formats. */
814 pll->binning_horizontal = 1;
815 pll->binning_vertical = 1;
816 pll->scale_m = sensor->scale_m;
817
818 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
819 const struct smiapp_csi_data_format *f =
820 &smiapp_csi_data_formats[i];
821 unsigned long *valid_link_freqs =
822 &sensor->valid_link_freqs[
823 f->compressed - SMIAPP_COMPRESSED_BASE];
824 unsigned int j;
825
826 BUG_ON(f->compressed < SMIAPP_COMPRESSED_BASE);
827 BUG_ON(f->compressed > SMIAPP_COMPRESSED_MAX);
828
829 if (!(sensor->default_mbus_frame_fmts & 1 << i))
830 continue;
831
832 pll->bits_per_pixel = f->compressed;
833
834 for (j = 0; sensor->platform_data->op_sys_clock[j]; j++) {
835 pll->link_freq = sensor->platform_data->op_sys_clock[j];
836
837 rval = smiapp_pll_try(sensor, pll);
838 dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
839 pll->link_freq, pll->bits_per_pixel,
840 rval ? "not ok" : "ok");
841 if (rval)
842 continue;
843
844 set_bit(j, valid_link_freqs);
845 }
846
847 if (!*valid_link_freqs) {
848 dev_info(&client->dev,
849 "no valid link frequencies for %u bpp\n",
850 f->compressed);
851 sensor->default_mbus_frame_fmts &= ~BIT(i);
852 continue;
853 }
854
855 if (!sensor->csi_format
856 || f->width > sensor->csi_format->width
857 || (f->width == sensor->csi_format->width
858 && f->compressed > sensor->csi_format->compressed)) {
859 sensor->csi_format = f;
860 sensor->internal_csi_format = f;
861 }
862 }
863
864 if (!sensor->csi_format) {
865 dev_err(&client->dev, "no supported mbus code found\n");
866 return -EINVAL;
867 }
868
869 smiapp_update_mbus_formats(sensor);
870
871 return 0;
872 }
873
smiapp_update_blanking(struct smiapp_sensor * sensor)874 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
875 {
876 struct v4l2_ctrl *vblank = sensor->vblank;
877 struct v4l2_ctrl *hblank = sensor->hblank;
878 int min, max;
879
880 min = max_t(int,
881 sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
882 sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
883 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
884 max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
885 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
886
887 __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
888
889 min = max_t(int,
890 sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
891 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
892 sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
893 max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
894 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
895
896 __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
897
898 __smiapp_update_exposure_limits(sensor);
899 }
900
smiapp_update_mode(struct smiapp_sensor * sensor)901 static int smiapp_update_mode(struct smiapp_sensor *sensor)
902 {
903 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
904 unsigned int binning_mode;
905 int rval;
906
907 dev_dbg(&client->dev, "frame size: %dx%d\n",
908 sensor->src->crop[SMIAPP_PAD_SRC].width,
909 sensor->src->crop[SMIAPP_PAD_SRC].height);
910 dev_dbg(&client->dev, "csi format width: %d\n",
911 sensor->csi_format->width);
912
913 /* Binning has to be set up here; it affects limits */
914 if (sensor->binning_horizontal == 1 &&
915 sensor->binning_vertical == 1) {
916 binning_mode = 0;
917 } else {
918 u8 binning_type =
919 (sensor->binning_horizontal << 4)
920 | sensor->binning_vertical;
921
922 rval = smiapp_write(
923 sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
924 if (rval < 0)
925 return rval;
926
927 binning_mode = 1;
928 }
929 rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
930 if (rval < 0)
931 return rval;
932
933 /* Get updated limits due to binning */
934 rval = smiapp_get_limits_binning(sensor);
935 if (rval < 0)
936 return rval;
937
938 rval = smiapp_pll_update(sensor);
939 if (rval < 0)
940 return rval;
941
942 /* Output from pixel array, including blanking */
943 smiapp_update_blanking(sensor);
944
945 dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
946 dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
947
948 dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
949 sensor->pll.pixel_rate_pixel_array /
950 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
951 + sensor->hblank->val) *
952 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
953 + sensor->vblank->val) / 100));
954
955 return 0;
956 }
957
958 /*
959 *
960 * SMIA++ NVM handling
961 *
962 */
smiapp_read_nvm(struct smiapp_sensor * sensor,unsigned char * nvm)963 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
964 unsigned char *nvm)
965 {
966 u32 i, s, p, np, v;
967 int rval = 0, rval2;
968
969 np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
970 for (p = 0; p < np; p++) {
971 rval = smiapp_write(
972 sensor,
973 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
974 if (rval)
975 goto out;
976
977 rval = smiapp_write(sensor,
978 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
979 SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
980 SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
981 if (rval)
982 goto out;
983
984 for (i = 1000; i > 0; i--) {
985 rval = smiapp_read(
986 sensor,
987 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
988
989 if (rval)
990 goto out;
991
992 if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
993 break;
994
995 }
996 if (!i) {
997 rval = -ETIMEDOUT;
998 goto out;
999 }
1000
1001 for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
1002 rval = smiapp_read(
1003 sensor,
1004 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
1005 &v);
1006 if (rval)
1007 goto out;
1008
1009 *nvm++ = v;
1010 }
1011 }
1012
1013 out:
1014 rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
1015 if (rval < 0)
1016 return rval;
1017 else
1018 return rval2;
1019 }
1020
1021 /*
1022 *
1023 * SMIA++ CCI address control
1024 *
1025 */
smiapp_change_cci_addr(struct smiapp_sensor * sensor)1026 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
1027 {
1028 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1029 int rval;
1030 u32 val;
1031
1032 client->addr = sensor->platform_data->i2c_addr_dfl;
1033
1034 rval = smiapp_write(sensor,
1035 SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
1036 sensor->platform_data->i2c_addr_alt << 1);
1037 if (rval)
1038 return rval;
1039
1040 client->addr = sensor->platform_data->i2c_addr_alt;
1041
1042 /* verify addr change went ok */
1043 rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
1044 if (rval)
1045 return rval;
1046
1047 if (val != sensor->platform_data->i2c_addr_alt << 1)
1048 return -ENODEV;
1049
1050 return 0;
1051 }
1052
1053 /*
1054 *
1055 * SMIA++ Mode Control
1056 *
1057 */
smiapp_setup_flash_strobe(struct smiapp_sensor * sensor)1058 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
1059 {
1060 struct smiapp_flash_strobe_parms *strobe_setup;
1061 unsigned int ext_freq = sensor->platform_data->ext_clk;
1062 u32 tmp;
1063 u32 strobe_adjustment;
1064 u32 strobe_width_high_rs;
1065 int rval;
1066
1067 strobe_setup = sensor->platform_data->strobe_setup;
1068
1069 /*
1070 * How to calculate registers related to strobe length. Please
1071 * do not change, or if you do at least know what you're
1072 * doing. :-)
1073 *
1074 * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
1075 *
1076 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1077 * / EXTCLK freq [Hz]) * flash_strobe_adjustment
1078 *
1079 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1080 * flash_strobe_adjustment E N, [1 - 0xff]
1081 *
1082 * The formula above is written as below to keep it on one
1083 * line:
1084 *
1085 * l / 10^6 = w / e * a
1086 *
1087 * Let's mark w * a by x:
1088 *
1089 * x = w * a
1090 *
1091 * Thus, we get:
1092 *
1093 * x = l * e / 10^6
1094 *
1095 * The strobe width must be at least as long as requested,
1096 * thus rounding upwards is needed.
1097 *
1098 * x = (l * e + 10^6 - 1) / 10^6
1099 * -----------------------------
1100 *
1101 * Maximum possible accuracy is wanted at all times. Thus keep
1102 * a as small as possible.
1103 *
1104 * Calculate a, assuming maximum w, with rounding upwards:
1105 *
1106 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1107 * -------------------------------------
1108 *
1109 * Thus, we also get w, with that a, with rounding upwards:
1110 *
1111 * w = (x + a - 1) / a
1112 * -------------------
1113 *
1114 * To get limits:
1115 *
1116 * x E [1, (2^16 - 1) * (2^8 - 1)]
1117 *
1118 * Substituting maximum x to the original formula (with rounding),
1119 * the maximum l is thus
1120 *
1121 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1122 *
1123 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1124 * --------------------------------------------------
1125 *
1126 * flash_strobe_length must be clamped between 1 and
1127 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1128 *
1129 * Then,
1130 *
1131 * flash_strobe_adjustment = ((flash_strobe_length *
1132 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1133 *
1134 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1135 * EXTCLK freq + 10^6 - 1) / 10^6 +
1136 * flash_strobe_adjustment - 1) / flash_strobe_adjustment
1137 */
1138 tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1139 1000000 + 1, ext_freq);
1140 strobe_setup->strobe_width_high_us =
1141 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1142
1143 tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1144 1000000 - 1), 1000000ULL);
1145 strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1146 strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1147 strobe_adjustment;
1148
1149 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1150 strobe_setup->mode);
1151 if (rval < 0)
1152 goto out;
1153
1154 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1155 strobe_adjustment);
1156 if (rval < 0)
1157 goto out;
1158
1159 rval = smiapp_write(
1160 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1161 strobe_width_high_rs);
1162 if (rval < 0)
1163 goto out;
1164
1165 rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1166 strobe_setup->strobe_delay);
1167 if (rval < 0)
1168 goto out;
1169
1170 rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1171 strobe_setup->stobe_start_point);
1172 if (rval < 0)
1173 goto out;
1174
1175 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1176 strobe_setup->trigger);
1177
1178 out:
1179 sensor->platform_data->strobe_setup->trigger = 0;
1180
1181 return rval;
1182 }
1183
1184 /* -----------------------------------------------------------------------------
1185 * Power management
1186 */
1187
smiapp_power_on(struct smiapp_sensor * sensor)1188 static int smiapp_power_on(struct smiapp_sensor *sensor)
1189 {
1190 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1191 unsigned int sleep;
1192 int rval;
1193
1194 rval = regulator_enable(sensor->vana);
1195 if (rval) {
1196 dev_err(&client->dev, "failed to enable vana regulator\n");
1197 return rval;
1198 }
1199 usleep_range(1000, 1000);
1200
1201 if (sensor->platform_data->set_xclk)
1202 rval = sensor->platform_data->set_xclk(
1203 &sensor->src->sd, sensor->platform_data->ext_clk);
1204 else
1205 rval = clk_prepare_enable(sensor->ext_clk);
1206 if (rval < 0) {
1207 dev_dbg(&client->dev, "failed to enable xclk\n");
1208 goto out_xclk_fail;
1209 }
1210 usleep_range(1000, 1000);
1211
1212 if (gpio_is_valid(sensor->platform_data->xshutdown))
1213 gpio_set_value(sensor->platform_data->xshutdown, 1);
1214
1215 sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
1216 usleep_range(sleep, sleep);
1217
1218 /*
1219 * Failures to respond to the address change command have been noticed.
1220 * Those failures seem to be caused by the sensor requiring a longer
1221 * boot time than advertised. An additional 10ms delay seems to work
1222 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1223 * unnecessary. The failures need to be investigated to find a proper
1224 * fix, and a delay will likely need to be added here if the I2C write
1225 * retry hack is reverted before the root cause of the boot time issue
1226 * is found.
1227 */
1228
1229 if (sensor->platform_data->i2c_addr_alt) {
1230 rval = smiapp_change_cci_addr(sensor);
1231 if (rval) {
1232 dev_err(&client->dev, "cci address change error\n");
1233 goto out_cci_addr_fail;
1234 }
1235 }
1236
1237 rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1238 SMIAPP_SOFTWARE_RESET);
1239 if (rval < 0) {
1240 dev_err(&client->dev, "software reset failed\n");
1241 goto out_cci_addr_fail;
1242 }
1243
1244 if (sensor->platform_data->i2c_addr_alt) {
1245 rval = smiapp_change_cci_addr(sensor);
1246 if (rval) {
1247 dev_err(&client->dev, "cci address change error\n");
1248 goto out_cci_addr_fail;
1249 }
1250 }
1251
1252 rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1253 SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1254 if (rval) {
1255 dev_err(&client->dev, "compression mode set failed\n");
1256 goto out_cci_addr_fail;
1257 }
1258
1259 rval = smiapp_write(
1260 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1261 sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
1262 if (rval) {
1263 dev_err(&client->dev, "extclk frequency set failed\n");
1264 goto out_cci_addr_fail;
1265 }
1266
1267 rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1268 sensor->platform_data->lanes - 1);
1269 if (rval) {
1270 dev_err(&client->dev, "csi lane mode set failed\n");
1271 goto out_cci_addr_fail;
1272 }
1273
1274 rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1275 SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1276 if (rval) {
1277 dev_err(&client->dev, "fast standby set failed\n");
1278 goto out_cci_addr_fail;
1279 }
1280
1281 rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1282 sensor->platform_data->csi_signalling_mode);
1283 if (rval) {
1284 dev_err(&client->dev, "csi signalling mode set failed\n");
1285 goto out_cci_addr_fail;
1286 }
1287
1288 /* DPHY control done by sensor based on requested link rate */
1289 rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1290 SMIAPP_DPHY_CTRL_UI);
1291 if (rval < 0)
1292 return rval;
1293
1294 rval = smiapp_call_quirk(sensor, post_poweron);
1295 if (rval) {
1296 dev_err(&client->dev, "post_poweron quirks failed\n");
1297 goto out_cci_addr_fail;
1298 }
1299
1300 /* Are we still initialising...? If yes, return here. */
1301 if (!sensor->pixel_array)
1302 return 0;
1303
1304 rval = v4l2_ctrl_handler_setup(
1305 &sensor->pixel_array->ctrl_handler);
1306 if (rval)
1307 goto out_cci_addr_fail;
1308
1309 rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1310 if (rval)
1311 goto out_cci_addr_fail;
1312
1313 mutex_lock(&sensor->mutex);
1314 rval = smiapp_update_mode(sensor);
1315 mutex_unlock(&sensor->mutex);
1316 if (rval < 0)
1317 goto out_cci_addr_fail;
1318
1319 return 0;
1320
1321 out_cci_addr_fail:
1322 if (gpio_is_valid(sensor->platform_data->xshutdown))
1323 gpio_set_value(sensor->platform_data->xshutdown, 0);
1324 if (sensor->platform_data->set_xclk)
1325 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1326 else
1327 clk_disable_unprepare(sensor->ext_clk);
1328
1329 out_xclk_fail:
1330 regulator_disable(sensor->vana);
1331 return rval;
1332 }
1333
smiapp_power_off(struct smiapp_sensor * sensor)1334 static void smiapp_power_off(struct smiapp_sensor *sensor)
1335 {
1336 /*
1337 * Currently power/clock to lens are enable/disabled separately
1338 * but they are essentially the same signals. So if the sensor is
1339 * powered off while the lens is powered on the sensor does not
1340 * really see a power off and next time the cci address change
1341 * will fail. So do a soft reset explicitly here.
1342 */
1343 if (sensor->platform_data->i2c_addr_alt)
1344 smiapp_write(sensor,
1345 SMIAPP_REG_U8_SOFTWARE_RESET,
1346 SMIAPP_SOFTWARE_RESET);
1347
1348 if (gpio_is_valid(sensor->platform_data->xshutdown))
1349 gpio_set_value(sensor->platform_data->xshutdown, 0);
1350 if (sensor->platform_data->set_xclk)
1351 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1352 else
1353 clk_disable_unprepare(sensor->ext_clk);
1354 usleep_range(5000, 5000);
1355 regulator_disable(sensor->vana);
1356 sensor->streaming = false;
1357 }
1358
smiapp_set_power(struct v4l2_subdev * subdev,int on)1359 static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
1360 {
1361 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1362 int ret = 0;
1363
1364 mutex_lock(&sensor->power_mutex);
1365
1366 if (on && !sensor->power_count) {
1367 /* Power on and perform initialisation. */
1368 ret = smiapp_power_on(sensor);
1369 if (ret < 0)
1370 goto out;
1371 } else if (!on && sensor->power_count == 1) {
1372 smiapp_power_off(sensor);
1373 }
1374
1375 /* Update the power count. */
1376 sensor->power_count += on ? 1 : -1;
1377 WARN_ON(sensor->power_count < 0);
1378
1379 out:
1380 mutex_unlock(&sensor->power_mutex);
1381 return ret;
1382 }
1383
1384 /* -----------------------------------------------------------------------------
1385 * Video stream management
1386 */
1387
smiapp_start_streaming(struct smiapp_sensor * sensor)1388 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1389 {
1390 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1391 int rval;
1392
1393 mutex_lock(&sensor->mutex);
1394
1395 rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1396 (sensor->csi_format->width << 8) |
1397 sensor->csi_format->compressed);
1398 if (rval)
1399 goto out;
1400
1401 rval = smiapp_pll_configure(sensor);
1402 if (rval)
1403 goto out;
1404
1405 /* Analog crop start coordinates */
1406 rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1407 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1408 if (rval < 0)
1409 goto out;
1410
1411 rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1412 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1413 if (rval < 0)
1414 goto out;
1415
1416 /* Analog crop end coordinates */
1417 rval = smiapp_write(
1418 sensor, SMIAPP_REG_U16_X_ADDR_END,
1419 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1420 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1421 if (rval < 0)
1422 goto out;
1423
1424 rval = smiapp_write(
1425 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1426 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1427 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1428 if (rval < 0)
1429 goto out;
1430
1431 /*
1432 * Output from pixel array, including blanking, is set using
1433 * controls below. No need to set here.
1434 */
1435
1436 /* Digital crop */
1437 if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1438 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1439 rval = smiapp_write(
1440 sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1441 sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1442 if (rval < 0)
1443 goto out;
1444
1445 rval = smiapp_write(
1446 sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1447 sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1448 if (rval < 0)
1449 goto out;
1450
1451 rval = smiapp_write(
1452 sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1453 sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1454 if (rval < 0)
1455 goto out;
1456
1457 rval = smiapp_write(
1458 sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1459 sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1460 if (rval < 0)
1461 goto out;
1462 }
1463
1464 /* Scaling */
1465 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1466 != SMIAPP_SCALING_CAPABILITY_NONE) {
1467 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1468 sensor->scaling_mode);
1469 if (rval < 0)
1470 goto out;
1471
1472 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1473 sensor->scale_m);
1474 if (rval < 0)
1475 goto out;
1476 }
1477
1478 /* Output size from sensor */
1479 rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1480 sensor->src->crop[SMIAPP_PAD_SRC].width);
1481 if (rval < 0)
1482 goto out;
1483 rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1484 sensor->src->crop[SMIAPP_PAD_SRC].height);
1485 if (rval < 0)
1486 goto out;
1487
1488 if ((sensor->limits[SMIAPP_LIMIT_FLASH_MODE_CAPABILITY] &
1489 (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1490 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1491 sensor->platform_data->strobe_setup != NULL &&
1492 sensor->platform_data->strobe_setup->trigger != 0) {
1493 rval = smiapp_setup_flash_strobe(sensor);
1494 if (rval)
1495 goto out;
1496 }
1497
1498 rval = smiapp_call_quirk(sensor, pre_streamon);
1499 if (rval) {
1500 dev_err(&client->dev, "pre_streamon quirks failed\n");
1501 goto out;
1502 }
1503
1504 rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1505 SMIAPP_MODE_SELECT_STREAMING);
1506
1507 out:
1508 mutex_unlock(&sensor->mutex);
1509
1510 return rval;
1511 }
1512
smiapp_stop_streaming(struct smiapp_sensor * sensor)1513 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1514 {
1515 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1516 int rval;
1517
1518 mutex_lock(&sensor->mutex);
1519 rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1520 SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1521 if (rval)
1522 goto out;
1523
1524 rval = smiapp_call_quirk(sensor, post_streamoff);
1525 if (rval)
1526 dev_err(&client->dev, "post_streamoff quirks failed\n");
1527
1528 out:
1529 mutex_unlock(&sensor->mutex);
1530 return rval;
1531 }
1532
1533 /* -----------------------------------------------------------------------------
1534 * V4L2 subdev video operations
1535 */
1536
smiapp_set_stream(struct v4l2_subdev * subdev,int enable)1537 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1538 {
1539 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1540 int rval;
1541
1542 if (sensor->streaming == enable)
1543 return 0;
1544
1545 if (enable) {
1546 sensor->streaming = true;
1547 rval = smiapp_start_streaming(sensor);
1548 if (rval < 0)
1549 sensor->streaming = false;
1550 } else {
1551 rval = smiapp_stop_streaming(sensor);
1552 sensor->streaming = false;
1553 }
1554
1555 return rval;
1556 }
1557
smiapp_enum_mbus_code(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_mbus_code_enum * code)1558 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1559 struct v4l2_subdev_pad_config *cfg,
1560 struct v4l2_subdev_mbus_code_enum *code)
1561 {
1562 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1563 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1564 unsigned int i;
1565 int idx = -1;
1566 int rval = -EINVAL;
1567
1568 mutex_lock(&sensor->mutex);
1569
1570 dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1571 subdev->name, code->pad, code->index);
1572
1573 if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1574 if (code->index)
1575 goto out;
1576
1577 code->code = sensor->internal_csi_format->code;
1578 rval = 0;
1579 goto out;
1580 }
1581
1582 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1583 if (sensor->mbus_frame_fmts & (1 << i))
1584 idx++;
1585
1586 if (idx == code->index) {
1587 code->code = smiapp_csi_data_formats[i].code;
1588 dev_err(&client->dev, "found index %d, i %d, code %x\n",
1589 code->index, i, code->code);
1590 rval = 0;
1591 break;
1592 }
1593 }
1594
1595 out:
1596 mutex_unlock(&sensor->mutex);
1597
1598 return rval;
1599 }
1600
__smiapp_get_mbus_code(struct v4l2_subdev * subdev,unsigned int pad)1601 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1602 unsigned int pad)
1603 {
1604 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1605
1606 if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1607 return sensor->csi_format->code;
1608 else
1609 return sensor->internal_csi_format->code;
1610 }
1611
__smiapp_get_format(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * fmt)1612 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1613 struct v4l2_subdev_pad_config *cfg,
1614 struct v4l2_subdev_format *fmt)
1615 {
1616 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1617
1618 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1619 fmt->format = *v4l2_subdev_get_try_format(subdev, cfg, fmt->pad);
1620 } else {
1621 struct v4l2_rect *r;
1622
1623 if (fmt->pad == ssd->source_pad)
1624 r = &ssd->crop[ssd->source_pad];
1625 else
1626 r = &ssd->sink_fmt;
1627
1628 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1629 fmt->format.width = r->width;
1630 fmt->format.height = r->height;
1631 fmt->format.field = V4L2_FIELD_NONE;
1632 }
1633
1634 return 0;
1635 }
1636
smiapp_get_format(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * fmt)1637 static int smiapp_get_format(struct v4l2_subdev *subdev,
1638 struct v4l2_subdev_pad_config *cfg,
1639 struct v4l2_subdev_format *fmt)
1640 {
1641 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1642 int rval;
1643
1644 mutex_lock(&sensor->mutex);
1645 rval = __smiapp_get_format(subdev, cfg, fmt);
1646 mutex_unlock(&sensor->mutex);
1647
1648 return rval;
1649 }
1650
smiapp_get_crop_compose(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_rect ** crops,struct v4l2_rect ** comps,int which)1651 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1652 struct v4l2_subdev_pad_config *cfg,
1653 struct v4l2_rect **crops,
1654 struct v4l2_rect **comps, int which)
1655 {
1656 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1657 unsigned int i;
1658
1659 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1660 if (crops)
1661 for (i = 0; i < subdev->entity.num_pads; i++)
1662 crops[i] = &ssd->crop[i];
1663 if (comps)
1664 *comps = &ssd->compose;
1665 } else {
1666 if (crops) {
1667 for (i = 0; i < subdev->entity.num_pads; i++) {
1668 crops[i] = v4l2_subdev_get_try_crop(subdev, cfg, i);
1669 BUG_ON(!crops[i]);
1670 }
1671 }
1672 if (comps) {
1673 *comps = v4l2_subdev_get_try_compose(subdev, cfg,
1674 SMIAPP_PAD_SINK);
1675 BUG_ON(!*comps);
1676 }
1677 }
1678 }
1679
1680 /* Changes require propagation only on sink pad. */
smiapp_propagate(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,int which,int target)1681 static void smiapp_propagate(struct v4l2_subdev *subdev,
1682 struct v4l2_subdev_pad_config *cfg, int which,
1683 int target)
1684 {
1685 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1686 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1687 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1688
1689 smiapp_get_crop_compose(subdev, cfg, crops, &comp, which);
1690
1691 switch (target) {
1692 case V4L2_SEL_TGT_CROP:
1693 comp->width = crops[SMIAPP_PAD_SINK]->width;
1694 comp->height = crops[SMIAPP_PAD_SINK]->height;
1695 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1696 if (ssd == sensor->scaler) {
1697 sensor->scale_m =
1698 sensor->limits[
1699 SMIAPP_LIMIT_SCALER_N_MIN];
1700 sensor->scaling_mode =
1701 SMIAPP_SCALING_MODE_NONE;
1702 } else if (ssd == sensor->binner) {
1703 sensor->binning_horizontal = 1;
1704 sensor->binning_vertical = 1;
1705 }
1706 }
1707 /* Fall through */
1708 case V4L2_SEL_TGT_COMPOSE:
1709 *crops[SMIAPP_PAD_SRC] = *comp;
1710 break;
1711 default:
1712 BUG();
1713 }
1714 }
1715
1716 static const struct smiapp_csi_data_format
smiapp_validate_csi_data_format(struct smiapp_sensor * sensor,u32 code)1717 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1718 {
1719 const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
1720 unsigned int i;
1721
1722 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1723 if (sensor->mbus_frame_fmts & (1 << i)
1724 && smiapp_csi_data_formats[i].code == code)
1725 return &smiapp_csi_data_formats[i];
1726 }
1727
1728 return csi_format;
1729 }
1730
smiapp_set_format_source(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * fmt)1731 static int smiapp_set_format_source(struct v4l2_subdev *subdev,
1732 struct v4l2_subdev_pad_config *cfg,
1733 struct v4l2_subdev_format *fmt)
1734 {
1735 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1736 const struct smiapp_csi_data_format *csi_format,
1737 *old_csi_format = sensor->csi_format;
1738 unsigned long *valid_link_freqs;
1739 u32 code = fmt->format.code;
1740 unsigned int i;
1741 int rval;
1742
1743 rval = __smiapp_get_format(subdev, cfg, fmt);
1744 if (rval)
1745 return rval;
1746
1747 /*
1748 * Media bus code is changeable on src subdev's source pad. On
1749 * other source pads we just get format here.
1750 */
1751 if (subdev != &sensor->src->sd)
1752 return 0;
1753
1754 csi_format = smiapp_validate_csi_data_format(sensor, code);
1755
1756 fmt->format.code = csi_format->code;
1757
1758 if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1759 return 0;
1760
1761 sensor->csi_format = csi_format;
1762
1763 if (csi_format->width != old_csi_format->width)
1764 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
1765 __v4l2_ctrl_modify_range(
1766 sensor->test_data[i], 0,
1767 (1 << csi_format->width) - 1, 1, 0);
1768
1769 if (csi_format->compressed == old_csi_format->compressed)
1770 return 0;
1771
1772 valid_link_freqs =
1773 &sensor->valid_link_freqs[sensor->csi_format->compressed
1774 - SMIAPP_COMPRESSED_BASE];
1775
1776 __v4l2_ctrl_modify_range(
1777 sensor->link_freq, 0,
1778 __fls(*valid_link_freqs), ~*valid_link_freqs,
1779 __ffs(*valid_link_freqs));
1780
1781 return smiapp_pll_update(sensor);
1782 }
1783
smiapp_set_format(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * fmt)1784 static int smiapp_set_format(struct v4l2_subdev *subdev,
1785 struct v4l2_subdev_pad_config *cfg,
1786 struct v4l2_subdev_format *fmt)
1787 {
1788 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1789 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1790 struct v4l2_rect *crops[SMIAPP_PADS];
1791
1792 mutex_lock(&sensor->mutex);
1793
1794 if (fmt->pad == ssd->source_pad) {
1795 int rval;
1796
1797 rval = smiapp_set_format_source(subdev, cfg, fmt);
1798
1799 mutex_unlock(&sensor->mutex);
1800
1801 return rval;
1802 }
1803
1804 /* Sink pad. Width and height are changeable here. */
1805 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1806 fmt->format.width &= ~1;
1807 fmt->format.height &= ~1;
1808 fmt->format.field = V4L2_FIELD_NONE;
1809
1810 fmt->format.width =
1811 clamp(fmt->format.width,
1812 sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1813 sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1814 fmt->format.height =
1815 clamp(fmt->format.height,
1816 sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1817 sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1818
1819 smiapp_get_crop_compose(subdev, cfg, crops, NULL, fmt->which);
1820
1821 crops[ssd->sink_pad]->left = 0;
1822 crops[ssd->sink_pad]->top = 0;
1823 crops[ssd->sink_pad]->width = fmt->format.width;
1824 crops[ssd->sink_pad]->height = fmt->format.height;
1825 if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1826 ssd->sink_fmt = *crops[ssd->sink_pad];
1827 smiapp_propagate(subdev, cfg, fmt->which,
1828 V4L2_SEL_TGT_CROP);
1829
1830 mutex_unlock(&sensor->mutex);
1831
1832 return 0;
1833 }
1834
1835 /*
1836 * Calculate goodness of scaled image size compared to expected image
1837 * size and flags provided.
1838 */
1839 #define SCALING_GOODNESS 100000
1840 #define SCALING_GOODNESS_EXTREME 100000000
scaling_goodness(struct v4l2_subdev * subdev,int w,int ask_w,int h,int ask_h,u32 flags)1841 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1842 int h, int ask_h, u32 flags)
1843 {
1844 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1845 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1846 int val = 0;
1847
1848 w &= ~1;
1849 ask_w &= ~1;
1850 h &= ~1;
1851 ask_h &= ~1;
1852
1853 if (flags & V4L2_SEL_FLAG_GE) {
1854 if (w < ask_w)
1855 val -= SCALING_GOODNESS;
1856 if (h < ask_h)
1857 val -= SCALING_GOODNESS;
1858 }
1859
1860 if (flags & V4L2_SEL_FLAG_LE) {
1861 if (w > ask_w)
1862 val -= SCALING_GOODNESS;
1863 if (h > ask_h)
1864 val -= SCALING_GOODNESS;
1865 }
1866
1867 val -= abs(w - ask_w);
1868 val -= abs(h - ask_h);
1869
1870 if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1871 val -= SCALING_GOODNESS_EXTREME;
1872
1873 dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1874 w, ask_h, h, ask_h, val);
1875
1876 return val;
1877 }
1878
smiapp_set_compose_binner(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel,struct v4l2_rect ** crops,struct v4l2_rect * comp)1879 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1880 struct v4l2_subdev_pad_config *cfg,
1881 struct v4l2_subdev_selection *sel,
1882 struct v4l2_rect **crops,
1883 struct v4l2_rect *comp)
1884 {
1885 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1886 unsigned int i;
1887 unsigned int binh = 1, binv = 1;
1888 int best = scaling_goodness(
1889 subdev,
1890 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1891 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1892
1893 for (i = 0; i < sensor->nbinning_subtypes; i++) {
1894 int this = scaling_goodness(
1895 subdev,
1896 crops[SMIAPP_PAD_SINK]->width
1897 / sensor->binning_subtypes[i].horizontal,
1898 sel->r.width,
1899 crops[SMIAPP_PAD_SINK]->height
1900 / sensor->binning_subtypes[i].vertical,
1901 sel->r.height, sel->flags);
1902
1903 if (this > best) {
1904 binh = sensor->binning_subtypes[i].horizontal;
1905 binv = sensor->binning_subtypes[i].vertical;
1906 best = this;
1907 }
1908 }
1909 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1910 sensor->binning_vertical = binv;
1911 sensor->binning_horizontal = binh;
1912 }
1913
1914 sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1915 sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1916 }
1917
1918 /*
1919 * Calculate best scaling ratio and mode for given output resolution.
1920 *
1921 * Try all of these: horizontal ratio, vertical ratio and smallest
1922 * size possible (horizontally).
1923 *
1924 * Also try whether horizontal scaler or full scaler gives a better
1925 * result.
1926 */
smiapp_set_compose_scaler(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel,struct v4l2_rect ** crops,struct v4l2_rect * comp)1927 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1928 struct v4l2_subdev_pad_config *cfg,
1929 struct v4l2_subdev_selection *sel,
1930 struct v4l2_rect **crops,
1931 struct v4l2_rect *comp)
1932 {
1933 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1934 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1935 u32 min, max, a, b, max_m;
1936 u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1937 int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1938 u32 try[4];
1939 u32 ntry = 0;
1940 unsigned int i;
1941 int best = INT_MIN;
1942
1943 sel->r.width = min_t(unsigned int, sel->r.width,
1944 crops[SMIAPP_PAD_SINK]->width);
1945 sel->r.height = min_t(unsigned int, sel->r.height,
1946 crops[SMIAPP_PAD_SINK]->height);
1947
1948 a = crops[SMIAPP_PAD_SINK]->width
1949 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1950 b = crops[SMIAPP_PAD_SINK]->height
1951 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1952 max_m = crops[SMIAPP_PAD_SINK]->width
1953 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1954 / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1955
1956 a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1957 sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1958 b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1959 sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1960 max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1961 sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1962
1963 dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1964
1965 min = min(max_m, min(a, b));
1966 max = min(max_m, max(a, b));
1967
1968 try[ntry] = min;
1969 ntry++;
1970 if (min != max) {
1971 try[ntry] = max;
1972 ntry++;
1973 }
1974 if (max != max_m) {
1975 try[ntry] = min + 1;
1976 ntry++;
1977 if (min != max) {
1978 try[ntry] = max + 1;
1979 ntry++;
1980 }
1981 }
1982
1983 for (i = 0; i < ntry; i++) {
1984 int this = scaling_goodness(
1985 subdev,
1986 crops[SMIAPP_PAD_SINK]->width
1987 / try[i]
1988 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1989 sel->r.width,
1990 crops[SMIAPP_PAD_SINK]->height,
1991 sel->r.height,
1992 sel->flags);
1993
1994 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
1995
1996 if (this > best) {
1997 scale_m = try[i];
1998 mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1999 best = this;
2000 }
2001
2002 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2003 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2004 continue;
2005
2006 this = scaling_goodness(
2007 subdev, crops[SMIAPP_PAD_SINK]->width
2008 / try[i]
2009 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2010 sel->r.width,
2011 crops[SMIAPP_PAD_SINK]->height
2012 / try[i]
2013 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2014 sel->r.height,
2015 sel->flags);
2016
2017 if (this > best) {
2018 scale_m = try[i];
2019 mode = SMIAPP_SCALING_MODE_BOTH;
2020 best = this;
2021 }
2022 }
2023
2024 sel->r.width =
2025 (crops[SMIAPP_PAD_SINK]->width
2026 / scale_m
2027 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
2028 if (mode == SMIAPP_SCALING_MODE_BOTH)
2029 sel->r.height =
2030 (crops[SMIAPP_PAD_SINK]->height
2031 / scale_m
2032 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
2033 & ~1;
2034 else
2035 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
2036
2037 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2038 sensor->scale_m = scale_m;
2039 sensor->scaling_mode = mode;
2040 }
2041 }
2042 /* We're only called on source pads. This function sets scaling. */
smiapp_set_compose(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)2043 static int smiapp_set_compose(struct v4l2_subdev *subdev,
2044 struct v4l2_subdev_pad_config *cfg,
2045 struct v4l2_subdev_selection *sel)
2046 {
2047 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2048 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2049 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2050
2051 smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2052
2053 sel->r.top = 0;
2054 sel->r.left = 0;
2055
2056 if (ssd == sensor->binner)
2057 smiapp_set_compose_binner(subdev, cfg, sel, crops, comp);
2058 else
2059 smiapp_set_compose_scaler(subdev, cfg, sel, crops, comp);
2060
2061 *comp = sel->r;
2062 smiapp_propagate(subdev, cfg, sel->which,
2063 V4L2_SEL_TGT_COMPOSE);
2064
2065 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2066 return smiapp_update_mode(sensor);
2067
2068 return 0;
2069 }
2070
__smiapp_sel_supported(struct v4l2_subdev * subdev,struct v4l2_subdev_selection * sel)2071 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
2072 struct v4l2_subdev_selection *sel)
2073 {
2074 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2075 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2076
2077 /* We only implement crop in three places. */
2078 switch (sel->target) {
2079 case V4L2_SEL_TGT_CROP:
2080 case V4L2_SEL_TGT_CROP_BOUNDS:
2081 if (ssd == sensor->pixel_array
2082 && sel->pad == SMIAPP_PA_PAD_SRC)
2083 return 0;
2084 if (ssd == sensor->src
2085 && sel->pad == SMIAPP_PAD_SRC)
2086 return 0;
2087 if (ssd == sensor->scaler
2088 && sel->pad == SMIAPP_PAD_SINK
2089 && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2090 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2091 return 0;
2092 return -EINVAL;
2093 case V4L2_SEL_TGT_NATIVE_SIZE:
2094 if (ssd == sensor->pixel_array
2095 && sel->pad == SMIAPP_PA_PAD_SRC)
2096 return 0;
2097 return -EINVAL;
2098 case V4L2_SEL_TGT_COMPOSE:
2099 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2100 if (sel->pad == ssd->source_pad)
2101 return -EINVAL;
2102 if (ssd == sensor->binner)
2103 return 0;
2104 if (ssd == sensor->scaler
2105 && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2106 != SMIAPP_SCALING_CAPABILITY_NONE)
2107 return 0;
2108 /* Fall through */
2109 default:
2110 return -EINVAL;
2111 }
2112 }
2113
smiapp_set_crop(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)2114 static int smiapp_set_crop(struct v4l2_subdev *subdev,
2115 struct v4l2_subdev_pad_config *cfg,
2116 struct v4l2_subdev_selection *sel)
2117 {
2118 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2119 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2120 struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2121 struct v4l2_rect _r;
2122
2123 smiapp_get_crop_compose(subdev, cfg, crops, NULL, sel->which);
2124
2125 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2126 if (sel->pad == ssd->sink_pad)
2127 src_size = &ssd->sink_fmt;
2128 else
2129 src_size = &ssd->compose;
2130 } else {
2131 if (sel->pad == ssd->sink_pad) {
2132 _r.left = 0;
2133 _r.top = 0;
2134 _r.width = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2135 ->width;
2136 _r.height = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2137 ->height;
2138 src_size = &_r;
2139 } else {
2140 src_size =
2141 v4l2_subdev_get_try_compose(
2142 subdev, cfg, ssd->sink_pad);
2143 }
2144 }
2145
2146 if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2147 sel->r.left = 0;
2148 sel->r.top = 0;
2149 }
2150
2151 sel->r.width = min(sel->r.width, src_size->width);
2152 sel->r.height = min(sel->r.height, src_size->height);
2153
2154 sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2155 sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2156
2157 *crops[sel->pad] = sel->r;
2158
2159 if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2160 smiapp_propagate(subdev, cfg, sel->which,
2161 V4L2_SEL_TGT_CROP);
2162
2163 return 0;
2164 }
2165
__smiapp_get_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)2166 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2167 struct v4l2_subdev_pad_config *cfg,
2168 struct v4l2_subdev_selection *sel)
2169 {
2170 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2171 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2172 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2173 struct v4l2_rect sink_fmt;
2174 int ret;
2175
2176 ret = __smiapp_sel_supported(subdev, sel);
2177 if (ret)
2178 return ret;
2179
2180 smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2181
2182 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2183 sink_fmt = ssd->sink_fmt;
2184 } else {
2185 struct v4l2_mbus_framefmt *fmt =
2186 v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad);
2187
2188 sink_fmt.left = 0;
2189 sink_fmt.top = 0;
2190 sink_fmt.width = fmt->width;
2191 sink_fmt.height = fmt->height;
2192 }
2193
2194 switch (sel->target) {
2195 case V4L2_SEL_TGT_CROP_BOUNDS:
2196 case V4L2_SEL_TGT_NATIVE_SIZE:
2197 if (ssd == sensor->pixel_array) {
2198 sel->r.left = sel->r.top = 0;
2199 sel->r.width =
2200 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2201 sel->r.height =
2202 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2203 } else if (sel->pad == ssd->sink_pad) {
2204 sel->r = sink_fmt;
2205 } else {
2206 sel->r = *comp;
2207 }
2208 break;
2209 case V4L2_SEL_TGT_CROP:
2210 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2211 sel->r = *crops[sel->pad];
2212 break;
2213 case V4L2_SEL_TGT_COMPOSE:
2214 sel->r = *comp;
2215 break;
2216 }
2217
2218 return 0;
2219 }
2220
smiapp_get_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)2221 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2222 struct v4l2_subdev_pad_config *cfg,
2223 struct v4l2_subdev_selection *sel)
2224 {
2225 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2226 int rval;
2227
2228 mutex_lock(&sensor->mutex);
2229 rval = __smiapp_get_selection(subdev, cfg, sel);
2230 mutex_unlock(&sensor->mutex);
2231
2232 return rval;
2233 }
smiapp_set_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)2234 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2235 struct v4l2_subdev_pad_config *cfg,
2236 struct v4l2_subdev_selection *sel)
2237 {
2238 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2239 int ret;
2240
2241 ret = __smiapp_sel_supported(subdev, sel);
2242 if (ret)
2243 return ret;
2244
2245 mutex_lock(&sensor->mutex);
2246
2247 sel->r.left = max(0, sel->r.left & ~1);
2248 sel->r.top = max(0, sel->r.top & ~1);
2249 sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
2250 sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
2251
2252 sel->r.width = max_t(unsigned int,
2253 sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2254 sel->r.width);
2255 sel->r.height = max_t(unsigned int,
2256 sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2257 sel->r.height);
2258
2259 switch (sel->target) {
2260 case V4L2_SEL_TGT_CROP:
2261 ret = smiapp_set_crop(subdev, cfg, sel);
2262 break;
2263 case V4L2_SEL_TGT_COMPOSE:
2264 ret = smiapp_set_compose(subdev, cfg, sel);
2265 break;
2266 default:
2267 ret = -EINVAL;
2268 }
2269
2270 mutex_unlock(&sensor->mutex);
2271 return ret;
2272 }
2273
smiapp_get_skip_frames(struct v4l2_subdev * subdev,u32 * frames)2274 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2275 {
2276 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2277
2278 *frames = sensor->frame_skip;
2279 return 0;
2280 }
2281
2282 /* -----------------------------------------------------------------------------
2283 * sysfs attributes
2284 */
2285
2286 static ssize_t
smiapp_sysfs_nvm_read(struct device * dev,struct device_attribute * attr,char * buf)2287 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2288 char *buf)
2289 {
2290 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2291 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2292 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2293 unsigned int nbytes;
2294
2295 if (!sensor->dev_init_done)
2296 return -EBUSY;
2297
2298 if (!sensor->nvm_size) {
2299 /* NVM not read yet - read it now */
2300 sensor->nvm_size = sensor->platform_data->nvm_size;
2301 if (smiapp_set_power(subdev, 1) < 0)
2302 return -ENODEV;
2303 if (smiapp_read_nvm(sensor, sensor->nvm)) {
2304 dev_err(&client->dev, "nvm read failed\n");
2305 return -ENODEV;
2306 }
2307 smiapp_set_power(subdev, 0);
2308 }
2309 /*
2310 * NVM is still way below a PAGE_SIZE, so we can safely
2311 * assume this for now.
2312 */
2313 nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2314 memcpy(buf, sensor->nvm, nbytes);
2315
2316 return nbytes;
2317 }
2318 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2319
2320 static ssize_t
smiapp_sysfs_ident_read(struct device * dev,struct device_attribute * attr,char * buf)2321 smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2322 char *buf)
2323 {
2324 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2325 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2326 struct smiapp_module_info *minfo = &sensor->minfo;
2327
2328 return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2329 minfo->manufacturer_id, minfo->model_id,
2330 minfo->revision_number_major) + 1;
2331 }
2332
2333 static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2334
2335 /* -----------------------------------------------------------------------------
2336 * V4L2 subdev core operations
2337 */
2338
smiapp_identify_module(struct smiapp_sensor * sensor)2339 static int smiapp_identify_module(struct smiapp_sensor *sensor)
2340 {
2341 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2342 struct smiapp_module_info *minfo = &sensor->minfo;
2343 unsigned int i;
2344 int rval = 0;
2345
2346 minfo->name = SMIAPP_NAME;
2347
2348 /* Module info */
2349 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2350 &minfo->manufacturer_id);
2351 if (!rval)
2352 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2353 &minfo->model_id);
2354 if (!rval)
2355 rval = smiapp_read_8only(sensor,
2356 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2357 &minfo->revision_number_major);
2358 if (!rval)
2359 rval = smiapp_read_8only(sensor,
2360 SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2361 &minfo->revision_number_minor);
2362 if (!rval)
2363 rval = smiapp_read_8only(sensor,
2364 SMIAPP_REG_U8_MODULE_DATE_YEAR,
2365 &minfo->module_year);
2366 if (!rval)
2367 rval = smiapp_read_8only(sensor,
2368 SMIAPP_REG_U8_MODULE_DATE_MONTH,
2369 &minfo->module_month);
2370 if (!rval)
2371 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2372 &minfo->module_day);
2373
2374 /* Sensor info */
2375 if (!rval)
2376 rval = smiapp_read_8only(sensor,
2377 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2378 &minfo->sensor_manufacturer_id);
2379 if (!rval)
2380 rval = smiapp_read_8only(sensor,
2381 SMIAPP_REG_U16_SENSOR_MODEL_ID,
2382 &minfo->sensor_model_id);
2383 if (!rval)
2384 rval = smiapp_read_8only(sensor,
2385 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2386 &minfo->sensor_revision_number);
2387 if (!rval)
2388 rval = smiapp_read_8only(sensor,
2389 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2390 &minfo->sensor_firmware_version);
2391
2392 /* SMIA */
2393 if (!rval)
2394 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2395 &minfo->smia_version);
2396 if (!rval)
2397 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2398 &minfo->smiapp_version);
2399
2400 if (rval) {
2401 dev_err(&client->dev, "sensor detection failed\n");
2402 return -ENODEV;
2403 }
2404
2405 dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2406 minfo->manufacturer_id, minfo->model_id);
2407
2408 dev_dbg(&client->dev,
2409 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2410 minfo->revision_number_major, minfo->revision_number_minor,
2411 minfo->module_year, minfo->module_month, minfo->module_day);
2412
2413 dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2414 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2415
2416 dev_dbg(&client->dev,
2417 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2418 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2419
2420 dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2421 minfo->smia_version, minfo->smiapp_version);
2422
2423 /*
2424 * Some modules have bad data in the lvalues below. Hope the
2425 * rvalues have better stuff. The lvalues are module
2426 * parameters whereas the rvalues are sensor parameters.
2427 */
2428 if (!minfo->manufacturer_id && !minfo->model_id) {
2429 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2430 minfo->model_id = minfo->sensor_model_id;
2431 minfo->revision_number_major = minfo->sensor_revision_number;
2432 }
2433
2434 for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2435 if (smiapp_module_idents[i].manufacturer_id
2436 != minfo->manufacturer_id)
2437 continue;
2438 if (smiapp_module_idents[i].model_id != minfo->model_id)
2439 continue;
2440 if (smiapp_module_idents[i].flags
2441 & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2442 if (smiapp_module_idents[i].revision_number_major
2443 < minfo->revision_number_major)
2444 continue;
2445 } else {
2446 if (smiapp_module_idents[i].revision_number_major
2447 != minfo->revision_number_major)
2448 continue;
2449 }
2450
2451 minfo->name = smiapp_module_idents[i].name;
2452 minfo->quirk = smiapp_module_idents[i].quirk;
2453 break;
2454 }
2455
2456 if (i >= ARRAY_SIZE(smiapp_module_idents))
2457 dev_warn(&client->dev,
2458 "no quirks for this module; let's hope it's fully compliant\n");
2459
2460 dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2461 minfo->name, minfo->manufacturer_id, minfo->model_id,
2462 minfo->revision_number_major);
2463
2464 return 0;
2465 }
2466
2467 static const struct v4l2_subdev_ops smiapp_ops;
2468 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2469 static const struct media_entity_operations smiapp_entity_ops;
2470
smiapp_register_subdevs(struct smiapp_sensor * sensor)2471 static int smiapp_register_subdevs(struct smiapp_sensor *sensor)
2472 {
2473 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2474 struct smiapp_subdev *ssds[] = {
2475 sensor->scaler,
2476 sensor->binner,
2477 sensor->pixel_array,
2478 };
2479 unsigned int i;
2480 int rval;
2481
2482 for (i = 0; i < SMIAPP_SUBDEVS - 1; i++) {
2483 struct smiapp_subdev *this = ssds[i + 1];
2484 struct smiapp_subdev *last = ssds[i];
2485
2486 if (!last)
2487 continue;
2488
2489 rval = media_entity_init(&this->sd.entity,
2490 this->npads, this->pads, 0);
2491 if (rval) {
2492 dev_err(&client->dev,
2493 "media_entity_init failed\n");
2494 return rval;
2495 }
2496
2497 rval = media_entity_create_link(&this->sd.entity,
2498 this->source_pad,
2499 &last->sd.entity,
2500 last->sink_pad,
2501 MEDIA_LNK_FL_ENABLED |
2502 MEDIA_LNK_FL_IMMUTABLE);
2503 if (rval) {
2504 dev_err(&client->dev,
2505 "media_entity_create_link failed\n");
2506 return rval;
2507 }
2508
2509 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2510 &this->sd);
2511 if (rval) {
2512 dev_err(&client->dev,
2513 "v4l2_device_register_subdev failed\n");
2514 return rval;
2515 }
2516 }
2517
2518 return 0;
2519 }
2520
smiapp_cleanup(struct smiapp_sensor * sensor)2521 static void smiapp_cleanup(struct smiapp_sensor *sensor)
2522 {
2523 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2524
2525 device_remove_file(&client->dev, &dev_attr_nvm);
2526 device_remove_file(&client->dev, &dev_attr_ident);
2527
2528 smiapp_free_controls(sensor);
2529 }
2530
smiapp_init(struct smiapp_sensor * sensor)2531 static int smiapp_init(struct smiapp_sensor *sensor)
2532 {
2533 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2534 struct smiapp_pll *pll = &sensor->pll;
2535 struct smiapp_subdev *last = NULL;
2536 unsigned int i;
2537 int rval;
2538
2539 sensor->vana = devm_regulator_get(&client->dev, "vana");
2540 if (IS_ERR(sensor->vana)) {
2541 dev_err(&client->dev, "could not get regulator for vana\n");
2542 return PTR_ERR(sensor->vana);
2543 }
2544
2545 if (!sensor->platform_data->set_xclk) {
2546 sensor->ext_clk = devm_clk_get(&client->dev, NULL);
2547 if (IS_ERR(sensor->ext_clk)) {
2548 dev_err(&client->dev, "could not get clock\n");
2549 return PTR_ERR(sensor->ext_clk);
2550 }
2551
2552 rval = clk_set_rate(sensor->ext_clk,
2553 sensor->platform_data->ext_clk);
2554 if (rval < 0) {
2555 dev_err(&client->dev,
2556 "unable to set clock freq to %u\n",
2557 sensor->platform_data->ext_clk);
2558 return rval;
2559 }
2560 }
2561
2562 if (gpio_is_valid(sensor->platform_data->xshutdown)) {
2563 rval = devm_gpio_request_one(
2564 &client->dev, sensor->platform_data->xshutdown, 0,
2565 "SMIA++ xshutdown");
2566 if (rval < 0) {
2567 dev_err(&client->dev,
2568 "unable to acquire reset gpio %d\n",
2569 sensor->platform_data->xshutdown);
2570 return rval;
2571 }
2572 }
2573
2574 rval = smiapp_power_on(sensor);
2575 if (rval)
2576 return -ENODEV;
2577
2578 rval = smiapp_identify_module(sensor);
2579 if (rval) {
2580 rval = -ENODEV;
2581 goto out_power_off;
2582 }
2583
2584 rval = smiapp_get_all_limits(sensor);
2585 if (rval) {
2586 rval = -ENODEV;
2587 goto out_power_off;
2588 }
2589
2590 /*
2591 * Handle Sensor Module orientation on the board.
2592 *
2593 * The application of H-FLIP and V-FLIP on the sensor is modified by
2594 * the sensor orientation on the board.
2595 *
2596 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2597 * both H-FLIP and V-FLIP for normal operation which also implies
2598 * that a set/unset operation for user space HFLIP and VFLIP v4l2
2599 * controls will need to be internally inverted.
2600 *
2601 * Rotation also changes the bayer pattern.
2602 */
2603 if (sensor->platform_data->module_board_orient ==
2604 SMIAPP_MODULE_BOARD_ORIENT_180)
2605 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2606 SMIAPP_IMAGE_ORIENTATION_VFLIP;
2607
2608 rval = smiapp_call_quirk(sensor, limits);
2609 if (rval) {
2610 dev_err(&client->dev, "limits quirks failed\n");
2611 goto out_power_off;
2612 }
2613
2614 if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2615 u32 val;
2616
2617 rval = smiapp_read(sensor,
2618 SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2619 if (rval < 0) {
2620 rval = -ENODEV;
2621 goto out_power_off;
2622 }
2623 sensor->nbinning_subtypes = min_t(u8, val,
2624 SMIAPP_BINNING_SUBTYPES);
2625
2626 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2627 rval = smiapp_read(
2628 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2629 if (rval < 0) {
2630 rval = -ENODEV;
2631 goto out_power_off;
2632 }
2633 sensor->binning_subtypes[i] =
2634 *(struct smiapp_binning_subtype *)&val;
2635
2636 dev_dbg(&client->dev, "binning %xx%x\n",
2637 sensor->binning_subtypes[i].horizontal,
2638 sensor->binning_subtypes[i].vertical);
2639 }
2640 }
2641 sensor->binning_horizontal = 1;
2642 sensor->binning_vertical = 1;
2643
2644 if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
2645 dev_err(&client->dev, "sysfs ident entry creation failed\n");
2646 rval = -ENOENT;
2647 goto out_power_off;
2648 }
2649 /* SMIA++ NVM initialization - it will be read from the sensor
2650 * when it is first requested by userspace.
2651 */
2652 if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
2653 sensor->nvm = devm_kzalloc(&client->dev,
2654 sensor->platform_data->nvm_size, GFP_KERNEL);
2655 if (sensor->nvm == NULL) {
2656 dev_err(&client->dev, "nvm buf allocation failed\n");
2657 rval = -ENOMEM;
2658 goto out_cleanup;
2659 }
2660
2661 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
2662 dev_err(&client->dev, "sysfs nvm entry failed\n");
2663 rval = -EBUSY;
2664 goto out_cleanup;
2665 }
2666 }
2667
2668 /* We consider this as profile 0 sensor if any of these are zero. */
2669 if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
2670 !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
2671 !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
2672 !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
2673 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
2674 } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2675 != SMIAPP_SCALING_CAPABILITY_NONE) {
2676 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2677 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2678 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
2679 else
2680 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
2681 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2682 sensor->ssds_used++;
2683 } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2684 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
2685 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2686 sensor->ssds_used++;
2687 }
2688 sensor->binner = &sensor->ssds[sensor->ssds_used];
2689 sensor->ssds_used++;
2690 sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
2691 sensor->ssds_used++;
2692
2693 sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2694
2695 /* prepare PLL configuration input values */
2696 pll->bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
2697 pll->csi2.lanes = sensor->platform_data->lanes;
2698 pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
2699 pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2700 /* Profile 0 sensors have no separate OP clock branch. */
2701 if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
2702 pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
2703
2704 for (i = 0; i < SMIAPP_SUBDEVS; i++) {
2705 struct {
2706 struct smiapp_subdev *ssd;
2707 char *name;
2708 } const __this[] = {
2709 { sensor->scaler, "scaler", },
2710 { sensor->binner, "binner", },
2711 { sensor->pixel_array, "pixel array", },
2712 }, *_this = &__this[i];
2713 struct smiapp_subdev *this = _this->ssd;
2714
2715 if (!this)
2716 continue;
2717
2718 if (this != sensor->src)
2719 v4l2_subdev_init(&this->sd, &smiapp_ops);
2720
2721 this->sensor = sensor;
2722
2723 if (this == sensor->pixel_array) {
2724 this->npads = 1;
2725 } else {
2726 this->npads = 2;
2727 this->source_pad = 1;
2728 }
2729
2730 snprintf(this->sd.name,
2731 sizeof(this->sd.name), "%s %s %d-%4.4x",
2732 sensor->minfo.name, _this->name,
2733 i2c_adapter_id(client->adapter), client->addr);
2734
2735 this->sink_fmt.width =
2736 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2737 this->sink_fmt.height =
2738 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2739 this->compose.width = this->sink_fmt.width;
2740 this->compose.height = this->sink_fmt.height;
2741 this->crop[this->source_pad] = this->compose;
2742 this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2743 if (this != sensor->pixel_array) {
2744 this->crop[this->sink_pad] = this->compose;
2745 this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
2746 }
2747
2748 this->sd.entity.ops = &smiapp_entity_ops;
2749
2750 if (last == NULL) {
2751 last = this;
2752 continue;
2753 }
2754
2755 this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2756 this->sd.internal_ops = &smiapp_internal_ops;
2757 this->sd.owner = THIS_MODULE;
2758 v4l2_set_subdevdata(&this->sd, client);
2759
2760 last = this;
2761 }
2762
2763 dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
2764
2765 sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
2766
2767 /* final steps */
2768 smiapp_read_frame_fmt(sensor);
2769 rval = smiapp_init_controls(sensor);
2770 if (rval < 0)
2771 goto out_cleanup;
2772
2773 rval = smiapp_call_quirk(sensor, init);
2774 if (rval)
2775 goto out_cleanup;
2776
2777 rval = smiapp_get_mbus_formats(sensor);
2778 if (rval) {
2779 rval = -ENODEV;
2780 goto out_cleanup;
2781 }
2782
2783 rval = smiapp_init_late_controls(sensor);
2784 if (rval) {
2785 rval = -ENODEV;
2786 goto out_cleanup;
2787 }
2788
2789 mutex_lock(&sensor->mutex);
2790 rval = smiapp_update_mode(sensor);
2791 mutex_unlock(&sensor->mutex);
2792 if (rval) {
2793 dev_err(&client->dev, "update mode failed\n");
2794 goto out_cleanup;
2795 }
2796
2797 sensor->streaming = false;
2798 sensor->dev_init_done = true;
2799
2800 smiapp_power_off(sensor);
2801
2802 return 0;
2803
2804 out_cleanup:
2805 smiapp_cleanup(sensor);
2806
2807 out_power_off:
2808 smiapp_power_off(sensor);
2809 return rval;
2810 }
2811
smiapp_registered(struct v4l2_subdev * subdev)2812 static int smiapp_registered(struct v4l2_subdev *subdev)
2813 {
2814 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2815 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2816 int rval;
2817
2818 if (!client->dev.of_node) {
2819 rval = smiapp_init(sensor);
2820 if (rval)
2821 return rval;
2822 }
2823
2824 rval = smiapp_register_subdevs(sensor);
2825 if (rval)
2826 smiapp_cleanup(sensor);
2827
2828 return rval;
2829 }
2830
smiapp_open(struct v4l2_subdev * sd,struct v4l2_subdev_fh * fh)2831 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2832 {
2833 struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2834 struct smiapp_sensor *sensor = ssd->sensor;
2835 u32 mbus_code =
2836 smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
2837 unsigned int i;
2838
2839 mutex_lock(&sensor->mutex);
2840
2841 for (i = 0; i < ssd->npads; i++) {
2842 struct v4l2_mbus_framefmt *try_fmt =
2843 v4l2_subdev_get_try_format(sd, fh->pad, i);
2844 struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(sd, fh->pad, i);
2845 struct v4l2_rect *try_comp;
2846
2847 try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2848 try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2849 try_fmt->code = mbus_code;
2850 try_fmt->field = V4L2_FIELD_NONE;
2851
2852 try_crop->top = 0;
2853 try_crop->left = 0;
2854 try_crop->width = try_fmt->width;
2855 try_crop->height = try_fmt->height;
2856
2857 if (ssd != sensor->pixel_array)
2858 continue;
2859
2860 try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i);
2861 *try_comp = *try_crop;
2862 }
2863
2864 mutex_unlock(&sensor->mutex);
2865
2866 return smiapp_set_power(sd, 1);
2867 }
2868
smiapp_close(struct v4l2_subdev * sd,struct v4l2_subdev_fh * fh)2869 static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2870 {
2871 return smiapp_set_power(sd, 0);
2872 }
2873
2874 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2875 .s_stream = smiapp_set_stream,
2876 };
2877
2878 static const struct v4l2_subdev_core_ops smiapp_core_ops = {
2879 .s_power = smiapp_set_power,
2880 };
2881
2882 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2883 .enum_mbus_code = smiapp_enum_mbus_code,
2884 .get_fmt = smiapp_get_format,
2885 .set_fmt = smiapp_set_format,
2886 .get_selection = smiapp_get_selection,
2887 .set_selection = smiapp_set_selection,
2888 };
2889
2890 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2891 .g_skip_frames = smiapp_get_skip_frames,
2892 };
2893
2894 static const struct v4l2_subdev_ops smiapp_ops = {
2895 .core = &smiapp_core_ops,
2896 .video = &smiapp_video_ops,
2897 .pad = &smiapp_pad_ops,
2898 .sensor = &smiapp_sensor_ops,
2899 };
2900
2901 static const struct media_entity_operations smiapp_entity_ops = {
2902 .link_validate = v4l2_subdev_link_validate,
2903 };
2904
2905 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2906 .registered = smiapp_registered,
2907 .open = smiapp_open,
2908 .close = smiapp_close,
2909 };
2910
2911 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2912 .open = smiapp_open,
2913 .close = smiapp_close,
2914 };
2915
2916 /* -----------------------------------------------------------------------------
2917 * I2C Driver
2918 */
2919
2920 #ifdef CONFIG_PM
2921
smiapp_suspend(struct device * dev)2922 static int smiapp_suspend(struct device *dev)
2923 {
2924 struct i2c_client *client = to_i2c_client(dev);
2925 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2926 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2927 bool streaming;
2928
2929 BUG_ON(mutex_is_locked(&sensor->mutex));
2930
2931 if (sensor->power_count == 0)
2932 return 0;
2933
2934 if (sensor->streaming)
2935 smiapp_stop_streaming(sensor);
2936
2937 streaming = sensor->streaming;
2938
2939 smiapp_power_off(sensor);
2940
2941 /* save state for resume */
2942 sensor->streaming = streaming;
2943
2944 return 0;
2945 }
2946
smiapp_resume(struct device * dev)2947 static int smiapp_resume(struct device *dev)
2948 {
2949 struct i2c_client *client = to_i2c_client(dev);
2950 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2951 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2952 int rval;
2953
2954 if (sensor->power_count == 0)
2955 return 0;
2956
2957 rval = smiapp_power_on(sensor);
2958 if (rval)
2959 return rval;
2960
2961 if (sensor->streaming)
2962 rval = smiapp_start_streaming(sensor);
2963
2964 return rval;
2965 }
2966
2967 #else
2968
2969 #define smiapp_suspend NULL
2970 #define smiapp_resume NULL
2971
2972 #endif /* CONFIG_PM */
2973
smiapp_get_pdata(struct device * dev)2974 static struct smiapp_platform_data *smiapp_get_pdata(struct device *dev)
2975 {
2976 struct smiapp_platform_data *pdata;
2977 struct v4l2_of_endpoint *bus_cfg;
2978 struct device_node *ep;
2979 int i;
2980 int rval;
2981
2982 if (!dev->of_node)
2983 return dev->platform_data;
2984
2985 ep = of_graph_get_next_endpoint(dev->of_node, NULL);
2986 if (!ep)
2987 return NULL;
2988
2989 bus_cfg = v4l2_of_alloc_parse_endpoint(ep);
2990 if (IS_ERR(bus_cfg))
2991 goto out_err;
2992
2993 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2994 if (!pdata)
2995 goto out_err;
2996
2997 switch (bus_cfg->bus_type) {
2998 case V4L2_MBUS_CSI2:
2999 pdata->csi_signalling_mode = SMIAPP_CSI_SIGNALLING_MODE_CSI2;
3000 break;
3001 /* FIXME: add CCP2 support. */
3002 default:
3003 goto out_err;
3004 }
3005
3006 pdata->lanes = bus_cfg->bus.mipi_csi2.num_data_lanes;
3007 dev_dbg(dev, "lanes %u\n", pdata->lanes);
3008
3009 /* xshutdown GPIO is optional */
3010 pdata->xshutdown = of_get_named_gpio(dev->of_node, "reset-gpios", 0);
3011
3012 /* NVM size is not mandatory */
3013 of_property_read_u32(dev->of_node, "nokia,nvm-size",
3014 &pdata->nvm_size);
3015
3016 rval = of_property_read_u32(dev->of_node, "clock-frequency",
3017 &pdata->ext_clk);
3018 if (rval) {
3019 dev_warn(dev, "can't get clock-frequency\n");
3020 goto out_err;
3021 }
3022
3023 dev_dbg(dev, "reset %d, nvm %d, clk %d, csi %d\n", pdata->xshutdown,
3024 pdata->nvm_size, pdata->ext_clk, pdata->csi_signalling_mode);
3025
3026 if (!bus_cfg->nr_of_link_frequencies) {
3027 dev_warn(dev, "no link frequencies defined\n");
3028 goto out_err;
3029 }
3030
3031 pdata->op_sys_clock = devm_kcalloc(
3032 dev, bus_cfg->nr_of_link_frequencies + 1 /* guardian */,
3033 sizeof(*pdata->op_sys_clock), GFP_KERNEL);
3034 if (!pdata->op_sys_clock) {
3035 rval = -ENOMEM;
3036 goto out_err;
3037 }
3038
3039 for (i = 0; i < bus_cfg->nr_of_link_frequencies; i++) {
3040 pdata->op_sys_clock[i] = bus_cfg->link_frequencies[i];
3041 dev_dbg(dev, "freq %d: %lld\n", i, pdata->op_sys_clock[i]);
3042 }
3043
3044 v4l2_of_free_endpoint(bus_cfg);
3045 of_node_put(ep);
3046 return pdata;
3047
3048 out_err:
3049 v4l2_of_free_endpoint(bus_cfg);
3050 of_node_put(ep);
3051 return NULL;
3052 }
3053
smiapp_probe(struct i2c_client * client,const struct i2c_device_id * devid)3054 static int smiapp_probe(struct i2c_client *client,
3055 const struct i2c_device_id *devid)
3056 {
3057 struct smiapp_sensor *sensor;
3058 struct smiapp_platform_data *pdata = smiapp_get_pdata(&client->dev);
3059 int rval;
3060
3061 if (pdata == NULL)
3062 return -ENODEV;
3063
3064 sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3065 if (sensor == NULL)
3066 return -ENOMEM;
3067
3068 sensor->platform_data = pdata;
3069 mutex_init(&sensor->mutex);
3070 mutex_init(&sensor->power_mutex);
3071 sensor->src = &sensor->ssds[sensor->ssds_used];
3072
3073 v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
3074 sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
3075 sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
3076 sensor->src->sensor = sensor;
3077
3078 sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
3079 rval = media_entity_init(&sensor->src->sd.entity, 2,
3080 sensor->src->pads, 0);
3081 if (rval < 0)
3082 return rval;
3083
3084 if (client->dev.of_node) {
3085 rval = smiapp_init(sensor);
3086 if (rval)
3087 goto out_media_entity_cleanup;
3088 }
3089
3090 rval = v4l2_async_register_subdev(&sensor->src->sd);
3091 if (rval < 0)
3092 goto out_media_entity_cleanup;
3093
3094 return 0;
3095
3096 out_media_entity_cleanup:
3097 media_entity_cleanup(&sensor->src->sd.entity);
3098
3099 return rval;
3100 }
3101
smiapp_remove(struct i2c_client * client)3102 static int smiapp_remove(struct i2c_client *client)
3103 {
3104 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3105 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
3106 unsigned int i;
3107
3108 v4l2_async_unregister_subdev(subdev);
3109
3110 if (sensor->power_count) {
3111 if (gpio_is_valid(sensor->platform_data->xshutdown))
3112 gpio_set_value(sensor->platform_data->xshutdown, 0);
3113 if (sensor->platform_data->set_xclk)
3114 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
3115 else
3116 clk_disable_unprepare(sensor->ext_clk);
3117 sensor->power_count = 0;
3118 }
3119
3120 for (i = 0; i < sensor->ssds_used; i++) {
3121 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3122 media_entity_cleanup(&sensor->ssds[i].sd.entity);
3123 }
3124 smiapp_cleanup(sensor);
3125
3126 return 0;
3127 }
3128
3129 static const struct of_device_id smiapp_of_table[] = {
3130 { .compatible = "nokia,smia" },
3131 { },
3132 };
3133 MODULE_DEVICE_TABLE(of, smiapp_of_table);
3134
3135 static const struct i2c_device_id smiapp_id_table[] = {
3136 { SMIAPP_NAME, 0 },
3137 { },
3138 };
3139 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
3140
3141 static const struct dev_pm_ops smiapp_pm_ops = {
3142 .suspend = smiapp_suspend,
3143 .resume = smiapp_resume,
3144 };
3145
3146 static struct i2c_driver smiapp_i2c_driver = {
3147 .driver = {
3148 .of_match_table = smiapp_of_table,
3149 .name = SMIAPP_NAME,
3150 .pm = &smiapp_pm_ops,
3151 },
3152 .probe = smiapp_probe,
3153 .remove = smiapp_remove,
3154 .id_table = smiapp_id_table,
3155 };
3156
3157 module_i2c_driver(smiapp_i2c_driver);
3158
3159 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
3160 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
3161 MODULE_LICENSE("GPL");
3162