1 /*
2 * FM Driver for Connectivity chip of Texas Instruments.
3 *
4 * This sub-module of FM driver is common for FM RX and TX
5 * functionality. This module is responsible for:
6 * 1) Forming group of Channel-8 commands to perform particular
7 * functionality (eg., frequency set require more than
8 * one Channel-8 command to be sent to the chip).
9 * 2) Sending each Channel-8 command to the chip and reading
10 * response back over Shared Transport.
11 * 3) Managing TX and RX Queues and Tasklets.
12 * 4) Handling FM Interrupt packet and taking appropriate action.
13 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX
14 * firmware files based on mode selection)
15 *
16 * Copyright (C) 2011 Texas Instruments
17 * Author: Raja Mani <raja_mani@ti.com>
18 * Author: Manjunatha Halli <manjunatha_halli@ti.com>
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License version 2 as
22 * published by the Free Software Foundation.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/firmware.h>
37 #include <linux/delay.h>
38 #include "fmdrv.h"
39 #include "fmdrv_v4l2.h"
40 #include "fmdrv_common.h"
41 #include <linux/ti_wilink_st.h>
42 #include "fmdrv_rx.h"
43 #include "fmdrv_tx.h"
44
45 /* Region info */
46 static struct region_info region_configs[] = {
47 /* Europe/US */
48 {
49 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
50 .bot_freq = 87500, /* 87.5 MHz */
51 .top_freq = 108000, /* 108 MHz */
52 .fm_band = 0,
53 },
54 /* Japan */
55 {
56 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
57 .bot_freq = 76000, /* 76 MHz */
58 .top_freq = 90000, /* 90 MHz */
59 .fm_band = 1,
60 },
61 };
62
63 /* Band selection */
64 static u8 default_radio_region; /* Europe/US */
65 module_param(default_radio_region, byte, 0);
66 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
67
68 /* RDS buffer blocks */
69 static u32 default_rds_buf = 300;
70 module_param(default_rds_buf, uint, 0444);
71 MODULE_PARM_DESC(rds_buf, "RDS buffer entries");
72
73 /* Radio Nr */
74 static u32 radio_nr = -1;
75 module_param(radio_nr, int, 0444);
76 MODULE_PARM_DESC(radio_nr, "Radio Nr");
77
78 /* FM irq handlers forward declaration */
79 static void fm_irq_send_flag_getcmd(struct fmdev *);
80 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
81 static void fm_irq_handle_hw_malfunction(struct fmdev *);
82 static void fm_irq_handle_rds_start(struct fmdev *);
83 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
84 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
85 static void fm_irq_handle_rds_finish(struct fmdev *);
86 static void fm_irq_handle_tune_op_ended(struct fmdev *);
87 static void fm_irq_handle_power_enb(struct fmdev *);
88 static void fm_irq_handle_low_rssi_start(struct fmdev *);
89 static void fm_irq_afjump_set_pi(struct fmdev *);
90 static void fm_irq_handle_set_pi_resp(struct fmdev *);
91 static void fm_irq_afjump_set_pimask(struct fmdev *);
92 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
93 static void fm_irq_afjump_setfreq(struct fmdev *);
94 static void fm_irq_handle_setfreq_resp(struct fmdev *);
95 static void fm_irq_afjump_enableint(struct fmdev *);
96 static void fm_irq_afjump_enableint_resp(struct fmdev *);
97 static void fm_irq_start_afjump(struct fmdev *);
98 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
99 static void fm_irq_afjump_rd_freq(struct fmdev *);
100 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
101 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
102 static void fm_irq_send_intmsk_cmd(struct fmdev *);
103 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
104
105 /*
106 * When FM common module receives interrupt packet, following handlers
107 * will be executed one after another to service the interrupt(s)
108 */
109 enum fmc_irq_handler_index {
110 FM_SEND_FLAG_GETCMD_IDX,
111 FM_HANDLE_FLAG_GETCMD_RESP_IDX,
112
113 /* HW malfunction irq handler */
114 FM_HW_MAL_FUNC_IDX,
115
116 /* RDS threshold reached irq handler */
117 FM_RDS_START_IDX,
118 FM_RDS_SEND_RDS_GETCMD_IDX,
119 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
120 FM_RDS_FINISH_IDX,
121
122 /* Tune operation ended irq handler */
123 FM_HW_TUNE_OP_ENDED_IDX,
124
125 /* TX power enable irq handler */
126 FM_HW_POWER_ENB_IDX,
127
128 /* Low RSSI irq handler */
129 FM_LOW_RSSI_START_IDX,
130 FM_AF_JUMP_SETPI_IDX,
131 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
132 FM_AF_JUMP_SETPI_MASK_IDX,
133 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
134 FM_AF_JUMP_SET_AF_FREQ_IDX,
135 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
136 FM_AF_JUMP_ENABLE_INT_IDX,
137 FM_AF_JUMP_ENABLE_INT_RESP_IDX,
138 FM_AF_JUMP_START_AFJUMP_IDX,
139 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
140 FM_AF_JUMP_RD_FREQ_IDX,
141 FM_AF_JUMP_RD_FREQ_RESP_IDX,
142 FM_LOW_RSSI_FINISH_IDX,
143
144 /* Interrupt process post action */
145 FM_SEND_INTMSK_CMD_IDX,
146 FM_HANDLE_INTMSK_CMD_RESP_IDX,
147 };
148
149 /* FM interrupt handler table */
150 static int_handler_prototype int_handler_table[] = {
151 fm_irq_send_flag_getcmd,
152 fm_irq_handle_flag_getcmd_resp,
153 fm_irq_handle_hw_malfunction,
154 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
155 fm_irq_send_rdsdata_getcmd,
156 fm_irq_handle_rdsdata_getcmd_resp,
157 fm_irq_handle_rds_finish,
158 fm_irq_handle_tune_op_ended,
159 fm_irq_handle_power_enb, /* TX power enable irq handler */
160 fm_irq_handle_low_rssi_start,
161 fm_irq_afjump_set_pi,
162 fm_irq_handle_set_pi_resp,
163 fm_irq_afjump_set_pimask,
164 fm_irq_handle_set_pimask_resp,
165 fm_irq_afjump_setfreq,
166 fm_irq_handle_setfreq_resp,
167 fm_irq_afjump_enableint,
168 fm_irq_afjump_enableint_resp,
169 fm_irq_start_afjump,
170 fm_irq_handle_start_afjump_resp,
171 fm_irq_afjump_rd_freq,
172 fm_irq_afjump_rd_freq_resp,
173 fm_irq_handle_low_rssi_finish,
174 fm_irq_send_intmsk_cmd, /* Interrupt process post action */
175 fm_irq_handle_intmsk_cmd_resp
176 };
177
178 static long (*g_st_write) (struct sk_buff *skb);
179 static struct completion wait_for_fmdrv_reg_comp;
180
fm_irq_call(struct fmdev * fmdev)181 static inline void fm_irq_call(struct fmdev *fmdev)
182 {
183 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
184 }
185
186 /* Continue next function in interrupt handler table */
fm_irq_call_stage(struct fmdev * fmdev,u8 stage)187 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
188 {
189 fmdev->irq_info.stage = stage;
190 fm_irq_call(fmdev);
191 }
192
fm_irq_timeout_stage(struct fmdev * fmdev,u8 stage)193 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
194 {
195 fmdev->irq_info.stage = stage;
196 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
197 }
198
199 #ifdef FM_DUMP_TXRX_PKT
200 /* To dump outgoing FM Channel-8 packets */
dump_tx_skb_data(struct sk_buff * skb)201 inline void dump_tx_skb_data(struct sk_buff *skb)
202 {
203 int len, len_org;
204 u8 index;
205 struct fm_cmd_msg_hdr *cmd_hdr;
206
207 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
208 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
209 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
210 cmd_hdr->len, cmd_hdr->op,
211 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
212
213 len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
214 if (len_org > 0) {
215 printk("\n data(%d): ", cmd_hdr->dlen);
216 len = min(len_org, 14);
217 for (index = 0; index < len; index++)
218 printk("%x ",
219 skb->data[FM_CMD_MSG_HDR_SIZE + index]);
220 printk("%s", (len_org > 14) ? ".." : "");
221 }
222 printk("\n");
223 }
224
225 /* To dump incoming FM Channel-8 packets */
dump_rx_skb_data(struct sk_buff * skb)226 inline void dump_rx_skb_data(struct sk_buff *skb)
227 {
228 int len, len_org;
229 u8 index;
230 struct fm_event_msg_hdr *evt_hdr;
231
232 evt_hdr = (struct fm_event_msg_hdr *)skb->data;
233 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x "
234 "opcode:%02x type:%s dlen:%02x", evt_hdr->hdr, evt_hdr->len,
235 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
236 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
237
238 len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
239 if (len_org > 0) {
240 printk("\n data(%d): ", evt_hdr->dlen);
241 len = min(len_org, 14);
242 for (index = 0; index < len; index++)
243 printk("%x ",
244 skb->data[FM_EVT_MSG_HDR_SIZE + index]);
245 printk("%s", (len_org > 14) ? ".." : "");
246 }
247 printk("\n");
248 }
249 #endif
250
fmc_update_region_info(struct fmdev * fmdev,u8 region_to_set)251 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
252 {
253 fmdev->rx.region = region_configs[region_to_set];
254 }
255
256 /*
257 * FM common sub-module will schedule this tasklet whenever it receives
258 * FM packet from ST driver.
259 */
recv_tasklet(unsigned long arg)260 static void recv_tasklet(unsigned long arg)
261 {
262 struct fmdev *fmdev;
263 struct fm_irq *irq_info;
264 struct fm_event_msg_hdr *evt_hdr;
265 struct sk_buff *skb;
266 u8 num_fm_hci_cmds;
267 unsigned long flags;
268
269 fmdev = (struct fmdev *)arg;
270 irq_info = &fmdev->irq_info;
271 /* Process all packets in the RX queue */
272 while ((skb = skb_dequeue(&fmdev->rx_q))) {
273 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
274 fmerr("skb(%p) has only %d bytes, "
275 "at least need %zu bytes to decode\n", skb,
276 skb->len, sizeof(struct fm_event_msg_hdr));
277 kfree_skb(skb);
278 continue;
279 }
280
281 evt_hdr = (void *)skb->data;
282 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
283
284 /* FM interrupt packet? */
285 if (evt_hdr->op == FM_INTERRUPT) {
286 /* FM interrupt handler started already? */
287 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
288 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
289 if (irq_info->stage != 0) {
290 fmerr("Inval stage resetting to zero\n");
291 irq_info->stage = 0;
292 }
293
294 /*
295 * Execute first function in interrupt handler
296 * table.
297 */
298 irq_info->handlers[irq_info->stage](fmdev);
299 } else {
300 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
301 }
302 kfree_skb(skb);
303 }
304 /* Anyone waiting for this with completion handler? */
305 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
306
307 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
308 fmdev->resp_skb = skb;
309 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
310 complete(fmdev->resp_comp);
311
312 fmdev->resp_comp = NULL;
313 atomic_set(&fmdev->tx_cnt, 1);
314 }
315 /* Is this for interrupt handler? */
316 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
317 if (fmdev->resp_skb != NULL)
318 fmerr("Response SKB ptr not NULL\n");
319
320 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
321 fmdev->resp_skb = skb;
322 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
323
324 /* Execute interrupt handler where state index points */
325 irq_info->handlers[irq_info->stage](fmdev);
326
327 kfree_skb(skb);
328 atomic_set(&fmdev->tx_cnt, 1);
329 } else {
330 fmerr("Nobody claimed SKB(%p),purging\n", skb);
331 }
332
333 /*
334 * Check flow control field. If Num_FM_HCI_Commands field is
335 * not zero, schedule FM TX tasklet.
336 */
337 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
338 if (!skb_queue_empty(&fmdev->tx_q))
339 tasklet_schedule(&fmdev->tx_task);
340 }
341 }
342
343 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
send_tasklet(unsigned long arg)344 static void send_tasklet(unsigned long arg)
345 {
346 struct fmdev *fmdev;
347 struct sk_buff *skb;
348 int len;
349
350 fmdev = (struct fmdev *)arg;
351
352 if (!atomic_read(&fmdev->tx_cnt))
353 return;
354
355 /* Check, is there any timeout happened to last transmitted packet */
356 if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
357 fmerr("TX timeout occurred\n");
358 atomic_set(&fmdev->tx_cnt, 1);
359 }
360
361 /* Send queued FM TX packets */
362 skb = skb_dequeue(&fmdev->tx_q);
363 if (!skb)
364 return;
365
366 atomic_dec(&fmdev->tx_cnt);
367 fmdev->pre_op = fm_cb(skb)->fm_op;
368
369 if (fmdev->resp_comp != NULL)
370 fmerr("Response completion handler is not NULL\n");
371
372 fmdev->resp_comp = fm_cb(skb)->completion;
373
374 /* Write FM packet to ST driver */
375 len = g_st_write(skb);
376 if (len < 0) {
377 kfree_skb(skb);
378 fmdev->resp_comp = NULL;
379 fmerr("TX tasklet failed to send skb(%p)\n", skb);
380 atomic_set(&fmdev->tx_cnt, 1);
381 } else {
382 fmdev->last_tx_jiffies = jiffies;
383 }
384 }
385
386 /*
387 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
388 * transmission
389 */
fm_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,int payload_len,struct completion * wait_completion)390 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
391 int payload_len, struct completion *wait_completion)
392 {
393 struct sk_buff *skb;
394 struct fm_cmd_msg_hdr *hdr;
395 int size;
396
397 if (fm_op >= FM_INTERRUPT) {
398 fmerr("Invalid fm opcode - %d\n", fm_op);
399 return -EINVAL;
400 }
401 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
402 fmerr("Payload data is NULL during fw download\n");
403 return -EINVAL;
404 }
405 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
406 size =
407 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
408 else
409 size = payload_len;
410
411 skb = alloc_skb(size, GFP_ATOMIC);
412 if (!skb) {
413 fmerr("No memory to create new SKB\n");
414 return -ENOMEM;
415 }
416 /*
417 * Don't fill FM header info for the commands which come from
418 * FM firmware file.
419 */
420 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
421 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
422 /* Fill command header info */
423 hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE);
424 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */
425
426 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
427 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
428
429 /* FM opcode */
430 hdr->op = fm_op;
431
432 /* read/write type */
433 hdr->rd_wr = type;
434 hdr->dlen = payload_len;
435 fm_cb(skb)->fm_op = fm_op;
436
437 /*
438 * If firmware download has finished and the command is
439 * not a read command then payload is != NULL - a write
440 * command with u16 payload - convert to be16
441 */
442 if (payload != NULL)
443 *(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
444
445 } else if (payload != NULL) {
446 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
447 }
448 if (payload != NULL)
449 memcpy(skb_put(skb, payload_len), payload, payload_len);
450
451 fm_cb(skb)->completion = wait_completion;
452 skb_queue_tail(&fmdev->tx_q, skb);
453 tasklet_schedule(&fmdev->tx_task);
454
455 return 0;
456 }
457
458 /* Sends FM Channel-8 command to the chip and waits for the response */
fmc_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,unsigned int payload_len,void * response,int * response_len)459 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
460 unsigned int payload_len, void *response, int *response_len)
461 {
462 struct sk_buff *skb;
463 struct fm_event_msg_hdr *evt_hdr;
464 unsigned long flags;
465 int ret;
466
467 init_completion(&fmdev->maintask_comp);
468 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
469 &fmdev->maintask_comp);
470 if (ret)
471 return ret;
472
473 if (!wait_for_completion_timeout(&fmdev->maintask_comp,
474 FM_DRV_TX_TIMEOUT)) {
475 fmerr("Timeout(%d sec),didn't get reg"
476 "completion signal from RX tasklet\n",
477 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
478 return -ETIMEDOUT;
479 }
480 if (!fmdev->resp_skb) {
481 fmerr("Response SKB is missing\n");
482 return -EFAULT;
483 }
484 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
485 skb = fmdev->resp_skb;
486 fmdev->resp_skb = NULL;
487 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
488
489 evt_hdr = (void *)skb->data;
490 if (evt_hdr->status != 0) {
491 fmerr("Received event pkt status(%d) is not zero\n",
492 evt_hdr->status);
493 kfree_skb(skb);
494 return -EIO;
495 }
496 /* Send response data to caller */
497 if (response != NULL && response_len != NULL && evt_hdr->dlen &&
498 evt_hdr->dlen <= payload_len) {
499 /* Skip header info and copy only response data */
500 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
501 memcpy(response, skb->data, evt_hdr->dlen);
502 *response_len = evt_hdr->dlen;
503 } else if (response_len != NULL && evt_hdr->dlen == 0) {
504 *response_len = 0;
505 }
506 kfree_skb(skb);
507
508 return 0;
509 }
510
511 /* --- Helper functions used in FM interrupt handlers ---*/
check_cmdresp_status(struct fmdev * fmdev,struct sk_buff ** skb)512 static inline int check_cmdresp_status(struct fmdev *fmdev,
513 struct sk_buff **skb)
514 {
515 struct fm_event_msg_hdr *fm_evt_hdr;
516 unsigned long flags;
517
518 del_timer(&fmdev->irq_info.timer);
519
520 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
521 *skb = fmdev->resp_skb;
522 fmdev->resp_skb = NULL;
523 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
524
525 fm_evt_hdr = (void *)(*skb)->data;
526 if (fm_evt_hdr->status != 0) {
527 fmerr("irq: opcode %x response status is not zero "
528 "Initiating irq recovery process\n",
529 fm_evt_hdr->op);
530
531 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
532 return -1;
533 }
534
535 return 0;
536 }
537
fm_irq_common_cmd_resp_helper(struct fmdev * fmdev,u8 stage)538 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
539 {
540 struct sk_buff *skb;
541
542 if (!check_cmdresp_status(fmdev, &skb))
543 fm_irq_call_stage(fmdev, stage);
544 }
545
546 /*
547 * Interrupt process timeout handler.
548 * One of the irq handler did not get proper response from the chip. So take
549 * recovery action here. FM interrupts are disabled in the beginning of
550 * interrupt process. Therefore reset stage index to re-enable default
551 * interrupts. So that next interrupt will be processed as usual.
552 */
int_timeout_handler(unsigned long data)553 static void int_timeout_handler(unsigned long data)
554 {
555 struct fmdev *fmdev;
556 struct fm_irq *fmirq;
557
558 fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
559 fmdev = (struct fmdev *)data;
560 fmirq = &fmdev->irq_info;
561 fmirq->retry++;
562
563 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
564 /* Stop recovery action (interrupt reenable process) and
565 * reset stage index & retry count values */
566 fmirq->stage = 0;
567 fmirq->retry = 0;
568 fmerr("Recovery action failed during"
569 "irq processing, max retry reached\n");
570 return;
571 }
572 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
573 }
574
575 /* --------- FM interrupt handlers ------------*/
fm_irq_send_flag_getcmd(struct fmdev * fmdev)576 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
577 {
578 u16 flag;
579
580 /* Send FLAG_GET command , to know the source of interrupt */
581 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
582 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
583 }
584
fm_irq_handle_flag_getcmd_resp(struct fmdev * fmdev)585 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
586 {
587 struct sk_buff *skb;
588 struct fm_event_msg_hdr *fm_evt_hdr;
589
590 if (check_cmdresp_status(fmdev, &skb))
591 return;
592
593 fm_evt_hdr = (void *)skb->data;
594 if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
595 return;
596
597 /* Skip header info and copy only response data */
598 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
599 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
600
601 fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
602 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
603
604 /* Continue next function in interrupt handler table */
605 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
606 }
607
fm_irq_handle_hw_malfunction(struct fmdev * fmdev)608 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
609 {
610 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
611 fmerr("irq: HW MAL int received - do nothing\n");
612
613 /* Continue next function in interrupt handler table */
614 fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
615 }
616
fm_irq_handle_rds_start(struct fmdev * fmdev)617 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
618 {
619 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
620 fmdbg("irq: rds threshold reached\n");
621 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
622 } else {
623 /* Continue next function in interrupt handler table */
624 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
625 }
626
627 fm_irq_call(fmdev);
628 }
629
fm_irq_send_rdsdata_getcmd(struct fmdev * fmdev)630 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
631 {
632 /* Send the command to read RDS data from the chip */
633 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
634 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
635 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
636 }
637
638 /* Keeps track of current RX channel AF (Alternate Frequency) */
fm_rx_update_af_cache(struct fmdev * fmdev,u8 af)639 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
640 {
641 struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
642 u8 reg_idx = fmdev->rx.region.fm_band;
643 u8 index;
644 u32 freq;
645
646 /* First AF indicates the number of AF follows. Reset the list */
647 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
648 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
649 fmdev->rx.stat_info.afcache_size = 0;
650 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
651 return;
652 }
653
654 if (af < FM_RDS_MIN_AF)
655 return;
656 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
657 return;
658 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
659 return;
660
661 freq = fmdev->rx.region.bot_freq + (af * 100);
662 if (freq == fmdev->rx.freq) {
663 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
664 fmdev->rx.freq, freq);
665 return;
666 }
667 /* Do check in AF cache */
668 for (index = 0; index < stat_info->afcache_size; index++) {
669 if (stat_info->af_cache[index] == freq)
670 break;
671 }
672 /* Reached the limit of the list - ignore the next AF */
673 if (index == stat_info->af_list_max) {
674 fmdbg("AF cache is full\n");
675 return;
676 }
677 /*
678 * If we reached the end of the list then this AF is not
679 * in the list - add it.
680 */
681 if (index == stat_info->afcache_size) {
682 fmdbg("Storing AF %d to cache index %d\n", freq, index);
683 stat_info->af_cache[index] = freq;
684 stat_info->afcache_size++;
685 }
686 }
687
688 /*
689 * Converts RDS buffer data from big endian format
690 * to little endian format.
691 */
fm_rdsparse_swapbytes(struct fmdev * fmdev,struct fm_rdsdata_format * rds_format)692 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
693 struct fm_rdsdata_format *rds_format)
694 {
695 u8 index = 0;
696 u8 *rds_buff;
697
698 /*
699 * Since in Orca the 2 RDS Data bytes are in little endian and
700 * in Dolphin they are in big endian, the parsing of the RDS data
701 * is chip dependent
702 */
703 if (fmdev->asci_id != 0x6350) {
704 rds_buff = &rds_format->data.groupdatabuff.buff[0];
705 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
706 swap(rds_buff[index], rds_buff[index + 1]);
707 index += 2;
708 }
709 }
710 }
711
fm_irq_handle_rdsdata_getcmd_resp(struct fmdev * fmdev)712 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
713 {
714 struct sk_buff *skb;
715 struct fm_rdsdata_format rds_fmt;
716 struct fm_rds *rds = &fmdev->rx.rds;
717 unsigned long group_idx, flags;
718 u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
719 u8 type, blk_idx;
720 u16 cur_picode;
721 u32 rds_len;
722
723 if (check_cmdresp_status(fmdev, &skb))
724 return;
725
726 /* Skip header info */
727 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
728 rds_data = skb->data;
729 rds_len = skb->len;
730
731 /* Parse the RDS data */
732 while (rds_len >= FM_RDS_BLK_SIZE) {
733 meta_data = rds_data[2];
734 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
735 type = (meta_data & 0x07);
736
737 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
738 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
739 fmdbg("Block index:%d(%s)\n", blk_idx,
740 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
741
742 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
743 break;
744
745 if (blk_idx > FM_RDS_BLK_IDX_D) {
746 fmdbg("Block sequence mismatch\n");
747 rds->last_blk_idx = -1;
748 break;
749 }
750
751 /* Skip checkword (control) byte and copy only data byte */
752 memcpy(&rds_fmt.data.groupdatabuff.
753 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
754 rds_data, (FM_RDS_BLK_SIZE - 1));
755
756 rds->last_blk_idx = blk_idx;
757
758 /* If completed a whole group then handle it */
759 if (blk_idx == FM_RDS_BLK_IDX_D) {
760 fmdbg("Good block received\n");
761 fm_rdsparse_swapbytes(fmdev, &rds_fmt);
762
763 /*
764 * Extract PI code and store in local cache.
765 * We need this during AF switch processing.
766 */
767 cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
768 if (fmdev->rx.stat_info.picode != cur_picode)
769 fmdev->rx.stat_info.picode = cur_picode;
770
771 fmdbg("picode:%d\n", cur_picode);
772
773 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
774 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
775 (group_idx % 2) ? "B" : "A");
776
777 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
778 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
779 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
780 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
781 }
782 }
783 rds_len -= FM_RDS_BLK_SIZE;
784 rds_data += FM_RDS_BLK_SIZE;
785 }
786
787 /* Copy raw rds data to internal rds buffer */
788 rds_data = skb->data;
789 rds_len = skb->len;
790
791 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
792 while (rds_len > 0) {
793 /*
794 * Fill RDS buffer as per V4L2 specification.
795 * Store control byte
796 */
797 type = (rds_data[2] & 0x07);
798 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
799 tmpbuf[2] = blk_idx; /* Offset name */
800 tmpbuf[2] |= blk_idx << 3; /* Received offset */
801
802 /* Store data byte */
803 tmpbuf[0] = rds_data[0];
804 tmpbuf[1] = rds_data[1];
805
806 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
807 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
808
809 /* Check for overflow & start over */
810 if (rds->wr_idx == rds->rd_idx) {
811 fmdbg("RDS buffer overflow\n");
812 rds->wr_idx = 0;
813 rds->rd_idx = 0;
814 break;
815 }
816 rds_len -= FM_RDS_BLK_SIZE;
817 rds_data += FM_RDS_BLK_SIZE;
818 }
819 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
820
821 /* Wakeup read queue */
822 if (rds->wr_idx != rds->rd_idx)
823 wake_up_interruptible(&rds->read_queue);
824
825 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
826 }
827
fm_irq_handle_rds_finish(struct fmdev * fmdev)828 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
829 {
830 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
831 }
832
fm_irq_handle_tune_op_ended(struct fmdev * fmdev)833 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
834 {
835 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
836 irq_info.mask) {
837 fmdbg("irq: tune ended/bandlimit reached\n");
838 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
839 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
840 } else {
841 complete(&fmdev->maintask_comp);
842 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
843 }
844 } else
845 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
846
847 fm_irq_call(fmdev);
848 }
849
fm_irq_handle_power_enb(struct fmdev * fmdev)850 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
851 {
852 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
853 fmdbg("irq: Power Enabled/Disabled\n");
854 complete(&fmdev->maintask_comp);
855 }
856
857 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
858 }
859
fm_irq_handle_low_rssi_start(struct fmdev * fmdev)860 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
861 {
862 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
863 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
864 (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
865 (fmdev->rx.stat_info.afcache_size != 0)) {
866 fmdbg("irq: rssi level has fallen below threshold level\n");
867
868 /* Disable further low RSSI interrupts */
869 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
870
871 fmdev->rx.afjump_idx = 0;
872 fmdev->rx.freq_before_jump = fmdev->rx.freq;
873 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
874 } else {
875 /* Continue next function in interrupt handler table */
876 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
877 }
878
879 fm_irq_call(fmdev);
880 }
881
fm_irq_afjump_set_pi(struct fmdev * fmdev)882 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
883 {
884 u16 payload;
885
886 /* Set PI code - must be updated if the AF list is not empty */
887 payload = fmdev->rx.stat_info.picode;
888 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
889 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
890 }
891
fm_irq_handle_set_pi_resp(struct fmdev * fmdev)892 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
893 {
894 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
895 }
896
897 /*
898 * Set PI mask.
899 * 0xFFFF = Enable PI code matching
900 * 0x0000 = Disable PI code matching
901 */
fm_irq_afjump_set_pimask(struct fmdev * fmdev)902 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
903 {
904 u16 payload;
905
906 payload = 0x0000;
907 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
908 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
909 }
910
fm_irq_handle_set_pimask_resp(struct fmdev * fmdev)911 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
912 {
913 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
914 }
915
fm_irq_afjump_setfreq(struct fmdev * fmdev)916 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
917 {
918 u16 frq_index;
919 u16 payload;
920
921 fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
922 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
923 fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
924
925 payload = frq_index;
926 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
927 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
928 }
929
fm_irq_handle_setfreq_resp(struct fmdev * fmdev)930 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
931 {
932 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
933 }
934
fm_irq_afjump_enableint(struct fmdev * fmdev)935 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
936 {
937 u16 payload;
938
939 /* Enable FR (tuning operation ended) interrupt */
940 payload = FM_FR_EVENT;
941 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
942 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
943 }
944
fm_irq_afjump_enableint_resp(struct fmdev * fmdev)945 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
946 {
947 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
948 }
949
fm_irq_start_afjump(struct fmdev * fmdev)950 static void fm_irq_start_afjump(struct fmdev *fmdev)
951 {
952 u16 payload;
953
954 payload = FM_TUNER_AF_JUMP_MODE;
955 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
956 sizeof(payload), NULL))
957 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
958 }
959
fm_irq_handle_start_afjump_resp(struct fmdev * fmdev)960 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
961 {
962 struct sk_buff *skb;
963
964 if (check_cmdresp_status(fmdev, &skb))
965 return;
966
967 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
968 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
969 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
970 }
971
fm_irq_afjump_rd_freq(struct fmdev * fmdev)972 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
973 {
974 u16 payload;
975
976 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
977 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
978 }
979
fm_irq_afjump_rd_freq_resp(struct fmdev * fmdev)980 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
981 {
982 struct sk_buff *skb;
983 u16 read_freq;
984 u32 curr_freq, jumped_freq;
985
986 if (check_cmdresp_status(fmdev, &skb))
987 return;
988
989 /* Skip header info and copy only response data */
990 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
991 memcpy(&read_freq, skb->data, sizeof(read_freq));
992 read_freq = be16_to_cpu((__force __be16)read_freq);
993 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
994
995 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
996
997 /* If the frequency was changed the jump succeeded */
998 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
999 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
1000 fmdev->rx.freq = curr_freq;
1001 fm_rx_reset_rds_cache(fmdev);
1002
1003 /* AF feature is on, enable low level RSSI interrupt */
1004 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
1005 fmdev->irq_info.mask |= FM_LEV_EVENT;
1006
1007 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1008 } else { /* jump to the next freq in the AF list */
1009 fmdev->rx.afjump_idx++;
1010
1011 /* If we reached the end of the list - stop searching */
1012 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1013 fmdbg("AF switch processing failed\n");
1014 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1015 } else { /* AF List is not over - try next one */
1016
1017 fmdbg("Trying next freq in AF cache\n");
1018 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1019 }
1020 }
1021 fm_irq_call(fmdev);
1022 }
1023
fm_irq_handle_low_rssi_finish(struct fmdev * fmdev)1024 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1025 {
1026 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1027 }
1028
fm_irq_send_intmsk_cmd(struct fmdev * fmdev)1029 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1030 {
1031 u16 payload;
1032
1033 /* Re-enable FM interrupts */
1034 payload = fmdev->irq_info.mask;
1035
1036 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1037 sizeof(payload), NULL))
1038 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1039 }
1040
fm_irq_handle_intmsk_cmd_resp(struct fmdev * fmdev)1041 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1042 {
1043 struct sk_buff *skb;
1044
1045 if (check_cmdresp_status(fmdev, &skb))
1046 return;
1047 /*
1048 * This is last function in interrupt table to be executed.
1049 * So, reset stage index to 0.
1050 */
1051 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1052
1053 /* Start processing any pending interrupt */
1054 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1055 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1056 else
1057 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1058 }
1059
1060 /* Returns availability of RDS data in internel buffer */
fmc_is_rds_data_available(struct fmdev * fmdev,struct file * file,struct poll_table_struct * pts)1061 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1062 struct poll_table_struct *pts)
1063 {
1064 poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1065 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1066 return 0;
1067
1068 return -EAGAIN;
1069 }
1070
1071 /* Copies RDS data from internal buffer to user buffer */
fmc_transfer_rds_from_internal_buff(struct fmdev * fmdev,struct file * file,u8 __user * buf,size_t count)1072 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1073 u8 __user *buf, size_t count)
1074 {
1075 u32 block_count;
1076 u8 tmpbuf[FM_RDS_BLK_SIZE];
1077 unsigned long flags;
1078 int ret;
1079
1080 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1081 if (file->f_flags & O_NONBLOCK)
1082 return -EWOULDBLOCK;
1083
1084 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1085 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1086 if (ret)
1087 return -EINTR;
1088 }
1089
1090 /* Calculate block count from byte count */
1091 count /= FM_RDS_BLK_SIZE;
1092 block_count = 0;
1093 ret = 0;
1094
1095 while (block_count < count) {
1096 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1097
1098 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1099 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1100 break;
1101 }
1102 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1103 FM_RDS_BLK_SIZE);
1104 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1105 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1106 fmdev->rx.rds.rd_idx = 0;
1107
1108 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1109
1110 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1111 break;
1112
1113 block_count++;
1114 buf += FM_RDS_BLK_SIZE;
1115 ret += FM_RDS_BLK_SIZE;
1116 }
1117 return ret;
1118 }
1119
fmc_set_freq(struct fmdev * fmdev,u32 freq_to_set)1120 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1121 {
1122 switch (fmdev->curr_fmmode) {
1123 case FM_MODE_RX:
1124 return fm_rx_set_freq(fmdev, freq_to_set);
1125
1126 case FM_MODE_TX:
1127 return fm_tx_set_freq(fmdev, freq_to_set);
1128
1129 default:
1130 return -EINVAL;
1131 }
1132 }
1133
fmc_get_freq(struct fmdev * fmdev,u32 * cur_tuned_frq)1134 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1135 {
1136 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1137 fmerr("RX frequency is not set\n");
1138 return -EPERM;
1139 }
1140 if (cur_tuned_frq == NULL) {
1141 fmerr("Invalid memory\n");
1142 return -ENOMEM;
1143 }
1144
1145 switch (fmdev->curr_fmmode) {
1146 case FM_MODE_RX:
1147 *cur_tuned_frq = fmdev->rx.freq;
1148 return 0;
1149
1150 case FM_MODE_TX:
1151 *cur_tuned_frq = 0; /* TODO : Change this later */
1152 return 0;
1153
1154 default:
1155 return -EINVAL;
1156 }
1157
1158 }
1159
fmc_set_region(struct fmdev * fmdev,u8 region_to_set)1160 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1161 {
1162 switch (fmdev->curr_fmmode) {
1163 case FM_MODE_RX:
1164 return fm_rx_set_region(fmdev, region_to_set);
1165
1166 case FM_MODE_TX:
1167 return fm_tx_set_region(fmdev, region_to_set);
1168
1169 default:
1170 return -EINVAL;
1171 }
1172 }
1173
fmc_set_mute_mode(struct fmdev * fmdev,u8 mute_mode_toset)1174 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1175 {
1176 switch (fmdev->curr_fmmode) {
1177 case FM_MODE_RX:
1178 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1179
1180 case FM_MODE_TX:
1181 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1182
1183 default:
1184 return -EINVAL;
1185 }
1186 }
1187
fmc_set_stereo_mono(struct fmdev * fmdev,u16 mode)1188 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1189 {
1190 switch (fmdev->curr_fmmode) {
1191 case FM_MODE_RX:
1192 return fm_rx_set_stereo_mono(fmdev, mode);
1193
1194 case FM_MODE_TX:
1195 return fm_tx_set_stereo_mono(fmdev, mode);
1196
1197 default:
1198 return -EINVAL;
1199 }
1200 }
1201
fmc_set_rds_mode(struct fmdev * fmdev,u8 rds_en_dis)1202 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1203 {
1204 switch (fmdev->curr_fmmode) {
1205 case FM_MODE_RX:
1206 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1207
1208 case FM_MODE_TX:
1209 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1210
1211 default:
1212 return -EINVAL;
1213 }
1214 }
1215
1216 /* Sends power off command to the chip */
fm_power_down(struct fmdev * fmdev)1217 static int fm_power_down(struct fmdev *fmdev)
1218 {
1219 u16 payload;
1220 int ret;
1221
1222 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1223 fmerr("FM core is not ready\n");
1224 return -EPERM;
1225 }
1226 if (fmdev->curr_fmmode == FM_MODE_OFF) {
1227 fmdbg("FM chip is already in OFF state\n");
1228 return 0;
1229 }
1230
1231 payload = 0x0;
1232 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1233 sizeof(payload), NULL, NULL);
1234 if (ret < 0)
1235 return ret;
1236
1237 return fmc_release(fmdev);
1238 }
1239
1240 /* Reads init command from FM firmware file and loads to the chip */
fm_download_firmware(struct fmdev * fmdev,const u8 * fw_name)1241 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1242 {
1243 const struct firmware *fw_entry;
1244 struct bts_header *fw_header;
1245 struct bts_action *action;
1246 struct bts_action_delay *delay;
1247 u8 *fw_data;
1248 int ret, fw_len, cmd_cnt;
1249
1250 cmd_cnt = 0;
1251 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1252
1253 ret = request_firmware(&fw_entry, fw_name,
1254 &fmdev->radio_dev->dev);
1255 if (ret < 0) {
1256 fmerr("Unable to read firmware(%s) content\n", fw_name);
1257 return ret;
1258 }
1259 fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1260
1261 fw_data = (void *)fw_entry->data;
1262 fw_len = fw_entry->size;
1263
1264 fw_header = (struct bts_header *)fw_data;
1265 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1266 fmerr("%s not a legal TI firmware file\n", fw_name);
1267 ret = -EINVAL;
1268 goto rel_fw;
1269 }
1270 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1271
1272 /* Skip file header info , we already verified it */
1273 fw_data += sizeof(struct bts_header);
1274 fw_len -= sizeof(struct bts_header);
1275
1276 while (fw_data && fw_len > 0) {
1277 action = (struct bts_action *)fw_data;
1278
1279 switch (action->type) {
1280 case ACTION_SEND_COMMAND: /* Send */
1281 ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1282 action->size, NULL, NULL);
1283 if (ret)
1284 goto rel_fw;
1285
1286 cmd_cnt++;
1287 break;
1288
1289 case ACTION_DELAY: /* Delay */
1290 delay = (struct bts_action_delay *)action->data;
1291 mdelay(delay->msec);
1292 break;
1293 }
1294
1295 fw_data += (sizeof(struct bts_action) + (action->size));
1296 fw_len -= (sizeof(struct bts_action) + (action->size));
1297 }
1298 fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1299 rel_fw:
1300 release_firmware(fw_entry);
1301 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1302
1303 return ret;
1304 }
1305
1306 /* Loads default RX configuration to the chip */
load_default_rx_configuration(struct fmdev * fmdev)1307 static int load_default_rx_configuration(struct fmdev *fmdev)
1308 {
1309 int ret;
1310
1311 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1312 if (ret < 0)
1313 return ret;
1314
1315 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1316 }
1317
1318 /* Does FM power on sequence */
fm_power_up(struct fmdev * fmdev,u8 mode)1319 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1320 {
1321 u16 payload;
1322 __be16 asic_id = 0, asic_ver = 0;
1323 int resp_len, ret;
1324 u8 fw_name[50];
1325
1326 if (mode >= FM_MODE_ENTRY_MAX) {
1327 fmerr("Invalid firmware download option\n");
1328 return -EINVAL;
1329 }
1330
1331 /*
1332 * Initialize FM common module. FM GPIO toggling is
1333 * taken care in Shared Transport driver.
1334 */
1335 ret = fmc_prepare(fmdev);
1336 if (ret < 0) {
1337 fmerr("Unable to prepare FM Common\n");
1338 return ret;
1339 }
1340
1341 payload = FM_ENABLE;
1342 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1343 sizeof(payload), NULL, NULL))
1344 goto rel;
1345
1346 /* Allow the chip to settle down in Channel-8 mode */
1347 msleep(20);
1348
1349 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1350 sizeof(asic_id), &asic_id, &resp_len))
1351 goto rel;
1352
1353 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1354 sizeof(asic_ver), &asic_ver, &resp_len))
1355 goto rel;
1356
1357 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1358 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1359
1360 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1361 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1362
1363 ret = fm_download_firmware(fmdev, fw_name);
1364 if (ret < 0) {
1365 fmdbg("Failed to download firmware file %s\n", fw_name);
1366 goto rel;
1367 }
1368 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1369 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1370 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1371
1372 ret = fm_download_firmware(fmdev, fw_name);
1373 if (ret < 0) {
1374 fmdbg("Failed to download firmware file %s\n", fw_name);
1375 goto rel;
1376 } else
1377 return ret;
1378 rel:
1379 return fmc_release(fmdev);
1380 }
1381
1382 /* Set FM Modes(TX, RX, OFF) */
fmc_set_mode(struct fmdev * fmdev,u8 fm_mode)1383 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1384 {
1385 int ret = 0;
1386
1387 if (fm_mode >= FM_MODE_ENTRY_MAX) {
1388 fmerr("Invalid FM mode\n");
1389 return -EINVAL;
1390 }
1391 if (fmdev->curr_fmmode == fm_mode) {
1392 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1393 return ret;
1394 }
1395
1396 switch (fm_mode) {
1397 case FM_MODE_OFF: /* OFF Mode */
1398 ret = fm_power_down(fmdev);
1399 if (ret < 0) {
1400 fmerr("Failed to set OFF mode\n");
1401 return ret;
1402 }
1403 break;
1404
1405 case FM_MODE_TX: /* TX Mode */
1406 case FM_MODE_RX: /* RX Mode */
1407 /* Power down before switching to TX or RX mode */
1408 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1409 ret = fm_power_down(fmdev);
1410 if (ret < 0) {
1411 fmerr("Failed to set OFF mode\n");
1412 return ret;
1413 }
1414 msleep(30);
1415 }
1416 ret = fm_power_up(fmdev, fm_mode);
1417 if (ret < 0) {
1418 fmerr("Failed to load firmware\n");
1419 return ret;
1420 }
1421 }
1422 fmdev->curr_fmmode = fm_mode;
1423
1424 /* Set default configuration */
1425 if (fmdev->curr_fmmode == FM_MODE_RX) {
1426 fmdbg("Loading default rx configuration..\n");
1427 ret = load_default_rx_configuration(fmdev);
1428 if (ret < 0)
1429 fmerr("Failed to load default values\n");
1430 }
1431
1432 return ret;
1433 }
1434
1435 /* Returns current FM mode (TX, RX, OFF) */
fmc_get_mode(struct fmdev * fmdev,u8 * fmmode)1436 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1437 {
1438 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1439 fmerr("FM core is not ready\n");
1440 return -EPERM;
1441 }
1442 if (fmmode == NULL) {
1443 fmerr("Invalid memory\n");
1444 return -ENOMEM;
1445 }
1446
1447 *fmmode = fmdev->curr_fmmode;
1448 return 0;
1449 }
1450
1451 /* Called by ST layer when FM packet is available */
fm_st_receive(void * arg,struct sk_buff * skb)1452 static long fm_st_receive(void *arg, struct sk_buff *skb)
1453 {
1454 struct fmdev *fmdev;
1455
1456 fmdev = (struct fmdev *)arg;
1457
1458 if (skb == NULL) {
1459 fmerr("Invalid SKB received from ST\n");
1460 return -EFAULT;
1461 }
1462
1463 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1464 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1465 return -EINVAL;
1466 }
1467
1468 memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1469 skb_queue_tail(&fmdev->rx_q, skb);
1470 tasklet_schedule(&fmdev->rx_task);
1471
1472 return 0;
1473 }
1474
1475 /*
1476 * Called by ST layer to indicate protocol registration completion
1477 * status.
1478 */
fm_st_reg_comp_cb(void * arg,char data)1479 static void fm_st_reg_comp_cb(void *arg, char data)
1480 {
1481 struct fmdev *fmdev;
1482
1483 fmdev = (struct fmdev *)arg;
1484 fmdev->streg_cbdata = data;
1485 complete(&wait_for_fmdrv_reg_comp);
1486 }
1487
1488 /*
1489 * This function will be called from FM V4L2 open function.
1490 * Register with ST driver and initialize driver data.
1491 */
fmc_prepare(struct fmdev * fmdev)1492 int fmc_prepare(struct fmdev *fmdev)
1493 {
1494 static struct st_proto_s fm_st_proto;
1495 int ret;
1496
1497 if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1498 fmdbg("FM Core is already up\n");
1499 return 0;
1500 }
1501
1502 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1503 fm_st_proto.recv = fm_st_receive;
1504 fm_st_proto.match_packet = NULL;
1505 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1506 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1507 fm_st_proto.priv_data = fmdev;
1508 fm_st_proto.chnl_id = 0x08;
1509 fm_st_proto.max_frame_size = 0xff;
1510 fm_st_proto.hdr_len = 1;
1511 fm_st_proto.offset_len_in_hdr = 0;
1512 fm_st_proto.len_size = 1;
1513 fm_st_proto.reserve = 1;
1514
1515 ret = st_register(&fm_st_proto);
1516 if (ret == -EINPROGRESS) {
1517 init_completion(&wait_for_fmdrv_reg_comp);
1518 fmdev->streg_cbdata = -EINPROGRESS;
1519 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1520
1521 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1522 FM_ST_REG_TIMEOUT)) {
1523 fmerr("Timeout(%d sec), didn't get reg "
1524 "completion signal from ST\n",
1525 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1526 return -ETIMEDOUT;
1527 }
1528 if (fmdev->streg_cbdata != 0) {
1529 fmerr("ST reg comp CB called with error "
1530 "status %d\n", fmdev->streg_cbdata);
1531 return -EAGAIN;
1532 }
1533
1534 ret = 0;
1535 } else if (ret == -1) {
1536 fmerr("st_register failed %d\n", ret);
1537 return -EAGAIN;
1538 }
1539
1540 if (fm_st_proto.write != NULL) {
1541 g_st_write = fm_st_proto.write;
1542 } else {
1543 fmerr("Failed to get ST write func pointer\n");
1544 ret = st_unregister(&fm_st_proto);
1545 if (ret < 0)
1546 fmerr("st_unregister failed %d\n", ret);
1547 return -EAGAIN;
1548 }
1549
1550 spin_lock_init(&fmdev->rds_buff_lock);
1551 spin_lock_init(&fmdev->resp_skb_lock);
1552
1553 /* Initialize TX queue and TX tasklet */
1554 skb_queue_head_init(&fmdev->tx_q);
1555 tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1556
1557 /* Initialize RX Queue and RX tasklet */
1558 skb_queue_head_init(&fmdev->rx_q);
1559 tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1560
1561 fmdev->irq_info.stage = 0;
1562 atomic_set(&fmdev->tx_cnt, 1);
1563 fmdev->resp_comp = NULL;
1564
1565 init_timer(&fmdev->irq_info.timer);
1566 fmdev->irq_info.timer.function = &int_timeout_handler;
1567 fmdev->irq_info.timer.data = (unsigned long)fmdev;
1568 /*TODO: add FM_STIC_EVENT later */
1569 fmdev->irq_info.mask = FM_MAL_EVENT;
1570
1571 /* Region info */
1572 fmdev->rx.region = region_configs[default_radio_region];
1573
1574 fmdev->rx.mute_mode = FM_MUTE_OFF;
1575 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1576 fmdev->rx.rds.flag = FM_RDS_DISABLE;
1577 fmdev->rx.freq = FM_UNDEFINED_FREQ;
1578 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1579 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1580 fmdev->irq_info.retry = 0;
1581
1582 fm_rx_reset_rds_cache(fmdev);
1583 init_waitqueue_head(&fmdev->rx.rds.read_queue);
1584
1585 fm_rx_reset_station_info(fmdev);
1586 set_bit(FM_CORE_READY, &fmdev->flag);
1587
1588 return ret;
1589 }
1590
1591 /*
1592 * This function will be called from FM V4L2 release function.
1593 * Unregister from ST driver.
1594 */
fmc_release(struct fmdev * fmdev)1595 int fmc_release(struct fmdev *fmdev)
1596 {
1597 static struct st_proto_s fm_st_proto;
1598 int ret;
1599
1600 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1601 fmdbg("FM Core is already down\n");
1602 return 0;
1603 }
1604 /* Service pending read */
1605 wake_up_interruptible(&fmdev->rx.rds.read_queue);
1606
1607 tasklet_kill(&fmdev->tx_task);
1608 tasklet_kill(&fmdev->rx_task);
1609
1610 skb_queue_purge(&fmdev->tx_q);
1611 skb_queue_purge(&fmdev->rx_q);
1612
1613 fmdev->resp_comp = NULL;
1614 fmdev->rx.freq = 0;
1615
1616 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1617 fm_st_proto.chnl_id = 0x08;
1618
1619 ret = st_unregister(&fm_st_proto);
1620
1621 if (ret < 0)
1622 fmerr("Failed to de-register FM from ST %d\n", ret);
1623 else
1624 fmdbg("Successfully unregistered from ST\n");
1625
1626 clear_bit(FM_CORE_READY, &fmdev->flag);
1627 return ret;
1628 }
1629
1630 /*
1631 * Module init function. Ask FM V4L module to register video device.
1632 * Allocate memory for FM driver context and RX RDS buffer.
1633 */
fm_drv_init(void)1634 static int __init fm_drv_init(void)
1635 {
1636 struct fmdev *fmdev = NULL;
1637 int ret = -ENOMEM;
1638
1639 fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1640
1641 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1642 if (NULL == fmdev) {
1643 fmerr("Can't allocate operation structure memory\n");
1644 return ret;
1645 }
1646 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1647 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1648 if (NULL == fmdev->rx.rds.buff) {
1649 fmerr("Can't allocate rds ring buffer\n");
1650 goto rel_dev;
1651 }
1652
1653 ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1654 if (ret < 0)
1655 goto rel_rdsbuf;
1656
1657 fmdev->irq_info.handlers = int_handler_table;
1658 fmdev->curr_fmmode = FM_MODE_OFF;
1659 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1660 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1661 return ret;
1662
1663 rel_rdsbuf:
1664 kfree(fmdev->rx.rds.buff);
1665 rel_dev:
1666 kfree(fmdev);
1667
1668 return ret;
1669 }
1670
1671 /* Module exit function. Ask FM V4L module to unregister video device */
fm_drv_exit(void)1672 static void __exit fm_drv_exit(void)
1673 {
1674 struct fmdev *fmdev = NULL;
1675
1676 fmdev = fm_v4l2_deinit_video_device();
1677 if (fmdev != NULL) {
1678 kfree(fmdev->rx.rds.buff);
1679 kfree(fmdev);
1680 }
1681 }
1682
1683 module_init(fm_drv_init);
1684 module_exit(fm_drv_exit);
1685
1686 /* ------------- Module Info ------------- */
1687 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1688 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1689 MODULE_VERSION(FM_DRV_VERSION);
1690 MODULE_LICENSE("GPL");
1691