• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * LPDDR flash memory device operations. This module provides read, write,
3  * erase, lock/unlock support for LPDDR flash memories
4  * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5  * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6  * Many thanks to Roman Borisov for initial enabling
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  * TODO:
23  * Implement VPP management
24  * Implement XIP support
25  * Implement OTP support
26  */
27 #include <linux/mtd/pfow.h>
28 #include <linux/mtd/qinfo.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 
32 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
33 					size_t *retlen, u_char *buf);
34 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
35 				size_t len, size_t *retlen, const u_char *buf);
36 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
37 				unsigned long count, loff_t to, size_t *retlen);
38 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
39 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
41 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
42 			size_t *retlen, void **mtdbuf, resource_size_t *phys);
43 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
44 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
45 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
46 static void put_chip(struct map_info *map, struct flchip *chip);
47 
lpddr_cmdset(struct map_info * map)48 struct mtd_info *lpddr_cmdset(struct map_info *map)
49 {
50 	struct lpddr_private *lpddr = map->fldrv_priv;
51 	struct flchip_shared *shared;
52 	struct flchip *chip;
53 	struct mtd_info *mtd;
54 	int numchips;
55 	int i, j;
56 
57 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
58 	if (!mtd)
59 		return NULL;
60 	mtd->priv = map;
61 	mtd->type = MTD_NORFLASH;
62 
63 	/* Fill in the default mtd operations */
64 	mtd->_read = lpddr_read;
65 	mtd->type = MTD_NORFLASH;
66 	mtd->flags = MTD_CAP_NORFLASH;
67 	mtd->flags &= ~MTD_BIT_WRITEABLE;
68 	mtd->_erase = lpddr_erase;
69 	mtd->_write = lpddr_write_buffers;
70 	mtd->_writev = lpddr_writev;
71 	mtd->_lock = lpddr_lock;
72 	mtd->_unlock = lpddr_unlock;
73 	if (map_is_linear(map)) {
74 		mtd->_point = lpddr_point;
75 		mtd->_unpoint = lpddr_unpoint;
76 	}
77 	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
78 	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
79 	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
80 
81 	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
82 						GFP_KERNEL);
83 	if (!shared) {
84 		kfree(mtd);
85 		return NULL;
86 	}
87 
88 	chip = &lpddr->chips[0];
89 	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
90 	for (i = 0; i < numchips; i++) {
91 		shared[i].writing = shared[i].erasing = NULL;
92 		mutex_init(&shared[i].lock);
93 		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
94 			*chip = lpddr->chips[i];
95 			chip->start += j << lpddr->chipshift;
96 			chip->oldstate = chip->state = FL_READY;
97 			chip->priv = &shared[i];
98 			/* those should be reset too since
99 			   they create memory references. */
100 			init_waitqueue_head(&chip->wq);
101 			mutex_init(&chip->mutex);
102 			chip++;
103 		}
104 	}
105 
106 	return mtd;
107 }
108 EXPORT_SYMBOL(lpddr_cmdset);
109 
wait_for_ready(struct map_info * map,struct flchip * chip,unsigned int chip_op_time)110 static int wait_for_ready(struct map_info *map, struct flchip *chip,
111 		unsigned int chip_op_time)
112 {
113 	unsigned int timeo, reset_timeo, sleep_time;
114 	unsigned int dsr;
115 	flstate_t chip_state = chip->state;
116 	int ret = 0;
117 
118 	/* set our timeout to 8 times the expected delay */
119 	timeo = chip_op_time * 8;
120 	if (!timeo)
121 		timeo = 500000;
122 	reset_timeo = timeo;
123 	sleep_time = chip_op_time / 2;
124 
125 	for (;;) {
126 		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
127 		if (dsr & DSR_READY_STATUS)
128 			break;
129 		if (!timeo) {
130 			printk(KERN_ERR "%s: Flash timeout error state %d \n",
131 							map->name, chip_state);
132 			ret = -ETIME;
133 			break;
134 		}
135 
136 		/* OK Still waiting. Drop the lock, wait a while and retry. */
137 		mutex_unlock(&chip->mutex);
138 		if (sleep_time >= 1000000/HZ) {
139 			/*
140 			 * Half of the normal delay still remaining
141 			 * can be performed with a sleeping delay instead
142 			 * of busy waiting.
143 			 */
144 			msleep(sleep_time/1000);
145 			timeo -= sleep_time;
146 			sleep_time = 1000000/HZ;
147 		} else {
148 			udelay(1);
149 			cond_resched();
150 			timeo--;
151 		}
152 		mutex_lock(&chip->mutex);
153 
154 		while (chip->state != chip_state) {
155 			/* Someone's suspended the operation: sleep */
156 			DECLARE_WAITQUEUE(wait, current);
157 			set_current_state(TASK_UNINTERRUPTIBLE);
158 			add_wait_queue(&chip->wq, &wait);
159 			mutex_unlock(&chip->mutex);
160 			schedule();
161 			remove_wait_queue(&chip->wq, &wait);
162 			mutex_lock(&chip->mutex);
163 		}
164 		if (chip->erase_suspended || chip->write_suspended)  {
165 			/* Suspend has occurred while sleep: reset timeout */
166 			timeo = reset_timeo;
167 			chip->erase_suspended = chip->write_suspended = 0;
168 		}
169 	}
170 	/* check status for errors */
171 	if (dsr & DSR_ERR) {
172 		/* Clear DSR*/
173 		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
174 		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
175 				map->name, dsr);
176 		print_drs_error(dsr);
177 		ret = -EIO;
178 	}
179 	chip->state = FL_READY;
180 	return ret;
181 }
182 
get_chip(struct map_info * map,struct flchip * chip,int mode)183 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
184 {
185 	int ret;
186 	DECLARE_WAITQUEUE(wait, current);
187 
188  retry:
189 	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
190 		&& chip->state != FL_SYNCING) {
191 		/*
192 		 * OK. We have possibility for contension on the write/erase
193 		 * operations which are global to the real chip and not per
194 		 * partition.  So let's fight it over in the partition which
195 		 * currently has authority on the operation.
196 		 *
197 		 * The rules are as follows:
198 		 *
199 		 * - any write operation must own shared->writing.
200 		 *
201 		 * - any erase operation must own _both_ shared->writing and
202 		 *   shared->erasing.
203 		 *
204 		 * - contension arbitration is handled in the owner's context.
205 		 *
206 		 * The 'shared' struct can be read and/or written only when
207 		 * its lock is taken.
208 		 */
209 		struct flchip_shared *shared = chip->priv;
210 		struct flchip *contender;
211 		mutex_lock(&shared->lock);
212 		contender = shared->writing;
213 		if (contender && contender != chip) {
214 			/*
215 			 * The engine to perform desired operation on this
216 			 * partition is already in use by someone else.
217 			 * Let's fight over it in the context of the chip
218 			 * currently using it.  If it is possible to suspend,
219 			 * that other partition will do just that, otherwise
220 			 * it'll happily send us to sleep.  In any case, when
221 			 * get_chip returns success we're clear to go ahead.
222 			 */
223 			ret = mutex_trylock(&contender->mutex);
224 			mutex_unlock(&shared->lock);
225 			if (!ret)
226 				goto retry;
227 			mutex_unlock(&chip->mutex);
228 			ret = chip_ready(map, contender, mode);
229 			mutex_lock(&chip->mutex);
230 
231 			if (ret == -EAGAIN) {
232 				mutex_unlock(&contender->mutex);
233 				goto retry;
234 			}
235 			if (ret) {
236 				mutex_unlock(&contender->mutex);
237 				return ret;
238 			}
239 			mutex_lock(&shared->lock);
240 
241 			/* We should not own chip if it is already in FL_SYNCING
242 			 * state. Put contender and retry. */
243 			if (chip->state == FL_SYNCING) {
244 				put_chip(map, contender);
245 				mutex_unlock(&contender->mutex);
246 				goto retry;
247 			}
248 			mutex_unlock(&contender->mutex);
249 		}
250 
251 		/* Check if we have suspended erase on this chip.
252 		   Must sleep in such a case. */
253 		if (mode == FL_ERASING && shared->erasing
254 		    && shared->erasing->oldstate == FL_ERASING) {
255 			mutex_unlock(&shared->lock);
256 			set_current_state(TASK_UNINTERRUPTIBLE);
257 			add_wait_queue(&chip->wq, &wait);
258 			mutex_unlock(&chip->mutex);
259 			schedule();
260 			remove_wait_queue(&chip->wq, &wait);
261 			mutex_lock(&chip->mutex);
262 			goto retry;
263 		}
264 
265 		/* We now own it */
266 		shared->writing = chip;
267 		if (mode == FL_ERASING)
268 			shared->erasing = chip;
269 		mutex_unlock(&shared->lock);
270 	}
271 
272 	ret = chip_ready(map, chip, mode);
273 	if (ret == -EAGAIN)
274 		goto retry;
275 
276 	return ret;
277 }
278 
chip_ready(struct map_info * map,struct flchip * chip,int mode)279 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
280 {
281 	struct lpddr_private *lpddr = map->fldrv_priv;
282 	int ret = 0;
283 	DECLARE_WAITQUEUE(wait, current);
284 
285 	/* Prevent setting state FL_SYNCING for chip in suspended state. */
286 	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
287 		goto sleep;
288 
289 	switch (chip->state) {
290 	case FL_READY:
291 	case FL_JEDEC_QUERY:
292 		return 0;
293 
294 	case FL_ERASING:
295 		if (!lpddr->qinfo->SuspEraseSupp ||
296 			!(mode == FL_READY || mode == FL_POINT))
297 			goto sleep;
298 
299 		map_write(map, CMD(LPDDR_SUSPEND),
300 			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
301 		chip->oldstate = FL_ERASING;
302 		chip->state = FL_ERASE_SUSPENDING;
303 		ret = wait_for_ready(map, chip, 0);
304 		if (ret) {
305 			/* Oops. something got wrong. */
306 			/* Resume and pretend we weren't here.  */
307 			put_chip(map, chip);
308 			printk(KERN_ERR "%s: suspend operation failed."
309 					"State may be wrong \n", map->name);
310 			return -EIO;
311 		}
312 		chip->erase_suspended = 1;
313 		chip->state = FL_READY;
314 		return 0;
315 		/* Erase suspend */
316 	case FL_POINT:
317 		/* Only if there's no operation suspended... */
318 		if (mode == FL_READY && chip->oldstate == FL_READY)
319 			return 0;
320 
321 	default:
322 sleep:
323 		set_current_state(TASK_UNINTERRUPTIBLE);
324 		add_wait_queue(&chip->wq, &wait);
325 		mutex_unlock(&chip->mutex);
326 		schedule();
327 		remove_wait_queue(&chip->wq, &wait);
328 		mutex_lock(&chip->mutex);
329 		return -EAGAIN;
330 	}
331 }
332 
put_chip(struct map_info * map,struct flchip * chip)333 static void put_chip(struct map_info *map, struct flchip *chip)
334 {
335 	if (chip->priv) {
336 		struct flchip_shared *shared = chip->priv;
337 		mutex_lock(&shared->lock);
338 		if (shared->writing == chip && chip->oldstate == FL_READY) {
339 			/* We own the ability to write, but we're done */
340 			shared->writing = shared->erasing;
341 			if (shared->writing && shared->writing != chip) {
342 				/* give back the ownership */
343 				struct flchip *loaner = shared->writing;
344 				mutex_lock(&loaner->mutex);
345 				mutex_unlock(&shared->lock);
346 				mutex_unlock(&chip->mutex);
347 				put_chip(map, loaner);
348 				mutex_lock(&chip->mutex);
349 				mutex_unlock(&loaner->mutex);
350 				wake_up(&chip->wq);
351 				return;
352 			}
353 			shared->erasing = NULL;
354 			shared->writing = NULL;
355 		} else if (shared->erasing == chip && shared->writing != chip) {
356 			/*
357 			 * We own the ability to erase without the ability
358 			 * to write, which means the erase was suspended
359 			 * and some other partition is currently writing.
360 			 * Don't let the switch below mess things up since
361 			 * we don't have ownership to resume anything.
362 			 */
363 			mutex_unlock(&shared->lock);
364 			wake_up(&chip->wq);
365 			return;
366 		}
367 		mutex_unlock(&shared->lock);
368 	}
369 
370 	switch (chip->oldstate) {
371 	case FL_ERASING:
372 		map_write(map, CMD(LPDDR_RESUME),
373 				map->pfow_base + PFOW_COMMAND_CODE);
374 		map_write(map, CMD(LPDDR_START_EXECUTION),
375 				map->pfow_base + PFOW_COMMAND_EXECUTE);
376 		chip->oldstate = FL_READY;
377 		chip->state = FL_ERASING;
378 		break;
379 	case FL_READY:
380 		break;
381 	default:
382 		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
383 				map->name, chip->oldstate);
384 	}
385 	wake_up(&chip->wq);
386 }
387 
do_write_buffer(struct map_info * map,struct flchip * chip,unsigned long adr,const struct kvec ** pvec,unsigned long * pvec_seek,int len)388 static int do_write_buffer(struct map_info *map, struct flchip *chip,
389 			unsigned long adr, const struct kvec **pvec,
390 			unsigned long *pvec_seek, int len)
391 {
392 	struct lpddr_private *lpddr = map->fldrv_priv;
393 	map_word datum;
394 	int ret, wbufsize, word_gap, words;
395 	const struct kvec *vec;
396 	unsigned long vec_seek;
397 	unsigned long prog_buf_ofs;
398 
399 	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
400 
401 	mutex_lock(&chip->mutex);
402 	ret = get_chip(map, chip, FL_WRITING);
403 	if (ret) {
404 		mutex_unlock(&chip->mutex);
405 		return ret;
406 	}
407 	/* Figure out the number of words to write */
408 	word_gap = (-adr & (map_bankwidth(map)-1));
409 	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
410 	if (!word_gap) {
411 		words--;
412 	} else {
413 		word_gap = map_bankwidth(map) - word_gap;
414 		adr -= word_gap;
415 		datum = map_word_ff(map);
416 	}
417 	/* Write data */
418 	/* Get the program buffer offset from PFOW register data first*/
419 	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
420 				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
421 	vec = *pvec;
422 	vec_seek = *pvec_seek;
423 	do {
424 		int n = map_bankwidth(map) - word_gap;
425 
426 		if (n > vec->iov_len - vec_seek)
427 			n = vec->iov_len - vec_seek;
428 		if (n > len)
429 			n = len;
430 
431 		if (!word_gap && (len < map_bankwidth(map)))
432 			datum = map_word_ff(map);
433 
434 		datum = map_word_load_partial(map, datum,
435 				vec->iov_base + vec_seek, word_gap, n);
436 
437 		len -= n;
438 		word_gap += n;
439 		if (!len || word_gap == map_bankwidth(map)) {
440 			map_write(map, datum, prog_buf_ofs);
441 			prog_buf_ofs += map_bankwidth(map);
442 			word_gap = 0;
443 		}
444 
445 		vec_seek += n;
446 		if (vec_seek == vec->iov_len) {
447 			vec++;
448 			vec_seek = 0;
449 		}
450 	} while (len);
451 	*pvec = vec;
452 	*pvec_seek = vec_seek;
453 
454 	/* GO GO GO */
455 	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
456 	chip->state = FL_WRITING;
457 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
458 	if (ret)	{
459 		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
460 			map->name, ret, adr);
461 		goto out;
462 	}
463 
464  out:	put_chip(map, chip);
465 	mutex_unlock(&chip->mutex);
466 	return ret;
467 }
468 
do_erase_oneblock(struct mtd_info * mtd,loff_t adr)469 static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
470 {
471 	struct map_info *map = mtd->priv;
472 	struct lpddr_private *lpddr = map->fldrv_priv;
473 	int chipnum = adr >> lpddr->chipshift;
474 	struct flchip *chip = &lpddr->chips[chipnum];
475 	int ret;
476 
477 	mutex_lock(&chip->mutex);
478 	ret = get_chip(map, chip, FL_ERASING);
479 	if (ret) {
480 		mutex_unlock(&chip->mutex);
481 		return ret;
482 	}
483 	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
484 	chip->state = FL_ERASING;
485 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
486 	if (ret) {
487 		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
488 			map->name, ret, adr);
489 		goto out;
490 	}
491  out:	put_chip(map, chip);
492 	mutex_unlock(&chip->mutex);
493 	return ret;
494 }
495 
lpddr_read(struct mtd_info * mtd,loff_t adr,size_t len,size_t * retlen,u_char * buf)496 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
497 			size_t *retlen, u_char *buf)
498 {
499 	struct map_info *map = mtd->priv;
500 	struct lpddr_private *lpddr = map->fldrv_priv;
501 	int chipnum = adr >> lpddr->chipshift;
502 	struct flchip *chip = &lpddr->chips[chipnum];
503 	int ret = 0;
504 
505 	mutex_lock(&chip->mutex);
506 	ret = get_chip(map, chip, FL_READY);
507 	if (ret) {
508 		mutex_unlock(&chip->mutex);
509 		return ret;
510 	}
511 
512 	map_copy_from(map, buf, adr, len);
513 	*retlen = len;
514 
515 	put_chip(map, chip);
516 	mutex_unlock(&chip->mutex);
517 	return ret;
518 }
519 
lpddr_point(struct mtd_info * mtd,loff_t adr,size_t len,size_t * retlen,void ** mtdbuf,resource_size_t * phys)520 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
521 			size_t *retlen, void **mtdbuf, resource_size_t *phys)
522 {
523 	struct map_info *map = mtd->priv;
524 	struct lpddr_private *lpddr = map->fldrv_priv;
525 	int chipnum = adr >> lpddr->chipshift;
526 	unsigned long ofs, last_end = 0;
527 	struct flchip *chip = &lpddr->chips[chipnum];
528 	int ret = 0;
529 
530 	if (!map->virt)
531 		return -EINVAL;
532 
533 	/* ofs: offset within the first chip that the first read should start */
534 	ofs = adr - (chipnum << lpddr->chipshift);
535 	*mtdbuf = (void *)map->virt + chip->start + ofs;
536 
537 	while (len) {
538 		unsigned long thislen;
539 
540 		if (chipnum >= lpddr->numchips)
541 			break;
542 
543 		/* We cannot point across chips that are virtually disjoint */
544 		if (!last_end)
545 			last_end = chip->start;
546 		else if (chip->start != last_end)
547 			break;
548 
549 		if ((len + ofs - 1) >> lpddr->chipshift)
550 			thislen = (1<<lpddr->chipshift) - ofs;
551 		else
552 			thislen = len;
553 		/* get the chip */
554 		mutex_lock(&chip->mutex);
555 		ret = get_chip(map, chip, FL_POINT);
556 		mutex_unlock(&chip->mutex);
557 		if (ret)
558 			break;
559 
560 		chip->state = FL_POINT;
561 		chip->ref_point_counter++;
562 		*retlen += thislen;
563 		len -= thislen;
564 
565 		ofs = 0;
566 		last_end += 1 << lpddr->chipshift;
567 		chipnum++;
568 		chip = &lpddr->chips[chipnum];
569 	}
570 	return 0;
571 }
572 
lpddr_unpoint(struct mtd_info * mtd,loff_t adr,size_t len)573 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
574 {
575 	struct map_info *map = mtd->priv;
576 	struct lpddr_private *lpddr = map->fldrv_priv;
577 	int chipnum = adr >> lpddr->chipshift, err = 0;
578 	unsigned long ofs;
579 
580 	/* ofs: offset within the first chip that the first read should start */
581 	ofs = adr - (chipnum << lpddr->chipshift);
582 
583 	while (len) {
584 		unsigned long thislen;
585 		struct flchip *chip;
586 
587 		chip = &lpddr->chips[chipnum];
588 		if (chipnum >= lpddr->numchips)
589 			break;
590 
591 		if ((len + ofs - 1) >> lpddr->chipshift)
592 			thislen = (1<<lpddr->chipshift) - ofs;
593 		else
594 			thislen = len;
595 
596 		mutex_lock(&chip->mutex);
597 		if (chip->state == FL_POINT) {
598 			chip->ref_point_counter--;
599 			if (chip->ref_point_counter == 0)
600 				chip->state = FL_READY;
601 		} else {
602 			printk(KERN_WARNING "%s: Warning: unpoint called on non"
603 					"pointed region\n", map->name);
604 			err = -EINVAL;
605 		}
606 
607 		put_chip(map, chip);
608 		mutex_unlock(&chip->mutex);
609 
610 		len -= thislen;
611 		ofs = 0;
612 		chipnum++;
613 	}
614 
615 	return err;
616 }
617 
lpddr_write_buffers(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)618 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
619 				size_t *retlen, const u_char *buf)
620 {
621 	struct kvec vec;
622 
623 	vec.iov_base = (void *) buf;
624 	vec.iov_len = len;
625 
626 	return lpddr_writev(mtd, &vec, 1, to, retlen);
627 }
628 
629 
lpddr_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)630 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
631 				unsigned long count, loff_t to, size_t *retlen)
632 {
633 	struct map_info *map = mtd->priv;
634 	struct lpddr_private *lpddr = map->fldrv_priv;
635 	int ret = 0;
636 	int chipnum;
637 	unsigned long ofs, vec_seek, i;
638 	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
639 	size_t len = 0;
640 
641 	for (i = 0; i < count; i++)
642 		len += vecs[i].iov_len;
643 
644 	if (!len)
645 		return 0;
646 
647 	chipnum = to >> lpddr->chipshift;
648 
649 	ofs = to;
650 	vec_seek = 0;
651 
652 	do {
653 		/* We must not cross write block boundaries */
654 		int size = wbufsize - (ofs & (wbufsize-1));
655 
656 		if (size > len)
657 			size = len;
658 
659 		ret = do_write_buffer(map, &lpddr->chips[chipnum],
660 					  ofs, &vecs, &vec_seek, size);
661 		if (ret)
662 			return ret;
663 
664 		ofs += size;
665 		(*retlen) += size;
666 		len -= size;
667 
668 		/* Be nice and reschedule with the chip in a usable
669 		 * state for other processes */
670 		cond_resched();
671 
672 	} while (len);
673 
674 	return 0;
675 }
676 
lpddr_erase(struct mtd_info * mtd,struct erase_info * instr)677 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
678 {
679 	unsigned long ofs, len;
680 	int ret;
681 	struct map_info *map = mtd->priv;
682 	struct lpddr_private *lpddr = map->fldrv_priv;
683 	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
684 
685 	ofs = instr->addr;
686 	len = instr->len;
687 
688 	while (len > 0) {
689 		ret = do_erase_oneblock(mtd, ofs);
690 		if (ret)
691 			return ret;
692 		ofs += size;
693 		len -= size;
694 	}
695 	instr->state = MTD_ERASE_DONE;
696 	mtd_erase_callback(instr);
697 
698 	return 0;
699 }
700 
701 #define DO_XXLOCK_LOCK		1
702 #define DO_XXLOCK_UNLOCK	2
do_xxlock(struct mtd_info * mtd,loff_t adr,uint32_t len,int thunk)703 static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
704 {
705 	int ret = 0;
706 	struct map_info *map = mtd->priv;
707 	struct lpddr_private *lpddr = map->fldrv_priv;
708 	int chipnum = adr >> lpddr->chipshift;
709 	struct flchip *chip = &lpddr->chips[chipnum];
710 
711 	mutex_lock(&chip->mutex);
712 	ret = get_chip(map, chip, FL_LOCKING);
713 	if (ret) {
714 		mutex_unlock(&chip->mutex);
715 		return ret;
716 	}
717 
718 	if (thunk == DO_XXLOCK_LOCK) {
719 		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
720 		chip->state = FL_LOCKING;
721 	} else if (thunk == DO_XXLOCK_UNLOCK) {
722 		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
723 		chip->state = FL_UNLOCKING;
724 	} else
725 		BUG();
726 
727 	ret = wait_for_ready(map, chip, 1);
728 	if (ret)	{
729 		printk(KERN_ERR "%s: block unlock error status %d \n",
730 				map->name, ret);
731 		goto out;
732 	}
733 out:	put_chip(map, chip);
734 	mutex_unlock(&chip->mutex);
735 	return ret;
736 }
737 
lpddr_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)738 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
739 {
740 	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
741 }
742 
lpddr_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)743 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
744 {
745 	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
746 }
747 
748 MODULE_LICENSE("GPL");
749 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
750 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
751