• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  drivers/mtd/nand/au1550nd.c
3  *
4  *  Copyright (C) 2004 Embedded Edge, LLC
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/gpio.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/platform_device.h>
20 #include <asm/io.h>
21 #include <asm/mach-au1x00/au1000.h>
22 #include <asm/mach-au1x00/au1550nd.h>
23 
24 
25 struct au1550nd_ctx {
26 	struct mtd_info info;
27 	struct nand_chip chip;
28 
29 	int cs;
30 	void __iomem *base;
31 	void (*write_byte)(struct mtd_info *, u_char);
32 };
33 
34 /**
35  * au_read_byte -  read one byte from the chip
36  * @mtd:	MTD device structure
37  *
38  * read function for 8bit buswidth
39  */
au_read_byte(struct mtd_info * mtd)40 static u_char au_read_byte(struct mtd_info *mtd)
41 {
42 	struct nand_chip *this = mtd->priv;
43 	u_char ret = readb(this->IO_ADDR_R);
44 	wmb(); /* drain writebuffer */
45 	return ret;
46 }
47 
48 /**
49  * au_write_byte -  write one byte to the chip
50  * @mtd:	MTD device structure
51  * @byte:	pointer to data byte to write
52  *
53  * write function for 8it buswidth
54  */
au_write_byte(struct mtd_info * mtd,u_char byte)55 static void au_write_byte(struct mtd_info *mtd, u_char byte)
56 {
57 	struct nand_chip *this = mtd->priv;
58 	writeb(byte, this->IO_ADDR_W);
59 	wmb(); /* drain writebuffer */
60 }
61 
62 /**
63  * au_read_byte16 -  read one byte endianness aware from the chip
64  * @mtd:	MTD device structure
65  *
66  * read function for 16bit buswidth with endianness conversion
67  */
au_read_byte16(struct mtd_info * mtd)68 static u_char au_read_byte16(struct mtd_info *mtd)
69 {
70 	struct nand_chip *this = mtd->priv;
71 	u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
72 	wmb(); /* drain writebuffer */
73 	return ret;
74 }
75 
76 /**
77  * au_write_byte16 -  write one byte endianness aware to the chip
78  * @mtd:	MTD device structure
79  * @byte:	pointer to data byte to write
80  *
81  * write function for 16bit buswidth with endianness conversion
82  */
au_write_byte16(struct mtd_info * mtd,u_char byte)83 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
84 {
85 	struct nand_chip *this = mtd->priv;
86 	writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
87 	wmb(); /* drain writebuffer */
88 }
89 
90 /**
91  * au_read_word -  read one word from the chip
92  * @mtd:	MTD device structure
93  *
94  * read function for 16bit buswidth without endianness conversion
95  */
au_read_word(struct mtd_info * mtd)96 static u16 au_read_word(struct mtd_info *mtd)
97 {
98 	struct nand_chip *this = mtd->priv;
99 	u16 ret = readw(this->IO_ADDR_R);
100 	wmb(); /* drain writebuffer */
101 	return ret;
102 }
103 
104 /**
105  * au_write_buf -  write buffer to chip
106  * @mtd:	MTD device structure
107  * @buf:	data buffer
108  * @len:	number of bytes to write
109  *
110  * write function for 8bit buswidth
111  */
au_write_buf(struct mtd_info * mtd,const u_char * buf,int len)112 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
113 {
114 	int i;
115 	struct nand_chip *this = mtd->priv;
116 
117 	for (i = 0; i < len; i++) {
118 		writeb(buf[i], this->IO_ADDR_W);
119 		wmb(); /* drain writebuffer */
120 	}
121 }
122 
123 /**
124  * au_read_buf -  read chip data into buffer
125  * @mtd:	MTD device structure
126  * @buf:	buffer to store date
127  * @len:	number of bytes to read
128  *
129  * read function for 8bit buswidth
130  */
au_read_buf(struct mtd_info * mtd,u_char * buf,int len)131 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
132 {
133 	int i;
134 	struct nand_chip *this = mtd->priv;
135 
136 	for (i = 0; i < len; i++) {
137 		buf[i] = readb(this->IO_ADDR_R);
138 		wmb(); /* drain writebuffer */
139 	}
140 }
141 
142 /**
143  * au_write_buf16 -  write buffer to chip
144  * @mtd:	MTD device structure
145  * @buf:	data buffer
146  * @len:	number of bytes to write
147  *
148  * write function for 16bit buswidth
149  */
au_write_buf16(struct mtd_info * mtd,const u_char * buf,int len)150 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
151 {
152 	int i;
153 	struct nand_chip *this = mtd->priv;
154 	u16 *p = (u16 *) buf;
155 	len >>= 1;
156 
157 	for (i = 0; i < len; i++) {
158 		writew(p[i], this->IO_ADDR_W);
159 		wmb(); /* drain writebuffer */
160 	}
161 
162 }
163 
164 /**
165  * au_read_buf16 -  read chip data into buffer
166  * @mtd:	MTD device structure
167  * @buf:	buffer to store date
168  * @len:	number of bytes to read
169  *
170  * read function for 16bit buswidth
171  */
au_read_buf16(struct mtd_info * mtd,u_char * buf,int len)172 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
173 {
174 	int i;
175 	struct nand_chip *this = mtd->priv;
176 	u16 *p = (u16 *) buf;
177 	len >>= 1;
178 
179 	for (i = 0; i < len; i++) {
180 		p[i] = readw(this->IO_ADDR_R);
181 		wmb(); /* drain writebuffer */
182 	}
183 }
184 
185 /* Select the chip by setting nCE to low */
186 #define NAND_CTL_SETNCE		1
187 /* Deselect the chip by setting nCE to high */
188 #define NAND_CTL_CLRNCE		2
189 /* Select the command latch by setting CLE to high */
190 #define NAND_CTL_SETCLE		3
191 /* Deselect the command latch by setting CLE to low */
192 #define NAND_CTL_CLRCLE		4
193 /* Select the address latch by setting ALE to high */
194 #define NAND_CTL_SETALE		5
195 /* Deselect the address latch by setting ALE to low */
196 #define NAND_CTL_CLRALE		6
197 
au1550_hwcontrol(struct mtd_info * mtd,int cmd)198 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
199 {
200 	struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info);
201 	struct nand_chip *this = mtd->priv;
202 
203 	switch (cmd) {
204 
205 	case NAND_CTL_SETCLE:
206 		this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
207 		break;
208 
209 	case NAND_CTL_CLRCLE:
210 		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
211 		break;
212 
213 	case NAND_CTL_SETALE:
214 		this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
215 		break;
216 
217 	case NAND_CTL_CLRALE:
218 		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
219 		/* FIXME: Nobody knows why this is necessary,
220 		 * but it works only that way */
221 		udelay(1);
222 		break;
223 
224 	case NAND_CTL_SETNCE:
225 		/* assert (force assert) chip enable */
226 		alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
227 		break;
228 
229 	case NAND_CTL_CLRNCE:
230 		/* deassert chip enable */
231 		alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
232 		break;
233 	}
234 
235 	this->IO_ADDR_R = this->IO_ADDR_W;
236 
237 	wmb(); /* Drain the writebuffer */
238 }
239 
au1550_device_ready(struct mtd_info * mtd)240 int au1550_device_ready(struct mtd_info *mtd)
241 {
242 	return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
243 }
244 
245 /**
246  * au1550_select_chip - control -CE line
247  *	Forbid driving -CE manually permitting the NAND controller to do this.
248  *	Keeping -CE asserted during the whole sector reads interferes with the
249  *	NOR flash and PCMCIA drivers as it causes contention on the static bus.
250  *	We only have to hold -CE low for the NAND read commands since the flash
251  *	chip needs it to be asserted during chip not ready time but the NAND
252  *	controller keeps it released.
253  *
254  * @mtd:	MTD device structure
255  * @chip:	chipnumber to select, -1 for deselect
256  */
au1550_select_chip(struct mtd_info * mtd,int chip)257 static void au1550_select_chip(struct mtd_info *mtd, int chip)
258 {
259 }
260 
261 /**
262  * au1550_command - Send command to NAND device
263  * @mtd:	MTD device structure
264  * @command:	the command to be sent
265  * @column:	the column address for this command, -1 if none
266  * @page_addr:	the page address for this command, -1 if none
267  */
au1550_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)268 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
269 {
270 	struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info);
271 	struct nand_chip *this = mtd->priv;
272 	int ce_override = 0, i;
273 	unsigned long flags = 0;
274 
275 	/* Begin command latch cycle */
276 	au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
277 	/*
278 	 * Write out the command to the device.
279 	 */
280 	if (command == NAND_CMD_SEQIN) {
281 		int readcmd;
282 
283 		if (column >= mtd->writesize) {
284 			/* OOB area */
285 			column -= mtd->writesize;
286 			readcmd = NAND_CMD_READOOB;
287 		} else if (column < 256) {
288 			/* First 256 bytes --> READ0 */
289 			readcmd = NAND_CMD_READ0;
290 		} else {
291 			column -= 256;
292 			readcmd = NAND_CMD_READ1;
293 		}
294 		ctx->write_byte(mtd, readcmd);
295 	}
296 	ctx->write_byte(mtd, command);
297 
298 	/* Set ALE and clear CLE to start address cycle */
299 	au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
300 
301 	if (column != -1 || page_addr != -1) {
302 		au1550_hwcontrol(mtd, NAND_CTL_SETALE);
303 
304 		/* Serially input address */
305 		if (column != -1) {
306 			/* Adjust columns for 16 bit buswidth */
307 			if (this->options & NAND_BUSWIDTH_16 &&
308 					!nand_opcode_8bits(command))
309 				column >>= 1;
310 			ctx->write_byte(mtd, column);
311 		}
312 		if (page_addr != -1) {
313 			ctx->write_byte(mtd, (u8)(page_addr & 0xff));
314 
315 			if (command == NAND_CMD_READ0 ||
316 			    command == NAND_CMD_READ1 ||
317 			    command == NAND_CMD_READOOB) {
318 				/*
319 				 * NAND controller will release -CE after
320 				 * the last address byte is written, so we'll
321 				 * have to forcibly assert it. No interrupts
322 				 * are allowed while we do this as we don't
323 				 * want the NOR flash or PCMCIA drivers to
324 				 * steal our precious bytes of data...
325 				 */
326 				ce_override = 1;
327 				local_irq_save(flags);
328 				au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
329 			}
330 
331 			ctx->write_byte(mtd, (u8)(page_addr >> 8));
332 
333 			/* One more address cycle for devices > 32MiB */
334 			if (this->chipsize > (32 << 20))
335 				ctx->write_byte(mtd,
336 						((page_addr >> 16) & 0x0f));
337 		}
338 		/* Latch in address */
339 		au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
340 	}
341 
342 	/*
343 	 * Program and erase have their own busy handlers.
344 	 * Status and sequential in need no delay.
345 	 */
346 	switch (command) {
347 
348 	case NAND_CMD_PAGEPROG:
349 	case NAND_CMD_ERASE1:
350 	case NAND_CMD_ERASE2:
351 	case NAND_CMD_SEQIN:
352 	case NAND_CMD_STATUS:
353 		return;
354 
355 	case NAND_CMD_RESET:
356 		break;
357 
358 	case NAND_CMD_READ0:
359 	case NAND_CMD_READ1:
360 	case NAND_CMD_READOOB:
361 		/* Check if we're really driving -CE low (just in case) */
362 		if (unlikely(!ce_override))
363 			break;
364 
365 		/* Apply a short delay always to ensure that we do wait tWB. */
366 		ndelay(100);
367 		/* Wait for a chip to become ready... */
368 		for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
369 			udelay(1);
370 
371 		/* Release -CE and re-enable interrupts. */
372 		au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
373 		local_irq_restore(flags);
374 		return;
375 	}
376 	/* Apply this short delay always to ensure that we do wait tWB. */
377 	ndelay(100);
378 
379 	while(!this->dev_ready(mtd));
380 }
381 
find_nand_cs(unsigned long nand_base)382 static int find_nand_cs(unsigned long nand_base)
383 {
384 	void __iomem *base =
385 			(void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
386 	unsigned long addr, staddr, start, mask, end;
387 	int i;
388 
389 	for (i = 0; i < 4; i++) {
390 		addr = 0x1000 + (i * 0x10);			/* CSx */
391 		staddr = __raw_readl(base + addr + 0x08);	/* STADDRx */
392 		/* figure out the decoded range of this CS */
393 		start = (staddr << 4) & 0xfffc0000;
394 		mask = (staddr << 18) & 0xfffc0000;
395 		end = (start | (start - 1)) & ~(start ^ mask);
396 		if ((nand_base >= start) && (nand_base < end))
397 			return i;
398 	}
399 
400 	return -ENODEV;
401 }
402 
au1550nd_probe(struct platform_device * pdev)403 static int au1550nd_probe(struct platform_device *pdev)
404 {
405 	struct au1550nd_platdata *pd;
406 	struct au1550nd_ctx *ctx;
407 	struct nand_chip *this;
408 	struct resource *r;
409 	int ret, cs;
410 
411 	pd = dev_get_platdata(&pdev->dev);
412 	if (!pd) {
413 		dev_err(&pdev->dev, "missing platform data\n");
414 		return -ENODEV;
415 	}
416 
417 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
418 	if (!ctx)
419 		return -ENOMEM;
420 
421 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
422 	if (!r) {
423 		dev_err(&pdev->dev, "no NAND memory resource\n");
424 		ret = -ENODEV;
425 		goto out1;
426 	}
427 	if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
428 		dev_err(&pdev->dev, "cannot claim NAND memory area\n");
429 		ret = -ENOMEM;
430 		goto out1;
431 	}
432 
433 	ctx->base = ioremap_nocache(r->start, 0x1000);
434 	if (!ctx->base) {
435 		dev_err(&pdev->dev, "cannot remap NAND memory area\n");
436 		ret = -ENODEV;
437 		goto out2;
438 	}
439 
440 	this = &ctx->chip;
441 	ctx->info.priv = this;
442 	ctx->info.dev.parent = &pdev->dev;
443 
444 	/* figure out which CS# r->start belongs to */
445 	cs = find_nand_cs(r->start);
446 	if (cs < 0) {
447 		dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
448 		ret = -ENODEV;
449 		goto out3;
450 	}
451 	ctx->cs = cs;
452 
453 	this->dev_ready = au1550_device_ready;
454 	this->select_chip = au1550_select_chip;
455 	this->cmdfunc = au1550_command;
456 
457 	/* 30 us command delay time */
458 	this->chip_delay = 30;
459 	this->ecc.mode = NAND_ECC_SOFT;
460 
461 	if (pd->devwidth)
462 		this->options |= NAND_BUSWIDTH_16;
463 
464 	this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
465 	ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
466 	this->read_word = au_read_word;
467 	this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
468 	this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
469 
470 	ret = nand_scan(&ctx->info, 1);
471 	if (ret) {
472 		dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
473 		goto out3;
474 	}
475 
476 	mtd_device_register(&ctx->info, pd->parts, pd->num_parts);
477 
478 	platform_set_drvdata(pdev, ctx);
479 
480 	return 0;
481 
482 out3:
483 	iounmap(ctx->base);
484 out2:
485 	release_mem_region(r->start, resource_size(r));
486 out1:
487 	kfree(ctx);
488 	return ret;
489 }
490 
au1550nd_remove(struct platform_device * pdev)491 static int au1550nd_remove(struct platform_device *pdev)
492 {
493 	struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
494 	struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
495 
496 	nand_release(&ctx->info);
497 	iounmap(ctx->base);
498 	release_mem_region(r->start, 0x1000);
499 	kfree(ctx);
500 	return 0;
501 }
502 
503 static struct platform_driver au1550nd_driver = {
504 	.driver = {
505 		.name	= "au1550-nand",
506 	},
507 	.probe		= au1550nd_probe,
508 	.remove		= au1550nd_remove,
509 };
510 
511 module_platform_driver(au1550nd_driver);
512 
513 MODULE_LICENSE("GPL");
514 MODULE_AUTHOR("Embedded Edge, LLC");
515 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");
516