1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3 *
4 * Copyright © 2006 Texas Instruments.
5 *
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/err.h>
30 #include <linux/clk.h>
31 #include <linux/io.h>
32 #include <linux/mtd/nand.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/slab.h>
35 #include <linux/of_device.h>
36 #include <linux/of.h>
37 #include <linux/of_mtd.h>
38
39 #include <linux/platform_data/mtd-davinci.h>
40 #include <linux/platform_data/mtd-davinci-aemif.h>
41
42 /*
43 * This is a device driver for the NAND flash controller found on the
44 * various DaVinci family chips. It handles up to four SoC chipselects,
45 * and some flavors of secondary chipselect (e.g. based on A12) as used
46 * with multichip packages.
47 *
48 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
49 * available on chips like the DM355 and OMAP-L137 and needed with the
50 * more error-prone MLC NAND chips.
51 *
52 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53 * outputs in a "wire-AND" configuration, with no per-chip signals.
54 */
55 struct davinci_nand_info {
56 struct mtd_info mtd;
57 struct nand_chip chip;
58 struct nand_ecclayout ecclayout;
59
60 struct device *dev;
61 struct clk *clk;
62
63 bool is_readmode;
64
65 void __iomem *base;
66 void __iomem *vaddr;
67
68 uint32_t ioaddr;
69 uint32_t current_cs;
70
71 uint32_t mask_chipsel;
72 uint32_t mask_ale;
73 uint32_t mask_cle;
74
75 uint32_t core_chipsel;
76
77 struct davinci_aemif_timing *timing;
78 };
79
80 static DEFINE_SPINLOCK(davinci_nand_lock);
81 static bool ecc4_busy;
82
83 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
84
85
davinci_nand_readl(struct davinci_nand_info * info,int offset)86 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
87 int offset)
88 {
89 return __raw_readl(info->base + offset);
90 }
91
davinci_nand_writel(struct davinci_nand_info * info,int offset,unsigned long value)92 static inline void davinci_nand_writel(struct davinci_nand_info *info,
93 int offset, unsigned long value)
94 {
95 __raw_writel(value, info->base + offset);
96 }
97
98 /*----------------------------------------------------------------------*/
99
100 /*
101 * Access to hardware control lines: ALE, CLE, secondary chipselect.
102 */
103
nand_davinci_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)104 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
105 unsigned int ctrl)
106 {
107 struct davinci_nand_info *info = to_davinci_nand(mtd);
108 uint32_t addr = info->current_cs;
109 struct nand_chip *nand = mtd->priv;
110
111 /* Did the control lines change? */
112 if (ctrl & NAND_CTRL_CHANGE) {
113 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
114 addr |= info->mask_cle;
115 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
116 addr |= info->mask_ale;
117
118 nand->IO_ADDR_W = (void __iomem __force *)addr;
119 }
120
121 if (cmd != NAND_CMD_NONE)
122 iowrite8(cmd, nand->IO_ADDR_W);
123 }
124
nand_davinci_select_chip(struct mtd_info * mtd,int chip)125 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
126 {
127 struct davinci_nand_info *info = to_davinci_nand(mtd);
128 uint32_t addr = info->ioaddr;
129
130 /* maybe kick in a second chipselect */
131 if (chip > 0)
132 addr |= info->mask_chipsel;
133 info->current_cs = addr;
134
135 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
136 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
137 }
138
139 /*----------------------------------------------------------------------*/
140
141 /*
142 * 1-bit hardware ECC ... context maintained for each core chipselect
143 */
144
nand_davinci_readecc_1bit(struct mtd_info * mtd)145 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
146 {
147 struct davinci_nand_info *info = to_davinci_nand(mtd);
148
149 return davinci_nand_readl(info, NANDF1ECC_OFFSET
150 + 4 * info->core_chipsel);
151 }
152
nand_davinci_hwctl_1bit(struct mtd_info * mtd,int mode)153 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
154 {
155 struct davinci_nand_info *info;
156 uint32_t nandcfr;
157 unsigned long flags;
158
159 info = to_davinci_nand(mtd);
160
161 /* Reset ECC hardware */
162 nand_davinci_readecc_1bit(mtd);
163
164 spin_lock_irqsave(&davinci_nand_lock, flags);
165
166 /* Restart ECC hardware */
167 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
168 nandcfr |= BIT(8 + info->core_chipsel);
169 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
170
171 spin_unlock_irqrestore(&davinci_nand_lock, flags);
172 }
173
174 /*
175 * Read hardware ECC value and pack into three bytes
176 */
nand_davinci_calculate_1bit(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)177 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
178 const u_char *dat, u_char *ecc_code)
179 {
180 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
181 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
182
183 /* invert so that erased block ecc is correct */
184 ecc24 = ~ecc24;
185 ecc_code[0] = (u_char)(ecc24);
186 ecc_code[1] = (u_char)(ecc24 >> 8);
187 ecc_code[2] = (u_char)(ecc24 >> 16);
188
189 return 0;
190 }
191
nand_davinci_correct_1bit(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)192 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
193 u_char *read_ecc, u_char *calc_ecc)
194 {
195 struct nand_chip *chip = mtd->priv;
196 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
197 (read_ecc[2] << 16);
198 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
199 (calc_ecc[2] << 16);
200 uint32_t diff = eccCalc ^ eccNand;
201
202 if (diff) {
203 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
204 /* Correctable error */
205 if ((diff >> (12 + 3)) < chip->ecc.size) {
206 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
207 return 1;
208 } else {
209 return -1;
210 }
211 } else if (!(diff & (diff - 1))) {
212 /* Single bit ECC error in the ECC itself,
213 * nothing to fix */
214 return 1;
215 } else {
216 /* Uncorrectable error */
217 return -1;
218 }
219
220 }
221 return 0;
222 }
223
224 /*----------------------------------------------------------------------*/
225
226 /*
227 * 4-bit hardware ECC ... context maintained over entire AEMIF
228 *
229 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
230 * since that forces use of a problematic "infix OOB" layout.
231 * Among other things, it trashes manufacturer bad block markers.
232 * Also, and specific to this hardware, it ECC-protects the "prepad"
233 * in the OOB ... while having ECC protection for parts of OOB would
234 * seem useful, the current MTD stack sometimes wants to update the
235 * OOB without recomputing ECC.
236 */
237
nand_davinci_hwctl_4bit(struct mtd_info * mtd,int mode)238 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
239 {
240 struct davinci_nand_info *info = to_davinci_nand(mtd);
241 unsigned long flags;
242 u32 val;
243
244 /* Reset ECC hardware */
245 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
246
247 spin_lock_irqsave(&davinci_nand_lock, flags);
248
249 /* Start 4-bit ECC calculation for read/write */
250 val = davinci_nand_readl(info, NANDFCR_OFFSET);
251 val &= ~(0x03 << 4);
252 val |= (info->core_chipsel << 4) | BIT(12);
253 davinci_nand_writel(info, NANDFCR_OFFSET, val);
254
255 info->is_readmode = (mode == NAND_ECC_READ);
256
257 spin_unlock_irqrestore(&davinci_nand_lock, flags);
258 }
259
260 /* Read raw ECC code after writing to NAND. */
261 static void
nand_davinci_readecc_4bit(struct davinci_nand_info * info,u32 code[4])262 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
263 {
264 const u32 mask = 0x03ff03ff;
265
266 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
267 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
268 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
269 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
270 }
271
272 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
nand_davinci_calculate_4bit(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)273 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
274 const u_char *dat, u_char *ecc_code)
275 {
276 struct davinci_nand_info *info = to_davinci_nand(mtd);
277 u32 raw_ecc[4], *p;
278 unsigned i;
279
280 /* After a read, terminate ECC calculation by a dummy read
281 * of some 4-bit ECC register. ECC covers everything that
282 * was read; correct() just uses the hardware state, so
283 * ecc_code is not needed.
284 */
285 if (info->is_readmode) {
286 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
287 return 0;
288 }
289
290 /* Pack eight raw 10-bit ecc values into ten bytes, making
291 * two passes which each convert four values (in upper and
292 * lower halves of two 32-bit words) into five bytes. The
293 * ROM boot loader uses this same packing scheme.
294 */
295 nand_davinci_readecc_4bit(info, raw_ecc);
296 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
297 *ecc_code++ = p[0] & 0xff;
298 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
299 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
300 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
301 *ecc_code++ = (p[1] >> 18) & 0xff;
302 }
303
304 return 0;
305 }
306
307 /* Correct up to 4 bits in data we just read, using state left in the
308 * hardware plus the ecc_code computed when it was first written.
309 */
nand_davinci_correct_4bit(struct mtd_info * mtd,u_char * data,u_char * ecc_code,u_char * null)310 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
311 u_char *data, u_char *ecc_code, u_char *null)
312 {
313 int i;
314 struct davinci_nand_info *info = to_davinci_nand(mtd);
315 unsigned short ecc10[8];
316 unsigned short *ecc16;
317 u32 syndrome[4];
318 u32 ecc_state;
319 unsigned num_errors, corrected;
320 unsigned long timeo;
321
322 /* All bytes 0xff? It's an erased page; ignore its ECC. */
323 for (i = 0; i < 10; i++) {
324 if (ecc_code[i] != 0xff)
325 goto compare;
326 }
327 return 0;
328
329 compare:
330 /* Unpack ten bytes into eight 10 bit values. We know we're
331 * little-endian, and use type punning for less shifting/masking.
332 */
333 if (WARN_ON(0x01 & (unsigned) ecc_code))
334 return -EINVAL;
335 ecc16 = (unsigned short *)ecc_code;
336
337 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
338 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
339 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
340 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
341 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
342 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
343 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
344 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
345
346 /* Tell ECC controller about the expected ECC codes. */
347 for (i = 7; i >= 0; i--)
348 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
349
350 /* Allow time for syndrome calculation ... then read it.
351 * A syndrome of all zeroes 0 means no detected errors.
352 */
353 davinci_nand_readl(info, NANDFSR_OFFSET);
354 nand_davinci_readecc_4bit(info, syndrome);
355 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
356 return 0;
357
358 /*
359 * Clear any previous address calculation by doing a dummy read of an
360 * error address register.
361 */
362 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
363
364 /* Start address calculation, and wait for it to complete.
365 * We _could_ start reading more data while this is working,
366 * to speed up the overall page read.
367 */
368 davinci_nand_writel(info, NANDFCR_OFFSET,
369 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
370
371 /*
372 * ECC_STATE field reads 0x3 (Error correction complete) immediately
373 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
374 * begin trying to poll for the state, you may fall right out of your
375 * loop without any of the correction calculations having taken place.
376 * The recommendation from the hardware team is to initially delay as
377 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
378 * correction state.
379 */
380 timeo = jiffies + usecs_to_jiffies(100);
381 do {
382 ecc_state = (davinci_nand_readl(info,
383 NANDFSR_OFFSET) >> 8) & 0x0f;
384 cpu_relax();
385 } while ((ecc_state < 4) && time_before(jiffies, timeo));
386
387 for (;;) {
388 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
389
390 switch ((fsr >> 8) & 0x0f) {
391 case 0: /* no error, should not happen */
392 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
393 return 0;
394 case 1: /* five or more errors detected */
395 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
396 return -EIO;
397 case 2: /* error addresses computed */
398 case 3:
399 num_errors = 1 + ((fsr >> 16) & 0x03);
400 goto correct;
401 default: /* still working on it */
402 cpu_relax();
403 continue;
404 }
405 }
406
407 correct:
408 /* correct each error */
409 for (i = 0, corrected = 0; i < num_errors; i++) {
410 int error_address, error_value;
411
412 if (i > 1) {
413 error_address = davinci_nand_readl(info,
414 NAND_ERR_ADD2_OFFSET);
415 error_value = davinci_nand_readl(info,
416 NAND_ERR_ERRVAL2_OFFSET);
417 } else {
418 error_address = davinci_nand_readl(info,
419 NAND_ERR_ADD1_OFFSET);
420 error_value = davinci_nand_readl(info,
421 NAND_ERR_ERRVAL1_OFFSET);
422 }
423
424 if (i & 1) {
425 error_address >>= 16;
426 error_value >>= 16;
427 }
428 error_address &= 0x3ff;
429 error_address = (512 + 7) - error_address;
430
431 if (error_address < 512) {
432 data[error_address] ^= error_value;
433 corrected++;
434 }
435 }
436
437 return corrected;
438 }
439
440 /*----------------------------------------------------------------------*/
441
442 /*
443 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
444 * how these chips are normally wired. This translates to both 8 and 16
445 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
446 *
447 * For now we assume that configuration, or any other one which ignores
448 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
449 * and have that transparently morphed into multiple NAND operations.
450 */
nand_davinci_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)451 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
452 {
453 struct nand_chip *chip = mtd->priv;
454
455 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
456 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
457 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
458 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
459 else
460 ioread8_rep(chip->IO_ADDR_R, buf, len);
461 }
462
nand_davinci_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)463 static void nand_davinci_write_buf(struct mtd_info *mtd,
464 const uint8_t *buf, int len)
465 {
466 struct nand_chip *chip = mtd->priv;
467
468 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
469 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
470 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
471 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
472 else
473 iowrite8_rep(chip->IO_ADDR_R, buf, len);
474 }
475
476 /*
477 * Check hardware register for wait status. Returns 1 if device is ready,
478 * 0 if it is still busy.
479 */
nand_davinci_dev_ready(struct mtd_info * mtd)480 static int nand_davinci_dev_ready(struct mtd_info *mtd)
481 {
482 struct davinci_nand_info *info = to_davinci_nand(mtd);
483
484 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
485 }
486
487 /*----------------------------------------------------------------------*/
488
489 /* An ECC layout for using 4-bit ECC with small-page flash, storing
490 * ten ECC bytes plus the manufacturer's bad block marker byte, and
491 * and not overlapping the default BBT markers.
492 */
493 static struct nand_ecclayout hwecc4_small = {
494 .eccbytes = 10,
495 .eccpos = { 0, 1, 2, 3, 4,
496 /* offset 5 holds the badblock marker */
497 6, 7,
498 13, 14, 15, },
499 .oobfree = {
500 {.offset = 8, .length = 5, },
501 {.offset = 16, },
502 },
503 };
504
505 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
506 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
507 * and not overlapping the default BBT markers.
508 */
509 static struct nand_ecclayout hwecc4_2048 = {
510 .eccbytes = 40,
511 .eccpos = {
512 /* at the end of spare sector */
513 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
514 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
515 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
516 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
517 },
518 .oobfree = {
519 /* 2 bytes at offset 0 hold manufacturer badblock markers */
520 {.offset = 2, .length = 22, },
521 /* 5 bytes at offset 8 hold BBT markers */
522 /* 8 bytes at offset 16 hold JFFS2 clean markers */
523 },
524 };
525
526 /*
527 * An ECC layout for using 4-bit ECC with large-page (4096bytes) flash,
528 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
529 * and not overlapping the default BBT markers.
530 */
531 static struct nand_ecclayout hwecc4_4096 = {
532 .eccbytes = 80,
533 .eccpos = {
534 /* at the end of spare sector */
535 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
536 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
537 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
538 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
539 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
540 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
541 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
542 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
543 },
544 .oobfree = {
545 /* 2 bytes at offset 0 hold manufacturer badblock markers */
546 {.offset = 2, .length = 46, },
547 /* 5 bytes at offset 8 hold BBT markers */
548 /* 8 bytes at offset 16 hold JFFS2 clean markers */
549 },
550 };
551
552 #if defined(CONFIG_OF)
553 static const struct of_device_id davinci_nand_of_match[] = {
554 {.compatible = "ti,davinci-nand", },
555 {.compatible = "ti,keystone-nand", },
556 {},
557 };
558 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
559
560 static struct davinci_nand_pdata
nand_davinci_get_pdata(struct platform_device * pdev)561 *nand_davinci_get_pdata(struct platform_device *pdev)
562 {
563 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
564 struct davinci_nand_pdata *pdata;
565 const char *mode;
566 u32 prop;
567
568 pdata = devm_kzalloc(&pdev->dev,
569 sizeof(struct davinci_nand_pdata),
570 GFP_KERNEL);
571 pdev->dev.platform_data = pdata;
572 if (!pdata)
573 return ERR_PTR(-ENOMEM);
574 if (!of_property_read_u32(pdev->dev.of_node,
575 "ti,davinci-chipselect", &prop))
576 pdev->id = prop;
577 else
578 return ERR_PTR(-EINVAL);
579
580 if (!of_property_read_u32(pdev->dev.of_node,
581 "ti,davinci-mask-ale", &prop))
582 pdata->mask_ale = prop;
583 if (!of_property_read_u32(pdev->dev.of_node,
584 "ti,davinci-mask-cle", &prop))
585 pdata->mask_cle = prop;
586 if (!of_property_read_u32(pdev->dev.of_node,
587 "ti,davinci-mask-chipsel", &prop))
588 pdata->mask_chipsel = prop;
589 if (!of_property_read_string(pdev->dev.of_node,
590 "nand-ecc-mode", &mode) ||
591 !of_property_read_string(pdev->dev.of_node,
592 "ti,davinci-ecc-mode", &mode)) {
593 if (!strncmp("none", mode, 4))
594 pdata->ecc_mode = NAND_ECC_NONE;
595 if (!strncmp("soft", mode, 4))
596 pdata->ecc_mode = NAND_ECC_SOFT;
597 if (!strncmp("hw", mode, 2))
598 pdata->ecc_mode = NAND_ECC_HW;
599 }
600 if (!of_property_read_u32(pdev->dev.of_node,
601 "ti,davinci-ecc-bits", &prop))
602 pdata->ecc_bits = prop;
603
604 prop = of_get_nand_bus_width(pdev->dev.of_node);
605 if (0 < prop || !of_property_read_u32(pdev->dev.of_node,
606 "ti,davinci-nand-buswidth", &prop))
607 if (prop == 16)
608 pdata->options |= NAND_BUSWIDTH_16;
609 if (of_property_read_bool(pdev->dev.of_node,
610 "nand-on-flash-bbt") ||
611 of_property_read_bool(pdev->dev.of_node,
612 "ti,davinci-nand-use-bbt"))
613 pdata->bbt_options = NAND_BBT_USE_FLASH;
614
615 if (of_device_is_compatible(pdev->dev.of_node,
616 "ti,keystone-nand")) {
617 pdata->options |= NAND_NO_SUBPAGE_WRITE;
618 }
619 }
620
621 return dev_get_platdata(&pdev->dev);
622 }
623 #else
624 static struct davinci_nand_pdata
nand_davinci_get_pdata(struct platform_device * pdev)625 *nand_davinci_get_pdata(struct platform_device *pdev)
626 {
627 return dev_get_platdata(&pdev->dev);
628 }
629 #endif
630
nand_davinci_probe(struct platform_device * pdev)631 static int nand_davinci_probe(struct platform_device *pdev)
632 {
633 struct davinci_nand_pdata *pdata;
634 struct davinci_nand_info *info;
635 struct resource *res1;
636 struct resource *res2;
637 void __iomem *vaddr;
638 void __iomem *base;
639 int ret;
640 uint32_t val;
641 nand_ecc_modes_t ecc_mode;
642
643 pdata = nand_davinci_get_pdata(pdev);
644 if (IS_ERR(pdata))
645 return PTR_ERR(pdata);
646
647 /* insist on board-specific configuration */
648 if (!pdata)
649 return -ENODEV;
650
651 /* which external chipselect will we be managing? */
652 if (pdev->id < 0 || pdev->id > 3)
653 return -ENODEV;
654
655 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
656 if (!info)
657 return -ENOMEM;
658
659 platform_set_drvdata(pdev, info);
660
661 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
662 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
663 if (!res1 || !res2) {
664 dev_err(&pdev->dev, "resource missing\n");
665 return -EINVAL;
666 }
667
668 vaddr = devm_ioremap_resource(&pdev->dev, res1);
669 if (IS_ERR(vaddr))
670 return PTR_ERR(vaddr);
671
672 /*
673 * This registers range is used to setup NAND settings. In case with
674 * TI AEMIF driver, the same memory address range is requested already
675 * by AEMIF, so we cannot request it twice, just ioremap.
676 * The AEMIF and NAND drivers not use the same registers in this range.
677 */
678 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
679 if (!base) {
680 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
681 return -EADDRNOTAVAIL;
682 }
683
684 info->dev = &pdev->dev;
685 info->base = base;
686 info->vaddr = vaddr;
687
688 info->mtd.priv = &info->chip;
689 info->mtd.dev.parent = &pdev->dev;
690
691 info->chip.IO_ADDR_R = vaddr;
692 info->chip.IO_ADDR_W = vaddr;
693 info->chip.chip_delay = 0;
694 info->chip.select_chip = nand_davinci_select_chip;
695
696 /* options such as NAND_BBT_USE_FLASH */
697 info->chip.bbt_options = pdata->bbt_options;
698 /* options such as 16-bit widths */
699 info->chip.options = pdata->options;
700 info->chip.bbt_td = pdata->bbt_td;
701 info->chip.bbt_md = pdata->bbt_md;
702 info->timing = pdata->timing;
703
704 info->ioaddr = (uint32_t __force) vaddr;
705
706 info->current_cs = info->ioaddr;
707 info->core_chipsel = pdev->id;
708 info->mask_chipsel = pdata->mask_chipsel;
709
710 /* use nandboot-capable ALE/CLE masks by default */
711 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
712 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
713
714 /* Set address of hardware control function */
715 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
716 info->chip.dev_ready = nand_davinci_dev_ready;
717
718 /* Speed up buffer I/O */
719 info->chip.read_buf = nand_davinci_read_buf;
720 info->chip.write_buf = nand_davinci_write_buf;
721
722 /* Use board-specific ECC config */
723 ecc_mode = pdata->ecc_mode;
724
725 ret = -EINVAL;
726 switch (ecc_mode) {
727 case NAND_ECC_NONE:
728 case NAND_ECC_SOFT:
729 pdata->ecc_bits = 0;
730 break;
731 case NAND_ECC_HW:
732 if (pdata->ecc_bits == 4) {
733 /* No sanity checks: CPUs must support this,
734 * and the chips may not use NAND_BUSWIDTH_16.
735 */
736
737 /* No sharing 4-bit hardware between chipselects yet */
738 spin_lock_irq(&davinci_nand_lock);
739 if (ecc4_busy)
740 ret = -EBUSY;
741 else
742 ecc4_busy = true;
743 spin_unlock_irq(&davinci_nand_lock);
744
745 if (ret == -EBUSY)
746 return ret;
747
748 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
749 info->chip.ecc.correct = nand_davinci_correct_4bit;
750 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
751 info->chip.ecc.bytes = 10;
752 } else {
753 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
754 info->chip.ecc.correct = nand_davinci_correct_1bit;
755 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
756 info->chip.ecc.bytes = 3;
757 }
758 info->chip.ecc.size = 512;
759 info->chip.ecc.strength = pdata->ecc_bits;
760 break;
761 default:
762 return -EINVAL;
763 }
764 info->chip.ecc.mode = ecc_mode;
765
766 info->clk = devm_clk_get(&pdev->dev, "aemif");
767 if (IS_ERR(info->clk)) {
768 ret = PTR_ERR(info->clk);
769 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
770 return ret;
771 }
772
773 ret = clk_prepare_enable(info->clk);
774 if (ret < 0) {
775 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
776 ret);
777 goto err_clk_enable;
778 }
779
780 spin_lock_irq(&davinci_nand_lock);
781
782 /* put CSxNAND into NAND mode */
783 val = davinci_nand_readl(info, NANDFCR_OFFSET);
784 val |= BIT(info->core_chipsel);
785 davinci_nand_writel(info, NANDFCR_OFFSET, val);
786
787 spin_unlock_irq(&davinci_nand_lock);
788
789 /* Scan to find existence of the device(s) */
790 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
791 if (ret < 0) {
792 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
793 goto err;
794 }
795
796 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
797 * is OK, but it allocates 6 bytes when only 3 are needed (for
798 * each 512 bytes). For the 4-bit HW ECC, that default is not
799 * usable: 10 bytes are needed, not 6.
800 */
801 if (pdata->ecc_bits == 4) {
802 int chunks = info->mtd.writesize / 512;
803
804 if (!chunks || info->mtd.oobsize < 16) {
805 dev_dbg(&pdev->dev, "too small\n");
806 ret = -EINVAL;
807 goto err;
808 }
809
810 /* For small page chips, preserve the manufacturer's
811 * badblock marking data ... and make sure a flash BBT
812 * table marker fits in the free bytes.
813 */
814 if (chunks == 1) {
815 info->ecclayout = hwecc4_small;
816 info->ecclayout.oobfree[1].length =
817 info->mtd.oobsize - 16;
818 goto syndrome_done;
819 }
820 if (chunks == 4) {
821 info->ecclayout = hwecc4_2048;
822 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
823 goto syndrome_done;
824 }
825 if (chunks == 8) {
826 info->ecclayout = hwecc4_4096;
827 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
828 goto syndrome_done;
829 }
830
831 ret = -EIO;
832 goto err;
833
834 syndrome_done:
835 info->chip.ecc.layout = &info->ecclayout;
836 }
837
838 ret = nand_scan_tail(&info->mtd);
839 if (ret < 0)
840 goto err;
841
842 if (pdata->parts)
843 ret = mtd_device_parse_register(&info->mtd, NULL, NULL,
844 pdata->parts, pdata->nr_parts);
845 else {
846 struct mtd_part_parser_data ppdata;
847
848 ppdata.of_node = pdev->dev.of_node;
849 ret = mtd_device_parse_register(&info->mtd, NULL, &ppdata,
850 NULL, 0);
851 }
852 if (ret < 0)
853 goto err;
854
855 val = davinci_nand_readl(info, NRCSR_OFFSET);
856 dev_info(&pdev->dev, "controller rev. %d.%d\n",
857 (val >> 8) & 0xff, val & 0xff);
858
859 return 0;
860
861 err:
862 clk_disable_unprepare(info->clk);
863
864 err_clk_enable:
865 spin_lock_irq(&davinci_nand_lock);
866 if (ecc_mode == NAND_ECC_HW_SYNDROME)
867 ecc4_busy = false;
868 spin_unlock_irq(&davinci_nand_lock);
869 return ret;
870 }
871
nand_davinci_remove(struct platform_device * pdev)872 static int nand_davinci_remove(struct platform_device *pdev)
873 {
874 struct davinci_nand_info *info = platform_get_drvdata(pdev);
875
876 spin_lock_irq(&davinci_nand_lock);
877 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
878 ecc4_busy = false;
879 spin_unlock_irq(&davinci_nand_lock);
880
881 nand_release(&info->mtd);
882
883 clk_disable_unprepare(info->clk);
884
885 return 0;
886 }
887
888 static struct platform_driver nand_davinci_driver = {
889 .probe = nand_davinci_probe,
890 .remove = nand_davinci_remove,
891 .driver = {
892 .name = "davinci_nand",
893 .of_match_table = of_match_ptr(davinci_nand_of_match),
894 },
895 };
896 MODULE_ALIAS("platform:davinci_nand");
897
898 module_platform_driver(nand_davinci_driver);
899
900 MODULE_LICENSE("GPL");
901 MODULE_AUTHOR("Texas Instruments");
902 MODULE_DESCRIPTION("Davinci NAND flash driver");
903
904