• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3  *
4  * Copyright © 2006 Texas Instruments.
5  *
6  * Port to 2.6.23 Copyright © 2008 by:
7  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
8  *   Troy Kisky <troy.kisky@boundarydevices.com>
9  *   Dirk Behme <Dirk.Behme@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/err.h>
30 #include <linux/clk.h>
31 #include <linux/io.h>
32 #include <linux/mtd/nand.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/slab.h>
35 #include <linux/of_device.h>
36 #include <linux/of.h>
37 #include <linux/of_mtd.h>
38 
39 #include <linux/platform_data/mtd-davinci.h>
40 #include <linux/platform_data/mtd-davinci-aemif.h>
41 
42 /*
43  * This is a device driver for the NAND flash controller found on the
44  * various DaVinci family chips.  It handles up to four SoC chipselects,
45  * and some flavors of secondary chipselect (e.g. based on A12) as used
46  * with multichip packages.
47  *
48  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
49  * available on chips like the DM355 and OMAP-L137 and needed with the
50  * more error-prone MLC NAND chips.
51  *
52  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53  * outputs in a "wire-AND" configuration, with no per-chip signals.
54  */
55 struct davinci_nand_info {
56 	struct mtd_info		mtd;
57 	struct nand_chip	chip;
58 	struct nand_ecclayout	ecclayout;
59 
60 	struct device		*dev;
61 	struct clk		*clk;
62 
63 	bool			is_readmode;
64 
65 	void __iomem		*base;
66 	void __iomem		*vaddr;
67 
68 	uint32_t		ioaddr;
69 	uint32_t		current_cs;
70 
71 	uint32_t		mask_chipsel;
72 	uint32_t		mask_ale;
73 	uint32_t		mask_cle;
74 
75 	uint32_t		core_chipsel;
76 
77 	struct davinci_aemif_timing	*timing;
78 };
79 
80 static DEFINE_SPINLOCK(davinci_nand_lock);
81 static bool ecc4_busy;
82 
83 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
84 
85 
davinci_nand_readl(struct davinci_nand_info * info,int offset)86 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
87 		int offset)
88 {
89 	return __raw_readl(info->base + offset);
90 }
91 
davinci_nand_writel(struct davinci_nand_info * info,int offset,unsigned long value)92 static inline void davinci_nand_writel(struct davinci_nand_info *info,
93 		int offset, unsigned long value)
94 {
95 	__raw_writel(value, info->base + offset);
96 }
97 
98 /*----------------------------------------------------------------------*/
99 
100 /*
101  * Access to hardware control lines:  ALE, CLE, secondary chipselect.
102  */
103 
nand_davinci_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)104 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
105 				   unsigned int ctrl)
106 {
107 	struct davinci_nand_info	*info = to_davinci_nand(mtd);
108 	uint32_t			addr = info->current_cs;
109 	struct nand_chip		*nand = mtd->priv;
110 
111 	/* Did the control lines change? */
112 	if (ctrl & NAND_CTRL_CHANGE) {
113 		if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
114 			addr |= info->mask_cle;
115 		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
116 			addr |= info->mask_ale;
117 
118 		nand->IO_ADDR_W = (void __iomem __force *)addr;
119 	}
120 
121 	if (cmd != NAND_CMD_NONE)
122 		iowrite8(cmd, nand->IO_ADDR_W);
123 }
124 
nand_davinci_select_chip(struct mtd_info * mtd,int chip)125 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
126 {
127 	struct davinci_nand_info	*info = to_davinci_nand(mtd);
128 	uint32_t			addr = info->ioaddr;
129 
130 	/* maybe kick in a second chipselect */
131 	if (chip > 0)
132 		addr |= info->mask_chipsel;
133 	info->current_cs = addr;
134 
135 	info->chip.IO_ADDR_W = (void __iomem __force *)addr;
136 	info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
137 }
138 
139 /*----------------------------------------------------------------------*/
140 
141 /*
142  * 1-bit hardware ECC ... context maintained for each core chipselect
143  */
144 
nand_davinci_readecc_1bit(struct mtd_info * mtd)145 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
146 {
147 	struct davinci_nand_info *info = to_davinci_nand(mtd);
148 
149 	return davinci_nand_readl(info, NANDF1ECC_OFFSET
150 			+ 4 * info->core_chipsel);
151 }
152 
nand_davinci_hwctl_1bit(struct mtd_info * mtd,int mode)153 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
154 {
155 	struct davinci_nand_info *info;
156 	uint32_t nandcfr;
157 	unsigned long flags;
158 
159 	info = to_davinci_nand(mtd);
160 
161 	/* Reset ECC hardware */
162 	nand_davinci_readecc_1bit(mtd);
163 
164 	spin_lock_irqsave(&davinci_nand_lock, flags);
165 
166 	/* Restart ECC hardware */
167 	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
168 	nandcfr |= BIT(8 + info->core_chipsel);
169 	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
170 
171 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
172 }
173 
174 /*
175  * Read hardware ECC value and pack into three bytes
176  */
nand_davinci_calculate_1bit(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)177 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
178 				      const u_char *dat, u_char *ecc_code)
179 {
180 	unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
181 	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
182 
183 	/* invert so that erased block ecc is correct */
184 	ecc24 = ~ecc24;
185 	ecc_code[0] = (u_char)(ecc24);
186 	ecc_code[1] = (u_char)(ecc24 >> 8);
187 	ecc_code[2] = (u_char)(ecc24 >> 16);
188 
189 	return 0;
190 }
191 
nand_davinci_correct_1bit(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)192 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
193 				     u_char *read_ecc, u_char *calc_ecc)
194 {
195 	struct nand_chip *chip = mtd->priv;
196 	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
197 					  (read_ecc[2] << 16);
198 	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
199 					  (calc_ecc[2] << 16);
200 	uint32_t diff = eccCalc ^ eccNand;
201 
202 	if (diff) {
203 		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
204 			/* Correctable error */
205 			if ((diff >> (12 + 3)) < chip->ecc.size) {
206 				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
207 				return 1;
208 			} else {
209 				return -1;
210 			}
211 		} else if (!(diff & (diff - 1))) {
212 			/* Single bit ECC error in the ECC itself,
213 			 * nothing to fix */
214 			return 1;
215 		} else {
216 			/* Uncorrectable error */
217 			return -1;
218 		}
219 
220 	}
221 	return 0;
222 }
223 
224 /*----------------------------------------------------------------------*/
225 
226 /*
227  * 4-bit hardware ECC ... context maintained over entire AEMIF
228  *
229  * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
230  * since that forces use of a problematic "infix OOB" layout.
231  * Among other things, it trashes manufacturer bad block markers.
232  * Also, and specific to this hardware, it ECC-protects the "prepad"
233  * in the OOB ... while having ECC protection for parts of OOB would
234  * seem useful, the current MTD stack sometimes wants to update the
235  * OOB without recomputing ECC.
236  */
237 
nand_davinci_hwctl_4bit(struct mtd_info * mtd,int mode)238 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
239 {
240 	struct davinci_nand_info *info = to_davinci_nand(mtd);
241 	unsigned long flags;
242 	u32 val;
243 
244 	/* Reset ECC hardware */
245 	davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
246 
247 	spin_lock_irqsave(&davinci_nand_lock, flags);
248 
249 	/* Start 4-bit ECC calculation for read/write */
250 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
251 	val &= ~(0x03 << 4);
252 	val |= (info->core_chipsel << 4) | BIT(12);
253 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
254 
255 	info->is_readmode = (mode == NAND_ECC_READ);
256 
257 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
258 }
259 
260 /* Read raw ECC code after writing to NAND. */
261 static void
nand_davinci_readecc_4bit(struct davinci_nand_info * info,u32 code[4])262 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
263 {
264 	const u32 mask = 0x03ff03ff;
265 
266 	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
267 	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
268 	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
269 	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
270 }
271 
272 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
nand_davinci_calculate_4bit(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)273 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
274 		const u_char *dat, u_char *ecc_code)
275 {
276 	struct davinci_nand_info *info = to_davinci_nand(mtd);
277 	u32 raw_ecc[4], *p;
278 	unsigned i;
279 
280 	/* After a read, terminate ECC calculation by a dummy read
281 	 * of some 4-bit ECC register.  ECC covers everything that
282 	 * was read; correct() just uses the hardware state, so
283 	 * ecc_code is not needed.
284 	 */
285 	if (info->is_readmode) {
286 		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
287 		return 0;
288 	}
289 
290 	/* Pack eight raw 10-bit ecc values into ten bytes, making
291 	 * two passes which each convert four values (in upper and
292 	 * lower halves of two 32-bit words) into five bytes.  The
293 	 * ROM boot loader uses this same packing scheme.
294 	 */
295 	nand_davinci_readecc_4bit(info, raw_ecc);
296 	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
297 		*ecc_code++ =   p[0]        & 0xff;
298 		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
299 		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
300 		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
301 		*ecc_code++ =  (p[1] >> 18) & 0xff;
302 	}
303 
304 	return 0;
305 }
306 
307 /* Correct up to 4 bits in data we just read, using state left in the
308  * hardware plus the ecc_code computed when it was first written.
309  */
nand_davinci_correct_4bit(struct mtd_info * mtd,u_char * data,u_char * ecc_code,u_char * null)310 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
311 		u_char *data, u_char *ecc_code, u_char *null)
312 {
313 	int i;
314 	struct davinci_nand_info *info = to_davinci_nand(mtd);
315 	unsigned short ecc10[8];
316 	unsigned short *ecc16;
317 	u32 syndrome[4];
318 	u32 ecc_state;
319 	unsigned num_errors, corrected;
320 	unsigned long timeo;
321 
322 	/* All bytes 0xff?  It's an erased page; ignore its ECC. */
323 	for (i = 0; i < 10; i++) {
324 		if (ecc_code[i] != 0xff)
325 			goto compare;
326 	}
327 	return 0;
328 
329 compare:
330 	/* Unpack ten bytes into eight 10 bit values.  We know we're
331 	 * little-endian, and use type punning for less shifting/masking.
332 	 */
333 	if (WARN_ON(0x01 & (unsigned) ecc_code))
334 		return -EINVAL;
335 	ecc16 = (unsigned short *)ecc_code;
336 
337 	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
338 	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
339 	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
340 	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
341 	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
342 	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
343 	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
344 	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
345 
346 	/* Tell ECC controller about the expected ECC codes. */
347 	for (i = 7; i >= 0; i--)
348 		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
349 
350 	/* Allow time for syndrome calculation ... then read it.
351 	 * A syndrome of all zeroes 0 means no detected errors.
352 	 */
353 	davinci_nand_readl(info, NANDFSR_OFFSET);
354 	nand_davinci_readecc_4bit(info, syndrome);
355 	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
356 		return 0;
357 
358 	/*
359 	 * Clear any previous address calculation by doing a dummy read of an
360 	 * error address register.
361 	 */
362 	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
363 
364 	/* Start address calculation, and wait for it to complete.
365 	 * We _could_ start reading more data while this is working,
366 	 * to speed up the overall page read.
367 	 */
368 	davinci_nand_writel(info, NANDFCR_OFFSET,
369 			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
370 
371 	/*
372 	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
373 	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
374 	 * begin trying to poll for the state, you may fall right out of your
375 	 * loop without any of the correction calculations having taken place.
376 	 * The recommendation from the hardware team is to initially delay as
377 	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
378 	 * correction state.
379 	 */
380 	timeo = jiffies + usecs_to_jiffies(100);
381 	do {
382 		ecc_state = (davinci_nand_readl(info,
383 				NANDFSR_OFFSET) >> 8) & 0x0f;
384 		cpu_relax();
385 	} while ((ecc_state < 4) && time_before(jiffies, timeo));
386 
387 	for (;;) {
388 		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
389 
390 		switch ((fsr >> 8) & 0x0f) {
391 		case 0:		/* no error, should not happen */
392 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
393 			return 0;
394 		case 1:		/* five or more errors detected */
395 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
396 			return -EIO;
397 		case 2:		/* error addresses computed */
398 		case 3:
399 			num_errors = 1 + ((fsr >> 16) & 0x03);
400 			goto correct;
401 		default:	/* still working on it */
402 			cpu_relax();
403 			continue;
404 		}
405 	}
406 
407 correct:
408 	/* correct each error */
409 	for (i = 0, corrected = 0; i < num_errors; i++) {
410 		int error_address, error_value;
411 
412 		if (i > 1) {
413 			error_address = davinci_nand_readl(info,
414 						NAND_ERR_ADD2_OFFSET);
415 			error_value = davinci_nand_readl(info,
416 						NAND_ERR_ERRVAL2_OFFSET);
417 		} else {
418 			error_address = davinci_nand_readl(info,
419 						NAND_ERR_ADD1_OFFSET);
420 			error_value = davinci_nand_readl(info,
421 						NAND_ERR_ERRVAL1_OFFSET);
422 		}
423 
424 		if (i & 1) {
425 			error_address >>= 16;
426 			error_value >>= 16;
427 		}
428 		error_address &= 0x3ff;
429 		error_address = (512 + 7) - error_address;
430 
431 		if (error_address < 512) {
432 			data[error_address] ^= error_value;
433 			corrected++;
434 		}
435 	}
436 
437 	return corrected;
438 }
439 
440 /*----------------------------------------------------------------------*/
441 
442 /*
443  * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
444  * how these chips are normally wired.  This translates to both 8 and 16
445  * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
446  *
447  * For now we assume that configuration, or any other one which ignores
448  * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
449  * and have that transparently morphed into multiple NAND operations.
450  */
nand_davinci_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)451 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
452 {
453 	struct nand_chip *chip = mtd->priv;
454 
455 	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
456 		ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
457 	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
458 		ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
459 	else
460 		ioread8_rep(chip->IO_ADDR_R, buf, len);
461 }
462 
nand_davinci_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)463 static void nand_davinci_write_buf(struct mtd_info *mtd,
464 		const uint8_t *buf, int len)
465 {
466 	struct nand_chip *chip = mtd->priv;
467 
468 	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
469 		iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
470 	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
471 		iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
472 	else
473 		iowrite8_rep(chip->IO_ADDR_R, buf, len);
474 }
475 
476 /*
477  * Check hardware register for wait status. Returns 1 if device is ready,
478  * 0 if it is still busy.
479  */
nand_davinci_dev_ready(struct mtd_info * mtd)480 static int nand_davinci_dev_ready(struct mtd_info *mtd)
481 {
482 	struct davinci_nand_info *info = to_davinci_nand(mtd);
483 
484 	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
485 }
486 
487 /*----------------------------------------------------------------------*/
488 
489 /* An ECC layout for using 4-bit ECC with small-page flash, storing
490  * ten ECC bytes plus the manufacturer's bad block marker byte, and
491  * and not overlapping the default BBT markers.
492  */
493 static struct nand_ecclayout hwecc4_small = {
494 	.eccbytes = 10,
495 	.eccpos = { 0, 1, 2, 3, 4,
496 		/* offset 5 holds the badblock marker */
497 		6, 7,
498 		13, 14, 15, },
499 	.oobfree = {
500 		{.offset = 8, .length = 5, },
501 		{.offset = 16, },
502 	},
503 };
504 
505 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
506  * storing ten ECC bytes plus the manufacturer's bad block marker byte,
507  * and not overlapping the default BBT markers.
508  */
509 static struct nand_ecclayout hwecc4_2048 = {
510 	.eccbytes = 40,
511 	.eccpos = {
512 		/* at the end of spare sector */
513 		24, 25, 26, 27, 28, 29,	30, 31, 32, 33,
514 		34, 35, 36, 37, 38, 39,	40, 41, 42, 43,
515 		44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
516 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
517 		},
518 	.oobfree = {
519 		/* 2 bytes at offset 0 hold manufacturer badblock markers */
520 		{.offset = 2, .length = 22, },
521 		/* 5 bytes at offset 8 hold BBT markers */
522 		/* 8 bytes at offset 16 hold JFFS2 clean markers */
523 	},
524 };
525 
526 /*
527  * An ECC layout for using 4-bit ECC with large-page (4096bytes) flash,
528  * storing ten ECC bytes plus the manufacturer's bad block marker byte,
529  * and not overlapping the default BBT markers.
530  */
531 static struct nand_ecclayout hwecc4_4096 = {
532 	.eccbytes = 80,
533 	.eccpos = {
534 		/* at the end of spare sector */
535 		48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
536 		58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
537 		68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
538 		78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
539 		88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
540 		98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
541 		108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
542 		118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
543 	},
544 	.oobfree = {
545 		/* 2 bytes at offset 0 hold manufacturer badblock markers */
546 		{.offset = 2, .length = 46, },
547 		/* 5 bytes at offset 8 hold BBT markers */
548 		/* 8 bytes at offset 16 hold JFFS2 clean markers */
549 	},
550 };
551 
552 #if defined(CONFIG_OF)
553 static const struct of_device_id davinci_nand_of_match[] = {
554 	{.compatible = "ti,davinci-nand", },
555 	{.compatible = "ti,keystone-nand", },
556 	{},
557 };
558 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
559 
560 static struct davinci_nand_pdata
nand_davinci_get_pdata(struct platform_device * pdev)561 	*nand_davinci_get_pdata(struct platform_device *pdev)
562 {
563 	if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
564 		struct davinci_nand_pdata *pdata;
565 		const char *mode;
566 		u32 prop;
567 
568 		pdata =  devm_kzalloc(&pdev->dev,
569 				sizeof(struct davinci_nand_pdata),
570 				GFP_KERNEL);
571 		pdev->dev.platform_data = pdata;
572 		if (!pdata)
573 			return ERR_PTR(-ENOMEM);
574 		if (!of_property_read_u32(pdev->dev.of_node,
575 			"ti,davinci-chipselect", &prop))
576 			pdev->id = prop;
577 		else
578 			return ERR_PTR(-EINVAL);
579 
580 		if (!of_property_read_u32(pdev->dev.of_node,
581 			"ti,davinci-mask-ale", &prop))
582 			pdata->mask_ale = prop;
583 		if (!of_property_read_u32(pdev->dev.of_node,
584 			"ti,davinci-mask-cle", &prop))
585 			pdata->mask_cle = prop;
586 		if (!of_property_read_u32(pdev->dev.of_node,
587 			"ti,davinci-mask-chipsel", &prop))
588 			pdata->mask_chipsel = prop;
589 		if (!of_property_read_string(pdev->dev.of_node,
590 			"nand-ecc-mode", &mode) ||
591 		    !of_property_read_string(pdev->dev.of_node,
592 			"ti,davinci-ecc-mode", &mode)) {
593 			if (!strncmp("none", mode, 4))
594 				pdata->ecc_mode = NAND_ECC_NONE;
595 			if (!strncmp("soft", mode, 4))
596 				pdata->ecc_mode = NAND_ECC_SOFT;
597 			if (!strncmp("hw", mode, 2))
598 				pdata->ecc_mode = NAND_ECC_HW;
599 		}
600 		if (!of_property_read_u32(pdev->dev.of_node,
601 			"ti,davinci-ecc-bits", &prop))
602 			pdata->ecc_bits = prop;
603 
604 		prop = of_get_nand_bus_width(pdev->dev.of_node);
605 		if (0 < prop || !of_property_read_u32(pdev->dev.of_node,
606 			"ti,davinci-nand-buswidth", &prop))
607 			if (prop == 16)
608 				pdata->options |= NAND_BUSWIDTH_16;
609 		if (of_property_read_bool(pdev->dev.of_node,
610 			"nand-on-flash-bbt") ||
611 		    of_property_read_bool(pdev->dev.of_node,
612 			"ti,davinci-nand-use-bbt"))
613 			pdata->bbt_options = NAND_BBT_USE_FLASH;
614 
615 		if (of_device_is_compatible(pdev->dev.of_node,
616 					    "ti,keystone-nand")) {
617 			pdata->options |= NAND_NO_SUBPAGE_WRITE;
618 		}
619 	}
620 
621 	return dev_get_platdata(&pdev->dev);
622 }
623 #else
624 static struct davinci_nand_pdata
nand_davinci_get_pdata(struct platform_device * pdev)625 	*nand_davinci_get_pdata(struct platform_device *pdev)
626 {
627 	return dev_get_platdata(&pdev->dev);
628 }
629 #endif
630 
nand_davinci_probe(struct platform_device * pdev)631 static int nand_davinci_probe(struct platform_device *pdev)
632 {
633 	struct davinci_nand_pdata	*pdata;
634 	struct davinci_nand_info	*info;
635 	struct resource			*res1;
636 	struct resource			*res2;
637 	void __iomem			*vaddr;
638 	void __iomem			*base;
639 	int				ret;
640 	uint32_t			val;
641 	nand_ecc_modes_t		ecc_mode;
642 
643 	pdata = nand_davinci_get_pdata(pdev);
644 	if (IS_ERR(pdata))
645 		return PTR_ERR(pdata);
646 
647 	/* insist on board-specific configuration */
648 	if (!pdata)
649 		return -ENODEV;
650 
651 	/* which external chipselect will we be managing? */
652 	if (pdev->id < 0 || pdev->id > 3)
653 		return -ENODEV;
654 
655 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
656 	if (!info)
657 		return -ENOMEM;
658 
659 	platform_set_drvdata(pdev, info);
660 
661 	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
662 	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
663 	if (!res1 || !res2) {
664 		dev_err(&pdev->dev, "resource missing\n");
665 		return -EINVAL;
666 	}
667 
668 	vaddr = devm_ioremap_resource(&pdev->dev, res1);
669 	if (IS_ERR(vaddr))
670 		return PTR_ERR(vaddr);
671 
672 	/*
673 	 * This registers range is used to setup NAND settings. In case with
674 	 * TI AEMIF driver, the same memory address range is requested already
675 	 * by AEMIF, so we cannot request it twice, just ioremap.
676 	 * The AEMIF and NAND drivers not use the same registers in this range.
677 	 */
678 	base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
679 	if (!base) {
680 		dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
681 		return -EADDRNOTAVAIL;
682 	}
683 
684 	info->dev		= &pdev->dev;
685 	info->base		= base;
686 	info->vaddr		= vaddr;
687 
688 	info->mtd.priv		= &info->chip;
689 	info->mtd.dev.parent	= &pdev->dev;
690 
691 	info->chip.IO_ADDR_R	= vaddr;
692 	info->chip.IO_ADDR_W	= vaddr;
693 	info->chip.chip_delay	= 0;
694 	info->chip.select_chip	= nand_davinci_select_chip;
695 
696 	/* options such as NAND_BBT_USE_FLASH */
697 	info->chip.bbt_options	= pdata->bbt_options;
698 	/* options such as 16-bit widths */
699 	info->chip.options	= pdata->options;
700 	info->chip.bbt_td	= pdata->bbt_td;
701 	info->chip.bbt_md	= pdata->bbt_md;
702 	info->timing		= pdata->timing;
703 
704 	info->ioaddr		= (uint32_t __force) vaddr;
705 
706 	info->current_cs	= info->ioaddr;
707 	info->core_chipsel	= pdev->id;
708 	info->mask_chipsel	= pdata->mask_chipsel;
709 
710 	/* use nandboot-capable ALE/CLE masks by default */
711 	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
712 	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
713 
714 	/* Set address of hardware control function */
715 	info->chip.cmd_ctrl	= nand_davinci_hwcontrol;
716 	info->chip.dev_ready	= nand_davinci_dev_ready;
717 
718 	/* Speed up buffer I/O */
719 	info->chip.read_buf     = nand_davinci_read_buf;
720 	info->chip.write_buf    = nand_davinci_write_buf;
721 
722 	/* Use board-specific ECC config */
723 	ecc_mode		= pdata->ecc_mode;
724 
725 	ret = -EINVAL;
726 	switch (ecc_mode) {
727 	case NAND_ECC_NONE:
728 	case NAND_ECC_SOFT:
729 		pdata->ecc_bits = 0;
730 		break;
731 	case NAND_ECC_HW:
732 		if (pdata->ecc_bits == 4) {
733 			/* No sanity checks:  CPUs must support this,
734 			 * and the chips may not use NAND_BUSWIDTH_16.
735 			 */
736 
737 			/* No sharing 4-bit hardware between chipselects yet */
738 			spin_lock_irq(&davinci_nand_lock);
739 			if (ecc4_busy)
740 				ret = -EBUSY;
741 			else
742 				ecc4_busy = true;
743 			spin_unlock_irq(&davinci_nand_lock);
744 
745 			if (ret == -EBUSY)
746 				return ret;
747 
748 			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
749 			info->chip.ecc.correct = nand_davinci_correct_4bit;
750 			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
751 			info->chip.ecc.bytes = 10;
752 		} else {
753 			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
754 			info->chip.ecc.correct = nand_davinci_correct_1bit;
755 			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
756 			info->chip.ecc.bytes = 3;
757 		}
758 		info->chip.ecc.size = 512;
759 		info->chip.ecc.strength = pdata->ecc_bits;
760 		break;
761 	default:
762 		return -EINVAL;
763 	}
764 	info->chip.ecc.mode = ecc_mode;
765 
766 	info->clk = devm_clk_get(&pdev->dev, "aemif");
767 	if (IS_ERR(info->clk)) {
768 		ret = PTR_ERR(info->clk);
769 		dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
770 		return ret;
771 	}
772 
773 	ret = clk_prepare_enable(info->clk);
774 	if (ret < 0) {
775 		dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
776 			ret);
777 		goto err_clk_enable;
778 	}
779 
780 	spin_lock_irq(&davinci_nand_lock);
781 
782 	/* put CSxNAND into NAND mode */
783 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
784 	val |= BIT(info->core_chipsel);
785 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
786 
787 	spin_unlock_irq(&davinci_nand_lock);
788 
789 	/* Scan to find existence of the device(s) */
790 	ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
791 	if (ret < 0) {
792 		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
793 		goto err;
794 	}
795 
796 	/* Update ECC layout if needed ... for 1-bit HW ECC, the default
797 	 * is OK, but it allocates 6 bytes when only 3 are needed (for
798 	 * each 512 bytes).  For the 4-bit HW ECC, that default is not
799 	 * usable:  10 bytes are needed, not 6.
800 	 */
801 	if (pdata->ecc_bits == 4) {
802 		int	chunks = info->mtd.writesize / 512;
803 
804 		if (!chunks || info->mtd.oobsize < 16) {
805 			dev_dbg(&pdev->dev, "too small\n");
806 			ret = -EINVAL;
807 			goto err;
808 		}
809 
810 		/* For small page chips, preserve the manufacturer's
811 		 * badblock marking data ... and make sure a flash BBT
812 		 * table marker fits in the free bytes.
813 		 */
814 		if (chunks == 1) {
815 			info->ecclayout = hwecc4_small;
816 			info->ecclayout.oobfree[1].length =
817 				info->mtd.oobsize - 16;
818 			goto syndrome_done;
819 		}
820 		if (chunks == 4) {
821 			info->ecclayout = hwecc4_2048;
822 			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
823 			goto syndrome_done;
824 		}
825 		if (chunks == 8) {
826 			info->ecclayout = hwecc4_4096;
827 			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
828 			goto syndrome_done;
829 		}
830 
831 		ret = -EIO;
832 		goto err;
833 
834 syndrome_done:
835 		info->chip.ecc.layout = &info->ecclayout;
836 	}
837 
838 	ret = nand_scan_tail(&info->mtd);
839 	if (ret < 0)
840 		goto err;
841 
842 	if (pdata->parts)
843 		ret = mtd_device_parse_register(&info->mtd, NULL, NULL,
844 					pdata->parts, pdata->nr_parts);
845 	else {
846 		struct mtd_part_parser_data	ppdata;
847 
848 		ppdata.of_node = pdev->dev.of_node;
849 		ret = mtd_device_parse_register(&info->mtd, NULL, &ppdata,
850 						NULL, 0);
851 	}
852 	if (ret < 0)
853 		goto err;
854 
855 	val = davinci_nand_readl(info, NRCSR_OFFSET);
856 	dev_info(&pdev->dev, "controller rev. %d.%d\n",
857 	       (val >> 8) & 0xff, val & 0xff);
858 
859 	return 0;
860 
861 err:
862 	clk_disable_unprepare(info->clk);
863 
864 err_clk_enable:
865 	spin_lock_irq(&davinci_nand_lock);
866 	if (ecc_mode == NAND_ECC_HW_SYNDROME)
867 		ecc4_busy = false;
868 	spin_unlock_irq(&davinci_nand_lock);
869 	return ret;
870 }
871 
nand_davinci_remove(struct platform_device * pdev)872 static int nand_davinci_remove(struct platform_device *pdev)
873 {
874 	struct davinci_nand_info *info = platform_get_drvdata(pdev);
875 
876 	spin_lock_irq(&davinci_nand_lock);
877 	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
878 		ecc4_busy = false;
879 	spin_unlock_irq(&davinci_nand_lock);
880 
881 	nand_release(&info->mtd);
882 
883 	clk_disable_unprepare(info->clk);
884 
885 	return 0;
886 }
887 
888 static struct platform_driver nand_davinci_driver = {
889 	.probe		= nand_davinci_probe,
890 	.remove		= nand_davinci_remove,
891 	.driver		= {
892 		.name	= "davinci_nand",
893 		.of_match_table = of_match_ptr(davinci_nand_of_match),
894 	},
895 };
896 MODULE_ALIAS("platform:davinci_nand");
897 
898 module_platform_driver(nand_davinci_driver);
899 
900 MODULE_LICENSE("GPL");
901 MODULE_AUTHOR("Texas Instruments");
902 MODULE_DESCRIPTION("Davinci NAND flash driver");
903 
904