• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
3  *
4  * mtd nand driver for M-Systems DiskOnChip G4
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
12  * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
13  * Should work on these as well.  Let me know!
14  *
15  * TODO:
16  *
17  *  Mechanism for management of password-protected areas
18  *
19  *  Hamming ecc when reading oob only
20  *
21  *  According to the M-Sys documentation, this device is also available in a
22  *  "dual-die" configuration having a 256MB capacity, but no mechanism for
23  *  detecting this variant is documented.  Currently this driver assumes 128MB
24  *  capacity.
25  *
26  *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
27  *  contain multiple G4s in a cascaded configuration, if any.
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/string.h>
35 #include <linux/sched.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/export.h>
39 #include <linux/platform_device.h>
40 #include <linux/io.h>
41 #include <linux/bitops.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/bch.h>
46 #include <linux/bitrev.h>
47 #include <linux/jiffies.h>
48 
49 /*
50  * In "reliable mode" consecutive 2k pages are used in parallel (in some
51  * fashion) to store the same data.  The data can be read back from the
52  * even-numbered pages in the normal manner; odd-numbered pages will appear to
53  * contain junk.  Systems that boot from the docg4 typically write the secondary
54  * program loader (SPL) code in this mode.  The SPL is loaded by the initial
55  * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
56  * to the reset vector address).  This module parameter enables you to use this
57  * driver to write the SPL.  When in this mode, no more than 2k of data can be
58  * written at a time, because the addresses do not increment in the normal
59  * manner, and the starting offset must be within an even-numbered 2k region;
60  * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
61  * 0x1a00, ...  Reliable mode is a special case and should not be used unless
62  * you know what you're doing.
63  */
64 static bool reliable_mode;
65 module_param(reliable_mode, bool, 0);
66 MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
67 
68 /*
69  * You'll want to ignore badblocks if you're reading a partition that contains
70  * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
71  * it does not use mtd nand's method for marking bad blocks (using oob area).
72  * This will also skip the check of the "page written" flag.
73  */
74 static bool ignore_badblocks;
75 module_param(ignore_badblocks, bool, 0);
76 MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
77 
78 struct docg4_priv {
79 	struct mtd_info	*mtd;
80 	struct device *dev;
81 	void __iomem *virtadr;
82 	int status;
83 	struct {
84 		unsigned int command;
85 		int column;
86 		int page;
87 	} last_command;
88 	uint8_t oob_buf[16];
89 	uint8_t ecc_buf[7];
90 	int oob_page;
91 	struct bch_control *bch;
92 };
93 
94 /*
95  * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
96  * shared with other diskonchip devices (P3, G3 at least).
97  *
98  * Functions with names prefixed with docg4_ are mtd / nand interface functions
99  * (though they may also be called internally).  All others are internal.
100  */
101 
102 #define DOC_IOSPACE_DATA		0x0800
103 
104 /* register offsets */
105 #define DOC_CHIPID			0x1000
106 #define DOC_DEVICESELECT		0x100a
107 #define DOC_ASICMODE			0x100c
108 #define DOC_DATAEND			0x101e
109 #define DOC_NOP				0x103e
110 
111 #define DOC_FLASHSEQUENCE		0x1032
112 #define DOC_FLASHCOMMAND		0x1034
113 #define DOC_FLASHADDRESS		0x1036
114 #define DOC_FLASHCONTROL		0x1038
115 #define DOC_ECCCONF0			0x1040
116 #define DOC_ECCCONF1			0x1042
117 #define DOC_HAMMINGPARITY		0x1046
118 #define DOC_BCH_SYNDROM(idx)		(0x1048 + idx)
119 
120 #define DOC_ASICMODECONFIRM		0x1072
121 #define DOC_CHIPID_INV			0x1074
122 #define DOC_POWERMODE			0x107c
123 
124 #define DOCG4_MYSTERY_REG		0x1050
125 
126 /* apparently used only to write oob bytes 6 and 7 */
127 #define DOCG4_OOB_6_7			0x1052
128 
129 /* DOC_FLASHSEQUENCE register commands */
130 #define DOC_SEQ_RESET			0x00
131 #define DOCG4_SEQ_PAGE_READ		0x03
132 #define DOCG4_SEQ_FLUSH			0x29
133 #define DOCG4_SEQ_PAGEWRITE		0x16
134 #define DOCG4_SEQ_PAGEPROG		0x1e
135 #define DOCG4_SEQ_BLOCKERASE		0x24
136 #define DOCG4_SEQ_SETMODE		0x45
137 
138 /* DOC_FLASHCOMMAND register commands */
139 #define DOCG4_CMD_PAGE_READ             0x00
140 #define DOC_CMD_ERASECYCLE2		0xd0
141 #define DOCG4_CMD_FLUSH                 0x70
142 #define DOCG4_CMD_READ2                 0x30
143 #define DOC_CMD_PROG_BLOCK_ADDR		0x60
144 #define DOCG4_CMD_PAGEWRITE		0x80
145 #define DOC_CMD_PROG_CYCLE2		0x10
146 #define DOCG4_CMD_FAST_MODE		0xa3 /* functionality guessed */
147 #define DOC_CMD_RELIABLE_MODE		0x22
148 #define DOC_CMD_RESET			0xff
149 
150 /* DOC_POWERMODE register bits */
151 #define DOC_POWERDOWN_READY		0x80
152 
153 /* DOC_FLASHCONTROL register bits */
154 #define DOC_CTRL_CE			0x10
155 #define DOC_CTRL_UNKNOWN		0x40
156 #define DOC_CTRL_FLASHREADY		0x01
157 
158 /* DOC_ECCCONF0 register bits */
159 #define DOC_ECCCONF0_READ_MODE		0x8000
160 #define DOC_ECCCONF0_UNKNOWN		0x2000
161 #define DOC_ECCCONF0_ECC_ENABLE	        0x1000
162 #define DOC_ECCCONF0_DATA_BYTES_MASK	0x07ff
163 
164 /* DOC_ECCCONF1 register bits */
165 #define DOC_ECCCONF1_BCH_SYNDROM_ERR	0x80
166 #define DOC_ECCCONF1_ECC_ENABLE         0x07
167 #define DOC_ECCCONF1_PAGE_IS_WRITTEN	0x20
168 
169 /* DOC_ASICMODE register bits */
170 #define DOC_ASICMODE_RESET		0x00
171 #define DOC_ASICMODE_NORMAL		0x01
172 #define DOC_ASICMODE_POWERDOWN		0x02
173 #define DOC_ASICMODE_MDWREN		0x04
174 #define DOC_ASICMODE_BDETCT_RESET	0x08
175 #define DOC_ASICMODE_RSTIN_RESET	0x10
176 #define DOC_ASICMODE_RAM_WE		0x20
177 
178 /* good status values read after read/write/erase operations */
179 #define DOCG4_PROGSTATUS_GOOD          0x51
180 #define DOCG4_PROGSTATUS_GOOD_2        0xe0
181 
182 /*
183  * On read operations (page and oob-only), the first byte read from I/O reg is a
184  * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
185  * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
186  */
187 #define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
188 
189 /* anatomy of the device */
190 #define DOCG4_CHIP_SIZE        0x8000000
191 #define DOCG4_PAGE_SIZE        0x200
192 #define DOCG4_PAGES_PER_BLOCK  0x200
193 #define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
194 #define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
195 #define DOCG4_OOB_SIZE         0x10
196 #define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
197 #define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
198 #define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
199 
200 /* all but the last byte is included in ecc calculation */
201 #define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
202 
203 #define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
204 
205 /* expected values from the ID registers */
206 #define DOCG4_IDREG1_VALUE     0x0400
207 #define DOCG4_IDREG2_VALUE     0xfbff
208 
209 /* primitive polynomial used to build the Galois field used by hw ecc gen */
210 #define DOCG4_PRIMITIVE_POLY   0x4443
211 
212 #define DOCG4_M                14  /* Galois field is of order 2^14 */
213 #define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
214 
215 #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
216 #define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
217 
218 /*
219  * Bytes 0, 1 are used as badblock marker.
220  * Bytes 2 - 6 are available to the user.
221  * Byte 7 is hamming ecc for first 7 oob bytes only.
222  * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
223  * Byte 15 (the last) is used by the driver as a "page written" flag.
224  */
225 static struct nand_ecclayout docg4_oobinfo = {
226 	.eccbytes = 9,
227 	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
228 	.oobavail = 5,
229 	.oobfree = { {.offset = 2, .length = 5} }
230 };
231 
232 /*
233  * The device has a nop register which M-Sys claims is for the purpose of
234  * inserting precise delays.  But beware; at least some operations fail if the
235  * nop writes are replaced with a generic delay!
236  */
write_nop(void __iomem * docptr)237 static inline void write_nop(void __iomem *docptr)
238 {
239 	writew(0, docptr + DOC_NOP);
240 }
241 
docg4_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)242 static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
243 {
244 	int i;
245 	struct nand_chip *nand = mtd->priv;
246 	uint16_t *p = (uint16_t *) buf;
247 	len >>= 1;
248 
249 	for (i = 0; i < len; i++)
250 		p[i] = readw(nand->IO_ADDR_R);
251 }
252 
docg4_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)253 static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
254 {
255 	int i;
256 	struct nand_chip *nand = mtd->priv;
257 	uint16_t *p = (uint16_t *) buf;
258 	len >>= 1;
259 
260 	for (i = 0; i < len; i++)
261 		writew(p[i], nand->IO_ADDR_W);
262 }
263 
poll_status(struct docg4_priv * doc)264 static int poll_status(struct docg4_priv *doc)
265 {
266 	/*
267 	 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
268 	 * register.  Operations known to take a long time (e.g., block erase)
269 	 * should sleep for a while before calling this.
270 	 */
271 
272 	uint16_t flash_status;
273 	unsigned long timeo;
274 	void __iomem *docptr = doc->virtadr;
275 
276 	dev_dbg(doc->dev, "%s...\n", __func__);
277 
278 	/* hardware quirk requires reading twice initially */
279 	flash_status = readw(docptr + DOC_FLASHCONTROL);
280 
281 	timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
282 	do {
283 		cpu_relax();
284 		flash_status = readb(docptr + DOC_FLASHCONTROL);
285 	} while (!(flash_status & DOC_CTRL_FLASHREADY) &&
286 		 time_before(jiffies, timeo));
287 
288 	if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
289 		dev_err(doc->dev, "%s: timed out!\n", __func__);
290 		return NAND_STATUS_FAIL;
291 	}
292 
293 	return 0;
294 }
295 
296 
docg4_wait(struct mtd_info * mtd,struct nand_chip * nand)297 static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
298 {
299 
300 	struct docg4_priv *doc = nand->priv;
301 	int status = NAND_STATUS_WP;       /* inverse logic?? */
302 	dev_dbg(doc->dev, "%s...\n", __func__);
303 
304 	/* report any previously unreported error */
305 	if (doc->status) {
306 		status |= doc->status;
307 		doc->status = 0;
308 		return status;
309 	}
310 
311 	status |= poll_status(doc);
312 	return status;
313 }
314 
docg4_select_chip(struct mtd_info * mtd,int chip)315 static void docg4_select_chip(struct mtd_info *mtd, int chip)
316 {
317 	/*
318 	 * Select among multiple cascaded chips ("floors").  Multiple floors are
319 	 * not yet supported, so the only valid non-negative value is 0.
320 	 */
321 	struct nand_chip *nand = mtd->priv;
322 	struct docg4_priv *doc = nand->priv;
323 	void __iomem *docptr = doc->virtadr;
324 
325 	dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
326 
327 	if (chip < 0)
328 		return;		/* deselected */
329 
330 	if (chip > 0)
331 		dev_warn(doc->dev, "multiple floors currently unsupported\n");
332 
333 	writew(0, docptr + DOC_DEVICESELECT);
334 }
335 
reset(struct mtd_info * mtd)336 static void reset(struct mtd_info *mtd)
337 {
338 	/* full device reset */
339 
340 	struct nand_chip *nand = mtd->priv;
341 	struct docg4_priv *doc = nand->priv;
342 	void __iomem *docptr = doc->virtadr;
343 
344 	writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
345 	       docptr + DOC_ASICMODE);
346 	writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
347 	       docptr + DOC_ASICMODECONFIRM);
348 	write_nop(docptr);
349 
350 	writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
351 	       docptr + DOC_ASICMODE);
352 	writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
353 	       docptr + DOC_ASICMODECONFIRM);
354 
355 	writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
356 
357 	poll_status(doc);
358 }
359 
read_hw_ecc(void __iomem * docptr,uint8_t * ecc_buf)360 static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
361 {
362 	/* read the 7 hw-generated ecc bytes */
363 
364 	int i;
365 	for (i = 0; i < 7; i++) { /* hw quirk; read twice */
366 		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
367 		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
368 	}
369 }
370 
correct_data(struct mtd_info * mtd,uint8_t * buf,int page)371 static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
372 {
373 	/*
374 	 * Called after a page read when hardware reports bitflips.
375 	 * Up to four bitflips can be corrected.
376 	 */
377 
378 	struct nand_chip *nand = mtd->priv;
379 	struct docg4_priv *doc = nand->priv;
380 	void __iomem *docptr = doc->virtadr;
381 	int i, numerrs, errpos[4];
382 	const uint8_t blank_read_hwecc[8] = {
383 		0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
384 
385 	read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
386 
387 	/* check if read error is due to a blank page */
388 	if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
389 		return 0;	/* yes */
390 
391 	/* skip additional check of "written flag" if ignore_badblocks */
392 	if (ignore_badblocks == false) {
393 
394 		/*
395 		 * If the hw ecc bytes are not those of a blank page, there's
396 		 * still a chance that the page is blank, but was read with
397 		 * errors.  Check the "written flag" in last oob byte, which
398 		 * is set to zero when a page is written.  If more than half
399 		 * the bits are set, assume a blank page.  Unfortunately, the
400 		 * bit flips(s) are not reported in stats.
401 		 */
402 
403 		if (nand->oob_poi[15]) {
404 			int bit, numsetbits = 0;
405 			unsigned long written_flag = nand->oob_poi[15];
406 			for_each_set_bit(bit, &written_flag, 8)
407 				numsetbits++;
408 			if (numsetbits > 4) { /* assume blank */
409 				dev_warn(doc->dev,
410 					 "error(s) in blank page "
411 					 "at offset %08x\n",
412 					 page * DOCG4_PAGE_SIZE);
413 				return 0;
414 			}
415 		}
416 	}
417 
418 	/*
419 	 * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
420 	 * algorithm is used to decode this.  However the hw operates on page
421 	 * data in a bit order that is the reverse of that of the bch alg,
422 	 * requiring that the bits be reversed on the result.  Thanks to Ivan
423 	 * Djelic for his analysis!
424 	 */
425 	for (i = 0; i < 7; i++)
426 		doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
427 
428 	numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
429 			     doc->ecc_buf, NULL, errpos);
430 
431 	if (numerrs == -EBADMSG) {
432 		dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
433 			 page * DOCG4_PAGE_SIZE);
434 		return -EBADMSG;
435 	}
436 
437 	BUG_ON(numerrs < 0);	/* -EINVAL, or anything other than -EBADMSG */
438 
439 	/* undo last step in BCH alg (modulo mirroring not needed) */
440 	for (i = 0; i < numerrs; i++)
441 		errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
442 
443 	/* fix the errors */
444 	for (i = 0; i < numerrs; i++) {
445 
446 		/* ignore if error within oob ecc bytes */
447 		if (errpos[i] > DOCG4_USERDATA_LEN * 8)
448 			continue;
449 
450 		/* if error within oob area preceeding ecc bytes... */
451 		if (errpos[i] > DOCG4_PAGE_SIZE * 8)
452 			change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
453 				   (unsigned long *)nand->oob_poi);
454 
455 		else    /* error in page data */
456 			change_bit(errpos[i], (unsigned long *)buf);
457 	}
458 
459 	dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
460 		   numerrs, page * DOCG4_PAGE_SIZE);
461 
462 	return numerrs;
463 }
464 
docg4_read_byte(struct mtd_info * mtd)465 static uint8_t docg4_read_byte(struct mtd_info *mtd)
466 {
467 	struct nand_chip *nand = mtd->priv;
468 	struct docg4_priv *doc = nand->priv;
469 
470 	dev_dbg(doc->dev, "%s\n", __func__);
471 
472 	if (doc->last_command.command == NAND_CMD_STATUS) {
473 		int status;
474 
475 		/*
476 		 * Previous nand command was status request, so nand
477 		 * infrastructure code expects to read the status here.  If an
478 		 * error occurred in a previous operation, report it.
479 		 */
480 		doc->last_command.command = 0;
481 
482 		if (doc->status) {
483 			status = doc->status;
484 			doc->status = 0;
485 		}
486 
487 		/* why is NAND_STATUS_WP inverse logic?? */
488 		else
489 			status = NAND_STATUS_WP | NAND_STATUS_READY;
490 
491 		return status;
492 	}
493 
494 	dev_warn(doc->dev, "unexpected call to read_byte()\n");
495 
496 	return 0;
497 }
498 
write_addr(struct docg4_priv * doc,uint32_t docg4_addr)499 static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
500 {
501 	/* write the four address bytes packed in docg4_addr to the device */
502 
503 	void __iomem *docptr = doc->virtadr;
504 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
505 	docg4_addr >>= 8;
506 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
507 	docg4_addr >>= 8;
508 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
509 	docg4_addr >>= 8;
510 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
511 }
512 
read_progstatus(struct docg4_priv * doc)513 static int read_progstatus(struct docg4_priv *doc)
514 {
515 	/*
516 	 * This apparently checks the status of programming.  Done after an
517 	 * erasure, and after page data is written.  On error, the status is
518 	 * saved, to be later retrieved by the nand infrastructure code.
519 	 */
520 	void __iomem *docptr = doc->virtadr;
521 
522 	/* status is read from the I/O reg */
523 	uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
524 	uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
525 	uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
526 
527 	dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
528 	      __func__, status1, status2, status3);
529 
530 	if (status1 != DOCG4_PROGSTATUS_GOOD
531 	    || status2 != DOCG4_PROGSTATUS_GOOD_2
532 	    || status3 != DOCG4_PROGSTATUS_GOOD_2) {
533 		doc->status = NAND_STATUS_FAIL;
534 		dev_warn(doc->dev, "read_progstatus failed: "
535 			 "%02x, %02x, %02x\n", status1, status2, status3);
536 		return -EIO;
537 	}
538 	return 0;
539 }
540 
pageprog(struct mtd_info * mtd)541 static int pageprog(struct mtd_info *mtd)
542 {
543 	/*
544 	 * Final step in writing a page.  Writes the contents of its
545 	 * internal buffer out to the flash array, or some such.
546 	 */
547 
548 	struct nand_chip *nand = mtd->priv;
549 	struct docg4_priv *doc = nand->priv;
550 	void __iomem *docptr = doc->virtadr;
551 	int retval = 0;
552 
553 	dev_dbg(doc->dev, "docg4: %s\n", __func__);
554 
555 	writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
556 	writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
557 	write_nop(docptr);
558 	write_nop(docptr);
559 
560 	/* Just busy-wait; usleep_range() slows things down noticeably. */
561 	poll_status(doc);
562 
563 	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
564 	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
565 	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
566 	write_nop(docptr);
567 	write_nop(docptr);
568 	write_nop(docptr);
569 	write_nop(docptr);
570 	write_nop(docptr);
571 
572 	retval = read_progstatus(doc);
573 	writew(0, docptr + DOC_DATAEND);
574 	write_nop(docptr);
575 	poll_status(doc);
576 	write_nop(docptr);
577 
578 	return retval;
579 }
580 
sequence_reset(struct mtd_info * mtd)581 static void sequence_reset(struct mtd_info *mtd)
582 {
583 	/* common starting sequence for all operations */
584 
585 	struct nand_chip *nand = mtd->priv;
586 	struct docg4_priv *doc = nand->priv;
587 	void __iomem *docptr = doc->virtadr;
588 
589 	writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
590 	writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
591 	writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
592 	write_nop(docptr);
593 	write_nop(docptr);
594 	poll_status(doc);
595 	write_nop(docptr);
596 }
597 
read_page_prologue(struct mtd_info * mtd,uint32_t docg4_addr)598 static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
599 {
600 	/* first step in reading a page */
601 
602 	struct nand_chip *nand = mtd->priv;
603 	struct docg4_priv *doc = nand->priv;
604 	void __iomem *docptr = doc->virtadr;
605 
606 	dev_dbg(doc->dev,
607 	      "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
608 
609 	sequence_reset(mtd);
610 
611 	writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
612 	writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
613 	write_nop(docptr);
614 
615 	write_addr(doc, docg4_addr);
616 
617 	write_nop(docptr);
618 	writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
619 	write_nop(docptr);
620 	write_nop(docptr);
621 
622 	poll_status(doc);
623 }
624 
write_page_prologue(struct mtd_info * mtd,uint32_t docg4_addr)625 static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
626 {
627 	/* first step in writing a page */
628 
629 	struct nand_chip *nand = mtd->priv;
630 	struct docg4_priv *doc = nand->priv;
631 	void __iomem *docptr = doc->virtadr;
632 
633 	dev_dbg(doc->dev,
634 	      "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
635 	sequence_reset(mtd);
636 
637 	if (unlikely(reliable_mode)) {
638 		writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
639 		writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
640 		writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
641 		write_nop(docptr);
642 	}
643 
644 	writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
645 	writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
646 	write_nop(docptr);
647 	write_addr(doc, docg4_addr);
648 	write_nop(docptr);
649 	write_nop(docptr);
650 	poll_status(doc);
651 }
652 
mtd_to_docg4_address(int page,int column)653 static uint32_t mtd_to_docg4_address(int page, int column)
654 {
655 	/*
656 	 * Convert mtd address to format used by the device, 32 bit packed.
657 	 *
658 	 * Some notes on G4 addressing... The M-Sys documentation on this device
659 	 * claims that pages are 2K in length, and indeed, the format of the
660 	 * address used by the device reflects that.  But within each page are
661 	 * four 512 byte "sub-pages", each with its own oob data that is
662 	 * read/written immediately after the 512 bytes of page data.  This oob
663 	 * data contains the ecc bytes for the preceeding 512 bytes.
664 	 *
665 	 * Rather than tell the mtd nand infrastructure that page size is 2k,
666 	 * with four sub-pages each, we engage in a little subterfuge and tell
667 	 * the infrastructure code that pages are 512 bytes in size.  This is
668 	 * done because during the course of reverse-engineering the device, I
669 	 * never observed an instance where an entire 2K "page" was read or
670 	 * written as a unit.  Each "sub-page" is always addressed individually,
671 	 * its data read/written, and ecc handled before the next "sub-page" is
672 	 * addressed.
673 	 *
674 	 * This requires us to convert addresses passed by the mtd nand
675 	 * infrastructure code to those used by the device.
676 	 *
677 	 * The address that is written to the device consists of four bytes: the
678 	 * first two are the 2k page number, and the second is the index into
679 	 * the page.  The index is in terms of 16-bit half-words and includes
680 	 * the preceeding oob data, so e.g., the index into the second
681 	 * "sub-page" is 0x108, and the full device address of the start of mtd
682 	 * page 0x201 is 0x00800108.
683 	 */
684 	int g4_page = page / 4;	                      /* device's 2K page */
685 	int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
686 	return (g4_page << 16) | g4_index;	      /* pack */
687 }
688 
docg4_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)689 static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
690 			  int page_addr)
691 {
692 	/* handle standard nand commands */
693 
694 	struct nand_chip *nand = mtd->priv;
695 	struct docg4_priv *doc = nand->priv;
696 	uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
697 
698 	dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
699 	      __func__, command, page_addr, column);
700 
701 	/*
702 	 * Save the command and its arguments.  This enables emulation of
703 	 * standard flash devices, and also some optimizations.
704 	 */
705 	doc->last_command.command = command;
706 	doc->last_command.column = column;
707 	doc->last_command.page = page_addr;
708 
709 	switch (command) {
710 
711 	case NAND_CMD_RESET:
712 		reset(mtd);
713 		break;
714 
715 	case NAND_CMD_READ0:
716 		read_page_prologue(mtd, g4_addr);
717 		break;
718 
719 	case NAND_CMD_STATUS:
720 		/* next call to read_byte() will expect a status */
721 		break;
722 
723 	case NAND_CMD_SEQIN:
724 		if (unlikely(reliable_mode)) {
725 			uint16_t g4_page = g4_addr >> 16;
726 
727 			/* writes to odd-numbered 2k pages are invalid */
728 			if (g4_page & 0x01)
729 				dev_warn(doc->dev,
730 					 "invalid reliable mode address\n");
731 		}
732 
733 		write_page_prologue(mtd, g4_addr);
734 
735 		/* hack for deferred write of oob bytes */
736 		if (doc->oob_page == page_addr)
737 			memcpy(nand->oob_poi, doc->oob_buf, 16);
738 		break;
739 
740 	case NAND_CMD_PAGEPROG:
741 		pageprog(mtd);
742 		break;
743 
744 	/* we don't expect these, based on review of nand_base.c */
745 	case NAND_CMD_READOOB:
746 	case NAND_CMD_READID:
747 	case NAND_CMD_ERASE1:
748 	case NAND_CMD_ERASE2:
749 		dev_warn(doc->dev, "docg4_command: "
750 			 "unexpected nand command 0x%x\n", command);
751 		break;
752 
753 	}
754 }
755 
read_page(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int page,bool use_ecc)756 static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
757 		     uint8_t *buf, int page, bool use_ecc)
758 {
759 	struct docg4_priv *doc = nand->priv;
760 	void __iomem *docptr = doc->virtadr;
761 	uint16_t status, edc_err, *buf16;
762 	int bits_corrected = 0;
763 
764 	dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
765 
766 	writew(DOC_ECCCONF0_READ_MODE |
767 	       DOC_ECCCONF0_ECC_ENABLE |
768 	       DOC_ECCCONF0_UNKNOWN |
769 	       DOCG4_BCH_SIZE,
770 	       docptr + DOC_ECCCONF0);
771 	write_nop(docptr);
772 	write_nop(docptr);
773 	write_nop(docptr);
774 	write_nop(docptr);
775 	write_nop(docptr);
776 
777 	/* the 1st byte from the I/O reg is a status; the rest is page data */
778 	status = readw(docptr + DOC_IOSPACE_DATA);
779 	if (status & DOCG4_READ_ERROR) {
780 		dev_err(doc->dev,
781 			"docg4_read_page: bad status: 0x%02x\n", status);
782 		writew(0, docptr + DOC_DATAEND);
783 		return -EIO;
784 	}
785 
786 	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
787 
788 	docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
789 
790 	/* this device always reads oob after page data */
791 	/* first 14 oob bytes read from I/O reg */
792 	docg4_read_buf(mtd, nand->oob_poi, 14);
793 
794 	/* last 2 read from another reg */
795 	buf16 = (uint16_t *)(nand->oob_poi + 14);
796 	*buf16 = readw(docptr + DOCG4_MYSTERY_REG);
797 
798 	write_nop(docptr);
799 
800 	if (likely(use_ecc == true)) {
801 
802 		/* read the register that tells us if bitflip(s) detected  */
803 		edc_err = readw(docptr + DOC_ECCCONF1);
804 		edc_err = readw(docptr + DOC_ECCCONF1);
805 		dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
806 
807 		/* If bitflips are reported, attempt to correct with ecc */
808 		if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
809 			bits_corrected = correct_data(mtd, buf, page);
810 			if (bits_corrected == -EBADMSG)
811 				mtd->ecc_stats.failed++;
812 			else
813 				mtd->ecc_stats.corrected += bits_corrected;
814 		}
815 	}
816 
817 	writew(0, docptr + DOC_DATAEND);
818 	if (bits_corrected == -EBADMSG)	  /* uncorrectable errors */
819 		return 0;
820 	return bits_corrected;
821 }
822 
823 
docg4_read_page_raw(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int oob_required,int page)824 static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
825 			       uint8_t *buf, int oob_required, int page)
826 {
827 	return read_page(mtd, nand, buf, page, false);
828 }
829 
docg4_read_page(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int oob_required,int page)830 static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
831 			   uint8_t *buf, int oob_required, int page)
832 {
833 	return read_page(mtd, nand, buf, page, true);
834 }
835 
docg4_read_oob(struct mtd_info * mtd,struct nand_chip * nand,int page)836 static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
837 			  int page)
838 {
839 	struct docg4_priv *doc = nand->priv;
840 	void __iomem *docptr = doc->virtadr;
841 	uint16_t status;
842 
843 	dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
844 
845 	docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
846 
847 	writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
848 	write_nop(docptr);
849 	write_nop(docptr);
850 	write_nop(docptr);
851 	write_nop(docptr);
852 	write_nop(docptr);
853 
854 	/* the 1st byte from the I/O reg is a status; the rest is oob data */
855 	status = readw(docptr + DOC_IOSPACE_DATA);
856 	if (status & DOCG4_READ_ERROR) {
857 		dev_warn(doc->dev,
858 			 "docg4_read_oob failed: status = 0x%02x\n", status);
859 		return -EIO;
860 	}
861 
862 	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
863 
864 	docg4_read_buf(mtd, nand->oob_poi, 16);
865 
866 	write_nop(docptr);
867 	write_nop(docptr);
868 	write_nop(docptr);
869 	writew(0, docptr + DOC_DATAEND);
870 	write_nop(docptr);
871 
872 	return 0;
873 }
874 
docg4_erase_block(struct mtd_info * mtd,int page)875 static int docg4_erase_block(struct mtd_info *mtd, int page)
876 {
877 	struct nand_chip *nand = mtd->priv;
878 	struct docg4_priv *doc = nand->priv;
879 	void __iomem *docptr = doc->virtadr;
880 	uint16_t g4_page;
881 
882 	dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
883 
884 	sequence_reset(mtd);
885 
886 	writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
887 	writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
888 	write_nop(docptr);
889 
890 	/* only 2 bytes of address are written to specify erase block */
891 	g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
892 	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
893 	g4_page >>= 8;
894 	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
895 	write_nop(docptr);
896 
897 	/* start the erasure */
898 	writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
899 	write_nop(docptr);
900 	write_nop(docptr);
901 
902 	usleep_range(500, 1000); /* erasure is long; take a snooze */
903 	poll_status(doc);
904 	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
905 	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
906 	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
907 	write_nop(docptr);
908 	write_nop(docptr);
909 	write_nop(docptr);
910 	write_nop(docptr);
911 	write_nop(docptr);
912 
913 	read_progstatus(doc);
914 
915 	writew(0, docptr + DOC_DATAEND);
916 	write_nop(docptr);
917 	poll_status(doc);
918 	write_nop(docptr);
919 
920 	return nand->waitfunc(mtd, nand);
921 }
922 
write_page(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf,bool use_ecc)923 static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
924 		       const uint8_t *buf, bool use_ecc)
925 {
926 	struct docg4_priv *doc = nand->priv;
927 	void __iomem *docptr = doc->virtadr;
928 	uint8_t ecc_buf[8];
929 
930 	dev_dbg(doc->dev, "%s...\n", __func__);
931 
932 	writew(DOC_ECCCONF0_ECC_ENABLE |
933 	       DOC_ECCCONF0_UNKNOWN |
934 	       DOCG4_BCH_SIZE,
935 	       docptr + DOC_ECCCONF0);
936 	write_nop(docptr);
937 
938 	/* write the page data */
939 	docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
940 
941 	/* oob bytes 0 through 5 are written to I/O reg */
942 	docg4_write_buf16(mtd, nand->oob_poi, 6);
943 
944 	/* oob byte 6 written to a separate reg */
945 	writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
946 
947 	write_nop(docptr);
948 	write_nop(docptr);
949 
950 	/* write hw-generated ecc bytes to oob */
951 	if (likely(use_ecc == true)) {
952 		/* oob byte 7 is hamming code */
953 		uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
954 		hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
955 		writew(hamming, docptr + DOCG4_OOB_6_7);
956 		write_nop(docptr);
957 
958 		/* read the 7 bch bytes from ecc regs */
959 		read_hw_ecc(docptr, ecc_buf);
960 		ecc_buf[7] = 0;         /* clear the "page written" flag */
961 	}
962 
963 	/* write user-supplied bytes to oob */
964 	else {
965 		writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
966 		write_nop(docptr);
967 		memcpy(ecc_buf, &nand->oob_poi[8], 8);
968 	}
969 
970 	docg4_write_buf16(mtd, ecc_buf, 8);
971 	write_nop(docptr);
972 	write_nop(docptr);
973 	writew(0, docptr + DOC_DATAEND);
974 	write_nop(docptr);
975 
976 	return 0;
977 }
978 
docg4_write_page_raw(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf,int oob_required,int page)979 static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
980 				const uint8_t *buf, int oob_required, int page)
981 {
982 	return write_page(mtd, nand, buf, false);
983 }
984 
docg4_write_page(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf,int oob_required,int page)985 static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
986 			     const uint8_t *buf, int oob_required, int page)
987 {
988 	return write_page(mtd, nand, buf, true);
989 }
990 
docg4_write_oob(struct mtd_info * mtd,struct nand_chip * nand,int page)991 static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
992 			   int page)
993 {
994 	/*
995 	 * Writing oob-only is not really supported, because MLC nand must write
996 	 * oob bytes at the same time as page data.  Nonetheless, we save the
997 	 * oob buffer contents here, and then write it along with the page data
998 	 * if the same page is subsequently written.  This allows user space
999 	 * utilities that write the oob data prior to the page data to work
1000 	 * (e.g., nandwrite).  The disdvantage is that, if the intention was to
1001 	 * write oob only, the operation is quietly ignored.  Also, oob can get
1002 	 * corrupted if two concurrent processes are running nandwrite.
1003 	 */
1004 
1005 	/* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
1006 	struct docg4_priv *doc = nand->priv;
1007 	doc->oob_page = page;
1008 	memcpy(doc->oob_buf, nand->oob_poi, 16);
1009 	return 0;
1010 }
1011 
read_factory_bbt(struct mtd_info * mtd)1012 static int __init read_factory_bbt(struct mtd_info *mtd)
1013 {
1014 	/*
1015 	 * The device contains a read-only factory bad block table.  Read it and
1016 	 * update the memory-based bbt accordingly.
1017 	 */
1018 
1019 	struct nand_chip *nand = mtd->priv;
1020 	struct docg4_priv *doc = nand->priv;
1021 	uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
1022 	uint8_t *buf;
1023 	int i, block;
1024 	__u32 eccfailed_stats = mtd->ecc_stats.failed;
1025 
1026 	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1027 	if (buf == NULL)
1028 		return -ENOMEM;
1029 
1030 	read_page_prologue(mtd, g4_addr);
1031 	docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
1032 
1033 	/*
1034 	 * If no memory-based bbt was created, exit.  This will happen if module
1035 	 * parameter ignore_badblocks is set.  Then why even call this function?
1036 	 * For an unknown reason, block erase always fails if it's the first
1037 	 * operation after device power-up.  The above read ensures it never is.
1038 	 * Ugly, I know.
1039 	 */
1040 	if (nand->bbt == NULL)  /* no memory-based bbt */
1041 		goto exit;
1042 
1043 	if (mtd->ecc_stats.failed > eccfailed_stats) {
1044 		/*
1045 		 * Whoops, an ecc failure ocurred reading the factory bbt.
1046 		 * It is stored redundantly, so we get another chance.
1047 		 */
1048 		eccfailed_stats = mtd->ecc_stats.failed;
1049 		docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
1050 		if (mtd->ecc_stats.failed > eccfailed_stats) {
1051 			dev_warn(doc->dev,
1052 				 "The factory bbt could not be read!\n");
1053 			goto exit;
1054 		}
1055 	}
1056 
1057 	/*
1058 	 * Parse factory bbt and update memory-based bbt.  Factory bbt format is
1059 	 * simple: one bit per block, block numbers increase left to right (msb
1060 	 * to lsb).  Bit clear means bad block.
1061 	 */
1062 	for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1063 		int bitnum;
1064 		unsigned long bits = ~buf[i];
1065 		for_each_set_bit(bitnum, &bits, 8) {
1066 			int badblock = block + 7 - bitnum;
1067 			nand->bbt[badblock / 4] |=
1068 				0x03 << ((badblock % 4) * 2);
1069 			mtd->ecc_stats.badblocks++;
1070 			dev_notice(doc->dev, "factory-marked bad block: %d\n",
1071 				   badblock);
1072 		}
1073 	}
1074  exit:
1075 	kfree(buf);
1076 	return 0;
1077 }
1078 
docg4_block_markbad(struct mtd_info * mtd,loff_t ofs)1079 static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1080 {
1081 	/*
1082 	 * Mark a block as bad.  Bad blocks are marked in the oob area of the
1083 	 * first page of the block.  The default scan_bbt() in the nand
1084 	 * infrastructure code works fine for building the memory-based bbt
1085 	 * during initialization, as does the nand infrastructure function that
1086 	 * checks if a block is bad by reading the bbt.  This function replaces
1087 	 * the nand default because writes to oob-only are not supported.
1088 	 */
1089 
1090 	int ret, i;
1091 	uint8_t *buf;
1092 	struct nand_chip *nand = mtd->priv;
1093 	struct docg4_priv *doc = nand->priv;
1094 	struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1095 	int page = (int)(ofs >> nand->page_shift);
1096 	uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1097 
1098 	dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1099 
1100 	if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1101 		dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1102 			 __func__, ofs);
1103 
1104 	/* allocate blank buffer for page data */
1105 	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1106 	if (buf == NULL)
1107 		return -ENOMEM;
1108 
1109 	/* write bit-wise negation of pattern to oob buffer */
1110 	memset(nand->oob_poi, 0xff, mtd->oobsize);
1111 	for (i = 0; i < bbtd->len; i++)
1112 		nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1113 
1114 	/* write first page of block */
1115 	write_page_prologue(mtd, g4_addr);
1116 	docg4_write_page(mtd, nand, buf, 1, page);
1117 	ret = pageprog(mtd);
1118 
1119 	kfree(buf);
1120 
1121 	return ret;
1122 }
1123 
docg4_block_neverbad(struct mtd_info * mtd,loff_t ofs,int getchip)1124 static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip)
1125 {
1126 	/* only called when module_param ignore_badblocks is set */
1127 	return 0;
1128 }
1129 
docg4_suspend(struct platform_device * pdev,pm_message_t state)1130 static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1131 {
1132 	/*
1133 	 * Put the device into "deep power-down" mode.  Note that CE# must be
1134 	 * deasserted for this to take effect.  The xscale, e.g., can be
1135 	 * configured to float this signal when the processor enters power-down,
1136 	 * and a suitable pull-up ensures its deassertion.
1137 	 */
1138 
1139 	int i;
1140 	uint8_t pwr_down;
1141 	struct docg4_priv *doc = platform_get_drvdata(pdev);
1142 	void __iomem *docptr = doc->virtadr;
1143 
1144 	dev_dbg(doc->dev, "%s...\n", __func__);
1145 
1146 	/* poll the register that tells us we're ready to go to sleep */
1147 	for (i = 0; i < 10; i++) {
1148 		pwr_down = readb(docptr + DOC_POWERMODE);
1149 		if (pwr_down & DOC_POWERDOWN_READY)
1150 			break;
1151 		usleep_range(1000, 4000);
1152 	}
1153 
1154 	if (pwr_down & DOC_POWERDOWN_READY) {
1155 		dev_err(doc->dev, "suspend failed; "
1156 			"timeout polling DOC_POWERDOWN_READY\n");
1157 		return -EIO;
1158 	}
1159 
1160 	writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1161 	       docptr + DOC_ASICMODE);
1162 	writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1163 	       docptr + DOC_ASICMODECONFIRM);
1164 
1165 	write_nop(docptr);
1166 
1167 	return 0;
1168 }
1169 
docg4_resume(struct platform_device * pdev)1170 static int docg4_resume(struct platform_device *pdev)
1171 {
1172 
1173 	/*
1174 	 * Exit power-down.  Twelve consecutive reads of the address below
1175 	 * accomplishes this, assuming CE# has been asserted.
1176 	 */
1177 
1178 	struct docg4_priv *doc = platform_get_drvdata(pdev);
1179 	void __iomem *docptr = doc->virtadr;
1180 	int i;
1181 
1182 	dev_dbg(doc->dev, "%s...\n", __func__);
1183 
1184 	for (i = 0; i < 12; i++)
1185 		readb(docptr + 0x1fff);
1186 
1187 	return 0;
1188 }
1189 
init_mtd_structs(struct mtd_info * mtd)1190 static void __init init_mtd_structs(struct mtd_info *mtd)
1191 {
1192 	/* initialize mtd and nand data structures */
1193 
1194 	/*
1195 	 * Note that some of the following initializations are not usually
1196 	 * required within a nand driver because they are performed by the nand
1197 	 * infrastructure code as part of nand_scan().  In this case they need
1198 	 * to be initialized here because we skip call to nand_scan_ident() (the
1199 	 * first half of nand_scan()).  The call to nand_scan_ident() is skipped
1200 	 * because for this device the chip id is not read in the manner of a
1201 	 * standard nand device.  Unfortunately, nand_scan_ident() does other
1202 	 * things as well, such as call nand_set_defaults().
1203 	 */
1204 
1205 	struct nand_chip *nand = mtd->priv;
1206 	struct docg4_priv *doc = nand->priv;
1207 
1208 	mtd->size = DOCG4_CHIP_SIZE;
1209 	mtd->name = "Msys_Diskonchip_G4";
1210 	mtd->writesize = DOCG4_PAGE_SIZE;
1211 	mtd->erasesize = DOCG4_BLOCK_SIZE;
1212 	mtd->oobsize = DOCG4_OOB_SIZE;
1213 	nand->chipsize = DOCG4_CHIP_SIZE;
1214 	nand->chip_shift = DOCG4_CHIP_SHIFT;
1215 	nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1216 	nand->chip_delay = 20;
1217 	nand->page_shift = DOCG4_PAGE_SHIFT;
1218 	nand->pagemask = 0x3ffff;
1219 	nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1220 	nand->badblockbits = 8;
1221 	nand->ecc.layout = &docg4_oobinfo;
1222 	nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1223 	nand->ecc.size = DOCG4_PAGE_SIZE;
1224 	nand->ecc.prepad = 8;
1225 	nand->ecc.bytes	= 8;
1226 	nand->ecc.strength = DOCG4_T;
1227 	nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
1228 	nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1229 	nand->controller = &nand->hwcontrol;
1230 	spin_lock_init(&nand->controller->lock);
1231 	init_waitqueue_head(&nand->controller->wq);
1232 
1233 	/* methods */
1234 	nand->cmdfunc = docg4_command;
1235 	nand->waitfunc = docg4_wait;
1236 	nand->select_chip = docg4_select_chip;
1237 	nand->read_byte = docg4_read_byte;
1238 	nand->block_markbad = docg4_block_markbad;
1239 	nand->read_buf = docg4_read_buf;
1240 	nand->write_buf = docg4_write_buf16;
1241 	nand->erase = docg4_erase_block;
1242 	nand->ecc.read_page = docg4_read_page;
1243 	nand->ecc.write_page = docg4_write_page;
1244 	nand->ecc.read_page_raw = docg4_read_page_raw;
1245 	nand->ecc.write_page_raw = docg4_write_page_raw;
1246 	nand->ecc.read_oob = docg4_read_oob;
1247 	nand->ecc.write_oob = docg4_write_oob;
1248 
1249 	/*
1250 	 * The way the nand infrastructure code is written, a memory-based bbt
1251 	 * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
1252 	 * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
1253 	 * scan and define a dummy block_bad() which always returns 0.
1254 	 */
1255 	if (ignore_badblocks) {
1256 		nand->options |= NAND_SKIP_BBTSCAN;
1257 		nand->block_bad	= docg4_block_neverbad;
1258 	}
1259 
1260 }
1261 
read_id_reg(struct mtd_info * mtd)1262 static int __init read_id_reg(struct mtd_info *mtd)
1263 {
1264 	struct nand_chip *nand = mtd->priv;
1265 	struct docg4_priv *doc = nand->priv;
1266 	void __iomem *docptr = doc->virtadr;
1267 	uint16_t id1, id2;
1268 
1269 	/* check for presence of g4 chip by reading id registers */
1270 	id1 = readw(docptr + DOC_CHIPID);
1271 	id1 = readw(docptr + DOCG4_MYSTERY_REG);
1272 	id2 = readw(docptr + DOC_CHIPID_INV);
1273 	id2 = readw(docptr + DOCG4_MYSTERY_REG);
1274 
1275 	if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1276 		dev_info(doc->dev,
1277 			 "NAND device: 128MiB Diskonchip G4 detected\n");
1278 		return 0;
1279 	}
1280 
1281 	return -ENODEV;
1282 }
1283 
1284 static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1285 
probe_docg4(struct platform_device * pdev)1286 static int __init probe_docg4(struct platform_device *pdev)
1287 {
1288 	struct mtd_info *mtd;
1289 	struct nand_chip *nand;
1290 	void __iomem *virtadr;
1291 	struct docg4_priv *doc;
1292 	int len, retval;
1293 	struct resource *r;
1294 	struct device *dev = &pdev->dev;
1295 
1296 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1297 	if (r == NULL) {
1298 		dev_err(dev, "no io memory resource defined!\n");
1299 		return -ENODEV;
1300 	}
1301 
1302 	virtadr = ioremap(r->start, resource_size(r));
1303 	if (!virtadr) {
1304 		dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1305 		return -EIO;
1306 	}
1307 
1308 	len = sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1309 		sizeof(struct docg4_priv);
1310 	mtd = kzalloc(len, GFP_KERNEL);
1311 	if (mtd == NULL) {
1312 		retval = -ENOMEM;
1313 		goto fail;
1314 	}
1315 	nand = (struct nand_chip *) (mtd + 1);
1316 	doc = (struct docg4_priv *) (nand + 1);
1317 	mtd->priv = nand;
1318 	nand->priv = doc;
1319 	mtd->dev.parent = &pdev->dev;
1320 	doc->virtadr = virtadr;
1321 	doc->dev = dev;
1322 
1323 	init_mtd_structs(mtd);
1324 
1325 	/* initialize kernel bch algorithm */
1326 	doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1327 	if (doc->bch == NULL) {
1328 		retval = -EINVAL;
1329 		goto fail;
1330 	}
1331 
1332 	platform_set_drvdata(pdev, doc);
1333 
1334 	reset(mtd);
1335 	retval = read_id_reg(mtd);
1336 	if (retval == -ENODEV) {
1337 		dev_warn(dev, "No diskonchip G4 device found.\n");
1338 		goto fail;
1339 	}
1340 
1341 	retval = nand_scan_tail(mtd);
1342 	if (retval)
1343 		goto fail;
1344 
1345 	retval = read_factory_bbt(mtd);
1346 	if (retval)
1347 		goto fail;
1348 
1349 	retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1350 	if (retval)
1351 		goto fail;
1352 
1353 	doc->mtd = mtd;
1354 	return 0;
1355 
1356  fail:
1357 	iounmap(virtadr);
1358 	if (mtd) {
1359 		/* re-declarations avoid compiler warning */
1360 		struct nand_chip *nand = mtd->priv;
1361 		struct docg4_priv *doc = nand->priv;
1362 		nand_release(mtd); /* deletes partitions and mtd devices */
1363 		free_bch(doc->bch);
1364 		kfree(mtd);
1365 	}
1366 
1367 	return retval;
1368 }
1369 
cleanup_docg4(struct platform_device * pdev)1370 static int __exit cleanup_docg4(struct platform_device *pdev)
1371 {
1372 	struct docg4_priv *doc = platform_get_drvdata(pdev);
1373 	nand_release(doc->mtd);
1374 	free_bch(doc->bch);
1375 	kfree(doc->mtd);
1376 	iounmap(doc->virtadr);
1377 	return 0;
1378 }
1379 
1380 static struct platform_driver docg4_driver = {
1381 	.driver		= {
1382 		.name	= "docg4",
1383 	},
1384 	.suspend	= docg4_suspend,
1385 	.resume		= docg4_resume,
1386 	.remove		= __exit_p(cleanup_docg4),
1387 };
1388 
1389 module_platform_driver_probe(docg4_driver, probe_docg4);
1390 
1391 MODULE_LICENSE("GPL");
1392 MODULE_AUTHOR("Mike Dunn");
1393 MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
1394