1 /*
2 * Freescale GPMI NAND Flash Driver
3 *
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23 #include <linux/slab.h>
24
25 #include "gpmi-nand.h"
26 #include "gpmi-regs.h"
27 #include "bch-regs.h"
28
29 static struct timing_threshod timing_default_threshold = {
30 .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
31 BP_GPMI_TIMING0_DATA_SETUP),
32 .internal_data_setup_in_ns = 0,
33 .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
34 BP_GPMI_CTRL1_RDN_DELAY),
35 .max_dll_clock_period_in_ns = 32,
36 .max_dll_delay_in_ns = 16,
37 };
38
39 #define MXS_SET_ADDR 0x4
40 #define MXS_CLR_ADDR 0x8
41 /*
42 * Clear the bit and poll it cleared. This is usually called with
43 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
44 * (bit 30).
45 */
clear_poll_bit(void __iomem * addr,u32 mask)46 static int clear_poll_bit(void __iomem *addr, u32 mask)
47 {
48 int timeout = 0x400;
49
50 /* clear the bit */
51 writel(mask, addr + MXS_CLR_ADDR);
52
53 /*
54 * SFTRST needs 3 GPMI clocks to settle, the reference manual
55 * recommends to wait 1us.
56 */
57 udelay(1);
58
59 /* poll the bit becoming clear */
60 while ((readl(addr) & mask) && --timeout)
61 /* nothing */;
62
63 return !timeout;
64 }
65
66 #define MODULE_CLKGATE (1 << 30)
67 #define MODULE_SFTRST (1 << 31)
68 /*
69 * The current mxs_reset_block() will do two things:
70 * [1] enable the module.
71 * [2] reset the module.
72 *
73 * In most of the cases, it's ok.
74 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
75 * If you try to soft reset the BCH block, it becomes unusable until
76 * the next hard reset. This case occurs in the NAND boot mode. When the board
77 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
78 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
79 * You will see a DMA timeout in this case. The bug has been fixed
80 * in the following chips, such as MX28.
81 *
82 * To avoid this bug, just add a new parameter `just_enable` for
83 * the mxs_reset_block(), and rewrite it here.
84 */
gpmi_reset_block(void __iomem * reset_addr,bool just_enable)85 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
86 {
87 int ret;
88 int timeout = 0x400;
89
90 /* clear and poll SFTRST */
91 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
92 if (unlikely(ret))
93 goto error;
94
95 /* clear CLKGATE */
96 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
97
98 if (!just_enable) {
99 /* set SFTRST to reset the block */
100 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
101 udelay(1);
102
103 /* poll CLKGATE becoming set */
104 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
105 /* nothing */;
106 if (unlikely(!timeout))
107 goto error;
108 }
109
110 /* clear and poll SFTRST */
111 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
112 if (unlikely(ret))
113 goto error;
114
115 /* clear and poll CLKGATE */
116 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
117 if (unlikely(ret))
118 goto error;
119
120 return 0;
121
122 error:
123 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
124 return -ETIMEDOUT;
125 }
126
__gpmi_enable_clk(struct gpmi_nand_data * this,bool v)127 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
128 {
129 struct clk *clk;
130 int ret;
131 int i;
132
133 for (i = 0; i < GPMI_CLK_MAX; i++) {
134 clk = this->resources.clock[i];
135 if (!clk)
136 break;
137
138 if (v) {
139 ret = clk_prepare_enable(clk);
140 if (ret)
141 goto err_clk;
142 } else {
143 clk_disable_unprepare(clk);
144 }
145 }
146 return 0;
147
148 err_clk:
149 for (; i > 0; i--)
150 clk_disable_unprepare(this->resources.clock[i - 1]);
151 return ret;
152 }
153
154 #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
155 #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
156
gpmi_init(struct gpmi_nand_data * this)157 int gpmi_init(struct gpmi_nand_data *this)
158 {
159 struct resources *r = &this->resources;
160 int ret;
161
162 ret = gpmi_enable_clk(this);
163 if (ret)
164 goto err_out;
165 ret = gpmi_reset_block(r->gpmi_regs, false);
166 if (ret)
167 goto err_out;
168
169 /*
170 * Reset BCH here, too. We got failures otherwise :(
171 * See later BCH reset for explanation of MX23 and MX28 handling
172 */
173 ret = gpmi_reset_block(r->bch_regs,
174 GPMI_IS_MX23(this) || GPMI_IS_MX28(this));
175 if (ret)
176 goto err_out;
177
178
179 /* Choose NAND mode. */
180 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
181
182 /* Set the IRQ polarity. */
183 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
184 r->gpmi_regs + HW_GPMI_CTRL1_SET);
185
186 /* Disable Write-Protection. */
187 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
188
189 /* Select BCH ECC. */
190 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
191
192 /*
193 * Decouple the chip select from dma channel. We use dma0 for all
194 * the chips.
195 */
196 writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
197
198 gpmi_disable_clk(this);
199 return 0;
200 err_out:
201 return ret;
202 }
203
204 /* This function is very useful. It is called only when the bug occur. */
gpmi_dump_info(struct gpmi_nand_data * this)205 void gpmi_dump_info(struct gpmi_nand_data *this)
206 {
207 struct resources *r = &this->resources;
208 struct bch_geometry *geo = &this->bch_geometry;
209 u32 reg;
210 int i;
211
212 dev_err(this->dev, "Show GPMI registers :\n");
213 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
214 reg = readl(r->gpmi_regs + i * 0x10);
215 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
216 }
217
218 /* start to print out the BCH info */
219 dev_err(this->dev, "Show BCH registers :\n");
220 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
221 reg = readl(r->bch_regs + i * 0x10);
222 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
223 }
224 dev_err(this->dev, "BCH Geometry :\n"
225 "GF length : %u\n"
226 "ECC Strength : %u\n"
227 "Page Size in Bytes : %u\n"
228 "Metadata Size in Bytes : %u\n"
229 "ECC Chunk Size in Bytes: %u\n"
230 "ECC Chunk Count : %u\n"
231 "Payload Size in Bytes : %u\n"
232 "Auxiliary Size in Bytes: %u\n"
233 "Auxiliary Status Offset: %u\n"
234 "Block Mark Byte Offset : %u\n"
235 "Block Mark Bit Offset : %u\n",
236 geo->gf_len,
237 geo->ecc_strength,
238 geo->page_size,
239 geo->metadata_size,
240 geo->ecc_chunk_size,
241 geo->ecc_chunk_count,
242 geo->payload_size,
243 geo->auxiliary_size,
244 geo->auxiliary_status_offset,
245 geo->block_mark_byte_offset,
246 geo->block_mark_bit_offset);
247 }
248
249 /* Configures the geometry for BCH. */
bch_set_geometry(struct gpmi_nand_data * this)250 int bch_set_geometry(struct gpmi_nand_data *this)
251 {
252 struct resources *r = &this->resources;
253 struct bch_geometry *bch_geo = &this->bch_geometry;
254 unsigned int block_count;
255 unsigned int block_size;
256 unsigned int metadata_size;
257 unsigned int ecc_strength;
258 unsigned int page_size;
259 unsigned int gf_len;
260 int ret;
261
262 if (common_nfc_set_geometry(this))
263 return !0;
264
265 block_count = bch_geo->ecc_chunk_count - 1;
266 block_size = bch_geo->ecc_chunk_size;
267 metadata_size = bch_geo->metadata_size;
268 ecc_strength = bch_geo->ecc_strength >> 1;
269 page_size = bch_geo->page_size;
270 gf_len = bch_geo->gf_len;
271
272 ret = gpmi_enable_clk(this);
273 if (ret)
274 goto err_out;
275
276 /*
277 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
278 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23
279 * and MX28.
280 */
281 ret = gpmi_reset_block(r->bch_regs,
282 GPMI_IS_MX23(this) || GPMI_IS_MX28(this));
283 if (ret)
284 goto err_out;
285
286 /* Configure layout 0. */
287 writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
288 | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
289 | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
290 | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
291 | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
292 r->bch_regs + HW_BCH_FLASH0LAYOUT0);
293
294 writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
295 | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
296 | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
297 | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
298 r->bch_regs + HW_BCH_FLASH0LAYOUT1);
299
300 /* Set *all* chip selects to use layout 0. */
301 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
302
303 /* Enable interrupts. */
304 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
305 r->bch_regs + HW_BCH_CTRL_SET);
306
307 gpmi_disable_clk(this);
308 return 0;
309 err_out:
310 return ret;
311 }
312
313 /* Converts time in nanoseconds to cycles. */
ns_to_cycles(unsigned int time,unsigned int period,unsigned int min)314 static unsigned int ns_to_cycles(unsigned int time,
315 unsigned int period, unsigned int min)
316 {
317 unsigned int k;
318
319 k = (time + period - 1) / period;
320 return max(k, min);
321 }
322
323 #define DEF_MIN_PROP_DELAY 5
324 #define DEF_MAX_PROP_DELAY 9
325 /* Apply timing to current hardware conditions. */
gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data * this,struct gpmi_nfc_hardware_timing * hw)326 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
327 struct gpmi_nfc_hardware_timing *hw)
328 {
329 struct timing_threshod *nfc = &timing_default_threshold;
330 struct resources *r = &this->resources;
331 struct nand_chip *nand = &this->nand;
332 struct nand_timing target = this->timing;
333 bool improved_timing_is_available;
334 unsigned long clock_frequency_in_hz;
335 unsigned int clock_period_in_ns;
336 bool dll_use_half_periods;
337 unsigned int dll_delay_shift;
338 unsigned int max_sample_delay_in_ns;
339 unsigned int address_setup_in_cycles;
340 unsigned int data_setup_in_ns;
341 unsigned int data_setup_in_cycles;
342 unsigned int data_hold_in_cycles;
343 int ideal_sample_delay_in_ns;
344 unsigned int sample_delay_factor;
345 int tEYE;
346 unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
347 unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
348
349 /*
350 * If there are multiple chips, we need to relax the timings to allow
351 * for signal distortion due to higher capacitance.
352 */
353 if (nand->numchips > 2) {
354 target.data_setup_in_ns += 10;
355 target.data_hold_in_ns += 10;
356 target.address_setup_in_ns += 10;
357 } else if (nand->numchips > 1) {
358 target.data_setup_in_ns += 5;
359 target.data_hold_in_ns += 5;
360 target.address_setup_in_ns += 5;
361 }
362
363 /* Check if improved timing information is available. */
364 improved_timing_is_available =
365 (target.tREA_in_ns >= 0) &&
366 (target.tRLOH_in_ns >= 0) &&
367 (target.tRHOH_in_ns >= 0);
368
369 /* Inspect the clock. */
370 nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
371 clock_frequency_in_hz = nfc->clock_frequency_in_hz;
372 clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz;
373
374 /*
375 * The NFC quantizes setup and hold parameters in terms of clock cycles.
376 * Here, we quantize the setup and hold timing parameters to the
377 * next-highest clock period to make sure we apply at least the
378 * specified times.
379 *
380 * For data setup and data hold, the hardware interprets a value of zero
381 * as the largest possible delay. This is not what's intended by a zero
382 * in the input parameter, so we impose a minimum of one cycle.
383 */
384 data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
385 clock_period_in_ns, 1);
386 data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
387 clock_period_in_ns, 1);
388 address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
389 clock_period_in_ns, 0);
390
391 /*
392 * The clock's period affects the sample delay in a number of ways:
393 *
394 * (1) The NFC HAL tells us the maximum clock period the sample delay
395 * DLL can tolerate. If the clock period is greater than half that
396 * maximum, we must configure the DLL to be driven by half periods.
397 *
398 * (2) We need to convert from an ideal sample delay, in ns, to a
399 * "sample delay factor," which the NFC uses. This factor depends on
400 * whether we're driving the DLL with full or half periods.
401 * Paraphrasing the reference manual:
402 *
403 * AD = SDF x 0.125 x RP
404 *
405 * where:
406 *
407 * AD is the applied delay, in ns.
408 * SDF is the sample delay factor, which is dimensionless.
409 * RP is the reference period, in ns, which is a full clock period
410 * if the DLL is being driven by full periods, or half that if
411 * the DLL is being driven by half periods.
412 *
413 * Let's re-arrange this in a way that's more useful to us:
414 *
415 * 8
416 * SDF = AD x ----
417 * RP
418 *
419 * The reference period is either the clock period or half that, so this
420 * is:
421 *
422 * 8 AD x DDF
423 * SDF = AD x ----- = --------
424 * f x P P
425 *
426 * where:
427 *
428 * f is 1 or 1/2, depending on how we're driving the DLL.
429 * P is the clock period.
430 * DDF is the DLL Delay Factor, a dimensionless value that
431 * incorporates all the constants in the conversion.
432 *
433 * DDF will be either 8 or 16, both of which are powers of two. We can
434 * reduce the cost of this conversion by using bit shifts instead of
435 * multiplication or division. Thus:
436 *
437 * AD << DDS
438 * SDF = ---------
439 * P
440 *
441 * or
442 *
443 * AD = (SDF >> DDS) x P
444 *
445 * where:
446 *
447 * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
448 */
449 if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
450 dll_use_half_periods = true;
451 dll_delay_shift = 3 + 1;
452 } else {
453 dll_use_half_periods = false;
454 dll_delay_shift = 3;
455 }
456
457 /*
458 * Compute the maximum sample delay the NFC allows, under current
459 * conditions. If the clock is running too slowly, no sample delay is
460 * possible.
461 */
462 if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
463 max_sample_delay_in_ns = 0;
464 else {
465 /*
466 * Compute the delay implied by the largest sample delay factor
467 * the NFC allows.
468 */
469 max_sample_delay_in_ns =
470 (nfc->max_sample_delay_factor * clock_period_in_ns) >>
471 dll_delay_shift;
472
473 /*
474 * Check if the implied sample delay larger than the NFC
475 * actually allows.
476 */
477 if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
478 max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
479 }
480
481 /*
482 * Check if improved timing information is available. If not, we have to
483 * use a less-sophisticated algorithm.
484 */
485 if (!improved_timing_is_available) {
486 /*
487 * Fold the read setup time required by the NFC into the ideal
488 * sample delay.
489 */
490 ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
491 nfc->internal_data_setup_in_ns;
492
493 /*
494 * The ideal sample delay may be greater than the maximum
495 * allowed by the NFC. If so, we can trade off sample delay time
496 * for more data setup time.
497 *
498 * In each iteration of the following loop, we add a cycle to
499 * the data setup time and subtract a corresponding amount from
500 * the sample delay until we've satisified the constraints or
501 * can't do any better.
502 */
503 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
504 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
505
506 data_setup_in_cycles++;
507 ideal_sample_delay_in_ns -= clock_period_in_ns;
508
509 if (ideal_sample_delay_in_ns < 0)
510 ideal_sample_delay_in_ns = 0;
511
512 }
513
514 /*
515 * Compute the sample delay factor that corresponds most closely
516 * to the ideal sample delay. If the result is too large for the
517 * NFC, use the maximum value.
518 *
519 * Notice that we use the ns_to_cycles function to compute the
520 * sample delay factor. We do this because the form of the
521 * computation is the same as that for calculating cycles.
522 */
523 sample_delay_factor =
524 ns_to_cycles(
525 ideal_sample_delay_in_ns << dll_delay_shift,
526 clock_period_in_ns, 0);
527
528 if (sample_delay_factor > nfc->max_sample_delay_factor)
529 sample_delay_factor = nfc->max_sample_delay_factor;
530
531 /* Skip to the part where we return our results. */
532 goto return_results;
533 }
534
535 /*
536 * If control arrives here, we have more detailed timing information,
537 * so we can use a better algorithm.
538 */
539
540 /*
541 * Fold the read setup time required by the NFC into the maximum
542 * propagation delay.
543 */
544 max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
545
546 /*
547 * Earlier, we computed the number of clock cycles required to satisfy
548 * the data setup time. Now, we need to know the actual nanoseconds.
549 */
550 data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
551
552 /*
553 * Compute tEYE, the width of the data eye when reading from the NAND
554 * Flash. The eye width is fundamentally determined by the data setup
555 * time, perturbed by propagation delays and some characteristics of the
556 * NAND Flash device.
557 *
558 * start of the eye = max_prop_delay + tREA
559 * end of the eye = min_prop_delay + tRHOH + data_setup
560 */
561 tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
562 (int)data_setup_in_ns;
563
564 tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
565
566 /*
567 * The eye must be open. If it's not, we can try to open it by
568 * increasing its main forcer, the data setup time.
569 *
570 * In each iteration of the following loop, we increase the data setup
571 * time by a single clock cycle. We do this until either the eye is
572 * open or we run into NFC limits.
573 */
574 while ((tEYE <= 0) &&
575 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
576 /* Give a cycle to data setup. */
577 data_setup_in_cycles++;
578 /* Synchronize the data setup time with the cycles. */
579 data_setup_in_ns += clock_period_in_ns;
580 /* Adjust tEYE accordingly. */
581 tEYE += clock_period_in_ns;
582 }
583
584 /*
585 * When control arrives here, the eye is open. The ideal time to sample
586 * the data is in the center of the eye:
587 *
588 * end of the eye + start of the eye
589 * --------------------------------- - data_setup
590 * 2
591 *
592 * After some algebra, this simplifies to the code immediately below.
593 */
594 ideal_sample_delay_in_ns =
595 ((int)max_prop_delay_in_ns +
596 (int)target.tREA_in_ns +
597 (int)min_prop_delay_in_ns +
598 (int)target.tRHOH_in_ns -
599 (int)data_setup_in_ns) >> 1;
600
601 /*
602 * The following figure illustrates some aspects of a NAND Flash read:
603 *
604 *
605 * __ _____________________________________
606 * RDN \_________________/
607 *
608 * <---- tEYE ----->
609 * /-----------------\
610 * Read Data ----------------------------< >---------
611 * \-----------------/
612 * ^ ^ ^ ^
613 * | | | |
614 * |<--Data Setup -->|<--Delay Time -->| |
615 * | | | |
616 * | | |
617 * | |<-- Quantized Delay Time -->|
618 * | | |
619 *
620 *
621 * We have some issues we must now address:
622 *
623 * (1) The *ideal* sample delay time must not be negative. If it is, we
624 * jam it to zero.
625 *
626 * (2) The *ideal* sample delay time must not be greater than that
627 * allowed by the NFC. If it is, we can increase the data setup
628 * time, which will reduce the delay between the end of the data
629 * setup and the center of the eye. It will also make the eye
630 * larger, which might help with the next issue...
631 *
632 * (3) The *quantized* sample delay time must not fall either before the
633 * eye opens or after it closes (the latter is the problem
634 * illustrated in the above figure).
635 */
636
637 /* Jam a negative ideal sample delay to zero. */
638 if (ideal_sample_delay_in_ns < 0)
639 ideal_sample_delay_in_ns = 0;
640
641 /*
642 * Extend the data setup as needed to reduce the ideal sample delay
643 * below the maximum permitted by the NFC.
644 */
645 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
646 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
647
648 /* Give a cycle to data setup. */
649 data_setup_in_cycles++;
650 /* Synchronize the data setup time with the cycles. */
651 data_setup_in_ns += clock_period_in_ns;
652 /* Adjust tEYE accordingly. */
653 tEYE += clock_period_in_ns;
654
655 /*
656 * Decrease the ideal sample delay by one half cycle, to keep it
657 * in the middle of the eye.
658 */
659 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
660
661 /* Jam a negative ideal sample delay to zero. */
662 if (ideal_sample_delay_in_ns < 0)
663 ideal_sample_delay_in_ns = 0;
664 }
665
666 /*
667 * Compute the sample delay factor that corresponds to the ideal sample
668 * delay. If the result is too large, then use the maximum allowed
669 * value.
670 *
671 * Notice that we use the ns_to_cycles function to compute the sample
672 * delay factor. We do this because the form of the computation is the
673 * same as that for calculating cycles.
674 */
675 sample_delay_factor =
676 ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
677 clock_period_in_ns, 0);
678
679 if (sample_delay_factor > nfc->max_sample_delay_factor)
680 sample_delay_factor = nfc->max_sample_delay_factor;
681
682 /*
683 * These macros conveniently encapsulate a computation we'll use to
684 * continuously evaluate whether or not the data sample delay is inside
685 * the eye.
686 */
687 #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
688
689 #define QUANTIZED_DELAY \
690 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
691 dll_delay_shift))
692
693 #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
694
695 #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
696
697 /*
698 * While the quantized sample time falls outside the eye, reduce the
699 * sample delay or extend the data setup to move the sampling point back
700 * toward the eye. Do not allow the number of data setup cycles to
701 * exceed the maximum allowed by the NFC.
702 */
703 while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
704 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
705 /*
706 * If control arrives here, the quantized sample delay falls
707 * outside the eye. Check if it's before the eye opens, or after
708 * the eye closes.
709 */
710 if (QUANTIZED_DELAY > IDEAL_DELAY) {
711 /*
712 * If control arrives here, the quantized sample delay
713 * falls after the eye closes. Decrease the quantized
714 * delay time and then go back to re-evaluate.
715 */
716 if (sample_delay_factor != 0)
717 sample_delay_factor--;
718 continue;
719 }
720
721 /*
722 * If control arrives here, the quantized sample delay falls
723 * before the eye opens. Shift the sample point by increasing
724 * data setup time. This will also make the eye larger.
725 */
726
727 /* Give a cycle to data setup. */
728 data_setup_in_cycles++;
729 /* Synchronize the data setup time with the cycles. */
730 data_setup_in_ns += clock_period_in_ns;
731 /* Adjust tEYE accordingly. */
732 tEYE += clock_period_in_ns;
733
734 /*
735 * Decrease the ideal sample delay by one half cycle, to keep it
736 * in the middle of the eye.
737 */
738 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
739
740 /* ...and one less period for the delay time. */
741 ideal_sample_delay_in_ns -= clock_period_in_ns;
742
743 /* Jam a negative ideal sample delay to zero. */
744 if (ideal_sample_delay_in_ns < 0)
745 ideal_sample_delay_in_ns = 0;
746
747 /*
748 * We have a new ideal sample delay, so re-compute the quantized
749 * delay.
750 */
751 sample_delay_factor =
752 ns_to_cycles(
753 ideal_sample_delay_in_ns << dll_delay_shift,
754 clock_period_in_ns, 0);
755
756 if (sample_delay_factor > nfc->max_sample_delay_factor)
757 sample_delay_factor = nfc->max_sample_delay_factor;
758 }
759
760 /* Control arrives here when we're ready to return our results. */
761 return_results:
762 hw->data_setup_in_cycles = data_setup_in_cycles;
763 hw->data_hold_in_cycles = data_hold_in_cycles;
764 hw->address_setup_in_cycles = address_setup_in_cycles;
765 hw->use_half_periods = dll_use_half_periods;
766 hw->sample_delay_factor = sample_delay_factor;
767 hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT;
768 hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
769
770 /* Return success. */
771 return 0;
772 }
773
774 /*
775 * <1> Firstly, we should know what's the GPMI-clock means.
776 * The GPMI-clock is the internal clock in the gpmi nand controller.
777 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
778 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
779 *
780 * <2> Secondly, we should know what's the frequency on the nand chip pins.
781 * The frequency on the nand chip pins is derived from the GPMI-clock.
782 * We can get it from the following equation:
783 *
784 * F = G / (DS + DH)
785 *
786 * F : the frequency on the nand chip pins.
787 * G : the GPMI clock, such as 100MHz.
788 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
789 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
790 *
791 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
792 * the nand EDO(extended Data Out) timing could be applied.
793 * The GPMI implements a feedback read strobe to sample the read data.
794 * The feedback read strobe can be delayed to support the nand EDO timing
795 * where the read strobe may deasserts before the read data is valid, and
796 * read data is valid for some time after read strobe.
797 *
798 * The following figure illustrates some aspects of a NAND Flash read:
799 *
800 * |<---tREA---->|
801 * | |
802 * | | |
803 * |<--tRP-->| |
804 * | | |
805 * __ ___|__________________________________
806 * RDN \________/ |
807 * |
808 * /---------\
809 * Read Data --------------< >---------
810 * \---------/
811 * | |
812 * |<-D->|
813 * FeedbackRDN ________ ____________
814 * \___________/
815 *
816 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
817 *
818 *
819 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
820 *
821 * 4.1) From the aspect of the nand chip pins:
822 * Delay = (tREA + C - tRP) {1}
823 *
824 * tREA : the maximum read access time. From the ONFI nand standards,
825 * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
826 * Please check it in : www.onfi.org
827 * C : a constant for adjust the delay. default is 4.
828 * tRP : the read pulse width.
829 * Specified by the HW_GPMI_TIMING0:DATA_SETUP:
830 * tRP = (GPMI-clock-period) * DATA_SETUP
831 *
832 * 4.2) From the aspect of the GPMI nand controller:
833 * Delay = RDN_DELAY * 0.125 * RP {2}
834 *
835 * RP : the DLL reference period.
836 * if (GPMI-clock-period > DLL_THRETHOLD)
837 * RP = GPMI-clock-period / 2;
838 * else
839 * RP = GPMI-clock-period;
840 *
841 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
842 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
843 * is 16ns, but in mx6q, we use 12ns.
844 *
845 * 4.3) since {1} equals {2}, we get:
846 *
847 * (tREA + 4 - tRP) * 8
848 * RDN_DELAY = --------------------- {3}
849 * RP
850 *
851 * 4.4) We only support the fastest asynchronous mode of ONFI nand.
852 * For some ONFI nand, the mode 4 is the fastest mode;
853 * while for some ONFI nand, the mode 5 is the fastest mode.
854 * So we only support the mode 4 and mode 5. It is no need to
855 * support other modes.
856 */
gpmi_compute_edo_timing(struct gpmi_nand_data * this,struct gpmi_nfc_hardware_timing * hw)857 static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
858 struct gpmi_nfc_hardware_timing *hw)
859 {
860 struct resources *r = &this->resources;
861 unsigned long rate = clk_get_rate(r->clock[0]);
862 int mode = this->timing_mode;
863 int dll_threshold = this->devdata->max_chain_delay;
864 unsigned long delay;
865 unsigned long clk_period;
866 int t_rea;
867 int c = 4;
868 int t_rp;
869 int rp;
870
871 /*
872 * [1] for GPMI_HW_GPMI_TIMING0:
873 * The async mode requires 40MHz for mode 4, 50MHz for mode 5.
874 * The GPMI can support 100MHz at most. So if we want to
875 * get the 40MHz or 50MHz, we have to set DS=1, DH=1.
876 * Set the ADDRESS_SETUP to 0 in mode 4.
877 */
878 hw->data_setup_in_cycles = 1;
879 hw->data_hold_in_cycles = 1;
880 hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
881
882 /* [2] for GPMI_HW_GPMI_TIMING1 */
883 hw->device_busy_timeout = 0x9000;
884
885 /* [3] for GPMI_HW_GPMI_CTRL1 */
886 hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
887
888 /*
889 * Enlarge 10 times for the numerator and denominator in {3}.
890 * This make us to get more accurate result.
891 */
892 clk_period = NSEC_PER_SEC / (rate / 10);
893 dll_threshold *= 10;
894 t_rea = ((mode == 5) ? 16 : 20) * 10;
895 c *= 10;
896
897 t_rp = clk_period * 1; /* DATA_SETUP is 1 */
898
899 if (clk_period > dll_threshold) {
900 hw->use_half_periods = 1;
901 rp = clk_period / 2;
902 } else {
903 hw->use_half_periods = 0;
904 rp = clk_period;
905 }
906
907 /*
908 * Multiply the numerator with 10, we could do a round off:
909 * 7.8 round up to 8; 7.4 round down to 7.
910 */
911 delay = (((t_rea + c - t_rp) * 8) * 10) / rp;
912 delay = (delay + 5) / 10;
913
914 hw->sample_delay_factor = delay;
915 }
916
enable_edo_mode(struct gpmi_nand_data * this,int mode)917 static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
918 {
919 struct resources *r = &this->resources;
920 struct nand_chip *nand = &this->nand;
921 struct mtd_info *mtd = &this->mtd;
922 uint8_t *feature;
923 unsigned long rate;
924 int ret;
925
926 feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL);
927 if (!feature)
928 return -ENOMEM;
929
930 nand->select_chip(mtd, 0);
931
932 /* [1] send SET FEATURE commond to NAND */
933 feature[0] = mode;
934 ret = nand->onfi_set_features(mtd, nand,
935 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
936 if (ret)
937 goto err_out;
938
939 /* [2] send GET FEATURE command to double-check the timing mode */
940 memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
941 ret = nand->onfi_get_features(mtd, nand,
942 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
943 if (ret || feature[0] != mode)
944 goto err_out;
945
946 nand->select_chip(mtd, -1);
947
948 /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
949 rate = (mode == 5) ? 100000000 : 80000000;
950 clk_set_rate(r->clock[0], rate);
951
952 /* Let the gpmi_begin() re-compute the timing again. */
953 this->flags &= ~GPMI_TIMING_INIT_OK;
954
955 this->flags |= GPMI_ASYNC_EDO_ENABLED;
956 this->timing_mode = mode;
957 kfree(feature);
958 dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
959 return 0;
960
961 err_out:
962 nand->select_chip(mtd, -1);
963 kfree(feature);
964 dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
965 return -EINVAL;
966 }
967
gpmi_extra_init(struct gpmi_nand_data * this)968 int gpmi_extra_init(struct gpmi_nand_data *this)
969 {
970 struct nand_chip *chip = &this->nand;
971
972 /* Enable the asynchronous EDO feature. */
973 if (GPMI_IS_MX6(this) && chip->onfi_version) {
974 int mode = onfi_get_async_timing_mode(chip);
975
976 /* We only support the timing mode 4 and mode 5. */
977 if (mode & ONFI_TIMING_MODE_5)
978 mode = 5;
979 else if (mode & ONFI_TIMING_MODE_4)
980 mode = 4;
981 else
982 return 0;
983
984 return enable_edo_mode(this, mode);
985 }
986 return 0;
987 }
988
989 /* Begin the I/O */
gpmi_begin(struct gpmi_nand_data * this)990 void gpmi_begin(struct gpmi_nand_data *this)
991 {
992 struct resources *r = &this->resources;
993 void __iomem *gpmi_regs = r->gpmi_regs;
994 unsigned int clock_period_in_ns;
995 uint32_t reg;
996 unsigned int dll_wait_time_in_us;
997 struct gpmi_nfc_hardware_timing hw;
998 int ret;
999
1000 /* Enable the clock. */
1001 ret = gpmi_enable_clk(this);
1002 if (ret) {
1003 dev_err(this->dev, "We failed in enable the clk\n");
1004 goto err_out;
1005 }
1006
1007 /* Only initialize the timing once */
1008 if (this->flags & GPMI_TIMING_INIT_OK)
1009 return;
1010 this->flags |= GPMI_TIMING_INIT_OK;
1011
1012 if (this->flags & GPMI_ASYNC_EDO_ENABLED)
1013 gpmi_compute_edo_timing(this, &hw);
1014 else
1015 gpmi_nfc_compute_hardware_timing(this, &hw);
1016
1017 /* [1] Set HW_GPMI_TIMING0 */
1018 reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
1019 BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) |
1020 BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles);
1021
1022 writel(reg, gpmi_regs + HW_GPMI_TIMING0);
1023
1024 /* [2] Set HW_GPMI_TIMING1 */
1025 writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
1026 gpmi_regs + HW_GPMI_TIMING1);
1027
1028 /* [3] The following code is to set the HW_GPMI_CTRL1. */
1029
1030 /* Set the WRN_DLY_SEL */
1031 writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
1032 writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
1033 gpmi_regs + HW_GPMI_CTRL1_SET);
1034
1035 /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1036 writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
1037
1038 /* Clear out the DLL control fields. */
1039 reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
1040 writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
1041
1042 /* If no sample delay is called for, return immediately. */
1043 if (!hw.sample_delay_factor)
1044 return;
1045
1046 /* Set RDN_DELAY or HALF_PERIOD. */
1047 reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
1048 | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
1049
1050 writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
1051
1052 /* At last, we enable the DLL. */
1053 writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
1054
1055 /*
1056 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1057 * we can use the GPMI. Calculate the amount of time we need to wait,
1058 * in microseconds.
1059 */
1060 clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
1061 dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
1062
1063 if (!dll_wait_time_in_us)
1064 dll_wait_time_in_us = 1;
1065
1066 /* Wait for the DLL to settle. */
1067 udelay(dll_wait_time_in_us);
1068
1069 err_out:
1070 return;
1071 }
1072
gpmi_end(struct gpmi_nand_data * this)1073 void gpmi_end(struct gpmi_nand_data *this)
1074 {
1075 gpmi_disable_clk(this);
1076 }
1077
1078 /* Clears a BCH interrupt. */
gpmi_clear_bch(struct gpmi_nand_data * this)1079 void gpmi_clear_bch(struct gpmi_nand_data *this)
1080 {
1081 struct resources *r = &this->resources;
1082 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1083 }
1084
1085 /* Returns the Ready/Busy status of the given chip. */
gpmi_is_ready(struct gpmi_nand_data * this,unsigned chip)1086 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
1087 {
1088 struct resources *r = &this->resources;
1089 uint32_t mask = 0;
1090 uint32_t reg = 0;
1091
1092 if (GPMI_IS_MX23(this)) {
1093 mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
1094 reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
1095 } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
1096 /*
1097 * In the imx6, all the ready/busy pins are bound
1098 * together. So we only need to check chip 0.
1099 */
1100 if (GPMI_IS_MX6(this))
1101 chip = 0;
1102
1103 /* MX28 shares the same R/B register as MX6Q. */
1104 mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
1105 reg = readl(r->gpmi_regs + HW_GPMI_STAT);
1106 } else
1107 dev_err(this->dev, "unknown arch.\n");
1108 return reg & mask;
1109 }
1110
set_dma_type(struct gpmi_nand_data * this,enum dma_ops_type type)1111 static inline void set_dma_type(struct gpmi_nand_data *this,
1112 enum dma_ops_type type)
1113 {
1114 this->last_dma_type = this->dma_type;
1115 this->dma_type = type;
1116 }
1117
gpmi_send_command(struct gpmi_nand_data * this)1118 int gpmi_send_command(struct gpmi_nand_data *this)
1119 {
1120 struct dma_chan *channel = get_dma_chan(this);
1121 struct dma_async_tx_descriptor *desc;
1122 struct scatterlist *sgl;
1123 int chip = this->current_chip;
1124 u32 pio[3];
1125
1126 /* [1] send out the PIO words */
1127 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
1128 | BM_GPMI_CTRL0_WORD_LENGTH
1129 | BF_GPMI_CTRL0_CS(chip, this)
1130 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1131 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
1132 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
1133 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
1134 pio[1] = pio[2] = 0;
1135 desc = dmaengine_prep_slave_sg(channel,
1136 (struct scatterlist *)pio,
1137 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1138 if (!desc)
1139 return -EINVAL;
1140
1141 /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1142 sgl = &this->cmd_sgl;
1143
1144 sg_init_one(sgl, this->cmd_buffer, this->command_length);
1145 dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
1146 desc = dmaengine_prep_slave_sg(channel,
1147 sgl, 1, DMA_MEM_TO_DEV,
1148 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1149 if (!desc)
1150 return -EINVAL;
1151
1152 /* [3] submit the DMA */
1153 set_dma_type(this, DMA_FOR_COMMAND);
1154 return start_dma_without_bch_irq(this, desc);
1155 }
1156
gpmi_send_data(struct gpmi_nand_data * this)1157 int gpmi_send_data(struct gpmi_nand_data *this)
1158 {
1159 struct dma_async_tx_descriptor *desc;
1160 struct dma_chan *channel = get_dma_chan(this);
1161 int chip = this->current_chip;
1162 uint32_t command_mode;
1163 uint32_t address;
1164 u32 pio[2];
1165
1166 /* [1] PIO */
1167 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1168 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1169
1170 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1171 | BM_GPMI_CTRL0_WORD_LENGTH
1172 | BF_GPMI_CTRL0_CS(chip, this)
1173 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1174 | BF_GPMI_CTRL0_ADDRESS(address)
1175 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1176 pio[1] = 0;
1177 desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
1178 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1179 if (!desc)
1180 return -EINVAL;
1181
1182 /* [2] send DMA request */
1183 prepare_data_dma(this, DMA_TO_DEVICE);
1184 desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1185 1, DMA_MEM_TO_DEV,
1186 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1187 if (!desc)
1188 return -EINVAL;
1189
1190 /* [3] submit the DMA */
1191 set_dma_type(this, DMA_FOR_WRITE_DATA);
1192 return start_dma_without_bch_irq(this, desc);
1193 }
1194
gpmi_read_data(struct gpmi_nand_data * this)1195 int gpmi_read_data(struct gpmi_nand_data *this)
1196 {
1197 struct dma_async_tx_descriptor *desc;
1198 struct dma_chan *channel = get_dma_chan(this);
1199 int chip = this->current_chip;
1200 u32 pio[2];
1201
1202 /* [1] : send PIO */
1203 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
1204 | BM_GPMI_CTRL0_WORD_LENGTH
1205 | BF_GPMI_CTRL0_CS(chip, this)
1206 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1207 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
1208 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1209 pio[1] = 0;
1210 desc = dmaengine_prep_slave_sg(channel,
1211 (struct scatterlist *)pio,
1212 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1213 if (!desc)
1214 return -EINVAL;
1215
1216 /* [2] : send DMA request */
1217 prepare_data_dma(this, DMA_FROM_DEVICE);
1218 desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1219 1, DMA_DEV_TO_MEM,
1220 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1221 if (!desc)
1222 return -EINVAL;
1223
1224 /* [3] : submit the DMA */
1225 set_dma_type(this, DMA_FOR_READ_DATA);
1226 return start_dma_without_bch_irq(this, desc);
1227 }
1228
gpmi_send_page(struct gpmi_nand_data * this,dma_addr_t payload,dma_addr_t auxiliary)1229 int gpmi_send_page(struct gpmi_nand_data *this,
1230 dma_addr_t payload, dma_addr_t auxiliary)
1231 {
1232 struct bch_geometry *geo = &this->bch_geometry;
1233 uint32_t command_mode;
1234 uint32_t address;
1235 uint32_t ecc_command;
1236 uint32_t buffer_mask;
1237 struct dma_async_tx_descriptor *desc;
1238 struct dma_chan *channel = get_dma_chan(this);
1239 int chip = this->current_chip;
1240 u32 pio[6];
1241
1242 /* A DMA descriptor that does an ECC page read. */
1243 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1244 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1245 ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
1246 buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
1247 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1248
1249 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1250 | BM_GPMI_CTRL0_WORD_LENGTH
1251 | BF_GPMI_CTRL0_CS(chip, this)
1252 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1253 | BF_GPMI_CTRL0_ADDRESS(address)
1254 | BF_GPMI_CTRL0_XFER_COUNT(0);
1255 pio[1] = 0;
1256 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1257 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1258 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1259 pio[3] = geo->page_size;
1260 pio[4] = payload;
1261 pio[5] = auxiliary;
1262
1263 desc = dmaengine_prep_slave_sg(channel,
1264 (struct scatterlist *)pio,
1265 ARRAY_SIZE(pio), DMA_TRANS_NONE,
1266 DMA_CTRL_ACK);
1267 if (!desc)
1268 return -EINVAL;
1269
1270 set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
1271 return start_dma_with_bch_irq(this, desc);
1272 }
1273
gpmi_read_page(struct gpmi_nand_data * this,dma_addr_t payload,dma_addr_t auxiliary)1274 int gpmi_read_page(struct gpmi_nand_data *this,
1275 dma_addr_t payload, dma_addr_t auxiliary)
1276 {
1277 struct bch_geometry *geo = &this->bch_geometry;
1278 uint32_t command_mode;
1279 uint32_t address;
1280 uint32_t ecc_command;
1281 uint32_t buffer_mask;
1282 struct dma_async_tx_descriptor *desc;
1283 struct dma_chan *channel = get_dma_chan(this);
1284 int chip = this->current_chip;
1285 u32 pio[6];
1286
1287 /* [1] Wait for the chip to report ready. */
1288 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1289 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1290
1291 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1292 | BM_GPMI_CTRL0_WORD_LENGTH
1293 | BF_GPMI_CTRL0_CS(chip, this)
1294 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1295 | BF_GPMI_CTRL0_ADDRESS(address)
1296 | BF_GPMI_CTRL0_XFER_COUNT(0);
1297 pio[1] = 0;
1298 desc = dmaengine_prep_slave_sg(channel,
1299 (struct scatterlist *)pio, 2,
1300 DMA_TRANS_NONE, 0);
1301 if (!desc)
1302 return -EINVAL;
1303
1304 /* [2] Enable the BCH block and read. */
1305 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1306 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1307 ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1308 buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1309 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1310
1311 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1312 | BM_GPMI_CTRL0_WORD_LENGTH
1313 | BF_GPMI_CTRL0_CS(chip, this)
1314 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1315 | BF_GPMI_CTRL0_ADDRESS(address)
1316 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1317
1318 pio[1] = 0;
1319 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1320 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1321 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1322 pio[3] = geo->page_size;
1323 pio[4] = payload;
1324 pio[5] = auxiliary;
1325 desc = dmaengine_prep_slave_sg(channel,
1326 (struct scatterlist *)pio,
1327 ARRAY_SIZE(pio), DMA_TRANS_NONE,
1328 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1329 if (!desc)
1330 return -EINVAL;
1331
1332 /* [3] Disable the BCH block */
1333 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1334 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1335
1336 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1337 | BM_GPMI_CTRL0_WORD_LENGTH
1338 | BF_GPMI_CTRL0_CS(chip, this)
1339 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1340 | BF_GPMI_CTRL0_ADDRESS(address)
1341 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1342 pio[1] = 0;
1343 pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1344 desc = dmaengine_prep_slave_sg(channel,
1345 (struct scatterlist *)pio, 3,
1346 DMA_TRANS_NONE,
1347 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1348 if (!desc)
1349 return -EINVAL;
1350
1351 /* [4] submit the DMA */
1352 set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1353 return start_dma_with_bch_irq(this, desc);
1354 }
1355
1356 /**
1357 * gpmi_copy_bits - copy bits from one memory region to another
1358 * @dst: destination buffer
1359 * @dst_bit_off: bit offset we're starting to write at
1360 * @src: source buffer
1361 * @src_bit_off: bit offset we're starting to read from
1362 * @nbits: number of bits to copy
1363 *
1364 * This functions copies bits from one memory region to another, and is used by
1365 * the GPMI driver to copy ECC sections which are not guaranteed to be byte
1366 * aligned.
1367 *
1368 * src and dst should not overlap.
1369 *
1370 */
gpmi_copy_bits(u8 * dst,size_t dst_bit_off,const u8 * src,size_t src_bit_off,size_t nbits)1371 void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
1372 const u8 *src, size_t src_bit_off,
1373 size_t nbits)
1374 {
1375 size_t i;
1376 size_t nbytes;
1377 u32 src_buffer = 0;
1378 size_t bits_in_src_buffer = 0;
1379
1380 if (!nbits)
1381 return;
1382
1383 /*
1384 * Move src and dst pointers to the closest byte pointer and store bit
1385 * offsets within a byte.
1386 */
1387 src += src_bit_off / 8;
1388 src_bit_off %= 8;
1389
1390 dst += dst_bit_off / 8;
1391 dst_bit_off %= 8;
1392
1393 /*
1394 * Initialize the src_buffer value with bits available in the first
1395 * byte of data so that we end up with a byte aligned src pointer.
1396 */
1397 if (src_bit_off) {
1398 src_buffer = src[0] >> src_bit_off;
1399 if (nbits >= (8 - src_bit_off)) {
1400 bits_in_src_buffer += 8 - src_bit_off;
1401 } else {
1402 src_buffer &= GENMASK(nbits - 1, 0);
1403 bits_in_src_buffer += nbits;
1404 }
1405 nbits -= bits_in_src_buffer;
1406 src++;
1407 }
1408
1409 /* Calculate the number of bytes that can be copied from src to dst. */
1410 nbytes = nbits / 8;
1411
1412 /* Try to align dst to a byte boundary. */
1413 if (dst_bit_off) {
1414 if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
1415 src_buffer |= src[0] << bits_in_src_buffer;
1416 bits_in_src_buffer += 8;
1417 src++;
1418 nbytes--;
1419 }
1420
1421 if (bits_in_src_buffer >= (8 - dst_bit_off)) {
1422 dst[0] &= GENMASK(dst_bit_off - 1, 0);
1423 dst[0] |= src_buffer << dst_bit_off;
1424 src_buffer >>= (8 - dst_bit_off);
1425 bits_in_src_buffer -= (8 - dst_bit_off);
1426 dst_bit_off = 0;
1427 dst++;
1428 if (bits_in_src_buffer > 7) {
1429 bits_in_src_buffer -= 8;
1430 dst[0] = src_buffer;
1431 dst++;
1432 src_buffer >>= 8;
1433 }
1434 }
1435 }
1436
1437 if (!bits_in_src_buffer && !dst_bit_off) {
1438 /*
1439 * Both src and dst pointers are byte aligned, thus we can
1440 * just use the optimized memcpy function.
1441 */
1442 if (nbytes)
1443 memcpy(dst, src, nbytes);
1444 } else {
1445 /*
1446 * src buffer is not byte aligned, hence we have to copy each
1447 * src byte to the src_buffer variable before extracting a byte
1448 * to store in dst.
1449 */
1450 for (i = 0; i < nbytes; i++) {
1451 src_buffer |= src[i] << bits_in_src_buffer;
1452 dst[i] = src_buffer;
1453 src_buffer >>= 8;
1454 }
1455 }
1456 /* Update dst and src pointers */
1457 dst += nbytes;
1458 src += nbytes;
1459
1460 /*
1461 * nbits is the number of remaining bits. It should not exceed 8 as
1462 * we've already copied as much bytes as possible.
1463 */
1464 nbits %= 8;
1465
1466 /*
1467 * If there's no more bits to copy to the destination and src buffer
1468 * was already byte aligned, then we're done.
1469 */
1470 if (!nbits && !bits_in_src_buffer)
1471 return;
1472
1473 /* Copy the remaining bits to src_buffer */
1474 if (nbits)
1475 src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
1476 bits_in_src_buffer;
1477 bits_in_src_buffer += nbits;
1478
1479 /*
1480 * In case there were not enough bits to get a byte aligned dst buffer
1481 * prepare the src_buffer variable to match the dst organization (shift
1482 * src_buffer by dst_bit_off and retrieve the least significant bits
1483 * from dst).
1484 */
1485 if (dst_bit_off)
1486 src_buffer = (src_buffer << dst_bit_off) |
1487 (*dst & GENMASK(dst_bit_off - 1, 0));
1488 bits_in_src_buffer += dst_bit_off;
1489
1490 /*
1491 * Keep most significant bits from dst if we end up with an unaligned
1492 * number of bits.
1493 */
1494 nbytes = bits_in_src_buffer / 8;
1495 if (bits_in_src_buffer % 8) {
1496 src_buffer |= (dst[nbytes] &
1497 GENMASK(7, bits_in_src_buffer % 8)) <<
1498 (nbytes * 8);
1499 nbytes++;
1500 }
1501
1502 /* Copy the remaining bytes to dst */
1503 for (i = 0; i < nbytes; i++) {
1504 dst[i] = src_buffer;
1505 src_buffer >>= 8;
1506 }
1507 }
1508