• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Freescale GPMI NAND Flash Driver
3  *
4  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23 #include <linux/slab.h>
24 
25 #include "gpmi-nand.h"
26 #include "gpmi-regs.h"
27 #include "bch-regs.h"
28 
29 static struct timing_threshod timing_default_threshold = {
30 	.max_data_setup_cycles       = (BM_GPMI_TIMING0_DATA_SETUP >>
31 						BP_GPMI_TIMING0_DATA_SETUP),
32 	.internal_data_setup_in_ns   = 0,
33 	.max_sample_delay_factor     = (BM_GPMI_CTRL1_RDN_DELAY >>
34 						BP_GPMI_CTRL1_RDN_DELAY),
35 	.max_dll_clock_period_in_ns  = 32,
36 	.max_dll_delay_in_ns         = 16,
37 };
38 
39 #define MXS_SET_ADDR		0x4
40 #define MXS_CLR_ADDR		0x8
41 /*
42  * Clear the bit and poll it cleared.  This is usually called with
43  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
44  * (bit 30).
45  */
clear_poll_bit(void __iomem * addr,u32 mask)46 static int clear_poll_bit(void __iomem *addr, u32 mask)
47 {
48 	int timeout = 0x400;
49 
50 	/* clear the bit */
51 	writel(mask, addr + MXS_CLR_ADDR);
52 
53 	/*
54 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
55 	 * recommends to wait 1us.
56 	 */
57 	udelay(1);
58 
59 	/* poll the bit becoming clear */
60 	while ((readl(addr) & mask) && --timeout)
61 		/* nothing */;
62 
63 	return !timeout;
64 }
65 
66 #define MODULE_CLKGATE		(1 << 30)
67 #define MODULE_SFTRST		(1 << 31)
68 /*
69  * The current mxs_reset_block() will do two things:
70  *  [1] enable the module.
71  *  [2] reset the module.
72  *
73  * In most of the cases, it's ok.
74  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
75  * If you try to soft reset the BCH block, it becomes unusable until
76  * the next hard reset. This case occurs in the NAND boot mode. When the board
77  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
78  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
79  * You will see a DMA timeout in this case. The bug has been fixed
80  * in the following chips, such as MX28.
81  *
82  * To avoid this bug, just add a new parameter `just_enable` for
83  * the mxs_reset_block(), and rewrite it here.
84  */
gpmi_reset_block(void __iomem * reset_addr,bool just_enable)85 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
86 {
87 	int ret;
88 	int timeout = 0x400;
89 
90 	/* clear and poll SFTRST */
91 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
92 	if (unlikely(ret))
93 		goto error;
94 
95 	/* clear CLKGATE */
96 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
97 
98 	if (!just_enable) {
99 		/* set SFTRST to reset the block */
100 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
101 		udelay(1);
102 
103 		/* poll CLKGATE becoming set */
104 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
105 			/* nothing */;
106 		if (unlikely(!timeout))
107 			goto error;
108 	}
109 
110 	/* clear and poll SFTRST */
111 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
112 	if (unlikely(ret))
113 		goto error;
114 
115 	/* clear and poll CLKGATE */
116 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
117 	if (unlikely(ret))
118 		goto error;
119 
120 	return 0;
121 
122 error:
123 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
124 	return -ETIMEDOUT;
125 }
126 
__gpmi_enable_clk(struct gpmi_nand_data * this,bool v)127 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
128 {
129 	struct clk *clk;
130 	int ret;
131 	int i;
132 
133 	for (i = 0; i < GPMI_CLK_MAX; i++) {
134 		clk = this->resources.clock[i];
135 		if (!clk)
136 			break;
137 
138 		if (v) {
139 			ret = clk_prepare_enable(clk);
140 			if (ret)
141 				goto err_clk;
142 		} else {
143 			clk_disable_unprepare(clk);
144 		}
145 	}
146 	return 0;
147 
148 err_clk:
149 	for (; i > 0; i--)
150 		clk_disable_unprepare(this->resources.clock[i - 1]);
151 	return ret;
152 }
153 
154 #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
155 #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
156 
gpmi_init(struct gpmi_nand_data * this)157 int gpmi_init(struct gpmi_nand_data *this)
158 {
159 	struct resources *r = &this->resources;
160 	int ret;
161 
162 	ret = gpmi_enable_clk(this);
163 	if (ret)
164 		goto err_out;
165 	ret = gpmi_reset_block(r->gpmi_regs, false);
166 	if (ret)
167 		goto err_out;
168 
169 	/*
170 	 * Reset BCH here, too. We got failures otherwise :(
171 	 * See later BCH reset for explanation of MX23 and MX28 handling
172 	 */
173 	ret = gpmi_reset_block(r->bch_regs,
174 			       GPMI_IS_MX23(this) || GPMI_IS_MX28(this));
175 	if (ret)
176 		goto err_out;
177 
178 
179 	/* Choose NAND mode. */
180 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
181 
182 	/* Set the IRQ polarity. */
183 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
184 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
185 
186 	/* Disable Write-Protection. */
187 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
188 
189 	/* Select BCH ECC. */
190 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
191 
192 	/*
193 	 * Decouple the chip select from dma channel. We use dma0 for all
194 	 * the chips.
195 	 */
196 	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
197 
198 	gpmi_disable_clk(this);
199 	return 0;
200 err_out:
201 	return ret;
202 }
203 
204 /* This function is very useful. It is called only when the bug occur. */
gpmi_dump_info(struct gpmi_nand_data * this)205 void gpmi_dump_info(struct gpmi_nand_data *this)
206 {
207 	struct resources *r = &this->resources;
208 	struct bch_geometry *geo = &this->bch_geometry;
209 	u32 reg;
210 	int i;
211 
212 	dev_err(this->dev, "Show GPMI registers :\n");
213 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
214 		reg = readl(r->gpmi_regs + i * 0x10);
215 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
216 	}
217 
218 	/* start to print out the BCH info */
219 	dev_err(this->dev, "Show BCH registers :\n");
220 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
221 		reg = readl(r->bch_regs + i * 0x10);
222 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
223 	}
224 	dev_err(this->dev, "BCH Geometry :\n"
225 		"GF length              : %u\n"
226 		"ECC Strength           : %u\n"
227 		"Page Size in Bytes     : %u\n"
228 		"Metadata Size in Bytes : %u\n"
229 		"ECC Chunk Size in Bytes: %u\n"
230 		"ECC Chunk Count        : %u\n"
231 		"Payload Size in Bytes  : %u\n"
232 		"Auxiliary Size in Bytes: %u\n"
233 		"Auxiliary Status Offset: %u\n"
234 		"Block Mark Byte Offset : %u\n"
235 		"Block Mark Bit Offset  : %u\n",
236 		geo->gf_len,
237 		geo->ecc_strength,
238 		geo->page_size,
239 		geo->metadata_size,
240 		geo->ecc_chunk_size,
241 		geo->ecc_chunk_count,
242 		geo->payload_size,
243 		geo->auxiliary_size,
244 		geo->auxiliary_status_offset,
245 		geo->block_mark_byte_offset,
246 		geo->block_mark_bit_offset);
247 }
248 
249 /* Configures the geometry for BCH.  */
bch_set_geometry(struct gpmi_nand_data * this)250 int bch_set_geometry(struct gpmi_nand_data *this)
251 {
252 	struct resources *r = &this->resources;
253 	struct bch_geometry *bch_geo = &this->bch_geometry;
254 	unsigned int block_count;
255 	unsigned int block_size;
256 	unsigned int metadata_size;
257 	unsigned int ecc_strength;
258 	unsigned int page_size;
259 	unsigned int gf_len;
260 	int ret;
261 
262 	if (common_nfc_set_geometry(this))
263 		return !0;
264 
265 	block_count   = bch_geo->ecc_chunk_count - 1;
266 	block_size    = bch_geo->ecc_chunk_size;
267 	metadata_size = bch_geo->metadata_size;
268 	ecc_strength  = bch_geo->ecc_strength >> 1;
269 	page_size     = bch_geo->page_size;
270 	gf_len        = bch_geo->gf_len;
271 
272 	ret = gpmi_enable_clk(this);
273 	if (ret)
274 		goto err_out;
275 
276 	/*
277 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
278 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23
279 	* and MX28.
280 	*/
281 	ret = gpmi_reset_block(r->bch_regs,
282 			       GPMI_IS_MX23(this) || GPMI_IS_MX28(this));
283 	if (ret)
284 		goto err_out;
285 
286 	/* Configure layout 0. */
287 	writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
288 			| BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
289 			| BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
290 			| BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
291 			| BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
292 			r->bch_regs + HW_BCH_FLASH0LAYOUT0);
293 
294 	writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
295 			| BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
296 			| BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
297 			| BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
298 			r->bch_regs + HW_BCH_FLASH0LAYOUT1);
299 
300 	/* Set *all* chip selects to use layout 0. */
301 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
302 
303 	/* Enable interrupts. */
304 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
305 				r->bch_regs + HW_BCH_CTRL_SET);
306 
307 	gpmi_disable_clk(this);
308 	return 0;
309 err_out:
310 	return ret;
311 }
312 
313 /* Converts time in nanoseconds to cycles. */
ns_to_cycles(unsigned int time,unsigned int period,unsigned int min)314 static unsigned int ns_to_cycles(unsigned int time,
315 			unsigned int period, unsigned int min)
316 {
317 	unsigned int k;
318 
319 	k = (time + period - 1) / period;
320 	return max(k, min);
321 }
322 
323 #define DEF_MIN_PROP_DELAY	5
324 #define DEF_MAX_PROP_DELAY	9
325 /* Apply timing to current hardware conditions. */
gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data * this,struct gpmi_nfc_hardware_timing * hw)326 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
327 					struct gpmi_nfc_hardware_timing *hw)
328 {
329 	struct timing_threshod *nfc = &timing_default_threshold;
330 	struct resources *r = &this->resources;
331 	struct nand_chip *nand = &this->nand;
332 	struct nand_timing target = this->timing;
333 	bool improved_timing_is_available;
334 	unsigned long clock_frequency_in_hz;
335 	unsigned int clock_period_in_ns;
336 	bool dll_use_half_periods;
337 	unsigned int dll_delay_shift;
338 	unsigned int max_sample_delay_in_ns;
339 	unsigned int address_setup_in_cycles;
340 	unsigned int data_setup_in_ns;
341 	unsigned int data_setup_in_cycles;
342 	unsigned int data_hold_in_cycles;
343 	int ideal_sample_delay_in_ns;
344 	unsigned int sample_delay_factor;
345 	int tEYE;
346 	unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
347 	unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
348 
349 	/*
350 	 * If there are multiple chips, we need to relax the timings to allow
351 	 * for signal distortion due to higher capacitance.
352 	 */
353 	if (nand->numchips > 2) {
354 		target.data_setup_in_ns    += 10;
355 		target.data_hold_in_ns     += 10;
356 		target.address_setup_in_ns += 10;
357 	} else if (nand->numchips > 1) {
358 		target.data_setup_in_ns    += 5;
359 		target.data_hold_in_ns     += 5;
360 		target.address_setup_in_ns += 5;
361 	}
362 
363 	/* Check if improved timing information is available. */
364 	improved_timing_is_available =
365 		(target.tREA_in_ns  >= 0) &&
366 		(target.tRLOH_in_ns >= 0) &&
367 		(target.tRHOH_in_ns >= 0);
368 
369 	/* Inspect the clock. */
370 	nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
371 	clock_frequency_in_hz = nfc->clock_frequency_in_hz;
372 	clock_period_in_ns    = NSEC_PER_SEC / clock_frequency_in_hz;
373 
374 	/*
375 	 * The NFC quantizes setup and hold parameters in terms of clock cycles.
376 	 * Here, we quantize the setup and hold timing parameters to the
377 	 * next-highest clock period to make sure we apply at least the
378 	 * specified times.
379 	 *
380 	 * For data setup and data hold, the hardware interprets a value of zero
381 	 * as the largest possible delay. This is not what's intended by a zero
382 	 * in the input parameter, so we impose a minimum of one cycle.
383 	 */
384 	data_setup_in_cycles    = ns_to_cycles(target.data_setup_in_ns,
385 							clock_period_in_ns, 1);
386 	data_hold_in_cycles     = ns_to_cycles(target.data_hold_in_ns,
387 							clock_period_in_ns, 1);
388 	address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
389 							clock_period_in_ns, 0);
390 
391 	/*
392 	 * The clock's period affects the sample delay in a number of ways:
393 	 *
394 	 * (1) The NFC HAL tells us the maximum clock period the sample delay
395 	 *     DLL can tolerate. If the clock period is greater than half that
396 	 *     maximum, we must configure the DLL to be driven by half periods.
397 	 *
398 	 * (2) We need to convert from an ideal sample delay, in ns, to a
399 	 *     "sample delay factor," which the NFC uses. This factor depends on
400 	 *     whether we're driving the DLL with full or half periods.
401 	 *     Paraphrasing the reference manual:
402 	 *
403 	 *         AD = SDF x 0.125 x RP
404 	 *
405 	 * where:
406 	 *
407 	 *     AD   is the applied delay, in ns.
408 	 *     SDF  is the sample delay factor, which is dimensionless.
409 	 *     RP   is the reference period, in ns, which is a full clock period
410 	 *          if the DLL is being driven by full periods, or half that if
411 	 *          the DLL is being driven by half periods.
412 	 *
413 	 * Let's re-arrange this in a way that's more useful to us:
414 	 *
415 	 *                        8
416 	 *         SDF  =  AD x ----
417 	 *                       RP
418 	 *
419 	 * The reference period is either the clock period or half that, so this
420 	 * is:
421 	 *
422 	 *                        8       AD x DDF
423 	 *         SDF  =  AD x -----  =  --------
424 	 *                      f x P        P
425 	 *
426 	 * where:
427 	 *
428 	 *       f  is 1 or 1/2, depending on how we're driving the DLL.
429 	 *       P  is the clock period.
430 	 *     DDF  is the DLL Delay Factor, a dimensionless value that
431 	 *          incorporates all the constants in the conversion.
432 	 *
433 	 * DDF will be either 8 or 16, both of which are powers of two. We can
434 	 * reduce the cost of this conversion by using bit shifts instead of
435 	 * multiplication or division. Thus:
436 	 *
437 	 *                 AD << DDS
438 	 *         SDF  =  ---------
439 	 *                     P
440 	 *
441 	 *     or
442 	 *
443 	 *         AD  =  (SDF >> DDS) x P
444 	 *
445 	 * where:
446 	 *
447 	 *     DDS  is the DLL Delay Shift, the logarithm to base 2 of the DDF.
448 	 */
449 	if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
450 		dll_use_half_periods = true;
451 		dll_delay_shift      = 3 + 1;
452 	} else {
453 		dll_use_half_periods = false;
454 		dll_delay_shift      = 3;
455 	}
456 
457 	/*
458 	 * Compute the maximum sample delay the NFC allows, under current
459 	 * conditions. If the clock is running too slowly, no sample delay is
460 	 * possible.
461 	 */
462 	if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
463 		max_sample_delay_in_ns = 0;
464 	else {
465 		/*
466 		 * Compute the delay implied by the largest sample delay factor
467 		 * the NFC allows.
468 		 */
469 		max_sample_delay_in_ns =
470 			(nfc->max_sample_delay_factor * clock_period_in_ns) >>
471 								dll_delay_shift;
472 
473 		/*
474 		 * Check if the implied sample delay larger than the NFC
475 		 * actually allows.
476 		 */
477 		if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
478 			max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
479 	}
480 
481 	/*
482 	 * Check if improved timing information is available. If not, we have to
483 	 * use a less-sophisticated algorithm.
484 	 */
485 	if (!improved_timing_is_available) {
486 		/*
487 		 * Fold the read setup time required by the NFC into the ideal
488 		 * sample delay.
489 		 */
490 		ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
491 						nfc->internal_data_setup_in_ns;
492 
493 		/*
494 		 * The ideal sample delay may be greater than the maximum
495 		 * allowed by the NFC. If so, we can trade off sample delay time
496 		 * for more data setup time.
497 		 *
498 		 * In each iteration of the following loop, we add a cycle to
499 		 * the data setup time and subtract a corresponding amount from
500 		 * the sample delay until we've satisified the constraints or
501 		 * can't do any better.
502 		 */
503 		while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
504 			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
505 
506 			data_setup_in_cycles++;
507 			ideal_sample_delay_in_ns -= clock_period_in_ns;
508 
509 			if (ideal_sample_delay_in_ns < 0)
510 				ideal_sample_delay_in_ns = 0;
511 
512 		}
513 
514 		/*
515 		 * Compute the sample delay factor that corresponds most closely
516 		 * to the ideal sample delay. If the result is too large for the
517 		 * NFC, use the maximum value.
518 		 *
519 		 * Notice that we use the ns_to_cycles function to compute the
520 		 * sample delay factor. We do this because the form of the
521 		 * computation is the same as that for calculating cycles.
522 		 */
523 		sample_delay_factor =
524 			ns_to_cycles(
525 				ideal_sample_delay_in_ns << dll_delay_shift,
526 							clock_period_in_ns, 0);
527 
528 		if (sample_delay_factor > nfc->max_sample_delay_factor)
529 			sample_delay_factor = nfc->max_sample_delay_factor;
530 
531 		/* Skip to the part where we return our results. */
532 		goto return_results;
533 	}
534 
535 	/*
536 	 * If control arrives here, we have more detailed timing information,
537 	 * so we can use a better algorithm.
538 	 */
539 
540 	/*
541 	 * Fold the read setup time required by the NFC into the maximum
542 	 * propagation delay.
543 	 */
544 	max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
545 
546 	/*
547 	 * Earlier, we computed the number of clock cycles required to satisfy
548 	 * the data setup time. Now, we need to know the actual nanoseconds.
549 	 */
550 	data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
551 
552 	/*
553 	 * Compute tEYE, the width of the data eye when reading from the NAND
554 	 * Flash. The eye width is fundamentally determined by the data setup
555 	 * time, perturbed by propagation delays and some characteristics of the
556 	 * NAND Flash device.
557 	 *
558 	 * start of the eye = max_prop_delay + tREA
559 	 * end of the eye   = min_prop_delay + tRHOH + data_setup
560 	 */
561 	tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
562 							(int)data_setup_in_ns;
563 
564 	tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
565 
566 	/*
567 	 * The eye must be open. If it's not, we can try to open it by
568 	 * increasing its main forcer, the data setup time.
569 	 *
570 	 * In each iteration of the following loop, we increase the data setup
571 	 * time by a single clock cycle. We do this until either the eye is
572 	 * open or we run into NFC limits.
573 	 */
574 	while ((tEYE <= 0) &&
575 			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
576 		/* Give a cycle to data setup. */
577 		data_setup_in_cycles++;
578 		/* Synchronize the data setup time with the cycles. */
579 		data_setup_in_ns += clock_period_in_ns;
580 		/* Adjust tEYE accordingly. */
581 		tEYE += clock_period_in_ns;
582 	}
583 
584 	/*
585 	 * When control arrives here, the eye is open. The ideal time to sample
586 	 * the data is in the center of the eye:
587 	 *
588 	 *     end of the eye + start of the eye
589 	 *     ---------------------------------  -  data_setup
590 	 *                    2
591 	 *
592 	 * After some algebra, this simplifies to the code immediately below.
593 	 */
594 	ideal_sample_delay_in_ns =
595 		((int)max_prop_delay_in_ns +
596 			(int)target.tREA_in_ns +
597 				(int)min_prop_delay_in_ns +
598 					(int)target.tRHOH_in_ns -
599 						(int)data_setup_in_ns) >> 1;
600 
601 	/*
602 	 * The following figure illustrates some aspects of a NAND Flash read:
603 	 *
604 	 *
605 	 *           __                   _____________________________________
606 	 * RDN         \_________________/
607 	 *
608 	 *                                         <---- tEYE ----->
609 	 *                                        /-----------------\
610 	 * Read Data ----------------------------<                   >---------
611 	 *                                        \-----------------/
612 	 *             ^                 ^                 ^              ^
613 	 *             |                 |                 |              |
614 	 *             |<--Data Setup -->|<--Delay Time -->|              |
615 	 *             |                 |                 |              |
616 	 *             |                 |                                |
617 	 *             |                 |<--   Quantized Delay Time   -->|
618 	 *             |                 |                                |
619 	 *
620 	 *
621 	 * We have some issues we must now address:
622 	 *
623 	 * (1) The *ideal* sample delay time must not be negative. If it is, we
624 	 *     jam it to zero.
625 	 *
626 	 * (2) The *ideal* sample delay time must not be greater than that
627 	 *     allowed by the NFC. If it is, we can increase the data setup
628 	 *     time, which will reduce the delay between the end of the data
629 	 *     setup and the center of the eye. It will also make the eye
630 	 *     larger, which might help with the next issue...
631 	 *
632 	 * (3) The *quantized* sample delay time must not fall either before the
633 	 *     eye opens or after it closes (the latter is the problem
634 	 *     illustrated in the above figure).
635 	 */
636 
637 	/* Jam a negative ideal sample delay to zero. */
638 	if (ideal_sample_delay_in_ns < 0)
639 		ideal_sample_delay_in_ns = 0;
640 
641 	/*
642 	 * Extend the data setup as needed to reduce the ideal sample delay
643 	 * below the maximum permitted by the NFC.
644 	 */
645 	while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
646 			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
647 
648 		/* Give a cycle to data setup. */
649 		data_setup_in_cycles++;
650 		/* Synchronize the data setup time with the cycles. */
651 		data_setup_in_ns += clock_period_in_ns;
652 		/* Adjust tEYE accordingly. */
653 		tEYE += clock_period_in_ns;
654 
655 		/*
656 		 * Decrease the ideal sample delay by one half cycle, to keep it
657 		 * in the middle of the eye.
658 		 */
659 		ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
660 
661 		/* Jam a negative ideal sample delay to zero. */
662 		if (ideal_sample_delay_in_ns < 0)
663 			ideal_sample_delay_in_ns = 0;
664 	}
665 
666 	/*
667 	 * Compute the sample delay factor that corresponds to the ideal sample
668 	 * delay. If the result is too large, then use the maximum allowed
669 	 * value.
670 	 *
671 	 * Notice that we use the ns_to_cycles function to compute the sample
672 	 * delay factor. We do this because the form of the computation is the
673 	 * same as that for calculating cycles.
674 	 */
675 	sample_delay_factor =
676 		ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
677 							clock_period_in_ns, 0);
678 
679 	if (sample_delay_factor > nfc->max_sample_delay_factor)
680 		sample_delay_factor = nfc->max_sample_delay_factor;
681 
682 	/*
683 	 * These macros conveniently encapsulate a computation we'll use to
684 	 * continuously evaluate whether or not the data sample delay is inside
685 	 * the eye.
686 	 */
687 	#define IDEAL_DELAY  ((int) ideal_sample_delay_in_ns)
688 
689 	#define QUANTIZED_DELAY  \
690 		((int) ((sample_delay_factor * clock_period_in_ns) >> \
691 							dll_delay_shift))
692 
693 	#define DELAY_ERROR  (abs(QUANTIZED_DELAY - IDEAL_DELAY))
694 
695 	#define SAMPLE_IS_NOT_WITHIN_THE_EYE  (DELAY_ERROR > (tEYE >> 1))
696 
697 	/*
698 	 * While the quantized sample time falls outside the eye, reduce the
699 	 * sample delay or extend the data setup to move the sampling point back
700 	 * toward the eye. Do not allow the number of data setup cycles to
701 	 * exceed the maximum allowed by the NFC.
702 	 */
703 	while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
704 			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
705 		/*
706 		 * If control arrives here, the quantized sample delay falls
707 		 * outside the eye. Check if it's before the eye opens, or after
708 		 * the eye closes.
709 		 */
710 		if (QUANTIZED_DELAY > IDEAL_DELAY) {
711 			/*
712 			 * If control arrives here, the quantized sample delay
713 			 * falls after the eye closes. Decrease the quantized
714 			 * delay time and then go back to re-evaluate.
715 			 */
716 			if (sample_delay_factor != 0)
717 				sample_delay_factor--;
718 			continue;
719 		}
720 
721 		/*
722 		 * If control arrives here, the quantized sample delay falls
723 		 * before the eye opens. Shift the sample point by increasing
724 		 * data setup time. This will also make the eye larger.
725 		 */
726 
727 		/* Give a cycle to data setup. */
728 		data_setup_in_cycles++;
729 		/* Synchronize the data setup time with the cycles. */
730 		data_setup_in_ns += clock_period_in_ns;
731 		/* Adjust tEYE accordingly. */
732 		tEYE += clock_period_in_ns;
733 
734 		/*
735 		 * Decrease the ideal sample delay by one half cycle, to keep it
736 		 * in the middle of the eye.
737 		 */
738 		ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
739 
740 		/* ...and one less period for the delay time. */
741 		ideal_sample_delay_in_ns -= clock_period_in_ns;
742 
743 		/* Jam a negative ideal sample delay to zero. */
744 		if (ideal_sample_delay_in_ns < 0)
745 			ideal_sample_delay_in_ns = 0;
746 
747 		/*
748 		 * We have a new ideal sample delay, so re-compute the quantized
749 		 * delay.
750 		 */
751 		sample_delay_factor =
752 			ns_to_cycles(
753 				ideal_sample_delay_in_ns << dll_delay_shift,
754 							clock_period_in_ns, 0);
755 
756 		if (sample_delay_factor > nfc->max_sample_delay_factor)
757 			sample_delay_factor = nfc->max_sample_delay_factor;
758 	}
759 
760 	/* Control arrives here when we're ready to return our results. */
761 return_results:
762 	hw->data_setup_in_cycles    = data_setup_in_cycles;
763 	hw->data_hold_in_cycles     = data_hold_in_cycles;
764 	hw->address_setup_in_cycles = address_setup_in_cycles;
765 	hw->use_half_periods        = dll_use_half_periods;
766 	hw->sample_delay_factor     = sample_delay_factor;
767 	hw->device_busy_timeout     = GPMI_DEFAULT_BUSY_TIMEOUT;
768 	hw->wrn_dly_sel             = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
769 
770 	/* Return success. */
771 	return 0;
772 }
773 
774 /*
775  * <1> Firstly, we should know what's the GPMI-clock means.
776  *     The GPMI-clock is the internal clock in the gpmi nand controller.
777  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
778  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
779  *
780  * <2> Secondly, we should know what's the frequency on the nand chip pins.
781  *     The frequency on the nand chip pins is derived from the GPMI-clock.
782  *     We can get it from the following equation:
783  *
784  *         F = G / (DS + DH)
785  *
786  *         F  : the frequency on the nand chip pins.
787  *         G  : the GPMI clock, such as 100MHz.
788  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
789  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
790  *
791  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
792  *     the nand EDO(extended Data Out) timing could be applied.
793  *     The GPMI implements a feedback read strobe to sample the read data.
794  *     The feedback read strobe can be delayed to support the nand EDO timing
795  *     where the read strobe may deasserts before the read data is valid, and
796  *     read data is valid for some time after read strobe.
797  *
798  *     The following figure illustrates some aspects of a NAND Flash read:
799  *
800  *                   |<---tREA---->|
801  *                   |             |
802  *                   |         |   |
803  *                   |<--tRP-->|   |
804  *                   |         |   |
805  *                  __          ___|__________________________________
806  *     RDN            \________/   |
807  *                                 |
808  *                                 /---------\
809  *     Read Data    --------------<           >---------
810  *                                 \---------/
811  *                                |     |
812  *                                |<-D->|
813  *     FeedbackRDN  ________             ____________
814  *                          \___________/
815  *
816  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
817  *
818  *
819  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
820  *
821  *  4.1) From the aspect of the nand chip pins:
822  *        Delay = (tREA + C - tRP)               {1}
823  *
824  *        tREA : the maximum read access time. From the ONFI nand standards,
825  *               we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
826  *               Please check it in : www.onfi.org
827  *        C    : a constant for adjust the delay. default is 4.
828  *        tRP  : the read pulse width.
829  *               Specified by the HW_GPMI_TIMING0:DATA_SETUP:
830  *                    tRP = (GPMI-clock-period) * DATA_SETUP
831  *
832  *  4.2) From the aspect of the GPMI nand controller:
833  *         Delay = RDN_DELAY * 0.125 * RP        {2}
834  *
835  *         RP   : the DLL reference period.
836  *            if (GPMI-clock-period > DLL_THRETHOLD)
837  *                   RP = GPMI-clock-period / 2;
838  *            else
839  *                   RP = GPMI-clock-period;
840  *
841  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
842  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
843  *            is 16ns, but in mx6q, we use 12ns.
844  *
845  *  4.3) since {1} equals {2}, we get:
846  *
847  *                    (tREA + 4 - tRP) * 8
848  *         RDN_DELAY = ---------------------     {3}
849  *                           RP
850  *
851  *  4.4) We only support the fastest asynchronous mode of ONFI nand.
852  *       For some ONFI nand, the mode 4 is the fastest mode;
853  *       while for some ONFI nand, the mode 5 is the fastest mode.
854  *       So we only support the mode 4 and mode 5. It is no need to
855  *       support other modes.
856  */
gpmi_compute_edo_timing(struct gpmi_nand_data * this,struct gpmi_nfc_hardware_timing * hw)857 static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
858 			struct gpmi_nfc_hardware_timing *hw)
859 {
860 	struct resources *r = &this->resources;
861 	unsigned long rate = clk_get_rate(r->clock[0]);
862 	int mode = this->timing_mode;
863 	int dll_threshold = this->devdata->max_chain_delay;
864 	unsigned long delay;
865 	unsigned long clk_period;
866 	int t_rea;
867 	int c = 4;
868 	int t_rp;
869 	int rp;
870 
871 	/*
872 	 * [1] for GPMI_HW_GPMI_TIMING0:
873 	 *     The async mode requires 40MHz for mode 4, 50MHz for mode 5.
874 	 *     The GPMI can support 100MHz at most. So if we want to
875 	 *     get the 40MHz or 50MHz, we have to set DS=1, DH=1.
876 	 *     Set the ADDRESS_SETUP to 0 in mode 4.
877 	 */
878 	hw->data_setup_in_cycles = 1;
879 	hw->data_hold_in_cycles = 1;
880 	hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
881 
882 	/* [2] for GPMI_HW_GPMI_TIMING1 */
883 	hw->device_busy_timeout = 0x9000;
884 
885 	/* [3] for GPMI_HW_GPMI_CTRL1 */
886 	hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
887 
888 	/*
889 	 * Enlarge 10 times for the numerator and denominator in {3}.
890 	 * This make us to get more accurate result.
891 	 */
892 	clk_period = NSEC_PER_SEC / (rate / 10);
893 	dll_threshold *= 10;
894 	t_rea = ((mode == 5) ? 16 : 20) * 10;
895 	c *= 10;
896 
897 	t_rp = clk_period * 1; /* DATA_SETUP is 1 */
898 
899 	if (clk_period > dll_threshold) {
900 		hw->use_half_periods = 1;
901 		rp = clk_period / 2;
902 	} else {
903 		hw->use_half_periods = 0;
904 		rp = clk_period;
905 	}
906 
907 	/*
908 	 * Multiply the numerator with 10, we could do a round off:
909 	 *      7.8 round up to 8; 7.4 round down to 7.
910 	 */
911 	delay  = (((t_rea + c - t_rp) * 8) * 10) / rp;
912 	delay = (delay + 5) / 10;
913 
914 	hw->sample_delay_factor = delay;
915 }
916 
enable_edo_mode(struct gpmi_nand_data * this,int mode)917 static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
918 {
919 	struct resources  *r = &this->resources;
920 	struct nand_chip *nand = &this->nand;
921 	struct mtd_info	 *mtd = &this->mtd;
922 	uint8_t *feature;
923 	unsigned long rate;
924 	int ret;
925 
926 	feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL);
927 	if (!feature)
928 		return -ENOMEM;
929 
930 	nand->select_chip(mtd, 0);
931 
932 	/* [1] send SET FEATURE commond to NAND */
933 	feature[0] = mode;
934 	ret = nand->onfi_set_features(mtd, nand,
935 				ONFI_FEATURE_ADDR_TIMING_MODE, feature);
936 	if (ret)
937 		goto err_out;
938 
939 	/* [2] send GET FEATURE command to double-check the timing mode */
940 	memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
941 	ret = nand->onfi_get_features(mtd, nand,
942 				ONFI_FEATURE_ADDR_TIMING_MODE, feature);
943 	if (ret || feature[0] != mode)
944 		goto err_out;
945 
946 	nand->select_chip(mtd, -1);
947 
948 	/* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
949 	rate = (mode == 5) ? 100000000 : 80000000;
950 	clk_set_rate(r->clock[0], rate);
951 
952 	/* Let the gpmi_begin() re-compute the timing again. */
953 	this->flags &= ~GPMI_TIMING_INIT_OK;
954 
955 	this->flags |= GPMI_ASYNC_EDO_ENABLED;
956 	this->timing_mode = mode;
957 	kfree(feature);
958 	dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
959 	return 0;
960 
961 err_out:
962 	nand->select_chip(mtd, -1);
963 	kfree(feature);
964 	dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
965 	return -EINVAL;
966 }
967 
gpmi_extra_init(struct gpmi_nand_data * this)968 int gpmi_extra_init(struct gpmi_nand_data *this)
969 {
970 	struct nand_chip *chip = &this->nand;
971 
972 	/* Enable the asynchronous EDO feature. */
973 	if (GPMI_IS_MX6(this) && chip->onfi_version) {
974 		int mode = onfi_get_async_timing_mode(chip);
975 
976 		/* We only support the timing mode 4 and mode 5. */
977 		if (mode & ONFI_TIMING_MODE_5)
978 			mode = 5;
979 		else if (mode & ONFI_TIMING_MODE_4)
980 			mode = 4;
981 		else
982 			return 0;
983 
984 		return enable_edo_mode(this, mode);
985 	}
986 	return 0;
987 }
988 
989 /* Begin the I/O */
gpmi_begin(struct gpmi_nand_data * this)990 void gpmi_begin(struct gpmi_nand_data *this)
991 {
992 	struct resources *r = &this->resources;
993 	void __iomem *gpmi_regs = r->gpmi_regs;
994 	unsigned int   clock_period_in_ns;
995 	uint32_t       reg;
996 	unsigned int   dll_wait_time_in_us;
997 	struct gpmi_nfc_hardware_timing  hw;
998 	int ret;
999 
1000 	/* Enable the clock. */
1001 	ret = gpmi_enable_clk(this);
1002 	if (ret) {
1003 		dev_err(this->dev, "We failed in enable the clk\n");
1004 		goto err_out;
1005 	}
1006 
1007 	/* Only initialize the timing once */
1008 	if (this->flags & GPMI_TIMING_INIT_OK)
1009 		return;
1010 	this->flags |= GPMI_TIMING_INIT_OK;
1011 
1012 	if (this->flags & GPMI_ASYNC_EDO_ENABLED)
1013 		gpmi_compute_edo_timing(this, &hw);
1014 	else
1015 		gpmi_nfc_compute_hardware_timing(this, &hw);
1016 
1017 	/* [1] Set HW_GPMI_TIMING0 */
1018 	reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
1019 		BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles)         |
1020 		BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles);
1021 
1022 	writel(reg, gpmi_regs + HW_GPMI_TIMING0);
1023 
1024 	/* [2] Set HW_GPMI_TIMING1 */
1025 	writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
1026 		gpmi_regs + HW_GPMI_TIMING1);
1027 
1028 	/* [3] The following code is to set the HW_GPMI_CTRL1. */
1029 
1030 	/* Set the WRN_DLY_SEL */
1031 	writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
1032 	writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
1033 					gpmi_regs + HW_GPMI_CTRL1_SET);
1034 
1035 	/* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1036 	writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
1037 
1038 	/* Clear out the DLL control fields. */
1039 	reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
1040 	writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
1041 
1042 	/* If no sample delay is called for, return immediately. */
1043 	if (!hw.sample_delay_factor)
1044 		return;
1045 
1046 	/* Set RDN_DELAY or HALF_PERIOD. */
1047 	reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
1048 		| BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
1049 
1050 	writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
1051 
1052 	/* At last, we enable the DLL. */
1053 	writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
1054 
1055 	/*
1056 	 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1057 	 * we can use the GPMI. Calculate the amount of time we need to wait,
1058 	 * in microseconds.
1059 	 */
1060 	clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
1061 	dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
1062 
1063 	if (!dll_wait_time_in_us)
1064 		dll_wait_time_in_us = 1;
1065 
1066 	/* Wait for the DLL to settle. */
1067 	udelay(dll_wait_time_in_us);
1068 
1069 err_out:
1070 	return;
1071 }
1072 
gpmi_end(struct gpmi_nand_data * this)1073 void gpmi_end(struct gpmi_nand_data *this)
1074 {
1075 	gpmi_disable_clk(this);
1076 }
1077 
1078 /* Clears a BCH interrupt. */
gpmi_clear_bch(struct gpmi_nand_data * this)1079 void gpmi_clear_bch(struct gpmi_nand_data *this)
1080 {
1081 	struct resources *r = &this->resources;
1082 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1083 }
1084 
1085 /* Returns the Ready/Busy status of the given chip. */
gpmi_is_ready(struct gpmi_nand_data * this,unsigned chip)1086 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
1087 {
1088 	struct resources *r = &this->resources;
1089 	uint32_t mask = 0;
1090 	uint32_t reg = 0;
1091 
1092 	if (GPMI_IS_MX23(this)) {
1093 		mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
1094 		reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
1095 	} else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
1096 		/*
1097 		 * In the imx6, all the ready/busy pins are bound
1098 		 * together. So we only need to check chip 0.
1099 		 */
1100 		if (GPMI_IS_MX6(this))
1101 			chip = 0;
1102 
1103 		/* MX28 shares the same R/B register as MX6Q. */
1104 		mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
1105 		reg = readl(r->gpmi_regs + HW_GPMI_STAT);
1106 	} else
1107 		dev_err(this->dev, "unknown arch.\n");
1108 	return reg & mask;
1109 }
1110 
set_dma_type(struct gpmi_nand_data * this,enum dma_ops_type type)1111 static inline void set_dma_type(struct gpmi_nand_data *this,
1112 					enum dma_ops_type type)
1113 {
1114 	this->last_dma_type = this->dma_type;
1115 	this->dma_type = type;
1116 }
1117 
gpmi_send_command(struct gpmi_nand_data * this)1118 int gpmi_send_command(struct gpmi_nand_data *this)
1119 {
1120 	struct dma_chan *channel = get_dma_chan(this);
1121 	struct dma_async_tx_descriptor *desc;
1122 	struct scatterlist *sgl;
1123 	int chip = this->current_chip;
1124 	u32 pio[3];
1125 
1126 	/* [1] send out the PIO words */
1127 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
1128 		| BM_GPMI_CTRL0_WORD_LENGTH
1129 		| BF_GPMI_CTRL0_CS(chip, this)
1130 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1131 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
1132 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
1133 		| BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
1134 	pio[1] = pio[2] = 0;
1135 	desc = dmaengine_prep_slave_sg(channel,
1136 					(struct scatterlist *)pio,
1137 					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1138 	if (!desc)
1139 		return -EINVAL;
1140 
1141 	/* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1142 	sgl = &this->cmd_sgl;
1143 
1144 	sg_init_one(sgl, this->cmd_buffer, this->command_length);
1145 	dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
1146 	desc = dmaengine_prep_slave_sg(channel,
1147 				sgl, 1, DMA_MEM_TO_DEV,
1148 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1149 	if (!desc)
1150 		return -EINVAL;
1151 
1152 	/* [3] submit the DMA */
1153 	set_dma_type(this, DMA_FOR_COMMAND);
1154 	return start_dma_without_bch_irq(this, desc);
1155 }
1156 
gpmi_send_data(struct gpmi_nand_data * this)1157 int gpmi_send_data(struct gpmi_nand_data *this)
1158 {
1159 	struct dma_async_tx_descriptor *desc;
1160 	struct dma_chan *channel = get_dma_chan(this);
1161 	int chip = this->current_chip;
1162 	uint32_t command_mode;
1163 	uint32_t address;
1164 	u32 pio[2];
1165 
1166 	/* [1] PIO */
1167 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1168 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1169 
1170 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1171 		| BM_GPMI_CTRL0_WORD_LENGTH
1172 		| BF_GPMI_CTRL0_CS(chip, this)
1173 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1174 		| BF_GPMI_CTRL0_ADDRESS(address)
1175 		| BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1176 	pio[1] = 0;
1177 	desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
1178 					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1179 	if (!desc)
1180 		return -EINVAL;
1181 
1182 	/* [2] send DMA request */
1183 	prepare_data_dma(this, DMA_TO_DEVICE);
1184 	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1185 					1, DMA_MEM_TO_DEV,
1186 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1187 	if (!desc)
1188 		return -EINVAL;
1189 
1190 	/* [3] submit the DMA */
1191 	set_dma_type(this, DMA_FOR_WRITE_DATA);
1192 	return start_dma_without_bch_irq(this, desc);
1193 }
1194 
gpmi_read_data(struct gpmi_nand_data * this)1195 int gpmi_read_data(struct gpmi_nand_data *this)
1196 {
1197 	struct dma_async_tx_descriptor *desc;
1198 	struct dma_chan *channel = get_dma_chan(this);
1199 	int chip = this->current_chip;
1200 	u32 pio[2];
1201 
1202 	/* [1] : send PIO */
1203 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
1204 		| BM_GPMI_CTRL0_WORD_LENGTH
1205 		| BF_GPMI_CTRL0_CS(chip, this)
1206 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1207 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
1208 		| BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1209 	pio[1] = 0;
1210 	desc = dmaengine_prep_slave_sg(channel,
1211 					(struct scatterlist *)pio,
1212 					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1213 	if (!desc)
1214 		return -EINVAL;
1215 
1216 	/* [2] : send DMA request */
1217 	prepare_data_dma(this, DMA_FROM_DEVICE);
1218 	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1219 					1, DMA_DEV_TO_MEM,
1220 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1221 	if (!desc)
1222 		return -EINVAL;
1223 
1224 	/* [3] : submit the DMA */
1225 	set_dma_type(this, DMA_FOR_READ_DATA);
1226 	return start_dma_without_bch_irq(this, desc);
1227 }
1228 
gpmi_send_page(struct gpmi_nand_data * this,dma_addr_t payload,dma_addr_t auxiliary)1229 int gpmi_send_page(struct gpmi_nand_data *this,
1230 			dma_addr_t payload, dma_addr_t auxiliary)
1231 {
1232 	struct bch_geometry *geo = &this->bch_geometry;
1233 	uint32_t command_mode;
1234 	uint32_t address;
1235 	uint32_t ecc_command;
1236 	uint32_t buffer_mask;
1237 	struct dma_async_tx_descriptor *desc;
1238 	struct dma_chan *channel = get_dma_chan(this);
1239 	int chip = this->current_chip;
1240 	u32 pio[6];
1241 
1242 	/* A DMA descriptor that does an ECC page read. */
1243 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1244 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1245 	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
1246 	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
1247 				BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1248 
1249 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1250 		| BM_GPMI_CTRL0_WORD_LENGTH
1251 		| BF_GPMI_CTRL0_CS(chip, this)
1252 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1253 		| BF_GPMI_CTRL0_ADDRESS(address)
1254 		| BF_GPMI_CTRL0_XFER_COUNT(0);
1255 	pio[1] = 0;
1256 	pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1257 		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1258 		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1259 	pio[3] = geo->page_size;
1260 	pio[4] = payload;
1261 	pio[5] = auxiliary;
1262 
1263 	desc = dmaengine_prep_slave_sg(channel,
1264 					(struct scatterlist *)pio,
1265 					ARRAY_SIZE(pio), DMA_TRANS_NONE,
1266 					DMA_CTRL_ACK);
1267 	if (!desc)
1268 		return -EINVAL;
1269 
1270 	set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
1271 	return start_dma_with_bch_irq(this, desc);
1272 }
1273 
gpmi_read_page(struct gpmi_nand_data * this,dma_addr_t payload,dma_addr_t auxiliary)1274 int gpmi_read_page(struct gpmi_nand_data *this,
1275 				dma_addr_t payload, dma_addr_t auxiliary)
1276 {
1277 	struct bch_geometry *geo = &this->bch_geometry;
1278 	uint32_t command_mode;
1279 	uint32_t address;
1280 	uint32_t ecc_command;
1281 	uint32_t buffer_mask;
1282 	struct dma_async_tx_descriptor *desc;
1283 	struct dma_chan *channel = get_dma_chan(this);
1284 	int chip = this->current_chip;
1285 	u32 pio[6];
1286 
1287 	/* [1] Wait for the chip to report ready. */
1288 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1289 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1290 
1291 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1292 		| BM_GPMI_CTRL0_WORD_LENGTH
1293 		| BF_GPMI_CTRL0_CS(chip, this)
1294 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1295 		| BF_GPMI_CTRL0_ADDRESS(address)
1296 		| BF_GPMI_CTRL0_XFER_COUNT(0);
1297 	pio[1] = 0;
1298 	desc = dmaengine_prep_slave_sg(channel,
1299 				(struct scatterlist *)pio, 2,
1300 				DMA_TRANS_NONE, 0);
1301 	if (!desc)
1302 		return -EINVAL;
1303 
1304 	/* [2] Enable the BCH block and read. */
1305 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1306 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1307 	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1308 	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1309 			| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1310 
1311 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1312 		| BM_GPMI_CTRL0_WORD_LENGTH
1313 		| BF_GPMI_CTRL0_CS(chip, this)
1314 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1315 		| BF_GPMI_CTRL0_ADDRESS(address)
1316 		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1317 
1318 	pio[1] = 0;
1319 	pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
1320 		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1321 		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1322 	pio[3] = geo->page_size;
1323 	pio[4] = payload;
1324 	pio[5] = auxiliary;
1325 	desc = dmaengine_prep_slave_sg(channel,
1326 					(struct scatterlist *)pio,
1327 					ARRAY_SIZE(pio), DMA_TRANS_NONE,
1328 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1329 	if (!desc)
1330 		return -EINVAL;
1331 
1332 	/* [3] Disable the BCH block */
1333 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1334 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1335 
1336 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1337 		| BM_GPMI_CTRL0_WORD_LENGTH
1338 		| BF_GPMI_CTRL0_CS(chip, this)
1339 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1340 		| BF_GPMI_CTRL0_ADDRESS(address)
1341 		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1342 	pio[1] = 0;
1343 	pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1344 	desc = dmaengine_prep_slave_sg(channel,
1345 				(struct scatterlist *)pio, 3,
1346 				DMA_TRANS_NONE,
1347 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1348 	if (!desc)
1349 		return -EINVAL;
1350 
1351 	/* [4] submit the DMA */
1352 	set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1353 	return start_dma_with_bch_irq(this, desc);
1354 }
1355 
1356 /**
1357  * gpmi_copy_bits - copy bits from one memory region to another
1358  * @dst: destination buffer
1359  * @dst_bit_off: bit offset we're starting to write at
1360  * @src: source buffer
1361  * @src_bit_off: bit offset we're starting to read from
1362  * @nbits: number of bits to copy
1363  *
1364  * This functions copies bits from one memory region to another, and is used by
1365  * the GPMI driver to copy ECC sections which are not guaranteed to be byte
1366  * aligned.
1367  *
1368  * src and dst should not overlap.
1369  *
1370  */
gpmi_copy_bits(u8 * dst,size_t dst_bit_off,const u8 * src,size_t src_bit_off,size_t nbits)1371 void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
1372 		    const u8 *src, size_t src_bit_off,
1373 		    size_t nbits)
1374 {
1375 	size_t i;
1376 	size_t nbytes;
1377 	u32 src_buffer = 0;
1378 	size_t bits_in_src_buffer = 0;
1379 
1380 	if (!nbits)
1381 		return;
1382 
1383 	/*
1384 	 * Move src and dst pointers to the closest byte pointer and store bit
1385 	 * offsets within a byte.
1386 	 */
1387 	src += src_bit_off / 8;
1388 	src_bit_off %= 8;
1389 
1390 	dst += dst_bit_off / 8;
1391 	dst_bit_off %= 8;
1392 
1393 	/*
1394 	 * Initialize the src_buffer value with bits available in the first
1395 	 * byte of data so that we end up with a byte aligned src pointer.
1396 	 */
1397 	if (src_bit_off) {
1398 		src_buffer = src[0] >> src_bit_off;
1399 		if (nbits >= (8 - src_bit_off)) {
1400 			bits_in_src_buffer += 8 - src_bit_off;
1401 		} else {
1402 			src_buffer &= GENMASK(nbits - 1, 0);
1403 			bits_in_src_buffer += nbits;
1404 		}
1405 		nbits -= bits_in_src_buffer;
1406 		src++;
1407 	}
1408 
1409 	/* Calculate the number of bytes that can be copied from src to dst. */
1410 	nbytes = nbits / 8;
1411 
1412 	/* Try to align dst to a byte boundary. */
1413 	if (dst_bit_off) {
1414 		if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
1415 			src_buffer |= src[0] << bits_in_src_buffer;
1416 			bits_in_src_buffer += 8;
1417 			src++;
1418 			nbytes--;
1419 		}
1420 
1421 		if (bits_in_src_buffer >= (8 - dst_bit_off)) {
1422 			dst[0] &= GENMASK(dst_bit_off - 1, 0);
1423 			dst[0] |= src_buffer << dst_bit_off;
1424 			src_buffer >>= (8 - dst_bit_off);
1425 			bits_in_src_buffer -= (8 - dst_bit_off);
1426 			dst_bit_off = 0;
1427 			dst++;
1428 			if (bits_in_src_buffer > 7) {
1429 				bits_in_src_buffer -= 8;
1430 				dst[0] = src_buffer;
1431 				dst++;
1432 				src_buffer >>= 8;
1433 			}
1434 		}
1435 	}
1436 
1437 	if (!bits_in_src_buffer && !dst_bit_off) {
1438 		/*
1439 		 * Both src and dst pointers are byte aligned, thus we can
1440 		 * just use the optimized memcpy function.
1441 		 */
1442 		if (nbytes)
1443 			memcpy(dst, src, nbytes);
1444 	} else {
1445 		/*
1446 		 * src buffer is not byte aligned, hence we have to copy each
1447 		 * src byte to the src_buffer variable before extracting a byte
1448 		 * to store in dst.
1449 		 */
1450 		for (i = 0; i < nbytes; i++) {
1451 			src_buffer |= src[i] << bits_in_src_buffer;
1452 			dst[i] = src_buffer;
1453 			src_buffer >>= 8;
1454 		}
1455 	}
1456 	/* Update dst and src pointers */
1457 	dst += nbytes;
1458 	src += nbytes;
1459 
1460 	/*
1461 	 * nbits is the number of remaining bits. It should not exceed 8 as
1462 	 * we've already copied as much bytes as possible.
1463 	 */
1464 	nbits %= 8;
1465 
1466 	/*
1467 	 * If there's no more bits to copy to the destination and src buffer
1468 	 * was already byte aligned, then we're done.
1469 	 */
1470 	if (!nbits && !bits_in_src_buffer)
1471 		return;
1472 
1473 	/* Copy the remaining bits to src_buffer */
1474 	if (nbits)
1475 		src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
1476 			      bits_in_src_buffer;
1477 	bits_in_src_buffer += nbits;
1478 
1479 	/*
1480 	 * In case there were not enough bits to get a byte aligned dst buffer
1481 	 * prepare the src_buffer variable to match the dst organization (shift
1482 	 * src_buffer by dst_bit_off and retrieve the least significant bits
1483 	 * from dst).
1484 	 */
1485 	if (dst_bit_off)
1486 		src_buffer = (src_buffer << dst_bit_off) |
1487 			     (*dst & GENMASK(dst_bit_off - 1, 0));
1488 	bits_in_src_buffer += dst_bit_off;
1489 
1490 	/*
1491 	 * Keep most significant bits from dst if we end up with an unaligned
1492 	 * number of bits.
1493 	 */
1494 	nbytes = bits_in_src_buffer / 8;
1495 	if (bits_in_src_buffer % 8) {
1496 		src_buffer |= (dst[nbytes] &
1497 			       GENMASK(7, bits_in_src_buffer % 8)) <<
1498 			      (nbytes * 8);
1499 		nbytes++;
1500 	}
1501 
1502 	/* Copy the remaining bytes to dst */
1503 	for (i = 0; i < nbytes; i++) {
1504 		dst[i] = src_buffer;
1505 		src_buffer >>= 8;
1506 	}
1507 }
1508