• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NXP LPC32XX NAND SLC driver
3  *
4  * Authors:
5  *    Kevin Wells <kevin.wells@nxp.com>
6  *    Roland Stigge <stigge@antcom.de>
7  *
8  * Copyright © 2011 NXP Semiconductors
9  * Copyright © 2012 Roland Stigge
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/slab.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/nand.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/clk.h>
29 #include <linux/err.h>
30 #include <linux/delay.h>
31 #include <linux/io.h>
32 #include <linux/mm.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmaengine.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/gpio.h>
37 #include <linux/of.h>
38 #include <linux/of_mtd.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mtd/lpc32xx_slc.h>
41 
42 #define LPC32XX_MODNAME		"lpc32xx-nand"
43 
44 /**********************************************************************
45 * SLC NAND controller register offsets
46 **********************************************************************/
47 
48 #define SLC_DATA(x)		(x + 0x000)
49 #define SLC_ADDR(x)		(x + 0x004)
50 #define SLC_CMD(x)		(x + 0x008)
51 #define SLC_STOP(x)		(x + 0x00C)
52 #define SLC_CTRL(x)		(x + 0x010)
53 #define SLC_CFG(x)		(x + 0x014)
54 #define SLC_STAT(x)		(x + 0x018)
55 #define SLC_INT_STAT(x)		(x + 0x01C)
56 #define SLC_IEN(x)		(x + 0x020)
57 #define SLC_ISR(x)		(x + 0x024)
58 #define SLC_ICR(x)		(x + 0x028)
59 #define SLC_TAC(x)		(x + 0x02C)
60 #define SLC_TC(x)		(x + 0x030)
61 #define SLC_ECC(x)		(x + 0x034)
62 #define SLC_DMA_DATA(x)		(x + 0x038)
63 
64 /**********************************************************************
65 * slc_ctrl register definitions
66 **********************************************************************/
67 #define SLCCTRL_SW_RESET	(1 << 2) /* Reset the NAND controller bit */
68 #define SLCCTRL_ECC_CLEAR	(1 << 1) /* Reset ECC bit */
69 #define SLCCTRL_DMA_START	(1 << 0) /* Start DMA channel bit */
70 
71 /**********************************************************************
72 * slc_cfg register definitions
73 **********************************************************************/
74 #define SLCCFG_CE_LOW		(1 << 5) /* Force CE low bit */
75 #define SLCCFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */
76 #define SLCCFG_ECC_EN		(1 << 3) /* ECC enable bit */
77 #define SLCCFG_DMA_BURST	(1 << 2) /* DMA burst bit */
78 #define SLCCFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */
79 #define SLCCFG_WIDTH		(1 << 0) /* External device width, 0=8bit */
80 
81 /**********************************************************************
82 * slc_stat register definitions
83 **********************************************************************/
84 #define SLCSTAT_DMA_FIFO	(1 << 2) /* DMA FIFO has data bit */
85 #define SLCSTAT_SLC_FIFO	(1 << 1) /* SLC FIFO has data bit */
86 #define SLCSTAT_NAND_READY	(1 << 0) /* NAND device is ready bit */
87 
88 /**********************************************************************
89 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
90 **********************************************************************/
91 #define SLCSTAT_INT_TC		(1 << 1) /* Transfer count bit */
92 #define SLCSTAT_INT_RDY_EN	(1 << 0) /* Ready interrupt bit */
93 
94 /**********************************************************************
95 * slc_tac register definitions
96 **********************************************************************/
97 /* Computation of clock cycles on basis of controller and device clock rates */
98 #define SLCTAC_CLOCKS(c, n, s)	(min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
99 
100 /* Clock setting for RDY write sample wait time in 2*n clocks */
101 #define SLCTAC_WDR(n)		(((n) & 0xF) << 28)
102 /* Write pulse width in clock cycles, 1 to 16 clocks */
103 #define SLCTAC_WWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 24))
104 /* Write hold time of control and data signals, 1 to 16 clocks */
105 #define SLCTAC_WHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 20))
106 /* Write setup time of control and data signals, 1 to 16 clocks */
107 #define SLCTAC_WSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 16))
108 /* Clock setting for RDY read sample wait time in 2*n clocks */
109 #define SLCTAC_RDR(n)		(((n) & 0xF) << 12)
110 /* Read pulse width in clock cycles, 1 to 16 clocks */
111 #define SLCTAC_RWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 8))
112 /* Read hold time of control and data signals, 1 to 16 clocks */
113 #define SLCTAC_RHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 4))
114 /* Read setup time of control and data signals, 1 to 16 clocks */
115 #define SLCTAC_RSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 0))
116 
117 /**********************************************************************
118 * slc_ecc register definitions
119 **********************************************************************/
120 /* ECC line party fetch macro */
121 #define SLCECC_TO_LINEPAR(n)	(((n) >> 6) & 0x7FFF)
122 #define SLCECC_TO_COLPAR(n)	((n) & 0x3F)
123 
124 /*
125  * DMA requires storage space for the DMA local buffer and the hardware ECC
126  * storage area. The DMA local buffer is only used if DMA mapping fails
127  * during runtime.
128  */
129 #define LPC32XX_DMA_DATA_SIZE		4096
130 #define LPC32XX_ECC_SAVE_SIZE		((4096 / 256) * 4)
131 
132 /* Number of bytes used for ECC stored in NAND per 256 bytes */
133 #define LPC32XX_SLC_DEV_ECC_BYTES	3
134 
135 /*
136  * If the NAND base clock frequency can't be fetched, this frequency will be
137  * used instead as the base. This rate is used to setup the timing registers
138  * used for NAND accesses.
139  */
140 #define LPC32XX_DEF_BUS_RATE		133250000
141 
142 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
143 #define LPC32XX_DMA_TIMEOUT		100
144 
145 /*
146  * NAND ECC Layout for small page NAND devices
147  * Note: For large and huge page devices, the default layouts are used
148  */
149 static struct nand_ecclayout lpc32xx_nand_oob_16 = {
150 	.eccbytes = 6,
151 	.eccpos = {10, 11, 12, 13, 14, 15},
152 	.oobfree = {
153 		{ .offset = 0, .length = 4 },
154 		{ .offset = 6, .length = 4 },
155 	},
156 };
157 
158 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
159 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
160 
161 /*
162  * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
163  * Note: Large page devices used the default layout
164  */
165 static struct nand_bbt_descr bbt_smallpage_main_descr = {
166 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
167 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
168 	.offs =	0,
169 	.len = 4,
170 	.veroffs = 6,
171 	.maxblocks = 4,
172 	.pattern = bbt_pattern
173 };
174 
175 static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
176 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
177 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
178 	.offs =	0,
179 	.len = 4,
180 	.veroffs = 6,
181 	.maxblocks = 4,
182 	.pattern = mirror_pattern
183 };
184 
185 /*
186  * NAND platform configuration structure
187  */
188 struct lpc32xx_nand_cfg_slc {
189 	uint32_t wdr_clks;
190 	uint32_t wwidth;
191 	uint32_t whold;
192 	uint32_t wsetup;
193 	uint32_t rdr_clks;
194 	uint32_t rwidth;
195 	uint32_t rhold;
196 	uint32_t rsetup;
197 	bool use_bbt;
198 	int wp_gpio;
199 	struct mtd_partition *parts;
200 	unsigned num_parts;
201 };
202 
203 struct lpc32xx_nand_host {
204 	struct nand_chip	nand_chip;
205 	struct lpc32xx_slc_platform_data *pdata;
206 	struct clk		*clk;
207 	struct mtd_info		mtd;
208 	void __iomem		*io_base;
209 	struct lpc32xx_nand_cfg_slc *ncfg;
210 
211 	struct completion	comp;
212 	struct dma_chan		*dma_chan;
213 	uint32_t		dma_buf_len;
214 	struct dma_slave_config	dma_slave_config;
215 	struct scatterlist	sgl;
216 
217 	/*
218 	 * DMA and CPU addresses of ECC work area and data buffer
219 	 */
220 	uint32_t		*ecc_buf;
221 	uint8_t			*data_buf;
222 	dma_addr_t		io_base_dma;
223 };
224 
lpc32xx_nand_setup(struct lpc32xx_nand_host * host)225 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
226 {
227 	uint32_t clkrate, tmp;
228 
229 	/* Reset SLC controller */
230 	writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
231 	udelay(1000);
232 
233 	/* Basic setup */
234 	writel(0, SLC_CFG(host->io_base));
235 	writel(0, SLC_IEN(host->io_base));
236 	writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
237 		SLC_ICR(host->io_base));
238 
239 	/* Get base clock for SLC block */
240 	clkrate = clk_get_rate(host->clk);
241 	if (clkrate == 0)
242 		clkrate = LPC32XX_DEF_BUS_RATE;
243 
244 	/* Compute clock setup values */
245 	tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
246 		SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
247 		SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
248 		SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
249 		SLCTAC_RDR(host->ncfg->rdr_clks) |
250 		SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
251 		SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
252 		SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
253 	writel(tmp, SLC_TAC(host->io_base));
254 }
255 
256 /*
257  * Hardware specific access to control lines
258  */
lpc32xx_nand_cmd_ctrl(struct mtd_info * mtd,int cmd,unsigned int ctrl)259 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
260 	unsigned int ctrl)
261 {
262 	uint32_t tmp;
263 	struct nand_chip *chip = mtd->priv;
264 	struct lpc32xx_nand_host *host = chip->priv;
265 
266 	/* Does CE state need to be changed? */
267 	tmp = readl(SLC_CFG(host->io_base));
268 	if (ctrl & NAND_NCE)
269 		tmp |= SLCCFG_CE_LOW;
270 	else
271 		tmp &= ~SLCCFG_CE_LOW;
272 	writel(tmp, SLC_CFG(host->io_base));
273 
274 	if (cmd != NAND_CMD_NONE) {
275 		if (ctrl & NAND_CLE)
276 			writel(cmd, SLC_CMD(host->io_base));
277 		else
278 			writel(cmd, SLC_ADDR(host->io_base));
279 	}
280 }
281 
282 /*
283  * Read the Device Ready pin
284  */
lpc32xx_nand_device_ready(struct mtd_info * mtd)285 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
286 {
287 	struct nand_chip *chip = mtd->priv;
288 	struct lpc32xx_nand_host *host = chip->priv;
289 	int rdy = 0;
290 
291 	if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
292 		rdy = 1;
293 
294 	return rdy;
295 }
296 
297 /*
298  * Enable NAND write protect
299  */
lpc32xx_wp_enable(struct lpc32xx_nand_host * host)300 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
301 {
302 	if (gpio_is_valid(host->ncfg->wp_gpio))
303 		gpio_set_value(host->ncfg->wp_gpio, 0);
304 }
305 
306 /*
307  * Disable NAND write protect
308  */
lpc32xx_wp_disable(struct lpc32xx_nand_host * host)309 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
310 {
311 	if (gpio_is_valid(host->ncfg->wp_gpio))
312 		gpio_set_value(host->ncfg->wp_gpio, 1);
313 }
314 
315 /*
316  * Prepares SLC for transfers with H/W ECC enabled
317  */
lpc32xx_nand_ecc_enable(struct mtd_info * mtd,int mode)318 static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
319 {
320 	/* Hardware ECC is enabled automatically in hardware as needed */
321 }
322 
323 /*
324  * Calculates the ECC for the data
325  */
lpc32xx_nand_ecc_calculate(struct mtd_info * mtd,const unsigned char * buf,unsigned char * code)326 static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
327 				      const unsigned char *buf,
328 				      unsigned char *code)
329 {
330 	/*
331 	 * ECC is calculated automatically in hardware during syndrome read
332 	 * and write operations, so it doesn't need to be calculated here.
333 	 */
334 	return 0;
335 }
336 
337 /*
338  * Read a single byte from NAND device
339  */
lpc32xx_nand_read_byte(struct mtd_info * mtd)340 static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
341 {
342 	struct nand_chip *chip = mtd->priv;
343 	struct lpc32xx_nand_host *host = chip->priv;
344 
345 	return (uint8_t)readl(SLC_DATA(host->io_base));
346 }
347 
348 /*
349  * Simple device read without ECC
350  */
lpc32xx_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)351 static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
352 {
353 	struct nand_chip *chip = mtd->priv;
354 	struct lpc32xx_nand_host *host = chip->priv;
355 
356 	/* Direct device read with no ECC */
357 	while (len-- > 0)
358 		*buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
359 }
360 
361 /*
362  * Simple device write without ECC
363  */
lpc32xx_nand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)364 static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
365 {
366 	struct nand_chip *chip = mtd->priv;
367 	struct lpc32xx_nand_host *host = chip->priv;
368 
369 	/* Direct device write with no ECC */
370 	while (len-- > 0)
371 		writel((uint32_t)*buf++, SLC_DATA(host->io_base));
372 }
373 
374 /*
375  * Read the OOB data from the device without ECC using FIFO method
376  */
lpc32xx_nand_read_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)377 static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
378 					  struct nand_chip *chip, int page)
379 {
380 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
381 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
382 
383 	return 0;
384 }
385 
386 /*
387  * Write the OOB data to the device without ECC using FIFO method
388  */
lpc32xx_nand_write_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)389 static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
390 	struct nand_chip *chip, int page)
391 {
392 	int status;
393 
394 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
395 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
396 
397 	/* Send command to program the OOB data */
398 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
399 
400 	status = chip->waitfunc(mtd, chip);
401 
402 	return status & NAND_STATUS_FAIL ? -EIO : 0;
403 }
404 
405 /*
406  * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
407  */
lpc32xx_slc_ecc_copy(uint8_t * spare,const uint32_t * ecc,int count)408 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
409 {
410 	int i;
411 
412 	for (i = 0; i < (count * 3); i += 3) {
413 		uint32_t ce = ecc[i / 3];
414 		ce = ~(ce << 2) & 0xFFFFFF;
415 		spare[i + 2] = (uint8_t)(ce & 0xFF);
416 		ce >>= 8;
417 		spare[i + 1] = (uint8_t)(ce & 0xFF);
418 		ce >>= 8;
419 		spare[i] = (uint8_t)(ce & 0xFF);
420 	}
421 }
422 
lpc32xx_dma_complete_func(void * completion)423 static void lpc32xx_dma_complete_func(void *completion)
424 {
425 	complete(completion);
426 }
427 
lpc32xx_xmit_dma(struct mtd_info * mtd,dma_addr_t dma,void * mem,int len,enum dma_transfer_direction dir)428 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
429 			    void *mem, int len, enum dma_transfer_direction dir)
430 {
431 	struct nand_chip *chip = mtd->priv;
432 	struct lpc32xx_nand_host *host = chip->priv;
433 	struct dma_async_tx_descriptor *desc;
434 	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
435 	int res;
436 
437 	host->dma_slave_config.direction = dir;
438 	host->dma_slave_config.src_addr = dma;
439 	host->dma_slave_config.dst_addr = dma;
440 	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
441 	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
442 	host->dma_slave_config.src_maxburst = 4;
443 	host->dma_slave_config.dst_maxburst = 4;
444 	/* DMA controller does flow control: */
445 	host->dma_slave_config.device_fc = false;
446 	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
447 		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
448 		return -ENXIO;
449 	}
450 
451 	sg_init_one(&host->sgl, mem, len);
452 
453 	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
454 			 DMA_BIDIRECTIONAL);
455 	if (res != 1) {
456 		dev_err(mtd->dev.parent, "Failed to map sg list\n");
457 		return -ENXIO;
458 	}
459 	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
460 				       flags);
461 	if (!desc) {
462 		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
463 		goto out1;
464 	}
465 
466 	init_completion(&host->comp);
467 	desc->callback = lpc32xx_dma_complete_func;
468 	desc->callback_param = &host->comp;
469 
470 	dmaengine_submit(desc);
471 	dma_async_issue_pending(host->dma_chan);
472 
473 	wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
474 
475 	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
476 		     DMA_BIDIRECTIONAL);
477 
478 	return 0;
479 out1:
480 	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
481 		     DMA_BIDIRECTIONAL);
482 	return -ENXIO;
483 }
484 
485 /*
486  * DMA read/write transfers with ECC support
487  */
lpc32xx_xfer(struct mtd_info * mtd,uint8_t * buf,int eccsubpages,int read)488 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
489 			int read)
490 {
491 	struct nand_chip *chip = mtd->priv;
492 	struct lpc32xx_nand_host *host = chip->priv;
493 	int i, status = 0;
494 	unsigned long timeout;
495 	int res;
496 	enum dma_transfer_direction dir =
497 		read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
498 	uint8_t *dma_buf;
499 	bool dma_mapped;
500 
501 	if ((void *)buf <= high_memory) {
502 		dma_buf = buf;
503 		dma_mapped = true;
504 	} else {
505 		dma_buf = host->data_buf;
506 		dma_mapped = false;
507 		if (!read)
508 			memcpy(host->data_buf, buf, mtd->writesize);
509 	}
510 
511 	if (read) {
512 		writel(readl(SLC_CFG(host->io_base)) |
513 		       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
514 		       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
515 	} else {
516 		writel((readl(SLC_CFG(host->io_base)) |
517 			SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
518 		       ~SLCCFG_DMA_DIR,
519 			SLC_CFG(host->io_base));
520 	}
521 
522 	/* Clear initial ECC */
523 	writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
524 
525 	/* Transfer size is data area only */
526 	writel(mtd->writesize, SLC_TC(host->io_base));
527 
528 	/* Start transfer in the NAND controller */
529 	writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
530 	       SLC_CTRL(host->io_base));
531 
532 	for (i = 0; i < chip->ecc.steps; i++) {
533 		/* Data */
534 		res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
535 				       dma_buf + i * chip->ecc.size,
536 				       mtd->writesize / chip->ecc.steps, dir);
537 		if (res)
538 			return res;
539 
540 		/* Always _read_ ECC */
541 		if (i == chip->ecc.steps - 1)
542 			break;
543 		if (!read) /* ECC availability delayed on write */
544 			udelay(10);
545 		res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
546 				       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
547 		if (res)
548 			return res;
549 	}
550 
551 	/*
552 	 * According to NXP, the DMA can be finished here, but the NAND
553 	 * controller may still have buffered data. After porting to using the
554 	 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
555 	 * appears to be always true, according to tests. Keeping the check for
556 	 * safety reasons for now.
557 	 */
558 	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
559 		dev_warn(mtd->dev.parent, "FIFO not empty!\n");
560 		timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
561 		while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
562 		       time_before(jiffies, timeout))
563 			cpu_relax();
564 		if (!time_before(jiffies, timeout)) {
565 			dev_err(mtd->dev.parent, "FIFO held data too long\n");
566 			status = -EIO;
567 		}
568 	}
569 
570 	/* Read last calculated ECC value */
571 	if (!read)
572 		udelay(10);
573 	host->ecc_buf[chip->ecc.steps - 1] =
574 		readl(SLC_ECC(host->io_base));
575 
576 	/* Flush DMA */
577 	dmaengine_terminate_all(host->dma_chan);
578 
579 	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
580 	    readl(SLC_TC(host->io_base))) {
581 		/* Something is left in the FIFO, something is wrong */
582 		dev_err(mtd->dev.parent, "DMA FIFO failure\n");
583 		status = -EIO;
584 	}
585 
586 	/* Stop DMA & HW ECC */
587 	writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
588 	       SLC_CTRL(host->io_base));
589 	writel(readl(SLC_CFG(host->io_base)) &
590 	       ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
591 		 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
592 
593 	if (!dma_mapped && read)
594 		memcpy(buf, host->data_buf, mtd->writesize);
595 
596 	return status;
597 }
598 
599 /*
600  * Read the data and OOB data from the device, use ECC correction with the
601  * data, disable ECC for the OOB data
602  */
lpc32xx_nand_read_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)603 static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
604 					   struct nand_chip *chip, uint8_t *buf,
605 					   int oob_required, int page)
606 {
607 	struct lpc32xx_nand_host *host = chip->priv;
608 	int stat, i, status;
609 	uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
610 
611 	/* Issue read command */
612 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
613 
614 	/* Read data and oob, calculate ECC */
615 	status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
616 
617 	/* Get OOB data */
618 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
619 
620 	/* Convert to stored ECC format */
621 	lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
622 
623 	/* Pointer to ECC data retrieved from NAND spare area */
624 	oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];
625 
626 	for (i = 0; i < chip->ecc.steps; i++) {
627 		stat = chip->ecc.correct(mtd, buf, oobecc,
628 					 &tmpecc[i * chip->ecc.bytes]);
629 		if (stat < 0)
630 			mtd->ecc_stats.failed++;
631 		else
632 			mtd->ecc_stats.corrected += stat;
633 
634 		buf += chip->ecc.size;
635 		oobecc += chip->ecc.bytes;
636 	}
637 
638 	return status;
639 }
640 
641 /*
642  * Read the data and OOB data from the device, no ECC correction with the
643  * data or OOB data
644  */
lpc32xx_nand_read_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)645 static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
646 					       struct nand_chip *chip,
647 					       uint8_t *buf, int oob_required,
648 					       int page)
649 {
650 	/* Issue read command */
651 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
652 
653 	/* Raw reads can just use the FIFO interface */
654 	chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
655 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
656 
657 	return 0;
658 }
659 
660 /*
661  * Write the data and OOB data to the device, use ECC with the data,
662  * disable ECC for the OOB data
663  */
lpc32xx_nand_write_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)664 static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
665 					    struct nand_chip *chip,
666 					    const uint8_t *buf,
667 					    int oob_required, int page)
668 {
669 	struct lpc32xx_nand_host *host = chip->priv;
670 	uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
671 	int error;
672 
673 	/* Write data, calculate ECC on outbound data */
674 	error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
675 	if (error)
676 		return error;
677 
678 	/*
679 	 * The calculated ECC needs some manual work done to it before
680 	 * committing it to NAND. Process the calculated ECC and place
681 	 * the resultant values directly into the OOB buffer. */
682 	lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
683 
684 	/* Write ECC data to device */
685 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
686 	return 0;
687 }
688 
689 /*
690  * Write the data and OOB data to the device, no ECC correction with the
691  * data or OOB data
692  */
lpc32xx_nand_write_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)693 static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
694 						struct nand_chip *chip,
695 						const uint8_t *buf,
696 						int oob_required, int page)
697 {
698 	/* Raw writes can just use the FIFO interface */
699 	chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
700 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
701 	return 0;
702 }
703 
lpc32xx_nand_dma_setup(struct lpc32xx_nand_host * host)704 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
705 {
706 	struct mtd_info *mtd = &host->mtd;
707 	dma_cap_mask_t mask;
708 
709 	if (!host->pdata || !host->pdata->dma_filter) {
710 		dev_err(mtd->dev.parent, "no DMA platform data\n");
711 		return -ENOENT;
712 	}
713 
714 	dma_cap_zero(mask);
715 	dma_cap_set(DMA_SLAVE, mask);
716 	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
717 					     "nand-slc");
718 	if (!host->dma_chan) {
719 		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
720 		return -EBUSY;
721 	}
722 
723 	return 0;
724 }
725 
lpc32xx_parse_dt(struct device * dev)726 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
727 {
728 	struct lpc32xx_nand_cfg_slc *ncfg;
729 	struct device_node *np = dev->of_node;
730 
731 	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
732 	if (!ncfg)
733 		return NULL;
734 
735 	of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
736 	of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
737 	of_property_read_u32(np, "nxp,whold", &ncfg->whold);
738 	of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
739 	of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
740 	of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
741 	of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
742 	of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
743 
744 	if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
745 	    !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
746 	    !ncfg->rhold || !ncfg->rsetup) {
747 		dev_err(dev, "chip parameters not specified correctly\n");
748 		return NULL;
749 	}
750 
751 	ncfg->use_bbt = of_get_nand_on_flash_bbt(np);
752 	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
753 
754 	return ncfg;
755 }
756 
757 /*
758  * Probe for NAND controller
759  */
lpc32xx_nand_probe(struct platform_device * pdev)760 static int lpc32xx_nand_probe(struct platform_device *pdev)
761 {
762 	struct lpc32xx_nand_host *host;
763 	struct mtd_info *mtd;
764 	struct nand_chip *chip;
765 	struct resource *rc;
766 	struct mtd_part_parser_data ppdata = {};
767 	int res;
768 
769 	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
770 	if (rc == NULL) {
771 		dev_err(&pdev->dev, "No memory resource found for device\n");
772 		return -EBUSY;
773 	}
774 
775 	/* Allocate memory for the device structure (and zero it) */
776 	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
777 	if (!host)
778 		return -ENOMEM;
779 	host->io_base_dma = rc->start;
780 
781 	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
782 	if (IS_ERR(host->io_base))
783 		return PTR_ERR(host->io_base);
784 
785 	if (pdev->dev.of_node)
786 		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
787 	if (!host->ncfg) {
788 		dev_err(&pdev->dev,
789 			"Missing or bad NAND config from device tree\n");
790 		return -ENOENT;
791 	}
792 	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
793 		return -EPROBE_DEFER;
794 	if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
795 			host->ncfg->wp_gpio, "NAND WP")) {
796 		dev_err(&pdev->dev, "GPIO not available\n");
797 		return -EBUSY;
798 	}
799 	lpc32xx_wp_disable(host);
800 
801 	host->pdata = dev_get_platdata(&pdev->dev);
802 
803 	mtd = &host->mtd;
804 	chip = &host->nand_chip;
805 	chip->priv = host;
806 	mtd->priv = chip;
807 	mtd->owner = THIS_MODULE;
808 	mtd->dev.parent = &pdev->dev;
809 
810 	/* Get NAND clock */
811 	host->clk = devm_clk_get(&pdev->dev, NULL);
812 	if (IS_ERR(host->clk)) {
813 		dev_err(&pdev->dev, "Clock failure\n");
814 		res = -ENOENT;
815 		goto err_exit1;
816 	}
817 	clk_prepare_enable(host->clk);
818 
819 	/* Set NAND IO addresses and command/ready functions */
820 	chip->IO_ADDR_R = SLC_DATA(host->io_base);
821 	chip->IO_ADDR_W = SLC_DATA(host->io_base);
822 	chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
823 	chip->dev_ready = lpc32xx_nand_device_ready;
824 	chip->chip_delay = 20; /* 20us command delay time */
825 
826 	/* Init NAND controller */
827 	lpc32xx_nand_setup(host);
828 
829 	platform_set_drvdata(pdev, host);
830 
831 	/* NAND callbacks for LPC32xx SLC hardware */
832 	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
833 	chip->read_byte = lpc32xx_nand_read_byte;
834 	chip->read_buf = lpc32xx_nand_read_buf;
835 	chip->write_buf = lpc32xx_nand_write_buf;
836 	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
837 	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
838 	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
839 	chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
840 	chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
841 	chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
842 	chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
843 	chip->ecc.correct = nand_correct_data;
844 	chip->ecc.strength = 1;
845 	chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
846 
847 	/*
848 	 * Allocate a large enough buffer for a single huge page plus
849 	 * extra space for the spare area and ECC storage area
850 	 */
851 	host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
852 	host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
853 				      GFP_KERNEL);
854 	if (host->data_buf == NULL) {
855 		res = -ENOMEM;
856 		goto err_exit2;
857 	}
858 
859 	res = lpc32xx_nand_dma_setup(host);
860 	if (res) {
861 		res = -EIO;
862 		goto err_exit2;
863 	}
864 
865 	/* Find NAND device */
866 	if (nand_scan_ident(mtd, 1, NULL)) {
867 		res = -ENXIO;
868 		goto err_exit3;
869 	}
870 
871 	/* OOB and ECC CPU and DMA work areas */
872 	host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
873 
874 	/*
875 	 * Small page FLASH has a unique OOB layout, but large and huge
876 	 * page FLASH use the standard layout. Small page FLASH uses a
877 	 * custom BBT marker layout.
878 	 */
879 	if (mtd->writesize <= 512)
880 		chip->ecc.layout = &lpc32xx_nand_oob_16;
881 
882 	/* These sizes remain the same regardless of page size */
883 	chip->ecc.size = 256;
884 	chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
885 	chip->ecc.prepad = chip->ecc.postpad = 0;
886 
887 	/* Avoid extra scan if using BBT, setup BBT support */
888 	if (host->ncfg->use_bbt) {
889 		chip->bbt_options |= NAND_BBT_USE_FLASH;
890 
891 		/*
892 		 * Use a custom BBT marker setup for small page FLASH that
893 		 * won't interfere with the ECC layout. Large and huge page
894 		 * FLASH use the standard layout.
895 		 */
896 		if (mtd->writesize <= 512) {
897 			chip->bbt_td = &bbt_smallpage_main_descr;
898 			chip->bbt_md = &bbt_smallpage_mirror_descr;
899 		}
900 	}
901 
902 	/*
903 	 * Fills out all the uninitialized function pointers with the defaults
904 	 */
905 	if (nand_scan_tail(mtd)) {
906 		res = -ENXIO;
907 		goto err_exit3;
908 	}
909 
910 	mtd->name = "nxp_lpc3220_slc";
911 	ppdata.of_node = pdev->dev.of_node;
912 	res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
913 					host->ncfg->num_parts);
914 	if (!res)
915 		return res;
916 
917 	nand_release(mtd);
918 
919 err_exit3:
920 	dma_release_channel(host->dma_chan);
921 err_exit2:
922 	clk_disable_unprepare(host->clk);
923 err_exit1:
924 	lpc32xx_wp_enable(host);
925 
926 	return res;
927 }
928 
929 /*
930  * Remove NAND device.
931  */
lpc32xx_nand_remove(struct platform_device * pdev)932 static int lpc32xx_nand_remove(struct platform_device *pdev)
933 {
934 	uint32_t tmp;
935 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
936 	struct mtd_info *mtd = &host->mtd;
937 
938 	nand_release(mtd);
939 	dma_release_channel(host->dma_chan);
940 
941 	/* Force CE high */
942 	tmp = readl(SLC_CTRL(host->io_base));
943 	tmp &= ~SLCCFG_CE_LOW;
944 	writel(tmp, SLC_CTRL(host->io_base));
945 
946 	clk_disable_unprepare(host->clk);
947 	lpc32xx_wp_enable(host);
948 
949 	return 0;
950 }
951 
952 #ifdef CONFIG_PM
lpc32xx_nand_resume(struct platform_device * pdev)953 static int lpc32xx_nand_resume(struct platform_device *pdev)
954 {
955 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
956 
957 	/* Re-enable NAND clock */
958 	clk_prepare_enable(host->clk);
959 
960 	/* Fresh init of NAND controller */
961 	lpc32xx_nand_setup(host);
962 
963 	/* Disable write protect */
964 	lpc32xx_wp_disable(host);
965 
966 	return 0;
967 }
968 
lpc32xx_nand_suspend(struct platform_device * pdev,pm_message_t pm)969 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
970 {
971 	uint32_t tmp;
972 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
973 
974 	/* Force CE high */
975 	tmp = readl(SLC_CTRL(host->io_base));
976 	tmp &= ~SLCCFG_CE_LOW;
977 	writel(tmp, SLC_CTRL(host->io_base));
978 
979 	/* Enable write protect for safety */
980 	lpc32xx_wp_enable(host);
981 
982 	/* Disable clock */
983 	clk_disable_unprepare(host->clk);
984 
985 	return 0;
986 }
987 
988 #else
989 #define lpc32xx_nand_resume NULL
990 #define lpc32xx_nand_suspend NULL
991 #endif
992 
993 static const struct of_device_id lpc32xx_nand_match[] = {
994 	{ .compatible = "nxp,lpc3220-slc" },
995 	{ /* sentinel */ },
996 };
997 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
998 
999 static struct platform_driver lpc32xx_nand_driver = {
1000 	.probe		= lpc32xx_nand_probe,
1001 	.remove		= lpc32xx_nand_remove,
1002 	.resume		= lpc32xx_nand_resume,
1003 	.suspend	= lpc32xx_nand_suspend,
1004 	.driver		= {
1005 		.name	= LPC32XX_MODNAME,
1006 		.of_match_table = lpc32xx_nand_match,
1007 	},
1008 };
1009 
1010 module_platform_driver(lpc32xx_nand_driver);
1011 
1012 MODULE_LICENSE("GPL");
1013 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1014 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1015 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
1016