• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * slcan.c - serial line CAN interface driver (using tty line discipline)
3  *
4  * This file is derived from linux/drivers/net/slip/slip.c
5  *
6  * slip.c Authors  : Laurence Culhane <loz@holmes.demon.co.uk>
7  *                   Fred N. van Kempen <waltje@uwalt.nl.mugnet.org>
8  * slcan.c Author  : Oliver Hartkopp <socketcan@hartkopp.net>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see http://www.gnu.org/licenses/gpl.html
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
29  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
34  * DAMAGE.
35  *
36  */
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 
41 #include <linux/uaccess.h>
42 #include <linux/bitops.h>
43 #include <linux/string.h>
44 #include <linux/tty.h>
45 #include <linux/errno.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/if_arp.h>
50 #include <linux/if_ether.h>
51 #include <linux/sched.h>
52 #include <linux/delay.h>
53 #include <linux/init.h>
54 #include <linux/kernel.h>
55 #include <linux/workqueue.h>
56 #include <linux/can.h>
57 #include <linux/can/skb.h>
58 
59 MODULE_ALIAS_LDISC(N_SLCAN);
60 MODULE_DESCRIPTION("serial line CAN interface");
61 MODULE_LICENSE("GPL");
62 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
63 
64 #define SLCAN_MAGIC 0x53CA
65 
66 static int maxdev = 10;		/* MAX number of SLCAN channels;
67 				   This can be overridden with
68 				   insmod slcan.ko maxdev=nnn	*/
69 module_param(maxdev, int, 0);
70 MODULE_PARM_DESC(maxdev, "Maximum number of slcan interfaces");
71 
72 /* maximum rx buffer len: extended CAN frame with timestamp */
73 #define SLC_MTU (sizeof("T1111222281122334455667788EA5F\r")+1)
74 
75 #define SLC_CMD_LEN 1
76 #define SLC_SFF_ID_LEN 3
77 #define SLC_EFF_ID_LEN 8
78 
79 struct slcan {
80 	int			magic;
81 
82 	/* Various fields. */
83 	struct tty_struct	*tty;		/* ptr to TTY structure	     */
84 	struct net_device	*dev;		/* easy for intr handling    */
85 	spinlock_t		lock;
86 	struct work_struct	tx_work;	/* Flushes transmit buffer   */
87 
88 	/* These are pointers to the malloc()ed frame buffers. */
89 	unsigned char		rbuff[SLC_MTU];	/* receiver buffer	     */
90 	int			rcount;         /* received chars counter    */
91 	unsigned char		xbuff[SLC_MTU];	/* transmitter buffer	     */
92 	unsigned char		*xhead;         /* pointer to next XMIT byte */
93 	int			xleft;          /* bytes left in XMIT queue  */
94 
95 	unsigned long		flags;		/* Flag values/ mode etc     */
96 #define SLF_INUSE		0		/* Channel in use            */
97 #define SLF_ERROR		1               /* Parity, etc. error        */
98 };
99 
100 static struct net_device **slcan_devs;
101 
102  /************************************************************************
103   *			SLCAN ENCAPSULATION FORMAT			 *
104   ************************************************************************/
105 
106 /*
107  * A CAN frame has a can_id (11 bit standard frame format OR 29 bit extended
108  * frame format) a data length code (can_dlc) which can be from 0 to 8
109  * and up to <can_dlc> data bytes as payload.
110  * Additionally a CAN frame may become a remote transmission frame if the
111  * RTR-bit is set. This causes another ECU to send a CAN frame with the
112  * given can_id.
113  *
114  * The SLCAN ASCII representation of these different frame types is:
115  * <type> <id> <dlc> <data>*
116  *
117  * Extended frames (29 bit) are defined by capital characters in the type.
118  * RTR frames are defined as 'r' types - normal frames have 't' type:
119  * t => 11 bit data frame
120  * r => 11 bit RTR frame
121  * T => 29 bit data frame
122  * R => 29 bit RTR frame
123  *
124  * The <id> is 3 (standard) or 8 (extended) bytes in ASCII Hex (base64).
125  * The <dlc> is a one byte ASCII number ('0' - '8')
126  * The <data> section has at much ASCII Hex bytes as defined by the <dlc>
127  *
128  * Examples:
129  *
130  * t1230 : can_id 0x123, can_dlc 0, no data
131  * t4563112233 : can_id 0x456, can_dlc 3, data 0x11 0x22 0x33
132  * T12ABCDEF2AA55 : extended can_id 0x12ABCDEF, can_dlc 2, data 0xAA 0x55
133  * r1230 : can_id 0x123, can_dlc 0, no data, remote transmission request
134  *
135  */
136 
137  /************************************************************************
138   *			STANDARD SLCAN DECAPSULATION			 *
139   ************************************************************************/
140 
141 /* Send one completely decapsulated can_frame to the network layer */
slc_bump(struct slcan * sl)142 static void slc_bump(struct slcan *sl)
143 {
144 	struct sk_buff *skb;
145 	struct can_frame cf;
146 	int i, tmp;
147 	u32 tmpid;
148 	char *cmd = sl->rbuff;
149 
150 	memset(&cf, 0, sizeof(cf));
151 
152 	switch (*cmd) {
153 	case 'r':
154 		cf.can_id = CAN_RTR_FLAG;
155 		/* fallthrough */
156 	case 't':
157 		/* store dlc ASCII value and terminate SFF CAN ID string */
158 		cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN];
159 		sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN] = 0;
160 		/* point to payload data behind the dlc */
161 		cmd += SLC_CMD_LEN + SLC_SFF_ID_LEN + 1;
162 		break;
163 	case 'R':
164 		cf.can_id = CAN_RTR_FLAG;
165 		/* fallthrough */
166 	case 'T':
167 		cf.can_id |= CAN_EFF_FLAG;
168 		/* store dlc ASCII value and terminate EFF CAN ID string */
169 		cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN];
170 		sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN] = 0;
171 		/* point to payload data behind the dlc */
172 		cmd += SLC_CMD_LEN + SLC_EFF_ID_LEN + 1;
173 		break;
174 	default:
175 		return;
176 	}
177 
178 	if (kstrtou32(sl->rbuff + SLC_CMD_LEN, 16, &tmpid))
179 		return;
180 
181 	cf.can_id |= tmpid;
182 
183 	/* get can_dlc from sanitized ASCII value */
184 	if (cf.can_dlc >= '0' && cf.can_dlc < '9')
185 		cf.can_dlc -= '0';
186 	else
187 		return;
188 
189 	/* RTR frames may have a dlc > 0 but they never have any data bytes */
190 	if (!(cf.can_id & CAN_RTR_FLAG)) {
191 		for (i = 0; i < cf.can_dlc; i++) {
192 			tmp = hex_to_bin(*cmd++);
193 			if (tmp < 0)
194 				return;
195 			cf.data[i] = (tmp << 4);
196 			tmp = hex_to_bin(*cmd++);
197 			if (tmp < 0)
198 				return;
199 			cf.data[i] |= tmp;
200 		}
201 	}
202 
203 	skb = dev_alloc_skb(sizeof(struct can_frame) +
204 			    sizeof(struct can_skb_priv));
205 	if (!skb)
206 		return;
207 
208 	skb->dev = sl->dev;
209 	skb->protocol = htons(ETH_P_CAN);
210 	skb->pkt_type = PACKET_BROADCAST;
211 	skb->ip_summed = CHECKSUM_UNNECESSARY;
212 
213 	can_skb_reserve(skb);
214 	can_skb_prv(skb)->ifindex = sl->dev->ifindex;
215 	can_skb_prv(skb)->skbcnt = 0;
216 
217 	memcpy(skb_put(skb, sizeof(struct can_frame)),
218 	       &cf, sizeof(struct can_frame));
219 
220 	sl->dev->stats.rx_packets++;
221 	sl->dev->stats.rx_bytes += cf.can_dlc;
222 	netif_rx_ni(skb);
223 }
224 
225 /* parse tty input stream */
slcan_unesc(struct slcan * sl,unsigned char s)226 static void slcan_unesc(struct slcan *sl, unsigned char s)
227 {
228 	if ((s == '\r') || (s == '\a')) { /* CR or BEL ends the pdu */
229 		if (!test_and_clear_bit(SLF_ERROR, &sl->flags) &&
230 		    (sl->rcount > 4))  {
231 			slc_bump(sl);
232 		}
233 		sl->rcount = 0;
234 	} else {
235 		if (!test_bit(SLF_ERROR, &sl->flags))  {
236 			if (sl->rcount < SLC_MTU)  {
237 				sl->rbuff[sl->rcount++] = s;
238 				return;
239 			} else {
240 				sl->dev->stats.rx_over_errors++;
241 				set_bit(SLF_ERROR, &sl->flags);
242 			}
243 		}
244 	}
245 }
246 
247  /************************************************************************
248   *			STANDARD SLCAN ENCAPSULATION			 *
249   ************************************************************************/
250 
251 /* Encapsulate one can_frame and stuff into a TTY queue. */
slc_encaps(struct slcan * sl,struct can_frame * cf)252 static void slc_encaps(struct slcan *sl, struct can_frame *cf)
253 {
254 	int actual, i;
255 	unsigned char *pos;
256 	unsigned char *endpos;
257 	canid_t id = cf->can_id;
258 
259 	pos = sl->xbuff;
260 
261 	if (cf->can_id & CAN_RTR_FLAG)
262 		*pos = 'R'; /* becomes 'r' in standard frame format (SFF) */
263 	else
264 		*pos = 'T'; /* becomes 't' in standard frame format (SSF) */
265 
266 	/* determine number of chars for the CAN-identifier */
267 	if (cf->can_id & CAN_EFF_FLAG) {
268 		id &= CAN_EFF_MASK;
269 		endpos = pos + SLC_EFF_ID_LEN;
270 	} else {
271 		*pos |= 0x20; /* convert R/T to lower case for SFF */
272 		id &= CAN_SFF_MASK;
273 		endpos = pos + SLC_SFF_ID_LEN;
274 	}
275 
276 	/* build 3 (SFF) or 8 (EFF) digit CAN identifier */
277 	pos++;
278 	while (endpos >= pos) {
279 		*endpos-- = hex_asc_upper[id & 0xf];
280 		id >>= 4;
281 	}
282 
283 	pos += (cf->can_id & CAN_EFF_FLAG) ? SLC_EFF_ID_LEN : SLC_SFF_ID_LEN;
284 
285 	*pos++ = cf->can_dlc + '0';
286 
287 	/* RTR frames may have a dlc > 0 but they never have any data bytes */
288 	if (!(cf->can_id & CAN_RTR_FLAG)) {
289 		for (i = 0; i < cf->can_dlc; i++)
290 			pos = hex_byte_pack_upper(pos, cf->data[i]);
291 	}
292 
293 	*pos++ = '\r';
294 
295 	/* Order of next two lines is *very* important.
296 	 * When we are sending a little amount of data,
297 	 * the transfer may be completed inside the ops->write()
298 	 * routine, because it's running with interrupts enabled.
299 	 * In this case we *never* got WRITE_WAKEUP event,
300 	 * if we did not request it before write operation.
301 	 *       14 Oct 1994  Dmitry Gorodchanin.
302 	 */
303 	set_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
304 	actual = sl->tty->ops->write(sl->tty, sl->xbuff, pos - sl->xbuff);
305 	sl->xleft = (pos - sl->xbuff) - actual;
306 	sl->xhead = sl->xbuff + actual;
307 	sl->dev->stats.tx_bytes += cf->can_dlc;
308 }
309 
310 /* Write out any remaining transmit buffer. Scheduled when tty is writable */
slcan_transmit(struct work_struct * work)311 static void slcan_transmit(struct work_struct *work)
312 {
313 	struct slcan *sl = container_of(work, struct slcan, tx_work);
314 	int actual;
315 
316 	spin_lock_bh(&sl->lock);
317 	/* First make sure we're connected. */
318 	if (!sl->tty || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev)) {
319 		spin_unlock_bh(&sl->lock);
320 		return;
321 	}
322 
323 	if (sl->xleft <= 0)  {
324 		/* Now serial buffer is almost free & we can start
325 		 * transmission of another packet */
326 		sl->dev->stats.tx_packets++;
327 		clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
328 		spin_unlock_bh(&sl->lock);
329 		netif_wake_queue(sl->dev);
330 		return;
331 	}
332 
333 	actual = sl->tty->ops->write(sl->tty, sl->xhead, sl->xleft);
334 	sl->xleft -= actual;
335 	sl->xhead += actual;
336 	spin_unlock_bh(&sl->lock);
337 }
338 
339 /*
340  * Called by the driver when there's room for more data.
341  * Schedule the transmit.
342  */
slcan_write_wakeup(struct tty_struct * tty)343 static void slcan_write_wakeup(struct tty_struct *tty)
344 {
345 	struct slcan *sl;
346 
347 	rcu_read_lock();
348 	sl = rcu_dereference(tty->disc_data);
349 	if (!sl)
350 		goto out;
351 
352 	schedule_work(&sl->tx_work);
353 out:
354 	rcu_read_unlock();
355 }
356 
357 /* Send a can_frame to a TTY queue. */
slc_xmit(struct sk_buff * skb,struct net_device * dev)358 static netdev_tx_t slc_xmit(struct sk_buff *skb, struct net_device *dev)
359 {
360 	struct slcan *sl = netdev_priv(dev);
361 
362 	if (skb->len != sizeof(struct can_frame))
363 		goto out;
364 
365 	spin_lock(&sl->lock);
366 	if (!netif_running(dev))  {
367 		spin_unlock(&sl->lock);
368 		printk(KERN_WARNING "%s: xmit: iface is down\n", dev->name);
369 		goto out;
370 	}
371 	if (sl->tty == NULL) {
372 		spin_unlock(&sl->lock);
373 		goto out;
374 	}
375 
376 	netif_stop_queue(sl->dev);
377 	slc_encaps(sl, (struct can_frame *) skb->data); /* encaps & send */
378 	spin_unlock(&sl->lock);
379 
380 out:
381 	kfree_skb(skb);
382 	return NETDEV_TX_OK;
383 }
384 
385 
386 /******************************************
387  *   Routines looking at netdevice side.
388  ******************************************/
389 
390 /* Netdevice UP -> DOWN routine */
slc_close(struct net_device * dev)391 static int slc_close(struct net_device *dev)
392 {
393 	struct slcan *sl = netdev_priv(dev);
394 
395 	spin_lock_bh(&sl->lock);
396 	if (sl->tty) {
397 		/* TTY discipline is running. */
398 		clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
399 	}
400 	netif_stop_queue(dev);
401 	sl->rcount   = 0;
402 	sl->xleft    = 0;
403 	spin_unlock_bh(&sl->lock);
404 
405 	return 0;
406 }
407 
408 /* Netdevice DOWN -> UP routine */
slc_open(struct net_device * dev)409 static int slc_open(struct net_device *dev)
410 {
411 	struct slcan *sl = netdev_priv(dev);
412 
413 	if (sl->tty == NULL)
414 		return -ENODEV;
415 
416 	sl->flags &= (1 << SLF_INUSE);
417 	netif_start_queue(dev);
418 	return 0;
419 }
420 
421 /* Hook the destructor so we can free slcan devs at the right point in time */
slc_free_netdev(struct net_device * dev)422 static void slc_free_netdev(struct net_device *dev)
423 {
424 	int i = dev->base_addr;
425 	free_netdev(dev);
426 	slcan_devs[i] = NULL;
427 }
428 
slcan_change_mtu(struct net_device * dev,int new_mtu)429 static int slcan_change_mtu(struct net_device *dev, int new_mtu)
430 {
431 	return -EINVAL;
432 }
433 
434 static const struct net_device_ops slc_netdev_ops = {
435 	.ndo_open               = slc_open,
436 	.ndo_stop               = slc_close,
437 	.ndo_start_xmit         = slc_xmit,
438 	.ndo_change_mtu         = slcan_change_mtu,
439 };
440 
slc_setup(struct net_device * dev)441 static void slc_setup(struct net_device *dev)
442 {
443 	dev->netdev_ops		= &slc_netdev_ops;
444 	dev->destructor		= slc_free_netdev;
445 
446 	dev->hard_header_len	= 0;
447 	dev->addr_len		= 0;
448 	dev->tx_queue_len	= 10;
449 
450 	dev->mtu		= sizeof(struct can_frame);
451 	dev->type		= ARPHRD_CAN;
452 
453 	/* New-style flags. */
454 	dev->flags		= IFF_NOARP;
455 	dev->features           = NETIF_F_HW_CSUM;
456 }
457 
458 /******************************************
459   Routines looking at TTY side.
460  ******************************************/
461 
462 /*
463  * Handle the 'receiver data ready' interrupt.
464  * This function is called by the 'tty_io' module in the kernel when
465  * a block of SLCAN data has been received, which can now be decapsulated
466  * and sent on to some IP layer for further processing. This will not
467  * be re-entered while running but other ldisc functions may be called
468  * in parallel
469  */
470 
slcan_receive_buf(struct tty_struct * tty,const unsigned char * cp,char * fp,int count)471 static void slcan_receive_buf(struct tty_struct *tty,
472 			      const unsigned char *cp, char *fp, int count)
473 {
474 	struct slcan *sl = (struct slcan *) tty->disc_data;
475 
476 	if (!sl || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev))
477 		return;
478 
479 	/* Read the characters out of the buffer */
480 	while (count--) {
481 		if (fp && *fp++) {
482 			if (!test_and_set_bit(SLF_ERROR, &sl->flags))
483 				sl->dev->stats.rx_errors++;
484 			cp++;
485 			continue;
486 		}
487 		slcan_unesc(sl, *cp++);
488 	}
489 }
490 
491 /************************************
492  *  slcan_open helper routines.
493  ************************************/
494 
495 /* Collect hanged up channels */
slc_sync(void)496 static void slc_sync(void)
497 {
498 	int i;
499 	struct net_device *dev;
500 	struct slcan	  *sl;
501 
502 	for (i = 0; i < maxdev; i++) {
503 		dev = slcan_devs[i];
504 		if (dev == NULL)
505 			break;
506 
507 		sl = netdev_priv(dev);
508 		if (sl->tty)
509 			continue;
510 		if (dev->flags & IFF_UP)
511 			dev_close(dev);
512 	}
513 }
514 
515 /* Find a free SLCAN channel, and link in this `tty' line. */
slc_alloc(dev_t line)516 static struct slcan *slc_alloc(dev_t line)
517 {
518 	int i;
519 	char name[IFNAMSIZ];
520 	struct net_device *dev = NULL;
521 	struct slcan       *sl;
522 
523 	for (i = 0; i < maxdev; i++) {
524 		dev = slcan_devs[i];
525 		if (dev == NULL)
526 			break;
527 
528 	}
529 
530 	/* Sorry, too many, all slots in use */
531 	if (i >= maxdev)
532 		return NULL;
533 
534 	sprintf(name, "slcan%d", i);
535 	dev = alloc_netdev(sizeof(*sl), name, NET_NAME_UNKNOWN, slc_setup);
536 	if (!dev)
537 		return NULL;
538 
539 	dev->base_addr  = i;
540 	sl = netdev_priv(dev);
541 
542 	/* Initialize channel control data */
543 	sl->magic = SLCAN_MAGIC;
544 	sl->dev	= dev;
545 	spin_lock_init(&sl->lock);
546 	INIT_WORK(&sl->tx_work, slcan_transmit);
547 	slcan_devs[i] = dev;
548 
549 	return sl;
550 }
551 
552 /*
553  * Open the high-level part of the SLCAN channel.
554  * This function is called by the TTY module when the
555  * SLCAN line discipline is called for.  Because we are
556  * sure the tty line exists, we only have to link it to
557  * a free SLCAN channel...
558  *
559  * Called in process context serialized from other ldisc calls.
560  */
561 
slcan_open(struct tty_struct * tty)562 static int slcan_open(struct tty_struct *tty)
563 {
564 	struct slcan *sl;
565 	int err;
566 
567 	if (!capable(CAP_NET_ADMIN))
568 		return -EPERM;
569 
570 	if (tty->ops->write == NULL)
571 		return -EOPNOTSUPP;
572 
573 	/* RTnetlink lock is misused here to serialize concurrent
574 	   opens of slcan channels. There are better ways, but it is
575 	   the simplest one.
576 	 */
577 	rtnl_lock();
578 
579 	/* Collect hanged up channels. */
580 	slc_sync();
581 
582 	sl = tty->disc_data;
583 
584 	err = -EEXIST;
585 	/* First make sure we're not already connected. */
586 	if (sl && sl->magic == SLCAN_MAGIC)
587 		goto err_exit;
588 
589 	/* OK.  Find a free SLCAN channel to use. */
590 	err = -ENFILE;
591 	sl = slc_alloc(tty_devnum(tty));
592 	if (sl == NULL)
593 		goto err_exit;
594 
595 	sl->tty = tty;
596 	tty->disc_data = sl;
597 
598 	if (!test_bit(SLF_INUSE, &sl->flags)) {
599 		/* Perform the low-level SLCAN initialization. */
600 		sl->rcount   = 0;
601 		sl->xleft    = 0;
602 
603 		set_bit(SLF_INUSE, &sl->flags);
604 
605 		err = register_netdevice(sl->dev);
606 		if (err)
607 			goto err_free_chan;
608 	}
609 
610 	/* Done.  We have linked the TTY line to a channel. */
611 	rtnl_unlock();
612 	tty->receive_room = 65536;	/* We don't flow control */
613 
614 	/* TTY layer expects 0 on success */
615 	return 0;
616 
617 err_free_chan:
618 	sl->tty = NULL;
619 	tty->disc_data = NULL;
620 	clear_bit(SLF_INUSE, &sl->flags);
621 	/* do not call free_netdev before rtnl_unlock */
622 	rtnl_unlock();
623 	slc_free_netdev(sl->dev);
624 	return err;
625 
626 err_exit:
627 	rtnl_unlock();
628 
629 	/* Count references from TTY module */
630 	return err;
631 }
632 
633 /*
634  * Close down a SLCAN channel.
635  * This means flushing out any pending queues, and then returning. This
636  * call is serialized against other ldisc functions.
637  *
638  * We also use this method for a hangup event.
639  */
640 
slcan_close(struct tty_struct * tty)641 static void slcan_close(struct tty_struct *tty)
642 {
643 	struct slcan *sl = (struct slcan *) tty->disc_data;
644 
645 	/* First make sure we're connected. */
646 	if (!sl || sl->magic != SLCAN_MAGIC || sl->tty != tty)
647 		return;
648 
649 	spin_lock_bh(&sl->lock);
650 	rcu_assign_pointer(tty->disc_data, NULL);
651 	sl->tty = NULL;
652 	spin_unlock_bh(&sl->lock);
653 
654 	synchronize_rcu();
655 	flush_work(&sl->tx_work);
656 
657 	/* Flush network side */
658 	unregister_netdev(sl->dev);
659 	/* This will complete via sl_free_netdev */
660 }
661 
slcan_hangup(struct tty_struct * tty)662 static int slcan_hangup(struct tty_struct *tty)
663 {
664 	slcan_close(tty);
665 	return 0;
666 }
667 
668 /* Perform I/O control on an active SLCAN channel. */
slcan_ioctl(struct tty_struct * tty,struct file * file,unsigned int cmd,unsigned long arg)669 static int slcan_ioctl(struct tty_struct *tty, struct file *file,
670 		       unsigned int cmd, unsigned long arg)
671 {
672 	struct slcan *sl = (struct slcan *) tty->disc_data;
673 	unsigned int tmp;
674 
675 	/* First make sure we're connected. */
676 	if (!sl || sl->magic != SLCAN_MAGIC)
677 		return -EINVAL;
678 
679 	switch (cmd) {
680 	case SIOCGIFNAME:
681 		tmp = strlen(sl->dev->name) + 1;
682 		if (copy_to_user((void __user *)arg, sl->dev->name, tmp))
683 			return -EFAULT;
684 		return 0;
685 
686 	case SIOCSIFHWADDR:
687 		return -EINVAL;
688 
689 	default:
690 		return tty_mode_ioctl(tty, file, cmd, arg);
691 	}
692 }
693 
694 static struct tty_ldisc_ops slc_ldisc = {
695 	.owner		= THIS_MODULE,
696 	.magic		= TTY_LDISC_MAGIC,
697 	.name		= "slcan",
698 	.open		= slcan_open,
699 	.close		= slcan_close,
700 	.hangup		= slcan_hangup,
701 	.ioctl		= slcan_ioctl,
702 	.receive_buf	= slcan_receive_buf,
703 	.write_wakeup	= slcan_write_wakeup,
704 };
705 
slcan_init(void)706 static int __init slcan_init(void)
707 {
708 	int status;
709 
710 	if (maxdev < 4)
711 		maxdev = 4; /* Sanity */
712 
713 	pr_info("slcan: serial line CAN interface driver\n");
714 	pr_info("slcan: %d dynamic interface channels.\n", maxdev);
715 
716 	slcan_devs = kzalloc(sizeof(struct net_device *)*maxdev, GFP_KERNEL);
717 	if (!slcan_devs)
718 		return -ENOMEM;
719 
720 	/* Fill in our line protocol discipline, and register it */
721 	status = tty_register_ldisc(N_SLCAN, &slc_ldisc);
722 	if (status)  {
723 		printk(KERN_ERR "slcan: can't register line discipline\n");
724 		kfree(slcan_devs);
725 	}
726 	return status;
727 }
728 
slcan_exit(void)729 static void __exit slcan_exit(void)
730 {
731 	int i;
732 	struct net_device *dev;
733 	struct slcan *sl;
734 	unsigned long timeout = jiffies + HZ;
735 	int busy = 0;
736 
737 	if (slcan_devs == NULL)
738 		return;
739 
740 	/* First of all: check for active disciplines and hangup them.
741 	 */
742 	do {
743 		if (busy)
744 			msleep_interruptible(100);
745 
746 		busy = 0;
747 		for (i = 0; i < maxdev; i++) {
748 			dev = slcan_devs[i];
749 			if (!dev)
750 				continue;
751 			sl = netdev_priv(dev);
752 			spin_lock_bh(&sl->lock);
753 			if (sl->tty) {
754 				busy++;
755 				tty_hangup(sl->tty);
756 			}
757 			spin_unlock_bh(&sl->lock);
758 		}
759 	} while (busy && time_before(jiffies, timeout));
760 
761 	/* FIXME: hangup is async so we should wait when doing this second
762 	   phase */
763 
764 	for (i = 0; i < maxdev; i++) {
765 		dev = slcan_devs[i];
766 		if (!dev)
767 			continue;
768 		slcan_devs[i] = NULL;
769 
770 		sl = netdev_priv(dev);
771 		if (sl->tty) {
772 			printk(KERN_ERR "%s: tty discipline still running\n",
773 			       dev->name);
774 			/* Intentionally leak the control block. */
775 			dev->destructor = NULL;
776 		}
777 
778 		unregister_netdev(dev);
779 	}
780 
781 	kfree(slcan_devs);
782 	slcan_devs = NULL;
783 
784 	i = tty_unregister_ldisc(N_SLCAN);
785 	if (i)
786 		printk(KERN_ERR "slcan: can't unregister ldisc (err %d)\n", i);
787 }
788 
789 module_init(slcan_init);
790 module_exit(slcan_exit);
791