• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3  *
4  *  This file is free software: you may copy, redistribute and/or modify it
5  *  under the terms of the GNU General Public License as published by the
6  *  Free Software Foundation, either version 2 of the License, or (at your
7  *  option) any later version.
8  *
9  *  This file is distributed in the hope that it will be useful, but
10  *  WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  *  General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * This file incorporates work covered by the following copyright and
18  * permission notice:
19  *
20  * Copyright (c) 2012 Qualcomm Atheros, Inc.
21  *
22  * Permission to use, copy, modify, and/or distribute this software for any
23  * purpose with or without fee is hereby granted, provided that the above
24  * copyright notice and this permission notice appear in all copies.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/aer.h>
43 #include <linux/bitops.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <net/ip6_checksum.h>
47 #include <linux/crc32.h>
48 #include "alx.h"
49 #include "hw.h"
50 #include "reg.h"
51 
52 const char alx_drv_name[] = "alx";
53 
54 
alx_free_txbuf(struct alx_priv * alx,int entry)55 static void alx_free_txbuf(struct alx_priv *alx, int entry)
56 {
57 	struct alx_buffer *txb = &alx->txq.bufs[entry];
58 
59 	if (dma_unmap_len(txb, size)) {
60 		dma_unmap_single(&alx->hw.pdev->dev,
61 				 dma_unmap_addr(txb, dma),
62 				 dma_unmap_len(txb, size),
63 				 DMA_TO_DEVICE);
64 		dma_unmap_len_set(txb, size, 0);
65 	}
66 
67 	if (txb->skb) {
68 		dev_kfree_skb_any(txb->skb);
69 		txb->skb = NULL;
70 	}
71 }
72 
alx_refill_rx_ring(struct alx_priv * alx,gfp_t gfp)73 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
74 {
75 	struct alx_rx_queue *rxq = &alx->rxq;
76 	struct sk_buff *skb;
77 	struct alx_buffer *cur_buf;
78 	dma_addr_t dma;
79 	u16 cur, next, count = 0;
80 
81 	next = cur = rxq->write_idx;
82 	if (++next == alx->rx_ringsz)
83 		next = 0;
84 	cur_buf = &rxq->bufs[cur];
85 
86 	while (!cur_buf->skb && next != rxq->read_idx) {
87 		struct alx_rfd *rfd = &rxq->rfd[cur];
88 
89 		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
90 		if (!skb)
91 			break;
92 
93 		/* Workround for the HW RX DMA overflow issue */
94 		if (((unsigned long)skb->data & 0xfff) == 0xfc0)
95 			skb_reserve(skb, 64);
96 
97 		dma = dma_map_single(&alx->hw.pdev->dev,
98 				     skb->data, alx->rxbuf_size,
99 				     DMA_FROM_DEVICE);
100 		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
101 			dev_kfree_skb(skb);
102 			break;
103 		}
104 
105 		/* Unfortunately, RX descriptor buffers must be 4-byte
106 		 * aligned, so we can't use IP alignment.
107 		 */
108 		if (WARN_ON(dma & 3)) {
109 			dev_kfree_skb(skb);
110 			break;
111 		}
112 
113 		cur_buf->skb = skb;
114 		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
115 		dma_unmap_addr_set(cur_buf, dma, dma);
116 		rfd->addr = cpu_to_le64(dma);
117 
118 		cur = next;
119 		if (++next == alx->rx_ringsz)
120 			next = 0;
121 		cur_buf = &rxq->bufs[cur];
122 		count++;
123 	}
124 
125 	if (count) {
126 		/* flush all updates before updating hardware */
127 		wmb();
128 		rxq->write_idx = cur;
129 		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
130 	}
131 
132 	return count;
133 }
134 
alx_tpd_avail(struct alx_priv * alx)135 static inline int alx_tpd_avail(struct alx_priv *alx)
136 {
137 	struct alx_tx_queue *txq = &alx->txq;
138 
139 	if (txq->write_idx >= txq->read_idx)
140 		return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
141 	return txq->read_idx - txq->write_idx - 1;
142 }
143 
alx_clean_tx_irq(struct alx_priv * alx)144 static bool alx_clean_tx_irq(struct alx_priv *alx)
145 {
146 	struct alx_tx_queue *txq = &alx->txq;
147 	u16 hw_read_idx, sw_read_idx;
148 	unsigned int total_bytes = 0, total_packets = 0;
149 	int budget = ALX_DEFAULT_TX_WORK;
150 
151 	sw_read_idx = txq->read_idx;
152 	hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
153 
154 	if (sw_read_idx != hw_read_idx) {
155 		while (sw_read_idx != hw_read_idx && budget > 0) {
156 			struct sk_buff *skb;
157 
158 			skb = txq->bufs[sw_read_idx].skb;
159 			if (skb) {
160 				total_bytes += skb->len;
161 				total_packets++;
162 				budget--;
163 			}
164 
165 			alx_free_txbuf(alx, sw_read_idx);
166 
167 			if (++sw_read_idx == alx->tx_ringsz)
168 				sw_read_idx = 0;
169 		}
170 		txq->read_idx = sw_read_idx;
171 
172 		netdev_completed_queue(alx->dev, total_packets, total_bytes);
173 	}
174 
175 	if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
176 	    alx_tpd_avail(alx) > alx->tx_ringsz/4)
177 		netif_wake_queue(alx->dev);
178 
179 	return sw_read_idx == hw_read_idx;
180 }
181 
alx_schedule_link_check(struct alx_priv * alx)182 static void alx_schedule_link_check(struct alx_priv *alx)
183 {
184 	schedule_work(&alx->link_check_wk);
185 }
186 
alx_schedule_reset(struct alx_priv * alx)187 static void alx_schedule_reset(struct alx_priv *alx)
188 {
189 	schedule_work(&alx->reset_wk);
190 }
191 
alx_clean_rx_irq(struct alx_priv * alx,int budget)192 static int alx_clean_rx_irq(struct alx_priv *alx, int budget)
193 {
194 	struct alx_rx_queue *rxq = &alx->rxq;
195 	struct alx_rrd *rrd;
196 	struct alx_buffer *rxb;
197 	struct sk_buff *skb;
198 	u16 length, rfd_cleaned = 0;
199 	int work = 0;
200 
201 	while (work < budget) {
202 		rrd = &rxq->rrd[rxq->rrd_read_idx];
203 		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
204 			break;
205 		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
206 
207 		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
208 				  RRD_SI) != rxq->read_idx ||
209 		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
210 				  RRD_NOR) != 1) {
211 			alx_schedule_reset(alx);
212 			return work;
213 		}
214 
215 		rxb = &rxq->bufs[rxq->read_idx];
216 		dma_unmap_single(&alx->hw.pdev->dev,
217 				 dma_unmap_addr(rxb, dma),
218 				 dma_unmap_len(rxb, size),
219 				 DMA_FROM_DEVICE);
220 		dma_unmap_len_set(rxb, size, 0);
221 		skb = rxb->skb;
222 		rxb->skb = NULL;
223 
224 		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
225 		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
226 			rrd->word3 = 0;
227 			dev_kfree_skb_any(skb);
228 			goto next_pkt;
229 		}
230 
231 		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
232 				       RRD_PKTLEN) - ETH_FCS_LEN;
233 		skb_put(skb, length);
234 		skb->protocol = eth_type_trans(skb, alx->dev);
235 
236 		skb_checksum_none_assert(skb);
237 		if (alx->dev->features & NETIF_F_RXCSUM &&
238 		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
239 				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
240 			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
241 					      RRD_PID)) {
242 			case RRD_PID_IPV6UDP:
243 			case RRD_PID_IPV4UDP:
244 			case RRD_PID_IPV4TCP:
245 			case RRD_PID_IPV6TCP:
246 				skb->ip_summed = CHECKSUM_UNNECESSARY;
247 				break;
248 			}
249 		}
250 
251 		napi_gro_receive(&alx->napi, skb);
252 		work++;
253 
254 next_pkt:
255 		if (++rxq->read_idx == alx->rx_ringsz)
256 			rxq->read_idx = 0;
257 		if (++rxq->rrd_read_idx == alx->rx_ringsz)
258 			rxq->rrd_read_idx = 0;
259 
260 		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
261 			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
262 	}
263 
264 	if (rfd_cleaned)
265 		alx_refill_rx_ring(alx, GFP_ATOMIC);
266 
267 	return work;
268 }
269 
alx_poll(struct napi_struct * napi,int budget)270 static int alx_poll(struct napi_struct *napi, int budget)
271 {
272 	struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
273 	struct alx_hw *hw = &alx->hw;
274 	unsigned long flags;
275 	bool tx_complete;
276 	int work;
277 
278 	tx_complete = alx_clean_tx_irq(alx);
279 	work = alx_clean_rx_irq(alx, budget);
280 
281 	if (!tx_complete || work == budget)
282 		return budget;
283 
284 	napi_complete(&alx->napi);
285 
286 	/* enable interrupt */
287 	spin_lock_irqsave(&alx->irq_lock, flags);
288 	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
289 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
290 	spin_unlock_irqrestore(&alx->irq_lock, flags);
291 
292 	alx_post_write(hw);
293 
294 	return work;
295 }
296 
alx_intr_handle(struct alx_priv * alx,u32 intr)297 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
298 {
299 	struct alx_hw *hw = &alx->hw;
300 	bool write_int_mask = false;
301 
302 	spin_lock(&alx->irq_lock);
303 
304 	/* ACK interrupt */
305 	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
306 	intr &= alx->int_mask;
307 
308 	if (intr & ALX_ISR_FATAL) {
309 		netif_warn(alx, hw, alx->dev,
310 			   "fatal interrupt 0x%x, resetting\n", intr);
311 		alx_schedule_reset(alx);
312 		goto out;
313 	}
314 
315 	if (intr & ALX_ISR_ALERT)
316 		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
317 
318 	if (intr & ALX_ISR_PHY) {
319 		/* suppress PHY interrupt, because the source
320 		 * is from PHY internal. only the internal status
321 		 * is cleared, the interrupt status could be cleared.
322 		 */
323 		alx->int_mask &= ~ALX_ISR_PHY;
324 		write_int_mask = true;
325 		alx_schedule_link_check(alx);
326 	}
327 
328 	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
329 		napi_schedule(&alx->napi);
330 		/* mask rx/tx interrupt, enable them when napi complete */
331 		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
332 		write_int_mask = true;
333 	}
334 
335 	if (write_int_mask)
336 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
337 
338 	alx_write_mem32(hw, ALX_ISR, 0);
339 
340  out:
341 	spin_unlock(&alx->irq_lock);
342 	return IRQ_HANDLED;
343 }
344 
alx_intr_msi(int irq,void * data)345 static irqreturn_t alx_intr_msi(int irq, void *data)
346 {
347 	struct alx_priv *alx = data;
348 
349 	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
350 }
351 
alx_intr_legacy(int irq,void * data)352 static irqreturn_t alx_intr_legacy(int irq, void *data)
353 {
354 	struct alx_priv *alx = data;
355 	struct alx_hw *hw = &alx->hw;
356 	u32 intr;
357 
358 	intr = alx_read_mem32(hw, ALX_ISR);
359 
360 	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
361 		return IRQ_NONE;
362 
363 	return alx_intr_handle(alx, intr);
364 }
365 
alx_init_ring_ptrs(struct alx_priv * alx)366 static void alx_init_ring_ptrs(struct alx_priv *alx)
367 {
368 	struct alx_hw *hw = &alx->hw;
369 	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
370 
371 	alx->rxq.read_idx = 0;
372 	alx->rxq.write_idx = 0;
373 	alx->rxq.rrd_read_idx = 0;
374 	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
375 	alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
376 	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
377 	alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
378 	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
379 	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
380 
381 	alx->txq.read_idx = 0;
382 	alx->txq.write_idx = 0;
383 	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
384 	alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
385 	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
386 
387 	/* load these pointers into the chip */
388 	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
389 }
390 
alx_free_txring_buf(struct alx_priv * alx)391 static void alx_free_txring_buf(struct alx_priv *alx)
392 {
393 	struct alx_tx_queue *txq = &alx->txq;
394 	int i;
395 
396 	if (!txq->bufs)
397 		return;
398 
399 	for (i = 0; i < alx->tx_ringsz; i++)
400 		alx_free_txbuf(alx, i);
401 
402 	memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
403 	memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
404 	txq->write_idx = 0;
405 	txq->read_idx = 0;
406 
407 	netdev_reset_queue(alx->dev);
408 }
409 
alx_free_rxring_buf(struct alx_priv * alx)410 static void alx_free_rxring_buf(struct alx_priv *alx)
411 {
412 	struct alx_rx_queue *rxq = &alx->rxq;
413 	struct alx_buffer *cur_buf;
414 	u16 i;
415 
416 	if (rxq == NULL)
417 		return;
418 
419 	for (i = 0; i < alx->rx_ringsz; i++) {
420 		cur_buf = rxq->bufs + i;
421 		if (cur_buf->skb) {
422 			dma_unmap_single(&alx->hw.pdev->dev,
423 					 dma_unmap_addr(cur_buf, dma),
424 					 dma_unmap_len(cur_buf, size),
425 					 DMA_FROM_DEVICE);
426 			dev_kfree_skb(cur_buf->skb);
427 			cur_buf->skb = NULL;
428 			dma_unmap_len_set(cur_buf, size, 0);
429 			dma_unmap_addr_set(cur_buf, dma, 0);
430 		}
431 	}
432 
433 	rxq->write_idx = 0;
434 	rxq->read_idx = 0;
435 	rxq->rrd_read_idx = 0;
436 }
437 
alx_free_buffers(struct alx_priv * alx)438 static void alx_free_buffers(struct alx_priv *alx)
439 {
440 	alx_free_txring_buf(alx);
441 	alx_free_rxring_buf(alx);
442 }
443 
alx_reinit_rings(struct alx_priv * alx)444 static int alx_reinit_rings(struct alx_priv *alx)
445 {
446 	alx_free_buffers(alx);
447 
448 	alx_init_ring_ptrs(alx);
449 
450 	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
451 		return -ENOMEM;
452 
453 	return 0;
454 }
455 
alx_add_mc_addr(struct alx_hw * hw,const u8 * addr,u32 * mc_hash)456 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
457 {
458 	u32 crc32, bit, reg;
459 
460 	crc32 = ether_crc(ETH_ALEN, addr);
461 	reg = (crc32 >> 31) & 0x1;
462 	bit = (crc32 >> 26) & 0x1F;
463 
464 	mc_hash[reg] |= BIT(bit);
465 }
466 
__alx_set_rx_mode(struct net_device * netdev)467 static void __alx_set_rx_mode(struct net_device *netdev)
468 {
469 	struct alx_priv *alx = netdev_priv(netdev);
470 	struct alx_hw *hw = &alx->hw;
471 	struct netdev_hw_addr *ha;
472 	u32 mc_hash[2] = {};
473 
474 	if (!(netdev->flags & IFF_ALLMULTI)) {
475 		netdev_for_each_mc_addr(ha, netdev)
476 			alx_add_mc_addr(hw, ha->addr, mc_hash);
477 
478 		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
479 		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
480 	}
481 
482 	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
483 	if (netdev->flags & IFF_PROMISC)
484 		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
485 	if (netdev->flags & IFF_ALLMULTI)
486 		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
487 
488 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
489 }
490 
alx_set_rx_mode(struct net_device * netdev)491 static void alx_set_rx_mode(struct net_device *netdev)
492 {
493 	__alx_set_rx_mode(netdev);
494 }
495 
alx_set_mac_address(struct net_device * netdev,void * data)496 static int alx_set_mac_address(struct net_device *netdev, void *data)
497 {
498 	struct alx_priv *alx = netdev_priv(netdev);
499 	struct alx_hw *hw = &alx->hw;
500 	struct sockaddr *addr = data;
501 
502 	if (!is_valid_ether_addr(addr->sa_data))
503 		return -EADDRNOTAVAIL;
504 
505 	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
506 		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
507 
508 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
509 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
510 	alx_set_macaddr(hw, hw->mac_addr);
511 
512 	return 0;
513 }
514 
alx_alloc_descriptors(struct alx_priv * alx)515 static int alx_alloc_descriptors(struct alx_priv *alx)
516 {
517 	alx->txq.bufs = kcalloc(alx->tx_ringsz,
518 				sizeof(struct alx_buffer),
519 				GFP_KERNEL);
520 	if (!alx->txq.bufs)
521 		return -ENOMEM;
522 
523 	alx->rxq.bufs = kcalloc(alx->rx_ringsz,
524 				sizeof(struct alx_buffer),
525 				GFP_KERNEL);
526 	if (!alx->rxq.bufs)
527 		goto out_free;
528 
529 	/* physical tx/rx ring descriptors
530 	 *
531 	 * Allocate them as a single chunk because they must not cross a
532 	 * 4G boundary (hardware has a single register for high 32 bits
533 	 * of addresses only)
534 	 */
535 	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
536 			    sizeof(struct alx_rrd) * alx->rx_ringsz +
537 			    sizeof(struct alx_rfd) * alx->rx_ringsz;
538 	alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
539 						alx->descmem.size,
540 						&alx->descmem.dma,
541 						GFP_KERNEL);
542 	if (!alx->descmem.virt)
543 		goto out_free;
544 
545 	alx->txq.tpd = alx->descmem.virt;
546 	alx->txq.tpd_dma = alx->descmem.dma;
547 
548 	/* alignment requirement for next block */
549 	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
550 
551 	alx->rxq.rrd =
552 		(void *)((u8 *)alx->descmem.virt +
553 			 sizeof(struct alx_txd) * alx->tx_ringsz);
554 	alx->rxq.rrd_dma = alx->descmem.dma +
555 			   sizeof(struct alx_txd) * alx->tx_ringsz;
556 
557 	/* alignment requirement for next block */
558 	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
559 
560 	alx->rxq.rfd =
561 		(void *)((u8 *)alx->descmem.virt +
562 			 sizeof(struct alx_txd) * alx->tx_ringsz +
563 			 sizeof(struct alx_rrd) * alx->rx_ringsz);
564 	alx->rxq.rfd_dma = alx->descmem.dma +
565 			   sizeof(struct alx_txd) * alx->tx_ringsz +
566 			   sizeof(struct alx_rrd) * alx->rx_ringsz;
567 
568 	return 0;
569 out_free:
570 	kfree(alx->txq.bufs);
571 	kfree(alx->rxq.bufs);
572 	return -ENOMEM;
573 }
574 
alx_alloc_rings(struct alx_priv * alx)575 static int alx_alloc_rings(struct alx_priv *alx)
576 {
577 	int err;
578 
579 	err = alx_alloc_descriptors(alx);
580 	if (err)
581 		return err;
582 
583 	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
584 	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
585 	alx->tx_ringsz = alx->tx_ringsz;
586 
587 	netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
588 
589 	alx_reinit_rings(alx);
590 	return 0;
591 }
592 
alx_free_rings(struct alx_priv * alx)593 static void alx_free_rings(struct alx_priv *alx)
594 {
595 	netif_napi_del(&alx->napi);
596 	alx_free_buffers(alx);
597 
598 	kfree(alx->txq.bufs);
599 	kfree(alx->rxq.bufs);
600 
601 	dma_free_coherent(&alx->hw.pdev->dev,
602 			  alx->descmem.size,
603 			  alx->descmem.virt,
604 			  alx->descmem.dma);
605 }
606 
alx_config_vector_mapping(struct alx_priv * alx)607 static void alx_config_vector_mapping(struct alx_priv *alx)
608 {
609 	struct alx_hw *hw = &alx->hw;
610 
611 	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0);
612 	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
613 	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
614 }
615 
alx_irq_enable(struct alx_priv * alx)616 static void alx_irq_enable(struct alx_priv *alx)
617 {
618 	struct alx_hw *hw = &alx->hw;
619 
620 	/* level-1 interrupt switch */
621 	alx_write_mem32(hw, ALX_ISR, 0);
622 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
623 	alx_post_write(hw);
624 }
625 
alx_irq_disable(struct alx_priv * alx)626 static void alx_irq_disable(struct alx_priv *alx)
627 {
628 	struct alx_hw *hw = &alx->hw;
629 
630 	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
631 	alx_write_mem32(hw, ALX_IMR, 0);
632 	alx_post_write(hw);
633 
634 	synchronize_irq(alx->hw.pdev->irq);
635 }
636 
alx_request_irq(struct alx_priv * alx)637 static int alx_request_irq(struct alx_priv *alx)
638 {
639 	struct pci_dev *pdev = alx->hw.pdev;
640 	struct alx_hw *hw = &alx->hw;
641 	int err;
642 	u32 msi_ctrl;
643 
644 	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
645 
646 	if (!pci_enable_msi(alx->hw.pdev)) {
647 		alx->msi = true;
648 
649 		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
650 				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
651 		err = request_irq(pdev->irq, alx_intr_msi, 0,
652 				  alx->dev->name, alx);
653 		if (!err)
654 			goto out;
655 		/* fall back to legacy interrupt */
656 		pci_disable_msi(alx->hw.pdev);
657 	}
658 
659 	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
660 	err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
661 			  alx->dev->name, alx);
662 out:
663 	if (!err)
664 		alx_config_vector_mapping(alx);
665 	return err;
666 }
667 
alx_free_irq(struct alx_priv * alx)668 static void alx_free_irq(struct alx_priv *alx)
669 {
670 	struct pci_dev *pdev = alx->hw.pdev;
671 
672 	free_irq(pdev->irq, alx);
673 
674 	if (alx->msi) {
675 		pci_disable_msi(alx->hw.pdev);
676 		alx->msi = false;
677 	}
678 }
679 
alx_identify_hw(struct alx_priv * alx)680 static int alx_identify_hw(struct alx_priv *alx)
681 {
682 	struct alx_hw *hw = &alx->hw;
683 	int rev = alx_hw_revision(hw);
684 
685 	if (rev > ALX_REV_C0)
686 		return -EINVAL;
687 
688 	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
689 
690 	return 0;
691 }
692 
alx_init_sw(struct alx_priv * alx)693 static int alx_init_sw(struct alx_priv *alx)
694 {
695 	struct pci_dev *pdev = alx->hw.pdev;
696 	struct alx_hw *hw = &alx->hw;
697 	int err;
698 
699 	err = alx_identify_hw(alx);
700 	if (err) {
701 		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
702 		return err;
703 	}
704 
705 	alx->hw.lnk_patch =
706 		pdev->device == ALX_DEV_ID_AR8161 &&
707 		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
708 		pdev->subsystem_device == 0x0091 &&
709 		pdev->revision == 0;
710 
711 	hw->smb_timer = 400;
712 	hw->mtu = alx->dev->mtu;
713 	alx->rxbuf_size = ALIGN(ALX_RAW_MTU(hw->mtu), 8);
714 	alx->tx_ringsz = 256;
715 	alx->rx_ringsz = 512;
716 	hw->imt = 200;
717 	alx->int_mask = ALX_ISR_MISC;
718 	hw->dma_chnl = hw->max_dma_chnl;
719 	hw->ith_tpd = alx->tx_ringsz / 3;
720 	hw->link_speed = SPEED_UNKNOWN;
721 	hw->duplex = DUPLEX_UNKNOWN;
722 	hw->adv_cfg = ADVERTISED_Autoneg |
723 		      ADVERTISED_10baseT_Half |
724 		      ADVERTISED_10baseT_Full |
725 		      ADVERTISED_100baseT_Full |
726 		      ADVERTISED_100baseT_Half |
727 		      ADVERTISED_1000baseT_Full;
728 	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
729 
730 	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
731 		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
732 		      ALX_MAC_CTRL_BRD_EN |
733 		      ALX_MAC_CTRL_PCRCE |
734 		      ALX_MAC_CTRL_CRCE |
735 		      ALX_MAC_CTRL_RXFC_EN |
736 		      ALX_MAC_CTRL_TXFC_EN |
737 		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
738 
739 	return err;
740 }
741 
742 
alx_fix_features(struct net_device * netdev,netdev_features_t features)743 static netdev_features_t alx_fix_features(struct net_device *netdev,
744 					  netdev_features_t features)
745 {
746 	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
747 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
748 
749 	return features;
750 }
751 
alx_netif_stop(struct alx_priv * alx)752 static void alx_netif_stop(struct alx_priv *alx)
753 {
754 	alx->dev->trans_start = jiffies;
755 	if (netif_carrier_ok(alx->dev)) {
756 		netif_carrier_off(alx->dev);
757 		netif_tx_disable(alx->dev);
758 		napi_disable(&alx->napi);
759 	}
760 }
761 
alx_halt(struct alx_priv * alx)762 static void alx_halt(struct alx_priv *alx)
763 {
764 	struct alx_hw *hw = &alx->hw;
765 
766 	alx_netif_stop(alx);
767 	hw->link_speed = SPEED_UNKNOWN;
768 	hw->duplex = DUPLEX_UNKNOWN;
769 
770 	alx_reset_mac(hw);
771 
772 	/* disable l0s/l1 */
773 	alx_enable_aspm(hw, false, false);
774 	alx_irq_disable(alx);
775 	alx_free_buffers(alx);
776 }
777 
alx_configure(struct alx_priv * alx)778 static void alx_configure(struct alx_priv *alx)
779 {
780 	struct alx_hw *hw = &alx->hw;
781 
782 	alx_configure_basic(hw);
783 	alx_disable_rss(hw);
784 	__alx_set_rx_mode(alx->dev);
785 
786 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
787 }
788 
alx_activate(struct alx_priv * alx)789 static void alx_activate(struct alx_priv *alx)
790 {
791 	/* hardware setting lost, restore it */
792 	alx_reinit_rings(alx);
793 	alx_configure(alx);
794 
795 	/* clear old interrupts */
796 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
797 
798 	alx_irq_enable(alx);
799 
800 	alx_schedule_link_check(alx);
801 }
802 
alx_reinit(struct alx_priv * alx)803 static void alx_reinit(struct alx_priv *alx)
804 {
805 	ASSERT_RTNL();
806 
807 	alx_halt(alx);
808 	alx_activate(alx);
809 }
810 
alx_change_mtu(struct net_device * netdev,int mtu)811 static int alx_change_mtu(struct net_device *netdev, int mtu)
812 {
813 	struct alx_priv *alx = netdev_priv(netdev);
814 	int max_frame = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
815 
816 	if ((max_frame < ALX_MIN_FRAME_SIZE) ||
817 	    (max_frame > ALX_MAX_FRAME_SIZE))
818 		return -EINVAL;
819 
820 	if (netdev->mtu == mtu)
821 		return 0;
822 
823 	netdev->mtu = mtu;
824 	alx->hw.mtu = mtu;
825 	alx->rxbuf_size = mtu > ALX_DEF_RXBUF_SIZE ?
826 			   ALIGN(max_frame, 8) : ALX_DEF_RXBUF_SIZE;
827 	netdev_update_features(netdev);
828 	if (netif_running(netdev))
829 		alx_reinit(alx);
830 	return 0;
831 }
832 
alx_netif_start(struct alx_priv * alx)833 static void alx_netif_start(struct alx_priv *alx)
834 {
835 	netif_tx_wake_all_queues(alx->dev);
836 	napi_enable(&alx->napi);
837 	netif_carrier_on(alx->dev);
838 }
839 
__alx_open(struct alx_priv * alx,bool resume)840 static int __alx_open(struct alx_priv *alx, bool resume)
841 {
842 	int err;
843 
844 	if (!resume)
845 		netif_carrier_off(alx->dev);
846 
847 	err = alx_alloc_rings(alx);
848 	if (err)
849 		return err;
850 
851 	alx_configure(alx);
852 
853 	err = alx_request_irq(alx);
854 	if (err)
855 		goto out_free_rings;
856 
857 	/* clear old interrupts */
858 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
859 
860 	alx_irq_enable(alx);
861 
862 	if (!resume)
863 		netif_tx_start_all_queues(alx->dev);
864 
865 	alx_schedule_link_check(alx);
866 	return 0;
867 
868 out_free_rings:
869 	alx_free_rings(alx);
870 	return err;
871 }
872 
__alx_stop(struct alx_priv * alx)873 static void __alx_stop(struct alx_priv *alx)
874 {
875 	alx_free_irq(alx);
876 
877 	cancel_work_sync(&alx->link_check_wk);
878 	cancel_work_sync(&alx->reset_wk);
879 
880 	alx_halt(alx);
881 	alx_free_rings(alx);
882 }
883 
alx_speed_desc(struct alx_hw * hw)884 static const char *alx_speed_desc(struct alx_hw *hw)
885 {
886 	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
887 	case ADVERTISED_1000baseT_Full:
888 		return "1 Gbps Full";
889 	case ADVERTISED_100baseT_Full:
890 		return "100 Mbps Full";
891 	case ADVERTISED_100baseT_Half:
892 		return "100 Mbps Half";
893 	case ADVERTISED_10baseT_Full:
894 		return "10 Mbps Full";
895 	case ADVERTISED_10baseT_Half:
896 		return "10 Mbps Half";
897 	default:
898 		return "Unknown speed";
899 	}
900 }
901 
alx_check_link(struct alx_priv * alx)902 static void alx_check_link(struct alx_priv *alx)
903 {
904 	struct alx_hw *hw = &alx->hw;
905 	unsigned long flags;
906 	int old_speed;
907 	u8 old_duplex;
908 	int err;
909 
910 	/* clear PHY internal interrupt status, otherwise the main
911 	 * interrupt status will be asserted forever
912 	 */
913 	alx_clear_phy_intr(hw);
914 
915 	old_speed = hw->link_speed;
916 	old_duplex = hw->duplex;
917 	err = alx_read_phy_link(hw);
918 	if (err < 0)
919 		goto reset;
920 
921 	spin_lock_irqsave(&alx->irq_lock, flags);
922 	alx->int_mask |= ALX_ISR_PHY;
923 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
924 	spin_unlock_irqrestore(&alx->irq_lock, flags);
925 
926 	if (old_speed == hw->link_speed)
927 		return;
928 
929 	if (hw->link_speed != SPEED_UNKNOWN) {
930 		netif_info(alx, link, alx->dev,
931 			   "NIC Up: %s\n", alx_speed_desc(hw));
932 		alx_post_phy_link(hw);
933 		alx_enable_aspm(hw, true, true);
934 		alx_start_mac(hw);
935 
936 		if (old_speed == SPEED_UNKNOWN)
937 			alx_netif_start(alx);
938 	} else {
939 		/* link is now down */
940 		alx_netif_stop(alx);
941 		netif_info(alx, link, alx->dev, "Link Down\n");
942 		err = alx_reset_mac(hw);
943 		if (err)
944 			goto reset;
945 		alx_irq_disable(alx);
946 
947 		/* MAC reset causes all HW settings to be lost, restore all */
948 		err = alx_reinit_rings(alx);
949 		if (err)
950 			goto reset;
951 		alx_configure(alx);
952 		alx_enable_aspm(hw, false, true);
953 		alx_post_phy_link(hw);
954 		alx_irq_enable(alx);
955 	}
956 
957 	return;
958 
959 reset:
960 	alx_schedule_reset(alx);
961 }
962 
alx_open(struct net_device * netdev)963 static int alx_open(struct net_device *netdev)
964 {
965 	return __alx_open(netdev_priv(netdev), false);
966 }
967 
alx_stop(struct net_device * netdev)968 static int alx_stop(struct net_device *netdev)
969 {
970 	__alx_stop(netdev_priv(netdev));
971 	return 0;
972 }
973 
alx_link_check(struct work_struct * work)974 static void alx_link_check(struct work_struct *work)
975 {
976 	struct alx_priv *alx;
977 
978 	alx = container_of(work, struct alx_priv, link_check_wk);
979 
980 	rtnl_lock();
981 	alx_check_link(alx);
982 	rtnl_unlock();
983 }
984 
alx_reset(struct work_struct * work)985 static void alx_reset(struct work_struct *work)
986 {
987 	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
988 
989 	rtnl_lock();
990 	alx_reinit(alx);
991 	rtnl_unlock();
992 }
993 
alx_tx_csum(struct sk_buff * skb,struct alx_txd * first)994 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
995 {
996 	u8 cso, css;
997 
998 	if (skb->ip_summed != CHECKSUM_PARTIAL)
999 		return 0;
1000 
1001 	cso = skb_checksum_start_offset(skb);
1002 	if (cso & 1)
1003 		return -EINVAL;
1004 
1005 	css = cso + skb->csum_offset;
1006 	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1007 	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1008 	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1009 
1010 	return 0;
1011 }
1012 
alx_map_tx_skb(struct alx_priv * alx,struct sk_buff * skb)1013 static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
1014 {
1015 	struct alx_tx_queue *txq = &alx->txq;
1016 	struct alx_txd *tpd, *first_tpd;
1017 	dma_addr_t dma;
1018 	int maplen, f, first_idx = txq->write_idx;
1019 
1020 	first_tpd = &txq->tpd[txq->write_idx];
1021 	tpd = first_tpd;
1022 
1023 	maplen = skb_headlen(skb);
1024 	dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
1025 			     DMA_TO_DEVICE);
1026 	if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1027 		goto err_dma;
1028 
1029 	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1030 	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1031 
1032 	tpd->adrl.addr = cpu_to_le64(dma);
1033 	tpd->len = cpu_to_le16(maplen);
1034 
1035 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1036 		struct skb_frag_struct *frag;
1037 
1038 		frag = &skb_shinfo(skb)->frags[f];
1039 
1040 		if (++txq->write_idx == alx->tx_ringsz)
1041 			txq->write_idx = 0;
1042 		tpd = &txq->tpd[txq->write_idx];
1043 
1044 		tpd->word1 = first_tpd->word1;
1045 
1046 		maplen = skb_frag_size(frag);
1047 		dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
1048 				       maplen, DMA_TO_DEVICE);
1049 		if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1050 			goto err_dma;
1051 		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1052 		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1053 
1054 		tpd->adrl.addr = cpu_to_le64(dma);
1055 		tpd->len = cpu_to_le16(maplen);
1056 	}
1057 
1058 	/* last TPD, set EOP flag and store skb */
1059 	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1060 	txq->bufs[txq->write_idx].skb = skb;
1061 
1062 	if (++txq->write_idx == alx->tx_ringsz)
1063 		txq->write_idx = 0;
1064 
1065 	return 0;
1066 
1067 err_dma:
1068 	f = first_idx;
1069 	while (f != txq->write_idx) {
1070 		alx_free_txbuf(alx, f);
1071 		if (++f == alx->tx_ringsz)
1072 			f = 0;
1073 	}
1074 	return -ENOMEM;
1075 }
1076 
alx_start_xmit(struct sk_buff * skb,struct net_device * netdev)1077 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1078 				  struct net_device *netdev)
1079 {
1080 	struct alx_priv *alx = netdev_priv(netdev);
1081 	struct alx_tx_queue *txq = &alx->txq;
1082 	struct alx_txd *first;
1083 	int tpdreq = skb_shinfo(skb)->nr_frags + 1;
1084 
1085 	if (alx_tpd_avail(alx) < tpdreq) {
1086 		netif_stop_queue(alx->dev);
1087 		goto drop;
1088 	}
1089 
1090 	first = &txq->tpd[txq->write_idx];
1091 	memset(first, 0, sizeof(*first));
1092 
1093 	if (alx_tx_csum(skb, first))
1094 		goto drop;
1095 
1096 	if (alx_map_tx_skb(alx, skb) < 0)
1097 		goto drop;
1098 
1099 	netdev_sent_queue(alx->dev, skb->len);
1100 
1101 	/* flush updates before updating hardware */
1102 	wmb();
1103 	alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
1104 
1105 	if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
1106 		netif_stop_queue(alx->dev);
1107 
1108 	return NETDEV_TX_OK;
1109 
1110 drop:
1111 	dev_kfree_skb_any(skb);
1112 	return NETDEV_TX_OK;
1113 }
1114 
alx_tx_timeout(struct net_device * dev)1115 static void alx_tx_timeout(struct net_device *dev)
1116 {
1117 	struct alx_priv *alx = netdev_priv(dev);
1118 
1119 	alx_schedule_reset(alx);
1120 }
1121 
alx_mdio_read(struct net_device * netdev,int prtad,int devad,u16 addr)1122 static int alx_mdio_read(struct net_device *netdev,
1123 			 int prtad, int devad, u16 addr)
1124 {
1125 	struct alx_priv *alx = netdev_priv(netdev);
1126 	struct alx_hw *hw = &alx->hw;
1127 	u16 val;
1128 	int err;
1129 
1130 	if (prtad != hw->mdio.prtad)
1131 		return -EINVAL;
1132 
1133 	if (devad == MDIO_DEVAD_NONE)
1134 		err = alx_read_phy_reg(hw, addr, &val);
1135 	else
1136 		err = alx_read_phy_ext(hw, devad, addr, &val);
1137 
1138 	if (err)
1139 		return err;
1140 	return val;
1141 }
1142 
alx_mdio_write(struct net_device * netdev,int prtad,int devad,u16 addr,u16 val)1143 static int alx_mdio_write(struct net_device *netdev,
1144 			  int prtad, int devad, u16 addr, u16 val)
1145 {
1146 	struct alx_priv *alx = netdev_priv(netdev);
1147 	struct alx_hw *hw = &alx->hw;
1148 
1149 	if (prtad != hw->mdio.prtad)
1150 		return -EINVAL;
1151 
1152 	if (devad == MDIO_DEVAD_NONE)
1153 		return alx_write_phy_reg(hw, addr, val);
1154 
1155 	return alx_write_phy_ext(hw, devad, addr, val);
1156 }
1157 
alx_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1158 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1159 {
1160 	struct alx_priv *alx = netdev_priv(netdev);
1161 
1162 	if (!netif_running(netdev))
1163 		return -EAGAIN;
1164 
1165 	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1166 }
1167 
1168 #ifdef CONFIG_NET_POLL_CONTROLLER
alx_poll_controller(struct net_device * netdev)1169 static void alx_poll_controller(struct net_device *netdev)
1170 {
1171 	struct alx_priv *alx = netdev_priv(netdev);
1172 
1173 	if (alx->msi)
1174 		alx_intr_msi(0, alx);
1175 	else
1176 		alx_intr_legacy(0, alx);
1177 }
1178 #endif
1179 
alx_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * net_stats)1180 static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
1181 					struct rtnl_link_stats64 *net_stats)
1182 {
1183 	struct alx_priv *alx = netdev_priv(dev);
1184 	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1185 
1186 	spin_lock(&alx->stats_lock);
1187 
1188 	alx_update_hw_stats(&alx->hw);
1189 
1190 	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1191 	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1192 	net_stats->multicast  = hw_stats->rx_mcast;
1193 	net_stats->collisions = hw_stats->tx_single_col +
1194 				hw_stats->tx_multi_col +
1195 				hw_stats->tx_late_col +
1196 				hw_stats->tx_abort_col;
1197 
1198 	net_stats->rx_errors  = hw_stats->rx_frag +
1199 				hw_stats->rx_fcs_err +
1200 				hw_stats->rx_len_err +
1201 				hw_stats->rx_ov_sz +
1202 				hw_stats->rx_ov_rrd +
1203 				hw_stats->rx_align_err +
1204 				hw_stats->rx_ov_rxf;
1205 
1206 	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1207 	net_stats->rx_length_errors = hw_stats->rx_len_err;
1208 	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1209 	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1210 	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1211 
1212 	net_stats->tx_errors = hw_stats->tx_late_col +
1213 			       hw_stats->tx_abort_col +
1214 			       hw_stats->tx_underrun +
1215 			       hw_stats->tx_trunc;
1216 
1217 	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1218 	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1219 	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1220 
1221 	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1222 	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1223 
1224 	spin_unlock(&alx->stats_lock);
1225 
1226 	return net_stats;
1227 }
1228 
1229 static const struct net_device_ops alx_netdev_ops = {
1230 	.ndo_open               = alx_open,
1231 	.ndo_stop               = alx_stop,
1232 	.ndo_start_xmit         = alx_start_xmit,
1233 	.ndo_get_stats64        = alx_get_stats64,
1234 	.ndo_set_rx_mode        = alx_set_rx_mode,
1235 	.ndo_validate_addr      = eth_validate_addr,
1236 	.ndo_set_mac_address    = alx_set_mac_address,
1237 	.ndo_change_mtu         = alx_change_mtu,
1238 	.ndo_do_ioctl           = alx_ioctl,
1239 	.ndo_tx_timeout         = alx_tx_timeout,
1240 	.ndo_fix_features	= alx_fix_features,
1241 #ifdef CONFIG_NET_POLL_CONTROLLER
1242 	.ndo_poll_controller    = alx_poll_controller,
1243 #endif
1244 };
1245 
alx_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1246 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1247 {
1248 	struct net_device *netdev;
1249 	struct alx_priv *alx;
1250 	struct alx_hw *hw;
1251 	bool phy_configured;
1252 	int bars, err;
1253 
1254 	err = pci_enable_device_mem(pdev);
1255 	if (err)
1256 		return err;
1257 
1258 	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1259 	 * shared register for the high 32 bits, so only a single, aligned,
1260 	 * 4 GB physical address range can be used for descriptors.
1261 	 */
1262 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1263 		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1264 	} else {
1265 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1266 		if (err) {
1267 			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1268 			goto out_pci_disable;
1269 		}
1270 	}
1271 
1272 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1273 	err = pci_request_selected_regions(pdev, bars, alx_drv_name);
1274 	if (err) {
1275 		dev_err(&pdev->dev,
1276 			"pci_request_selected_regions failed(bars:%d)\n", bars);
1277 		goto out_pci_disable;
1278 	}
1279 
1280 	pci_enable_pcie_error_reporting(pdev);
1281 	pci_set_master(pdev);
1282 
1283 	if (!pdev->pm_cap) {
1284 		dev_err(&pdev->dev,
1285 			"Can't find power management capability, aborting\n");
1286 		err = -EIO;
1287 		goto out_pci_release;
1288 	}
1289 
1290 	netdev = alloc_etherdev(sizeof(*alx));
1291 	if (!netdev) {
1292 		err = -ENOMEM;
1293 		goto out_pci_release;
1294 	}
1295 
1296 	SET_NETDEV_DEV(netdev, &pdev->dev);
1297 	alx = netdev_priv(netdev);
1298 	spin_lock_init(&alx->hw.mdio_lock);
1299 	spin_lock_init(&alx->irq_lock);
1300 	spin_lock_init(&alx->stats_lock);
1301 	alx->dev = netdev;
1302 	alx->hw.pdev = pdev;
1303 	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1304 			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1305 	hw = &alx->hw;
1306 	pci_set_drvdata(pdev, alx);
1307 
1308 	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1309 	if (!hw->hw_addr) {
1310 		dev_err(&pdev->dev, "cannot map device registers\n");
1311 		err = -EIO;
1312 		goto out_free_netdev;
1313 	}
1314 
1315 	netdev->netdev_ops = &alx_netdev_ops;
1316 	netdev->ethtool_ops = &alx_ethtool_ops;
1317 	netdev->irq = pdev->irq;
1318 	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1319 
1320 	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1321 		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1322 
1323 	err = alx_init_sw(alx);
1324 	if (err) {
1325 		dev_err(&pdev->dev, "net device private data init failed\n");
1326 		goto out_unmap;
1327 	}
1328 
1329 	alx_reset_pcie(hw);
1330 
1331 	phy_configured = alx_phy_configured(hw);
1332 
1333 	if (!phy_configured)
1334 		alx_reset_phy(hw);
1335 
1336 	err = alx_reset_mac(hw);
1337 	if (err) {
1338 		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1339 		goto out_unmap;
1340 	}
1341 
1342 	/* setup link to put it in a known good starting state */
1343 	if (!phy_configured) {
1344 		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1345 		if (err) {
1346 			dev_err(&pdev->dev,
1347 				"failed to configure PHY speed/duplex (err=%d)\n",
1348 				err);
1349 			goto out_unmap;
1350 		}
1351 	}
1352 
1353 	netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
1354 
1355 	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1356 		dev_warn(&pdev->dev,
1357 			 "Invalid permanent address programmed, using random one\n");
1358 		eth_hw_addr_random(netdev);
1359 		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1360 	}
1361 
1362 	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1363 	memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1364 	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1365 
1366 	hw->mdio.prtad = 0;
1367 	hw->mdio.mmds = 0;
1368 	hw->mdio.dev = netdev;
1369 	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1370 				MDIO_SUPPORTS_C22 |
1371 				MDIO_EMULATE_C22;
1372 	hw->mdio.mdio_read = alx_mdio_read;
1373 	hw->mdio.mdio_write = alx_mdio_write;
1374 
1375 	if (!alx_get_phy_info(hw)) {
1376 		dev_err(&pdev->dev, "failed to identify PHY\n");
1377 		err = -EIO;
1378 		goto out_unmap;
1379 	}
1380 
1381 	INIT_WORK(&alx->link_check_wk, alx_link_check);
1382 	INIT_WORK(&alx->reset_wk, alx_reset);
1383 	netif_carrier_off(netdev);
1384 
1385 	err = register_netdev(netdev);
1386 	if (err) {
1387 		dev_err(&pdev->dev, "register netdevice failed\n");
1388 		goto out_unmap;
1389 	}
1390 
1391 	netdev_info(netdev,
1392 		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1393 		    netdev->dev_addr);
1394 
1395 	return 0;
1396 
1397 out_unmap:
1398 	iounmap(hw->hw_addr);
1399 out_free_netdev:
1400 	free_netdev(netdev);
1401 out_pci_release:
1402 	pci_release_selected_regions(pdev, bars);
1403 out_pci_disable:
1404 	pci_disable_device(pdev);
1405 	return err;
1406 }
1407 
alx_remove(struct pci_dev * pdev)1408 static void alx_remove(struct pci_dev *pdev)
1409 {
1410 	struct alx_priv *alx = pci_get_drvdata(pdev);
1411 	struct alx_hw *hw = &alx->hw;
1412 
1413 	/* restore permanent mac address */
1414 	alx_set_macaddr(hw, hw->perm_addr);
1415 
1416 	unregister_netdev(alx->dev);
1417 	iounmap(hw->hw_addr);
1418 	pci_release_selected_regions(pdev,
1419 				     pci_select_bars(pdev, IORESOURCE_MEM));
1420 
1421 	pci_disable_pcie_error_reporting(pdev);
1422 	pci_disable_device(pdev);
1423 
1424 	free_netdev(alx->dev);
1425 }
1426 
1427 #ifdef CONFIG_PM_SLEEP
alx_suspend(struct device * dev)1428 static int alx_suspend(struct device *dev)
1429 {
1430 	struct pci_dev *pdev = to_pci_dev(dev);
1431 	struct alx_priv *alx = pci_get_drvdata(pdev);
1432 
1433 	if (!netif_running(alx->dev))
1434 		return 0;
1435 	netif_device_detach(alx->dev);
1436 	__alx_stop(alx);
1437 	return 0;
1438 }
1439 
alx_resume(struct device * dev)1440 static int alx_resume(struct device *dev)
1441 {
1442 	struct pci_dev *pdev = to_pci_dev(dev);
1443 	struct alx_priv *alx = pci_get_drvdata(pdev);
1444 	struct alx_hw *hw = &alx->hw;
1445 
1446 	alx_reset_phy(hw);
1447 
1448 	if (!netif_running(alx->dev))
1449 		return 0;
1450 	netif_device_attach(alx->dev);
1451 	return __alx_open(alx, true);
1452 }
1453 
1454 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1455 #define ALX_PM_OPS      (&alx_pm_ops)
1456 #else
1457 #define ALX_PM_OPS      NULL
1458 #endif
1459 
1460 
alx_pci_error_detected(struct pci_dev * pdev,pci_channel_state_t state)1461 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1462 					       pci_channel_state_t state)
1463 {
1464 	struct alx_priv *alx = pci_get_drvdata(pdev);
1465 	struct net_device *netdev = alx->dev;
1466 	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1467 
1468 	dev_info(&pdev->dev, "pci error detected\n");
1469 
1470 	rtnl_lock();
1471 
1472 	if (netif_running(netdev)) {
1473 		netif_device_detach(netdev);
1474 		alx_halt(alx);
1475 	}
1476 
1477 	if (state == pci_channel_io_perm_failure)
1478 		rc = PCI_ERS_RESULT_DISCONNECT;
1479 	else
1480 		pci_disable_device(pdev);
1481 
1482 	rtnl_unlock();
1483 
1484 	return rc;
1485 }
1486 
alx_pci_error_slot_reset(struct pci_dev * pdev)1487 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1488 {
1489 	struct alx_priv *alx = pci_get_drvdata(pdev);
1490 	struct alx_hw *hw = &alx->hw;
1491 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1492 
1493 	dev_info(&pdev->dev, "pci error slot reset\n");
1494 
1495 	rtnl_lock();
1496 
1497 	if (pci_enable_device(pdev)) {
1498 		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1499 		goto out;
1500 	}
1501 
1502 	pci_set_master(pdev);
1503 
1504 	alx_reset_pcie(hw);
1505 	if (!alx_reset_mac(hw))
1506 		rc = PCI_ERS_RESULT_RECOVERED;
1507 out:
1508 	pci_cleanup_aer_uncorrect_error_status(pdev);
1509 
1510 	rtnl_unlock();
1511 
1512 	return rc;
1513 }
1514 
alx_pci_error_resume(struct pci_dev * pdev)1515 static void alx_pci_error_resume(struct pci_dev *pdev)
1516 {
1517 	struct alx_priv *alx = pci_get_drvdata(pdev);
1518 	struct net_device *netdev = alx->dev;
1519 
1520 	dev_info(&pdev->dev, "pci error resume\n");
1521 
1522 	rtnl_lock();
1523 
1524 	if (netif_running(netdev)) {
1525 		alx_activate(alx);
1526 		netif_device_attach(netdev);
1527 	}
1528 
1529 	rtnl_unlock();
1530 }
1531 
1532 static const struct pci_error_handlers alx_err_handlers = {
1533 	.error_detected = alx_pci_error_detected,
1534 	.slot_reset     = alx_pci_error_slot_reset,
1535 	.resume         = alx_pci_error_resume,
1536 };
1537 
1538 static const struct pci_device_id alx_pci_tbl[] = {
1539 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1540 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1541 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1542 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1543 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
1544 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1545 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
1546 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1547 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
1548 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
1549 	{}
1550 };
1551 
1552 static struct pci_driver alx_driver = {
1553 	.name        = alx_drv_name,
1554 	.id_table    = alx_pci_tbl,
1555 	.probe       = alx_probe,
1556 	.remove      = alx_remove,
1557 	.err_handler = &alx_err_handlers,
1558 	.driver.pm   = ALX_PM_OPS,
1559 };
1560 
1561 module_pci_driver(alx_driver);
1562 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
1563 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
1564 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
1565 MODULE_DESCRIPTION(
1566 	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
1567 MODULE_LICENSE("GPL");
1568