• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
dmadesc_set_length_status(struct bcmgenet_priv * priv,void __iomem * d,u32 value)75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 					     void __iomem *d, u32 value)
77 {
78 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80 
dmadesc_get_length_status(struct bcmgenet_priv * priv,void __iomem * d)81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 					    void __iomem *d)
83 {
84 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86 
dmadesc_set_addr(struct bcmgenet_priv * priv,void __iomem * d,dma_addr_t addr)87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 				    void __iomem *d,
89 				    dma_addr_t addr)
90 {
91 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92 
93 	/* Register writes to GISB bus can take couple hundred nanoseconds
94 	 * and are done for each packet, save these expensive writes unless
95 	 * the platform is explicitly configured for 64-bits/LPAE.
96 	 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 	if (priv->hw_params->flags & GENET_HAS_40BITS)
99 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102 
103 /* Combined address + length/status setter */
dmadesc_set(struct bcmgenet_priv * priv,void __iomem * d,dma_addr_t addr,u32 val)104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 			       void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 	dmadesc_set_length_status(priv, d, val);
108 	dmadesc_set_addr(priv, d, addr);
109 }
110 
dmadesc_get_addr(struct bcmgenet_priv * priv,void __iomem * d)111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 					  void __iomem *d)
113 {
114 	dma_addr_t addr;
115 
116 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117 
118 	/* Register writes to GISB bus can take couple hundred nanoseconds
119 	 * and are done for each packet, save these expensive writes unless
120 	 * the platform is explicitly configured for 64-bits/LPAE.
121 	 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 	if (priv->hw_params->flags & GENET_HAS_40BITS)
124 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 	return addr;
127 }
128 
129 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130 
131 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 				NETIF_MSG_LINK)
133 
bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv * priv)134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 	if (GENET_IS_V1(priv))
137 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 	else
139 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141 
bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv * priv,u32 val)142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 	if (GENET_IS_V1(priv))
145 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 	else
147 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149 
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv * priv)154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 	if (GENET_IS_V1(priv))
157 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 	else
159 		return __raw_readl(priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv * priv,u32 val)163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 	if (GENET_IS_V1(priv))
166 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 	else
168 		__raw_writel(val, priv->base +
169 				priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
bcmgenet_bp_mc_get(struct bcmgenet_priv * priv)172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 	if (GENET_IS_V1(priv))
175 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 	else
177 		return __raw_readl(priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
bcmgenet_bp_mc_set(struct bcmgenet_priv * priv,u32 val)181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 	if (GENET_IS_V1(priv))
184 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 	else
186 		__raw_writel(val, priv->base +
187 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 	DMA_RING_CFG = 0,
193 	DMA_CTRL,
194 	DMA_STATUS,
195 	DMA_SCB_BURST_SIZE,
196 	DMA_ARB_CTRL,
197 	DMA_PRIORITY_0,
198 	DMA_PRIORITY_1,
199 	DMA_PRIORITY_2,
200 	DMA_INDEX2RING_0,
201 	DMA_INDEX2RING_1,
202 	DMA_INDEX2RING_2,
203 	DMA_INDEX2RING_3,
204 	DMA_INDEX2RING_4,
205 	DMA_INDEX2RING_5,
206 	DMA_INDEX2RING_6,
207 	DMA_INDEX2RING_7,
208 	DMA_RING0_TIMEOUT,
209 	DMA_RING1_TIMEOUT,
210 	DMA_RING2_TIMEOUT,
211 	DMA_RING3_TIMEOUT,
212 	DMA_RING4_TIMEOUT,
213 	DMA_RING5_TIMEOUT,
214 	DMA_RING6_TIMEOUT,
215 	DMA_RING7_TIMEOUT,
216 	DMA_RING8_TIMEOUT,
217 	DMA_RING9_TIMEOUT,
218 	DMA_RING10_TIMEOUT,
219 	DMA_RING11_TIMEOUT,
220 	DMA_RING12_TIMEOUT,
221 	DMA_RING13_TIMEOUT,
222 	DMA_RING14_TIMEOUT,
223 	DMA_RING15_TIMEOUT,
224 	DMA_RING16_TIMEOUT,
225 };
226 
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 	[DMA_RING_CFG]		= 0x00,
229 	[DMA_CTRL]		= 0x04,
230 	[DMA_STATUS]		= 0x08,
231 	[DMA_SCB_BURST_SIZE]	= 0x0C,
232 	[DMA_ARB_CTRL]		= 0x2C,
233 	[DMA_PRIORITY_0]	= 0x30,
234 	[DMA_PRIORITY_1]	= 0x34,
235 	[DMA_PRIORITY_2]	= 0x38,
236 	[DMA_RING0_TIMEOUT]	= 0x2C,
237 	[DMA_RING1_TIMEOUT]	= 0x30,
238 	[DMA_RING2_TIMEOUT]	= 0x34,
239 	[DMA_RING3_TIMEOUT]	= 0x38,
240 	[DMA_RING4_TIMEOUT]	= 0x3c,
241 	[DMA_RING5_TIMEOUT]	= 0x40,
242 	[DMA_RING6_TIMEOUT]	= 0x44,
243 	[DMA_RING7_TIMEOUT]	= 0x48,
244 	[DMA_RING8_TIMEOUT]	= 0x4c,
245 	[DMA_RING9_TIMEOUT]	= 0x50,
246 	[DMA_RING10_TIMEOUT]	= 0x54,
247 	[DMA_RING11_TIMEOUT]	= 0x58,
248 	[DMA_RING12_TIMEOUT]	= 0x5c,
249 	[DMA_RING13_TIMEOUT]	= 0x60,
250 	[DMA_RING14_TIMEOUT]	= 0x64,
251 	[DMA_RING15_TIMEOUT]	= 0x68,
252 	[DMA_RING16_TIMEOUT]	= 0x6C,
253 	[DMA_INDEX2RING_0]	= 0x70,
254 	[DMA_INDEX2RING_1]	= 0x74,
255 	[DMA_INDEX2RING_2]	= 0x78,
256 	[DMA_INDEX2RING_3]	= 0x7C,
257 	[DMA_INDEX2RING_4]	= 0x80,
258 	[DMA_INDEX2RING_5]	= 0x84,
259 	[DMA_INDEX2RING_6]	= 0x88,
260 	[DMA_INDEX2RING_7]	= 0x8C,
261 };
262 
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 	[DMA_RING_CFG]		= 0x00,
265 	[DMA_CTRL]		= 0x04,
266 	[DMA_STATUS]		= 0x08,
267 	[DMA_SCB_BURST_SIZE]	= 0x0C,
268 	[DMA_ARB_CTRL]		= 0x30,
269 	[DMA_PRIORITY_0]	= 0x34,
270 	[DMA_PRIORITY_1]	= 0x38,
271 	[DMA_PRIORITY_2]	= 0x3C,
272 	[DMA_RING0_TIMEOUT]	= 0x2C,
273 	[DMA_RING1_TIMEOUT]	= 0x30,
274 	[DMA_RING2_TIMEOUT]	= 0x34,
275 	[DMA_RING3_TIMEOUT]	= 0x38,
276 	[DMA_RING4_TIMEOUT]	= 0x3c,
277 	[DMA_RING5_TIMEOUT]	= 0x40,
278 	[DMA_RING6_TIMEOUT]	= 0x44,
279 	[DMA_RING7_TIMEOUT]	= 0x48,
280 	[DMA_RING8_TIMEOUT]	= 0x4c,
281 	[DMA_RING9_TIMEOUT]	= 0x50,
282 	[DMA_RING10_TIMEOUT]	= 0x54,
283 	[DMA_RING11_TIMEOUT]	= 0x58,
284 	[DMA_RING12_TIMEOUT]	= 0x5c,
285 	[DMA_RING13_TIMEOUT]	= 0x60,
286 	[DMA_RING14_TIMEOUT]	= 0x64,
287 	[DMA_RING15_TIMEOUT]	= 0x68,
288 	[DMA_RING16_TIMEOUT]	= 0x6C,
289 };
290 
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 	[DMA_CTRL]		= 0x00,
293 	[DMA_STATUS]		= 0x04,
294 	[DMA_SCB_BURST_SIZE]	= 0x0C,
295 	[DMA_ARB_CTRL]		= 0x30,
296 	[DMA_PRIORITY_0]	= 0x34,
297 	[DMA_PRIORITY_1]	= 0x38,
298 	[DMA_PRIORITY_2]	= 0x3C,
299 	[DMA_RING0_TIMEOUT]	= 0x2C,
300 	[DMA_RING1_TIMEOUT]	= 0x30,
301 	[DMA_RING2_TIMEOUT]	= 0x34,
302 	[DMA_RING3_TIMEOUT]	= 0x38,
303 	[DMA_RING4_TIMEOUT]	= 0x3c,
304 	[DMA_RING5_TIMEOUT]	= 0x40,
305 	[DMA_RING6_TIMEOUT]	= 0x44,
306 	[DMA_RING7_TIMEOUT]	= 0x48,
307 	[DMA_RING8_TIMEOUT]	= 0x4c,
308 	[DMA_RING9_TIMEOUT]	= 0x50,
309 	[DMA_RING10_TIMEOUT]	= 0x54,
310 	[DMA_RING11_TIMEOUT]	= 0x58,
311 	[DMA_RING12_TIMEOUT]	= 0x5c,
312 	[DMA_RING13_TIMEOUT]	= 0x60,
313 	[DMA_RING14_TIMEOUT]	= 0x64,
314 	[DMA_RING15_TIMEOUT]	= 0x68,
315 	[DMA_RING16_TIMEOUT]	= 0x6C,
316 };
317 
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320 
dev_to_priv(struct device * dev)321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 	return netdev_priv(dev_get_drvdata(dev));
324 }
325 
bcmgenet_tdma_readl(struct bcmgenet_priv * priv,enum dma_reg r)326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 				      enum dma_reg r)
328 {
329 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332 
bcmgenet_tdma_writel(struct bcmgenet_priv * priv,u32 val,enum dma_reg r)333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 					u32 val, enum dma_reg r)
335 {
336 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339 
bcmgenet_rdma_readl(struct bcmgenet_priv * priv,enum dma_reg r)340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 				      enum dma_reg r)
342 {
343 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346 
bcmgenet_rdma_writel(struct bcmgenet_priv * priv,u32 val,enum dma_reg r)347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 					u32 val, enum dma_reg r)
349 {
350 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353 
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359 	TDMA_READ_PTR = 0,
360 	RDMA_WRITE_PTR = TDMA_READ_PTR,
361 	TDMA_READ_PTR_HI,
362 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 	TDMA_CONS_INDEX,
364 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 	TDMA_PROD_INDEX,
366 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 	DMA_RING_BUF_SIZE,
368 	DMA_START_ADDR,
369 	DMA_START_ADDR_HI,
370 	DMA_END_ADDR,
371 	DMA_END_ADDR_HI,
372 	DMA_MBUF_DONE_THRESH,
373 	TDMA_FLOW_PERIOD,
374 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 	TDMA_WRITE_PTR,
376 	RDMA_READ_PTR = TDMA_WRITE_PTR,
377 	TDMA_WRITE_PTR_HI,
378 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380 
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 	[TDMA_READ_PTR]			= 0x00,
388 	[TDMA_READ_PTR_HI]		= 0x04,
389 	[TDMA_CONS_INDEX]		= 0x08,
390 	[TDMA_PROD_INDEX]		= 0x0C,
391 	[DMA_RING_BUF_SIZE]		= 0x10,
392 	[DMA_START_ADDR]		= 0x14,
393 	[DMA_START_ADDR_HI]		= 0x18,
394 	[DMA_END_ADDR]			= 0x1C,
395 	[DMA_END_ADDR_HI]		= 0x20,
396 	[DMA_MBUF_DONE_THRESH]		= 0x24,
397 	[TDMA_FLOW_PERIOD]		= 0x28,
398 	[TDMA_WRITE_PTR]		= 0x2C,
399 	[TDMA_WRITE_PTR_HI]		= 0x30,
400 };
401 
402 static const u8 genet_dma_ring_regs_v123[] = {
403 	[TDMA_READ_PTR]			= 0x00,
404 	[TDMA_CONS_INDEX]		= 0x04,
405 	[TDMA_PROD_INDEX]		= 0x08,
406 	[DMA_RING_BUF_SIZE]		= 0x0C,
407 	[DMA_START_ADDR]		= 0x10,
408 	[DMA_END_ADDR]			= 0x14,
409 	[DMA_MBUF_DONE_THRESH]		= 0x18,
410 	[TDMA_FLOW_PERIOD]		= 0x1C,
411 	[TDMA_WRITE_PTR]		= 0x20,
412 };
413 
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416 
bcmgenet_tdma_ring_readl(struct bcmgenet_priv * priv,unsigned int ring,enum dma_ring_reg r)417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 					   unsigned int ring,
419 					   enum dma_ring_reg r)
420 {
421 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 			(DMA_RING_SIZE * ring) +
423 			genet_dma_ring_regs[r]);
424 }
425 
bcmgenet_tdma_ring_writel(struct bcmgenet_priv * priv,unsigned int ring,u32 val,enum dma_ring_reg r)426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 					     unsigned int ring, u32 val,
428 					     enum dma_ring_reg r)
429 {
430 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 			(DMA_RING_SIZE * ring) +
432 			genet_dma_ring_regs[r]);
433 }
434 
bcmgenet_rdma_ring_readl(struct bcmgenet_priv * priv,unsigned int ring,enum dma_ring_reg r)435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 					   unsigned int ring,
437 					   enum dma_ring_reg r)
438 {
439 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
bcmgenet_rdma_ring_writel(struct bcmgenet_priv * priv,unsigned int ring,u32 val,enum dma_ring_reg r)444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 					     unsigned int ring, u32 val,
446 					     enum dma_ring_reg r)
447 {
448 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 			(DMA_RING_SIZE * ring) +
450 			genet_dma_ring_regs[r]);
451 }
452 
bcmgenet_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)453 static int bcmgenet_get_settings(struct net_device *dev,
454 				 struct ethtool_cmd *cmd)
455 {
456 	struct bcmgenet_priv *priv = netdev_priv(dev);
457 
458 	if (!netif_running(dev))
459 		return -EINVAL;
460 
461 	if (!priv->phydev)
462 		return -ENODEV;
463 
464 	return phy_ethtool_gset(priv->phydev, cmd);
465 }
466 
bcmgenet_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)467 static int bcmgenet_set_settings(struct net_device *dev,
468 				 struct ethtool_cmd *cmd)
469 {
470 	struct bcmgenet_priv *priv = netdev_priv(dev);
471 
472 	if (!netif_running(dev))
473 		return -EINVAL;
474 
475 	if (!priv->phydev)
476 		return -ENODEV;
477 
478 	return phy_ethtool_sset(priv->phydev, cmd);
479 }
480 
bcmgenet_set_rx_csum(struct net_device * dev,netdev_features_t wanted)481 static int bcmgenet_set_rx_csum(struct net_device *dev,
482 				netdev_features_t wanted)
483 {
484 	struct bcmgenet_priv *priv = netdev_priv(dev);
485 	u32 rbuf_chk_ctrl;
486 	bool rx_csum_en;
487 
488 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
489 
490 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
491 
492 	/* enable rx checksumming */
493 	if (rx_csum_en)
494 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
495 	else
496 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
497 	priv->desc_rxchk_en = rx_csum_en;
498 
499 	/* If UniMAC forwards CRC, we need to skip over it to get
500 	 * a valid CHK bit to be set in the per-packet status word
501 	*/
502 	if (rx_csum_en && priv->crc_fwd_en)
503 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
504 	else
505 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
506 
507 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
508 
509 	return 0;
510 }
511 
bcmgenet_set_tx_csum(struct net_device * dev,netdev_features_t wanted)512 static int bcmgenet_set_tx_csum(struct net_device *dev,
513 				netdev_features_t wanted)
514 {
515 	struct bcmgenet_priv *priv = netdev_priv(dev);
516 	bool desc_64b_en;
517 	u32 tbuf_ctrl, rbuf_ctrl;
518 
519 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
520 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
521 
522 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
523 
524 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
525 	if (desc_64b_en) {
526 		tbuf_ctrl |= RBUF_64B_EN;
527 		rbuf_ctrl |= RBUF_64B_EN;
528 	} else {
529 		tbuf_ctrl &= ~RBUF_64B_EN;
530 		rbuf_ctrl &= ~RBUF_64B_EN;
531 	}
532 	priv->desc_64b_en = desc_64b_en;
533 
534 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
535 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
536 
537 	return 0;
538 }
539 
bcmgenet_set_features(struct net_device * dev,netdev_features_t features)540 static int bcmgenet_set_features(struct net_device *dev,
541 				 netdev_features_t features)
542 {
543 	netdev_features_t changed = features ^ dev->features;
544 	netdev_features_t wanted = dev->wanted_features;
545 	int ret = 0;
546 
547 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
548 		ret = bcmgenet_set_tx_csum(dev, wanted);
549 	if (changed & (NETIF_F_RXCSUM))
550 		ret = bcmgenet_set_rx_csum(dev, wanted);
551 
552 	return ret;
553 }
554 
bcmgenet_get_msglevel(struct net_device * dev)555 static u32 bcmgenet_get_msglevel(struct net_device *dev)
556 {
557 	struct bcmgenet_priv *priv = netdev_priv(dev);
558 
559 	return priv->msg_enable;
560 }
561 
bcmgenet_set_msglevel(struct net_device * dev,u32 level)562 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
563 {
564 	struct bcmgenet_priv *priv = netdev_priv(dev);
565 
566 	priv->msg_enable = level;
567 }
568 
bcmgenet_get_coalesce(struct net_device * dev,struct ethtool_coalesce * ec)569 static int bcmgenet_get_coalesce(struct net_device *dev,
570 				 struct ethtool_coalesce *ec)
571 {
572 	struct bcmgenet_priv *priv = netdev_priv(dev);
573 
574 	ec->tx_max_coalesced_frames =
575 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
576 					 DMA_MBUF_DONE_THRESH);
577 	ec->rx_max_coalesced_frames =
578 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
579 					 DMA_MBUF_DONE_THRESH);
580 	ec->rx_coalesce_usecs =
581 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
582 
583 	return 0;
584 }
585 
bcmgenet_set_coalesce(struct net_device * dev,struct ethtool_coalesce * ec)586 static int bcmgenet_set_coalesce(struct net_device *dev,
587 				 struct ethtool_coalesce *ec)
588 {
589 	struct bcmgenet_priv *priv = netdev_priv(dev);
590 	unsigned int i;
591 	u32 reg;
592 
593 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
594 	 * divided by 1024, which yields roughly 8.192us, our maximum value
595 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
596 	 */
597 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
598 	    ec->tx_max_coalesced_frames == 0 ||
599 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
600 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
601 		return -EINVAL;
602 
603 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
604 		return -EINVAL;
605 
606 	/* GENET TDMA hardware does not support a configurable timeout, but will
607 	 * always generate an interrupt either after MBDONE packets have been
608 	 * transmitted, or when the ring is emtpy.
609 	 */
610 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
611 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
612 		return -EOPNOTSUPP;
613 
614 	/* Program all TX queues with the same values, as there is no
615 	 * ethtool knob to do coalescing on a per-queue basis
616 	 */
617 	for (i = 0; i < priv->hw_params->tx_queues; i++)
618 		bcmgenet_tdma_ring_writel(priv, i,
619 					  ec->tx_max_coalesced_frames,
620 					  DMA_MBUF_DONE_THRESH);
621 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
622 				  ec->tx_max_coalesced_frames,
623 				  DMA_MBUF_DONE_THRESH);
624 
625 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
626 		bcmgenet_rdma_ring_writel(priv, i,
627 					  ec->rx_max_coalesced_frames,
628 					  DMA_MBUF_DONE_THRESH);
629 
630 		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
631 		reg &= ~DMA_TIMEOUT_MASK;
632 		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
633 		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
634 	}
635 
636 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
637 				  ec->rx_max_coalesced_frames,
638 				  DMA_MBUF_DONE_THRESH);
639 
640 	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
641 	reg &= ~DMA_TIMEOUT_MASK;
642 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
643 	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
644 
645 	return 0;
646 }
647 
648 /* standard ethtool support functions. */
649 enum bcmgenet_stat_type {
650 	BCMGENET_STAT_NETDEV = -1,
651 	BCMGENET_STAT_MIB_RX,
652 	BCMGENET_STAT_MIB_TX,
653 	BCMGENET_STAT_RUNT,
654 	BCMGENET_STAT_MISC,
655 	BCMGENET_STAT_SOFT,
656 };
657 
658 struct bcmgenet_stats {
659 	char stat_string[ETH_GSTRING_LEN];
660 	int stat_sizeof;
661 	int stat_offset;
662 	enum bcmgenet_stat_type type;
663 	/* reg offset from UMAC base for misc counters */
664 	u16 reg_offset;
665 };
666 
667 #define STAT_NETDEV(m) { \
668 	.stat_string = __stringify(m), \
669 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
670 	.stat_offset = offsetof(struct net_device_stats, m), \
671 	.type = BCMGENET_STAT_NETDEV, \
672 }
673 
674 #define STAT_GENET_MIB(str, m, _type) { \
675 	.stat_string = str, \
676 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
677 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
678 	.type = _type, \
679 }
680 
681 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
682 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
683 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
684 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
685 
686 #define STAT_GENET_MISC(str, m, offset) { \
687 	.stat_string = str, \
688 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
689 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
690 	.type = BCMGENET_STAT_MISC, \
691 	.reg_offset = offset, \
692 }
693 
694 
695 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
696  * between the end of TX stats and the beginning of the RX RUNT
697  */
698 #define BCMGENET_STAT_OFFSET	0xc
699 
700 /* Hardware counters must be kept in sync because the order/offset
701  * is important here (order in structure declaration = order in hardware)
702  */
703 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
704 	/* general stats */
705 	STAT_NETDEV(rx_packets),
706 	STAT_NETDEV(tx_packets),
707 	STAT_NETDEV(rx_bytes),
708 	STAT_NETDEV(tx_bytes),
709 	STAT_NETDEV(rx_errors),
710 	STAT_NETDEV(tx_errors),
711 	STAT_NETDEV(rx_dropped),
712 	STAT_NETDEV(tx_dropped),
713 	STAT_NETDEV(multicast),
714 	/* UniMAC RSV counters */
715 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
716 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
717 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
718 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
719 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
720 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
721 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
722 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
723 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
724 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
725 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
726 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
727 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
728 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
729 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
730 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
731 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
732 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
733 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
734 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
735 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
736 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
737 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
738 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
739 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
740 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
741 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
742 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
743 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
744 	/* UniMAC TSV counters */
745 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
746 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
747 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
748 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
749 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
750 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
751 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
752 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
753 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
754 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
755 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
756 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
757 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
758 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
759 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
760 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
761 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
762 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
763 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
764 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
765 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
766 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
767 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
768 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
769 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
770 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
771 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
772 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
773 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
774 	/* UniMAC RUNT counters */
775 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
776 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
777 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
778 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
779 	/* Misc UniMAC counters */
780 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
781 			UMAC_RBUF_OVFL_CNT_V1),
782 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
783 			UMAC_RBUF_ERR_CNT_V1),
784 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
785 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
786 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
787 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
788 };
789 
790 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
791 
bcmgenet_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)792 static void bcmgenet_get_drvinfo(struct net_device *dev,
793 				 struct ethtool_drvinfo *info)
794 {
795 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
796 	strlcpy(info->version, "v2.0", sizeof(info->version));
797 }
798 
bcmgenet_get_sset_count(struct net_device * dev,int string_set)799 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
800 {
801 	switch (string_set) {
802 	case ETH_SS_STATS:
803 		return BCMGENET_STATS_LEN;
804 	default:
805 		return -EOPNOTSUPP;
806 	}
807 }
808 
bcmgenet_get_strings(struct net_device * dev,u32 stringset,u8 * data)809 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
810 				 u8 *data)
811 {
812 	int i;
813 
814 	switch (stringset) {
815 	case ETH_SS_STATS:
816 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
817 			memcpy(data + i * ETH_GSTRING_LEN,
818 			       bcmgenet_gstrings_stats[i].stat_string,
819 			       ETH_GSTRING_LEN);
820 		}
821 		break;
822 	}
823 }
824 
bcmgenet_update_stat_misc(struct bcmgenet_priv * priv,u16 offset)825 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
826 {
827 	u16 new_offset;
828 	u32 val;
829 
830 	switch (offset) {
831 	case UMAC_RBUF_OVFL_CNT_V1:
832 		if (GENET_IS_V2(priv))
833 			new_offset = RBUF_OVFL_CNT_V2;
834 		else
835 			new_offset = RBUF_OVFL_CNT_V3PLUS;
836 
837 		val = bcmgenet_rbuf_readl(priv,	new_offset);
838 		/* clear if overflowed */
839 		if (val == ~0)
840 			bcmgenet_rbuf_writel(priv, 0, new_offset);
841 		break;
842 	case UMAC_RBUF_ERR_CNT_V1:
843 		if (GENET_IS_V2(priv))
844 			new_offset = RBUF_ERR_CNT_V2;
845 		else
846 			new_offset = RBUF_ERR_CNT_V3PLUS;
847 
848 		val = bcmgenet_rbuf_readl(priv,	new_offset);
849 		/* clear if overflowed */
850 		if (val == ~0)
851 			bcmgenet_rbuf_writel(priv, 0, new_offset);
852 		break;
853 	default:
854 		val = bcmgenet_umac_readl(priv, offset);
855 		/* clear if overflowed */
856 		if (val == ~0)
857 			bcmgenet_umac_writel(priv, 0, offset);
858 		break;
859 	}
860 
861 	return val;
862 }
863 
bcmgenet_update_mib_counters(struct bcmgenet_priv * priv)864 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
865 {
866 	int i, j = 0;
867 
868 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
869 		const struct bcmgenet_stats *s;
870 		u8 offset = 0;
871 		u32 val = 0;
872 		char *p;
873 
874 		s = &bcmgenet_gstrings_stats[i];
875 		switch (s->type) {
876 		case BCMGENET_STAT_NETDEV:
877 		case BCMGENET_STAT_SOFT:
878 			continue;
879 		case BCMGENET_STAT_RUNT:
880 			offset += BCMGENET_STAT_OFFSET;
881 			/* fall through */
882 		case BCMGENET_STAT_MIB_TX:
883 			offset += BCMGENET_STAT_OFFSET;
884 			/* fall through */
885 		case BCMGENET_STAT_MIB_RX:
886 			val = bcmgenet_umac_readl(priv,
887 						  UMAC_MIB_START + j + offset);
888 			offset = 0;	/* Reset Offset */
889 			break;
890 		case BCMGENET_STAT_MISC:
891 			if (GENET_IS_V1(priv)) {
892 				val = bcmgenet_umac_readl(priv, s->reg_offset);
893 				/* clear if overflowed */
894 				if (val == ~0)
895 					bcmgenet_umac_writel(priv, 0,
896 							     s->reg_offset);
897 			} else {
898 				val = bcmgenet_update_stat_misc(priv,
899 								s->reg_offset);
900 			}
901 			break;
902 		}
903 
904 		j += s->stat_sizeof;
905 		p = (char *)priv + s->stat_offset;
906 		*(u32 *)p = val;
907 	}
908 }
909 
bcmgenet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)910 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
911 				       struct ethtool_stats *stats,
912 				       u64 *data)
913 {
914 	struct bcmgenet_priv *priv = netdev_priv(dev);
915 	int i;
916 
917 	if (netif_running(dev))
918 		bcmgenet_update_mib_counters(priv);
919 
920 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
921 		const struct bcmgenet_stats *s;
922 		char *p;
923 
924 		s = &bcmgenet_gstrings_stats[i];
925 		if (s->type == BCMGENET_STAT_NETDEV)
926 			p = (char *)&dev->stats;
927 		else
928 			p = (char *)priv;
929 		p += s->stat_offset;
930 		if (sizeof(unsigned long) != sizeof(u32) &&
931 		    s->stat_sizeof == sizeof(unsigned long))
932 			data[i] = *(unsigned long *)p;
933 		else
934 			data[i] = *(u32 *)p;
935 	}
936 }
937 
bcmgenet_eee_enable_set(struct net_device * dev,bool enable)938 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
939 {
940 	struct bcmgenet_priv *priv = netdev_priv(dev);
941 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
942 	u32 reg;
943 
944 	if (enable && !priv->clk_eee_enabled) {
945 		clk_prepare_enable(priv->clk_eee);
946 		priv->clk_eee_enabled = true;
947 	}
948 
949 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
950 	if (enable)
951 		reg |= EEE_EN;
952 	else
953 		reg &= ~EEE_EN;
954 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
955 
956 	/* Enable EEE and switch to a 27Mhz clock automatically */
957 	reg = __raw_readl(priv->base + off);
958 	if (enable)
959 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
960 	else
961 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
962 	__raw_writel(reg, priv->base + off);
963 
964 	/* Do the same for thing for RBUF */
965 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
966 	if (enable)
967 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
968 	else
969 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
970 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
971 
972 	if (!enable && priv->clk_eee_enabled) {
973 		clk_disable_unprepare(priv->clk_eee);
974 		priv->clk_eee_enabled = false;
975 	}
976 
977 	priv->eee.eee_enabled = enable;
978 	priv->eee.eee_active = enable;
979 }
980 
bcmgenet_get_eee(struct net_device * dev,struct ethtool_eee * e)981 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
982 {
983 	struct bcmgenet_priv *priv = netdev_priv(dev);
984 	struct ethtool_eee *p = &priv->eee;
985 
986 	if (GENET_IS_V1(priv))
987 		return -EOPNOTSUPP;
988 
989 	e->eee_enabled = p->eee_enabled;
990 	e->eee_active = p->eee_active;
991 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
992 
993 	return phy_ethtool_get_eee(priv->phydev, e);
994 }
995 
bcmgenet_set_eee(struct net_device * dev,struct ethtool_eee * e)996 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
997 {
998 	struct bcmgenet_priv *priv = netdev_priv(dev);
999 	struct ethtool_eee *p = &priv->eee;
1000 	int ret = 0;
1001 
1002 	if (GENET_IS_V1(priv))
1003 		return -EOPNOTSUPP;
1004 
1005 	p->eee_enabled = e->eee_enabled;
1006 
1007 	if (!p->eee_enabled) {
1008 		bcmgenet_eee_enable_set(dev, false);
1009 	} else {
1010 		ret = phy_init_eee(priv->phydev, 0);
1011 		if (ret) {
1012 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1013 			return ret;
1014 		}
1015 
1016 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1017 		bcmgenet_eee_enable_set(dev, true);
1018 	}
1019 
1020 	return phy_ethtool_set_eee(priv->phydev, e);
1021 }
1022 
bcmgenet_nway_reset(struct net_device * dev)1023 static int bcmgenet_nway_reset(struct net_device *dev)
1024 {
1025 	struct bcmgenet_priv *priv = netdev_priv(dev);
1026 
1027 	return genphy_restart_aneg(priv->phydev);
1028 }
1029 
1030 /* standard ethtool support functions. */
1031 static struct ethtool_ops bcmgenet_ethtool_ops = {
1032 	.get_strings		= bcmgenet_get_strings,
1033 	.get_sset_count		= bcmgenet_get_sset_count,
1034 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1035 	.get_settings		= bcmgenet_get_settings,
1036 	.set_settings		= bcmgenet_set_settings,
1037 	.get_drvinfo		= bcmgenet_get_drvinfo,
1038 	.get_link		= ethtool_op_get_link,
1039 	.get_msglevel		= bcmgenet_get_msglevel,
1040 	.set_msglevel		= bcmgenet_set_msglevel,
1041 	.get_wol		= bcmgenet_get_wol,
1042 	.set_wol		= bcmgenet_set_wol,
1043 	.get_eee		= bcmgenet_get_eee,
1044 	.set_eee		= bcmgenet_set_eee,
1045 	.nway_reset		= bcmgenet_nway_reset,
1046 	.get_coalesce		= bcmgenet_get_coalesce,
1047 	.set_coalesce		= bcmgenet_set_coalesce,
1048 };
1049 
1050 /* Power down the unimac, based on mode. */
bcmgenet_power_down(struct bcmgenet_priv * priv,enum bcmgenet_power_mode mode)1051 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1052 				enum bcmgenet_power_mode mode)
1053 {
1054 	int ret = 0;
1055 	u32 reg;
1056 
1057 	switch (mode) {
1058 	case GENET_POWER_CABLE_SENSE:
1059 		phy_detach(priv->phydev);
1060 		break;
1061 
1062 	case GENET_POWER_WOL_MAGIC:
1063 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1064 		break;
1065 
1066 	case GENET_POWER_PASSIVE:
1067 		/* Power down LED */
1068 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1069 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1070 			reg |= (EXT_PWR_DOWN_PHY |
1071 				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1072 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1073 
1074 			bcmgenet_phy_power_set(priv->dev, false);
1075 		}
1076 		break;
1077 	default:
1078 		break;
1079 	}
1080 
1081 	return ret;
1082 }
1083 
bcmgenet_power_up(struct bcmgenet_priv * priv,enum bcmgenet_power_mode mode)1084 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1085 			      enum bcmgenet_power_mode mode)
1086 {
1087 	u32 reg;
1088 
1089 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1090 		return;
1091 
1092 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1093 
1094 	switch (mode) {
1095 	case GENET_POWER_PASSIVE:
1096 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1097 			 EXT_PWR_DOWN_BIAS | EXT_ENERGY_DET_MASK);
1098 		/* fallthrough */
1099 	case GENET_POWER_CABLE_SENSE:
1100 		/* enable APD */
1101 		reg |= EXT_PWR_DN_EN_LD;
1102 		break;
1103 	case GENET_POWER_WOL_MAGIC:
1104 		bcmgenet_wol_power_up_cfg(priv, mode);
1105 		return;
1106 	default:
1107 		break;
1108 	}
1109 
1110 	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1111 	if (mode == GENET_POWER_PASSIVE) {
1112 		bcmgenet_phy_power_set(priv->dev, true);
1113 		bcmgenet_mii_reset(priv->dev);
1114 	}
1115 }
1116 
1117 /* ioctl handle special commands that are not present in ethtool. */
bcmgenet_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1118 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1119 {
1120 	struct bcmgenet_priv *priv = netdev_priv(dev);
1121 	int val = 0;
1122 
1123 	if (!netif_running(dev))
1124 		return -EINVAL;
1125 
1126 	switch (cmd) {
1127 	case SIOCGMIIPHY:
1128 	case SIOCGMIIREG:
1129 	case SIOCSMIIREG:
1130 		if (!priv->phydev)
1131 			val = -ENODEV;
1132 		else
1133 			val = phy_mii_ioctl(priv->phydev, rq, cmd);
1134 		break;
1135 
1136 	default:
1137 		val = -EINVAL;
1138 		break;
1139 	}
1140 
1141 	return val;
1142 }
1143 
bcmgenet_get_txcb(struct bcmgenet_priv * priv,struct bcmgenet_tx_ring * ring)1144 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1145 					 struct bcmgenet_tx_ring *ring)
1146 {
1147 	struct enet_cb *tx_cb_ptr;
1148 
1149 	tx_cb_ptr = ring->cbs;
1150 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1151 
1152 	/* Advancing local write pointer */
1153 	if (ring->write_ptr == ring->end_ptr)
1154 		ring->write_ptr = ring->cb_ptr;
1155 	else
1156 		ring->write_ptr++;
1157 
1158 	return tx_cb_ptr;
1159 }
1160 
1161 /* Simple helper to free a control block's resources */
bcmgenet_free_cb(struct enet_cb * cb)1162 static void bcmgenet_free_cb(struct enet_cb *cb)
1163 {
1164 	dev_kfree_skb_any(cb->skb);
1165 	cb->skb = NULL;
1166 	dma_unmap_addr_set(cb, dma_addr, 0);
1167 }
1168 
bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring * ring)1169 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1170 {
1171 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1172 				 INTRL2_CPU_MASK_SET);
1173 }
1174 
bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring * ring)1175 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1176 {
1177 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1178 				 INTRL2_CPU_MASK_CLEAR);
1179 }
1180 
bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring * ring)1181 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1182 {
1183 	bcmgenet_intrl2_1_writel(ring->priv,
1184 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1185 				 INTRL2_CPU_MASK_SET);
1186 }
1187 
bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring * ring)1188 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1189 {
1190 	bcmgenet_intrl2_1_writel(ring->priv,
1191 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1192 				 INTRL2_CPU_MASK_CLEAR);
1193 }
1194 
bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring * ring)1195 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1196 {
1197 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1198 				 INTRL2_CPU_MASK_SET);
1199 }
1200 
bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring * ring)1201 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1202 {
1203 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1204 				 INTRL2_CPU_MASK_CLEAR);
1205 }
1206 
bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring * ring)1207 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1208 {
1209 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1210 				 INTRL2_CPU_MASK_CLEAR);
1211 }
1212 
bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring * ring)1213 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1214 {
1215 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1216 				 INTRL2_CPU_MASK_SET);
1217 }
1218 
1219 /* Unlocked version of the reclaim routine */
__bcmgenet_tx_reclaim(struct net_device * dev,struct bcmgenet_tx_ring * ring)1220 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1221 					  struct bcmgenet_tx_ring *ring)
1222 {
1223 	struct bcmgenet_priv *priv = netdev_priv(dev);
1224 	struct device *kdev = &priv->pdev->dev;
1225 	struct enet_cb *tx_cb_ptr;
1226 	struct netdev_queue *txq;
1227 	unsigned int pkts_compl = 0;
1228 	unsigned int c_index;
1229 	unsigned int txbds_ready;
1230 	unsigned int txbds_processed = 0;
1231 
1232 	/* Compute how many buffers are transmitted since last xmit call */
1233 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1234 	c_index &= DMA_C_INDEX_MASK;
1235 
1236 	if (likely(c_index >= ring->c_index))
1237 		txbds_ready = c_index - ring->c_index;
1238 	else
1239 		txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1240 
1241 	netif_dbg(priv, tx_done, dev,
1242 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1243 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1244 
1245 	/* Reclaim transmitted buffers */
1246 	while (txbds_processed < txbds_ready) {
1247 		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1248 		if (tx_cb_ptr->skb) {
1249 			pkts_compl++;
1250 			dev->stats.tx_packets++;
1251 			dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1252 			dma_unmap_single(kdev,
1253 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1254 					 dma_unmap_len(tx_cb_ptr, dma_len),
1255 					 DMA_TO_DEVICE);
1256 			bcmgenet_free_cb(tx_cb_ptr);
1257 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1258 			dev->stats.tx_bytes +=
1259 				dma_unmap_len(tx_cb_ptr, dma_len);
1260 			dma_unmap_page(kdev,
1261 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1262 				       dma_unmap_len(tx_cb_ptr, dma_len),
1263 				       DMA_TO_DEVICE);
1264 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1265 		}
1266 
1267 		txbds_processed++;
1268 		if (likely(ring->clean_ptr < ring->end_ptr))
1269 			ring->clean_ptr++;
1270 		else
1271 			ring->clean_ptr = ring->cb_ptr;
1272 	}
1273 
1274 	ring->free_bds += txbds_processed;
1275 	ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1276 
1277 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1278 		txq = netdev_get_tx_queue(dev, ring->queue);
1279 		if (netif_tx_queue_stopped(txq))
1280 			netif_tx_wake_queue(txq);
1281 	}
1282 
1283 	return pkts_compl;
1284 }
1285 
bcmgenet_tx_reclaim(struct net_device * dev,struct bcmgenet_tx_ring * ring)1286 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1287 				struct bcmgenet_tx_ring *ring)
1288 {
1289 	unsigned int released;
1290 	unsigned long flags;
1291 
1292 	spin_lock_irqsave(&ring->lock, flags);
1293 	released = __bcmgenet_tx_reclaim(dev, ring);
1294 	spin_unlock_irqrestore(&ring->lock, flags);
1295 
1296 	return released;
1297 }
1298 
bcmgenet_tx_poll(struct napi_struct * napi,int budget)1299 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1300 {
1301 	struct bcmgenet_tx_ring *ring =
1302 		container_of(napi, struct bcmgenet_tx_ring, napi);
1303 	unsigned int work_done = 0;
1304 
1305 	work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1306 
1307 	if (work_done == 0) {
1308 		napi_complete(napi);
1309 		ring->int_enable(ring);
1310 
1311 		return 0;
1312 	}
1313 
1314 	return budget;
1315 }
1316 
bcmgenet_tx_reclaim_all(struct net_device * dev)1317 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1318 {
1319 	struct bcmgenet_priv *priv = netdev_priv(dev);
1320 	int i;
1321 
1322 	if (netif_is_multiqueue(dev)) {
1323 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1324 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1325 	}
1326 
1327 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1328 }
1329 
1330 /* Transmits a single SKB (either head of a fragment or a single SKB)
1331  * caller must hold priv->lock
1332  */
bcmgenet_xmit_single(struct net_device * dev,struct sk_buff * skb,u16 dma_desc_flags,struct bcmgenet_tx_ring * ring)1333 static int bcmgenet_xmit_single(struct net_device *dev,
1334 				struct sk_buff *skb,
1335 				u16 dma_desc_flags,
1336 				struct bcmgenet_tx_ring *ring)
1337 {
1338 	struct bcmgenet_priv *priv = netdev_priv(dev);
1339 	struct device *kdev = &priv->pdev->dev;
1340 	struct enet_cb *tx_cb_ptr;
1341 	unsigned int skb_len;
1342 	dma_addr_t mapping;
1343 	u32 length_status;
1344 	int ret;
1345 
1346 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1347 
1348 	if (unlikely(!tx_cb_ptr))
1349 		BUG();
1350 
1351 	tx_cb_ptr->skb = skb;
1352 
1353 	skb_len = skb_headlen(skb);
1354 
1355 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1356 	ret = dma_mapping_error(kdev, mapping);
1357 	if (ret) {
1358 		priv->mib.tx_dma_failed++;
1359 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1360 		dev_kfree_skb(skb);
1361 		return ret;
1362 	}
1363 
1364 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1365 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1366 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1367 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1368 			DMA_TX_APPEND_CRC;
1369 
1370 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1371 		length_status |= DMA_TX_DO_CSUM;
1372 
1373 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1374 
1375 	return 0;
1376 }
1377 
1378 /* Transmit a SKB fragment */
bcmgenet_xmit_frag(struct net_device * dev,skb_frag_t * frag,u16 dma_desc_flags,struct bcmgenet_tx_ring * ring)1379 static int bcmgenet_xmit_frag(struct net_device *dev,
1380 			      skb_frag_t *frag,
1381 			      u16 dma_desc_flags,
1382 			      struct bcmgenet_tx_ring *ring)
1383 {
1384 	struct bcmgenet_priv *priv = netdev_priv(dev);
1385 	struct device *kdev = &priv->pdev->dev;
1386 	struct enet_cb *tx_cb_ptr;
1387 	dma_addr_t mapping;
1388 	int ret;
1389 
1390 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1391 
1392 	if (unlikely(!tx_cb_ptr))
1393 		BUG();
1394 	tx_cb_ptr->skb = NULL;
1395 
1396 	mapping = skb_frag_dma_map(kdev, frag, 0,
1397 				   skb_frag_size(frag), DMA_TO_DEVICE);
1398 	ret = dma_mapping_error(kdev, mapping);
1399 	if (ret) {
1400 		priv->mib.tx_dma_failed++;
1401 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1402 			  __func__);
1403 		return ret;
1404 	}
1405 
1406 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1407 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1408 
1409 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1410 		    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1411 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1412 
1413 	return 0;
1414 }
1415 
1416 /* Reallocate the SKB to put enough headroom in front of it and insert
1417  * the transmit checksum offsets in the descriptors
1418  */
bcmgenet_put_tx_csum(struct net_device * dev,struct sk_buff * skb)1419 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1420 					    struct sk_buff *skb)
1421 {
1422 	struct status_64 *status = NULL;
1423 	struct sk_buff *new_skb;
1424 	u16 offset;
1425 	u8 ip_proto;
1426 	u16 ip_ver;
1427 	u32 tx_csum_info;
1428 
1429 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1430 		/* If 64 byte status block enabled, must make sure skb has
1431 		 * enough headroom for us to insert 64B status block.
1432 		 */
1433 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1434 		dev_kfree_skb(skb);
1435 		if (!new_skb) {
1436 			dev->stats.tx_dropped++;
1437 			return NULL;
1438 		}
1439 		skb = new_skb;
1440 	}
1441 
1442 	skb_push(skb, sizeof(*status));
1443 	status = (struct status_64 *)skb->data;
1444 
1445 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1446 		ip_ver = htons(skb->protocol);
1447 		switch (ip_ver) {
1448 		case ETH_P_IP:
1449 			ip_proto = ip_hdr(skb)->protocol;
1450 			break;
1451 		case ETH_P_IPV6:
1452 			ip_proto = ipv6_hdr(skb)->nexthdr;
1453 			break;
1454 		default:
1455 			return skb;
1456 		}
1457 
1458 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1459 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1460 				(offset + skb->csum_offset);
1461 
1462 		/* Set the length valid bit for TCP and UDP and just set
1463 		 * the special UDP flag for IPv4, else just set to 0.
1464 		 */
1465 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1466 			tx_csum_info |= STATUS_TX_CSUM_LV;
1467 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1468 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1469 		} else {
1470 			tx_csum_info = 0;
1471 		}
1472 
1473 		status->tx_csum_info = tx_csum_info;
1474 	}
1475 
1476 	return skb;
1477 }
1478 
bcmgenet_xmit(struct sk_buff * skb,struct net_device * dev)1479 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1480 {
1481 	struct bcmgenet_priv *priv = netdev_priv(dev);
1482 	struct bcmgenet_tx_ring *ring = NULL;
1483 	struct netdev_queue *txq;
1484 	unsigned long flags = 0;
1485 	int nr_frags, index;
1486 	u16 dma_desc_flags;
1487 	int ret;
1488 	int i;
1489 
1490 	index = skb_get_queue_mapping(skb);
1491 	/* Mapping strategy:
1492 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1493 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1494 	 * queue_mapping = 2, goes to ring 1.
1495 	 * queue_mapping = 3, goes to ring 2.
1496 	 * queue_mapping = 4, goes to ring 3.
1497 	 */
1498 	if (index == 0)
1499 		index = DESC_INDEX;
1500 	else
1501 		index -= 1;
1502 
1503 	nr_frags = skb_shinfo(skb)->nr_frags;
1504 	ring = &priv->tx_rings[index];
1505 	txq = netdev_get_tx_queue(dev, ring->queue);
1506 
1507 	spin_lock_irqsave(&ring->lock, flags);
1508 	if (ring->free_bds <= nr_frags + 1) {
1509 		netif_tx_stop_queue(txq);
1510 		netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1511 			   __func__, index, ring->queue);
1512 		ret = NETDEV_TX_BUSY;
1513 		goto out;
1514 	}
1515 
1516 	if (skb_padto(skb, ETH_ZLEN)) {
1517 		ret = NETDEV_TX_OK;
1518 		goto out;
1519 	}
1520 
1521 	/* set the SKB transmit checksum */
1522 	if (priv->desc_64b_en) {
1523 		skb = bcmgenet_put_tx_csum(dev, skb);
1524 		if (!skb) {
1525 			ret = NETDEV_TX_OK;
1526 			goto out;
1527 		}
1528 	}
1529 
1530 	dma_desc_flags = DMA_SOP;
1531 	if (nr_frags == 0)
1532 		dma_desc_flags |= DMA_EOP;
1533 
1534 	/* Transmit single SKB or head of fragment list */
1535 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1536 	if (ret) {
1537 		ret = NETDEV_TX_OK;
1538 		goto out;
1539 	}
1540 
1541 	/* xmit fragment */
1542 	for (i = 0; i < nr_frags; i++) {
1543 		ret = bcmgenet_xmit_frag(dev,
1544 					 &skb_shinfo(skb)->frags[i],
1545 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1546 					 ring);
1547 		if (ret) {
1548 			ret = NETDEV_TX_OK;
1549 			goto out;
1550 		}
1551 	}
1552 
1553 	skb_tx_timestamp(skb);
1554 
1555 	/* Decrement total BD count and advance our write pointer */
1556 	ring->free_bds -= nr_frags + 1;
1557 	ring->prod_index += nr_frags + 1;
1558 	ring->prod_index &= DMA_P_INDEX_MASK;
1559 
1560 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1561 		netif_tx_stop_queue(txq);
1562 
1563 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1564 		/* Packets are ready, update producer index */
1565 		bcmgenet_tdma_ring_writel(priv, ring->index,
1566 					  ring->prod_index, TDMA_PROD_INDEX);
1567 out:
1568 	spin_unlock_irqrestore(&ring->lock, flags);
1569 
1570 	return ret;
1571 }
1572 
bcmgenet_rx_refill(struct bcmgenet_priv * priv,struct enet_cb * cb)1573 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1574 					  struct enet_cb *cb)
1575 {
1576 	struct device *kdev = &priv->pdev->dev;
1577 	struct sk_buff *skb;
1578 	struct sk_buff *rx_skb;
1579 	dma_addr_t mapping;
1580 
1581 	/* Allocate a new Rx skb */
1582 	skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
1583 				 GFP_ATOMIC | __GFP_NOWARN);
1584 	if (!skb) {
1585 		priv->mib.alloc_rx_buff_failed++;
1586 		netif_err(priv, rx_err, priv->dev,
1587 			  "%s: Rx skb allocation failed\n", __func__);
1588 		return NULL;
1589 	}
1590 
1591 	/* DMA-map the new Rx skb */
1592 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1593 				 DMA_FROM_DEVICE);
1594 	if (dma_mapping_error(kdev, mapping)) {
1595 		priv->mib.rx_dma_failed++;
1596 		dev_kfree_skb_any(skb);
1597 		netif_err(priv, rx_err, priv->dev,
1598 			  "%s: Rx skb DMA mapping failed\n", __func__);
1599 		return NULL;
1600 	}
1601 
1602 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1603 	rx_skb = cb->skb;
1604 	if (likely(rx_skb))
1605 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1606 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1607 
1608 	/* Put the new Rx skb on the ring */
1609 	cb->skb = skb;
1610 	dma_unmap_addr_set(cb, dma_addr, mapping);
1611 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1612 
1613 	/* Return the current Rx skb to caller */
1614 	return rx_skb;
1615 }
1616 
1617 /* bcmgenet_desc_rx - descriptor based rx process.
1618  * this could be called from bottom half, or from NAPI polling method.
1619  */
bcmgenet_desc_rx(struct bcmgenet_rx_ring * ring,unsigned int budget)1620 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1621 				     unsigned int budget)
1622 {
1623 	struct bcmgenet_priv *priv = ring->priv;
1624 	struct net_device *dev = priv->dev;
1625 	struct enet_cb *cb;
1626 	struct sk_buff *skb;
1627 	u32 dma_length_status;
1628 	unsigned long dma_flag;
1629 	int len;
1630 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1631 	unsigned int p_index;
1632 	unsigned int discards;
1633 	unsigned int chksum_ok = 0;
1634 
1635 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1636 
1637 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1638 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1639 	if (discards > ring->old_discards) {
1640 		discards = discards - ring->old_discards;
1641 		dev->stats.rx_missed_errors += discards;
1642 		dev->stats.rx_errors += discards;
1643 		ring->old_discards += discards;
1644 
1645 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1646 		if (ring->old_discards >= 0xC000) {
1647 			ring->old_discards = 0;
1648 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1649 						  RDMA_PROD_INDEX);
1650 		}
1651 	}
1652 
1653 	p_index &= DMA_P_INDEX_MASK;
1654 
1655 	if (likely(p_index >= ring->c_index))
1656 		rxpkttoprocess = p_index - ring->c_index;
1657 	else
1658 		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1659 				 p_index;
1660 
1661 	netif_dbg(priv, rx_status, dev,
1662 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1663 
1664 	while ((rxpktprocessed < rxpkttoprocess) &&
1665 	       (rxpktprocessed < budget)) {
1666 		cb = &priv->rx_cbs[ring->read_ptr];
1667 		skb = bcmgenet_rx_refill(priv, cb);
1668 
1669 		if (unlikely(!skb)) {
1670 			dev->stats.rx_dropped++;
1671 			goto next;
1672 		}
1673 
1674 		if (!priv->desc_64b_en) {
1675 			dma_length_status =
1676 				dmadesc_get_length_status(priv, cb->bd_addr);
1677 		} else {
1678 			struct status_64 *status;
1679 
1680 			status = (struct status_64 *)skb->data;
1681 			dma_length_status = status->length_status;
1682 		}
1683 
1684 		/* DMA flags and length are still valid no matter how
1685 		 * we got the Receive Status Vector (64B RSB or register)
1686 		 */
1687 		dma_flag = dma_length_status & 0xffff;
1688 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1689 
1690 		netif_dbg(priv, rx_status, dev,
1691 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1692 			  __func__, p_index, ring->c_index,
1693 			  ring->read_ptr, dma_length_status);
1694 
1695 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1696 			netif_err(priv, rx_status, dev,
1697 				  "dropping fragmented packet!\n");
1698 			dev->stats.rx_errors++;
1699 			dev_kfree_skb_any(skb);
1700 			goto next;
1701 		}
1702 
1703 		/* report errors */
1704 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1705 						DMA_RX_OV |
1706 						DMA_RX_NO |
1707 						DMA_RX_LG |
1708 						DMA_RX_RXER))) {
1709 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1710 				  (unsigned int)dma_flag);
1711 			if (dma_flag & DMA_RX_CRC_ERROR)
1712 				dev->stats.rx_crc_errors++;
1713 			if (dma_flag & DMA_RX_OV)
1714 				dev->stats.rx_over_errors++;
1715 			if (dma_flag & DMA_RX_NO)
1716 				dev->stats.rx_frame_errors++;
1717 			if (dma_flag & DMA_RX_LG)
1718 				dev->stats.rx_length_errors++;
1719 			dev->stats.rx_errors++;
1720 			dev_kfree_skb_any(skb);
1721 			goto next;
1722 		} /* error packet */
1723 
1724 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1725 			     priv->desc_rxchk_en;
1726 
1727 		skb_put(skb, len);
1728 		if (priv->desc_64b_en) {
1729 			skb_pull(skb, 64);
1730 			len -= 64;
1731 		}
1732 
1733 		if (likely(chksum_ok))
1734 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1735 
1736 		/* remove hardware 2bytes added for IP alignment */
1737 		skb_pull(skb, 2);
1738 		len -= 2;
1739 
1740 		if (priv->crc_fwd_en) {
1741 			skb_trim(skb, len - ETH_FCS_LEN);
1742 			len -= ETH_FCS_LEN;
1743 		}
1744 
1745 		/*Finish setting up the received SKB and send it to the kernel*/
1746 		skb->protocol = eth_type_trans(skb, priv->dev);
1747 		dev->stats.rx_packets++;
1748 		dev->stats.rx_bytes += len;
1749 		if (dma_flag & DMA_RX_MULT)
1750 			dev->stats.multicast++;
1751 
1752 		/* Notify kernel */
1753 		napi_gro_receive(&ring->napi, skb);
1754 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1755 
1756 next:
1757 		rxpktprocessed++;
1758 		if (likely(ring->read_ptr < ring->end_ptr))
1759 			ring->read_ptr++;
1760 		else
1761 			ring->read_ptr = ring->cb_ptr;
1762 
1763 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1764 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1765 	}
1766 
1767 	return rxpktprocessed;
1768 }
1769 
1770 /* Rx NAPI polling method */
bcmgenet_rx_poll(struct napi_struct * napi,int budget)1771 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1772 {
1773 	struct bcmgenet_rx_ring *ring = container_of(napi,
1774 			struct bcmgenet_rx_ring, napi);
1775 	unsigned int work_done;
1776 
1777 	work_done = bcmgenet_desc_rx(ring, budget);
1778 
1779 	if (work_done < budget) {
1780 		napi_complete(napi);
1781 		ring->int_enable(ring);
1782 	}
1783 
1784 	return work_done;
1785 }
1786 
1787 /* Assign skb to RX DMA descriptor. */
bcmgenet_alloc_rx_buffers(struct bcmgenet_priv * priv,struct bcmgenet_rx_ring * ring)1788 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1789 				     struct bcmgenet_rx_ring *ring)
1790 {
1791 	struct enet_cb *cb;
1792 	struct sk_buff *skb;
1793 	int i;
1794 
1795 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1796 
1797 	/* loop here for each buffer needing assign */
1798 	for (i = 0; i < ring->size; i++) {
1799 		cb = ring->cbs + i;
1800 		skb = bcmgenet_rx_refill(priv, cb);
1801 		if (skb)
1802 			dev_kfree_skb_any(skb);
1803 		if (!cb->skb)
1804 			return -ENOMEM;
1805 	}
1806 
1807 	return 0;
1808 }
1809 
bcmgenet_free_rx_buffers(struct bcmgenet_priv * priv)1810 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1811 {
1812 	struct device *kdev = &priv->pdev->dev;
1813 	struct enet_cb *cb;
1814 	int i;
1815 
1816 	for (i = 0; i < priv->num_rx_bds; i++) {
1817 		cb = &priv->rx_cbs[i];
1818 
1819 		if (dma_unmap_addr(cb, dma_addr)) {
1820 			dma_unmap_single(kdev,
1821 					 dma_unmap_addr(cb, dma_addr),
1822 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1823 			dma_unmap_addr_set(cb, dma_addr, 0);
1824 		}
1825 
1826 		if (cb->skb)
1827 			bcmgenet_free_cb(cb);
1828 	}
1829 }
1830 
umac_enable_set(struct bcmgenet_priv * priv,u32 mask,bool enable)1831 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1832 {
1833 	u32 reg;
1834 
1835 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1836 	if (enable)
1837 		reg |= mask;
1838 	else
1839 		reg &= ~mask;
1840 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1841 
1842 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1843 	 * to be processed
1844 	 */
1845 	if (enable == 0)
1846 		usleep_range(1000, 2000);
1847 }
1848 
reset_umac(struct bcmgenet_priv * priv)1849 static int reset_umac(struct bcmgenet_priv *priv)
1850 {
1851 	struct device *kdev = &priv->pdev->dev;
1852 	unsigned int timeout = 0;
1853 	u32 reg;
1854 
1855 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1856 	bcmgenet_rbuf_ctrl_set(priv, 0);
1857 	udelay(10);
1858 
1859 	/* disable MAC while updating its registers */
1860 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1861 
1862 	/* issue soft reset, wait for it to complete */
1863 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1864 	while (timeout++ < 1000) {
1865 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1866 		if (!(reg & CMD_SW_RESET))
1867 			return 0;
1868 
1869 		udelay(1);
1870 	}
1871 
1872 	if (timeout == 1000) {
1873 		dev_err(kdev,
1874 			"timeout waiting for MAC to come out of reset\n");
1875 		return -ETIMEDOUT;
1876 	}
1877 
1878 	return 0;
1879 }
1880 
bcmgenet_intr_disable(struct bcmgenet_priv * priv)1881 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1882 {
1883 	/* Mask all interrupts.*/
1884 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1885 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1886 	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1887 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1888 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1889 	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1890 }
1891 
bcmgenet_link_intr_enable(struct bcmgenet_priv * priv)1892 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1893 {
1894 	u32 int0_enable = 0;
1895 
1896 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1897 	 * and MoCA PHY
1898 	 */
1899 	if (priv->internal_phy) {
1900 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1901 	} else if (priv->ext_phy) {
1902 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1903 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1904 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1905 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1906 	}
1907 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1908 }
1909 
init_umac(struct bcmgenet_priv * priv)1910 static int init_umac(struct bcmgenet_priv *priv)
1911 {
1912 	struct device *kdev = &priv->pdev->dev;
1913 	int ret;
1914 	u32 reg;
1915 	u32 int0_enable = 0;
1916 	u32 int1_enable = 0;
1917 	int i;
1918 
1919 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1920 
1921 	ret = reset_umac(priv);
1922 	if (ret)
1923 		return ret;
1924 
1925 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1926 	/* clear tx/rx counter */
1927 	bcmgenet_umac_writel(priv,
1928 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1929 			     UMAC_MIB_CTRL);
1930 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1931 
1932 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1933 
1934 	/* init rx registers, enable ip header optimization */
1935 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1936 	reg |= RBUF_ALIGN_2B;
1937 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1938 
1939 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1940 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1941 
1942 	bcmgenet_intr_disable(priv);
1943 
1944 	/* Enable Rx default queue 16 interrupts */
1945 	int0_enable |= UMAC_IRQ_RXDMA_DONE;
1946 
1947 	/* Enable Tx default queue 16 interrupts */
1948 	int0_enable |= UMAC_IRQ_TXDMA_DONE;
1949 
1950 	/* Configure backpressure vectors for MoCA */
1951 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1952 		reg = bcmgenet_bp_mc_get(priv);
1953 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1954 
1955 		/* bp_mask: back pressure mask */
1956 		if (netif_is_multiqueue(priv->dev))
1957 			reg |= priv->hw_params->bp_in_mask;
1958 		else
1959 			reg &= ~priv->hw_params->bp_in_mask;
1960 		bcmgenet_bp_mc_set(priv, reg);
1961 	}
1962 
1963 	/* Enable MDIO interrupts on GENET v3+ */
1964 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1965 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1966 
1967 	/* Enable Rx priority queue interrupts */
1968 	for (i = 0; i < priv->hw_params->rx_queues; ++i)
1969 		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1970 
1971 	/* Enable Tx priority queue interrupts */
1972 	for (i = 0; i < priv->hw_params->tx_queues; ++i)
1973 		int1_enable |= (1 << i);
1974 
1975 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1976 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1977 
1978 	/* Enable rx/tx engine.*/
1979 	dev_dbg(kdev, "done init umac\n");
1980 
1981 	return 0;
1982 }
1983 
1984 /* Initialize a Tx ring along with corresponding hardware registers */
bcmgenet_init_tx_ring(struct bcmgenet_priv * priv,unsigned int index,unsigned int size,unsigned int start_ptr,unsigned int end_ptr)1985 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1986 				  unsigned int index, unsigned int size,
1987 				  unsigned int start_ptr, unsigned int end_ptr)
1988 {
1989 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1990 	u32 words_per_bd = WORDS_PER_BD(priv);
1991 	u32 flow_period_val = 0;
1992 
1993 	spin_lock_init(&ring->lock);
1994 	ring->priv = priv;
1995 	ring->index = index;
1996 	if (index == DESC_INDEX) {
1997 		ring->queue = 0;
1998 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
1999 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2000 	} else {
2001 		ring->queue = index + 1;
2002 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2003 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2004 	}
2005 	ring->cbs = priv->tx_cbs + start_ptr;
2006 	ring->size = size;
2007 	ring->clean_ptr = start_ptr;
2008 	ring->c_index = 0;
2009 	ring->free_bds = size;
2010 	ring->write_ptr = start_ptr;
2011 	ring->cb_ptr = start_ptr;
2012 	ring->end_ptr = end_ptr - 1;
2013 	ring->prod_index = 0;
2014 
2015 	/* Set flow period for ring != 16 */
2016 	if (index != DESC_INDEX)
2017 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2018 
2019 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2020 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2021 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2022 	/* Disable rate control for now */
2023 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2024 				  TDMA_FLOW_PERIOD);
2025 	bcmgenet_tdma_ring_writel(priv, index,
2026 				  ((size << DMA_RING_SIZE_SHIFT) |
2027 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2028 
2029 	/* Set start and end address, read and write pointers */
2030 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2031 				  DMA_START_ADDR);
2032 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2033 				  TDMA_READ_PTR);
2034 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2035 				  TDMA_WRITE_PTR);
2036 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2037 				  DMA_END_ADDR);
2038 }
2039 
2040 /* Initialize a RDMA ring */
bcmgenet_init_rx_ring(struct bcmgenet_priv * priv,unsigned int index,unsigned int size,unsigned int start_ptr,unsigned int end_ptr)2041 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2042 				 unsigned int index, unsigned int size,
2043 				 unsigned int start_ptr, unsigned int end_ptr)
2044 {
2045 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2046 	u32 words_per_bd = WORDS_PER_BD(priv);
2047 	int ret;
2048 
2049 	ring->priv = priv;
2050 	ring->index = index;
2051 	if (index == DESC_INDEX) {
2052 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2053 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2054 	} else {
2055 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2056 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2057 	}
2058 	ring->cbs = priv->rx_cbs + start_ptr;
2059 	ring->size = size;
2060 	ring->c_index = 0;
2061 	ring->read_ptr = start_ptr;
2062 	ring->cb_ptr = start_ptr;
2063 	ring->end_ptr = end_ptr - 1;
2064 
2065 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2066 	if (ret)
2067 		return ret;
2068 
2069 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2070 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2071 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2072 	bcmgenet_rdma_ring_writel(priv, index,
2073 				  ((size << DMA_RING_SIZE_SHIFT) |
2074 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2075 	bcmgenet_rdma_ring_writel(priv, index,
2076 				  (DMA_FC_THRESH_LO <<
2077 				   DMA_XOFF_THRESHOLD_SHIFT) |
2078 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2079 
2080 	/* Set start and end address, read and write pointers */
2081 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2082 				  DMA_START_ADDR);
2083 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2084 				  RDMA_READ_PTR);
2085 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2086 				  RDMA_WRITE_PTR);
2087 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2088 				  DMA_END_ADDR);
2089 
2090 	return ret;
2091 }
2092 
bcmgenet_init_tx_napi(struct bcmgenet_priv * priv)2093 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2094 {
2095 	unsigned int i;
2096 	struct bcmgenet_tx_ring *ring;
2097 
2098 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2099 		ring = &priv->tx_rings[i];
2100 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2101 	}
2102 
2103 	ring = &priv->tx_rings[DESC_INDEX];
2104 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2105 }
2106 
bcmgenet_enable_tx_napi(struct bcmgenet_priv * priv)2107 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2108 {
2109 	unsigned int i;
2110 	struct bcmgenet_tx_ring *ring;
2111 
2112 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2113 		ring = &priv->tx_rings[i];
2114 		napi_enable(&ring->napi);
2115 	}
2116 
2117 	ring = &priv->tx_rings[DESC_INDEX];
2118 	napi_enable(&ring->napi);
2119 }
2120 
bcmgenet_disable_tx_napi(struct bcmgenet_priv * priv)2121 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2122 {
2123 	unsigned int i;
2124 	struct bcmgenet_tx_ring *ring;
2125 
2126 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2127 		ring = &priv->tx_rings[i];
2128 		napi_disable(&ring->napi);
2129 	}
2130 
2131 	ring = &priv->tx_rings[DESC_INDEX];
2132 	napi_disable(&ring->napi);
2133 }
2134 
bcmgenet_fini_tx_napi(struct bcmgenet_priv * priv)2135 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2136 {
2137 	unsigned int i;
2138 	struct bcmgenet_tx_ring *ring;
2139 
2140 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2141 		ring = &priv->tx_rings[i];
2142 		netif_napi_del(&ring->napi);
2143 	}
2144 
2145 	ring = &priv->tx_rings[DESC_INDEX];
2146 	netif_napi_del(&ring->napi);
2147 }
2148 
2149 /* Initialize Tx queues
2150  *
2151  * Queues 0-3 are priority-based, each one has 32 descriptors,
2152  * with queue 0 being the highest priority queue.
2153  *
2154  * Queue 16 is the default Tx queue with
2155  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2156  *
2157  * The transmit control block pool is then partitioned as follows:
2158  * - Tx queue 0 uses tx_cbs[0..31]
2159  * - Tx queue 1 uses tx_cbs[32..63]
2160  * - Tx queue 2 uses tx_cbs[64..95]
2161  * - Tx queue 3 uses tx_cbs[96..127]
2162  * - Tx queue 16 uses tx_cbs[128..255]
2163  */
bcmgenet_init_tx_queues(struct net_device * dev)2164 static void bcmgenet_init_tx_queues(struct net_device *dev)
2165 {
2166 	struct bcmgenet_priv *priv = netdev_priv(dev);
2167 	u32 i, dma_enable;
2168 	u32 dma_ctrl, ring_cfg;
2169 	u32 dma_priority[3] = {0, 0, 0};
2170 
2171 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2172 	dma_enable = dma_ctrl & DMA_EN;
2173 	dma_ctrl &= ~DMA_EN;
2174 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2175 
2176 	dma_ctrl = 0;
2177 	ring_cfg = 0;
2178 
2179 	/* Enable strict priority arbiter mode */
2180 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2181 
2182 	/* Initialize Tx priority queues */
2183 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2184 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2185 				      i * priv->hw_params->tx_bds_per_q,
2186 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2187 		ring_cfg |= (1 << i);
2188 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2189 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2190 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2191 	}
2192 
2193 	/* Initialize Tx default queue 16 */
2194 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2195 			      priv->hw_params->tx_queues *
2196 			      priv->hw_params->tx_bds_per_q,
2197 			      TOTAL_DESC);
2198 	ring_cfg |= (1 << DESC_INDEX);
2199 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2200 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2201 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2202 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2203 
2204 	/* Set Tx queue priorities */
2205 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2206 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2207 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2208 
2209 	/* Initialize Tx NAPI */
2210 	bcmgenet_init_tx_napi(priv);
2211 
2212 	/* Enable Tx queues */
2213 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2214 
2215 	/* Enable Tx DMA */
2216 	if (dma_enable)
2217 		dma_ctrl |= DMA_EN;
2218 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2219 }
2220 
bcmgenet_init_rx_napi(struct bcmgenet_priv * priv)2221 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2222 {
2223 	unsigned int i;
2224 	struct bcmgenet_rx_ring *ring;
2225 
2226 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2227 		ring = &priv->rx_rings[i];
2228 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2229 	}
2230 
2231 	ring = &priv->rx_rings[DESC_INDEX];
2232 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2233 }
2234 
bcmgenet_enable_rx_napi(struct bcmgenet_priv * priv)2235 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2236 {
2237 	unsigned int i;
2238 	struct bcmgenet_rx_ring *ring;
2239 
2240 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2241 		ring = &priv->rx_rings[i];
2242 		napi_enable(&ring->napi);
2243 	}
2244 
2245 	ring = &priv->rx_rings[DESC_INDEX];
2246 	napi_enable(&ring->napi);
2247 }
2248 
bcmgenet_disable_rx_napi(struct bcmgenet_priv * priv)2249 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2250 {
2251 	unsigned int i;
2252 	struct bcmgenet_rx_ring *ring;
2253 
2254 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2255 		ring = &priv->rx_rings[i];
2256 		napi_disable(&ring->napi);
2257 	}
2258 
2259 	ring = &priv->rx_rings[DESC_INDEX];
2260 	napi_disable(&ring->napi);
2261 }
2262 
bcmgenet_fini_rx_napi(struct bcmgenet_priv * priv)2263 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2264 {
2265 	unsigned int i;
2266 	struct bcmgenet_rx_ring *ring;
2267 
2268 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2269 		ring = &priv->rx_rings[i];
2270 		netif_napi_del(&ring->napi);
2271 	}
2272 
2273 	ring = &priv->rx_rings[DESC_INDEX];
2274 	netif_napi_del(&ring->napi);
2275 }
2276 
2277 /* Initialize Rx queues
2278  *
2279  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2280  * used to direct traffic to these queues.
2281  *
2282  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2283  */
bcmgenet_init_rx_queues(struct net_device * dev)2284 static int bcmgenet_init_rx_queues(struct net_device *dev)
2285 {
2286 	struct bcmgenet_priv *priv = netdev_priv(dev);
2287 	u32 i;
2288 	u32 dma_enable;
2289 	u32 dma_ctrl;
2290 	u32 ring_cfg;
2291 	int ret;
2292 
2293 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2294 	dma_enable = dma_ctrl & DMA_EN;
2295 	dma_ctrl &= ~DMA_EN;
2296 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2297 
2298 	dma_ctrl = 0;
2299 	ring_cfg = 0;
2300 
2301 	/* Initialize Rx priority queues */
2302 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2303 		ret = bcmgenet_init_rx_ring(priv, i,
2304 					    priv->hw_params->rx_bds_per_q,
2305 					    i * priv->hw_params->rx_bds_per_q,
2306 					    (i + 1) *
2307 					    priv->hw_params->rx_bds_per_q);
2308 		if (ret)
2309 			return ret;
2310 
2311 		ring_cfg |= (1 << i);
2312 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2313 	}
2314 
2315 	/* Initialize Rx default queue 16 */
2316 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2317 				    priv->hw_params->rx_queues *
2318 				    priv->hw_params->rx_bds_per_q,
2319 				    TOTAL_DESC);
2320 	if (ret)
2321 		return ret;
2322 
2323 	ring_cfg |= (1 << DESC_INDEX);
2324 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2325 
2326 	/* Initialize Rx NAPI */
2327 	bcmgenet_init_rx_napi(priv);
2328 
2329 	/* Enable rings */
2330 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2331 
2332 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2333 	if (dma_enable)
2334 		dma_ctrl |= DMA_EN;
2335 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2336 
2337 	return 0;
2338 }
2339 
bcmgenet_dma_teardown(struct bcmgenet_priv * priv)2340 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2341 {
2342 	int ret = 0;
2343 	int timeout = 0;
2344 	u32 reg;
2345 	u32 dma_ctrl;
2346 	int i;
2347 
2348 	/* Disable TDMA to stop add more frames in TX DMA */
2349 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2350 	reg &= ~DMA_EN;
2351 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2352 
2353 	/* Check TDMA status register to confirm TDMA is disabled */
2354 	while (timeout++ < DMA_TIMEOUT_VAL) {
2355 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2356 		if (reg & DMA_DISABLED)
2357 			break;
2358 
2359 		udelay(1);
2360 	}
2361 
2362 	if (timeout == DMA_TIMEOUT_VAL) {
2363 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2364 		ret = -ETIMEDOUT;
2365 	}
2366 
2367 	/* Wait 10ms for packet drain in both tx and rx dma */
2368 	usleep_range(10000, 20000);
2369 
2370 	/* Disable RDMA */
2371 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2372 	reg &= ~DMA_EN;
2373 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2374 
2375 	timeout = 0;
2376 	/* Check RDMA status register to confirm RDMA is disabled */
2377 	while (timeout++ < DMA_TIMEOUT_VAL) {
2378 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2379 		if (reg & DMA_DISABLED)
2380 			break;
2381 
2382 		udelay(1);
2383 	}
2384 
2385 	if (timeout == DMA_TIMEOUT_VAL) {
2386 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2387 		ret = -ETIMEDOUT;
2388 	}
2389 
2390 	dma_ctrl = 0;
2391 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2392 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2393 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2394 	reg &= ~dma_ctrl;
2395 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2396 
2397 	dma_ctrl = 0;
2398 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2399 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2400 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2401 	reg &= ~dma_ctrl;
2402 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2403 
2404 	return ret;
2405 }
2406 
bcmgenet_fini_dma(struct bcmgenet_priv * priv)2407 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2408 {
2409 	int i;
2410 
2411 	bcmgenet_fini_rx_napi(priv);
2412 	bcmgenet_fini_tx_napi(priv);
2413 
2414 	/* disable DMA */
2415 	bcmgenet_dma_teardown(priv);
2416 
2417 	for (i = 0; i < priv->num_tx_bds; i++) {
2418 		if (priv->tx_cbs[i].skb != NULL) {
2419 			dev_kfree_skb(priv->tx_cbs[i].skb);
2420 			priv->tx_cbs[i].skb = NULL;
2421 		}
2422 	}
2423 
2424 	bcmgenet_free_rx_buffers(priv);
2425 	kfree(priv->rx_cbs);
2426 	kfree(priv->tx_cbs);
2427 }
2428 
2429 /* init_edma: Initialize DMA control register */
bcmgenet_init_dma(struct bcmgenet_priv * priv)2430 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2431 {
2432 	int ret;
2433 	unsigned int i;
2434 	struct enet_cb *cb;
2435 
2436 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2437 
2438 	/* Initialize common Rx ring structures */
2439 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2440 	priv->num_rx_bds = TOTAL_DESC;
2441 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2442 			       GFP_KERNEL);
2443 	if (!priv->rx_cbs)
2444 		return -ENOMEM;
2445 
2446 	for (i = 0; i < priv->num_rx_bds; i++) {
2447 		cb = priv->rx_cbs + i;
2448 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2449 	}
2450 
2451 	/* Initialize common TX ring structures */
2452 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2453 	priv->num_tx_bds = TOTAL_DESC;
2454 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2455 			       GFP_KERNEL);
2456 	if (!priv->tx_cbs) {
2457 		kfree(priv->rx_cbs);
2458 		return -ENOMEM;
2459 	}
2460 
2461 	for (i = 0; i < priv->num_tx_bds; i++) {
2462 		cb = priv->tx_cbs + i;
2463 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2464 	}
2465 
2466 	/* Init rDma */
2467 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2468 
2469 	/* Initialize Rx queues */
2470 	ret = bcmgenet_init_rx_queues(priv->dev);
2471 	if (ret) {
2472 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2473 		bcmgenet_free_rx_buffers(priv);
2474 		kfree(priv->rx_cbs);
2475 		kfree(priv->tx_cbs);
2476 		return ret;
2477 	}
2478 
2479 	/* Init tDma */
2480 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2481 
2482 	/* Initialize Tx queues */
2483 	bcmgenet_init_tx_queues(priv->dev);
2484 
2485 	return 0;
2486 }
2487 
2488 /* Interrupt bottom half */
bcmgenet_irq_task(struct work_struct * work)2489 static void bcmgenet_irq_task(struct work_struct *work)
2490 {
2491 	struct bcmgenet_priv *priv = container_of(
2492 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2493 
2494 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2495 
2496 	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2497 		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2498 		netif_dbg(priv, wol, priv->dev,
2499 			  "magic packet detected, waking up\n");
2500 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2501 	}
2502 
2503 	/* Link UP/DOWN event */
2504 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2505 	    (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) {
2506 		phy_mac_interrupt(priv->phydev,
2507 				  !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2508 		priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2509 	}
2510 }
2511 
2512 /* bcmgenet_isr1: handle Rx and Tx priority queues */
bcmgenet_isr1(int irq,void * dev_id)2513 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2514 {
2515 	struct bcmgenet_priv *priv = dev_id;
2516 	struct bcmgenet_rx_ring *rx_ring;
2517 	struct bcmgenet_tx_ring *tx_ring;
2518 	unsigned int index;
2519 
2520 	/* Save irq status for bottom-half processing. */
2521 	priv->irq1_stat =
2522 		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2523 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2524 
2525 	/* clear interrupts */
2526 	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2527 
2528 	netif_dbg(priv, intr, priv->dev,
2529 		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2530 
2531 	/* Check Rx priority queue interrupts */
2532 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2533 		if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2534 			continue;
2535 
2536 		rx_ring = &priv->rx_rings[index];
2537 
2538 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2539 			rx_ring->int_disable(rx_ring);
2540 			__napi_schedule(&rx_ring->napi);
2541 		}
2542 	}
2543 
2544 	/* Check Tx priority queue interrupts */
2545 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2546 		if (!(priv->irq1_stat & BIT(index)))
2547 			continue;
2548 
2549 		tx_ring = &priv->tx_rings[index];
2550 
2551 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2552 			tx_ring->int_disable(tx_ring);
2553 			__napi_schedule(&tx_ring->napi);
2554 		}
2555 	}
2556 
2557 	return IRQ_HANDLED;
2558 }
2559 
2560 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
bcmgenet_isr0(int irq,void * dev_id)2561 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2562 {
2563 	struct bcmgenet_priv *priv = dev_id;
2564 	struct bcmgenet_rx_ring *rx_ring;
2565 	struct bcmgenet_tx_ring *tx_ring;
2566 
2567 	/* Save irq status for bottom-half processing. */
2568 	priv->irq0_stat =
2569 		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2570 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2571 
2572 	/* clear interrupts */
2573 	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2574 
2575 	netif_dbg(priv, intr, priv->dev,
2576 		  "IRQ=0x%x\n", priv->irq0_stat);
2577 
2578 	if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2579 		rx_ring = &priv->rx_rings[DESC_INDEX];
2580 
2581 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2582 			rx_ring->int_disable(rx_ring);
2583 			__napi_schedule(&rx_ring->napi);
2584 		}
2585 	}
2586 
2587 	if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2588 		tx_ring = &priv->tx_rings[DESC_INDEX];
2589 
2590 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2591 			tx_ring->int_disable(tx_ring);
2592 			__napi_schedule(&tx_ring->napi);
2593 		}
2594 	}
2595 
2596 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2597 				UMAC_IRQ_PHY_DET_F |
2598 				UMAC_IRQ_LINK_EVENT |
2599 				UMAC_IRQ_HFB_SM |
2600 				UMAC_IRQ_HFB_MM |
2601 				UMAC_IRQ_MPD_R)) {
2602 		/* all other interested interrupts handled in bottom half */
2603 		schedule_work(&priv->bcmgenet_irq_work);
2604 	}
2605 
2606 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2607 	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2608 		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2609 		wake_up(&priv->wq);
2610 	}
2611 
2612 	return IRQ_HANDLED;
2613 }
2614 
bcmgenet_wol_isr(int irq,void * dev_id)2615 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2616 {
2617 	struct bcmgenet_priv *priv = dev_id;
2618 
2619 	pm_wakeup_event(&priv->pdev->dev, 0);
2620 
2621 	return IRQ_HANDLED;
2622 }
2623 
2624 #ifdef CONFIG_NET_POLL_CONTROLLER
bcmgenet_poll_controller(struct net_device * dev)2625 static void bcmgenet_poll_controller(struct net_device *dev)
2626 {
2627 	struct bcmgenet_priv *priv = netdev_priv(dev);
2628 
2629 	/* Invoke the main RX/TX interrupt handler */
2630 	disable_irq(priv->irq0);
2631 	bcmgenet_isr0(priv->irq0, priv);
2632 	enable_irq(priv->irq0);
2633 
2634 	/* And the interrupt handler for RX/TX priority queues */
2635 	disable_irq(priv->irq1);
2636 	bcmgenet_isr1(priv->irq1, priv);
2637 	enable_irq(priv->irq1);
2638 }
2639 #endif
2640 
bcmgenet_umac_reset(struct bcmgenet_priv * priv)2641 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2642 {
2643 	u32 reg;
2644 
2645 	reg = bcmgenet_rbuf_ctrl_get(priv);
2646 	reg |= BIT(1);
2647 	bcmgenet_rbuf_ctrl_set(priv, reg);
2648 	udelay(10);
2649 
2650 	reg &= ~BIT(1);
2651 	bcmgenet_rbuf_ctrl_set(priv, reg);
2652 	udelay(10);
2653 }
2654 
bcmgenet_set_hw_addr(struct bcmgenet_priv * priv,unsigned char * addr)2655 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2656 				 unsigned char *addr)
2657 {
2658 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2659 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2660 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2661 }
2662 
2663 /* Returns a reusable dma control register value */
bcmgenet_dma_disable(struct bcmgenet_priv * priv)2664 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2665 {
2666 	unsigned int i;
2667 	u32 reg;
2668 	u32 dma_ctrl;
2669 
2670 	/* disable DMA */
2671 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2672 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2673 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2674 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2675 	reg &= ~dma_ctrl;
2676 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2677 
2678 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2679 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2680 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2681 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2682 	reg &= ~dma_ctrl;
2683 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2684 
2685 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2686 	udelay(10);
2687 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2688 
2689 	return dma_ctrl;
2690 }
2691 
bcmgenet_enable_dma(struct bcmgenet_priv * priv,u32 dma_ctrl)2692 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2693 {
2694 	u32 reg;
2695 
2696 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2697 	reg |= dma_ctrl;
2698 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2699 
2700 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2701 	reg |= dma_ctrl;
2702 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2703 }
2704 
bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv * priv,u32 f_index)2705 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2706 					   u32 f_index)
2707 {
2708 	u32 offset;
2709 	u32 reg;
2710 
2711 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2712 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2713 	return !!(reg & (1 << (f_index % 32)));
2714 }
2715 
bcmgenet_hfb_enable_filter(struct bcmgenet_priv * priv,u32 f_index)2716 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2717 {
2718 	u32 offset;
2719 	u32 reg;
2720 
2721 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2722 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2723 	reg |= (1 << (f_index % 32));
2724 	bcmgenet_hfb_reg_writel(priv, reg, offset);
2725 }
2726 
bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv * priv,u32 f_index,u32 rx_queue)2727 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2728 						     u32 f_index, u32 rx_queue)
2729 {
2730 	u32 offset;
2731 	u32 reg;
2732 
2733 	offset = f_index / 8;
2734 	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2735 	reg &= ~(0xF << (4 * (f_index % 8)));
2736 	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2737 	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2738 }
2739 
bcmgenet_hfb_set_filter_length(struct bcmgenet_priv * priv,u32 f_index,u32 f_length)2740 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2741 					   u32 f_index, u32 f_length)
2742 {
2743 	u32 offset;
2744 	u32 reg;
2745 
2746 	offset = HFB_FLT_LEN_V3PLUS +
2747 		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2748 		 sizeof(u32);
2749 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2750 	reg &= ~(0xFF << (8 * (f_index % 4)));
2751 	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2752 	bcmgenet_hfb_reg_writel(priv, reg, offset);
2753 }
2754 
bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv * priv)2755 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2756 {
2757 	u32 f_index;
2758 
2759 	for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2760 		if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2761 			return f_index;
2762 
2763 	return -ENOMEM;
2764 }
2765 
2766 /* bcmgenet_hfb_add_filter
2767  *
2768  * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2769  * desired Rx queue.
2770  *
2771  * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2772  * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2773  *
2774  * bits 31:20 - unused
2775  * bit  19    - nibble 0 match enable
2776  * bit  18    - nibble 1 match enable
2777  * bit  17    - nibble 2 match enable
2778  * bit  16    - nibble 3 match enable
2779  * bits 15:12 - nibble 0 data
2780  * bits 11:8  - nibble 1 data
2781  * bits 7:4   - nibble 2 data
2782  * bits 3:0   - nibble 3 data
2783  *
2784  * Example:
2785  * In order to match:
2786  * - Ethernet frame type = 0x0800 (IP)
2787  * - IP version field = 4
2788  * - IP protocol field = 0x11 (UDP)
2789  *
2790  * The following filter is needed:
2791  * u32 hfb_filter_ipv4_udp[] = {
2792  *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2793  *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2794  *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2795  * };
2796  *
2797  * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2798  * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2799  *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2800  */
bcmgenet_hfb_add_filter(struct bcmgenet_priv * priv,u32 * f_data,u32 f_length,u32 rx_queue)2801 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2802 			    u32 f_length, u32 rx_queue)
2803 {
2804 	int f_index;
2805 	u32 i;
2806 
2807 	f_index = bcmgenet_hfb_find_unused_filter(priv);
2808 	if (f_index < 0)
2809 		return -ENOMEM;
2810 
2811 	if (f_length > priv->hw_params->hfb_filter_size)
2812 		return -EINVAL;
2813 
2814 	for (i = 0; i < f_length; i++)
2815 		bcmgenet_hfb_writel(priv, f_data[i],
2816 			(f_index * priv->hw_params->hfb_filter_size + i) *
2817 			sizeof(u32));
2818 
2819 	bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2820 	bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2821 	bcmgenet_hfb_enable_filter(priv, f_index);
2822 	bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2823 
2824 	return 0;
2825 }
2826 
2827 /* bcmgenet_hfb_clear
2828  *
2829  * Clear Hardware Filter Block and disable all filtering.
2830  */
bcmgenet_hfb_clear(struct bcmgenet_priv * priv)2831 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2832 {
2833 	u32 i;
2834 
2835 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2836 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2837 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2838 
2839 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2840 		bcmgenet_rdma_writel(priv, 0x0, i);
2841 
2842 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2843 		bcmgenet_hfb_reg_writel(priv, 0x0,
2844 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2845 
2846 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2847 			priv->hw_params->hfb_filter_size; i++)
2848 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2849 }
2850 
bcmgenet_hfb_init(struct bcmgenet_priv * priv)2851 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2852 {
2853 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2854 		return;
2855 
2856 	bcmgenet_hfb_clear(priv);
2857 }
2858 
bcmgenet_netif_start(struct net_device * dev)2859 static void bcmgenet_netif_start(struct net_device *dev)
2860 {
2861 	struct bcmgenet_priv *priv = netdev_priv(dev);
2862 
2863 	/* Start the network engine */
2864 	bcmgenet_enable_rx_napi(priv);
2865 	bcmgenet_enable_tx_napi(priv);
2866 
2867 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2868 
2869 	netif_tx_start_all_queues(dev);
2870 
2871 	/* Monitor link interrupts now */
2872 	bcmgenet_link_intr_enable(priv);
2873 
2874 	phy_start(priv->phydev);
2875 }
2876 
bcmgenet_open(struct net_device * dev)2877 static int bcmgenet_open(struct net_device *dev)
2878 {
2879 	struct bcmgenet_priv *priv = netdev_priv(dev);
2880 	unsigned long dma_ctrl;
2881 	u32 reg;
2882 	int ret;
2883 
2884 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2885 
2886 	/* Turn on the clock */
2887 	clk_prepare_enable(priv->clk);
2888 
2889 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2890 	 * brought out of reset as absolutely no UniMAC activity is allowed
2891 	 */
2892 	if (priv->internal_phy)
2893 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2894 
2895 	/* take MAC out of reset */
2896 	bcmgenet_umac_reset(priv);
2897 
2898 	ret = init_umac(priv);
2899 	if (ret)
2900 		goto err_clk_disable;
2901 
2902 	/* disable ethernet MAC while updating its registers */
2903 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2904 
2905 	/* Make sure we reflect the value of CRC_CMD_FWD */
2906 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2907 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2908 
2909 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2910 
2911 	/* Disable RX/TX DMA and flush TX queues */
2912 	dma_ctrl = bcmgenet_dma_disable(priv);
2913 
2914 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2915 	ret = bcmgenet_init_dma(priv);
2916 	if (ret) {
2917 		netdev_err(dev, "failed to initialize DMA\n");
2918 		goto err_clk_disable;
2919 	}
2920 
2921 	/* Always enable ring 16 - descriptor ring */
2922 	bcmgenet_enable_dma(priv, dma_ctrl);
2923 
2924 	/* HFB init */
2925 	bcmgenet_hfb_init(priv);
2926 
2927 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2928 			  dev->name, priv);
2929 	if (ret < 0) {
2930 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2931 		goto err_fini_dma;
2932 	}
2933 
2934 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2935 			  dev->name, priv);
2936 	if (ret < 0) {
2937 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2938 		goto err_irq0;
2939 	}
2940 
2941 	ret = bcmgenet_mii_probe(dev);
2942 	if (ret) {
2943 		netdev_err(dev, "failed to connect to PHY\n");
2944 		goto err_irq1;
2945 	}
2946 
2947 	bcmgenet_netif_start(dev);
2948 
2949 	return 0;
2950 
2951 err_irq1:
2952 	free_irq(priv->irq1, priv);
2953 err_irq0:
2954 	free_irq(priv->irq0, priv);
2955 err_fini_dma:
2956 	bcmgenet_fini_dma(priv);
2957 err_clk_disable:
2958 	if (priv->internal_phy)
2959 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2960 	clk_disable_unprepare(priv->clk);
2961 	return ret;
2962 }
2963 
bcmgenet_netif_stop(struct net_device * dev)2964 static void bcmgenet_netif_stop(struct net_device *dev)
2965 {
2966 	struct bcmgenet_priv *priv = netdev_priv(dev);
2967 
2968 	netif_tx_stop_all_queues(dev);
2969 	phy_stop(priv->phydev);
2970 	bcmgenet_intr_disable(priv);
2971 	bcmgenet_disable_rx_napi(priv);
2972 	bcmgenet_disable_tx_napi(priv);
2973 
2974 	/* Wait for pending work items to complete. Since interrupts are
2975 	 * disabled no new work will be scheduled.
2976 	 */
2977 	cancel_work_sync(&priv->bcmgenet_irq_work);
2978 
2979 	priv->old_link = -1;
2980 	priv->old_speed = -1;
2981 	priv->old_duplex = -1;
2982 	priv->old_pause = -1;
2983 }
2984 
bcmgenet_close(struct net_device * dev)2985 static int bcmgenet_close(struct net_device *dev)
2986 {
2987 	struct bcmgenet_priv *priv = netdev_priv(dev);
2988 	int ret;
2989 
2990 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2991 
2992 	bcmgenet_netif_stop(dev);
2993 
2994 	/* Really kill the PHY state machine and disconnect from it */
2995 	phy_disconnect(priv->phydev);
2996 
2997 	/* Disable MAC receive */
2998 	umac_enable_set(priv, CMD_RX_EN, false);
2999 
3000 	ret = bcmgenet_dma_teardown(priv);
3001 	if (ret)
3002 		return ret;
3003 
3004 	/* Disable MAC transmit. TX DMA disabled have to done before this */
3005 	umac_enable_set(priv, CMD_TX_EN, false);
3006 
3007 	/* tx reclaim */
3008 	bcmgenet_tx_reclaim_all(dev);
3009 	bcmgenet_fini_dma(priv);
3010 
3011 	free_irq(priv->irq0, priv);
3012 	free_irq(priv->irq1, priv);
3013 
3014 	if (priv->internal_phy)
3015 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3016 
3017 	clk_disable_unprepare(priv->clk);
3018 
3019 	return ret;
3020 }
3021 
bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring * ring)3022 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3023 {
3024 	struct bcmgenet_priv *priv = ring->priv;
3025 	u32 p_index, c_index, intsts, intmsk;
3026 	struct netdev_queue *txq;
3027 	unsigned int free_bds;
3028 	unsigned long flags;
3029 	bool txq_stopped;
3030 
3031 	if (!netif_msg_tx_err(priv))
3032 		return;
3033 
3034 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3035 
3036 	spin_lock_irqsave(&ring->lock, flags);
3037 	if (ring->index == DESC_INDEX) {
3038 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3039 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3040 	} else {
3041 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3042 		intmsk = 1 << ring->index;
3043 	}
3044 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3045 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3046 	txq_stopped = netif_tx_queue_stopped(txq);
3047 	free_bds = ring->free_bds;
3048 	spin_unlock_irqrestore(&ring->lock, flags);
3049 
3050 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3051 		  "TX queue status: %s, interrupts: %s\n"
3052 		  "(sw)free_bds: %d (sw)size: %d\n"
3053 		  "(sw)p_index: %d (hw)p_index: %d\n"
3054 		  "(sw)c_index: %d (hw)c_index: %d\n"
3055 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3056 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3057 		  ring->index, ring->queue,
3058 		  txq_stopped ? "stopped" : "active",
3059 		  intsts & intmsk ? "enabled" : "disabled",
3060 		  free_bds, ring->size,
3061 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3062 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3063 		  ring->clean_ptr, ring->write_ptr,
3064 		  ring->cb_ptr, ring->end_ptr);
3065 }
3066 
bcmgenet_timeout(struct net_device * dev)3067 static void bcmgenet_timeout(struct net_device *dev)
3068 {
3069 	struct bcmgenet_priv *priv = netdev_priv(dev);
3070 	u32 int0_enable = 0;
3071 	u32 int1_enable = 0;
3072 	unsigned int q;
3073 
3074 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3075 
3076 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3077 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3078 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3079 
3080 	bcmgenet_tx_reclaim_all(dev);
3081 
3082 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3083 		int1_enable |= (1 << q);
3084 
3085 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3086 
3087 	/* Re-enable TX interrupts if disabled */
3088 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3089 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3090 
3091 	dev->trans_start = jiffies;
3092 
3093 	dev->stats.tx_errors++;
3094 
3095 	netif_tx_wake_all_queues(dev);
3096 }
3097 
3098 #define MAX_MDF_FILTER	17
3099 
bcmgenet_set_mdf_addr(struct bcmgenet_priv * priv,unsigned char * addr,int * i)3100 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3101 					 unsigned char *addr,
3102 					 int *i)
3103 {
3104 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3105 			     UMAC_MDF_ADDR + (*i * 4));
3106 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3107 			     addr[4] << 8 | addr[5],
3108 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3109 	*i += 2;
3110 }
3111 
bcmgenet_set_rx_mode(struct net_device * dev)3112 static void bcmgenet_set_rx_mode(struct net_device *dev)
3113 {
3114 	struct bcmgenet_priv *priv = netdev_priv(dev);
3115 	struct netdev_hw_addr *ha;
3116 	int i, nfilter;
3117 	u32 reg;
3118 
3119 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3120 
3121 	/* Number of filters needed */
3122 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3123 
3124 	/*
3125 	 * Turn on promicuous mode for three scenarios
3126 	 * 1. IFF_PROMISC flag is set
3127 	 * 2. IFF_ALLMULTI flag is set
3128 	 * 3. The number of filters needed exceeds the number filters
3129 	 *    supported by the hardware.
3130 	*/
3131 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3132 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3133 	    (nfilter > MAX_MDF_FILTER)) {
3134 		reg |= CMD_PROMISC;
3135 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3136 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3137 		return;
3138 	} else {
3139 		reg &= ~CMD_PROMISC;
3140 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3141 	}
3142 
3143 	/* update MDF filter */
3144 	i = 0;
3145 	/* Broadcast */
3146 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3147 	/* my own address.*/
3148 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3149 
3150 	/* Unicast */
3151 	netdev_for_each_uc_addr(ha, dev)
3152 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3153 
3154 	/* Multicast */
3155 	netdev_for_each_mc_addr(ha, dev)
3156 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3157 
3158 	/* Enable filters */
3159 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3160 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3161 }
3162 
3163 /* Set the hardware MAC address. */
bcmgenet_set_mac_addr(struct net_device * dev,void * p)3164 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3165 {
3166 	struct sockaddr *addr = p;
3167 
3168 	/* Setting the MAC address at the hardware level is not possible
3169 	 * without disabling the UniMAC RX/TX enable bits.
3170 	 */
3171 	if (netif_running(dev))
3172 		return -EBUSY;
3173 
3174 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3175 
3176 	return 0;
3177 }
3178 
3179 static const struct net_device_ops bcmgenet_netdev_ops = {
3180 	.ndo_open		= bcmgenet_open,
3181 	.ndo_stop		= bcmgenet_close,
3182 	.ndo_start_xmit		= bcmgenet_xmit,
3183 	.ndo_tx_timeout		= bcmgenet_timeout,
3184 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3185 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3186 	.ndo_do_ioctl		= bcmgenet_ioctl,
3187 	.ndo_set_features	= bcmgenet_set_features,
3188 #ifdef CONFIG_NET_POLL_CONTROLLER
3189 	.ndo_poll_controller	= bcmgenet_poll_controller,
3190 #endif
3191 };
3192 
3193 /* Array of GENET hardware parameters/characteristics */
3194 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3195 	[GENET_V1] = {
3196 		.tx_queues = 0,
3197 		.tx_bds_per_q = 0,
3198 		.rx_queues = 0,
3199 		.rx_bds_per_q = 0,
3200 		.bp_in_en_shift = 16,
3201 		.bp_in_mask = 0xffff,
3202 		.hfb_filter_cnt = 16,
3203 		.qtag_mask = 0x1F,
3204 		.hfb_offset = 0x1000,
3205 		.rdma_offset = 0x2000,
3206 		.tdma_offset = 0x3000,
3207 		.words_per_bd = 2,
3208 	},
3209 	[GENET_V2] = {
3210 		.tx_queues = 4,
3211 		.tx_bds_per_q = 32,
3212 		.rx_queues = 0,
3213 		.rx_bds_per_q = 0,
3214 		.bp_in_en_shift = 16,
3215 		.bp_in_mask = 0xffff,
3216 		.hfb_filter_cnt = 16,
3217 		.qtag_mask = 0x1F,
3218 		.tbuf_offset = 0x0600,
3219 		.hfb_offset = 0x1000,
3220 		.hfb_reg_offset = 0x2000,
3221 		.rdma_offset = 0x3000,
3222 		.tdma_offset = 0x4000,
3223 		.words_per_bd = 2,
3224 		.flags = GENET_HAS_EXT,
3225 	},
3226 	[GENET_V3] = {
3227 		.tx_queues = 4,
3228 		.tx_bds_per_q = 32,
3229 		.rx_queues = 0,
3230 		.rx_bds_per_q = 0,
3231 		.bp_in_en_shift = 17,
3232 		.bp_in_mask = 0x1ffff,
3233 		.hfb_filter_cnt = 48,
3234 		.hfb_filter_size = 128,
3235 		.qtag_mask = 0x3F,
3236 		.tbuf_offset = 0x0600,
3237 		.hfb_offset = 0x8000,
3238 		.hfb_reg_offset = 0xfc00,
3239 		.rdma_offset = 0x10000,
3240 		.tdma_offset = 0x11000,
3241 		.words_per_bd = 2,
3242 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3243 			 GENET_HAS_MOCA_LINK_DET,
3244 	},
3245 	[GENET_V4] = {
3246 		.tx_queues = 4,
3247 		.tx_bds_per_q = 32,
3248 		.rx_queues = 0,
3249 		.rx_bds_per_q = 0,
3250 		.bp_in_en_shift = 17,
3251 		.bp_in_mask = 0x1ffff,
3252 		.hfb_filter_cnt = 48,
3253 		.hfb_filter_size = 128,
3254 		.qtag_mask = 0x3F,
3255 		.tbuf_offset = 0x0600,
3256 		.hfb_offset = 0x8000,
3257 		.hfb_reg_offset = 0xfc00,
3258 		.rdma_offset = 0x2000,
3259 		.tdma_offset = 0x4000,
3260 		.words_per_bd = 3,
3261 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3262 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3263 	},
3264 };
3265 
3266 /* Infer hardware parameters from the detected GENET version */
bcmgenet_set_hw_params(struct bcmgenet_priv * priv)3267 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3268 {
3269 	struct bcmgenet_hw_params *params;
3270 	u32 reg;
3271 	u8 major;
3272 	u16 gphy_rev;
3273 
3274 	if (GENET_IS_V4(priv)) {
3275 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3276 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3277 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3278 		priv->version = GENET_V4;
3279 	} else if (GENET_IS_V3(priv)) {
3280 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3281 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3282 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3283 		priv->version = GENET_V3;
3284 	} else if (GENET_IS_V2(priv)) {
3285 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3286 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3287 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3288 		priv->version = GENET_V2;
3289 	} else if (GENET_IS_V1(priv)) {
3290 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3291 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3292 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3293 		priv->version = GENET_V1;
3294 	}
3295 
3296 	/* enum genet_version starts at 1 */
3297 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3298 	params = priv->hw_params;
3299 
3300 	/* Read GENET HW version */
3301 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3302 	major = (reg >> 24 & 0x0f);
3303 	if (major == 5)
3304 		major = 4;
3305 	else if (major == 0)
3306 		major = 1;
3307 	if (major != priv->version) {
3308 		dev_err(&priv->pdev->dev,
3309 			"GENET version mismatch, got: %d, configured for: %d\n",
3310 			major, priv->version);
3311 	}
3312 
3313 	/* Print the GENET core version */
3314 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3315 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3316 
3317 	/* Store the integrated PHY revision for the MDIO probing function
3318 	 * to pass this information to the PHY driver. The PHY driver expects
3319 	 * to find the PHY major revision in bits 15:8 while the GENET register
3320 	 * stores that information in bits 7:0, account for that.
3321 	 *
3322 	 * On newer chips, starting with PHY revision G0, a new scheme is
3323 	 * deployed similar to the Starfighter 2 switch with GPHY major
3324 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3325 	 * is reserved as well as special value 0x01ff, we have a small
3326 	 * heuristic to check for the new GPHY revision and re-arrange things
3327 	 * so the GPHY driver is happy.
3328 	 */
3329 	gphy_rev = reg & 0xffff;
3330 
3331 	/* This is reserved so should require special treatment */
3332 	if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3333 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3334 		return;
3335 	}
3336 
3337 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3338 	if ((gphy_rev & 0xf0) != 0)
3339 		priv->gphy_rev = gphy_rev << 8;
3340 
3341 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3342 	else if ((gphy_rev & 0xff00) != 0)
3343 		priv->gphy_rev = gphy_rev;
3344 
3345 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3346 	if (!(params->flags & GENET_HAS_40BITS))
3347 		pr_warn("GENET does not support 40-bits PA\n");
3348 #endif
3349 
3350 	pr_debug("Configuration for version: %d\n"
3351 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3352 		"BP << en: %2d, BP msk: 0x%05x\n"
3353 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3354 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3355 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3356 		"Words/BD: %d\n",
3357 		priv->version,
3358 		params->tx_queues, params->tx_bds_per_q,
3359 		params->rx_queues, params->rx_bds_per_q,
3360 		params->bp_in_en_shift, params->bp_in_mask,
3361 		params->hfb_filter_cnt, params->qtag_mask,
3362 		params->tbuf_offset, params->hfb_offset,
3363 		params->hfb_reg_offset,
3364 		params->rdma_offset, params->tdma_offset,
3365 		params->words_per_bd);
3366 }
3367 
3368 static const struct of_device_id bcmgenet_match[] = {
3369 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3370 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3371 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3372 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3373 	{ },
3374 };
3375 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3376 
bcmgenet_probe(struct platform_device * pdev)3377 static int bcmgenet_probe(struct platform_device *pdev)
3378 {
3379 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3380 	struct device_node *dn = pdev->dev.of_node;
3381 	const struct of_device_id *of_id = NULL;
3382 	struct bcmgenet_priv *priv;
3383 	struct net_device *dev;
3384 	const void *macaddr;
3385 	struct resource *r;
3386 	int err = -EIO;
3387 	const char *phy_mode_str;
3388 
3389 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3390 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3391 				 GENET_MAX_MQ_CNT + 1);
3392 	if (!dev) {
3393 		dev_err(&pdev->dev, "can't allocate net device\n");
3394 		return -ENOMEM;
3395 	}
3396 
3397 	if (dn) {
3398 		of_id = of_match_node(bcmgenet_match, dn);
3399 		if (!of_id)
3400 			return -EINVAL;
3401 	}
3402 
3403 	priv = netdev_priv(dev);
3404 	priv->irq0 = platform_get_irq(pdev, 0);
3405 	priv->irq1 = platform_get_irq(pdev, 1);
3406 	priv->wol_irq = platform_get_irq(pdev, 2);
3407 	if (!priv->irq0 || !priv->irq1) {
3408 		dev_err(&pdev->dev, "can't find IRQs\n");
3409 		err = -EINVAL;
3410 		goto err;
3411 	}
3412 
3413 	if (dn) {
3414 		macaddr = of_get_mac_address(dn);
3415 		if (!macaddr) {
3416 			dev_err(&pdev->dev, "can't find MAC address\n");
3417 			err = -EINVAL;
3418 			goto err;
3419 		}
3420 	} else {
3421 		macaddr = pd->mac_address;
3422 	}
3423 
3424 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3425 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3426 	if (IS_ERR(priv->base)) {
3427 		err = PTR_ERR(priv->base);
3428 		goto err;
3429 	}
3430 
3431 	SET_NETDEV_DEV(dev, &pdev->dev);
3432 	dev_set_drvdata(&pdev->dev, dev);
3433 	ether_addr_copy(dev->dev_addr, macaddr);
3434 	dev->watchdog_timeo = 2 * HZ;
3435 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3436 	dev->netdev_ops = &bcmgenet_netdev_ops;
3437 
3438 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3439 
3440 	/* Set hardware features */
3441 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3442 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3443 
3444 	/* Request the WOL interrupt and advertise suspend if available */
3445 	priv->wol_irq_disabled = true;
3446 	if (priv->wol_irq > 0) {
3447 		err = devm_request_irq(&pdev->dev, priv->wol_irq,
3448 				       bcmgenet_wol_isr, 0, dev->name, priv);
3449 		if (!err)
3450 			device_set_wakeup_capable(&pdev->dev, 1);
3451 	}
3452 
3453 	/* Set the needed headroom to account for any possible
3454 	 * features enabling/disabling at runtime
3455 	 */
3456 	dev->needed_headroom += 64;
3457 
3458 	netdev_boot_setup_check(dev);
3459 
3460 	priv->dev = dev;
3461 	priv->pdev = pdev;
3462 	if (of_id)
3463 		priv->version = (enum bcmgenet_version)of_id->data;
3464 	else
3465 		priv->version = pd->genet_version;
3466 
3467 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3468 	if (IS_ERR(priv->clk)) {
3469 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3470 		priv->clk = NULL;
3471 	}
3472 
3473 	clk_prepare_enable(priv->clk);
3474 
3475 	bcmgenet_set_hw_params(priv);
3476 
3477 	/* Mii wait queue */
3478 	init_waitqueue_head(&priv->wq);
3479 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3480 	priv->rx_buf_len = RX_BUF_LENGTH;
3481 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3482 
3483 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3484 	if (IS_ERR(priv->clk_wol)) {
3485 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3486 		priv->clk_wol = NULL;
3487 	}
3488 
3489 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3490 	if (IS_ERR(priv->clk_eee)) {
3491 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3492 		priv->clk_eee = NULL;
3493 	}
3494 
3495 	/* If this is an internal GPHY, power it on now, before UniMAC is
3496 	 * brought out of reset as absolutely no UniMAC activity is allowed
3497 	 */
3498 	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3499 	    !strcasecmp(phy_mode_str, "internal"))
3500 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3501 
3502 	err = reset_umac(priv);
3503 	if (err)
3504 		goto err_clk_disable;
3505 
3506 	err = bcmgenet_mii_init(dev);
3507 	if (err)
3508 		goto err_clk_disable;
3509 
3510 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3511 	 * just the ring 16 descriptor based TX
3512 	 */
3513 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3514 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3515 
3516 	/* libphy will determine the link state */
3517 	netif_carrier_off(dev);
3518 
3519 	/* Turn off the main clock, WOL clock is handled separately */
3520 	clk_disable_unprepare(priv->clk);
3521 
3522 	err = register_netdev(dev);
3523 	if (err) {
3524 		bcmgenet_mii_exit(dev);
3525 		goto err;
3526 	}
3527 
3528 	return err;
3529 
3530 err_clk_disable:
3531 	clk_disable_unprepare(priv->clk);
3532 err:
3533 	free_netdev(dev);
3534 	return err;
3535 }
3536 
bcmgenet_remove(struct platform_device * pdev)3537 static int bcmgenet_remove(struct platform_device *pdev)
3538 {
3539 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3540 
3541 	dev_set_drvdata(&pdev->dev, NULL);
3542 	unregister_netdev(priv->dev);
3543 	bcmgenet_mii_exit(priv->dev);
3544 	free_netdev(priv->dev);
3545 
3546 	return 0;
3547 }
3548 
3549 #ifdef CONFIG_PM_SLEEP
bcmgenet_suspend(struct device * d)3550 static int bcmgenet_suspend(struct device *d)
3551 {
3552 	struct net_device *dev = dev_get_drvdata(d);
3553 	struct bcmgenet_priv *priv = netdev_priv(dev);
3554 	int ret;
3555 
3556 	if (!netif_running(dev))
3557 		return 0;
3558 
3559 	bcmgenet_netif_stop(dev);
3560 
3561 	if (!device_may_wakeup(d))
3562 		phy_suspend(priv->phydev);
3563 
3564 	netif_device_detach(dev);
3565 
3566 	/* Disable MAC receive */
3567 	umac_enable_set(priv, CMD_RX_EN, false);
3568 
3569 	ret = bcmgenet_dma_teardown(priv);
3570 	if (ret)
3571 		return ret;
3572 
3573 	/* Disable MAC transmit. TX DMA disabled have to done before this */
3574 	umac_enable_set(priv, CMD_TX_EN, false);
3575 
3576 	/* tx reclaim */
3577 	bcmgenet_tx_reclaim_all(dev);
3578 	bcmgenet_fini_dma(priv);
3579 
3580 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3581 	if (device_may_wakeup(d) && priv->wolopts) {
3582 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3583 		clk_prepare_enable(priv->clk_wol);
3584 	} else if (priv->internal_phy) {
3585 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3586 	}
3587 
3588 	/* Turn off the clocks */
3589 	clk_disable_unprepare(priv->clk);
3590 
3591 	return ret;
3592 }
3593 
bcmgenet_resume(struct device * d)3594 static int bcmgenet_resume(struct device *d)
3595 {
3596 	struct net_device *dev = dev_get_drvdata(d);
3597 	struct bcmgenet_priv *priv = netdev_priv(dev);
3598 	unsigned long dma_ctrl;
3599 	int ret;
3600 
3601 	if (!netif_running(dev))
3602 		return 0;
3603 
3604 	/* Turn on the clock */
3605 	ret = clk_prepare_enable(priv->clk);
3606 	if (ret)
3607 		return ret;
3608 
3609 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3610 	 * brought out of reset as absolutely no UniMAC activity is allowed
3611 	 */
3612 	if (priv->internal_phy)
3613 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3614 
3615 	bcmgenet_umac_reset(priv);
3616 
3617 	ret = init_umac(priv);
3618 	if (ret)
3619 		goto out_clk_disable;
3620 
3621 	/* From WOL-enabled suspend, switch to regular clock */
3622 	if (priv->wolopts)
3623 		clk_disable_unprepare(priv->clk_wol);
3624 
3625 	phy_init_hw(priv->phydev);
3626 	/* Speed settings must be restored */
3627 	bcmgenet_mii_config(priv->dev);
3628 
3629 	/* disable ethernet MAC while updating its registers */
3630 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3631 
3632 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3633 
3634 	if (priv->wolopts)
3635 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3636 
3637 	/* Disable RX/TX DMA and flush TX queues */
3638 	dma_ctrl = bcmgenet_dma_disable(priv);
3639 
3640 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3641 	ret = bcmgenet_init_dma(priv);
3642 	if (ret) {
3643 		netdev_err(dev, "failed to initialize DMA\n");
3644 		goto out_clk_disable;
3645 	}
3646 
3647 	/* Always enable ring 16 - descriptor ring */
3648 	bcmgenet_enable_dma(priv, dma_ctrl);
3649 
3650 	netif_device_attach(dev);
3651 
3652 	if (!device_may_wakeup(d))
3653 		phy_resume(priv->phydev);
3654 
3655 	if (priv->eee.eee_enabled)
3656 		bcmgenet_eee_enable_set(dev, true);
3657 
3658 	bcmgenet_netif_start(dev);
3659 
3660 	return 0;
3661 
3662 out_clk_disable:
3663 	if (priv->internal_phy)
3664 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3665 	clk_disable_unprepare(priv->clk);
3666 	return ret;
3667 }
3668 #endif /* CONFIG_PM_SLEEP */
3669 
3670 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3671 
3672 static struct platform_driver bcmgenet_driver = {
3673 	.probe	= bcmgenet_probe,
3674 	.remove	= bcmgenet_remove,
3675 	.driver	= {
3676 		.name	= "bcmgenet",
3677 		.of_match_table = bcmgenet_match,
3678 		.pm	= &bcmgenet_pm_ops,
3679 	},
3680 };
3681 module_platform_driver(bcmgenet_driver);
3682 
3683 MODULE_AUTHOR("Broadcom Corporation");
3684 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3685 MODULE_ALIAS("platform:bcmgenet");
3686 MODULE_LICENSE("GPL");
3687