1 /*
2 * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/list.h>
36 #include <linux/slab.h>
37 #include <net/neighbour.h>
38 #include <linux/notifier.h>
39 #include <linux/atomic.h>
40 #include <linux/proc_fs.h>
41 #include <linux/if_vlan.h>
42 #include <net/netevent.h>
43 #include <linux/highmem.h>
44 #include <linux/vmalloc.h>
45 #include <linux/export.h>
46
47 #include "common.h"
48 #include "regs.h"
49 #include "cxgb3_ioctl.h"
50 #include "cxgb3_ctl_defs.h"
51 #include "cxgb3_defs.h"
52 #include "l2t.h"
53 #include "firmware_exports.h"
54 #include "cxgb3_offload.h"
55
56 static LIST_HEAD(client_list);
57 static LIST_HEAD(ofld_dev_list);
58 static DEFINE_MUTEX(cxgb3_db_lock);
59
60 static DEFINE_RWLOCK(adapter_list_lock);
61 static LIST_HEAD(adapter_list);
62
63 static const unsigned int MAX_ATIDS = 64 * 1024;
64 static const unsigned int ATID_BASE = 0x10000;
65
66 static void cxgb_neigh_update(struct neighbour *neigh);
67 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new,
68 struct neighbour *neigh, const void *daddr);
69
offload_activated(struct t3cdev * tdev)70 static inline int offload_activated(struct t3cdev *tdev)
71 {
72 const struct adapter *adapter = tdev2adap(tdev);
73
74 return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
75 }
76
77 /**
78 * cxgb3_register_client - register an offload client
79 * @client: the client
80 *
81 * Add the client to the client list,
82 * and call backs the client for each activated offload device
83 */
cxgb3_register_client(struct cxgb3_client * client)84 void cxgb3_register_client(struct cxgb3_client *client)
85 {
86 struct t3cdev *tdev;
87
88 mutex_lock(&cxgb3_db_lock);
89 list_add_tail(&client->client_list, &client_list);
90
91 if (client->add) {
92 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
93 if (offload_activated(tdev))
94 client->add(tdev);
95 }
96 }
97 mutex_unlock(&cxgb3_db_lock);
98 }
99
100 EXPORT_SYMBOL(cxgb3_register_client);
101
102 /**
103 * cxgb3_unregister_client - unregister an offload client
104 * @client: the client
105 *
106 * Remove the client to the client list,
107 * and call backs the client for each activated offload device.
108 */
cxgb3_unregister_client(struct cxgb3_client * client)109 void cxgb3_unregister_client(struct cxgb3_client *client)
110 {
111 struct t3cdev *tdev;
112
113 mutex_lock(&cxgb3_db_lock);
114 list_del(&client->client_list);
115
116 if (client->remove) {
117 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
118 if (offload_activated(tdev))
119 client->remove(tdev);
120 }
121 }
122 mutex_unlock(&cxgb3_db_lock);
123 }
124
125 EXPORT_SYMBOL(cxgb3_unregister_client);
126
127 /**
128 * cxgb3_add_clients - activate registered clients for an offload device
129 * @tdev: the offload device
130 *
131 * Call backs all registered clients once a offload device is activated
132 */
cxgb3_add_clients(struct t3cdev * tdev)133 void cxgb3_add_clients(struct t3cdev *tdev)
134 {
135 struct cxgb3_client *client;
136
137 mutex_lock(&cxgb3_db_lock);
138 list_for_each_entry(client, &client_list, client_list) {
139 if (client->add)
140 client->add(tdev);
141 }
142 mutex_unlock(&cxgb3_db_lock);
143 }
144
145 /**
146 * cxgb3_remove_clients - deactivates registered clients
147 * for an offload device
148 * @tdev: the offload device
149 *
150 * Call backs all registered clients once a offload device is deactivated
151 */
cxgb3_remove_clients(struct t3cdev * tdev)152 void cxgb3_remove_clients(struct t3cdev *tdev)
153 {
154 struct cxgb3_client *client;
155
156 mutex_lock(&cxgb3_db_lock);
157 list_for_each_entry(client, &client_list, client_list) {
158 if (client->remove)
159 client->remove(tdev);
160 }
161 mutex_unlock(&cxgb3_db_lock);
162 }
163
cxgb3_event_notify(struct t3cdev * tdev,u32 event,u32 port)164 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
165 {
166 struct cxgb3_client *client;
167
168 mutex_lock(&cxgb3_db_lock);
169 list_for_each_entry(client, &client_list, client_list) {
170 if (client->event_handler)
171 client->event_handler(tdev, event, port);
172 }
173 mutex_unlock(&cxgb3_db_lock);
174 }
175
get_iff_from_mac(struct adapter * adapter,const unsigned char * mac,unsigned int vlan)176 static struct net_device *get_iff_from_mac(struct adapter *adapter,
177 const unsigned char *mac,
178 unsigned int vlan)
179 {
180 int i;
181
182 for_each_port(adapter, i) {
183 struct net_device *dev = adapter->port[i];
184
185 if (ether_addr_equal(dev->dev_addr, mac)) {
186 rcu_read_lock();
187 if (vlan && vlan != VLAN_VID_MASK) {
188 dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), vlan);
189 } else if (netif_is_bond_slave(dev)) {
190 struct net_device *upper_dev;
191
192 while ((upper_dev =
193 netdev_master_upper_dev_get_rcu(dev)))
194 dev = upper_dev;
195 }
196 rcu_read_unlock();
197 return dev;
198 }
199 }
200 return NULL;
201 }
202
cxgb_ulp_iscsi_ctl(struct adapter * adapter,unsigned int req,void * data)203 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
204 void *data)
205 {
206 int i;
207 int ret = 0;
208 unsigned int val = 0;
209 struct ulp_iscsi_info *uiip = data;
210
211 switch (req) {
212 case ULP_ISCSI_GET_PARAMS:
213 uiip->pdev = adapter->pdev;
214 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
215 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
216 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
217
218 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
219 for (i = 0; i < 4; i++, val >>= 8)
220 uiip->pgsz_factor[i] = val & 0xFF;
221
222 val = t3_read_reg(adapter, A_TP_PARA_REG7);
223 uiip->max_txsz =
224 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
225 (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
226 /*
227 * On tx, the iscsi pdu has to be <= tx page size and has to
228 * fit into the Tx PM FIFO.
229 */
230 val = min(adapter->params.tp.tx_pg_size,
231 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
232 uiip->max_txsz = min(val, uiip->max_txsz);
233
234 /* set MaxRxData to 16224 */
235 val = t3_read_reg(adapter, A_TP_PARA_REG2);
236 if ((val >> S_MAXRXDATA) != 0x3f60) {
237 val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
238 val |= V_MAXRXDATA(0x3f60);
239 pr_info("%s, iscsi set MaxRxData to 16224 (0x%x)\n",
240 adapter->name, val);
241 t3_write_reg(adapter, A_TP_PARA_REG2, val);
242 }
243
244 /*
245 * on rx, the iscsi pdu has to be < rx page size and the
246 * the max rx data length programmed in TP
247 */
248 val = min(adapter->params.tp.rx_pg_size,
249 ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
250 S_MAXRXDATA) & M_MAXRXDATA);
251 uiip->max_rxsz = min(val, uiip->max_rxsz);
252 break;
253 case ULP_ISCSI_SET_PARAMS:
254 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
255 /* program the ddp page sizes */
256 for (i = 0; i < 4; i++)
257 val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
258 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
259 pr_info("%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u\n",
260 adapter->name, val, uiip->pgsz_factor[0],
261 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
262 uiip->pgsz_factor[3]);
263 t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
264 }
265 break;
266 default:
267 ret = -EOPNOTSUPP;
268 }
269 return ret;
270 }
271
272 /* Response queue used for RDMA events. */
273 #define ASYNC_NOTIF_RSPQ 0
274
cxgb_rdma_ctl(struct adapter * adapter,unsigned int req,void * data)275 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
276 {
277 int ret = 0;
278
279 switch (req) {
280 case RDMA_GET_PARAMS: {
281 struct rdma_info *rdma = data;
282 struct pci_dev *pdev = adapter->pdev;
283
284 rdma->udbell_physbase = pci_resource_start(pdev, 2);
285 rdma->udbell_len = pci_resource_len(pdev, 2);
286 rdma->tpt_base =
287 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
288 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
289 rdma->pbl_base =
290 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
291 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
292 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
293 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
294 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
295 rdma->pdev = pdev;
296 break;
297 }
298 case RDMA_CQ_OP:{
299 unsigned long flags;
300 struct rdma_cq_op *rdma = data;
301
302 /* may be called in any context */
303 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
304 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
305 rdma->credits);
306 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
307 break;
308 }
309 case RDMA_GET_MEM:{
310 struct ch_mem_range *t = data;
311 struct mc7 *mem;
312
313 if ((t->addr & 7) || (t->len & 7))
314 return -EINVAL;
315 if (t->mem_id == MEM_CM)
316 mem = &adapter->cm;
317 else if (t->mem_id == MEM_PMRX)
318 mem = &adapter->pmrx;
319 else if (t->mem_id == MEM_PMTX)
320 mem = &adapter->pmtx;
321 else
322 return -EINVAL;
323
324 ret =
325 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
326 (u64 *) t->buf);
327 if (ret)
328 return ret;
329 break;
330 }
331 case RDMA_CQ_SETUP:{
332 struct rdma_cq_setup *rdma = data;
333
334 spin_lock_irq(&adapter->sge.reg_lock);
335 ret =
336 t3_sge_init_cqcntxt(adapter, rdma->id,
337 rdma->base_addr, rdma->size,
338 ASYNC_NOTIF_RSPQ,
339 rdma->ovfl_mode, rdma->credits,
340 rdma->credit_thres);
341 spin_unlock_irq(&adapter->sge.reg_lock);
342 break;
343 }
344 case RDMA_CQ_DISABLE:
345 spin_lock_irq(&adapter->sge.reg_lock);
346 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
347 spin_unlock_irq(&adapter->sge.reg_lock);
348 break;
349 case RDMA_CTRL_QP_SETUP:{
350 struct rdma_ctrlqp_setup *rdma = data;
351
352 spin_lock_irq(&adapter->sge.reg_lock);
353 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
354 SGE_CNTXT_RDMA,
355 ASYNC_NOTIF_RSPQ,
356 rdma->base_addr, rdma->size,
357 FW_RI_TID_START, 1, 0);
358 spin_unlock_irq(&adapter->sge.reg_lock);
359 break;
360 }
361 case RDMA_GET_MIB: {
362 spin_lock(&adapter->stats_lock);
363 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
364 spin_unlock(&adapter->stats_lock);
365 break;
366 }
367 default:
368 ret = -EOPNOTSUPP;
369 }
370 return ret;
371 }
372
cxgb_offload_ctl(struct t3cdev * tdev,unsigned int req,void * data)373 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
374 {
375 struct adapter *adapter = tdev2adap(tdev);
376 struct tid_range *tid;
377 struct mtutab *mtup;
378 struct iff_mac *iffmacp;
379 struct ddp_params *ddpp;
380 struct adap_ports *ports;
381 struct ofld_page_info *rx_page_info;
382 struct tp_params *tp = &adapter->params.tp;
383 int i;
384
385 switch (req) {
386 case GET_MAX_OUTSTANDING_WR:
387 *(unsigned int *)data = FW_WR_NUM;
388 break;
389 case GET_WR_LEN:
390 *(unsigned int *)data = WR_FLITS;
391 break;
392 case GET_TX_MAX_CHUNK:
393 *(unsigned int *)data = 1 << 20; /* 1MB */
394 break;
395 case GET_TID_RANGE:
396 tid = data;
397 tid->num = t3_mc5_size(&adapter->mc5) -
398 adapter->params.mc5.nroutes -
399 adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
400 tid->base = 0;
401 break;
402 case GET_STID_RANGE:
403 tid = data;
404 tid->num = adapter->params.mc5.nservers;
405 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
406 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
407 break;
408 case GET_L2T_CAPACITY:
409 *(unsigned int *)data = 2048;
410 break;
411 case GET_MTUS:
412 mtup = data;
413 mtup->size = NMTUS;
414 mtup->mtus = adapter->params.mtus;
415 break;
416 case GET_IFF_FROM_MAC:
417 iffmacp = data;
418 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
419 iffmacp->vlan_tag &
420 VLAN_VID_MASK);
421 break;
422 case GET_DDP_PARAMS:
423 ddpp = data;
424 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
425 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
426 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
427 break;
428 case GET_PORTS:
429 ports = data;
430 ports->nports = adapter->params.nports;
431 for_each_port(adapter, i)
432 ports->lldevs[i] = adapter->port[i];
433 break;
434 case ULP_ISCSI_GET_PARAMS:
435 case ULP_ISCSI_SET_PARAMS:
436 if (!offload_running(adapter))
437 return -EAGAIN;
438 return cxgb_ulp_iscsi_ctl(adapter, req, data);
439 case RDMA_GET_PARAMS:
440 case RDMA_CQ_OP:
441 case RDMA_CQ_SETUP:
442 case RDMA_CQ_DISABLE:
443 case RDMA_CTRL_QP_SETUP:
444 case RDMA_GET_MEM:
445 case RDMA_GET_MIB:
446 if (!offload_running(adapter))
447 return -EAGAIN;
448 return cxgb_rdma_ctl(adapter, req, data);
449 case GET_RX_PAGE_INFO:
450 rx_page_info = data;
451 rx_page_info->page_size = tp->rx_pg_size;
452 rx_page_info->num = tp->rx_num_pgs;
453 break;
454 case GET_ISCSI_IPV4ADDR: {
455 struct iscsi_ipv4addr *p = data;
456 struct port_info *pi = netdev_priv(p->dev);
457 p->ipv4addr = pi->iscsi_ipv4addr;
458 break;
459 }
460 case GET_EMBEDDED_INFO: {
461 struct ch_embedded_info *e = data;
462
463 spin_lock(&adapter->stats_lock);
464 t3_get_fw_version(adapter, &e->fw_vers);
465 t3_get_tp_version(adapter, &e->tp_vers);
466 spin_unlock(&adapter->stats_lock);
467 break;
468 }
469 default:
470 return -EOPNOTSUPP;
471 }
472 return 0;
473 }
474
475 /*
476 * Dummy handler for Rx offload packets in case we get an offload packet before
477 * proper processing is setup. This complains and drops the packet as it isn't
478 * normal to get offload packets at this stage.
479 */
rx_offload_blackhole(struct t3cdev * dev,struct sk_buff ** skbs,int n)480 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
481 int n)
482 {
483 while (n--)
484 dev_kfree_skb_any(skbs[n]);
485 return 0;
486 }
487
dummy_neigh_update(struct t3cdev * dev,struct neighbour * neigh)488 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
489 {
490 }
491
cxgb3_set_dummy_ops(struct t3cdev * dev)492 void cxgb3_set_dummy_ops(struct t3cdev *dev)
493 {
494 dev->recv = rx_offload_blackhole;
495 dev->neigh_update = dummy_neigh_update;
496 }
497
498 /*
499 * Free an active-open TID.
500 */
cxgb3_free_atid(struct t3cdev * tdev,int atid)501 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
502 {
503 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
504 union active_open_entry *p = atid2entry(t, atid);
505 void *ctx = p->t3c_tid.ctx;
506
507 spin_lock_bh(&t->atid_lock);
508 p->next = t->afree;
509 t->afree = p;
510 t->atids_in_use--;
511 spin_unlock_bh(&t->atid_lock);
512
513 return ctx;
514 }
515
516 EXPORT_SYMBOL(cxgb3_free_atid);
517
518 /*
519 * Free a server TID and return it to the free pool.
520 */
cxgb3_free_stid(struct t3cdev * tdev,int stid)521 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
522 {
523 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
524 union listen_entry *p = stid2entry(t, stid);
525
526 spin_lock_bh(&t->stid_lock);
527 p->next = t->sfree;
528 t->sfree = p;
529 t->stids_in_use--;
530 spin_unlock_bh(&t->stid_lock);
531 }
532
533 EXPORT_SYMBOL(cxgb3_free_stid);
534
cxgb3_insert_tid(struct t3cdev * tdev,struct cxgb3_client * client,void * ctx,unsigned int tid)535 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
536 void *ctx, unsigned int tid)
537 {
538 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
539
540 t->tid_tab[tid].client = client;
541 t->tid_tab[tid].ctx = ctx;
542 atomic_inc(&t->tids_in_use);
543 }
544
545 EXPORT_SYMBOL(cxgb3_insert_tid);
546
547 /*
548 * Populate a TID_RELEASE WR. The skb must be already propely sized.
549 */
mk_tid_release(struct sk_buff * skb,unsigned int tid)550 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
551 {
552 struct cpl_tid_release *req;
553
554 skb->priority = CPL_PRIORITY_SETUP;
555 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
556 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
557 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
558 }
559
t3_process_tid_release_list(struct work_struct * work)560 static void t3_process_tid_release_list(struct work_struct *work)
561 {
562 struct t3c_data *td = container_of(work, struct t3c_data,
563 tid_release_task);
564 struct sk_buff *skb;
565 struct t3cdev *tdev = td->dev;
566
567
568 spin_lock_bh(&td->tid_release_lock);
569 while (td->tid_release_list) {
570 struct t3c_tid_entry *p = td->tid_release_list;
571
572 td->tid_release_list = p->ctx;
573 spin_unlock_bh(&td->tid_release_lock);
574
575 skb = alloc_skb(sizeof(struct cpl_tid_release),
576 GFP_KERNEL);
577 if (!skb)
578 skb = td->nofail_skb;
579 if (!skb) {
580 spin_lock_bh(&td->tid_release_lock);
581 p->ctx = (void *)td->tid_release_list;
582 td->tid_release_list = p;
583 break;
584 }
585 mk_tid_release(skb, p - td->tid_maps.tid_tab);
586 cxgb3_ofld_send(tdev, skb);
587 p->ctx = NULL;
588 if (skb == td->nofail_skb)
589 td->nofail_skb =
590 alloc_skb(sizeof(struct cpl_tid_release),
591 GFP_KERNEL);
592 spin_lock_bh(&td->tid_release_lock);
593 }
594 td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
595 spin_unlock_bh(&td->tid_release_lock);
596
597 if (!td->nofail_skb)
598 td->nofail_skb =
599 alloc_skb(sizeof(struct cpl_tid_release),
600 GFP_KERNEL);
601 }
602
603 /* use ctx as a next pointer in the tid release list */
cxgb3_queue_tid_release(struct t3cdev * tdev,unsigned int tid)604 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
605 {
606 struct t3c_data *td = T3C_DATA(tdev);
607 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
608
609 spin_lock_bh(&td->tid_release_lock);
610 p->ctx = (void *)td->tid_release_list;
611 p->client = NULL;
612 td->tid_release_list = p;
613 if (!p->ctx || td->release_list_incomplete)
614 schedule_work(&td->tid_release_task);
615 spin_unlock_bh(&td->tid_release_lock);
616 }
617
618 EXPORT_SYMBOL(cxgb3_queue_tid_release);
619
620 /*
621 * Remove a tid from the TID table. A client may defer processing its last
622 * CPL message if it is locked at the time it arrives, and while the message
623 * sits in the client's backlog the TID may be reused for another connection.
624 * To handle this we atomically switch the TID association if it still points
625 * to the original client context.
626 */
cxgb3_remove_tid(struct t3cdev * tdev,void * ctx,unsigned int tid)627 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
628 {
629 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
630
631 BUG_ON(tid >= t->ntids);
632 if (tdev->type == T3A)
633 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
634 else {
635 struct sk_buff *skb;
636
637 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
638 if (likely(skb)) {
639 mk_tid_release(skb, tid);
640 cxgb3_ofld_send(tdev, skb);
641 t->tid_tab[tid].ctx = NULL;
642 } else
643 cxgb3_queue_tid_release(tdev, tid);
644 }
645 atomic_dec(&t->tids_in_use);
646 }
647
648 EXPORT_SYMBOL(cxgb3_remove_tid);
649
cxgb3_alloc_atid(struct t3cdev * tdev,struct cxgb3_client * client,void * ctx)650 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
651 void *ctx)
652 {
653 int atid = -1;
654 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
655
656 spin_lock_bh(&t->atid_lock);
657 if (t->afree &&
658 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
659 t->ntids) {
660 union active_open_entry *p = t->afree;
661
662 atid = (p - t->atid_tab) + t->atid_base;
663 t->afree = p->next;
664 p->t3c_tid.ctx = ctx;
665 p->t3c_tid.client = client;
666 t->atids_in_use++;
667 }
668 spin_unlock_bh(&t->atid_lock);
669 return atid;
670 }
671
672 EXPORT_SYMBOL(cxgb3_alloc_atid);
673
cxgb3_alloc_stid(struct t3cdev * tdev,struct cxgb3_client * client,void * ctx)674 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
675 void *ctx)
676 {
677 int stid = -1;
678 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
679
680 spin_lock_bh(&t->stid_lock);
681 if (t->sfree) {
682 union listen_entry *p = t->sfree;
683
684 stid = (p - t->stid_tab) + t->stid_base;
685 t->sfree = p->next;
686 p->t3c_tid.ctx = ctx;
687 p->t3c_tid.client = client;
688 t->stids_in_use++;
689 }
690 spin_unlock_bh(&t->stid_lock);
691 return stid;
692 }
693
694 EXPORT_SYMBOL(cxgb3_alloc_stid);
695
696 /* Get the t3cdev associated with a net_device */
dev2t3cdev(struct net_device * dev)697 struct t3cdev *dev2t3cdev(struct net_device *dev)
698 {
699 const struct port_info *pi = netdev_priv(dev);
700
701 return (struct t3cdev *)pi->adapter;
702 }
703
704 EXPORT_SYMBOL(dev2t3cdev);
705
do_smt_write_rpl(struct t3cdev * dev,struct sk_buff * skb)706 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
707 {
708 struct cpl_smt_write_rpl *rpl = cplhdr(skb);
709
710 if (rpl->status != CPL_ERR_NONE)
711 pr_err("Unexpected SMT_WRITE_RPL status %u for entry %u\n",
712 rpl->status, GET_TID(rpl));
713
714 return CPL_RET_BUF_DONE;
715 }
716
do_l2t_write_rpl(struct t3cdev * dev,struct sk_buff * skb)717 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
718 {
719 struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
720
721 if (rpl->status != CPL_ERR_NONE)
722 pr_err("Unexpected L2T_WRITE_RPL status %u for entry %u\n",
723 rpl->status, GET_TID(rpl));
724
725 return CPL_RET_BUF_DONE;
726 }
727
do_rte_write_rpl(struct t3cdev * dev,struct sk_buff * skb)728 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
729 {
730 struct cpl_rte_write_rpl *rpl = cplhdr(skb);
731
732 if (rpl->status != CPL_ERR_NONE)
733 pr_err("Unexpected RTE_WRITE_RPL status %u for entry %u\n",
734 rpl->status, GET_TID(rpl));
735
736 return CPL_RET_BUF_DONE;
737 }
738
do_act_open_rpl(struct t3cdev * dev,struct sk_buff * skb)739 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
740 {
741 struct cpl_act_open_rpl *rpl = cplhdr(skb);
742 unsigned int atid = G_TID(ntohl(rpl->atid));
743 struct t3c_tid_entry *t3c_tid;
744
745 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
746 if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
747 t3c_tid->client->handlers &&
748 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
749 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
750 t3c_tid->
751 ctx);
752 } else {
753 pr_err("%s: received clientless CPL command 0x%x\n",
754 dev->name, CPL_ACT_OPEN_RPL);
755 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
756 }
757 }
758
do_stid_rpl(struct t3cdev * dev,struct sk_buff * skb)759 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
760 {
761 union opcode_tid *p = cplhdr(skb);
762 unsigned int stid = G_TID(ntohl(p->opcode_tid));
763 struct t3c_tid_entry *t3c_tid;
764
765 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
766 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
767 t3c_tid->client->handlers[p->opcode]) {
768 return t3c_tid->client->handlers[p->opcode] (dev, skb,
769 t3c_tid->ctx);
770 } else {
771 pr_err("%s: received clientless CPL command 0x%x\n",
772 dev->name, p->opcode);
773 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
774 }
775 }
776
do_hwtid_rpl(struct t3cdev * dev,struct sk_buff * skb)777 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
778 {
779 union opcode_tid *p = cplhdr(skb);
780 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
781 struct t3c_tid_entry *t3c_tid;
782
783 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
784 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
785 t3c_tid->client->handlers[p->opcode]) {
786 return t3c_tid->client->handlers[p->opcode]
787 (dev, skb, t3c_tid->ctx);
788 } else {
789 pr_err("%s: received clientless CPL command 0x%x\n",
790 dev->name, p->opcode);
791 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
792 }
793 }
794
do_cr(struct t3cdev * dev,struct sk_buff * skb)795 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
796 {
797 struct cpl_pass_accept_req *req = cplhdr(skb);
798 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
799 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
800 struct t3c_tid_entry *t3c_tid;
801 unsigned int tid = GET_TID(req);
802
803 if (unlikely(tid >= t->ntids)) {
804 printk("%s: passive open TID %u too large\n",
805 dev->name, tid);
806 t3_fatal_err(tdev2adap(dev));
807 return CPL_RET_BUF_DONE;
808 }
809
810 t3c_tid = lookup_stid(t, stid);
811 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
812 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
813 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
814 (dev, skb, t3c_tid->ctx);
815 } else {
816 pr_err("%s: received clientless CPL command 0x%x\n",
817 dev->name, CPL_PASS_ACCEPT_REQ);
818 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
819 }
820 }
821
822 /*
823 * Returns an sk_buff for a reply CPL message of size len. If the input
824 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
825 * is allocated. The input skb must be of size at least len. Note that this
826 * operation does not destroy the original skb data even if it decides to reuse
827 * the buffer.
828 */
cxgb3_get_cpl_reply_skb(struct sk_buff * skb,size_t len,gfp_t gfp)829 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
830 gfp_t gfp)
831 {
832 if (likely(!skb_cloned(skb))) {
833 BUG_ON(skb->len < len);
834 __skb_trim(skb, len);
835 skb_get(skb);
836 } else {
837 skb = alloc_skb(len, gfp);
838 if (skb)
839 __skb_put(skb, len);
840 }
841 return skb;
842 }
843
do_abort_req_rss(struct t3cdev * dev,struct sk_buff * skb)844 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
845 {
846 union opcode_tid *p = cplhdr(skb);
847 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
848 struct t3c_tid_entry *t3c_tid;
849
850 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
851 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
852 t3c_tid->client->handlers[p->opcode]) {
853 return t3c_tid->client->handlers[p->opcode]
854 (dev, skb, t3c_tid->ctx);
855 } else {
856 struct cpl_abort_req_rss *req = cplhdr(skb);
857 struct cpl_abort_rpl *rpl;
858 struct sk_buff *reply_skb;
859 unsigned int tid = GET_TID(req);
860 u8 cmd = req->status;
861
862 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
863 req->status == CPL_ERR_PERSIST_NEG_ADVICE)
864 goto out;
865
866 reply_skb = cxgb3_get_cpl_reply_skb(skb,
867 sizeof(struct
868 cpl_abort_rpl),
869 GFP_ATOMIC);
870
871 if (!reply_skb) {
872 printk("do_abort_req_rss: couldn't get skb!\n");
873 goto out;
874 }
875 reply_skb->priority = CPL_PRIORITY_DATA;
876 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
877 rpl = cplhdr(reply_skb);
878 rpl->wr.wr_hi =
879 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
880 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
881 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
882 rpl->cmd = cmd;
883 cxgb3_ofld_send(dev, reply_skb);
884 out:
885 return CPL_RET_BUF_DONE;
886 }
887 }
888
do_act_establish(struct t3cdev * dev,struct sk_buff * skb)889 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
890 {
891 struct cpl_act_establish *req = cplhdr(skb);
892 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
893 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
894 struct t3c_tid_entry *t3c_tid;
895 unsigned int tid = GET_TID(req);
896
897 if (unlikely(tid >= t->ntids)) {
898 printk("%s: active establish TID %u too large\n",
899 dev->name, tid);
900 t3_fatal_err(tdev2adap(dev));
901 return CPL_RET_BUF_DONE;
902 }
903
904 t3c_tid = lookup_atid(t, atid);
905 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
906 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
907 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
908 (dev, skb, t3c_tid->ctx);
909 } else {
910 pr_err("%s: received clientless CPL command 0x%x\n",
911 dev->name, CPL_ACT_ESTABLISH);
912 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
913 }
914 }
915
do_trace(struct t3cdev * dev,struct sk_buff * skb)916 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
917 {
918 struct cpl_trace_pkt *p = cplhdr(skb);
919
920 skb->protocol = htons(0xffff);
921 skb->dev = dev->lldev;
922 skb_pull(skb, sizeof(*p));
923 skb_reset_mac_header(skb);
924 netif_receive_skb(skb);
925 return 0;
926 }
927
928 /*
929 * That skb would better have come from process_responses() where we abuse
930 * ->priority and ->csum to carry our data. NB: if we get to per-arch
931 * ->csum, the things might get really interesting here.
932 */
933
get_hwtid(struct sk_buff * skb)934 static inline u32 get_hwtid(struct sk_buff *skb)
935 {
936 return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
937 }
938
get_opcode(struct sk_buff * skb)939 static inline u32 get_opcode(struct sk_buff *skb)
940 {
941 return G_OPCODE(ntohl((__force __be32)skb->csum));
942 }
943
do_term(struct t3cdev * dev,struct sk_buff * skb)944 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
945 {
946 unsigned int hwtid = get_hwtid(skb);
947 unsigned int opcode = get_opcode(skb);
948 struct t3c_tid_entry *t3c_tid;
949
950 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
951 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
952 t3c_tid->client->handlers[opcode]) {
953 return t3c_tid->client->handlers[opcode] (dev, skb,
954 t3c_tid->ctx);
955 } else {
956 pr_err("%s: received clientless CPL command 0x%x\n",
957 dev->name, opcode);
958 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
959 }
960 }
961
nb_callback(struct notifier_block * self,unsigned long event,void * ctx)962 static int nb_callback(struct notifier_block *self, unsigned long event,
963 void *ctx)
964 {
965 switch (event) {
966 case (NETEVENT_NEIGH_UPDATE):{
967 cxgb_neigh_update((struct neighbour *)ctx);
968 break;
969 }
970 case (NETEVENT_REDIRECT):{
971 struct netevent_redirect *nr = ctx;
972 cxgb_redirect(nr->old, nr->new, nr->neigh,
973 nr->daddr);
974 cxgb_neigh_update(nr->neigh);
975 break;
976 }
977 default:
978 break;
979 }
980 return 0;
981 }
982
983 static struct notifier_block nb = {
984 .notifier_call = nb_callback
985 };
986
987 /*
988 * Process a received packet with an unknown/unexpected CPL opcode.
989 */
do_bad_cpl(struct t3cdev * dev,struct sk_buff * skb)990 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
991 {
992 pr_err("%s: received bad CPL command 0x%x\n", dev->name, *skb->data);
993 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
994 }
995
996 /*
997 * Handlers for each CPL opcode
998 */
999 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
1000
1001 /*
1002 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
1003 * to unregister an existing handler.
1004 */
t3_register_cpl_handler(unsigned int opcode,cpl_handler_func h)1005 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
1006 {
1007 if (opcode < NUM_CPL_CMDS)
1008 cpl_handlers[opcode] = h ? h : do_bad_cpl;
1009 else
1010 pr_err("T3C: handler registration for opcode %x failed\n",
1011 opcode);
1012 }
1013
1014 EXPORT_SYMBOL(t3_register_cpl_handler);
1015
1016 /*
1017 * T3CDEV's receive method.
1018 */
process_rx(struct t3cdev * dev,struct sk_buff ** skbs,int n)1019 static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1020 {
1021 while (n--) {
1022 struct sk_buff *skb = *skbs++;
1023 unsigned int opcode = get_opcode(skb);
1024 int ret = cpl_handlers[opcode] (dev, skb);
1025
1026 #if VALIDATE_TID
1027 if (ret & CPL_RET_UNKNOWN_TID) {
1028 union opcode_tid *p = cplhdr(skb);
1029
1030 pr_err("%s: CPL message (opcode %u) had unknown TID %u\n",
1031 dev->name, opcode, G_TID(ntohl(p->opcode_tid)));
1032 }
1033 #endif
1034 if (ret & CPL_RET_BUF_DONE)
1035 kfree_skb(skb);
1036 }
1037 return 0;
1038 }
1039
1040 /*
1041 * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1042 */
cxgb3_ofld_send(struct t3cdev * dev,struct sk_buff * skb)1043 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1044 {
1045 int r;
1046
1047 local_bh_disable();
1048 r = dev->send(dev, skb);
1049 local_bh_enable();
1050 return r;
1051 }
1052
1053 EXPORT_SYMBOL(cxgb3_ofld_send);
1054
is_offloading(struct net_device * dev)1055 static int is_offloading(struct net_device *dev)
1056 {
1057 struct adapter *adapter;
1058 int i;
1059
1060 read_lock_bh(&adapter_list_lock);
1061 list_for_each_entry(adapter, &adapter_list, adapter_list) {
1062 for_each_port(adapter, i) {
1063 if (dev == adapter->port[i]) {
1064 read_unlock_bh(&adapter_list_lock);
1065 return 1;
1066 }
1067 }
1068 }
1069 read_unlock_bh(&adapter_list_lock);
1070 return 0;
1071 }
1072
cxgb_neigh_update(struct neighbour * neigh)1073 static void cxgb_neigh_update(struct neighbour *neigh)
1074 {
1075 struct net_device *dev;
1076
1077 if (!neigh)
1078 return;
1079 dev = neigh->dev;
1080 if (dev && (is_offloading(dev))) {
1081 struct t3cdev *tdev = dev2t3cdev(dev);
1082
1083 BUG_ON(!tdev);
1084 t3_l2t_update(tdev, neigh);
1085 }
1086 }
1087
set_l2t_ix(struct t3cdev * tdev,u32 tid,struct l2t_entry * e)1088 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1089 {
1090 struct sk_buff *skb;
1091 struct cpl_set_tcb_field *req;
1092
1093 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1094 if (!skb) {
1095 pr_err("%s: cannot allocate skb!\n", __func__);
1096 return;
1097 }
1098 skb->priority = CPL_PRIORITY_CONTROL;
1099 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1100 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1101 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1102 req->reply = 0;
1103 req->cpu_idx = 0;
1104 req->word = htons(W_TCB_L2T_IX);
1105 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1106 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1107 tdev->send(tdev, skb);
1108 }
1109
cxgb_redirect(struct dst_entry * old,struct dst_entry * new,struct neighbour * neigh,const void * daddr)1110 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new,
1111 struct neighbour *neigh,
1112 const void *daddr)
1113 {
1114 struct net_device *dev;
1115 struct tid_info *ti;
1116 struct t3cdev *tdev;
1117 u32 tid;
1118 int update_tcb;
1119 struct l2t_entry *e;
1120 struct t3c_tid_entry *te;
1121
1122 dev = neigh->dev;
1123
1124 if (!is_offloading(dev))
1125 return;
1126 tdev = dev2t3cdev(dev);
1127 BUG_ON(!tdev);
1128
1129 /* Add new L2T entry */
1130 e = t3_l2t_get(tdev, new, dev, daddr);
1131 if (!e) {
1132 pr_err("%s: couldn't allocate new l2t entry!\n", __func__);
1133 return;
1134 }
1135
1136 /* Walk tid table and notify clients of dst change. */
1137 ti = &(T3C_DATA(tdev))->tid_maps;
1138 for (tid = 0; tid < ti->ntids; tid++) {
1139 te = lookup_tid(ti, tid);
1140 BUG_ON(!te);
1141 if (te && te->ctx && te->client && te->client->redirect) {
1142 update_tcb = te->client->redirect(te->ctx, old, new, e);
1143 if (update_tcb) {
1144 rcu_read_lock();
1145 l2t_hold(L2DATA(tdev), e);
1146 rcu_read_unlock();
1147 set_l2t_ix(tdev, tid, e);
1148 }
1149 }
1150 }
1151 l2t_release(tdev, e);
1152 }
1153
1154 /*
1155 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1156 * The allocated memory is cleared.
1157 */
cxgb_alloc_mem(unsigned long size)1158 void *cxgb_alloc_mem(unsigned long size)
1159 {
1160 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1161
1162 if (!p)
1163 p = vzalloc(size);
1164 return p;
1165 }
1166
1167 /*
1168 * Free memory allocated through t3_alloc_mem().
1169 */
cxgb_free_mem(void * addr)1170 void cxgb_free_mem(void *addr)
1171 {
1172 kvfree(addr);
1173 }
1174
1175 /*
1176 * Allocate and initialize the TID tables. Returns 0 on success.
1177 */
init_tid_tabs(struct tid_info * t,unsigned int ntids,unsigned int natids,unsigned int nstids,unsigned int atid_base,unsigned int stid_base)1178 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1179 unsigned int natids, unsigned int nstids,
1180 unsigned int atid_base, unsigned int stid_base)
1181 {
1182 unsigned long size = ntids * sizeof(*t->tid_tab) +
1183 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1184
1185 t->tid_tab = cxgb_alloc_mem(size);
1186 if (!t->tid_tab)
1187 return -ENOMEM;
1188
1189 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1190 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1191 t->ntids = ntids;
1192 t->nstids = nstids;
1193 t->stid_base = stid_base;
1194 t->sfree = NULL;
1195 t->natids = natids;
1196 t->atid_base = atid_base;
1197 t->afree = NULL;
1198 t->stids_in_use = t->atids_in_use = 0;
1199 atomic_set(&t->tids_in_use, 0);
1200 spin_lock_init(&t->stid_lock);
1201 spin_lock_init(&t->atid_lock);
1202
1203 /*
1204 * Setup the free lists for stid_tab and atid_tab.
1205 */
1206 if (nstids) {
1207 while (--nstids)
1208 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1209 t->sfree = t->stid_tab;
1210 }
1211 if (natids) {
1212 while (--natids)
1213 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1214 t->afree = t->atid_tab;
1215 }
1216 return 0;
1217 }
1218
free_tid_maps(struct tid_info * t)1219 static void free_tid_maps(struct tid_info *t)
1220 {
1221 cxgb_free_mem(t->tid_tab);
1222 }
1223
add_adapter(struct adapter * adap)1224 static inline void add_adapter(struct adapter *adap)
1225 {
1226 write_lock_bh(&adapter_list_lock);
1227 list_add_tail(&adap->adapter_list, &adapter_list);
1228 write_unlock_bh(&adapter_list_lock);
1229 }
1230
remove_adapter(struct adapter * adap)1231 static inline void remove_adapter(struct adapter *adap)
1232 {
1233 write_lock_bh(&adapter_list_lock);
1234 list_del(&adap->adapter_list);
1235 write_unlock_bh(&adapter_list_lock);
1236 }
1237
cxgb3_offload_activate(struct adapter * adapter)1238 int cxgb3_offload_activate(struct adapter *adapter)
1239 {
1240 struct t3cdev *dev = &adapter->tdev;
1241 int natids, err;
1242 struct t3c_data *t;
1243 struct tid_range stid_range, tid_range;
1244 struct mtutab mtutab;
1245 unsigned int l2t_capacity;
1246 struct l2t_data *l2td;
1247
1248 t = kzalloc(sizeof(*t), GFP_KERNEL);
1249 if (!t)
1250 return -ENOMEM;
1251
1252 err = -EOPNOTSUPP;
1253 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1254 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1255 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1256 dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1257 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1258 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1259 goto out_free;
1260
1261 err = -ENOMEM;
1262 l2td = t3_init_l2t(l2t_capacity);
1263 if (!l2td)
1264 goto out_free;
1265
1266 natids = min(tid_range.num / 2, MAX_ATIDS);
1267 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1268 stid_range.num, ATID_BASE, stid_range.base);
1269 if (err)
1270 goto out_free_l2t;
1271
1272 t->mtus = mtutab.mtus;
1273 t->nmtus = mtutab.size;
1274
1275 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1276 spin_lock_init(&t->tid_release_lock);
1277 INIT_LIST_HEAD(&t->list_node);
1278 t->dev = dev;
1279
1280 RCU_INIT_POINTER(dev->l2opt, l2td);
1281 T3C_DATA(dev) = t;
1282 dev->recv = process_rx;
1283 dev->neigh_update = t3_l2t_update;
1284
1285 /* Register netevent handler once */
1286 if (list_empty(&adapter_list))
1287 register_netevent_notifier(&nb);
1288
1289 t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
1290 t->release_list_incomplete = 0;
1291
1292 add_adapter(adapter);
1293 return 0;
1294
1295 out_free_l2t:
1296 t3_free_l2t(l2td);
1297 out_free:
1298 kfree(t);
1299 return err;
1300 }
1301
clean_l2_data(struct rcu_head * head)1302 static void clean_l2_data(struct rcu_head *head)
1303 {
1304 struct l2t_data *d = container_of(head, struct l2t_data, rcu_head);
1305 t3_free_l2t(d);
1306 }
1307
1308
cxgb3_offload_deactivate(struct adapter * adapter)1309 void cxgb3_offload_deactivate(struct adapter *adapter)
1310 {
1311 struct t3cdev *tdev = &adapter->tdev;
1312 struct t3c_data *t = T3C_DATA(tdev);
1313 struct l2t_data *d;
1314
1315 remove_adapter(adapter);
1316 if (list_empty(&adapter_list))
1317 unregister_netevent_notifier(&nb);
1318
1319 free_tid_maps(&t->tid_maps);
1320 T3C_DATA(tdev) = NULL;
1321 rcu_read_lock();
1322 d = L2DATA(tdev);
1323 rcu_read_unlock();
1324 RCU_INIT_POINTER(tdev->l2opt, NULL);
1325 call_rcu(&d->rcu_head, clean_l2_data);
1326 if (t->nofail_skb)
1327 kfree_skb(t->nofail_skb);
1328 kfree(t);
1329 }
1330
register_tdev(struct t3cdev * tdev)1331 static inline void register_tdev(struct t3cdev *tdev)
1332 {
1333 static int unit;
1334
1335 mutex_lock(&cxgb3_db_lock);
1336 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1337 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1338 mutex_unlock(&cxgb3_db_lock);
1339 }
1340
unregister_tdev(struct t3cdev * tdev)1341 static inline void unregister_tdev(struct t3cdev *tdev)
1342 {
1343 mutex_lock(&cxgb3_db_lock);
1344 list_del(&tdev->ofld_dev_list);
1345 mutex_unlock(&cxgb3_db_lock);
1346 }
1347
adap2type(struct adapter * adapter)1348 static inline int adap2type(struct adapter *adapter)
1349 {
1350 int type = 0;
1351
1352 switch (adapter->params.rev) {
1353 case T3_REV_A:
1354 type = T3A;
1355 break;
1356 case T3_REV_B:
1357 case T3_REV_B2:
1358 type = T3B;
1359 break;
1360 case T3_REV_C:
1361 type = T3C;
1362 break;
1363 }
1364 return type;
1365 }
1366
cxgb3_adapter_ofld(struct adapter * adapter)1367 void cxgb3_adapter_ofld(struct adapter *adapter)
1368 {
1369 struct t3cdev *tdev = &adapter->tdev;
1370
1371 INIT_LIST_HEAD(&tdev->ofld_dev_list);
1372
1373 cxgb3_set_dummy_ops(tdev);
1374 tdev->send = t3_offload_tx;
1375 tdev->ctl = cxgb_offload_ctl;
1376 tdev->type = adap2type(adapter);
1377
1378 register_tdev(tdev);
1379 }
1380
cxgb3_adapter_unofld(struct adapter * adapter)1381 void cxgb3_adapter_unofld(struct adapter *adapter)
1382 {
1383 struct t3cdev *tdev = &adapter->tdev;
1384
1385 tdev->recv = NULL;
1386 tdev->neigh_update = NULL;
1387
1388 unregister_tdev(tdev);
1389 }
1390
cxgb3_offload_init(void)1391 void __init cxgb3_offload_init(void)
1392 {
1393 int i;
1394
1395 for (i = 0; i < NUM_CPL_CMDS; ++i)
1396 cpl_handlers[i] = do_bad_cpl;
1397
1398 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1399 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1400 t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1401 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1402 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1403 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1404 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1405 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1406 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1407 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1408 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1409 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1410 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1411 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1412 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1413 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1414 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1415 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1416 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1417 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1418 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1419 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1420 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1421 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1422 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1423 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1424 }
1425