1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43 * t4_wait_op_done_val - wait until an operation is completed
44 * @adapter: the adapter performing the operation
45 * @reg: the register to check for completion
46 * @mask: a single-bit field within @reg that indicates completion
47 * @polarity: the value of the field when the operation is completed
48 * @attempts: number of check iterations
49 * @delay: delay in usecs between iterations
50 * @valp: where to store the value of the register at completion time
51 *
52 * Wait until an operation is completed by checking a bit in a register
53 * up to @attempts times. If @valp is not NULL the value of the register
54 * at the time it indicated completion is stored there. Returns 0 if the
55 * operation completes and -EAGAIN otherwise.
56 */
t4_wait_op_done_val(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay,u32 * valp)57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 int polarity, int attempts, int delay, u32 *valp)
59 {
60 while (1) {
61 u32 val = t4_read_reg(adapter, reg);
62
63 if (!!(val & mask) == polarity) {
64 if (valp)
65 *valp = val;
66 return 0;
67 }
68 if (--attempts == 0)
69 return -EAGAIN;
70 if (delay)
71 udelay(delay);
72 }
73 }
74
t4_wait_op_done(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay)75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 int polarity, int attempts, int delay)
77 {
78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 delay, NULL);
80 }
81
82 /**
83 * t4_set_reg_field - set a register field to a value
84 * @adapter: the adapter to program
85 * @addr: the register address
86 * @mask: specifies the portion of the register to modify
87 * @val: the new value for the register field
88 *
89 * Sets a register field specified by the supplied mask to the
90 * given value.
91 */
t4_set_reg_field(struct adapter * adapter,unsigned int addr,u32 mask,u32 val)92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 u32 val)
94 {
95 u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97 t4_write_reg(adapter, addr, v | val);
98 (void) t4_read_reg(adapter, addr); /* flush */
99 }
100
101 /**
102 * t4_read_indirect - read indirectly addressed registers
103 * @adap: the adapter
104 * @addr_reg: register holding the indirect address
105 * @data_reg: register holding the value of the indirect register
106 * @vals: where the read register values are stored
107 * @nregs: how many indirect registers to read
108 * @start_idx: index of first indirect register to read
109 *
110 * Reads registers that are accessed indirectly through an address/data
111 * register pair.
112 */
t4_read_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,u32 * vals,unsigned int nregs,unsigned int start_idx)113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 unsigned int data_reg, u32 *vals,
115 unsigned int nregs, unsigned int start_idx)
116 {
117 while (nregs--) {
118 t4_write_reg(adap, addr_reg, start_idx);
119 *vals++ = t4_read_reg(adap, data_reg);
120 start_idx++;
121 }
122 }
123
124 /**
125 * t4_write_indirect - write indirectly addressed registers
126 * @adap: the adapter
127 * @addr_reg: register holding the indirect addresses
128 * @data_reg: register holding the value for the indirect registers
129 * @vals: values to write
130 * @nregs: how many indirect registers to write
131 * @start_idx: address of first indirect register to write
132 *
133 * Writes a sequential block of registers that are accessed indirectly
134 * through an address/data register pair.
135 */
t4_write_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,const u32 * vals,unsigned int nregs,unsigned int start_idx)136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 unsigned int data_reg, const u32 *vals,
138 unsigned int nregs, unsigned int start_idx)
139 {
140 while (nregs--) {
141 t4_write_reg(adap, addr_reg, start_idx++);
142 t4_write_reg(adap, data_reg, *vals++);
143 }
144 }
145
146 /*
147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148 * mechanism. This guarantees that we get the real value even if we're
149 * operating within a Virtual Machine and the Hypervisor is trapping our
150 * Configuration Space accesses.
151 */
t4_hw_pci_read_cfg4(struct adapter * adap,int reg,u32 * val)152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 req |= ENABLE_F;
158 else
159 req |= T6_ENABLE_F;
160
161 if (is_t4(adap->params.chip))
162 req |= LOCALCFG_F;
163
164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 * Configuration Space read. (None of the other fields matter when
169 * ENABLE is 0 so a simple register write is easier than a
170 * read-modify-write via t4_set_reg_field().)
171 */
172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176 * t4_report_fw_error - report firmware error
177 * @adap: the adapter
178 *
179 * The adapter firmware can indicate error conditions to the host.
180 * If the firmware has indicated an error, print out the reason for
181 * the firmware error.
182 */
t4_report_fw_error(struct adapter * adap)183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 static const char *const reason[] = {
186 "Crash", /* PCIE_FW_EVAL_CRASH */
187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 "Reserved", /* reserved */
194 };
195 u32 pcie_fw;
196
197 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 if (pcie_fw & PCIE_FW_ERR_F)
199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202
203 /*
204 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205 */
get_mbox_rpl(struct adapter * adap,__be64 * rpl,int nflit,u32 mbox_addr)206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 u32 mbox_addr)
208 {
209 for ( ; nflit; nflit--, mbox_addr += 8)
210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212
213 /*
214 * Handle a FW assertion reported in a mailbox.
215 */
fw_asrt(struct adapter * adap,u32 mbox_addr)216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 struct fw_debug_cmd asrt;
219
220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 dev_alert(adap->pdev_dev,
222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226
dump_mbox(struct adapter * adap,int mbox,u32 data_reg)227 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228 {
229 dev_err(adap->pdev_dev,
230 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231 (unsigned long long)t4_read_reg64(adap, data_reg),
232 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
233 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
234 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
235 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
236 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
237 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
238 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
239 }
240
241 /**
242 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243 * @adap: the adapter
244 * @mbox: index of the mailbox to use
245 * @cmd: the command to write
246 * @size: command length in bytes
247 * @rpl: where to optionally store the reply
248 * @sleep_ok: if true we may sleep while awaiting command completion
249 * @timeout: time to wait for command to finish before timing out
250 *
251 * Sends the given command to FW through the selected mailbox and waits
252 * for the FW to execute the command. If @rpl is not %NULL it is used to
253 * store the FW's reply to the command. The command and its optional
254 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
255 * to respond. @sleep_ok determines whether we may sleep while awaiting
256 * the response. If sleeping is allowed we use progressive backoff
257 * otherwise we spin.
258 *
259 * The return value is 0 on success or a negative errno on failure. A
260 * failure can happen either because we are not able to execute the
261 * command or FW executes it but signals an error. In the latter case
262 * the return value is the error code indicated by FW (negated).
263 */
t4_wr_mbox_meat_timeout(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok,int timeout)264 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265 int size, void *rpl, bool sleep_ok, int timeout)
266 {
267 static const int delay[] = {
268 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269 };
270
271 u32 v;
272 u64 res;
273 int i, ms, delay_idx;
274 const __be64 *p = cmd;
275 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
277
278 if ((size & 15) || size > MBOX_LEN)
279 return -EINVAL;
280
281 /*
282 * If the device is off-line, as in EEH, commands will time out.
283 * Fail them early so we don't waste time waiting.
284 */
285 if (adap->pdev->error_state != pci_channel_io_normal)
286 return -EIO;
287
288 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
289 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
290 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
291
292 if (v != MBOX_OWNER_DRV)
293 return v ? -EBUSY : -ETIMEDOUT;
294
295 for (i = 0; i < size; i += 8)
296 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297
298 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
299 t4_read_reg(adap, ctl_reg); /* flush write */
300
301 delay_idx = 0;
302 ms = delay[0];
303
304 for (i = 0; i < timeout; i += ms) {
305 if (sleep_ok) {
306 ms = delay[delay_idx]; /* last element may repeat */
307 if (delay_idx < ARRAY_SIZE(delay) - 1)
308 delay_idx++;
309 msleep(ms);
310 } else
311 mdelay(ms);
312
313 v = t4_read_reg(adap, ctl_reg);
314 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315 if (!(v & MBMSGVALID_F)) {
316 t4_write_reg(adap, ctl_reg, 0);
317 continue;
318 }
319
320 res = t4_read_reg64(adap, data_reg);
321 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
322 fw_asrt(adap, data_reg);
323 res = FW_CMD_RETVAL_V(EIO);
324 } else if (rpl) {
325 get_mbox_rpl(adap, rpl, size / 8, data_reg);
326 }
327
328 if (FW_CMD_RETVAL_G((int)res))
329 dump_mbox(adap, mbox, data_reg);
330 t4_write_reg(adap, ctl_reg, 0);
331 return -FW_CMD_RETVAL_G((int)res);
332 }
333 }
334
335 dump_mbox(adap, mbox, data_reg);
336 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337 *(const u8 *)cmd, mbox);
338 t4_report_fw_error(adap);
339 return -ETIMEDOUT;
340 }
341
t4_wr_mbox_meat(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok)342 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343 void *rpl, bool sleep_ok)
344 {
345 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346 FW_CMD_MAX_TIMEOUT);
347 }
348
t4_edc_err_read(struct adapter * adap,int idx)349 static int t4_edc_err_read(struct adapter *adap, int idx)
350 {
351 u32 edc_ecc_err_addr_reg;
352 u32 rdata_reg;
353
354 if (is_t4(adap->params.chip)) {
355 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356 return 0;
357 }
358 if (idx != 0 && idx != 1) {
359 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360 return 0;
361 }
362
363 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365
366 CH_WARN(adap,
367 "edc%d err addr 0x%x: 0x%x.\n",
368 idx, edc_ecc_err_addr_reg,
369 t4_read_reg(adap, edc_ecc_err_addr_reg));
370 CH_WARN(adap,
371 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372 rdata_reg,
373 (unsigned long long)t4_read_reg64(adap, rdata_reg),
374 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382
383 return 0;
384 }
385
386 /**
387 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388 * @adap: the adapter
389 * @win: PCI-E Memory Window to use
390 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391 * @addr: address within indicated memory type
392 * @len: amount of memory to transfer
393 * @hbuf: host memory buffer
394 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
395 *
396 * Reads/writes an [almost] arbitrary memory region in the firmware: the
397 * firmware memory address and host buffer must be aligned on 32-bit
398 * boudaries; the length may be arbitrary. The memory is transferred as
399 * a raw byte sequence from/to the firmware's memory. If this memory
400 * contains data structures which contain multi-byte integers, it's the
401 * caller's responsibility to perform appropriate byte order conversions.
402 */
t4_memory_rw(struct adapter * adap,int win,int mtype,u32 addr,u32 len,void * hbuf,int dir)403 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
404 u32 len, void *hbuf, int dir)
405 {
406 u32 pos, offset, resid, memoffset;
407 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
408 u32 *buf;
409
410 /* Argument sanity checks ...
411 */
412 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
413 return -EINVAL;
414 buf = (u32 *)hbuf;
415
416 /* It's convenient to be able to handle lengths which aren't a
417 * multiple of 32-bits because we often end up transferring files to
418 * the firmware. So we'll handle that by normalizing the length here
419 * and then handling any residual transfer at the end.
420 */
421 resid = len & 0x3;
422 len -= resid;
423
424 /* Offset into the region of memory which is being accessed
425 * MEM_EDC0 = 0
426 * MEM_EDC1 = 1
427 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
428 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
429 */
430 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
431 if (mtype != MEM_MC1)
432 memoffset = (mtype * (edc_size * 1024 * 1024));
433 else {
434 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
435 MA_EXT_MEMORY0_BAR_A));
436 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437 }
438
439 /* Determine the PCIE_MEM_ACCESS_OFFSET */
440 addr = addr + memoffset;
441
442 /* Each PCI-E Memory Window is programmed with a window size -- or
443 * "aperture" -- which controls the granularity of its mapping onto
444 * adapter memory. We need to grab that aperture in order to know
445 * how to use the specified window. The window is also programmed
446 * with the base address of the Memory Window in BAR0's address
447 * space. For T4 this is an absolute PCI-E Bus Address. For T5
448 * the address is relative to BAR0.
449 */
450 mem_reg = t4_read_reg(adap,
451 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
452 win));
453 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
455 if (is_t4(adap->params.chip))
456 mem_base -= adap->t4_bar0;
457 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
458
459 /* Calculate our initial PCI-E Memory Window Position and Offset into
460 * that Window.
461 */
462 pos = addr & ~(mem_aperture-1);
463 offset = addr - pos;
464
465 /* Set up initial PCI-E Memory Window to cover the start of our
466 * transfer. (Read it back to ensure that changes propagate before we
467 * attempt to use the new value.)
468 */
469 t4_write_reg(adap,
470 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
471 pos | win_pf);
472 t4_read_reg(adap,
473 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
474
475 /* Transfer data to/from the adapter as long as there's an integral
476 * number of 32-bit transfers to complete.
477 *
478 * A note on Endianness issues:
479 *
480 * The "register" reads and writes below from/to the PCI-E Memory
481 * Window invoke the standard adapter Big-Endian to PCI-E Link
482 * Little-Endian "swizzel." As a result, if we have the following
483 * data in adapter memory:
484 *
485 * Memory: ... | b0 | b1 | b2 | b3 | ...
486 * Address: i+0 i+1 i+2 i+3
487 *
488 * Then a read of the adapter memory via the PCI-E Memory Window
489 * will yield:
490 *
491 * x = readl(i)
492 * 31 0
493 * [ b3 | b2 | b1 | b0 ]
494 *
495 * If this value is stored into local memory on a Little-Endian system
496 * it will show up correctly in local memory as:
497 *
498 * ( ..., b0, b1, b2, b3, ... )
499 *
500 * But on a Big-Endian system, the store will show up in memory
501 * incorrectly swizzled as:
502 *
503 * ( ..., b3, b2, b1, b0, ... )
504 *
505 * So we need to account for this in the reads and writes to the
506 * PCI-E Memory Window below by undoing the register read/write
507 * swizzels.
508 */
509 while (len > 0) {
510 if (dir == T4_MEMORY_READ)
511 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512 mem_base + offset));
513 else
514 t4_write_reg(adap, mem_base + offset,
515 (__force u32)cpu_to_le32(*buf++));
516 offset += sizeof(__be32);
517 len -= sizeof(__be32);
518
519 /* If we've reached the end of our current window aperture,
520 * move the PCI-E Memory Window on to the next. Note that
521 * doing this here after "len" may be 0 allows us to set up
522 * the PCI-E Memory Window for a possible final residual
523 * transfer below ...
524 */
525 if (offset == mem_aperture) {
526 pos += mem_aperture;
527 offset = 0;
528 t4_write_reg(adap,
529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530 win), pos | win_pf);
531 t4_read_reg(adap,
532 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533 win));
534 }
535 }
536
537 /* If the original transfer had a length which wasn't a multiple of
538 * 32-bits, now's where we need to finish off the transfer of the
539 * residual amount. The PCI-E Memory Window has already been moved
540 * above (if necessary) to cover this final transfer.
541 */
542 if (resid) {
543 union {
544 u32 word;
545 char byte[4];
546 } last;
547 unsigned char *bp;
548 int i;
549
550 if (dir == T4_MEMORY_READ) {
551 last.word = le32_to_cpu(
552 (__force __le32)t4_read_reg(adap,
553 mem_base + offset));
554 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555 bp[i] = last.byte[i];
556 } else {
557 last.word = *buf;
558 for (i = resid; i < 4; i++)
559 last.byte[i] = 0;
560 t4_write_reg(adap, mem_base + offset,
561 (__force u32)cpu_to_le32(last.word));
562 }
563 }
564
565 return 0;
566 }
567
568 /* Return the specified PCI-E Configuration Space register from our Physical
569 * Function. We try first via a Firmware LDST Command since we prefer to let
570 * the firmware own all of these registers, but if that fails we go for it
571 * directly ourselves.
572 */
t4_read_pcie_cfg4(struct adapter * adap,int reg)573 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574 {
575 u32 val, ldst_addrspace;
576
577 /* If fw_attach != 0, construct and send the Firmware LDST Command to
578 * retrieve the specified PCI-E Configuration Space register.
579 */
580 struct fw_ldst_cmd ldst_cmd;
581 int ret;
582
583 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586 FW_CMD_REQUEST_F |
587 FW_CMD_READ_F |
588 ldst_addrspace);
589 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591 ldst_cmd.u.pcie.ctrl_to_fn =
592 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
593 ldst_cmd.u.pcie.r = reg;
594
595 /* If the LDST Command succeeds, return the result, otherwise
596 * fall through to reading it directly ourselves ...
597 */
598 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599 &ldst_cmd);
600 if (ret == 0)
601 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602 else
603 /* Read the desired Configuration Space register via the PCI-E
604 * Backdoor mechanism.
605 */
606 t4_hw_pci_read_cfg4(adap, reg, &val);
607 return val;
608 }
609
610 /* Get the window based on base passed to it.
611 * Window aperture is currently unhandled, but there is no use case for it
612 * right now
613 */
t4_get_window(struct adapter * adap,u32 pci_base,u64 pci_mask,u32 memwin_base)614 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615 u32 memwin_base)
616 {
617 u32 ret;
618
619 if (is_t4(adap->params.chip)) {
620 u32 bar0;
621
622 /* Truncation intentional: we only read the bottom 32-bits of
623 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
624 * mechanism to read BAR0 instead of using
625 * pci_resource_start() because we could be operating from
626 * within a Virtual Machine which is trapping our accesses to
627 * our Configuration Space and we need to set up the PCI-E
628 * Memory Window decoders with the actual addresses which will
629 * be coming across the PCI-E link.
630 */
631 bar0 = t4_read_pcie_cfg4(adap, pci_base);
632 bar0 &= pci_mask;
633 adap->t4_bar0 = bar0;
634
635 ret = bar0 + memwin_base;
636 } else {
637 /* For T5, only relative offset inside the PCIe BAR is passed */
638 ret = memwin_base;
639 }
640 return ret;
641 }
642
643 /* Get the default utility window (win0) used by everyone */
t4_get_util_window(struct adapter * adap)644 u32 t4_get_util_window(struct adapter *adap)
645 {
646 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648 }
649
650 /* Set up memory window for accessing adapter memory ranges. (Read
651 * back MA register to ensure that changes propagate before we attempt
652 * to use the new values.)
653 */
t4_setup_memwin(struct adapter * adap,u32 memwin_base,u32 window)654 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655 {
656 t4_write_reg(adap,
657 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658 memwin_base | BIR_V(0) |
659 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660 t4_read_reg(adap,
661 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662 }
663
664 /**
665 * t4_get_regs_len - return the size of the chips register set
666 * @adapter: the adapter
667 *
668 * Returns the size of the chip's BAR0 register space.
669 */
t4_get_regs_len(struct adapter * adapter)670 unsigned int t4_get_regs_len(struct adapter *adapter)
671 {
672 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673
674 switch (chip_version) {
675 case CHELSIO_T4:
676 return T4_REGMAP_SIZE;
677
678 case CHELSIO_T5:
679 case CHELSIO_T6:
680 return T5_REGMAP_SIZE;
681 }
682
683 dev_err(adapter->pdev_dev,
684 "Unsupported chip version %d\n", chip_version);
685 return 0;
686 }
687
688 /**
689 * t4_get_regs - read chip registers into provided buffer
690 * @adap: the adapter
691 * @buf: register buffer
692 * @buf_size: size (in bytes) of register buffer
693 *
694 * If the provided register buffer isn't large enough for the chip's
695 * full register range, the register dump will be truncated to the
696 * register buffer's size.
697 */
t4_get_regs(struct adapter * adap,void * buf,size_t buf_size)698 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699 {
700 static const unsigned int t4_reg_ranges[] = {
701 0x1008, 0x1108,
702 0x1180, 0x1184,
703 0x1190, 0x1194,
704 0x11a0, 0x11a4,
705 0x11b0, 0x11b4,
706 0x11fc, 0x123c,
707 0x1300, 0x173c,
708 0x1800, 0x18fc,
709 0x3000, 0x30d8,
710 0x30e0, 0x30e4,
711 0x30ec, 0x5910,
712 0x5920, 0x5924,
713 0x5960, 0x5960,
714 0x5968, 0x5968,
715 0x5970, 0x5970,
716 0x5978, 0x5978,
717 0x5980, 0x5980,
718 0x5988, 0x5988,
719 0x5990, 0x5990,
720 0x5998, 0x5998,
721 0x59a0, 0x59d4,
722 0x5a00, 0x5ae0,
723 0x5ae8, 0x5ae8,
724 0x5af0, 0x5af0,
725 0x5af8, 0x5af8,
726 0x6000, 0x6098,
727 0x6100, 0x6150,
728 0x6200, 0x6208,
729 0x6240, 0x6248,
730 0x6280, 0x62b0,
731 0x62c0, 0x6338,
732 0x6370, 0x638c,
733 0x6400, 0x643c,
734 0x6500, 0x6524,
735 0x6a00, 0x6a04,
736 0x6a14, 0x6a38,
737 0x6a60, 0x6a70,
738 0x6a78, 0x6a78,
739 0x6b00, 0x6b0c,
740 0x6b1c, 0x6b84,
741 0x6bf0, 0x6bf8,
742 0x6c00, 0x6c0c,
743 0x6c1c, 0x6c84,
744 0x6cf0, 0x6cf8,
745 0x6d00, 0x6d0c,
746 0x6d1c, 0x6d84,
747 0x6df0, 0x6df8,
748 0x6e00, 0x6e0c,
749 0x6e1c, 0x6e84,
750 0x6ef0, 0x6ef8,
751 0x6f00, 0x6f0c,
752 0x6f1c, 0x6f84,
753 0x6ff0, 0x6ff8,
754 0x7000, 0x700c,
755 0x701c, 0x7084,
756 0x70f0, 0x70f8,
757 0x7100, 0x710c,
758 0x711c, 0x7184,
759 0x71f0, 0x71f8,
760 0x7200, 0x720c,
761 0x721c, 0x7284,
762 0x72f0, 0x72f8,
763 0x7300, 0x730c,
764 0x731c, 0x7384,
765 0x73f0, 0x73f8,
766 0x7400, 0x7450,
767 0x7500, 0x7530,
768 0x7600, 0x760c,
769 0x7614, 0x761c,
770 0x7680, 0x76cc,
771 0x7700, 0x7798,
772 0x77c0, 0x77fc,
773 0x7900, 0x79fc,
774 0x7b00, 0x7b58,
775 0x7b60, 0x7b84,
776 0x7b8c, 0x7c38,
777 0x7d00, 0x7d38,
778 0x7d40, 0x7d80,
779 0x7d8c, 0x7ddc,
780 0x7de4, 0x7e04,
781 0x7e10, 0x7e1c,
782 0x7e24, 0x7e38,
783 0x7e40, 0x7e44,
784 0x7e4c, 0x7e78,
785 0x7e80, 0x7ea4,
786 0x7eac, 0x7edc,
787 0x7ee8, 0x7efc,
788 0x8dc0, 0x8e04,
789 0x8e10, 0x8e1c,
790 0x8e30, 0x8e78,
791 0x8ea0, 0x8eb8,
792 0x8ec0, 0x8f6c,
793 0x8fc0, 0x9008,
794 0x9010, 0x9058,
795 0x9060, 0x9060,
796 0x9068, 0x9074,
797 0x90fc, 0x90fc,
798 0x9400, 0x9408,
799 0x9410, 0x9458,
800 0x9600, 0x9600,
801 0x9608, 0x9638,
802 0x9640, 0x96bc,
803 0x9800, 0x9808,
804 0x9820, 0x983c,
805 0x9850, 0x9864,
806 0x9c00, 0x9c6c,
807 0x9c80, 0x9cec,
808 0x9d00, 0x9d6c,
809 0x9d80, 0x9dec,
810 0x9e00, 0x9e6c,
811 0x9e80, 0x9eec,
812 0x9f00, 0x9f6c,
813 0x9f80, 0x9fec,
814 0xd004, 0xd004,
815 0xd010, 0xd03c,
816 0xdfc0, 0xdfe0,
817 0xe000, 0xea7c,
818 0xf000, 0x11190,
819 0x19040, 0x1906c,
820 0x19078, 0x19080,
821 0x1908c, 0x190e4,
822 0x190f0, 0x190f8,
823 0x19100, 0x19110,
824 0x19120, 0x19124,
825 0x19150, 0x19194,
826 0x1919c, 0x191b0,
827 0x191d0, 0x191e8,
828 0x19238, 0x1924c,
829 0x193f8, 0x1943c,
830 0x1944c, 0x19474,
831 0x19490, 0x194e0,
832 0x194f0, 0x194f8,
833 0x19800, 0x19c08,
834 0x19c10, 0x19c90,
835 0x19ca0, 0x19ce4,
836 0x19cf0, 0x19d40,
837 0x19d50, 0x19d94,
838 0x19da0, 0x19de8,
839 0x19df0, 0x19e40,
840 0x19e50, 0x19e90,
841 0x19ea0, 0x19f4c,
842 0x1a000, 0x1a004,
843 0x1a010, 0x1a06c,
844 0x1a0b0, 0x1a0e4,
845 0x1a0ec, 0x1a0f4,
846 0x1a100, 0x1a108,
847 0x1a114, 0x1a120,
848 0x1a128, 0x1a130,
849 0x1a138, 0x1a138,
850 0x1a190, 0x1a1c4,
851 0x1a1fc, 0x1a1fc,
852 0x1e040, 0x1e04c,
853 0x1e284, 0x1e28c,
854 0x1e2c0, 0x1e2c0,
855 0x1e2e0, 0x1e2e0,
856 0x1e300, 0x1e384,
857 0x1e3c0, 0x1e3c8,
858 0x1e440, 0x1e44c,
859 0x1e684, 0x1e68c,
860 0x1e6c0, 0x1e6c0,
861 0x1e6e0, 0x1e6e0,
862 0x1e700, 0x1e784,
863 0x1e7c0, 0x1e7c8,
864 0x1e840, 0x1e84c,
865 0x1ea84, 0x1ea8c,
866 0x1eac0, 0x1eac0,
867 0x1eae0, 0x1eae0,
868 0x1eb00, 0x1eb84,
869 0x1ebc0, 0x1ebc8,
870 0x1ec40, 0x1ec4c,
871 0x1ee84, 0x1ee8c,
872 0x1eec0, 0x1eec0,
873 0x1eee0, 0x1eee0,
874 0x1ef00, 0x1ef84,
875 0x1efc0, 0x1efc8,
876 0x1f040, 0x1f04c,
877 0x1f284, 0x1f28c,
878 0x1f2c0, 0x1f2c0,
879 0x1f2e0, 0x1f2e0,
880 0x1f300, 0x1f384,
881 0x1f3c0, 0x1f3c8,
882 0x1f440, 0x1f44c,
883 0x1f684, 0x1f68c,
884 0x1f6c0, 0x1f6c0,
885 0x1f6e0, 0x1f6e0,
886 0x1f700, 0x1f784,
887 0x1f7c0, 0x1f7c8,
888 0x1f840, 0x1f84c,
889 0x1fa84, 0x1fa8c,
890 0x1fac0, 0x1fac0,
891 0x1fae0, 0x1fae0,
892 0x1fb00, 0x1fb84,
893 0x1fbc0, 0x1fbc8,
894 0x1fc40, 0x1fc4c,
895 0x1fe84, 0x1fe8c,
896 0x1fec0, 0x1fec0,
897 0x1fee0, 0x1fee0,
898 0x1ff00, 0x1ff84,
899 0x1ffc0, 0x1ffc8,
900 0x20000, 0x2002c,
901 0x20100, 0x2013c,
902 0x20190, 0x201a0,
903 0x201a8, 0x201b8,
904 0x201c4, 0x201c8,
905 0x20200, 0x20318,
906 0x20400, 0x204b4,
907 0x204c0, 0x20528,
908 0x20540, 0x20614,
909 0x21000, 0x21040,
910 0x2104c, 0x21060,
911 0x210c0, 0x210ec,
912 0x21200, 0x21268,
913 0x21270, 0x21284,
914 0x212fc, 0x21388,
915 0x21400, 0x21404,
916 0x21500, 0x21500,
917 0x21510, 0x21518,
918 0x2152c, 0x21530,
919 0x2153c, 0x2153c,
920 0x21550, 0x21554,
921 0x21600, 0x21600,
922 0x21608, 0x2161c,
923 0x21624, 0x21628,
924 0x21630, 0x21634,
925 0x2163c, 0x2163c,
926 0x21700, 0x2171c,
927 0x21780, 0x2178c,
928 0x21800, 0x21818,
929 0x21820, 0x21828,
930 0x21830, 0x21848,
931 0x21850, 0x21854,
932 0x21860, 0x21868,
933 0x21870, 0x21870,
934 0x21878, 0x21898,
935 0x218a0, 0x218a8,
936 0x218b0, 0x218c8,
937 0x218d0, 0x218d4,
938 0x218e0, 0x218e8,
939 0x218f0, 0x218f0,
940 0x218f8, 0x21a18,
941 0x21a20, 0x21a28,
942 0x21a30, 0x21a48,
943 0x21a50, 0x21a54,
944 0x21a60, 0x21a68,
945 0x21a70, 0x21a70,
946 0x21a78, 0x21a98,
947 0x21aa0, 0x21aa8,
948 0x21ab0, 0x21ac8,
949 0x21ad0, 0x21ad4,
950 0x21ae0, 0x21ae8,
951 0x21af0, 0x21af0,
952 0x21af8, 0x21c18,
953 0x21c20, 0x21c20,
954 0x21c28, 0x21c30,
955 0x21c38, 0x21c38,
956 0x21c80, 0x21c98,
957 0x21ca0, 0x21ca8,
958 0x21cb0, 0x21cc8,
959 0x21cd0, 0x21cd4,
960 0x21ce0, 0x21ce8,
961 0x21cf0, 0x21cf0,
962 0x21cf8, 0x21d7c,
963 0x21e00, 0x21e04,
964 0x22000, 0x2202c,
965 0x22100, 0x2213c,
966 0x22190, 0x221a0,
967 0x221a8, 0x221b8,
968 0x221c4, 0x221c8,
969 0x22200, 0x22318,
970 0x22400, 0x224b4,
971 0x224c0, 0x22528,
972 0x22540, 0x22614,
973 0x23000, 0x23040,
974 0x2304c, 0x23060,
975 0x230c0, 0x230ec,
976 0x23200, 0x23268,
977 0x23270, 0x23284,
978 0x232fc, 0x23388,
979 0x23400, 0x23404,
980 0x23500, 0x23500,
981 0x23510, 0x23518,
982 0x2352c, 0x23530,
983 0x2353c, 0x2353c,
984 0x23550, 0x23554,
985 0x23600, 0x23600,
986 0x23608, 0x2361c,
987 0x23624, 0x23628,
988 0x23630, 0x23634,
989 0x2363c, 0x2363c,
990 0x23700, 0x2371c,
991 0x23780, 0x2378c,
992 0x23800, 0x23818,
993 0x23820, 0x23828,
994 0x23830, 0x23848,
995 0x23850, 0x23854,
996 0x23860, 0x23868,
997 0x23870, 0x23870,
998 0x23878, 0x23898,
999 0x238a0, 0x238a8,
1000 0x238b0, 0x238c8,
1001 0x238d0, 0x238d4,
1002 0x238e0, 0x238e8,
1003 0x238f0, 0x238f0,
1004 0x238f8, 0x23a18,
1005 0x23a20, 0x23a28,
1006 0x23a30, 0x23a48,
1007 0x23a50, 0x23a54,
1008 0x23a60, 0x23a68,
1009 0x23a70, 0x23a70,
1010 0x23a78, 0x23a98,
1011 0x23aa0, 0x23aa8,
1012 0x23ab0, 0x23ac8,
1013 0x23ad0, 0x23ad4,
1014 0x23ae0, 0x23ae8,
1015 0x23af0, 0x23af0,
1016 0x23af8, 0x23c18,
1017 0x23c20, 0x23c20,
1018 0x23c28, 0x23c30,
1019 0x23c38, 0x23c38,
1020 0x23c80, 0x23c98,
1021 0x23ca0, 0x23ca8,
1022 0x23cb0, 0x23cc8,
1023 0x23cd0, 0x23cd4,
1024 0x23ce0, 0x23ce8,
1025 0x23cf0, 0x23cf0,
1026 0x23cf8, 0x23d7c,
1027 0x23e00, 0x23e04,
1028 0x24000, 0x2402c,
1029 0x24100, 0x2413c,
1030 0x24190, 0x241a0,
1031 0x241a8, 0x241b8,
1032 0x241c4, 0x241c8,
1033 0x24200, 0x24318,
1034 0x24400, 0x244b4,
1035 0x244c0, 0x24528,
1036 0x24540, 0x24614,
1037 0x25000, 0x25040,
1038 0x2504c, 0x25060,
1039 0x250c0, 0x250ec,
1040 0x25200, 0x25268,
1041 0x25270, 0x25284,
1042 0x252fc, 0x25388,
1043 0x25400, 0x25404,
1044 0x25500, 0x25500,
1045 0x25510, 0x25518,
1046 0x2552c, 0x25530,
1047 0x2553c, 0x2553c,
1048 0x25550, 0x25554,
1049 0x25600, 0x25600,
1050 0x25608, 0x2561c,
1051 0x25624, 0x25628,
1052 0x25630, 0x25634,
1053 0x2563c, 0x2563c,
1054 0x25700, 0x2571c,
1055 0x25780, 0x2578c,
1056 0x25800, 0x25818,
1057 0x25820, 0x25828,
1058 0x25830, 0x25848,
1059 0x25850, 0x25854,
1060 0x25860, 0x25868,
1061 0x25870, 0x25870,
1062 0x25878, 0x25898,
1063 0x258a0, 0x258a8,
1064 0x258b0, 0x258c8,
1065 0x258d0, 0x258d4,
1066 0x258e0, 0x258e8,
1067 0x258f0, 0x258f0,
1068 0x258f8, 0x25a18,
1069 0x25a20, 0x25a28,
1070 0x25a30, 0x25a48,
1071 0x25a50, 0x25a54,
1072 0x25a60, 0x25a68,
1073 0x25a70, 0x25a70,
1074 0x25a78, 0x25a98,
1075 0x25aa0, 0x25aa8,
1076 0x25ab0, 0x25ac8,
1077 0x25ad0, 0x25ad4,
1078 0x25ae0, 0x25ae8,
1079 0x25af0, 0x25af0,
1080 0x25af8, 0x25c18,
1081 0x25c20, 0x25c20,
1082 0x25c28, 0x25c30,
1083 0x25c38, 0x25c38,
1084 0x25c80, 0x25c98,
1085 0x25ca0, 0x25ca8,
1086 0x25cb0, 0x25cc8,
1087 0x25cd0, 0x25cd4,
1088 0x25ce0, 0x25ce8,
1089 0x25cf0, 0x25cf0,
1090 0x25cf8, 0x25d7c,
1091 0x25e00, 0x25e04,
1092 0x26000, 0x2602c,
1093 0x26100, 0x2613c,
1094 0x26190, 0x261a0,
1095 0x261a8, 0x261b8,
1096 0x261c4, 0x261c8,
1097 0x26200, 0x26318,
1098 0x26400, 0x264b4,
1099 0x264c0, 0x26528,
1100 0x26540, 0x26614,
1101 0x27000, 0x27040,
1102 0x2704c, 0x27060,
1103 0x270c0, 0x270ec,
1104 0x27200, 0x27268,
1105 0x27270, 0x27284,
1106 0x272fc, 0x27388,
1107 0x27400, 0x27404,
1108 0x27500, 0x27500,
1109 0x27510, 0x27518,
1110 0x2752c, 0x27530,
1111 0x2753c, 0x2753c,
1112 0x27550, 0x27554,
1113 0x27600, 0x27600,
1114 0x27608, 0x2761c,
1115 0x27624, 0x27628,
1116 0x27630, 0x27634,
1117 0x2763c, 0x2763c,
1118 0x27700, 0x2771c,
1119 0x27780, 0x2778c,
1120 0x27800, 0x27818,
1121 0x27820, 0x27828,
1122 0x27830, 0x27848,
1123 0x27850, 0x27854,
1124 0x27860, 0x27868,
1125 0x27870, 0x27870,
1126 0x27878, 0x27898,
1127 0x278a0, 0x278a8,
1128 0x278b0, 0x278c8,
1129 0x278d0, 0x278d4,
1130 0x278e0, 0x278e8,
1131 0x278f0, 0x278f0,
1132 0x278f8, 0x27a18,
1133 0x27a20, 0x27a28,
1134 0x27a30, 0x27a48,
1135 0x27a50, 0x27a54,
1136 0x27a60, 0x27a68,
1137 0x27a70, 0x27a70,
1138 0x27a78, 0x27a98,
1139 0x27aa0, 0x27aa8,
1140 0x27ab0, 0x27ac8,
1141 0x27ad0, 0x27ad4,
1142 0x27ae0, 0x27ae8,
1143 0x27af0, 0x27af0,
1144 0x27af8, 0x27c18,
1145 0x27c20, 0x27c20,
1146 0x27c28, 0x27c30,
1147 0x27c38, 0x27c38,
1148 0x27c80, 0x27c98,
1149 0x27ca0, 0x27ca8,
1150 0x27cb0, 0x27cc8,
1151 0x27cd0, 0x27cd4,
1152 0x27ce0, 0x27ce8,
1153 0x27cf0, 0x27cf0,
1154 0x27cf8, 0x27d7c,
1155 0x27e00, 0x27e04,
1156 };
1157
1158 static const unsigned int t5_reg_ranges[] = {
1159 0x1008, 0x10c0,
1160 0x10cc, 0x10f8,
1161 0x1100, 0x1100,
1162 0x110c, 0x1148,
1163 0x1180, 0x1184,
1164 0x1190, 0x1194,
1165 0x11a0, 0x11a4,
1166 0x11b0, 0x11b4,
1167 0x11fc, 0x123c,
1168 0x1280, 0x173c,
1169 0x1800, 0x18fc,
1170 0x3000, 0x3028,
1171 0x3060, 0x30b0,
1172 0x30b8, 0x30d8,
1173 0x30e0, 0x30fc,
1174 0x3140, 0x357c,
1175 0x35a8, 0x35cc,
1176 0x35ec, 0x35ec,
1177 0x3600, 0x5624,
1178 0x56cc, 0x56ec,
1179 0x56f4, 0x5720,
1180 0x5728, 0x575c,
1181 0x580c, 0x5814,
1182 0x5890, 0x589c,
1183 0x58a4, 0x58ac,
1184 0x58b8, 0x58bc,
1185 0x5940, 0x59c8,
1186 0x59d0, 0x59dc,
1187 0x59fc, 0x5a18,
1188 0x5a60, 0x5a70,
1189 0x5a80, 0x5a9c,
1190 0x5b94, 0x5bfc,
1191 0x6000, 0x6020,
1192 0x6028, 0x6040,
1193 0x6058, 0x609c,
1194 0x60a8, 0x614c,
1195 0x7700, 0x7798,
1196 0x77c0, 0x78fc,
1197 0x7b00, 0x7b58,
1198 0x7b60, 0x7b84,
1199 0x7b8c, 0x7c54,
1200 0x7d00, 0x7d38,
1201 0x7d40, 0x7d80,
1202 0x7d8c, 0x7ddc,
1203 0x7de4, 0x7e04,
1204 0x7e10, 0x7e1c,
1205 0x7e24, 0x7e38,
1206 0x7e40, 0x7e44,
1207 0x7e4c, 0x7e78,
1208 0x7e80, 0x7edc,
1209 0x7ee8, 0x7efc,
1210 0x8dc0, 0x8de0,
1211 0x8df8, 0x8e04,
1212 0x8e10, 0x8e84,
1213 0x8ea0, 0x8f84,
1214 0x8fc0, 0x9058,
1215 0x9060, 0x9060,
1216 0x9068, 0x90f8,
1217 0x9400, 0x9408,
1218 0x9410, 0x9470,
1219 0x9600, 0x9600,
1220 0x9608, 0x9638,
1221 0x9640, 0x96f4,
1222 0x9800, 0x9808,
1223 0x9820, 0x983c,
1224 0x9850, 0x9864,
1225 0x9c00, 0x9c6c,
1226 0x9c80, 0x9cec,
1227 0x9d00, 0x9d6c,
1228 0x9d80, 0x9dec,
1229 0x9e00, 0x9e6c,
1230 0x9e80, 0x9eec,
1231 0x9f00, 0x9f6c,
1232 0x9f80, 0xa020,
1233 0xd004, 0xd004,
1234 0xd010, 0xd03c,
1235 0xdfc0, 0xdfe0,
1236 0xe000, 0x1106c,
1237 0x11074, 0x11088,
1238 0x1109c, 0x1117c,
1239 0x11190, 0x11204,
1240 0x19040, 0x1906c,
1241 0x19078, 0x19080,
1242 0x1908c, 0x190e8,
1243 0x190f0, 0x190f8,
1244 0x19100, 0x19110,
1245 0x19120, 0x19124,
1246 0x19150, 0x19194,
1247 0x1919c, 0x191b0,
1248 0x191d0, 0x191e8,
1249 0x19238, 0x19290,
1250 0x193f8, 0x19428,
1251 0x19430, 0x19444,
1252 0x1944c, 0x1946c,
1253 0x19474, 0x19474,
1254 0x19490, 0x194cc,
1255 0x194f0, 0x194f8,
1256 0x19c00, 0x19c08,
1257 0x19c10, 0x19c60,
1258 0x19c94, 0x19ce4,
1259 0x19cf0, 0x19d40,
1260 0x19d50, 0x19d94,
1261 0x19da0, 0x19de8,
1262 0x19df0, 0x19e10,
1263 0x19e50, 0x19e90,
1264 0x19ea0, 0x19f24,
1265 0x19f34, 0x19f34,
1266 0x19f40, 0x19f50,
1267 0x19f90, 0x19fb4,
1268 0x19fc4, 0x19fe4,
1269 0x1a000, 0x1a004,
1270 0x1a010, 0x1a06c,
1271 0x1a0b0, 0x1a0e4,
1272 0x1a0ec, 0x1a0f8,
1273 0x1a100, 0x1a108,
1274 0x1a114, 0x1a120,
1275 0x1a128, 0x1a130,
1276 0x1a138, 0x1a138,
1277 0x1a190, 0x1a1c4,
1278 0x1a1fc, 0x1a1fc,
1279 0x1e008, 0x1e00c,
1280 0x1e040, 0x1e044,
1281 0x1e04c, 0x1e04c,
1282 0x1e284, 0x1e290,
1283 0x1e2c0, 0x1e2c0,
1284 0x1e2e0, 0x1e2e0,
1285 0x1e300, 0x1e384,
1286 0x1e3c0, 0x1e3c8,
1287 0x1e408, 0x1e40c,
1288 0x1e440, 0x1e444,
1289 0x1e44c, 0x1e44c,
1290 0x1e684, 0x1e690,
1291 0x1e6c0, 0x1e6c0,
1292 0x1e6e0, 0x1e6e0,
1293 0x1e700, 0x1e784,
1294 0x1e7c0, 0x1e7c8,
1295 0x1e808, 0x1e80c,
1296 0x1e840, 0x1e844,
1297 0x1e84c, 0x1e84c,
1298 0x1ea84, 0x1ea90,
1299 0x1eac0, 0x1eac0,
1300 0x1eae0, 0x1eae0,
1301 0x1eb00, 0x1eb84,
1302 0x1ebc0, 0x1ebc8,
1303 0x1ec08, 0x1ec0c,
1304 0x1ec40, 0x1ec44,
1305 0x1ec4c, 0x1ec4c,
1306 0x1ee84, 0x1ee90,
1307 0x1eec0, 0x1eec0,
1308 0x1eee0, 0x1eee0,
1309 0x1ef00, 0x1ef84,
1310 0x1efc0, 0x1efc8,
1311 0x1f008, 0x1f00c,
1312 0x1f040, 0x1f044,
1313 0x1f04c, 0x1f04c,
1314 0x1f284, 0x1f290,
1315 0x1f2c0, 0x1f2c0,
1316 0x1f2e0, 0x1f2e0,
1317 0x1f300, 0x1f384,
1318 0x1f3c0, 0x1f3c8,
1319 0x1f408, 0x1f40c,
1320 0x1f440, 0x1f444,
1321 0x1f44c, 0x1f44c,
1322 0x1f684, 0x1f690,
1323 0x1f6c0, 0x1f6c0,
1324 0x1f6e0, 0x1f6e0,
1325 0x1f700, 0x1f784,
1326 0x1f7c0, 0x1f7c8,
1327 0x1f808, 0x1f80c,
1328 0x1f840, 0x1f844,
1329 0x1f84c, 0x1f84c,
1330 0x1fa84, 0x1fa90,
1331 0x1fac0, 0x1fac0,
1332 0x1fae0, 0x1fae0,
1333 0x1fb00, 0x1fb84,
1334 0x1fbc0, 0x1fbc8,
1335 0x1fc08, 0x1fc0c,
1336 0x1fc40, 0x1fc44,
1337 0x1fc4c, 0x1fc4c,
1338 0x1fe84, 0x1fe90,
1339 0x1fec0, 0x1fec0,
1340 0x1fee0, 0x1fee0,
1341 0x1ff00, 0x1ff84,
1342 0x1ffc0, 0x1ffc8,
1343 0x30000, 0x30030,
1344 0x30038, 0x30038,
1345 0x30040, 0x30040,
1346 0x30100, 0x30144,
1347 0x30190, 0x301a0,
1348 0x301a8, 0x301b8,
1349 0x301c4, 0x301c8,
1350 0x301d0, 0x301d0,
1351 0x30200, 0x30318,
1352 0x30400, 0x304b4,
1353 0x304c0, 0x3052c,
1354 0x30540, 0x3061c,
1355 0x30800, 0x30828,
1356 0x30834, 0x30834,
1357 0x308c0, 0x30908,
1358 0x30910, 0x309ac,
1359 0x30a00, 0x30a14,
1360 0x30a1c, 0x30a2c,
1361 0x30a44, 0x30a50,
1362 0x30a74, 0x30a74,
1363 0x30a7c, 0x30afc,
1364 0x30b08, 0x30c24,
1365 0x30d00, 0x30d00,
1366 0x30d08, 0x30d14,
1367 0x30d1c, 0x30d20,
1368 0x30d3c, 0x30d3c,
1369 0x30d48, 0x30d50,
1370 0x31200, 0x3120c,
1371 0x31220, 0x31220,
1372 0x31240, 0x31240,
1373 0x31600, 0x3160c,
1374 0x31a00, 0x31a1c,
1375 0x31e00, 0x31e20,
1376 0x31e38, 0x31e3c,
1377 0x31e80, 0x31e80,
1378 0x31e88, 0x31ea8,
1379 0x31eb0, 0x31eb4,
1380 0x31ec8, 0x31ed4,
1381 0x31fb8, 0x32004,
1382 0x32200, 0x32200,
1383 0x32208, 0x32240,
1384 0x32248, 0x32280,
1385 0x32288, 0x322c0,
1386 0x322c8, 0x322fc,
1387 0x32600, 0x32630,
1388 0x32a00, 0x32abc,
1389 0x32b00, 0x32b10,
1390 0x32b20, 0x32b30,
1391 0x32b40, 0x32b50,
1392 0x32b60, 0x32b70,
1393 0x33000, 0x33028,
1394 0x33030, 0x33048,
1395 0x33060, 0x33068,
1396 0x33070, 0x3309c,
1397 0x330f0, 0x33128,
1398 0x33130, 0x33148,
1399 0x33160, 0x33168,
1400 0x33170, 0x3319c,
1401 0x331f0, 0x33238,
1402 0x33240, 0x33240,
1403 0x33248, 0x33250,
1404 0x3325c, 0x33264,
1405 0x33270, 0x332b8,
1406 0x332c0, 0x332e4,
1407 0x332f8, 0x33338,
1408 0x33340, 0x33340,
1409 0x33348, 0x33350,
1410 0x3335c, 0x33364,
1411 0x33370, 0x333b8,
1412 0x333c0, 0x333e4,
1413 0x333f8, 0x33428,
1414 0x33430, 0x33448,
1415 0x33460, 0x33468,
1416 0x33470, 0x3349c,
1417 0x334f0, 0x33528,
1418 0x33530, 0x33548,
1419 0x33560, 0x33568,
1420 0x33570, 0x3359c,
1421 0x335f0, 0x33638,
1422 0x33640, 0x33640,
1423 0x33648, 0x33650,
1424 0x3365c, 0x33664,
1425 0x33670, 0x336b8,
1426 0x336c0, 0x336e4,
1427 0x336f8, 0x33738,
1428 0x33740, 0x33740,
1429 0x33748, 0x33750,
1430 0x3375c, 0x33764,
1431 0x33770, 0x337b8,
1432 0x337c0, 0x337e4,
1433 0x337f8, 0x337fc,
1434 0x33814, 0x33814,
1435 0x3382c, 0x3382c,
1436 0x33880, 0x3388c,
1437 0x338e8, 0x338ec,
1438 0x33900, 0x33928,
1439 0x33930, 0x33948,
1440 0x33960, 0x33968,
1441 0x33970, 0x3399c,
1442 0x339f0, 0x33a38,
1443 0x33a40, 0x33a40,
1444 0x33a48, 0x33a50,
1445 0x33a5c, 0x33a64,
1446 0x33a70, 0x33ab8,
1447 0x33ac0, 0x33ae4,
1448 0x33af8, 0x33b10,
1449 0x33b28, 0x33b28,
1450 0x33b3c, 0x33b50,
1451 0x33bf0, 0x33c10,
1452 0x33c28, 0x33c28,
1453 0x33c3c, 0x33c50,
1454 0x33cf0, 0x33cfc,
1455 0x34000, 0x34030,
1456 0x34038, 0x34038,
1457 0x34040, 0x34040,
1458 0x34100, 0x34144,
1459 0x34190, 0x341a0,
1460 0x341a8, 0x341b8,
1461 0x341c4, 0x341c8,
1462 0x341d0, 0x341d0,
1463 0x34200, 0x34318,
1464 0x34400, 0x344b4,
1465 0x344c0, 0x3452c,
1466 0x34540, 0x3461c,
1467 0x34800, 0x34828,
1468 0x34834, 0x34834,
1469 0x348c0, 0x34908,
1470 0x34910, 0x349ac,
1471 0x34a00, 0x34a14,
1472 0x34a1c, 0x34a2c,
1473 0x34a44, 0x34a50,
1474 0x34a74, 0x34a74,
1475 0x34a7c, 0x34afc,
1476 0x34b08, 0x34c24,
1477 0x34d00, 0x34d00,
1478 0x34d08, 0x34d14,
1479 0x34d1c, 0x34d20,
1480 0x34d3c, 0x34d3c,
1481 0x34d48, 0x34d50,
1482 0x35200, 0x3520c,
1483 0x35220, 0x35220,
1484 0x35240, 0x35240,
1485 0x35600, 0x3560c,
1486 0x35a00, 0x35a1c,
1487 0x35e00, 0x35e20,
1488 0x35e38, 0x35e3c,
1489 0x35e80, 0x35e80,
1490 0x35e88, 0x35ea8,
1491 0x35eb0, 0x35eb4,
1492 0x35ec8, 0x35ed4,
1493 0x35fb8, 0x36004,
1494 0x36200, 0x36200,
1495 0x36208, 0x36240,
1496 0x36248, 0x36280,
1497 0x36288, 0x362c0,
1498 0x362c8, 0x362fc,
1499 0x36600, 0x36630,
1500 0x36a00, 0x36abc,
1501 0x36b00, 0x36b10,
1502 0x36b20, 0x36b30,
1503 0x36b40, 0x36b50,
1504 0x36b60, 0x36b70,
1505 0x37000, 0x37028,
1506 0x37030, 0x37048,
1507 0x37060, 0x37068,
1508 0x37070, 0x3709c,
1509 0x370f0, 0x37128,
1510 0x37130, 0x37148,
1511 0x37160, 0x37168,
1512 0x37170, 0x3719c,
1513 0x371f0, 0x37238,
1514 0x37240, 0x37240,
1515 0x37248, 0x37250,
1516 0x3725c, 0x37264,
1517 0x37270, 0x372b8,
1518 0x372c0, 0x372e4,
1519 0x372f8, 0x37338,
1520 0x37340, 0x37340,
1521 0x37348, 0x37350,
1522 0x3735c, 0x37364,
1523 0x37370, 0x373b8,
1524 0x373c0, 0x373e4,
1525 0x373f8, 0x37428,
1526 0x37430, 0x37448,
1527 0x37460, 0x37468,
1528 0x37470, 0x3749c,
1529 0x374f0, 0x37528,
1530 0x37530, 0x37548,
1531 0x37560, 0x37568,
1532 0x37570, 0x3759c,
1533 0x375f0, 0x37638,
1534 0x37640, 0x37640,
1535 0x37648, 0x37650,
1536 0x3765c, 0x37664,
1537 0x37670, 0x376b8,
1538 0x376c0, 0x376e4,
1539 0x376f8, 0x37738,
1540 0x37740, 0x37740,
1541 0x37748, 0x37750,
1542 0x3775c, 0x37764,
1543 0x37770, 0x377b8,
1544 0x377c0, 0x377e4,
1545 0x377f8, 0x377fc,
1546 0x37814, 0x37814,
1547 0x3782c, 0x3782c,
1548 0x37880, 0x3788c,
1549 0x378e8, 0x378ec,
1550 0x37900, 0x37928,
1551 0x37930, 0x37948,
1552 0x37960, 0x37968,
1553 0x37970, 0x3799c,
1554 0x379f0, 0x37a38,
1555 0x37a40, 0x37a40,
1556 0x37a48, 0x37a50,
1557 0x37a5c, 0x37a64,
1558 0x37a70, 0x37ab8,
1559 0x37ac0, 0x37ae4,
1560 0x37af8, 0x37b10,
1561 0x37b28, 0x37b28,
1562 0x37b3c, 0x37b50,
1563 0x37bf0, 0x37c10,
1564 0x37c28, 0x37c28,
1565 0x37c3c, 0x37c50,
1566 0x37cf0, 0x37cfc,
1567 0x38000, 0x38030,
1568 0x38038, 0x38038,
1569 0x38040, 0x38040,
1570 0x38100, 0x38144,
1571 0x38190, 0x381a0,
1572 0x381a8, 0x381b8,
1573 0x381c4, 0x381c8,
1574 0x381d0, 0x381d0,
1575 0x38200, 0x38318,
1576 0x38400, 0x384b4,
1577 0x384c0, 0x3852c,
1578 0x38540, 0x3861c,
1579 0x38800, 0x38828,
1580 0x38834, 0x38834,
1581 0x388c0, 0x38908,
1582 0x38910, 0x389ac,
1583 0x38a00, 0x38a14,
1584 0x38a1c, 0x38a2c,
1585 0x38a44, 0x38a50,
1586 0x38a74, 0x38a74,
1587 0x38a7c, 0x38afc,
1588 0x38b08, 0x38c24,
1589 0x38d00, 0x38d00,
1590 0x38d08, 0x38d14,
1591 0x38d1c, 0x38d20,
1592 0x38d3c, 0x38d3c,
1593 0x38d48, 0x38d50,
1594 0x39200, 0x3920c,
1595 0x39220, 0x39220,
1596 0x39240, 0x39240,
1597 0x39600, 0x3960c,
1598 0x39a00, 0x39a1c,
1599 0x39e00, 0x39e20,
1600 0x39e38, 0x39e3c,
1601 0x39e80, 0x39e80,
1602 0x39e88, 0x39ea8,
1603 0x39eb0, 0x39eb4,
1604 0x39ec8, 0x39ed4,
1605 0x39fb8, 0x3a004,
1606 0x3a200, 0x3a200,
1607 0x3a208, 0x3a240,
1608 0x3a248, 0x3a280,
1609 0x3a288, 0x3a2c0,
1610 0x3a2c8, 0x3a2fc,
1611 0x3a600, 0x3a630,
1612 0x3aa00, 0x3aabc,
1613 0x3ab00, 0x3ab10,
1614 0x3ab20, 0x3ab30,
1615 0x3ab40, 0x3ab50,
1616 0x3ab60, 0x3ab70,
1617 0x3b000, 0x3b028,
1618 0x3b030, 0x3b048,
1619 0x3b060, 0x3b068,
1620 0x3b070, 0x3b09c,
1621 0x3b0f0, 0x3b128,
1622 0x3b130, 0x3b148,
1623 0x3b160, 0x3b168,
1624 0x3b170, 0x3b19c,
1625 0x3b1f0, 0x3b238,
1626 0x3b240, 0x3b240,
1627 0x3b248, 0x3b250,
1628 0x3b25c, 0x3b264,
1629 0x3b270, 0x3b2b8,
1630 0x3b2c0, 0x3b2e4,
1631 0x3b2f8, 0x3b338,
1632 0x3b340, 0x3b340,
1633 0x3b348, 0x3b350,
1634 0x3b35c, 0x3b364,
1635 0x3b370, 0x3b3b8,
1636 0x3b3c0, 0x3b3e4,
1637 0x3b3f8, 0x3b428,
1638 0x3b430, 0x3b448,
1639 0x3b460, 0x3b468,
1640 0x3b470, 0x3b49c,
1641 0x3b4f0, 0x3b528,
1642 0x3b530, 0x3b548,
1643 0x3b560, 0x3b568,
1644 0x3b570, 0x3b59c,
1645 0x3b5f0, 0x3b638,
1646 0x3b640, 0x3b640,
1647 0x3b648, 0x3b650,
1648 0x3b65c, 0x3b664,
1649 0x3b670, 0x3b6b8,
1650 0x3b6c0, 0x3b6e4,
1651 0x3b6f8, 0x3b738,
1652 0x3b740, 0x3b740,
1653 0x3b748, 0x3b750,
1654 0x3b75c, 0x3b764,
1655 0x3b770, 0x3b7b8,
1656 0x3b7c0, 0x3b7e4,
1657 0x3b7f8, 0x3b7fc,
1658 0x3b814, 0x3b814,
1659 0x3b82c, 0x3b82c,
1660 0x3b880, 0x3b88c,
1661 0x3b8e8, 0x3b8ec,
1662 0x3b900, 0x3b928,
1663 0x3b930, 0x3b948,
1664 0x3b960, 0x3b968,
1665 0x3b970, 0x3b99c,
1666 0x3b9f0, 0x3ba38,
1667 0x3ba40, 0x3ba40,
1668 0x3ba48, 0x3ba50,
1669 0x3ba5c, 0x3ba64,
1670 0x3ba70, 0x3bab8,
1671 0x3bac0, 0x3bae4,
1672 0x3baf8, 0x3bb10,
1673 0x3bb28, 0x3bb28,
1674 0x3bb3c, 0x3bb50,
1675 0x3bbf0, 0x3bc10,
1676 0x3bc28, 0x3bc28,
1677 0x3bc3c, 0x3bc50,
1678 0x3bcf0, 0x3bcfc,
1679 0x3c000, 0x3c030,
1680 0x3c038, 0x3c038,
1681 0x3c040, 0x3c040,
1682 0x3c100, 0x3c144,
1683 0x3c190, 0x3c1a0,
1684 0x3c1a8, 0x3c1b8,
1685 0x3c1c4, 0x3c1c8,
1686 0x3c1d0, 0x3c1d0,
1687 0x3c200, 0x3c318,
1688 0x3c400, 0x3c4b4,
1689 0x3c4c0, 0x3c52c,
1690 0x3c540, 0x3c61c,
1691 0x3c800, 0x3c828,
1692 0x3c834, 0x3c834,
1693 0x3c8c0, 0x3c908,
1694 0x3c910, 0x3c9ac,
1695 0x3ca00, 0x3ca14,
1696 0x3ca1c, 0x3ca2c,
1697 0x3ca44, 0x3ca50,
1698 0x3ca74, 0x3ca74,
1699 0x3ca7c, 0x3cafc,
1700 0x3cb08, 0x3cc24,
1701 0x3cd00, 0x3cd00,
1702 0x3cd08, 0x3cd14,
1703 0x3cd1c, 0x3cd20,
1704 0x3cd3c, 0x3cd3c,
1705 0x3cd48, 0x3cd50,
1706 0x3d200, 0x3d20c,
1707 0x3d220, 0x3d220,
1708 0x3d240, 0x3d240,
1709 0x3d600, 0x3d60c,
1710 0x3da00, 0x3da1c,
1711 0x3de00, 0x3de20,
1712 0x3de38, 0x3de3c,
1713 0x3de80, 0x3de80,
1714 0x3de88, 0x3dea8,
1715 0x3deb0, 0x3deb4,
1716 0x3dec8, 0x3ded4,
1717 0x3dfb8, 0x3e004,
1718 0x3e200, 0x3e200,
1719 0x3e208, 0x3e240,
1720 0x3e248, 0x3e280,
1721 0x3e288, 0x3e2c0,
1722 0x3e2c8, 0x3e2fc,
1723 0x3e600, 0x3e630,
1724 0x3ea00, 0x3eabc,
1725 0x3eb00, 0x3eb10,
1726 0x3eb20, 0x3eb30,
1727 0x3eb40, 0x3eb50,
1728 0x3eb60, 0x3eb70,
1729 0x3f000, 0x3f028,
1730 0x3f030, 0x3f048,
1731 0x3f060, 0x3f068,
1732 0x3f070, 0x3f09c,
1733 0x3f0f0, 0x3f128,
1734 0x3f130, 0x3f148,
1735 0x3f160, 0x3f168,
1736 0x3f170, 0x3f19c,
1737 0x3f1f0, 0x3f238,
1738 0x3f240, 0x3f240,
1739 0x3f248, 0x3f250,
1740 0x3f25c, 0x3f264,
1741 0x3f270, 0x3f2b8,
1742 0x3f2c0, 0x3f2e4,
1743 0x3f2f8, 0x3f338,
1744 0x3f340, 0x3f340,
1745 0x3f348, 0x3f350,
1746 0x3f35c, 0x3f364,
1747 0x3f370, 0x3f3b8,
1748 0x3f3c0, 0x3f3e4,
1749 0x3f3f8, 0x3f428,
1750 0x3f430, 0x3f448,
1751 0x3f460, 0x3f468,
1752 0x3f470, 0x3f49c,
1753 0x3f4f0, 0x3f528,
1754 0x3f530, 0x3f548,
1755 0x3f560, 0x3f568,
1756 0x3f570, 0x3f59c,
1757 0x3f5f0, 0x3f638,
1758 0x3f640, 0x3f640,
1759 0x3f648, 0x3f650,
1760 0x3f65c, 0x3f664,
1761 0x3f670, 0x3f6b8,
1762 0x3f6c0, 0x3f6e4,
1763 0x3f6f8, 0x3f738,
1764 0x3f740, 0x3f740,
1765 0x3f748, 0x3f750,
1766 0x3f75c, 0x3f764,
1767 0x3f770, 0x3f7b8,
1768 0x3f7c0, 0x3f7e4,
1769 0x3f7f8, 0x3f7fc,
1770 0x3f814, 0x3f814,
1771 0x3f82c, 0x3f82c,
1772 0x3f880, 0x3f88c,
1773 0x3f8e8, 0x3f8ec,
1774 0x3f900, 0x3f928,
1775 0x3f930, 0x3f948,
1776 0x3f960, 0x3f968,
1777 0x3f970, 0x3f99c,
1778 0x3f9f0, 0x3fa38,
1779 0x3fa40, 0x3fa40,
1780 0x3fa48, 0x3fa50,
1781 0x3fa5c, 0x3fa64,
1782 0x3fa70, 0x3fab8,
1783 0x3fac0, 0x3fae4,
1784 0x3faf8, 0x3fb10,
1785 0x3fb28, 0x3fb28,
1786 0x3fb3c, 0x3fb50,
1787 0x3fbf0, 0x3fc10,
1788 0x3fc28, 0x3fc28,
1789 0x3fc3c, 0x3fc50,
1790 0x3fcf0, 0x3fcfc,
1791 0x40000, 0x4000c,
1792 0x40040, 0x40050,
1793 0x40060, 0x40068,
1794 0x4007c, 0x4008c,
1795 0x40094, 0x400b0,
1796 0x400c0, 0x40144,
1797 0x40180, 0x4018c,
1798 0x40200, 0x40254,
1799 0x40260, 0x40264,
1800 0x40270, 0x40288,
1801 0x40290, 0x40298,
1802 0x402ac, 0x402c8,
1803 0x402d0, 0x402e0,
1804 0x402f0, 0x402f0,
1805 0x40300, 0x4033c,
1806 0x403f8, 0x403fc,
1807 0x41304, 0x413c4,
1808 0x41400, 0x4140c,
1809 0x41414, 0x4141c,
1810 0x41480, 0x414d0,
1811 0x44000, 0x44054,
1812 0x4405c, 0x44078,
1813 0x440c0, 0x44174,
1814 0x44180, 0x441ac,
1815 0x441b4, 0x441b8,
1816 0x441c0, 0x44254,
1817 0x4425c, 0x44278,
1818 0x442c0, 0x44374,
1819 0x44380, 0x443ac,
1820 0x443b4, 0x443b8,
1821 0x443c0, 0x44454,
1822 0x4445c, 0x44478,
1823 0x444c0, 0x44574,
1824 0x44580, 0x445ac,
1825 0x445b4, 0x445b8,
1826 0x445c0, 0x44654,
1827 0x4465c, 0x44678,
1828 0x446c0, 0x44774,
1829 0x44780, 0x447ac,
1830 0x447b4, 0x447b8,
1831 0x447c0, 0x44854,
1832 0x4485c, 0x44878,
1833 0x448c0, 0x44974,
1834 0x44980, 0x449ac,
1835 0x449b4, 0x449b8,
1836 0x449c0, 0x449fc,
1837 0x45000, 0x45004,
1838 0x45010, 0x45030,
1839 0x45040, 0x45060,
1840 0x45068, 0x45068,
1841 0x45080, 0x45084,
1842 0x450a0, 0x450b0,
1843 0x45200, 0x45204,
1844 0x45210, 0x45230,
1845 0x45240, 0x45260,
1846 0x45268, 0x45268,
1847 0x45280, 0x45284,
1848 0x452a0, 0x452b0,
1849 0x460c0, 0x460e4,
1850 0x47000, 0x4703c,
1851 0x47044, 0x4708c,
1852 0x47200, 0x47250,
1853 0x47400, 0x47408,
1854 0x47414, 0x47420,
1855 0x47600, 0x47618,
1856 0x47800, 0x47814,
1857 0x48000, 0x4800c,
1858 0x48040, 0x48050,
1859 0x48060, 0x48068,
1860 0x4807c, 0x4808c,
1861 0x48094, 0x480b0,
1862 0x480c0, 0x48144,
1863 0x48180, 0x4818c,
1864 0x48200, 0x48254,
1865 0x48260, 0x48264,
1866 0x48270, 0x48288,
1867 0x48290, 0x48298,
1868 0x482ac, 0x482c8,
1869 0x482d0, 0x482e0,
1870 0x482f0, 0x482f0,
1871 0x48300, 0x4833c,
1872 0x483f8, 0x483fc,
1873 0x49304, 0x493c4,
1874 0x49400, 0x4940c,
1875 0x49414, 0x4941c,
1876 0x49480, 0x494d0,
1877 0x4c000, 0x4c054,
1878 0x4c05c, 0x4c078,
1879 0x4c0c0, 0x4c174,
1880 0x4c180, 0x4c1ac,
1881 0x4c1b4, 0x4c1b8,
1882 0x4c1c0, 0x4c254,
1883 0x4c25c, 0x4c278,
1884 0x4c2c0, 0x4c374,
1885 0x4c380, 0x4c3ac,
1886 0x4c3b4, 0x4c3b8,
1887 0x4c3c0, 0x4c454,
1888 0x4c45c, 0x4c478,
1889 0x4c4c0, 0x4c574,
1890 0x4c580, 0x4c5ac,
1891 0x4c5b4, 0x4c5b8,
1892 0x4c5c0, 0x4c654,
1893 0x4c65c, 0x4c678,
1894 0x4c6c0, 0x4c774,
1895 0x4c780, 0x4c7ac,
1896 0x4c7b4, 0x4c7b8,
1897 0x4c7c0, 0x4c854,
1898 0x4c85c, 0x4c878,
1899 0x4c8c0, 0x4c974,
1900 0x4c980, 0x4c9ac,
1901 0x4c9b4, 0x4c9b8,
1902 0x4c9c0, 0x4c9fc,
1903 0x4d000, 0x4d004,
1904 0x4d010, 0x4d030,
1905 0x4d040, 0x4d060,
1906 0x4d068, 0x4d068,
1907 0x4d080, 0x4d084,
1908 0x4d0a0, 0x4d0b0,
1909 0x4d200, 0x4d204,
1910 0x4d210, 0x4d230,
1911 0x4d240, 0x4d260,
1912 0x4d268, 0x4d268,
1913 0x4d280, 0x4d284,
1914 0x4d2a0, 0x4d2b0,
1915 0x4e0c0, 0x4e0e4,
1916 0x4f000, 0x4f03c,
1917 0x4f044, 0x4f08c,
1918 0x4f200, 0x4f250,
1919 0x4f400, 0x4f408,
1920 0x4f414, 0x4f420,
1921 0x4f600, 0x4f618,
1922 0x4f800, 0x4f814,
1923 0x50000, 0x50084,
1924 0x50090, 0x500cc,
1925 0x50400, 0x50400,
1926 0x50800, 0x50884,
1927 0x50890, 0x508cc,
1928 0x50c00, 0x50c00,
1929 0x51000, 0x5101c,
1930 0x51300, 0x51308,
1931 };
1932
1933 static const unsigned int t6_reg_ranges[] = {
1934 0x1008, 0x101c,
1935 0x1024, 0x10a8,
1936 0x10b4, 0x10f8,
1937 0x1100, 0x1114,
1938 0x111c, 0x112c,
1939 0x1138, 0x113c,
1940 0x1144, 0x114c,
1941 0x1180, 0x1184,
1942 0x1190, 0x1194,
1943 0x11a0, 0x11a4,
1944 0x11b0, 0x11b4,
1945 0x11fc, 0x1254,
1946 0x1280, 0x133c,
1947 0x1800, 0x18fc,
1948 0x3000, 0x302c,
1949 0x3060, 0x30b0,
1950 0x30b8, 0x30d8,
1951 0x30e0, 0x30fc,
1952 0x3140, 0x357c,
1953 0x35a8, 0x35cc,
1954 0x35ec, 0x35ec,
1955 0x3600, 0x5624,
1956 0x56cc, 0x56ec,
1957 0x56f4, 0x5720,
1958 0x5728, 0x575c,
1959 0x580c, 0x5814,
1960 0x5890, 0x589c,
1961 0x58a4, 0x58ac,
1962 0x58b8, 0x58bc,
1963 0x5940, 0x595c,
1964 0x5980, 0x598c,
1965 0x59b0, 0x59c8,
1966 0x59d0, 0x59dc,
1967 0x59fc, 0x5a18,
1968 0x5a60, 0x5a6c,
1969 0x5a80, 0x5a8c,
1970 0x5a94, 0x5a9c,
1971 0x5b94, 0x5bfc,
1972 0x5c10, 0x5e48,
1973 0x5e50, 0x5e94,
1974 0x5ea0, 0x5eb0,
1975 0x5ec0, 0x5ec0,
1976 0x5ec8, 0x5ecc,
1977 0x6000, 0x6020,
1978 0x6028, 0x6040,
1979 0x6058, 0x609c,
1980 0x60a8, 0x619c,
1981 0x7700, 0x7798,
1982 0x77c0, 0x7880,
1983 0x78cc, 0x78fc,
1984 0x7b00, 0x7b58,
1985 0x7b60, 0x7b84,
1986 0x7b8c, 0x7c54,
1987 0x7d00, 0x7d38,
1988 0x7d40, 0x7d84,
1989 0x7d8c, 0x7ddc,
1990 0x7de4, 0x7e04,
1991 0x7e10, 0x7e1c,
1992 0x7e24, 0x7e38,
1993 0x7e40, 0x7e44,
1994 0x7e4c, 0x7e78,
1995 0x7e80, 0x7edc,
1996 0x7ee8, 0x7efc,
1997 0x8dc0, 0x8de4,
1998 0x8df8, 0x8e04,
1999 0x8e10, 0x8e84,
2000 0x8ea0, 0x8f88,
2001 0x8fb8, 0x9058,
2002 0x9060, 0x9060,
2003 0x9068, 0x90f8,
2004 0x9100, 0x9124,
2005 0x9400, 0x9470,
2006 0x9600, 0x9600,
2007 0x9608, 0x9638,
2008 0x9640, 0x9704,
2009 0x9710, 0x971c,
2010 0x9800, 0x9808,
2011 0x9820, 0x983c,
2012 0x9850, 0x9864,
2013 0x9c00, 0x9c6c,
2014 0x9c80, 0x9cec,
2015 0x9d00, 0x9d6c,
2016 0x9d80, 0x9dec,
2017 0x9e00, 0x9e6c,
2018 0x9e80, 0x9eec,
2019 0x9f00, 0x9f6c,
2020 0x9f80, 0xa020,
2021 0xd004, 0xd03c,
2022 0xd100, 0xd118,
2023 0xd200, 0xd214,
2024 0xd220, 0xd234,
2025 0xd240, 0xd254,
2026 0xd260, 0xd274,
2027 0xd280, 0xd294,
2028 0xd2a0, 0xd2b4,
2029 0xd2c0, 0xd2d4,
2030 0xd2e0, 0xd2f4,
2031 0xd300, 0xd31c,
2032 0xdfc0, 0xdfe0,
2033 0xe000, 0xf008,
2034 0x11000, 0x11014,
2035 0x11048, 0x1106c,
2036 0x11074, 0x11088,
2037 0x11098, 0x11120,
2038 0x1112c, 0x1117c,
2039 0x11190, 0x112e0,
2040 0x11300, 0x1130c,
2041 0x12000, 0x1206c,
2042 0x19040, 0x1906c,
2043 0x19078, 0x19080,
2044 0x1908c, 0x190e8,
2045 0x190f0, 0x190f8,
2046 0x19100, 0x19110,
2047 0x19120, 0x19124,
2048 0x19150, 0x19194,
2049 0x1919c, 0x191b0,
2050 0x191d0, 0x191e8,
2051 0x19238, 0x192b0,
2052 0x192bc, 0x192bc,
2053 0x19348, 0x1934c,
2054 0x193f8, 0x19418,
2055 0x19420, 0x19428,
2056 0x19430, 0x19444,
2057 0x1944c, 0x1946c,
2058 0x19474, 0x19474,
2059 0x19490, 0x194cc,
2060 0x194f0, 0x194f8,
2061 0x19c00, 0x19c48,
2062 0x19c50, 0x19c80,
2063 0x19c94, 0x19c98,
2064 0x19ca0, 0x19cbc,
2065 0x19ce4, 0x19ce4,
2066 0x19cf0, 0x19cf8,
2067 0x19d00, 0x19d28,
2068 0x19d50, 0x19d78,
2069 0x19d94, 0x19d98,
2070 0x19da0, 0x19dc8,
2071 0x19df0, 0x19e10,
2072 0x19e50, 0x19e6c,
2073 0x19ea0, 0x19ebc,
2074 0x19ec4, 0x19ef4,
2075 0x19f04, 0x19f2c,
2076 0x19f34, 0x19f34,
2077 0x19f40, 0x19f50,
2078 0x19f90, 0x19fac,
2079 0x19fc4, 0x19fc8,
2080 0x19fd0, 0x19fe4,
2081 0x1a000, 0x1a004,
2082 0x1a010, 0x1a06c,
2083 0x1a0b0, 0x1a0e4,
2084 0x1a0ec, 0x1a0f8,
2085 0x1a100, 0x1a108,
2086 0x1a114, 0x1a120,
2087 0x1a128, 0x1a130,
2088 0x1a138, 0x1a138,
2089 0x1a190, 0x1a1c4,
2090 0x1a1fc, 0x1a1fc,
2091 0x1e008, 0x1e00c,
2092 0x1e040, 0x1e044,
2093 0x1e04c, 0x1e04c,
2094 0x1e284, 0x1e290,
2095 0x1e2c0, 0x1e2c0,
2096 0x1e2e0, 0x1e2e0,
2097 0x1e300, 0x1e384,
2098 0x1e3c0, 0x1e3c8,
2099 0x1e408, 0x1e40c,
2100 0x1e440, 0x1e444,
2101 0x1e44c, 0x1e44c,
2102 0x1e684, 0x1e690,
2103 0x1e6c0, 0x1e6c0,
2104 0x1e6e0, 0x1e6e0,
2105 0x1e700, 0x1e784,
2106 0x1e7c0, 0x1e7c8,
2107 0x1e808, 0x1e80c,
2108 0x1e840, 0x1e844,
2109 0x1e84c, 0x1e84c,
2110 0x1ea84, 0x1ea90,
2111 0x1eac0, 0x1eac0,
2112 0x1eae0, 0x1eae0,
2113 0x1eb00, 0x1eb84,
2114 0x1ebc0, 0x1ebc8,
2115 0x1ec08, 0x1ec0c,
2116 0x1ec40, 0x1ec44,
2117 0x1ec4c, 0x1ec4c,
2118 0x1ee84, 0x1ee90,
2119 0x1eec0, 0x1eec0,
2120 0x1eee0, 0x1eee0,
2121 0x1ef00, 0x1ef84,
2122 0x1efc0, 0x1efc8,
2123 0x1f008, 0x1f00c,
2124 0x1f040, 0x1f044,
2125 0x1f04c, 0x1f04c,
2126 0x1f284, 0x1f290,
2127 0x1f2c0, 0x1f2c0,
2128 0x1f2e0, 0x1f2e0,
2129 0x1f300, 0x1f384,
2130 0x1f3c0, 0x1f3c8,
2131 0x1f408, 0x1f40c,
2132 0x1f440, 0x1f444,
2133 0x1f44c, 0x1f44c,
2134 0x1f684, 0x1f690,
2135 0x1f6c0, 0x1f6c0,
2136 0x1f6e0, 0x1f6e0,
2137 0x1f700, 0x1f784,
2138 0x1f7c0, 0x1f7c8,
2139 0x1f808, 0x1f80c,
2140 0x1f840, 0x1f844,
2141 0x1f84c, 0x1f84c,
2142 0x1fa84, 0x1fa90,
2143 0x1fac0, 0x1fac0,
2144 0x1fae0, 0x1fae0,
2145 0x1fb00, 0x1fb84,
2146 0x1fbc0, 0x1fbc8,
2147 0x1fc08, 0x1fc0c,
2148 0x1fc40, 0x1fc44,
2149 0x1fc4c, 0x1fc4c,
2150 0x1fe84, 0x1fe90,
2151 0x1fec0, 0x1fec0,
2152 0x1fee0, 0x1fee0,
2153 0x1ff00, 0x1ff84,
2154 0x1ffc0, 0x1ffc8,
2155 0x30000, 0x30030,
2156 0x30038, 0x30038,
2157 0x30040, 0x30040,
2158 0x30048, 0x30048,
2159 0x30050, 0x30050,
2160 0x3005c, 0x30060,
2161 0x30068, 0x30068,
2162 0x30070, 0x30070,
2163 0x30100, 0x30168,
2164 0x30190, 0x301a0,
2165 0x301a8, 0x301b8,
2166 0x301c4, 0x301c8,
2167 0x301d0, 0x301d0,
2168 0x30200, 0x30320,
2169 0x30400, 0x304b4,
2170 0x304c0, 0x3052c,
2171 0x30540, 0x3061c,
2172 0x30800, 0x308a0,
2173 0x308c0, 0x30908,
2174 0x30910, 0x309b8,
2175 0x30a00, 0x30a04,
2176 0x30a0c, 0x30a14,
2177 0x30a1c, 0x30a2c,
2178 0x30a44, 0x30a50,
2179 0x30a74, 0x30a74,
2180 0x30a7c, 0x30afc,
2181 0x30b08, 0x30c24,
2182 0x30d00, 0x30d14,
2183 0x30d1c, 0x30d3c,
2184 0x30d44, 0x30d4c,
2185 0x30d54, 0x30d74,
2186 0x30d7c, 0x30d7c,
2187 0x30de0, 0x30de0,
2188 0x30e00, 0x30ed4,
2189 0x30f00, 0x30fa4,
2190 0x30fc0, 0x30fc4,
2191 0x31000, 0x31004,
2192 0x31080, 0x310fc,
2193 0x31208, 0x31220,
2194 0x3123c, 0x31254,
2195 0x31300, 0x31300,
2196 0x31308, 0x3131c,
2197 0x31338, 0x3133c,
2198 0x31380, 0x31380,
2199 0x31388, 0x313a8,
2200 0x313b4, 0x313b4,
2201 0x31400, 0x31420,
2202 0x31438, 0x3143c,
2203 0x31480, 0x31480,
2204 0x314a8, 0x314a8,
2205 0x314b0, 0x314b4,
2206 0x314c8, 0x314d4,
2207 0x31a40, 0x31a4c,
2208 0x31af0, 0x31b20,
2209 0x31b38, 0x31b3c,
2210 0x31b80, 0x31b80,
2211 0x31ba8, 0x31ba8,
2212 0x31bb0, 0x31bb4,
2213 0x31bc8, 0x31bd4,
2214 0x32140, 0x3218c,
2215 0x321f0, 0x321f4,
2216 0x32200, 0x32200,
2217 0x32218, 0x32218,
2218 0x32400, 0x32400,
2219 0x32408, 0x3241c,
2220 0x32618, 0x32620,
2221 0x32664, 0x32664,
2222 0x326a8, 0x326a8,
2223 0x326ec, 0x326ec,
2224 0x32a00, 0x32abc,
2225 0x32b00, 0x32b38,
2226 0x32b40, 0x32b58,
2227 0x32b60, 0x32b78,
2228 0x32c00, 0x32c00,
2229 0x32c08, 0x32c3c,
2230 0x32e00, 0x32e2c,
2231 0x32f00, 0x32f2c,
2232 0x33000, 0x3302c,
2233 0x33034, 0x33050,
2234 0x33058, 0x33058,
2235 0x33060, 0x3308c,
2236 0x3309c, 0x330ac,
2237 0x330c0, 0x330c0,
2238 0x330c8, 0x330d0,
2239 0x330d8, 0x330e0,
2240 0x330ec, 0x3312c,
2241 0x33134, 0x33150,
2242 0x33158, 0x33158,
2243 0x33160, 0x3318c,
2244 0x3319c, 0x331ac,
2245 0x331c0, 0x331c0,
2246 0x331c8, 0x331d0,
2247 0x331d8, 0x331e0,
2248 0x331ec, 0x33290,
2249 0x33298, 0x332c4,
2250 0x332e4, 0x33390,
2251 0x33398, 0x333c4,
2252 0x333e4, 0x3342c,
2253 0x33434, 0x33450,
2254 0x33458, 0x33458,
2255 0x33460, 0x3348c,
2256 0x3349c, 0x334ac,
2257 0x334c0, 0x334c0,
2258 0x334c8, 0x334d0,
2259 0x334d8, 0x334e0,
2260 0x334ec, 0x3352c,
2261 0x33534, 0x33550,
2262 0x33558, 0x33558,
2263 0x33560, 0x3358c,
2264 0x3359c, 0x335ac,
2265 0x335c0, 0x335c0,
2266 0x335c8, 0x335d0,
2267 0x335d8, 0x335e0,
2268 0x335ec, 0x33690,
2269 0x33698, 0x336c4,
2270 0x336e4, 0x33790,
2271 0x33798, 0x337c4,
2272 0x337e4, 0x337fc,
2273 0x33814, 0x33814,
2274 0x33854, 0x33868,
2275 0x33880, 0x3388c,
2276 0x338c0, 0x338d0,
2277 0x338e8, 0x338ec,
2278 0x33900, 0x3392c,
2279 0x33934, 0x33950,
2280 0x33958, 0x33958,
2281 0x33960, 0x3398c,
2282 0x3399c, 0x339ac,
2283 0x339c0, 0x339c0,
2284 0x339c8, 0x339d0,
2285 0x339d8, 0x339e0,
2286 0x339ec, 0x33a90,
2287 0x33a98, 0x33ac4,
2288 0x33ae4, 0x33b10,
2289 0x33b24, 0x33b28,
2290 0x33b38, 0x33b50,
2291 0x33bf0, 0x33c10,
2292 0x33c24, 0x33c28,
2293 0x33c38, 0x33c50,
2294 0x33cf0, 0x33cfc,
2295 0x34000, 0x34030,
2296 0x34038, 0x34038,
2297 0x34040, 0x34040,
2298 0x34048, 0x34048,
2299 0x34050, 0x34050,
2300 0x3405c, 0x34060,
2301 0x34068, 0x34068,
2302 0x34070, 0x34070,
2303 0x34100, 0x34168,
2304 0x34190, 0x341a0,
2305 0x341a8, 0x341b8,
2306 0x341c4, 0x341c8,
2307 0x341d0, 0x341d0,
2308 0x34200, 0x34320,
2309 0x34400, 0x344b4,
2310 0x344c0, 0x3452c,
2311 0x34540, 0x3461c,
2312 0x34800, 0x348a0,
2313 0x348c0, 0x34908,
2314 0x34910, 0x349b8,
2315 0x34a00, 0x34a04,
2316 0x34a0c, 0x34a14,
2317 0x34a1c, 0x34a2c,
2318 0x34a44, 0x34a50,
2319 0x34a74, 0x34a74,
2320 0x34a7c, 0x34afc,
2321 0x34b08, 0x34c24,
2322 0x34d00, 0x34d14,
2323 0x34d1c, 0x34d3c,
2324 0x34d44, 0x34d4c,
2325 0x34d54, 0x34d74,
2326 0x34d7c, 0x34d7c,
2327 0x34de0, 0x34de0,
2328 0x34e00, 0x34ed4,
2329 0x34f00, 0x34fa4,
2330 0x34fc0, 0x34fc4,
2331 0x35000, 0x35004,
2332 0x35080, 0x350fc,
2333 0x35208, 0x35220,
2334 0x3523c, 0x35254,
2335 0x35300, 0x35300,
2336 0x35308, 0x3531c,
2337 0x35338, 0x3533c,
2338 0x35380, 0x35380,
2339 0x35388, 0x353a8,
2340 0x353b4, 0x353b4,
2341 0x35400, 0x35420,
2342 0x35438, 0x3543c,
2343 0x35480, 0x35480,
2344 0x354a8, 0x354a8,
2345 0x354b0, 0x354b4,
2346 0x354c8, 0x354d4,
2347 0x35a40, 0x35a4c,
2348 0x35af0, 0x35b20,
2349 0x35b38, 0x35b3c,
2350 0x35b80, 0x35b80,
2351 0x35ba8, 0x35ba8,
2352 0x35bb0, 0x35bb4,
2353 0x35bc8, 0x35bd4,
2354 0x36140, 0x3618c,
2355 0x361f0, 0x361f4,
2356 0x36200, 0x36200,
2357 0x36218, 0x36218,
2358 0x36400, 0x36400,
2359 0x36408, 0x3641c,
2360 0x36618, 0x36620,
2361 0x36664, 0x36664,
2362 0x366a8, 0x366a8,
2363 0x366ec, 0x366ec,
2364 0x36a00, 0x36abc,
2365 0x36b00, 0x36b38,
2366 0x36b40, 0x36b58,
2367 0x36b60, 0x36b78,
2368 0x36c00, 0x36c00,
2369 0x36c08, 0x36c3c,
2370 0x36e00, 0x36e2c,
2371 0x36f00, 0x36f2c,
2372 0x37000, 0x3702c,
2373 0x37034, 0x37050,
2374 0x37058, 0x37058,
2375 0x37060, 0x3708c,
2376 0x3709c, 0x370ac,
2377 0x370c0, 0x370c0,
2378 0x370c8, 0x370d0,
2379 0x370d8, 0x370e0,
2380 0x370ec, 0x3712c,
2381 0x37134, 0x37150,
2382 0x37158, 0x37158,
2383 0x37160, 0x3718c,
2384 0x3719c, 0x371ac,
2385 0x371c0, 0x371c0,
2386 0x371c8, 0x371d0,
2387 0x371d8, 0x371e0,
2388 0x371ec, 0x37290,
2389 0x37298, 0x372c4,
2390 0x372e4, 0x37390,
2391 0x37398, 0x373c4,
2392 0x373e4, 0x3742c,
2393 0x37434, 0x37450,
2394 0x37458, 0x37458,
2395 0x37460, 0x3748c,
2396 0x3749c, 0x374ac,
2397 0x374c0, 0x374c0,
2398 0x374c8, 0x374d0,
2399 0x374d8, 0x374e0,
2400 0x374ec, 0x3752c,
2401 0x37534, 0x37550,
2402 0x37558, 0x37558,
2403 0x37560, 0x3758c,
2404 0x3759c, 0x375ac,
2405 0x375c0, 0x375c0,
2406 0x375c8, 0x375d0,
2407 0x375d8, 0x375e0,
2408 0x375ec, 0x37690,
2409 0x37698, 0x376c4,
2410 0x376e4, 0x37790,
2411 0x37798, 0x377c4,
2412 0x377e4, 0x377fc,
2413 0x37814, 0x37814,
2414 0x37854, 0x37868,
2415 0x37880, 0x3788c,
2416 0x378c0, 0x378d0,
2417 0x378e8, 0x378ec,
2418 0x37900, 0x3792c,
2419 0x37934, 0x37950,
2420 0x37958, 0x37958,
2421 0x37960, 0x3798c,
2422 0x3799c, 0x379ac,
2423 0x379c0, 0x379c0,
2424 0x379c8, 0x379d0,
2425 0x379d8, 0x379e0,
2426 0x379ec, 0x37a90,
2427 0x37a98, 0x37ac4,
2428 0x37ae4, 0x37b10,
2429 0x37b24, 0x37b28,
2430 0x37b38, 0x37b50,
2431 0x37bf0, 0x37c10,
2432 0x37c24, 0x37c28,
2433 0x37c38, 0x37c50,
2434 0x37cf0, 0x37cfc,
2435 0x40040, 0x40040,
2436 0x40080, 0x40084,
2437 0x40100, 0x40100,
2438 0x40140, 0x401bc,
2439 0x40200, 0x40214,
2440 0x40228, 0x40228,
2441 0x40240, 0x40258,
2442 0x40280, 0x40280,
2443 0x40304, 0x40304,
2444 0x40330, 0x4033c,
2445 0x41304, 0x413c8,
2446 0x413d0, 0x413dc,
2447 0x413f0, 0x413f0,
2448 0x41400, 0x4140c,
2449 0x41414, 0x4141c,
2450 0x41480, 0x414d0,
2451 0x44000, 0x4407c,
2452 0x440c0, 0x441ac,
2453 0x441b4, 0x4427c,
2454 0x442c0, 0x443ac,
2455 0x443b4, 0x4447c,
2456 0x444c0, 0x445ac,
2457 0x445b4, 0x4467c,
2458 0x446c0, 0x447ac,
2459 0x447b4, 0x4487c,
2460 0x448c0, 0x449ac,
2461 0x449b4, 0x44a7c,
2462 0x44ac0, 0x44bac,
2463 0x44bb4, 0x44c7c,
2464 0x44cc0, 0x44dac,
2465 0x44db4, 0x44e7c,
2466 0x44ec0, 0x44fac,
2467 0x44fb4, 0x4507c,
2468 0x450c0, 0x451ac,
2469 0x451b4, 0x451fc,
2470 0x45800, 0x45804,
2471 0x45810, 0x45830,
2472 0x45840, 0x45860,
2473 0x45868, 0x45868,
2474 0x45880, 0x45884,
2475 0x458a0, 0x458b0,
2476 0x45a00, 0x45a04,
2477 0x45a10, 0x45a30,
2478 0x45a40, 0x45a60,
2479 0x45a68, 0x45a68,
2480 0x45a80, 0x45a84,
2481 0x45aa0, 0x45ab0,
2482 0x460c0, 0x460e4,
2483 0x47000, 0x4703c,
2484 0x47044, 0x4708c,
2485 0x47200, 0x47250,
2486 0x47400, 0x47408,
2487 0x47414, 0x47420,
2488 0x47600, 0x47618,
2489 0x47800, 0x47814,
2490 0x47820, 0x4782c,
2491 0x50000, 0x50084,
2492 0x50090, 0x500cc,
2493 0x50300, 0x50384,
2494 0x50400, 0x50400,
2495 0x50800, 0x50884,
2496 0x50890, 0x508cc,
2497 0x50b00, 0x50b84,
2498 0x50c00, 0x50c00,
2499 0x51000, 0x51020,
2500 0x51028, 0x510b0,
2501 0x51300, 0x51324,
2502 };
2503
2504 u32 *buf_end = (u32 *)((char *)buf + buf_size);
2505 const unsigned int *reg_ranges;
2506 int reg_ranges_size, range;
2507 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2508
2509 /* Select the right set of register ranges to dump depending on the
2510 * adapter chip type.
2511 */
2512 switch (chip_version) {
2513 case CHELSIO_T4:
2514 reg_ranges = t4_reg_ranges;
2515 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2516 break;
2517
2518 case CHELSIO_T5:
2519 reg_ranges = t5_reg_ranges;
2520 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2521 break;
2522
2523 case CHELSIO_T6:
2524 reg_ranges = t6_reg_ranges;
2525 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2526 break;
2527
2528 default:
2529 dev_err(adap->pdev_dev,
2530 "Unsupported chip version %d\n", chip_version);
2531 return;
2532 }
2533
2534 /* Clear the register buffer and insert the appropriate register
2535 * values selected by the above register ranges.
2536 */
2537 memset(buf, 0, buf_size);
2538 for (range = 0; range < reg_ranges_size; range += 2) {
2539 unsigned int reg = reg_ranges[range];
2540 unsigned int last_reg = reg_ranges[range + 1];
2541 u32 *bufp = (u32 *)((char *)buf + reg);
2542
2543 /* Iterate across the register range filling in the register
2544 * buffer but don't write past the end of the register buffer.
2545 */
2546 while (reg <= last_reg && bufp < buf_end) {
2547 *bufp++ = t4_read_reg(adap, reg);
2548 reg += sizeof(u32);
2549 }
2550 }
2551 }
2552
2553 #define EEPROM_STAT_ADDR 0x7bfc
2554 #define VPD_BASE 0x400
2555 #define VPD_BASE_OLD 0
2556 #define VPD_LEN 1024
2557 #define CHELSIO_VPD_UNIQUE_ID 0x82
2558
2559 /**
2560 * t4_seeprom_wp - enable/disable EEPROM write protection
2561 * @adapter: the adapter
2562 * @enable: whether to enable or disable write protection
2563 *
2564 * Enables or disables write protection on the serial EEPROM.
2565 */
t4_seeprom_wp(struct adapter * adapter,bool enable)2566 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2567 {
2568 unsigned int v = enable ? 0xc : 0;
2569 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2570 return ret < 0 ? ret : 0;
2571 }
2572
2573 /**
2574 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2575 * @adapter: adapter to read
2576 * @p: where to store the parameters
2577 *
2578 * Reads card parameters stored in VPD EEPROM.
2579 */
t4_get_raw_vpd_params(struct adapter * adapter,struct vpd_params * p)2580 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2581 {
2582 int i, ret = 0, addr;
2583 int ec, sn, pn, na;
2584 u8 *vpd, csum;
2585 unsigned int vpdr_len, kw_offset, id_len;
2586
2587 vpd = vmalloc(VPD_LEN);
2588 if (!vpd)
2589 return -ENOMEM;
2590
2591 /* Card information normally starts at VPD_BASE but early cards had
2592 * it at 0.
2593 */
2594 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2595 if (ret < 0)
2596 goto out;
2597
2598 /* The VPD shall have a unique identifier specified by the PCI SIG.
2599 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2600 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2601 * is expected to automatically put this entry at the
2602 * beginning of the VPD.
2603 */
2604 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2605
2606 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2607 if (ret < 0)
2608 goto out;
2609
2610 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2611 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2612 ret = -EINVAL;
2613 goto out;
2614 }
2615
2616 id_len = pci_vpd_lrdt_size(vpd);
2617 if (id_len > ID_LEN)
2618 id_len = ID_LEN;
2619
2620 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2621 if (i < 0) {
2622 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2623 ret = -EINVAL;
2624 goto out;
2625 }
2626
2627 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2628 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2629 if (vpdr_len + kw_offset > VPD_LEN) {
2630 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2631 ret = -EINVAL;
2632 goto out;
2633 }
2634
2635 #define FIND_VPD_KW(var, name) do { \
2636 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2637 if (var < 0) { \
2638 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2639 ret = -EINVAL; \
2640 goto out; \
2641 } \
2642 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2643 } while (0)
2644
2645 FIND_VPD_KW(i, "RV");
2646 for (csum = 0; i >= 0; i--)
2647 csum += vpd[i];
2648
2649 if (csum) {
2650 dev_err(adapter->pdev_dev,
2651 "corrupted VPD EEPROM, actual csum %u\n", csum);
2652 ret = -EINVAL;
2653 goto out;
2654 }
2655
2656 FIND_VPD_KW(ec, "EC");
2657 FIND_VPD_KW(sn, "SN");
2658 FIND_VPD_KW(pn, "PN");
2659 FIND_VPD_KW(na, "NA");
2660 #undef FIND_VPD_KW
2661
2662 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2663 strim(p->id);
2664 memcpy(p->ec, vpd + ec, EC_LEN);
2665 strim(p->ec);
2666 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2667 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2668 strim(p->sn);
2669 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2670 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2671 strim(p->pn);
2672 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2673 strim((char *)p->na);
2674
2675 out:
2676 vfree(vpd);
2677 return ret;
2678 }
2679
2680 /**
2681 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2682 * @adapter: adapter to read
2683 * @p: where to store the parameters
2684 *
2685 * Reads card parameters stored in VPD EEPROM and retrieves the Core
2686 * Clock. This can only be called after a connection to the firmware
2687 * is established.
2688 */
t4_get_vpd_params(struct adapter * adapter,struct vpd_params * p)2689 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2690 {
2691 u32 cclk_param, cclk_val;
2692 int ret;
2693
2694 /* Grab the raw VPD parameters.
2695 */
2696 ret = t4_get_raw_vpd_params(adapter, p);
2697 if (ret)
2698 return ret;
2699
2700 /* Ask firmware for the Core Clock since it knows how to translate the
2701 * Reference Clock ('V2') VPD field into a Core Clock value ...
2702 */
2703 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2704 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2705 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2706 1, &cclk_param, &cclk_val);
2707
2708 if (ret)
2709 return ret;
2710 p->cclk = cclk_val;
2711
2712 return 0;
2713 }
2714
2715 /* serial flash and firmware constants */
2716 enum {
2717 SF_ATTEMPTS = 10, /* max retries for SF operations */
2718
2719 /* flash command opcodes */
2720 SF_PROG_PAGE = 2, /* program page */
2721 SF_WR_DISABLE = 4, /* disable writes */
2722 SF_RD_STATUS = 5, /* read status register */
2723 SF_WR_ENABLE = 6, /* enable writes */
2724 SF_RD_DATA_FAST = 0xb, /* read flash */
2725 SF_RD_ID = 0x9f, /* read ID */
2726 SF_ERASE_SECTOR = 0xd8, /* erase sector */
2727
2728 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2729 };
2730
2731 /**
2732 * sf1_read - read data from the serial flash
2733 * @adapter: the adapter
2734 * @byte_cnt: number of bytes to read
2735 * @cont: whether another operation will be chained
2736 * @lock: whether to lock SF for PL access only
2737 * @valp: where to store the read data
2738 *
2739 * Reads up to 4 bytes of data from the serial flash. The location of
2740 * the read needs to be specified prior to calling this by issuing the
2741 * appropriate commands to the serial flash.
2742 */
sf1_read(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 * valp)2743 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2744 int lock, u32 *valp)
2745 {
2746 int ret;
2747
2748 if (!byte_cnt || byte_cnt > 4)
2749 return -EINVAL;
2750 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2751 return -EBUSY;
2752 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2753 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2754 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2755 if (!ret)
2756 *valp = t4_read_reg(adapter, SF_DATA_A);
2757 return ret;
2758 }
2759
2760 /**
2761 * sf1_write - write data to the serial flash
2762 * @adapter: the adapter
2763 * @byte_cnt: number of bytes to write
2764 * @cont: whether another operation will be chained
2765 * @lock: whether to lock SF for PL access only
2766 * @val: value to write
2767 *
2768 * Writes up to 4 bytes of data to the serial flash. The location of
2769 * the write needs to be specified prior to calling this by issuing the
2770 * appropriate commands to the serial flash.
2771 */
sf1_write(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 val)2772 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2773 int lock, u32 val)
2774 {
2775 if (!byte_cnt || byte_cnt > 4)
2776 return -EINVAL;
2777 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2778 return -EBUSY;
2779 t4_write_reg(adapter, SF_DATA_A, val);
2780 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2781 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2782 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2783 }
2784
2785 /**
2786 * flash_wait_op - wait for a flash operation to complete
2787 * @adapter: the adapter
2788 * @attempts: max number of polls of the status register
2789 * @delay: delay between polls in ms
2790 *
2791 * Wait for a flash operation to complete by polling the status register.
2792 */
flash_wait_op(struct adapter * adapter,int attempts,int delay)2793 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2794 {
2795 int ret;
2796 u32 status;
2797
2798 while (1) {
2799 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2800 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2801 return ret;
2802 if (!(status & 1))
2803 return 0;
2804 if (--attempts == 0)
2805 return -EAGAIN;
2806 if (delay)
2807 msleep(delay);
2808 }
2809 }
2810
2811 /**
2812 * t4_read_flash - read words from serial flash
2813 * @adapter: the adapter
2814 * @addr: the start address for the read
2815 * @nwords: how many 32-bit words to read
2816 * @data: where to store the read data
2817 * @byte_oriented: whether to store data as bytes or as words
2818 *
2819 * Read the specified number of 32-bit words from the serial flash.
2820 * If @byte_oriented is set the read data is stored as a byte array
2821 * (i.e., big-endian), otherwise as 32-bit words in the platform's
2822 * natural endianness.
2823 */
t4_read_flash(struct adapter * adapter,unsigned int addr,unsigned int nwords,u32 * data,int byte_oriented)2824 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2825 unsigned int nwords, u32 *data, int byte_oriented)
2826 {
2827 int ret;
2828
2829 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2830 return -EINVAL;
2831
2832 addr = swab32(addr) | SF_RD_DATA_FAST;
2833
2834 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2835 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2836 return ret;
2837
2838 for ( ; nwords; nwords--, data++) {
2839 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2840 if (nwords == 1)
2841 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2842 if (ret)
2843 return ret;
2844 if (byte_oriented)
2845 *data = (__force __u32)(cpu_to_be32(*data));
2846 }
2847 return 0;
2848 }
2849
2850 /**
2851 * t4_write_flash - write up to a page of data to the serial flash
2852 * @adapter: the adapter
2853 * @addr: the start address to write
2854 * @n: length of data to write in bytes
2855 * @data: the data to write
2856 *
2857 * Writes up to a page of data (256 bytes) to the serial flash starting
2858 * at the given address. All the data must be written to the same page.
2859 */
t4_write_flash(struct adapter * adapter,unsigned int addr,unsigned int n,const u8 * data)2860 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2861 unsigned int n, const u8 *data)
2862 {
2863 int ret;
2864 u32 buf[64];
2865 unsigned int i, c, left, val, offset = addr & 0xff;
2866
2867 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2868 return -EINVAL;
2869
2870 val = swab32(addr) | SF_PROG_PAGE;
2871
2872 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2873 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2874 goto unlock;
2875
2876 for (left = n; left; left -= c) {
2877 c = min(left, 4U);
2878 for (val = 0, i = 0; i < c; ++i)
2879 val = (val << 8) + *data++;
2880
2881 ret = sf1_write(adapter, c, c != left, 1, val);
2882 if (ret)
2883 goto unlock;
2884 }
2885 ret = flash_wait_op(adapter, 8, 1);
2886 if (ret)
2887 goto unlock;
2888
2889 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2890
2891 /* Read the page to verify the write succeeded */
2892 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2893 if (ret)
2894 return ret;
2895
2896 if (memcmp(data - n, (u8 *)buf + offset, n)) {
2897 dev_err(adapter->pdev_dev,
2898 "failed to correctly write the flash page at %#x\n",
2899 addr);
2900 return -EIO;
2901 }
2902 return 0;
2903
2904 unlock:
2905 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2906 return ret;
2907 }
2908
2909 /**
2910 * t4_get_fw_version - read the firmware version
2911 * @adapter: the adapter
2912 * @vers: where to place the version
2913 *
2914 * Reads the FW version from flash.
2915 */
t4_get_fw_version(struct adapter * adapter,u32 * vers)2916 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2917 {
2918 return t4_read_flash(adapter, FLASH_FW_START +
2919 offsetof(struct fw_hdr, fw_ver), 1,
2920 vers, 0);
2921 }
2922
2923 /**
2924 * t4_get_tp_version - read the TP microcode version
2925 * @adapter: the adapter
2926 * @vers: where to place the version
2927 *
2928 * Reads the TP microcode version from flash.
2929 */
t4_get_tp_version(struct adapter * adapter,u32 * vers)2930 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2931 {
2932 return t4_read_flash(adapter, FLASH_FW_START +
2933 offsetof(struct fw_hdr, tp_microcode_ver),
2934 1, vers, 0);
2935 }
2936
2937 /**
2938 * t4_get_exprom_version - return the Expansion ROM version (if any)
2939 * @adapter: the adapter
2940 * @vers: where to place the version
2941 *
2942 * Reads the Expansion ROM header from FLASH and returns the version
2943 * number (if present) through the @vers return value pointer. We return
2944 * this in the Firmware Version Format since it's convenient. Return
2945 * 0 on success, -ENOENT if no Expansion ROM is present.
2946 */
t4_get_exprom_version(struct adapter * adap,u32 * vers)2947 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2948 {
2949 struct exprom_header {
2950 unsigned char hdr_arr[16]; /* must start with 0x55aa */
2951 unsigned char hdr_ver[4]; /* Expansion ROM version */
2952 } *hdr;
2953 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2954 sizeof(u32))];
2955 int ret;
2956
2957 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2958 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2959 0);
2960 if (ret)
2961 return ret;
2962
2963 hdr = (struct exprom_header *)exprom_header_buf;
2964 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2965 return -ENOENT;
2966
2967 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2968 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2969 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2970 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2971 return 0;
2972 }
2973
2974 /**
2975 * t4_check_fw_version - check if the FW is supported with this driver
2976 * @adap: the adapter
2977 *
2978 * Checks if an adapter's FW is compatible with the driver. Returns 0
2979 * if there's exact match, a negative error if the version could not be
2980 * read or there's a major version mismatch
2981 */
t4_check_fw_version(struct adapter * adap)2982 int t4_check_fw_version(struct adapter *adap)
2983 {
2984 int i, ret, major, minor, micro;
2985 int exp_major, exp_minor, exp_micro;
2986 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2987
2988 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2989 /* Try multiple times before returning error */
2990 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
2991 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2992
2993 if (ret)
2994 return ret;
2995
2996 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
2997 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
2998 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
2999
3000 switch (chip_version) {
3001 case CHELSIO_T4:
3002 exp_major = T4FW_MIN_VERSION_MAJOR;
3003 exp_minor = T4FW_MIN_VERSION_MINOR;
3004 exp_micro = T4FW_MIN_VERSION_MICRO;
3005 break;
3006 case CHELSIO_T5:
3007 exp_major = T5FW_MIN_VERSION_MAJOR;
3008 exp_minor = T5FW_MIN_VERSION_MINOR;
3009 exp_micro = T5FW_MIN_VERSION_MICRO;
3010 break;
3011 case CHELSIO_T6:
3012 exp_major = T6FW_MIN_VERSION_MAJOR;
3013 exp_minor = T6FW_MIN_VERSION_MINOR;
3014 exp_micro = T6FW_MIN_VERSION_MICRO;
3015 break;
3016 default:
3017 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3018 adap->chip);
3019 return -EINVAL;
3020 }
3021
3022 if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3023 (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3024 dev_err(adap->pdev_dev,
3025 "Card has firmware version %u.%u.%u, minimum "
3026 "supported firmware is %u.%u.%u.\n", major, minor,
3027 micro, exp_major, exp_minor, exp_micro);
3028 return -EFAULT;
3029 }
3030 return 0;
3031 }
3032
3033 /* Is the given firmware API compatible with the one the driver was compiled
3034 * with?
3035 */
fw_compatible(const struct fw_hdr * hdr1,const struct fw_hdr * hdr2)3036 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3037 {
3038
3039 /* short circuit if it's the exact same firmware version */
3040 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3041 return 1;
3042
3043 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3044 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3045 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3046 return 1;
3047 #undef SAME_INTF
3048
3049 return 0;
3050 }
3051
3052 /* The firmware in the filesystem is usable, but should it be installed?
3053 * This routine explains itself in detail if it indicates the filesystem
3054 * firmware should be installed.
3055 */
should_install_fs_fw(struct adapter * adap,int card_fw_usable,int k,int c)3056 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3057 int k, int c)
3058 {
3059 const char *reason;
3060
3061 if (!card_fw_usable) {
3062 reason = "incompatible or unusable";
3063 goto install;
3064 }
3065
3066 if (k > c) {
3067 reason = "older than the version supported with this driver";
3068 goto install;
3069 }
3070
3071 return 0;
3072
3073 install:
3074 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3075 "installing firmware %u.%u.%u.%u on card.\n",
3076 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3077 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3078 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3079 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3080
3081 return 1;
3082 }
3083
t4_prep_fw(struct adapter * adap,struct fw_info * fw_info,const u8 * fw_data,unsigned int fw_size,struct fw_hdr * card_fw,enum dev_state state,int * reset)3084 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3085 const u8 *fw_data, unsigned int fw_size,
3086 struct fw_hdr *card_fw, enum dev_state state,
3087 int *reset)
3088 {
3089 int ret, card_fw_usable, fs_fw_usable;
3090 const struct fw_hdr *fs_fw;
3091 const struct fw_hdr *drv_fw;
3092
3093 drv_fw = &fw_info->fw_hdr;
3094
3095 /* Read the header of the firmware on the card */
3096 ret = t4_read_flash(adap, FLASH_FW_START,
3097 sizeof(*card_fw) / sizeof(uint32_t),
3098 (uint32_t *)card_fw, 1);
3099 if (ret == 0) {
3100 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3101 } else {
3102 dev_err(adap->pdev_dev,
3103 "Unable to read card's firmware header: %d\n", ret);
3104 card_fw_usable = 0;
3105 }
3106
3107 if (fw_data != NULL) {
3108 fs_fw = (const void *)fw_data;
3109 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3110 } else {
3111 fs_fw = NULL;
3112 fs_fw_usable = 0;
3113 }
3114
3115 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3116 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3117 /* Common case: the firmware on the card is an exact match and
3118 * the filesystem one is an exact match too, or the filesystem
3119 * one is absent/incompatible.
3120 */
3121 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3122 should_install_fs_fw(adap, card_fw_usable,
3123 be32_to_cpu(fs_fw->fw_ver),
3124 be32_to_cpu(card_fw->fw_ver))) {
3125 ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3126 fw_size, 0);
3127 if (ret != 0) {
3128 dev_err(adap->pdev_dev,
3129 "failed to install firmware: %d\n", ret);
3130 goto bye;
3131 }
3132
3133 /* Installed successfully, update the cached header too. */
3134 *card_fw = *fs_fw;
3135 card_fw_usable = 1;
3136 *reset = 0; /* already reset as part of load_fw */
3137 }
3138
3139 if (!card_fw_usable) {
3140 uint32_t d, c, k;
3141
3142 d = be32_to_cpu(drv_fw->fw_ver);
3143 c = be32_to_cpu(card_fw->fw_ver);
3144 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3145
3146 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3147 "chip state %d, "
3148 "driver compiled with %d.%d.%d.%d, "
3149 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3150 state,
3151 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3152 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3153 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3154 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3155 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3156 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3157 ret = -EINVAL;
3158 goto bye;
3159 }
3160
3161 /* We're using whatever's on the card and it's known to be good. */
3162 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3163 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3164
3165 bye:
3166 return ret;
3167 }
3168
3169 /**
3170 * t4_flash_erase_sectors - erase a range of flash sectors
3171 * @adapter: the adapter
3172 * @start: the first sector to erase
3173 * @end: the last sector to erase
3174 *
3175 * Erases the sectors in the given inclusive range.
3176 */
t4_flash_erase_sectors(struct adapter * adapter,int start,int end)3177 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3178 {
3179 int ret = 0;
3180
3181 if (end >= adapter->params.sf_nsec)
3182 return -EINVAL;
3183
3184 while (start <= end) {
3185 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3186 (ret = sf1_write(adapter, 4, 0, 1,
3187 SF_ERASE_SECTOR | (start << 8))) != 0 ||
3188 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3189 dev_err(adapter->pdev_dev,
3190 "erase of flash sector %d failed, error %d\n",
3191 start, ret);
3192 break;
3193 }
3194 start++;
3195 }
3196 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
3197 return ret;
3198 }
3199
3200 /**
3201 * t4_flash_cfg_addr - return the address of the flash configuration file
3202 * @adapter: the adapter
3203 *
3204 * Return the address within the flash where the Firmware Configuration
3205 * File is stored.
3206 */
t4_flash_cfg_addr(struct adapter * adapter)3207 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3208 {
3209 if (adapter->params.sf_size == 0x100000)
3210 return FLASH_FPGA_CFG_START;
3211 else
3212 return FLASH_CFG_START;
3213 }
3214
3215 /* Return TRUE if the specified firmware matches the adapter. I.e. T4
3216 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
3217 * and emit an error message for mismatched firmware to save our caller the
3218 * effort ...
3219 */
t4_fw_matches_chip(const struct adapter * adap,const struct fw_hdr * hdr)3220 static bool t4_fw_matches_chip(const struct adapter *adap,
3221 const struct fw_hdr *hdr)
3222 {
3223 /* The expression below will return FALSE for any unsupported adapter
3224 * which will keep us "honest" in the future ...
3225 */
3226 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3227 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3228 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3229 return true;
3230
3231 dev_err(adap->pdev_dev,
3232 "FW image (%d) is not suitable for this adapter (%d)\n",
3233 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3234 return false;
3235 }
3236
3237 /**
3238 * t4_load_fw - download firmware
3239 * @adap: the adapter
3240 * @fw_data: the firmware image to write
3241 * @size: image size
3242 *
3243 * Write the supplied firmware image to the card's serial flash.
3244 */
t4_load_fw(struct adapter * adap,const u8 * fw_data,unsigned int size)3245 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3246 {
3247 u32 csum;
3248 int ret, addr;
3249 unsigned int i;
3250 u8 first_page[SF_PAGE_SIZE];
3251 const __be32 *p = (const __be32 *)fw_data;
3252 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3253 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3254 unsigned int fw_img_start = adap->params.sf_fw_start;
3255 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3256
3257 if (!size) {
3258 dev_err(adap->pdev_dev, "FW image has no data\n");
3259 return -EINVAL;
3260 }
3261 if (size & 511) {
3262 dev_err(adap->pdev_dev,
3263 "FW image size not multiple of 512 bytes\n");
3264 return -EINVAL;
3265 }
3266 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3267 dev_err(adap->pdev_dev,
3268 "FW image size differs from size in FW header\n");
3269 return -EINVAL;
3270 }
3271 if (size > FW_MAX_SIZE) {
3272 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3273 FW_MAX_SIZE);
3274 return -EFBIG;
3275 }
3276 if (!t4_fw_matches_chip(adap, hdr))
3277 return -EINVAL;
3278
3279 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3280 csum += be32_to_cpu(p[i]);
3281
3282 if (csum != 0xffffffff) {
3283 dev_err(adap->pdev_dev,
3284 "corrupted firmware image, checksum %#x\n", csum);
3285 return -EINVAL;
3286 }
3287
3288 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
3289 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3290 if (ret)
3291 goto out;
3292
3293 /*
3294 * We write the correct version at the end so the driver can see a bad
3295 * version if the FW write fails. Start by writing a copy of the
3296 * first page with a bad version.
3297 */
3298 memcpy(first_page, fw_data, SF_PAGE_SIZE);
3299 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3300 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3301 if (ret)
3302 goto out;
3303
3304 addr = fw_img_start;
3305 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3306 addr += SF_PAGE_SIZE;
3307 fw_data += SF_PAGE_SIZE;
3308 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3309 if (ret)
3310 goto out;
3311 }
3312
3313 ret = t4_write_flash(adap,
3314 fw_img_start + offsetof(struct fw_hdr, fw_ver),
3315 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3316 out:
3317 if (ret)
3318 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3319 ret);
3320 else
3321 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3322 return ret;
3323 }
3324
3325 /**
3326 * t4_phy_fw_ver - return current PHY firmware version
3327 * @adap: the adapter
3328 * @phy_fw_ver: return value buffer for PHY firmware version
3329 *
3330 * Returns the current version of external PHY firmware on the
3331 * adapter.
3332 */
t4_phy_fw_ver(struct adapter * adap,int * phy_fw_ver)3333 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3334 {
3335 u32 param, val;
3336 int ret;
3337
3338 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3339 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3340 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3341 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3342 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3343 ¶m, &val);
3344 if (ret)
3345 return ret;
3346 *phy_fw_ver = val;
3347 return 0;
3348 }
3349
3350 /**
3351 * t4_load_phy_fw - download port PHY firmware
3352 * @adap: the adapter
3353 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
3354 * @win_lock: the lock to use to guard the memory copy
3355 * @phy_fw_version: function to check PHY firmware versions
3356 * @phy_fw_data: the PHY firmware image to write
3357 * @phy_fw_size: image size
3358 *
3359 * Transfer the specified PHY firmware to the adapter. If a non-NULL
3360 * @phy_fw_version is supplied, then it will be used to determine if
3361 * it's necessary to perform the transfer by comparing the version
3362 * of any existing adapter PHY firmware with that of the passed in
3363 * PHY firmware image. If @win_lock is non-NULL then it will be used
3364 * around the call to t4_memory_rw() which transfers the PHY firmware
3365 * to the adapter.
3366 *
3367 * A negative error number will be returned if an error occurs. If
3368 * version number support is available and there's no need to upgrade
3369 * the firmware, 0 will be returned. If firmware is successfully
3370 * transferred to the adapter, 1 will be retured.
3371 *
3372 * NOTE: some adapters only have local RAM to store the PHY firmware. As
3373 * a result, a RESET of the adapter would cause that RAM to lose its
3374 * contents. Thus, loading PHY firmware on such adapters must happen
3375 * after any FW_RESET_CMDs ...
3376 */
t4_load_phy_fw(struct adapter * adap,int win,spinlock_t * win_lock,int (* phy_fw_version)(const u8 *,size_t),const u8 * phy_fw_data,size_t phy_fw_size)3377 int t4_load_phy_fw(struct adapter *adap,
3378 int win, spinlock_t *win_lock,
3379 int (*phy_fw_version)(const u8 *, size_t),
3380 const u8 *phy_fw_data, size_t phy_fw_size)
3381 {
3382 unsigned long mtype = 0, maddr = 0;
3383 u32 param, val;
3384 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3385 int ret;
3386
3387 /* If we have version number support, then check to see if the adapter
3388 * already has up-to-date PHY firmware loaded.
3389 */
3390 if (phy_fw_version) {
3391 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3392 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3393 if (ret < 0)
3394 return ret;
3395
3396 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3397 CH_WARN(adap, "PHY Firmware already up-to-date, "
3398 "version %#x\n", cur_phy_fw_ver);
3399 return 0;
3400 }
3401 }
3402
3403 /* Ask the firmware where it wants us to copy the PHY firmware image.
3404 * The size of the file requires a special version of the READ coommand
3405 * which will pass the file size via the values field in PARAMS_CMD and
3406 * retrieve the return value from firmware and place it in the same
3407 * buffer values
3408 */
3409 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3410 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3411 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3412 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3413 val = phy_fw_size;
3414 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3415 ¶m, &val, 1);
3416 if (ret < 0)
3417 return ret;
3418 mtype = val >> 8;
3419 maddr = (val & 0xff) << 16;
3420
3421 /* Copy the supplied PHY Firmware image to the adapter memory location
3422 * allocated by the adapter firmware.
3423 */
3424 if (win_lock)
3425 spin_lock_bh(win_lock);
3426 ret = t4_memory_rw(adap, win, mtype, maddr,
3427 phy_fw_size, (__be32 *)phy_fw_data,
3428 T4_MEMORY_WRITE);
3429 if (win_lock)
3430 spin_unlock_bh(win_lock);
3431 if (ret)
3432 return ret;
3433
3434 /* Tell the firmware that the PHY firmware image has been written to
3435 * RAM and it can now start copying it over to the PHYs. The chip
3436 * firmware will RESET the affected PHYs as part of this operation
3437 * leaving them running the new PHY firmware image.
3438 */
3439 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3440 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3441 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3442 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3443 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3444 ¶m, &val, 30000);
3445
3446 /* If we have version number support, then check to see that the new
3447 * firmware got loaded properly.
3448 */
3449 if (phy_fw_version) {
3450 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3451 if (ret < 0)
3452 return ret;
3453
3454 if (cur_phy_fw_ver != new_phy_fw_vers) {
3455 CH_WARN(adap, "PHY Firmware did not update: "
3456 "version on adapter %#x, "
3457 "version flashed %#x\n",
3458 cur_phy_fw_ver, new_phy_fw_vers);
3459 return -ENXIO;
3460 }
3461 }
3462
3463 return 1;
3464 }
3465
3466 /**
3467 * t4_fwcache - firmware cache operation
3468 * @adap: the adapter
3469 * @op : the operation (flush or flush and invalidate)
3470 */
t4_fwcache(struct adapter * adap,enum fw_params_param_dev_fwcache op)3471 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3472 {
3473 struct fw_params_cmd c;
3474
3475 memset(&c, 0, sizeof(c));
3476 c.op_to_vfn =
3477 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3478 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3479 FW_PARAMS_CMD_PFN_V(adap->pf) |
3480 FW_PARAMS_CMD_VFN_V(0));
3481 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3482 c.param[0].mnem =
3483 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3484 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3485 c.param[0].val = cpu_to_be32(op);
3486
3487 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3488 }
3489
t4_cim_read_pif_la(struct adapter * adap,u32 * pif_req,u32 * pif_rsp,unsigned int * pif_req_wrptr,unsigned int * pif_rsp_wrptr)3490 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3491 unsigned int *pif_req_wrptr,
3492 unsigned int *pif_rsp_wrptr)
3493 {
3494 int i, j;
3495 u32 cfg, val, req, rsp;
3496
3497 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3498 if (cfg & LADBGEN_F)
3499 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3500
3501 val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3502 req = POLADBGWRPTR_G(val);
3503 rsp = PILADBGWRPTR_G(val);
3504 if (pif_req_wrptr)
3505 *pif_req_wrptr = req;
3506 if (pif_rsp_wrptr)
3507 *pif_rsp_wrptr = rsp;
3508
3509 for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3510 for (j = 0; j < 6; j++) {
3511 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3512 PILADBGRDPTR_V(rsp));
3513 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3514 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3515 req++;
3516 rsp++;
3517 }
3518 req = (req + 2) & POLADBGRDPTR_M;
3519 rsp = (rsp + 2) & PILADBGRDPTR_M;
3520 }
3521 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3522 }
3523
t4_cim_read_ma_la(struct adapter * adap,u32 * ma_req,u32 * ma_rsp)3524 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3525 {
3526 u32 cfg;
3527 int i, j, idx;
3528
3529 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3530 if (cfg & LADBGEN_F)
3531 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3532
3533 for (i = 0; i < CIM_MALA_SIZE; i++) {
3534 for (j = 0; j < 5; j++) {
3535 idx = 8 * i + j;
3536 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3537 PILADBGRDPTR_V(idx));
3538 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3539 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3540 }
3541 }
3542 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3543 }
3544
t4_ulprx_read_la(struct adapter * adap,u32 * la_buf)3545 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3546 {
3547 unsigned int i, j;
3548
3549 for (i = 0; i < 8; i++) {
3550 u32 *p = la_buf + i;
3551
3552 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3553 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3554 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3555 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3556 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3557 }
3558 }
3559
3560 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3561 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3562 FW_PORT_CAP_ANEG)
3563
3564 /**
3565 * t4_link_l1cfg - apply link configuration to MAC/PHY
3566 * @phy: the PHY to setup
3567 * @mac: the MAC to setup
3568 * @lc: the requested link configuration
3569 *
3570 * Set up a port's MAC and PHY according to a desired link configuration.
3571 * - If the PHY can auto-negotiate first decide what to advertise, then
3572 * enable/disable auto-negotiation as desired, and reset.
3573 * - If the PHY does not auto-negotiate just reset it.
3574 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3575 * otherwise do it later based on the outcome of auto-negotiation.
3576 */
t4_link_l1cfg(struct adapter * adap,unsigned int mbox,unsigned int port,struct link_config * lc)3577 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3578 struct link_config *lc)
3579 {
3580 struct fw_port_cmd c;
3581 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3582
3583 lc->link_ok = 0;
3584 if (lc->requested_fc & PAUSE_RX)
3585 fc |= FW_PORT_CAP_FC_RX;
3586 if (lc->requested_fc & PAUSE_TX)
3587 fc |= FW_PORT_CAP_FC_TX;
3588
3589 memset(&c, 0, sizeof(c));
3590 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3591 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3592 FW_PORT_CMD_PORTID_V(port));
3593 c.action_to_len16 =
3594 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3595 FW_LEN16(c));
3596
3597 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3598 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3599 fc);
3600 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3601 } else if (lc->autoneg == AUTONEG_DISABLE) {
3602 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3603 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3604 } else
3605 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3606
3607 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3608 }
3609
3610 /**
3611 * t4_restart_aneg - restart autonegotiation
3612 * @adap: the adapter
3613 * @mbox: mbox to use for the FW command
3614 * @port: the port id
3615 *
3616 * Restarts autonegotiation for the selected port.
3617 */
t4_restart_aneg(struct adapter * adap,unsigned int mbox,unsigned int port)3618 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3619 {
3620 struct fw_port_cmd c;
3621
3622 memset(&c, 0, sizeof(c));
3623 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3624 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3625 FW_PORT_CMD_PORTID_V(port));
3626 c.action_to_len16 =
3627 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3628 FW_LEN16(c));
3629 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3630 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3631 }
3632
3633 typedef void (*int_handler_t)(struct adapter *adap);
3634
3635 struct intr_info {
3636 unsigned int mask; /* bits to check in interrupt status */
3637 const char *msg; /* message to print or NULL */
3638 short stat_idx; /* stat counter to increment or -1 */
3639 unsigned short fatal; /* whether the condition reported is fatal */
3640 int_handler_t int_handler; /* platform-specific int handler */
3641 };
3642
3643 /**
3644 * t4_handle_intr_status - table driven interrupt handler
3645 * @adapter: the adapter that generated the interrupt
3646 * @reg: the interrupt status register to process
3647 * @acts: table of interrupt actions
3648 *
3649 * A table driven interrupt handler that applies a set of masks to an
3650 * interrupt status word and performs the corresponding actions if the
3651 * interrupts described by the mask have occurred. The actions include
3652 * optionally emitting a warning or alert message. The table is terminated
3653 * by an entry specifying mask 0. Returns the number of fatal interrupt
3654 * conditions.
3655 */
t4_handle_intr_status(struct adapter * adapter,unsigned int reg,const struct intr_info * acts)3656 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3657 const struct intr_info *acts)
3658 {
3659 int fatal = 0;
3660 unsigned int mask = 0;
3661 unsigned int status = t4_read_reg(adapter, reg);
3662
3663 for ( ; acts->mask; ++acts) {
3664 if (!(status & acts->mask))
3665 continue;
3666 if (acts->fatal) {
3667 fatal++;
3668 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3669 status & acts->mask);
3670 } else if (acts->msg && printk_ratelimit())
3671 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3672 status & acts->mask);
3673 if (acts->int_handler)
3674 acts->int_handler(adapter);
3675 mask |= acts->mask;
3676 }
3677 status &= mask;
3678 if (status) /* clear processed interrupts */
3679 t4_write_reg(adapter, reg, status);
3680 return fatal;
3681 }
3682
3683 /*
3684 * Interrupt handler for the PCIE module.
3685 */
pcie_intr_handler(struct adapter * adapter)3686 static void pcie_intr_handler(struct adapter *adapter)
3687 {
3688 static const struct intr_info sysbus_intr_info[] = {
3689 { RNPP_F, "RXNP array parity error", -1, 1 },
3690 { RPCP_F, "RXPC array parity error", -1, 1 },
3691 { RCIP_F, "RXCIF array parity error", -1, 1 },
3692 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3693 { RFTP_F, "RXFT array parity error", -1, 1 },
3694 { 0 }
3695 };
3696 static const struct intr_info pcie_port_intr_info[] = {
3697 { TPCP_F, "TXPC array parity error", -1, 1 },
3698 { TNPP_F, "TXNP array parity error", -1, 1 },
3699 { TFTP_F, "TXFT array parity error", -1, 1 },
3700 { TCAP_F, "TXCA array parity error", -1, 1 },
3701 { TCIP_F, "TXCIF array parity error", -1, 1 },
3702 { RCAP_F, "RXCA array parity error", -1, 1 },
3703 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3704 { RDPE_F, "Rx data parity error", -1, 1 },
3705 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
3706 { 0 }
3707 };
3708 static const struct intr_info pcie_intr_info[] = {
3709 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3710 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3711 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3712 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3713 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3714 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3715 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3716 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3717 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3718 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3719 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3720 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3721 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3722 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3723 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3724 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3725 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3726 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3727 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3728 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3729 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3730 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3731 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3732 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3733 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3734 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3735 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3736 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3737 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3738 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3739 -1, 0 },
3740 { 0 }
3741 };
3742
3743 static struct intr_info t5_pcie_intr_info[] = {
3744 { MSTGRPPERR_F, "Master Response Read Queue parity error",
3745 -1, 1 },
3746 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3747 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3748 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3749 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3750 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3751 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3752 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3753 -1, 1 },
3754 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3755 -1, 1 },
3756 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3757 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3758 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3759 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3760 { DREQWRPERR_F, "PCI DMA channel write request parity error",
3761 -1, 1 },
3762 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3763 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3764 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3765 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3766 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3767 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3768 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3769 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3770 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3771 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3772 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3773 -1, 1 },
3774 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3775 -1, 1 },
3776 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3777 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3778 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3779 { READRSPERR_F, "Outbound read error", -1, 0 },
3780 { 0 }
3781 };
3782
3783 int fat;
3784
3785 if (is_t4(adapter->params.chip))
3786 fat = t4_handle_intr_status(adapter,
3787 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3788 sysbus_intr_info) +
3789 t4_handle_intr_status(adapter,
3790 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3791 pcie_port_intr_info) +
3792 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3793 pcie_intr_info);
3794 else
3795 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3796 t5_pcie_intr_info);
3797
3798 if (fat)
3799 t4_fatal_err(adapter);
3800 }
3801
3802 /*
3803 * TP interrupt handler.
3804 */
tp_intr_handler(struct adapter * adapter)3805 static void tp_intr_handler(struct adapter *adapter)
3806 {
3807 static const struct intr_info tp_intr_info[] = {
3808 { 0x3fffffff, "TP parity error", -1, 1 },
3809 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3810 { 0 }
3811 };
3812
3813 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3814 t4_fatal_err(adapter);
3815 }
3816
3817 /*
3818 * SGE interrupt handler.
3819 */
sge_intr_handler(struct adapter * adapter)3820 static void sge_intr_handler(struct adapter *adapter)
3821 {
3822 u64 v;
3823 u32 err;
3824
3825 static const struct intr_info sge_intr_info[] = {
3826 { ERR_CPL_EXCEED_IQE_SIZE_F,
3827 "SGE received CPL exceeding IQE size", -1, 1 },
3828 { ERR_INVALID_CIDX_INC_F,
3829 "SGE GTS CIDX increment too large", -1, 0 },
3830 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3831 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3832 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3833 "SGE IQID > 1023 received CPL for FL", -1, 0 },
3834 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3835 0 },
3836 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3837 0 },
3838 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3839 0 },
3840 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3841 0 },
3842 { ERR_ING_CTXT_PRIO_F,
3843 "SGE too many priority ingress contexts", -1, 0 },
3844 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3845 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3846 { 0 }
3847 };
3848
3849 static struct intr_info t4t5_sge_intr_info[] = {
3850 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3851 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3852 { ERR_EGR_CTXT_PRIO_F,
3853 "SGE too many priority egress contexts", -1, 0 },
3854 { 0 }
3855 };
3856
3857 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3858 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3859 if (v) {
3860 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3861 (unsigned long long)v);
3862 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3863 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3864 }
3865
3866 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3867 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3868 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3869 t4t5_sge_intr_info);
3870
3871 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3872 if (err & ERROR_QID_VALID_F) {
3873 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3874 ERROR_QID_G(err));
3875 if (err & UNCAPTURED_ERROR_F)
3876 dev_err(adapter->pdev_dev,
3877 "SGE UNCAPTURED_ERROR set (clearing)\n");
3878 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3879 UNCAPTURED_ERROR_F);
3880 }
3881
3882 if (v != 0)
3883 t4_fatal_err(adapter);
3884 }
3885
3886 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3887 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3888 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3889 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3890
3891 /*
3892 * CIM interrupt handler.
3893 */
cim_intr_handler(struct adapter * adapter)3894 static void cim_intr_handler(struct adapter *adapter)
3895 {
3896 static const struct intr_info cim_intr_info[] = {
3897 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3898 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3899 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3900 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3901 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3902 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3903 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3904 { 0 }
3905 };
3906 static const struct intr_info cim_upintr_info[] = {
3907 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3908 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3909 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3910 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3911 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3912 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3913 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3914 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3915 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3916 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3917 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3918 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3919 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3920 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3921 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3922 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3923 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3924 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3925 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3926 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3927 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3928 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3929 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3930 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3931 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3932 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3933 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3934 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3935 { 0 }
3936 };
3937
3938 int fat;
3939
3940 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3941 t4_report_fw_error(adapter);
3942
3943 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3944 cim_intr_info) +
3945 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3946 cim_upintr_info);
3947 if (fat)
3948 t4_fatal_err(adapter);
3949 }
3950
3951 /*
3952 * ULP RX interrupt handler.
3953 */
ulprx_intr_handler(struct adapter * adapter)3954 static void ulprx_intr_handler(struct adapter *adapter)
3955 {
3956 static const struct intr_info ulprx_intr_info[] = {
3957 { 0x1800000, "ULPRX context error", -1, 1 },
3958 { 0x7fffff, "ULPRX parity error", -1, 1 },
3959 { 0 }
3960 };
3961
3962 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3963 t4_fatal_err(adapter);
3964 }
3965
3966 /*
3967 * ULP TX interrupt handler.
3968 */
ulptx_intr_handler(struct adapter * adapter)3969 static void ulptx_intr_handler(struct adapter *adapter)
3970 {
3971 static const struct intr_info ulptx_intr_info[] = {
3972 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3973 0 },
3974 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3975 0 },
3976 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3977 0 },
3978 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3979 0 },
3980 { 0xfffffff, "ULPTX parity error", -1, 1 },
3981 { 0 }
3982 };
3983
3984 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3985 t4_fatal_err(adapter);
3986 }
3987
3988 /*
3989 * PM TX interrupt handler.
3990 */
pmtx_intr_handler(struct adapter * adapter)3991 static void pmtx_intr_handler(struct adapter *adapter)
3992 {
3993 static const struct intr_info pmtx_intr_info[] = {
3994 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3995 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3996 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3997 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3998 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
3999 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4000 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4001 -1, 1 },
4002 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4003 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4004 { 0 }
4005 };
4006
4007 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4008 t4_fatal_err(adapter);
4009 }
4010
4011 /*
4012 * PM RX interrupt handler.
4013 */
pmrx_intr_handler(struct adapter * adapter)4014 static void pmrx_intr_handler(struct adapter *adapter)
4015 {
4016 static const struct intr_info pmrx_intr_info[] = {
4017 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4018 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4019 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4020 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4021 -1, 1 },
4022 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4023 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4024 { 0 }
4025 };
4026
4027 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4028 t4_fatal_err(adapter);
4029 }
4030
4031 /*
4032 * CPL switch interrupt handler.
4033 */
cplsw_intr_handler(struct adapter * adapter)4034 static void cplsw_intr_handler(struct adapter *adapter)
4035 {
4036 static const struct intr_info cplsw_intr_info[] = {
4037 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4038 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4039 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4040 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4041 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4042 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4043 { 0 }
4044 };
4045
4046 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4047 t4_fatal_err(adapter);
4048 }
4049
4050 /*
4051 * LE interrupt handler.
4052 */
le_intr_handler(struct adapter * adap)4053 static void le_intr_handler(struct adapter *adap)
4054 {
4055 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4056 static const struct intr_info le_intr_info[] = {
4057 { LIPMISS_F, "LE LIP miss", -1, 0 },
4058 { LIP0_F, "LE 0 LIP error", -1, 0 },
4059 { PARITYERR_F, "LE parity error", -1, 1 },
4060 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4061 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4062 { 0 }
4063 };
4064
4065 static struct intr_info t6_le_intr_info[] = {
4066 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4067 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4068 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4069 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4070 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4071 { 0 }
4072 };
4073
4074 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4075 (chip <= CHELSIO_T5) ?
4076 le_intr_info : t6_le_intr_info))
4077 t4_fatal_err(adap);
4078 }
4079
4080 /*
4081 * MPS interrupt handler.
4082 */
mps_intr_handler(struct adapter * adapter)4083 static void mps_intr_handler(struct adapter *adapter)
4084 {
4085 static const struct intr_info mps_rx_intr_info[] = {
4086 { 0xffffff, "MPS Rx parity error", -1, 1 },
4087 { 0 }
4088 };
4089 static const struct intr_info mps_tx_intr_info[] = {
4090 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4091 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4092 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4093 -1, 1 },
4094 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4095 -1, 1 },
4096 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4097 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4098 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4099 { 0 }
4100 };
4101 static const struct intr_info mps_trc_intr_info[] = {
4102 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4103 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4104 -1, 1 },
4105 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4106 { 0 }
4107 };
4108 static const struct intr_info mps_stat_sram_intr_info[] = {
4109 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4110 { 0 }
4111 };
4112 static const struct intr_info mps_stat_tx_intr_info[] = {
4113 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4114 { 0 }
4115 };
4116 static const struct intr_info mps_stat_rx_intr_info[] = {
4117 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4118 { 0 }
4119 };
4120 static const struct intr_info mps_cls_intr_info[] = {
4121 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4122 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4123 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4124 { 0 }
4125 };
4126
4127 int fat;
4128
4129 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4130 mps_rx_intr_info) +
4131 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4132 mps_tx_intr_info) +
4133 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4134 mps_trc_intr_info) +
4135 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4136 mps_stat_sram_intr_info) +
4137 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4138 mps_stat_tx_intr_info) +
4139 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4140 mps_stat_rx_intr_info) +
4141 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4142 mps_cls_intr_info);
4143
4144 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4145 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
4146 if (fat)
4147 t4_fatal_err(adapter);
4148 }
4149
4150 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4151 ECC_UE_INT_CAUSE_F)
4152
4153 /*
4154 * EDC/MC interrupt handler.
4155 */
mem_intr_handler(struct adapter * adapter,int idx)4156 static void mem_intr_handler(struct adapter *adapter, int idx)
4157 {
4158 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4159
4160 unsigned int addr, cnt_addr, v;
4161
4162 if (idx <= MEM_EDC1) {
4163 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4164 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4165 } else if (idx == MEM_MC) {
4166 if (is_t4(adapter->params.chip)) {
4167 addr = MC_INT_CAUSE_A;
4168 cnt_addr = MC_ECC_STATUS_A;
4169 } else {
4170 addr = MC_P_INT_CAUSE_A;
4171 cnt_addr = MC_P_ECC_STATUS_A;
4172 }
4173 } else {
4174 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4175 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4176 }
4177
4178 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4179 if (v & PERR_INT_CAUSE_F)
4180 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4181 name[idx]);
4182 if (v & ECC_CE_INT_CAUSE_F) {
4183 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4184
4185 t4_edc_err_read(adapter, idx);
4186
4187 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4188 if (printk_ratelimit())
4189 dev_warn(adapter->pdev_dev,
4190 "%u %s correctable ECC data error%s\n",
4191 cnt, name[idx], cnt > 1 ? "s" : "");
4192 }
4193 if (v & ECC_UE_INT_CAUSE_F)
4194 dev_alert(adapter->pdev_dev,
4195 "%s uncorrectable ECC data error\n", name[idx]);
4196
4197 t4_write_reg(adapter, addr, v);
4198 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4199 t4_fatal_err(adapter);
4200 }
4201
4202 /*
4203 * MA interrupt handler.
4204 */
ma_intr_handler(struct adapter * adap)4205 static void ma_intr_handler(struct adapter *adap)
4206 {
4207 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4208
4209 if (status & MEM_PERR_INT_CAUSE_F) {
4210 dev_alert(adap->pdev_dev,
4211 "MA parity error, parity status %#x\n",
4212 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4213 if (is_t5(adap->params.chip))
4214 dev_alert(adap->pdev_dev,
4215 "MA parity error, parity status %#x\n",
4216 t4_read_reg(adap,
4217 MA_PARITY_ERROR_STATUS2_A));
4218 }
4219 if (status & MEM_WRAP_INT_CAUSE_F) {
4220 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4221 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4222 "client %u to address %#x\n",
4223 MEM_WRAP_CLIENT_NUM_G(v),
4224 MEM_WRAP_ADDRESS_G(v) << 4);
4225 }
4226 t4_write_reg(adap, MA_INT_CAUSE_A, status);
4227 t4_fatal_err(adap);
4228 }
4229
4230 /*
4231 * SMB interrupt handler.
4232 */
smb_intr_handler(struct adapter * adap)4233 static void smb_intr_handler(struct adapter *adap)
4234 {
4235 static const struct intr_info smb_intr_info[] = {
4236 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4237 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4238 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4239 { 0 }
4240 };
4241
4242 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4243 t4_fatal_err(adap);
4244 }
4245
4246 /*
4247 * NC-SI interrupt handler.
4248 */
ncsi_intr_handler(struct adapter * adap)4249 static void ncsi_intr_handler(struct adapter *adap)
4250 {
4251 static const struct intr_info ncsi_intr_info[] = {
4252 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4253 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4254 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4255 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4256 { 0 }
4257 };
4258
4259 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4260 t4_fatal_err(adap);
4261 }
4262
4263 /*
4264 * XGMAC interrupt handler.
4265 */
xgmac_intr_handler(struct adapter * adap,int port)4266 static void xgmac_intr_handler(struct adapter *adap, int port)
4267 {
4268 u32 v, int_cause_reg;
4269
4270 if (is_t4(adap->params.chip))
4271 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4272 else
4273 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4274
4275 v = t4_read_reg(adap, int_cause_reg);
4276
4277 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4278 if (!v)
4279 return;
4280
4281 if (v & TXFIFO_PRTY_ERR_F)
4282 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4283 port);
4284 if (v & RXFIFO_PRTY_ERR_F)
4285 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4286 port);
4287 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4288 t4_fatal_err(adap);
4289 }
4290
4291 /*
4292 * PL interrupt handler.
4293 */
pl_intr_handler(struct adapter * adap)4294 static void pl_intr_handler(struct adapter *adap)
4295 {
4296 static const struct intr_info pl_intr_info[] = {
4297 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4298 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4299 { 0 }
4300 };
4301
4302 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4303 t4_fatal_err(adap);
4304 }
4305
4306 #define PF_INTR_MASK (PFSW_F)
4307 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4308 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4309 CPL_SWITCH_F | SGE_F | ULP_TX_F)
4310
4311 /**
4312 * t4_slow_intr_handler - control path interrupt handler
4313 * @adapter: the adapter
4314 *
4315 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
4316 * The designation 'slow' is because it involves register reads, while
4317 * data interrupts typically don't involve any MMIOs.
4318 */
t4_slow_intr_handler(struct adapter * adapter)4319 int t4_slow_intr_handler(struct adapter *adapter)
4320 {
4321 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4322
4323 if (!(cause & GLBL_INTR_MASK))
4324 return 0;
4325 if (cause & CIM_F)
4326 cim_intr_handler(adapter);
4327 if (cause & MPS_F)
4328 mps_intr_handler(adapter);
4329 if (cause & NCSI_F)
4330 ncsi_intr_handler(adapter);
4331 if (cause & PL_F)
4332 pl_intr_handler(adapter);
4333 if (cause & SMB_F)
4334 smb_intr_handler(adapter);
4335 if (cause & XGMAC0_F)
4336 xgmac_intr_handler(adapter, 0);
4337 if (cause & XGMAC1_F)
4338 xgmac_intr_handler(adapter, 1);
4339 if (cause & XGMAC_KR0_F)
4340 xgmac_intr_handler(adapter, 2);
4341 if (cause & XGMAC_KR1_F)
4342 xgmac_intr_handler(adapter, 3);
4343 if (cause & PCIE_F)
4344 pcie_intr_handler(adapter);
4345 if (cause & MC_F)
4346 mem_intr_handler(adapter, MEM_MC);
4347 if (is_t5(adapter->params.chip) && (cause & MC1_F))
4348 mem_intr_handler(adapter, MEM_MC1);
4349 if (cause & EDC0_F)
4350 mem_intr_handler(adapter, MEM_EDC0);
4351 if (cause & EDC1_F)
4352 mem_intr_handler(adapter, MEM_EDC1);
4353 if (cause & LE_F)
4354 le_intr_handler(adapter);
4355 if (cause & TP_F)
4356 tp_intr_handler(adapter);
4357 if (cause & MA_F)
4358 ma_intr_handler(adapter);
4359 if (cause & PM_TX_F)
4360 pmtx_intr_handler(adapter);
4361 if (cause & PM_RX_F)
4362 pmrx_intr_handler(adapter);
4363 if (cause & ULP_RX_F)
4364 ulprx_intr_handler(adapter);
4365 if (cause & CPL_SWITCH_F)
4366 cplsw_intr_handler(adapter);
4367 if (cause & SGE_F)
4368 sge_intr_handler(adapter);
4369 if (cause & ULP_TX_F)
4370 ulptx_intr_handler(adapter);
4371
4372 /* Clear the interrupts just processed for which we are the master. */
4373 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4374 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4375 return 1;
4376 }
4377
4378 /**
4379 * t4_intr_enable - enable interrupts
4380 * @adapter: the adapter whose interrupts should be enabled
4381 *
4382 * Enable PF-specific interrupts for the calling function and the top-level
4383 * interrupt concentrator for global interrupts. Interrupts are already
4384 * enabled at each module, here we just enable the roots of the interrupt
4385 * hierarchies.
4386 *
4387 * Note: this function should be called only when the driver manages
4388 * non PF-specific interrupts from the various HW modules. Only one PCI
4389 * function at a time should be doing this.
4390 */
t4_intr_enable(struct adapter * adapter)4391 void t4_intr_enable(struct adapter *adapter)
4392 {
4393 u32 val = 0;
4394 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4395 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4396 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4397
4398 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4399 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4400 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4401 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4402 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4403 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4404 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4405 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4406 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4407 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4408 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4409 }
4410
4411 /**
4412 * t4_intr_disable - disable interrupts
4413 * @adapter: the adapter whose interrupts should be disabled
4414 *
4415 * Disable interrupts. We only disable the top-level interrupt
4416 * concentrators. The caller must be a PCI function managing global
4417 * interrupts.
4418 */
t4_intr_disable(struct adapter * adapter)4419 void t4_intr_disable(struct adapter *adapter)
4420 {
4421 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4422 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4423 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4424
4425 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4426 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4427 }
4428
4429 /**
4430 * hash_mac_addr - return the hash value of a MAC address
4431 * @addr: the 48-bit Ethernet MAC address
4432 *
4433 * Hashes a MAC address according to the hash function used by HW inexact
4434 * (hash) address matching.
4435 */
hash_mac_addr(const u8 * addr)4436 static int hash_mac_addr(const u8 *addr)
4437 {
4438 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4439 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4440 a ^= b;
4441 a ^= (a >> 12);
4442 a ^= (a >> 6);
4443 return a & 0x3f;
4444 }
4445
4446 /**
4447 * t4_config_rss_range - configure a portion of the RSS mapping table
4448 * @adapter: the adapter
4449 * @mbox: mbox to use for the FW command
4450 * @viid: virtual interface whose RSS subtable is to be written
4451 * @start: start entry in the table to write
4452 * @n: how many table entries to write
4453 * @rspq: values for the response queue lookup table
4454 * @nrspq: number of values in @rspq
4455 *
4456 * Programs the selected part of the VI's RSS mapping table with the
4457 * provided values. If @nrspq < @n the supplied values are used repeatedly
4458 * until the full table range is populated.
4459 *
4460 * The caller must ensure the values in @rspq are in the range allowed for
4461 * @viid.
4462 */
t4_config_rss_range(struct adapter * adapter,int mbox,unsigned int viid,int start,int n,const u16 * rspq,unsigned int nrspq)4463 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4464 int start, int n, const u16 *rspq, unsigned int nrspq)
4465 {
4466 int ret;
4467 const u16 *rsp = rspq;
4468 const u16 *rsp_end = rspq + nrspq;
4469 struct fw_rss_ind_tbl_cmd cmd;
4470
4471 memset(&cmd, 0, sizeof(cmd));
4472 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4473 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4474 FW_RSS_IND_TBL_CMD_VIID_V(viid));
4475 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4476
4477 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4478 while (n > 0) {
4479 int nq = min(n, 32);
4480 __be32 *qp = &cmd.iq0_to_iq2;
4481
4482 cmd.niqid = cpu_to_be16(nq);
4483 cmd.startidx = cpu_to_be16(start);
4484
4485 start += nq;
4486 n -= nq;
4487
4488 while (nq > 0) {
4489 unsigned int v;
4490
4491 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4492 if (++rsp >= rsp_end)
4493 rsp = rspq;
4494 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4495 if (++rsp >= rsp_end)
4496 rsp = rspq;
4497 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4498 if (++rsp >= rsp_end)
4499 rsp = rspq;
4500
4501 *qp++ = cpu_to_be32(v);
4502 nq -= 3;
4503 }
4504
4505 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4506 if (ret)
4507 return ret;
4508 }
4509 return 0;
4510 }
4511
4512 /**
4513 * t4_config_glbl_rss - configure the global RSS mode
4514 * @adapter: the adapter
4515 * @mbox: mbox to use for the FW command
4516 * @mode: global RSS mode
4517 * @flags: mode-specific flags
4518 *
4519 * Sets the global RSS mode.
4520 */
t4_config_glbl_rss(struct adapter * adapter,int mbox,unsigned int mode,unsigned int flags)4521 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4522 unsigned int flags)
4523 {
4524 struct fw_rss_glb_config_cmd c;
4525
4526 memset(&c, 0, sizeof(c));
4527 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4528 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4529 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4530 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4531 c.u.manual.mode_pkd =
4532 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4533 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4534 c.u.basicvirtual.mode_pkd =
4535 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4536 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4537 } else
4538 return -EINVAL;
4539 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4540 }
4541
4542 /**
4543 * t4_config_vi_rss - configure per VI RSS settings
4544 * @adapter: the adapter
4545 * @mbox: mbox to use for the FW command
4546 * @viid: the VI id
4547 * @flags: RSS flags
4548 * @defq: id of the default RSS queue for the VI.
4549 *
4550 * Configures VI-specific RSS properties.
4551 */
t4_config_vi_rss(struct adapter * adapter,int mbox,unsigned int viid,unsigned int flags,unsigned int defq)4552 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4553 unsigned int flags, unsigned int defq)
4554 {
4555 struct fw_rss_vi_config_cmd c;
4556
4557 memset(&c, 0, sizeof(c));
4558 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4559 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4560 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4561 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4562 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4563 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4564 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4565 }
4566
4567 /* Read an RSS table row */
rd_rss_row(struct adapter * adap,int row,u32 * val)4568 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4569 {
4570 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4571 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4572 5, 0, val);
4573 }
4574
4575 /**
4576 * t4_read_rss - read the contents of the RSS mapping table
4577 * @adapter: the adapter
4578 * @map: holds the contents of the RSS mapping table
4579 *
4580 * Reads the contents of the RSS hash->queue mapping table.
4581 */
t4_read_rss(struct adapter * adapter,u16 * map)4582 int t4_read_rss(struct adapter *adapter, u16 *map)
4583 {
4584 u32 val;
4585 int i, ret;
4586
4587 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4588 ret = rd_rss_row(adapter, i, &val);
4589 if (ret)
4590 return ret;
4591 *map++ = LKPTBLQUEUE0_G(val);
4592 *map++ = LKPTBLQUEUE1_G(val);
4593 }
4594 return 0;
4595 }
4596
t4_use_ldst(struct adapter * adap)4597 static unsigned int t4_use_ldst(struct adapter *adap)
4598 {
4599 return (adap->flags & FW_OK) || !adap->use_bd;
4600 }
4601
4602 /**
4603 * t4_fw_tp_pio_rw - Access TP PIO through LDST
4604 * @adap: the adapter
4605 * @vals: where the indirect register values are stored/written
4606 * @nregs: how many indirect registers to read/write
4607 * @start_idx: index of first indirect register to read/write
4608 * @rw: Read (1) or Write (0)
4609 *
4610 * Access TP PIO registers through LDST
4611 */
t4_fw_tp_pio_rw(struct adapter * adap,u32 * vals,unsigned int nregs,unsigned int start_index,unsigned int rw)4612 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4613 unsigned int start_index, unsigned int rw)
4614 {
4615 int ret, i;
4616 int cmd = FW_LDST_ADDRSPC_TP_PIO;
4617 struct fw_ldst_cmd c;
4618
4619 for (i = 0 ; i < nregs; i++) {
4620 memset(&c, 0, sizeof(c));
4621 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4622 FW_CMD_REQUEST_F |
4623 (rw ? FW_CMD_READ_F :
4624 FW_CMD_WRITE_F) |
4625 FW_LDST_CMD_ADDRSPACE_V(cmd));
4626 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4627
4628 c.u.addrval.addr = cpu_to_be32(start_index + i);
4629 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
4630 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4631 if (!ret && rw)
4632 vals[i] = be32_to_cpu(c.u.addrval.val);
4633 }
4634 }
4635
4636 /**
4637 * t4_read_rss_key - read the global RSS key
4638 * @adap: the adapter
4639 * @key: 10-entry array holding the 320-bit RSS key
4640 *
4641 * Reads the global 320-bit RSS key.
4642 */
t4_read_rss_key(struct adapter * adap,u32 * key)4643 void t4_read_rss_key(struct adapter *adap, u32 *key)
4644 {
4645 if (t4_use_ldst(adap))
4646 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4647 else
4648 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4649 TP_RSS_SECRET_KEY0_A);
4650 }
4651
4652 /**
4653 * t4_write_rss_key - program one of the RSS keys
4654 * @adap: the adapter
4655 * @key: 10-entry array holding the 320-bit RSS key
4656 * @idx: which RSS key to write
4657 *
4658 * Writes one of the RSS keys with the given 320-bit value. If @idx is
4659 * 0..15 the corresponding entry in the RSS key table is written,
4660 * otherwise the global RSS key is written.
4661 */
t4_write_rss_key(struct adapter * adap,const u32 * key,int idx)4662 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4663 {
4664 u8 rss_key_addr_cnt = 16;
4665 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4666
4667 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4668 * allows access to key addresses 16-63 by using KeyWrAddrX
4669 * as index[5:4](upper 2) into key table
4670 */
4671 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4672 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4673 rss_key_addr_cnt = 32;
4674
4675 if (t4_use_ldst(adap))
4676 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4677 else
4678 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4679 TP_RSS_SECRET_KEY0_A);
4680
4681 if (idx >= 0 && idx < rss_key_addr_cnt) {
4682 if (rss_key_addr_cnt > 16)
4683 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4684 KEYWRADDRX_V(idx >> 4) |
4685 T6_VFWRADDR_V(idx) | KEYWREN_F);
4686 else
4687 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4688 KEYWRADDR_V(idx) | KEYWREN_F);
4689 }
4690 }
4691
4692 /**
4693 * t4_read_rss_pf_config - read PF RSS Configuration Table
4694 * @adapter: the adapter
4695 * @index: the entry in the PF RSS table to read
4696 * @valp: where to store the returned value
4697 *
4698 * Reads the PF RSS Configuration Table at the specified index and returns
4699 * the value found there.
4700 */
t4_read_rss_pf_config(struct adapter * adapter,unsigned int index,u32 * valp)4701 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4702 u32 *valp)
4703 {
4704 if (t4_use_ldst(adapter))
4705 t4_fw_tp_pio_rw(adapter, valp, 1,
4706 TP_RSS_PF0_CONFIG_A + index, 1);
4707 else
4708 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4709 valp, 1, TP_RSS_PF0_CONFIG_A + index);
4710 }
4711
4712 /**
4713 * t4_read_rss_vf_config - read VF RSS Configuration Table
4714 * @adapter: the adapter
4715 * @index: the entry in the VF RSS table to read
4716 * @vfl: where to store the returned VFL
4717 * @vfh: where to store the returned VFH
4718 *
4719 * Reads the VF RSS Configuration Table at the specified index and returns
4720 * the (VFL, VFH) values found there.
4721 */
t4_read_rss_vf_config(struct adapter * adapter,unsigned int index,u32 * vfl,u32 * vfh)4722 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4723 u32 *vfl, u32 *vfh)
4724 {
4725 u32 vrt, mask, data;
4726
4727 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4728 mask = VFWRADDR_V(VFWRADDR_M);
4729 data = VFWRADDR_V(index);
4730 } else {
4731 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
4732 data = T6_VFWRADDR_V(index);
4733 }
4734
4735 /* Request that the index'th VF Table values be read into VFL/VFH.
4736 */
4737 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4738 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4739 vrt |= data | VFRDEN_F;
4740 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4741
4742 /* Grab the VFL/VFH values ...
4743 */
4744 if (t4_use_ldst(adapter)) {
4745 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4746 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4747 } else {
4748 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4749 vfl, 1, TP_RSS_VFL_CONFIG_A);
4750 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4751 vfh, 1, TP_RSS_VFH_CONFIG_A);
4752 }
4753 }
4754
4755 /**
4756 * t4_read_rss_pf_map - read PF RSS Map
4757 * @adapter: the adapter
4758 *
4759 * Reads the PF RSS Map register and returns its value.
4760 */
t4_read_rss_pf_map(struct adapter * adapter)4761 u32 t4_read_rss_pf_map(struct adapter *adapter)
4762 {
4763 u32 pfmap;
4764
4765 if (t4_use_ldst(adapter))
4766 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4767 else
4768 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4769 &pfmap, 1, TP_RSS_PF_MAP_A);
4770 return pfmap;
4771 }
4772
4773 /**
4774 * t4_read_rss_pf_mask - read PF RSS Mask
4775 * @adapter: the adapter
4776 *
4777 * Reads the PF RSS Mask register and returns its value.
4778 */
t4_read_rss_pf_mask(struct adapter * adapter)4779 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4780 {
4781 u32 pfmask;
4782
4783 if (t4_use_ldst(adapter))
4784 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4785 else
4786 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4787 &pfmask, 1, TP_RSS_PF_MSK_A);
4788 return pfmask;
4789 }
4790
4791 /**
4792 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
4793 * @adap: the adapter
4794 * @v4: holds the TCP/IP counter values
4795 * @v6: holds the TCP/IPv6 counter values
4796 *
4797 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4798 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4799 */
t4_tp_get_tcp_stats(struct adapter * adap,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)4800 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4801 struct tp_tcp_stats *v6)
4802 {
4803 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4804
4805 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4806 #define STAT(x) val[STAT_IDX(x)]
4807 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4808
4809 if (v4) {
4810 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4811 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4812 v4->tcp_out_rsts = STAT(OUT_RST);
4813 v4->tcp_in_segs = STAT64(IN_SEG);
4814 v4->tcp_out_segs = STAT64(OUT_SEG);
4815 v4->tcp_retrans_segs = STAT64(RXT_SEG);
4816 }
4817 if (v6) {
4818 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4819 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4820 v6->tcp_out_rsts = STAT(OUT_RST);
4821 v6->tcp_in_segs = STAT64(IN_SEG);
4822 v6->tcp_out_segs = STAT64(OUT_SEG);
4823 v6->tcp_retrans_segs = STAT64(RXT_SEG);
4824 }
4825 #undef STAT64
4826 #undef STAT
4827 #undef STAT_IDX
4828 }
4829
4830 /**
4831 * t4_tp_get_err_stats - read TP's error MIB counters
4832 * @adap: the adapter
4833 * @st: holds the counter values
4834 *
4835 * Returns the values of TP's error counters.
4836 */
t4_tp_get_err_stats(struct adapter * adap,struct tp_err_stats * st)4837 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4838 {
4839 int nchan = adap->params.arch.nchan;
4840
4841 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4842 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4843 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4844 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4845 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4846 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4847 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4848 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4849 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4850 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4851 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4852 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4853 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4854 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4855 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4856 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4857
4858 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4859 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4860 }
4861
4862 /**
4863 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
4864 * @adap: the adapter
4865 * @st: holds the counter values
4866 *
4867 * Returns the values of TP's CPL counters.
4868 */
t4_tp_get_cpl_stats(struct adapter * adap,struct tp_cpl_stats * st)4869 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4870 {
4871 int nchan = adap->params.arch.nchan;
4872
4873 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4874 nchan, TP_MIB_CPL_IN_REQ_0_A);
4875 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4876 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4877
4878 }
4879
4880 /**
4881 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4882 * @adap: the adapter
4883 * @st: holds the counter values
4884 *
4885 * Returns the values of TP's RDMA counters.
4886 */
t4_tp_get_rdma_stats(struct adapter * adap,struct tp_rdma_stats * st)4887 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4888 {
4889 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4890 2, TP_MIB_RQE_DFR_PKT_A);
4891 }
4892
4893 /**
4894 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4895 * @adap: the adapter
4896 * @idx: the port index
4897 * @st: holds the counter values
4898 *
4899 * Returns the values of TP's FCoE counters for the selected port.
4900 */
t4_get_fcoe_stats(struct adapter * adap,unsigned int idx,struct tp_fcoe_stats * st)4901 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4902 struct tp_fcoe_stats *st)
4903 {
4904 u32 val[2];
4905
4906 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4907 1, TP_MIB_FCOE_DDP_0_A + idx);
4908 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4909 1, TP_MIB_FCOE_DROP_0_A + idx);
4910 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4911 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4912 st->octets_ddp = ((u64)val[0] << 32) | val[1];
4913 }
4914
4915 /**
4916 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4917 * @adap: the adapter
4918 * @st: holds the counter values
4919 *
4920 * Returns the values of TP's counters for non-TCP directly-placed packets.
4921 */
t4_get_usm_stats(struct adapter * adap,struct tp_usm_stats * st)4922 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4923 {
4924 u32 val[4];
4925
4926 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4927 TP_MIB_USM_PKTS_A);
4928 st->frames = val[0];
4929 st->drops = val[1];
4930 st->octets = ((u64)val[2] << 32) | val[3];
4931 }
4932
4933 /**
4934 * t4_read_mtu_tbl - returns the values in the HW path MTU table
4935 * @adap: the adapter
4936 * @mtus: where to store the MTU values
4937 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
4938 *
4939 * Reads the HW path MTU table.
4940 */
t4_read_mtu_tbl(struct adapter * adap,u16 * mtus,u8 * mtu_log)4941 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4942 {
4943 u32 v;
4944 int i;
4945
4946 for (i = 0; i < NMTUS; ++i) {
4947 t4_write_reg(adap, TP_MTU_TABLE_A,
4948 MTUINDEX_V(0xff) | MTUVALUE_V(i));
4949 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4950 mtus[i] = MTUVALUE_G(v);
4951 if (mtu_log)
4952 mtu_log[i] = MTUWIDTH_G(v);
4953 }
4954 }
4955
4956 /**
4957 * t4_read_cong_tbl - reads the congestion control table
4958 * @adap: the adapter
4959 * @incr: where to store the alpha values
4960 *
4961 * Reads the additive increments programmed into the HW congestion
4962 * control table.
4963 */
t4_read_cong_tbl(struct adapter * adap,u16 incr[NMTUS][NCCTRL_WIN])4964 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4965 {
4966 unsigned int mtu, w;
4967
4968 for (mtu = 0; mtu < NMTUS; ++mtu)
4969 for (w = 0; w < NCCTRL_WIN; ++w) {
4970 t4_write_reg(adap, TP_CCTRL_TABLE_A,
4971 ROWINDEX_V(0xffff) | (mtu << 5) | w);
4972 incr[mtu][w] = (u16)t4_read_reg(adap,
4973 TP_CCTRL_TABLE_A) & 0x1fff;
4974 }
4975 }
4976
4977 /**
4978 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4979 * @adap: the adapter
4980 * @addr: the indirect TP register address
4981 * @mask: specifies the field within the register to modify
4982 * @val: new value for the field
4983 *
4984 * Sets a field of an indirect TP register to the given value.
4985 */
t4_tp_wr_bits_indirect(struct adapter * adap,unsigned int addr,unsigned int mask,unsigned int val)4986 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4987 unsigned int mask, unsigned int val)
4988 {
4989 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4990 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4991 t4_write_reg(adap, TP_PIO_DATA_A, val);
4992 }
4993
4994 /**
4995 * init_cong_ctrl - initialize congestion control parameters
4996 * @a: the alpha values for congestion control
4997 * @b: the beta values for congestion control
4998 *
4999 * Initialize the congestion control parameters.
5000 */
init_cong_ctrl(unsigned short * a,unsigned short * b)5001 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5002 {
5003 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5004 a[9] = 2;
5005 a[10] = 3;
5006 a[11] = 4;
5007 a[12] = 5;
5008 a[13] = 6;
5009 a[14] = 7;
5010 a[15] = 8;
5011 a[16] = 9;
5012 a[17] = 10;
5013 a[18] = 14;
5014 a[19] = 17;
5015 a[20] = 21;
5016 a[21] = 25;
5017 a[22] = 30;
5018 a[23] = 35;
5019 a[24] = 45;
5020 a[25] = 60;
5021 a[26] = 80;
5022 a[27] = 100;
5023 a[28] = 200;
5024 a[29] = 300;
5025 a[30] = 400;
5026 a[31] = 500;
5027
5028 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5029 b[9] = b[10] = 1;
5030 b[11] = b[12] = 2;
5031 b[13] = b[14] = b[15] = b[16] = 3;
5032 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5033 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5034 b[28] = b[29] = 6;
5035 b[30] = b[31] = 7;
5036 }
5037
5038 /* The minimum additive increment value for the congestion control table */
5039 #define CC_MIN_INCR 2U
5040
5041 /**
5042 * t4_load_mtus - write the MTU and congestion control HW tables
5043 * @adap: the adapter
5044 * @mtus: the values for the MTU table
5045 * @alpha: the values for the congestion control alpha parameter
5046 * @beta: the values for the congestion control beta parameter
5047 *
5048 * Write the HW MTU table with the supplied MTUs and the high-speed
5049 * congestion control table with the supplied alpha, beta, and MTUs.
5050 * We write the two tables together because the additive increments
5051 * depend on the MTUs.
5052 */
t4_load_mtus(struct adapter * adap,const unsigned short * mtus,const unsigned short * alpha,const unsigned short * beta)5053 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5054 const unsigned short *alpha, const unsigned short *beta)
5055 {
5056 static const unsigned int avg_pkts[NCCTRL_WIN] = {
5057 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5058 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5059 28672, 40960, 57344, 81920, 114688, 163840, 229376
5060 };
5061
5062 unsigned int i, w;
5063
5064 for (i = 0; i < NMTUS; ++i) {
5065 unsigned int mtu = mtus[i];
5066 unsigned int log2 = fls(mtu);
5067
5068 if (!(mtu & ((1 << log2) >> 2))) /* round */
5069 log2--;
5070 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5071 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5072
5073 for (w = 0; w < NCCTRL_WIN; ++w) {
5074 unsigned int inc;
5075
5076 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5077 CC_MIN_INCR);
5078
5079 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5080 (w << 16) | (beta[w] << 13) | inc);
5081 }
5082 }
5083 }
5084
5085 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5086 * clocks. The formula is
5087 *
5088 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5089 *
5090 * which is equivalent to
5091 *
5092 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5093 */
chan_rate(struct adapter * adap,unsigned int bytes256)5094 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5095 {
5096 u64 v = bytes256 * adap->params.vpd.cclk;
5097
5098 return v * 62 + v / 2;
5099 }
5100
5101 /**
5102 * t4_get_chan_txrate - get the current per channel Tx rates
5103 * @adap: the adapter
5104 * @nic_rate: rates for NIC traffic
5105 * @ofld_rate: rates for offloaded traffic
5106 *
5107 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
5108 * for each channel.
5109 */
t4_get_chan_txrate(struct adapter * adap,u64 * nic_rate,u64 * ofld_rate)5110 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5111 {
5112 u32 v;
5113
5114 v = t4_read_reg(adap, TP_TX_TRATE_A);
5115 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5116 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5117 if (adap->params.arch.nchan == NCHAN) {
5118 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5119 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5120 }
5121
5122 v = t4_read_reg(adap, TP_TX_ORATE_A);
5123 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5124 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5125 if (adap->params.arch.nchan == NCHAN) {
5126 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5127 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5128 }
5129 }
5130
5131 /**
5132 * t4_set_trace_filter - configure one of the tracing filters
5133 * @adap: the adapter
5134 * @tp: the desired trace filter parameters
5135 * @idx: which filter to configure
5136 * @enable: whether to enable or disable the filter
5137 *
5138 * Configures one of the tracing filters available in HW. If @enable is
5139 * %0 @tp is not examined and may be %NULL. The user is responsible to
5140 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5141 */
t4_set_trace_filter(struct adapter * adap,const struct trace_params * tp,int idx,int enable)5142 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5143 int idx, int enable)
5144 {
5145 int i, ofst = idx * 4;
5146 u32 data_reg, mask_reg, cfg;
5147 u32 multitrc = TRCMULTIFILTER_F;
5148
5149 if (!enable) {
5150 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5151 return 0;
5152 }
5153
5154 cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5155 if (cfg & TRCMULTIFILTER_F) {
5156 /* If multiple tracers are enabled, then maximum
5157 * capture size is 2.5KB (FIFO size of a single channel)
5158 * minus 2 flits for CPL_TRACE_PKT header.
5159 */
5160 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5161 return -EINVAL;
5162 } else {
5163 /* If multiple tracers are disabled, to avoid deadlocks
5164 * maximum packet capture size of 9600 bytes is recommended.
5165 * Also in this mode, only trace0 can be enabled and running.
5166 */
5167 multitrc = 0;
5168 if (tp->snap_len > 9600 || idx)
5169 return -EINVAL;
5170 }
5171
5172 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5173 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5174 tp->min_len > TFMINPKTSIZE_M)
5175 return -EINVAL;
5176
5177 /* stop the tracer we'll be changing */
5178 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5179
5180 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5181 data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5182 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5183
5184 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5185 t4_write_reg(adap, data_reg, tp->data[i]);
5186 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5187 }
5188 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5189 TFCAPTUREMAX_V(tp->snap_len) |
5190 TFMINPKTSIZE_V(tp->min_len));
5191 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5192 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5193 (is_t4(adap->params.chip) ?
5194 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5195 T5_TFPORT_V(tp->port) | T5_TFEN_F |
5196 T5_TFINVERTMATCH_V(tp->invert)));
5197
5198 return 0;
5199 }
5200
5201 /**
5202 * t4_get_trace_filter - query one of the tracing filters
5203 * @adap: the adapter
5204 * @tp: the current trace filter parameters
5205 * @idx: which trace filter to query
5206 * @enabled: non-zero if the filter is enabled
5207 *
5208 * Returns the current settings of one of the HW tracing filters.
5209 */
t4_get_trace_filter(struct adapter * adap,struct trace_params * tp,int idx,int * enabled)5210 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5211 int *enabled)
5212 {
5213 u32 ctla, ctlb;
5214 int i, ofst = idx * 4;
5215 u32 data_reg, mask_reg;
5216
5217 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5218 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5219
5220 if (is_t4(adap->params.chip)) {
5221 *enabled = !!(ctla & TFEN_F);
5222 tp->port = TFPORT_G(ctla);
5223 tp->invert = !!(ctla & TFINVERTMATCH_F);
5224 } else {
5225 *enabled = !!(ctla & T5_TFEN_F);
5226 tp->port = T5_TFPORT_G(ctla);
5227 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5228 }
5229 tp->snap_len = TFCAPTUREMAX_G(ctlb);
5230 tp->min_len = TFMINPKTSIZE_G(ctlb);
5231 tp->skip_ofst = TFOFFSET_G(ctla);
5232 tp->skip_len = TFLENGTH_G(ctla);
5233
5234 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5235 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5236 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5237
5238 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5239 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5240 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5241 }
5242 }
5243
5244 /**
5245 * t4_pmtx_get_stats - returns the HW stats from PMTX
5246 * @adap: the adapter
5247 * @cnt: where to store the count statistics
5248 * @cycles: where to store the cycle statistics
5249 *
5250 * Returns performance statistics from PMTX.
5251 */
t4_pmtx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])5252 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5253 {
5254 int i;
5255 u32 data[2];
5256
5257 for (i = 0; i < PM_NSTATS; i++) {
5258 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5259 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5260 if (is_t4(adap->params.chip)) {
5261 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5262 } else {
5263 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5264 PM_TX_DBG_DATA_A, data, 2,
5265 PM_TX_DBG_STAT_MSB_A);
5266 cycles[i] = (((u64)data[0] << 32) | data[1]);
5267 }
5268 }
5269 }
5270
5271 /**
5272 * t4_pmrx_get_stats - returns the HW stats from PMRX
5273 * @adap: the adapter
5274 * @cnt: where to store the count statistics
5275 * @cycles: where to store the cycle statistics
5276 *
5277 * Returns performance statistics from PMRX.
5278 */
t4_pmrx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])5279 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5280 {
5281 int i;
5282 u32 data[2];
5283
5284 for (i = 0; i < PM_NSTATS; i++) {
5285 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5286 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5287 if (is_t4(adap->params.chip)) {
5288 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5289 } else {
5290 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5291 PM_RX_DBG_DATA_A, data, 2,
5292 PM_RX_DBG_STAT_MSB_A);
5293 cycles[i] = (((u64)data[0] << 32) | data[1]);
5294 }
5295 }
5296 }
5297
5298 /**
5299 * t4_get_mps_bg_map - return the buffer groups associated with a port
5300 * @adap: the adapter
5301 * @idx: the port index
5302 *
5303 * Returns a bitmap indicating which MPS buffer groups are associated
5304 * with the given port. Bit i is set if buffer group i is used by the
5305 * port.
5306 */
t4_get_mps_bg_map(struct adapter * adap,int idx)5307 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5308 {
5309 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5310
5311 if (n == 0)
5312 return idx == 0 ? 0xf : 0;
5313 if (n == 1)
5314 return idx < 2 ? (3 << (2 * idx)) : 0;
5315 return 1 << idx;
5316 }
5317
5318 /**
5319 * t4_get_port_type_description - return Port Type string description
5320 * @port_type: firmware Port Type enumeration
5321 */
t4_get_port_type_description(enum fw_port_type port_type)5322 const char *t4_get_port_type_description(enum fw_port_type port_type)
5323 {
5324 static const char *const port_type_description[] = {
5325 "R XFI",
5326 "R XAUI",
5327 "T SGMII",
5328 "T XFI",
5329 "T XAUI",
5330 "KX4",
5331 "CX4",
5332 "KX",
5333 "KR",
5334 "R SFP+",
5335 "KR/KX",
5336 "KR/KX/KX4",
5337 "R QSFP_10G",
5338 "R QSA",
5339 "R QSFP",
5340 "R BP40_BA",
5341 };
5342
5343 if (port_type < ARRAY_SIZE(port_type_description))
5344 return port_type_description[port_type];
5345 return "UNKNOWN";
5346 }
5347
5348 /**
5349 * t4_get_port_stats_offset - collect port stats relative to a previous
5350 * snapshot
5351 * @adap: The adapter
5352 * @idx: The port
5353 * @stats: Current stats to fill
5354 * @offset: Previous stats snapshot
5355 */
t4_get_port_stats_offset(struct adapter * adap,int idx,struct port_stats * stats,struct port_stats * offset)5356 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5357 struct port_stats *stats,
5358 struct port_stats *offset)
5359 {
5360 u64 *s, *o;
5361 int i;
5362
5363 t4_get_port_stats(adap, idx, stats);
5364 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5365 i < (sizeof(struct port_stats) / sizeof(u64));
5366 i++, s++, o++)
5367 *s -= *o;
5368 }
5369
5370 /**
5371 * t4_get_port_stats - collect port statistics
5372 * @adap: the adapter
5373 * @idx: the port index
5374 * @p: the stats structure to fill
5375 *
5376 * Collect statistics related to the given port from HW.
5377 */
t4_get_port_stats(struct adapter * adap,int idx,struct port_stats * p)5378 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5379 {
5380 u32 bgmap = t4_get_mps_bg_map(adap, idx);
5381
5382 #define GET_STAT(name) \
5383 t4_read_reg64(adap, \
5384 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5385 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5386 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5387
5388 p->tx_octets = GET_STAT(TX_PORT_BYTES);
5389 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
5390 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
5391 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
5392 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
5393 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
5394 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
5395 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
5396 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
5397 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
5398 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
5399 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5400 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
5401 p->tx_drop = GET_STAT(TX_PORT_DROP);
5402 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
5403 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
5404 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
5405 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
5406 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
5407 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
5408 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
5409 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
5410 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
5411
5412 p->rx_octets = GET_STAT(RX_PORT_BYTES);
5413 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
5414 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
5415 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
5416 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
5417 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
5418 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5419 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
5420 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
5421 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
5422 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
5423 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
5424 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
5425 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
5426 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
5427 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
5428 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5429 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
5430 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
5431 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
5432 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
5433 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
5434 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
5435 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
5436 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
5437 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
5438 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
5439
5440 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5441 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5442 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5443 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5444 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5445 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5446 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5447 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5448
5449 #undef GET_STAT
5450 #undef GET_STAT_COM
5451 }
5452
5453 /**
5454 * t4_get_lb_stats - collect loopback port statistics
5455 * @adap: the adapter
5456 * @idx: the loopback port index
5457 * @p: the stats structure to fill
5458 *
5459 * Return HW statistics for the given loopback port.
5460 */
t4_get_lb_stats(struct adapter * adap,int idx,struct lb_port_stats * p)5461 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5462 {
5463 u32 bgmap = t4_get_mps_bg_map(adap, idx);
5464
5465 #define GET_STAT(name) \
5466 t4_read_reg64(adap, \
5467 (is_t4(adap->params.chip) ? \
5468 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5469 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5470 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5471
5472 p->octets = GET_STAT(BYTES);
5473 p->frames = GET_STAT(FRAMES);
5474 p->bcast_frames = GET_STAT(BCAST);
5475 p->mcast_frames = GET_STAT(MCAST);
5476 p->ucast_frames = GET_STAT(UCAST);
5477 p->error_frames = GET_STAT(ERROR);
5478
5479 p->frames_64 = GET_STAT(64B);
5480 p->frames_65_127 = GET_STAT(65B_127B);
5481 p->frames_128_255 = GET_STAT(128B_255B);
5482 p->frames_256_511 = GET_STAT(256B_511B);
5483 p->frames_512_1023 = GET_STAT(512B_1023B);
5484 p->frames_1024_1518 = GET_STAT(1024B_1518B);
5485 p->frames_1519_max = GET_STAT(1519B_MAX);
5486 p->drop = GET_STAT(DROP_FRAMES);
5487
5488 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5489 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5490 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5491 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5492 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5493 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5494 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5495 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5496
5497 #undef GET_STAT
5498 #undef GET_STAT_COM
5499 }
5500
5501 /* t4_mk_filtdelwr - create a delete filter WR
5502 * @ftid: the filter ID
5503 * @wr: the filter work request to populate
5504 * @qid: ingress queue to receive the delete notification
5505 *
5506 * Creates a filter work request to delete the supplied filter. If @qid is
5507 * negative the delete notification is suppressed.
5508 */
t4_mk_filtdelwr(unsigned int ftid,struct fw_filter_wr * wr,int qid)5509 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5510 {
5511 memset(wr, 0, sizeof(*wr));
5512 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5513 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5514 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5515 FW_FILTER_WR_NOREPLY_V(qid < 0));
5516 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5517 if (qid >= 0)
5518 wr->rx_chan_rx_rpl_iq =
5519 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5520 }
5521
5522 #define INIT_CMD(var, cmd, rd_wr) do { \
5523 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5524 FW_CMD_REQUEST_F | \
5525 FW_CMD_##rd_wr##_F); \
5526 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5527 } while (0)
5528
t4_fwaddrspace_write(struct adapter * adap,unsigned int mbox,u32 addr,u32 val)5529 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5530 u32 addr, u32 val)
5531 {
5532 u32 ldst_addrspace;
5533 struct fw_ldst_cmd c;
5534
5535 memset(&c, 0, sizeof(c));
5536 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5537 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5538 FW_CMD_REQUEST_F |
5539 FW_CMD_WRITE_F |
5540 ldst_addrspace);
5541 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5542 c.u.addrval.addr = cpu_to_be32(addr);
5543 c.u.addrval.val = cpu_to_be32(val);
5544
5545 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5546 }
5547
5548 /**
5549 * t4_mdio_rd - read a PHY register through MDIO
5550 * @adap: the adapter
5551 * @mbox: mailbox to use for the FW command
5552 * @phy_addr: the PHY address
5553 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5554 * @reg: the register to read
5555 * @valp: where to store the value
5556 *
5557 * Issues a FW command through the given mailbox to read a PHY register.
5558 */
t4_mdio_rd(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 * valp)5559 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5560 unsigned int mmd, unsigned int reg, u16 *valp)
5561 {
5562 int ret;
5563 u32 ldst_addrspace;
5564 struct fw_ldst_cmd c;
5565
5566 memset(&c, 0, sizeof(c));
5567 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5568 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5569 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5570 ldst_addrspace);
5571 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5572 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5573 FW_LDST_CMD_MMD_V(mmd));
5574 c.u.mdio.raddr = cpu_to_be16(reg);
5575
5576 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5577 if (ret == 0)
5578 *valp = be16_to_cpu(c.u.mdio.rval);
5579 return ret;
5580 }
5581
5582 /**
5583 * t4_mdio_wr - write a PHY register through MDIO
5584 * @adap: the adapter
5585 * @mbox: mailbox to use for the FW command
5586 * @phy_addr: the PHY address
5587 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5588 * @reg: the register to write
5589 * @valp: value to write
5590 *
5591 * Issues a FW command through the given mailbox to write a PHY register.
5592 */
t4_mdio_wr(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 val)5593 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5594 unsigned int mmd, unsigned int reg, u16 val)
5595 {
5596 u32 ldst_addrspace;
5597 struct fw_ldst_cmd c;
5598
5599 memset(&c, 0, sizeof(c));
5600 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5601 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5602 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5603 ldst_addrspace);
5604 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5605 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5606 FW_LDST_CMD_MMD_V(mmd));
5607 c.u.mdio.raddr = cpu_to_be16(reg);
5608 c.u.mdio.rval = cpu_to_be16(val);
5609
5610 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5611 }
5612
5613 /**
5614 * t4_sge_decode_idma_state - decode the idma state
5615 * @adap: the adapter
5616 * @state: the state idma is stuck in
5617 */
t4_sge_decode_idma_state(struct adapter * adapter,int state)5618 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5619 {
5620 static const char * const t4_decode[] = {
5621 "IDMA_IDLE",
5622 "IDMA_PUSH_MORE_CPL_FIFO",
5623 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5624 "Not used",
5625 "IDMA_PHYSADDR_SEND_PCIEHDR",
5626 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5627 "IDMA_PHYSADDR_SEND_PAYLOAD",
5628 "IDMA_SEND_FIFO_TO_IMSG",
5629 "IDMA_FL_REQ_DATA_FL_PREP",
5630 "IDMA_FL_REQ_DATA_FL",
5631 "IDMA_FL_DROP",
5632 "IDMA_FL_H_REQ_HEADER_FL",
5633 "IDMA_FL_H_SEND_PCIEHDR",
5634 "IDMA_FL_H_PUSH_CPL_FIFO",
5635 "IDMA_FL_H_SEND_CPL",
5636 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5637 "IDMA_FL_H_SEND_IP_HDR",
5638 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5639 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5640 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5641 "IDMA_FL_D_SEND_PCIEHDR",
5642 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5643 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5644 "IDMA_FL_SEND_PCIEHDR",
5645 "IDMA_FL_PUSH_CPL_FIFO",
5646 "IDMA_FL_SEND_CPL",
5647 "IDMA_FL_SEND_PAYLOAD_FIRST",
5648 "IDMA_FL_SEND_PAYLOAD",
5649 "IDMA_FL_REQ_NEXT_DATA_FL",
5650 "IDMA_FL_SEND_NEXT_PCIEHDR",
5651 "IDMA_FL_SEND_PADDING",
5652 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5653 "IDMA_FL_SEND_FIFO_TO_IMSG",
5654 "IDMA_FL_REQ_DATAFL_DONE",
5655 "IDMA_FL_REQ_HEADERFL_DONE",
5656 };
5657 static const char * const t5_decode[] = {
5658 "IDMA_IDLE",
5659 "IDMA_ALMOST_IDLE",
5660 "IDMA_PUSH_MORE_CPL_FIFO",
5661 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5662 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5663 "IDMA_PHYSADDR_SEND_PCIEHDR",
5664 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5665 "IDMA_PHYSADDR_SEND_PAYLOAD",
5666 "IDMA_SEND_FIFO_TO_IMSG",
5667 "IDMA_FL_REQ_DATA_FL",
5668 "IDMA_FL_DROP",
5669 "IDMA_FL_DROP_SEND_INC",
5670 "IDMA_FL_H_REQ_HEADER_FL",
5671 "IDMA_FL_H_SEND_PCIEHDR",
5672 "IDMA_FL_H_PUSH_CPL_FIFO",
5673 "IDMA_FL_H_SEND_CPL",
5674 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5675 "IDMA_FL_H_SEND_IP_HDR",
5676 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5677 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5678 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5679 "IDMA_FL_D_SEND_PCIEHDR",
5680 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5681 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5682 "IDMA_FL_SEND_PCIEHDR",
5683 "IDMA_FL_PUSH_CPL_FIFO",
5684 "IDMA_FL_SEND_CPL",
5685 "IDMA_FL_SEND_PAYLOAD_FIRST",
5686 "IDMA_FL_SEND_PAYLOAD",
5687 "IDMA_FL_REQ_NEXT_DATA_FL",
5688 "IDMA_FL_SEND_NEXT_PCIEHDR",
5689 "IDMA_FL_SEND_PADDING",
5690 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5691 };
5692 static const u32 sge_regs[] = {
5693 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5694 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5695 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5696 };
5697 const char **sge_idma_decode;
5698 int sge_idma_decode_nstates;
5699 int i;
5700
5701 if (is_t4(adapter->params.chip)) {
5702 sge_idma_decode = (const char **)t4_decode;
5703 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5704 } else {
5705 sge_idma_decode = (const char **)t5_decode;
5706 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5707 }
5708
5709 if (state < sge_idma_decode_nstates)
5710 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5711 else
5712 CH_WARN(adapter, "idma state %d unknown\n", state);
5713
5714 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5715 CH_WARN(adapter, "SGE register %#x value %#x\n",
5716 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5717 }
5718
5719 /**
5720 * t4_sge_ctxt_flush - flush the SGE context cache
5721 * @adap: the adapter
5722 * @mbox: mailbox to use for the FW command
5723 *
5724 * Issues a FW command through the given mailbox to flush the
5725 * SGE context cache.
5726 */
t4_sge_ctxt_flush(struct adapter * adap,unsigned int mbox)5727 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5728 {
5729 int ret;
5730 u32 ldst_addrspace;
5731 struct fw_ldst_cmd c;
5732
5733 memset(&c, 0, sizeof(c));
5734 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5735 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5736 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5737 ldst_addrspace);
5738 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5739 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5740
5741 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5742 return ret;
5743 }
5744
5745 /**
5746 * t4_fw_hello - establish communication with FW
5747 * @adap: the adapter
5748 * @mbox: mailbox to use for the FW command
5749 * @evt_mbox: mailbox to receive async FW events
5750 * @master: specifies the caller's willingness to be the device master
5751 * @state: returns the current device state (if non-NULL)
5752 *
5753 * Issues a command to establish communication with FW. Returns either
5754 * an error (negative integer) or the mailbox of the Master PF.
5755 */
t4_fw_hello(struct adapter * adap,unsigned int mbox,unsigned int evt_mbox,enum dev_master master,enum dev_state * state)5756 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5757 enum dev_master master, enum dev_state *state)
5758 {
5759 int ret;
5760 struct fw_hello_cmd c;
5761 u32 v;
5762 unsigned int master_mbox;
5763 int retries = FW_CMD_HELLO_RETRIES;
5764
5765 retry:
5766 memset(&c, 0, sizeof(c));
5767 INIT_CMD(c, HELLO, WRITE);
5768 c.err_to_clearinit = cpu_to_be32(
5769 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5770 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5771 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5772 mbox : FW_HELLO_CMD_MBMASTER_M) |
5773 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5774 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5775 FW_HELLO_CMD_CLEARINIT_F);
5776
5777 /*
5778 * Issue the HELLO command to the firmware. If it's not successful
5779 * but indicates that we got a "busy" or "timeout" condition, retry
5780 * the HELLO until we exhaust our retry limit. If we do exceed our
5781 * retry limit, check to see if the firmware left us any error
5782 * information and report that if so.
5783 */
5784 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5785 if (ret < 0) {
5786 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5787 goto retry;
5788 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5789 t4_report_fw_error(adap);
5790 return ret;
5791 }
5792
5793 v = be32_to_cpu(c.err_to_clearinit);
5794 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5795 if (state) {
5796 if (v & FW_HELLO_CMD_ERR_F)
5797 *state = DEV_STATE_ERR;
5798 else if (v & FW_HELLO_CMD_INIT_F)
5799 *state = DEV_STATE_INIT;
5800 else
5801 *state = DEV_STATE_UNINIT;
5802 }
5803
5804 /*
5805 * If we're not the Master PF then we need to wait around for the
5806 * Master PF Driver to finish setting up the adapter.
5807 *
5808 * Note that we also do this wait if we're a non-Master-capable PF and
5809 * there is no current Master PF; a Master PF may show up momentarily
5810 * and we wouldn't want to fail pointlessly. (This can happen when an
5811 * OS loads lots of different drivers rapidly at the same time). In
5812 * this case, the Master PF returned by the firmware will be
5813 * PCIE_FW_MASTER_M so the test below will work ...
5814 */
5815 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5816 master_mbox != mbox) {
5817 int waiting = FW_CMD_HELLO_TIMEOUT;
5818
5819 /*
5820 * Wait for the firmware to either indicate an error or
5821 * initialized state. If we see either of these we bail out
5822 * and report the issue to the caller. If we exhaust the
5823 * "hello timeout" and we haven't exhausted our retries, try
5824 * again. Otherwise bail with a timeout error.
5825 */
5826 for (;;) {
5827 u32 pcie_fw;
5828
5829 msleep(50);
5830 waiting -= 50;
5831
5832 /*
5833 * If neither Error nor Initialialized are indicated
5834 * by the firmware keep waiting till we exaust our
5835 * timeout ... and then retry if we haven't exhausted
5836 * our retries ...
5837 */
5838 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5839 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5840 if (waiting <= 0) {
5841 if (retries-- > 0)
5842 goto retry;
5843
5844 return -ETIMEDOUT;
5845 }
5846 continue;
5847 }
5848
5849 /*
5850 * We either have an Error or Initialized condition
5851 * report errors preferentially.
5852 */
5853 if (state) {
5854 if (pcie_fw & PCIE_FW_ERR_F)
5855 *state = DEV_STATE_ERR;
5856 else if (pcie_fw & PCIE_FW_INIT_F)
5857 *state = DEV_STATE_INIT;
5858 }
5859
5860 /*
5861 * If we arrived before a Master PF was selected and
5862 * there's not a valid Master PF, grab its identity
5863 * for our caller.
5864 */
5865 if (master_mbox == PCIE_FW_MASTER_M &&
5866 (pcie_fw & PCIE_FW_MASTER_VLD_F))
5867 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5868 break;
5869 }
5870 }
5871
5872 return master_mbox;
5873 }
5874
5875 /**
5876 * t4_fw_bye - end communication with FW
5877 * @adap: the adapter
5878 * @mbox: mailbox to use for the FW command
5879 *
5880 * Issues a command to terminate communication with FW.
5881 */
t4_fw_bye(struct adapter * adap,unsigned int mbox)5882 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5883 {
5884 struct fw_bye_cmd c;
5885
5886 memset(&c, 0, sizeof(c));
5887 INIT_CMD(c, BYE, WRITE);
5888 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5889 }
5890
5891 /**
5892 * t4_init_cmd - ask FW to initialize the device
5893 * @adap: the adapter
5894 * @mbox: mailbox to use for the FW command
5895 *
5896 * Issues a command to FW to partially initialize the device. This
5897 * performs initialization that generally doesn't depend on user input.
5898 */
t4_early_init(struct adapter * adap,unsigned int mbox)5899 int t4_early_init(struct adapter *adap, unsigned int mbox)
5900 {
5901 struct fw_initialize_cmd c;
5902
5903 memset(&c, 0, sizeof(c));
5904 INIT_CMD(c, INITIALIZE, WRITE);
5905 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5906 }
5907
5908 /**
5909 * t4_fw_reset - issue a reset to FW
5910 * @adap: the adapter
5911 * @mbox: mailbox to use for the FW command
5912 * @reset: specifies the type of reset to perform
5913 *
5914 * Issues a reset command of the specified type to FW.
5915 */
t4_fw_reset(struct adapter * adap,unsigned int mbox,int reset)5916 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5917 {
5918 struct fw_reset_cmd c;
5919
5920 memset(&c, 0, sizeof(c));
5921 INIT_CMD(c, RESET, WRITE);
5922 c.val = cpu_to_be32(reset);
5923 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5924 }
5925
5926 /**
5927 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5928 * @adap: the adapter
5929 * @mbox: mailbox to use for the FW RESET command (if desired)
5930 * @force: force uP into RESET even if FW RESET command fails
5931 *
5932 * Issues a RESET command to firmware (if desired) with a HALT indication
5933 * and then puts the microprocessor into RESET state. The RESET command
5934 * will only be issued if a legitimate mailbox is provided (mbox <=
5935 * PCIE_FW_MASTER_M).
5936 *
5937 * This is generally used in order for the host to safely manipulate the
5938 * adapter without fear of conflicting with whatever the firmware might
5939 * be doing. The only way out of this state is to RESTART the firmware
5940 * ...
5941 */
t4_fw_halt(struct adapter * adap,unsigned int mbox,int force)5942 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
5943 {
5944 int ret = 0;
5945
5946 /*
5947 * If a legitimate mailbox is provided, issue a RESET command
5948 * with a HALT indication.
5949 */
5950 if (mbox <= PCIE_FW_MASTER_M) {
5951 struct fw_reset_cmd c;
5952
5953 memset(&c, 0, sizeof(c));
5954 INIT_CMD(c, RESET, WRITE);
5955 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
5956 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
5957 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5958 }
5959
5960 /*
5961 * Normally we won't complete the operation if the firmware RESET
5962 * command fails but if our caller insists we'll go ahead and put the
5963 * uP into RESET. This can be useful if the firmware is hung or even
5964 * missing ... We'll have to take the risk of putting the uP into
5965 * RESET without the cooperation of firmware in that case.
5966 *
5967 * We also force the firmware's HALT flag to be on in case we bypassed
5968 * the firmware RESET command above or we're dealing with old firmware
5969 * which doesn't have the HALT capability. This will serve as a flag
5970 * for the incoming firmware to know that it's coming out of a HALT
5971 * rather than a RESET ... if it's new enough to understand that ...
5972 */
5973 if (ret == 0 || force) {
5974 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
5975 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
5976 PCIE_FW_HALT_F);
5977 }
5978
5979 /*
5980 * And we always return the result of the firmware RESET command
5981 * even when we force the uP into RESET ...
5982 */
5983 return ret;
5984 }
5985
5986 /**
5987 * t4_fw_restart - restart the firmware by taking the uP out of RESET
5988 * @adap: the adapter
5989 * @reset: if we want to do a RESET to restart things
5990 *
5991 * Restart firmware previously halted by t4_fw_halt(). On successful
5992 * return the previous PF Master remains as the new PF Master and there
5993 * is no need to issue a new HELLO command, etc.
5994 *
5995 * We do this in two ways:
5996 *
5997 * 1. If we're dealing with newer firmware we'll simply want to take
5998 * the chip's microprocessor out of RESET. This will cause the
5999 * firmware to start up from its start vector. And then we'll loop
6000 * until the firmware indicates it's started again (PCIE_FW.HALT
6001 * reset to 0) or we timeout.
6002 *
6003 * 2. If we're dealing with older firmware then we'll need to RESET
6004 * the chip since older firmware won't recognize the PCIE_FW.HALT
6005 * flag and automatically RESET itself on startup.
6006 */
t4_fw_restart(struct adapter * adap,unsigned int mbox,int reset)6007 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6008 {
6009 if (reset) {
6010 /*
6011 * Since we're directing the RESET instead of the firmware
6012 * doing it automatically, we need to clear the PCIE_FW.HALT
6013 * bit.
6014 */
6015 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6016
6017 /*
6018 * If we've been given a valid mailbox, first try to get the
6019 * firmware to do the RESET. If that works, great and we can
6020 * return success. Otherwise, if we haven't been given a
6021 * valid mailbox or the RESET command failed, fall back to
6022 * hitting the chip with a hammer.
6023 */
6024 if (mbox <= PCIE_FW_MASTER_M) {
6025 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6026 msleep(100);
6027 if (t4_fw_reset(adap, mbox,
6028 PIORST_F | PIORSTMODE_F) == 0)
6029 return 0;
6030 }
6031
6032 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6033 msleep(2000);
6034 } else {
6035 int ms;
6036
6037 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6038 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6039 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6040 return 0;
6041 msleep(100);
6042 ms += 100;
6043 }
6044 return -ETIMEDOUT;
6045 }
6046 return 0;
6047 }
6048
6049 /**
6050 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6051 * @adap: the adapter
6052 * @mbox: mailbox to use for the FW RESET command (if desired)
6053 * @fw_data: the firmware image to write
6054 * @size: image size
6055 * @force: force upgrade even if firmware doesn't cooperate
6056 *
6057 * Perform all of the steps necessary for upgrading an adapter's
6058 * firmware image. Normally this requires the cooperation of the
6059 * existing firmware in order to halt all existing activities
6060 * but if an invalid mailbox token is passed in we skip that step
6061 * (though we'll still put the adapter microprocessor into RESET in
6062 * that case).
6063 *
6064 * On successful return the new firmware will have been loaded and
6065 * the adapter will have been fully RESET losing all previous setup
6066 * state. On unsuccessful return the adapter may be completely hosed ...
6067 * positive errno indicates that the adapter is ~probably~ intact, a
6068 * negative errno indicates that things are looking bad ...
6069 */
t4_fw_upgrade(struct adapter * adap,unsigned int mbox,const u8 * fw_data,unsigned int size,int force)6070 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6071 const u8 *fw_data, unsigned int size, int force)
6072 {
6073 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6074 int reset, ret;
6075
6076 if (!t4_fw_matches_chip(adap, fw_hdr))
6077 return -EINVAL;
6078
6079 /* Disable FW_OK flag so that mbox commands with FW_OK flag set
6080 * wont be sent when we are flashing FW.
6081 */
6082 adap->flags &= ~FW_OK;
6083
6084 ret = t4_fw_halt(adap, mbox, force);
6085 if (ret < 0 && !force)
6086 goto out;
6087
6088 ret = t4_load_fw(adap, fw_data, size);
6089 if (ret < 0)
6090 goto out;
6091
6092 /*
6093 * Older versions of the firmware don't understand the new
6094 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6095 * restart. So for newly loaded older firmware we'll have to do the
6096 * RESET for it so it starts up on a clean slate. We can tell if
6097 * the newly loaded firmware will handle this right by checking
6098 * its header flags to see if it advertises the capability.
6099 */
6100 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6101 ret = t4_fw_restart(adap, mbox, reset);
6102
6103 /* Grab potentially new Firmware Device Log parameters so we can see
6104 * how healthy the new Firmware is. It's okay to contact the new
6105 * Firmware for these parameters even though, as far as it's
6106 * concerned, we've never said "HELLO" to it ...
6107 */
6108 (void)t4_init_devlog_params(adap);
6109 out:
6110 adap->flags |= FW_OK;
6111 return ret;
6112 }
6113
6114 /**
6115 * t4_fixup_host_params - fix up host-dependent parameters
6116 * @adap: the adapter
6117 * @page_size: the host's Base Page Size
6118 * @cache_line_size: the host's Cache Line Size
6119 *
6120 * Various registers in T4 contain values which are dependent on the
6121 * host's Base Page and Cache Line Sizes. This function will fix all of
6122 * those registers with the appropriate values as passed in ...
6123 */
t4_fixup_host_params(struct adapter * adap,unsigned int page_size,unsigned int cache_line_size)6124 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6125 unsigned int cache_line_size)
6126 {
6127 unsigned int page_shift = fls(page_size) - 1;
6128 unsigned int sge_hps = page_shift - 10;
6129 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6130 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6131 unsigned int fl_align_log = fls(fl_align) - 1;
6132
6133 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6134 HOSTPAGESIZEPF0_V(sge_hps) |
6135 HOSTPAGESIZEPF1_V(sge_hps) |
6136 HOSTPAGESIZEPF2_V(sge_hps) |
6137 HOSTPAGESIZEPF3_V(sge_hps) |
6138 HOSTPAGESIZEPF4_V(sge_hps) |
6139 HOSTPAGESIZEPF5_V(sge_hps) |
6140 HOSTPAGESIZEPF6_V(sge_hps) |
6141 HOSTPAGESIZEPF7_V(sge_hps));
6142
6143 if (is_t4(adap->params.chip)) {
6144 t4_set_reg_field(adap, SGE_CONTROL_A,
6145 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6146 EGRSTATUSPAGESIZE_F,
6147 INGPADBOUNDARY_V(fl_align_log -
6148 INGPADBOUNDARY_SHIFT_X) |
6149 EGRSTATUSPAGESIZE_V(stat_len != 64));
6150 } else {
6151 /* T5 introduced the separation of the Free List Padding and
6152 * Packing Boundaries. Thus, we can select a smaller Padding
6153 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6154 * Bandwidth, and use a Packing Boundary which is large enough
6155 * to avoid false sharing between CPUs, etc.
6156 *
6157 * For the PCI Link, the smaller the Padding Boundary the
6158 * better. For the Memory Controller, a smaller Padding
6159 * Boundary is better until we cross under the Memory Line
6160 * Size (the minimum unit of transfer to/from Memory). If we
6161 * have a Padding Boundary which is smaller than the Memory
6162 * Line Size, that'll involve a Read-Modify-Write cycle on the
6163 * Memory Controller which is never good. For T5 the smallest
6164 * Padding Boundary which we can select is 32 bytes which is
6165 * larger than any known Memory Controller Line Size so we'll
6166 * use that.
6167 *
6168 * T5 has a different interpretation of the "0" value for the
6169 * Packing Boundary. This corresponds to 16 bytes instead of
6170 * the expected 32 bytes. We never have a Packing Boundary
6171 * less than 32 bytes so we can't use that special value but
6172 * on the other hand, if we wanted 32 bytes, the best we can
6173 * really do is 64 bytes.
6174 */
6175 if (fl_align <= 32) {
6176 fl_align = 64;
6177 fl_align_log = 6;
6178 }
6179 t4_set_reg_field(adap, SGE_CONTROL_A,
6180 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6181 EGRSTATUSPAGESIZE_F,
6182 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
6183 EGRSTATUSPAGESIZE_V(stat_len != 64));
6184 t4_set_reg_field(adap, SGE_CONTROL2_A,
6185 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6186 INGPACKBOUNDARY_V(fl_align_log -
6187 INGPACKBOUNDARY_SHIFT_X));
6188 }
6189 /*
6190 * Adjust various SGE Free List Host Buffer Sizes.
6191 *
6192 * This is something of a crock since we're using fixed indices into
6193 * the array which are also known by the sge.c code and the T4
6194 * Firmware Configuration File. We need to come up with a much better
6195 * approach to managing this array. For now, the first four entries
6196 * are:
6197 *
6198 * 0: Host Page Size
6199 * 1: 64KB
6200 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6201 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6202 *
6203 * For the single-MTU buffers in unpacked mode we need to include
6204 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6205 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6206 * Padding boundary. All of these are accommodated in the Factory
6207 * Default Firmware Configuration File but we need to adjust it for
6208 * this host's cache line size.
6209 */
6210 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6211 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6212 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6213 & ~(fl_align-1));
6214 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6215 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6216 & ~(fl_align-1));
6217
6218 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6219
6220 return 0;
6221 }
6222
6223 /**
6224 * t4_fw_initialize - ask FW to initialize the device
6225 * @adap: the adapter
6226 * @mbox: mailbox to use for the FW command
6227 *
6228 * Issues a command to FW to partially initialize the device. This
6229 * performs initialization that generally doesn't depend on user input.
6230 */
t4_fw_initialize(struct adapter * adap,unsigned int mbox)6231 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6232 {
6233 struct fw_initialize_cmd c;
6234
6235 memset(&c, 0, sizeof(c));
6236 INIT_CMD(c, INITIALIZE, WRITE);
6237 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6238 }
6239
6240 /**
6241 * t4_query_params_rw - query FW or device parameters
6242 * @adap: the adapter
6243 * @mbox: mailbox to use for the FW command
6244 * @pf: the PF
6245 * @vf: the VF
6246 * @nparams: the number of parameters
6247 * @params: the parameter names
6248 * @val: the parameter values
6249 * @rw: Write and read flag
6250 *
6251 * Reads the value of FW or device parameters. Up to 7 parameters can be
6252 * queried at once.
6253 */
t4_query_params_rw(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val,int rw)6254 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6255 unsigned int vf, unsigned int nparams, const u32 *params,
6256 u32 *val, int rw)
6257 {
6258 int i, ret;
6259 struct fw_params_cmd c;
6260 __be32 *p = &c.param[0].mnem;
6261
6262 if (nparams > 7)
6263 return -EINVAL;
6264
6265 memset(&c, 0, sizeof(c));
6266 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6267 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6268 FW_PARAMS_CMD_PFN_V(pf) |
6269 FW_PARAMS_CMD_VFN_V(vf));
6270 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6271
6272 for (i = 0; i < nparams; i++) {
6273 *p++ = cpu_to_be32(*params++);
6274 if (rw)
6275 *p = cpu_to_be32(*(val + i));
6276 p++;
6277 }
6278
6279 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6280 if (ret == 0)
6281 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6282 *val++ = be32_to_cpu(*p);
6283 return ret;
6284 }
6285
t4_query_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)6286 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6287 unsigned int vf, unsigned int nparams, const u32 *params,
6288 u32 *val)
6289 {
6290 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6291 }
6292
6293 /**
6294 * t4_set_params_timeout - sets FW or device parameters
6295 * @adap: the adapter
6296 * @mbox: mailbox to use for the FW command
6297 * @pf: the PF
6298 * @vf: the VF
6299 * @nparams: the number of parameters
6300 * @params: the parameter names
6301 * @val: the parameter values
6302 * @timeout: the timeout time
6303 *
6304 * Sets the value of FW or device parameters. Up to 7 parameters can be
6305 * specified at once.
6306 */
t4_set_params_timeout(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val,int timeout)6307 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6308 unsigned int pf, unsigned int vf,
6309 unsigned int nparams, const u32 *params,
6310 const u32 *val, int timeout)
6311 {
6312 struct fw_params_cmd c;
6313 __be32 *p = &c.param[0].mnem;
6314
6315 if (nparams > 7)
6316 return -EINVAL;
6317
6318 memset(&c, 0, sizeof(c));
6319 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6320 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6321 FW_PARAMS_CMD_PFN_V(pf) |
6322 FW_PARAMS_CMD_VFN_V(vf));
6323 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6324
6325 while (nparams--) {
6326 *p++ = cpu_to_be32(*params++);
6327 *p++ = cpu_to_be32(*val++);
6328 }
6329
6330 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6331 }
6332
6333 /**
6334 * t4_set_params - sets FW or device parameters
6335 * @adap: the adapter
6336 * @mbox: mailbox to use for the FW command
6337 * @pf: the PF
6338 * @vf: the VF
6339 * @nparams: the number of parameters
6340 * @params: the parameter names
6341 * @val: the parameter values
6342 *
6343 * Sets the value of FW or device parameters. Up to 7 parameters can be
6344 * specified at once.
6345 */
t4_set_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val)6346 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6347 unsigned int vf, unsigned int nparams, const u32 *params,
6348 const u32 *val)
6349 {
6350 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6351 FW_CMD_MAX_TIMEOUT);
6352 }
6353
6354 /**
6355 * t4_cfg_pfvf - configure PF/VF resource limits
6356 * @adap: the adapter
6357 * @mbox: mailbox to use for the FW command
6358 * @pf: the PF being configured
6359 * @vf: the VF being configured
6360 * @txq: the max number of egress queues
6361 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
6362 * @rxqi: the max number of interrupt-capable ingress queues
6363 * @rxq: the max number of interruptless ingress queues
6364 * @tc: the PCI traffic class
6365 * @vi: the max number of virtual interfaces
6366 * @cmask: the channel access rights mask for the PF/VF
6367 * @pmask: the port access rights mask for the PF/VF
6368 * @nexact: the maximum number of exact MPS filters
6369 * @rcaps: read capabilities
6370 * @wxcaps: write/execute capabilities
6371 *
6372 * Configures resource limits and capabilities for a physical or virtual
6373 * function.
6374 */
t4_cfg_pfvf(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int txq,unsigned int txq_eth_ctrl,unsigned int rxqi,unsigned int rxq,unsigned int tc,unsigned int vi,unsigned int cmask,unsigned int pmask,unsigned int nexact,unsigned int rcaps,unsigned int wxcaps)6375 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6376 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6377 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6378 unsigned int vi, unsigned int cmask, unsigned int pmask,
6379 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6380 {
6381 struct fw_pfvf_cmd c;
6382
6383 memset(&c, 0, sizeof(c));
6384 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6385 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6386 FW_PFVF_CMD_VFN_V(vf));
6387 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6388 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6389 FW_PFVF_CMD_NIQ_V(rxq));
6390 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6391 FW_PFVF_CMD_PMASK_V(pmask) |
6392 FW_PFVF_CMD_NEQ_V(txq));
6393 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6394 FW_PFVF_CMD_NVI_V(vi) |
6395 FW_PFVF_CMD_NEXACTF_V(nexact));
6396 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6397 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6398 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6399 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6400 }
6401
6402 /**
6403 * t4_alloc_vi - allocate a virtual interface
6404 * @adap: the adapter
6405 * @mbox: mailbox to use for the FW command
6406 * @port: physical port associated with the VI
6407 * @pf: the PF owning the VI
6408 * @vf: the VF owning the VI
6409 * @nmac: number of MAC addresses needed (1 to 5)
6410 * @mac: the MAC addresses of the VI
6411 * @rss_size: size of RSS table slice associated with this VI
6412 *
6413 * Allocates a virtual interface for the given physical port. If @mac is
6414 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
6415 * @mac should be large enough to hold @nmac Ethernet addresses, they are
6416 * stored consecutively so the space needed is @nmac * 6 bytes.
6417 * Returns a negative error number or the non-negative VI id.
6418 */
t4_alloc_vi(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,unsigned int * rss_size)6419 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6420 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6421 unsigned int *rss_size)
6422 {
6423 int ret;
6424 struct fw_vi_cmd c;
6425
6426 memset(&c, 0, sizeof(c));
6427 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6428 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6429 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6430 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6431 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6432 c.nmac = nmac - 1;
6433
6434 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6435 if (ret)
6436 return ret;
6437
6438 if (mac) {
6439 memcpy(mac, c.mac, sizeof(c.mac));
6440 switch (nmac) {
6441 case 5:
6442 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6443 case 4:
6444 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6445 case 3:
6446 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6447 case 2:
6448 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
6449 }
6450 }
6451 if (rss_size)
6452 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6453 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6454 }
6455
6456 /**
6457 * t4_free_vi - free a virtual interface
6458 * @adap: the adapter
6459 * @mbox: mailbox to use for the FW command
6460 * @pf: the PF owning the VI
6461 * @vf: the VF owning the VI
6462 * @viid: virtual interface identifiler
6463 *
6464 * Free a previously allocated virtual interface.
6465 */
t4_free_vi(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int viid)6466 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6467 unsigned int vf, unsigned int viid)
6468 {
6469 struct fw_vi_cmd c;
6470
6471 memset(&c, 0, sizeof(c));
6472 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6473 FW_CMD_REQUEST_F |
6474 FW_CMD_EXEC_F |
6475 FW_VI_CMD_PFN_V(pf) |
6476 FW_VI_CMD_VFN_V(vf));
6477 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6478 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6479
6480 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6481 }
6482
6483 /**
6484 * t4_set_rxmode - set Rx properties of a virtual interface
6485 * @adap: the adapter
6486 * @mbox: mailbox to use for the FW command
6487 * @viid: the VI id
6488 * @mtu: the new MTU or -1
6489 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6490 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6491 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6492 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6493 * @sleep_ok: if true we may sleep while awaiting command completion
6494 *
6495 * Sets Rx properties of a virtual interface.
6496 */
t4_set_rxmode(struct adapter * adap,unsigned int mbox,unsigned int viid,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)6497 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6498 int mtu, int promisc, int all_multi, int bcast, int vlanex,
6499 bool sleep_ok)
6500 {
6501 struct fw_vi_rxmode_cmd c;
6502
6503 /* convert to FW values */
6504 if (mtu < 0)
6505 mtu = FW_RXMODE_MTU_NO_CHG;
6506 if (promisc < 0)
6507 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6508 if (all_multi < 0)
6509 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6510 if (bcast < 0)
6511 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6512 if (vlanex < 0)
6513 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6514
6515 memset(&c, 0, sizeof(c));
6516 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6517 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6518 FW_VI_RXMODE_CMD_VIID_V(viid));
6519 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6520 c.mtu_to_vlanexen =
6521 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6522 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6523 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6524 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6525 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6526 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6527 }
6528
6529 /**
6530 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6531 * @adap: the adapter
6532 * @mbox: mailbox to use for the FW command
6533 * @viid: the VI id
6534 * @free: if true any existing filters for this VI id are first removed
6535 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6536 * @addr: the MAC address(es)
6537 * @idx: where to store the index of each allocated filter
6538 * @hash: pointer to hash address filter bitmap
6539 * @sleep_ok: call is allowed to sleep
6540 *
6541 * Allocates an exact-match filter for each of the supplied addresses and
6542 * sets it to the corresponding address. If @idx is not %NULL it should
6543 * have at least @naddr entries, each of which will be set to the index of
6544 * the filter allocated for the corresponding MAC address. If a filter
6545 * could not be allocated for an address its index is set to 0xffff.
6546 * If @hash is not %NULL addresses that fail to allocate an exact filter
6547 * are hashed and update the hash filter bitmap pointed at by @hash.
6548 *
6549 * Returns a negative error number or the number of filters allocated.
6550 */
t4_alloc_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)6551 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6552 unsigned int viid, bool free, unsigned int naddr,
6553 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6554 {
6555 int offset, ret = 0;
6556 struct fw_vi_mac_cmd c;
6557 unsigned int nfilters = 0;
6558 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6559 unsigned int rem = naddr;
6560
6561 if (naddr > max_naddr)
6562 return -EINVAL;
6563
6564 for (offset = 0; offset < naddr ; /**/) {
6565 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6566 rem : ARRAY_SIZE(c.u.exact));
6567 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6568 u.exact[fw_naddr]), 16);
6569 struct fw_vi_mac_exact *p;
6570 int i;
6571
6572 memset(&c, 0, sizeof(c));
6573 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6574 FW_CMD_REQUEST_F |
6575 FW_CMD_WRITE_F |
6576 FW_CMD_EXEC_V(free) |
6577 FW_VI_MAC_CMD_VIID_V(viid));
6578 c.freemacs_to_len16 =
6579 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6580 FW_CMD_LEN16_V(len16));
6581
6582 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6583 p->valid_to_idx =
6584 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6585 FW_VI_MAC_CMD_IDX_V(
6586 FW_VI_MAC_ADD_MAC));
6587 memcpy(p->macaddr, addr[offset + i],
6588 sizeof(p->macaddr));
6589 }
6590
6591 /* It's okay if we run out of space in our MAC address arena.
6592 * Some of the addresses we submit may get stored so we need
6593 * to run through the reply to see what the results were ...
6594 */
6595 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6596 if (ret && ret != -FW_ENOMEM)
6597 break;
6598
6599 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6600 u16 index = FW_VI_MAC_CMD_IDX_G(
6601 be16_to_cpu(p->valid_to_idx));
6602
6603 if (idx)
6604 idx[offset + i] = (index >= max_naddr ?
6605 0xffff : index);
6606 if (index < max_naddr)
6607 nfilters++;
6608 else if (hash)
6609 *hash |= (1ULL <<
6610 hash_mac_addr(addr[offset + i]));
6611 }
6612
6613 free = false;
6614 offset += fw_naddr;
6615 rem -= fw_naddr;
6616 }
6617
6618 if (ret == 0 || ret == -FW_ENOMEM)
6619 ret = nfilters;
6620 return ret;
6621 }
6622
6623 /**
6624 * t4_change_mac - modifies the exact-match filter for a MAC address
6625 * @adap: the adapter
6626 * @mbox: mailbox to use for the FW command
6627 * @viid: the VI id
6628 * @idx: index of existing filter for old value of MAC address, or -1
6629 * @addr: the new MAC address value
6630 * @persist: whether a new MAC allocation should be persistent
6631 * @add_smt: if true also add the address to the HW SMT
6632 *
6633 * Modifies an exact-match filter and sets it to the new MAC address.
6634 * Note that in general it is not possible to modify the value of a given
6635 * filter so the generic way to modify an address filter is to free the one
6636 * being used by the old address value and allocate a new filter for the
6637 * new address value. @idx can be -1 if the address is a new addition.
6638 *
6639 * Returns a negative error number or the index of the filter with the new
6640 * MAC value.
6641 */
t4_change_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,int idx,const u8 * addr,bool persist,bool add_smt)6642 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6643 int idx, const u8 *addr, bool persist, bool add_smt)
6644 {
6645 int ret, mode;
6646 struct fw_vi_mac_cmd c;
6647 struct fw_vi_mac_exact *p = c.u.exact;
6648 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6649
6650 if (idx < 0) /* new allocation */
6651 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6652 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6653
6654 memset(&c, 0, sizeof(c));
6655 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6656 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6657 FW_VI_MAC_CMD_VIID_V(viid));
6658 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6659 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6660 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6661 FW_VI_MAC_CMD_IDX_V(idx));
6662 memcpy(p->macaddr, addr, sizeof(p->macaddr));
6663
6664 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6665 if (ret == 0) {
6666 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6667 if (ret >= max_mac_addr)
6668 ret = -ENOMEM;
6669 }
6670 return ret;
6671 }
6672
6673 /**
6674 * t4_set_addr_hash - program the MAC inexact-match hash filter
6675 * @adap: the adapter
6676 * @mbox: mailbox to use for the FW command
6677 * @viid: the VI id
6678 * @ucast: whether the hash filter should also match unicast addresses
6679 * @vec: the value to be written to the hash filter
6680 * @sleep_ok: call is allowed to sleep
6681 *
6682 * Sets the 64-bit inexact-match hash filter for a virtual interface.
6683 */
t4_set_addr_hash(struct adapter * adap,unsigned int mbox,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)6684 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6685 bool ucast, u64 vec, bool sleep_ok)
6686 {
6687 struct fw_vi_mac_cmd c;
6688
6689 memset(&c, 0, sizeof(c));
6690 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6691 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6692 FW_VI_ENABLE_CMD_VIID_V(viid));
6693 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6694 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6695 FW_CMD_LEN16_V(1));
6696 c.u.hash.hashvec = cpu_to_be64(vec);
6697 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6698 }
6699
6700 /**
6701 * t4_enable_vi_params - enable/disable a virtual interface
6702 * @adap: the adapter
6703 * @mbox: mailbox to use for the FW command
6704 * @viid: the VI id
6705 * @rx_en: 1=enable Rx, 0=disable Rx
6706 * @tx_en: 1=enable Tx, 0=disable Tx
6707 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
6708 *
6709 * Enables/disables a virtual interface. Note that setting DCB Enable
6710 * only makes sense when enabling a Virtual Interface ...
6711 */
t4_enable_vi_params(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en,bool dcb_en)6712 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6713 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6714 {
6715 struct fw_vi_enable_cmd c;
6716
6717 memset(&c, 0, sizeof(c));
6718 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6719 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6720 FW_VI_ENABLE_CMD_VIID_V(viid));
6721 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6722 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6723 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6724 FW_LEN16(c));
6725 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6726 }
6727
6728 /**
6729 * t4_enable_vi - enable/disable a virtual interface
6730 * @adap: the adapter
6731 * @mbox: mailbox to use for the FW command
6732 * @viid: the VI id
6733 * @rx_en: 1=enable Rx, 0=disable Rx
6734 * @tx_en: 1=enable Tx, 0=disable Tx
6735 *
6736 * Enables/disables a virtual interface.
6737 */
t4_enable_vi(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en)6738 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6739 bool rx_en, bool tx_en)
6740 {
6741 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6742 }
6743
6744 /**
6745 * t4_identify_port - identify a VI's port by blinking its LED
6746 * @adap: the adapter
6747 * @mbox: mailbox to use for the FW command
6748 * @viid: the VI id
6749 * @nblinks: how many times to blink LED at 2.5 Hz
6750 *
6751 * Identifies a VI's port by blinking its LED.
6752 */
t4_identify_port(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int nblinks)6753 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6754 unsigned int nblinks)
6755 {
6756 struct fw_vi_enable_cmd c;
6757
6758 memset(&c, 0, sizeof(c));
6759 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6760 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6761 FW_VI_ENABLE_CMD_VIID_V(viid));
6762 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6763 c.blinkdur = cpu_to_be16(nblinks);
6764 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6765 }
6766
6767 /**
6768 * t4_iq_free - free an ingress queue and its FLs
6769 * @adap: the adapter
6770 * @mbox: mailbox to use for the FW command
6771 * @pf: the PF owning the queues
6772 * @vf: the VF owning the queues
6773 * @iqtype: the ingress queue type
6774 * @iqid: ingress queue id
6775 * @fl0id: FL0 queue id or 0xffff if no attached FL0
6776 * @fl1id: FL1 queue id or 0xffff if no attached FL1
6777 *
6778 * Frees an ingress queue and its associated FLs, if any.
6779 */
t4_iq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)6780 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6781 unsigned int vf, unsigned int iqtype, unsigned int iqid,
6782 unsigned int fl0id, unsigned int fl1id)
6783 {
6784 struct fw_iq_cmd c;
6785
6786 memset(&c, 0, sizeof(c));
6787 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6788 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6789 FW_IQ_CMD_VFN_V(vf));
6790 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
6791 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6792 c.iqid = cpu_to_be16(iqid);
6793 c.fl0id = cpu_to_be16(fl0id);
6794 c.fl1id = cpu_to_be16(fl1id);
6795 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6796 }
6797
6798 /**
6799 * t4_eth_eq_free - free an Ethernet egress queue
6800 * @adap: the adapter
6801 * @mbox: mailbox to use for the FW command
6802 * @pf: the PF owning the queue
6803 * @vf: the VF owning the queue
6804 * @eqid: egress queue id
6805 *
6806 * Frees an Ethernet egress queue.
6807 */
t4_eth_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)6808 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6809 unsigned int vf, unsigned int eqid)
6810 {
6811 struct fw_eq_eth_cmd c;
6812
6813 memset(&c, 0, sizeof(c));
6814 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
6815 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6816 FW_EQ_ETH_CMD_PFN_V(pf) |
6817 FW_EQ_ETH_CMD_VFN_V(vf));
6818 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
6819 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
6820 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6821 }
6822
6823 /**
6824 * t4_ctrl_eq_free - free a control egress queue
6825 * @adap: the adapter
6826 * @mbox: mailbox to use for the FW command
6827 * @pf: the PF owning the queue
6828 * @vf: the VF owning the queue
6829 * @eqid: egress queue id
6830 *
6831 * Frees a control egress queue.
6832 */
t4_ctrl_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)6833 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6834 unsigned int vf, unsigned int eqid)
6835 {
6836 struct fw_eq_ctrl_cmd c;
6837
6838 memset(&c, 0, sizeof(c));
6839 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
6840 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6841 FW_EQ_CTRL_CMD_PFN_V(pf) |
6842 FW_EQ_CTRL_CMD_VFN_V(vf));
6843 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
6844 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
6845 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6846 }
6847
6848 /**
6849 * t4_ofld_eq_free - free an offload egress queue
6850 * @adap: the adapter
6851 * @mbox: mailbox to use for the FW command
6852 * @pf: the PF owning the queue
6853 * @vf: the VF owning the queue
6854 * @eqid: egress queue id
6855 *
6856 * Frees a control egress queue.
6857 */
t4_ofld_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)6858 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6859 unsigned int vf, unsigned int eqid)
6860 {
6861 struct fw_eq_ofld_cmd c;
6862
6863 memset(&c, 0, sizeof(c));
6864 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
6865 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6866 FW_EQ_OFLD_CMD_PFN_V(pf) |
6867 FW_EQ_OFLD_CMD_VFN_V(vf));
6868 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
6869 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
6870 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6871 }
6872
6873 /**
6874 * t4_handle_fw_rpl - process a FW reply message
6875 * @adap: the adapter
6876 * @rpl: start of the FW message
6877 *
6878 * Processes a FW message, such as link state change messages.
6879 */
t4_handle_fw_rpl(struct adapter * adap,const __be64 * rpl)6880 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
6881 {
6882 u8 opcode = *(const u8 *)rpl;
6883
6884 if (opcode == FW_PORT_CMD) { /* link/module state change message */
6885 int speed = 0, fc = 0;
6886 const struct fw_port_cmd *p = (void *)rpl;
6887 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
6888 int port = adap->chan_map[chan];
6889 struct port_info *pi = adap2pinfo(adap, port);
6890 struct link_config *lc = &pi->link_cfg;
6891 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
6892 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
6893 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
6894
6895 if (stat & FW_PORT_CMD_RXPAUSE_F)
6896 fc |= PAUSE_RX;
6897 if (stat & FW_PORT_CMD_TXPAUSE_F)
6898 fc |= PAUSE_TX;
6899 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
6900 speed = 100;
6901 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
6902 speed = 1000;
6903 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
6904 speed = 10000;
6905 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
6906 speed = 40000;
6907
6908 if (link_ok != lc->link_ok || speed != lc->speed ||
6909 fc != lc->fc) { /* something changed */
6910 lc->link_ok = link_ok;
6911 lc->speed = speed;
6912 lc->fc = fc;
6913 lc->supported = be16_to_cpu(p->u.info.pcap);
6914 t4_os_link_changed(adap, port, link_ok);
6915 }
6916 if (mod != pi->mod_type) {
6917 pi->mod_type = mod;
6918 t4_os_portmod_changed(adap, port);
6919 }
6920 }
6921 return 0;
6922 }
6923
get_pci_mode(struct adapter * adapter,struct pci_params * p)6924 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
6925 {
6926 u16 val;
6927
6928 if (pci_is_pcie(adapter->pdev)) {
6929 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
6930 p->speed = val & PCI_EXP_LNKSTA_CLS;
6931 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
6932 }
6933 }
6934
6935 /**
6936 * init_link_config - initialize a link's SW state
6937 * @lc: structure holding the link state
6938 * @caps: link capabilities
6939 *
6940 * Initializes the SW state maintained for each link, including the link's
6941 * capabilities and default speed/flow-control/autonegotiation settings.
6942 */
init_link_config(struct link_config * lc,unsigned int caps)6943 static void init_link_config(struct link_config *lc, unsigned int caps)
6944 {
6945 lc->supported = caps;
6946 lc->requested_speed = 0;
6947 lc->speed = 0;
6948 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
6949 if (lc->supported & FW_PORT_CAP_ANEG) {
6950 lc->advertising = lc->supported & ADVERT_MASK;
6951 lc->autoneg = AUTONEG_ENABLE;
6952 lc->requested_fc |= PAUSE_AUTONEG;
6953 } else {
6954 lc->advertising = 0;
6955 lc->autoneg = AUTONEG_DISABLE;
6956 }
6957 }
6958
6959 #define CIM_PF_NOACCESS 0xeeeeeeee
6960
t4_wait_dev_ready(void __iomem * regs)6961 int t4_wait_dev_ready(void __iomem *regs)
6962 {
6963 u32 whoami;
6964
6965 whoami = readl(regs + PL_WHOAMI_A);
6966 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
6967 return 0;
6968
6969 msleep(500);
6970 whoami = readl(regs + PL_WHOAMI_A);
6971 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
6972 }
6973
6974 struct flash_desc {
6975 u32 vendor_and_model_id;
6976 u32 size_mb;
6977 };
6978
get_flash_params(struct adapter * adap)6979 static int get_flash_params(struct adapter *adap)
6980 {
6981 /* Table for non-Numonix supported flash parts. Numonix parts are left
6982 * to the preexisting code. All flash parts have 64KB sectors.
6983 */
6984 static struct flash_desc supported_flash[] = {
6985 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
6986 };
6987
6988 int ret;
6989 u32 info;
6990
6991 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
6992 if (!ret)
6993 ret = sf1_read(adap, 3, 0, 1, &info);
6994 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
6995 if (ret)
6996 return ret;
6997
6998 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
6999 if (supported_flash[ret].vendor_and_model_id == info) {
7000 adap->params.sf_size = supported_flash[ret].size_mb;
7001 adap->params.sf_nsec =
7002 adap->params.sf_size / SF_SEC_SIZE;
7003 return 0;
7004 }
7005
7006 if ((info & 0xff) != 0x20) /* not a Numonix flash */
7007 return -EINVAL;
7008 info >>= 16; /* log2 of size */
7009 if (info >= 0x14 && info < 0x18)
7010 adap->params.sf_nsec = 1 << (info - 16);
7011 else if (info == 0x18)
7012 adap->params.sf_nsec = 64;
7013 else
7014 return -EINVAL;
7015 adap->params.sf_size = 1 << info;
7016 adap->params.sf_fw_start =
7017 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7018
7019 if (adap->params.sf_size < FLASH_MIN_SIZE)
7020 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7021 adap->params.sf_size, FLASH_MIN_SIZE);
7022 return 0;
7023 }
7024
set_pcie_completion_timeout(struct adapter * adapter,u8 range)7025 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7026 {
7027 u16 val;
7028 u32 pcie_cap;
7029
7030 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7031 if (pcie_cap) {
7032 pci_read_config_word(adapter->pdev,
7033 pcie_cap + PCI_EXP_DEVCTL2, &val);
7034 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7035 val |= range;
7036 pci_write_config_word(adapter->pdev,
7037 pcie_cap + PCI_EXP_DEVCTL2, val);
7038 }
7039 }
7040
7041 /**
7042 * t4_prep_adapter - prepare SW and HW for operation
7043 * @adapter: the adapter
7044 * @reset: if true perform a HW reset
7045 *
7046 * Initialize adapter SW state for the various HW modules, set initial
7047 * values for some adapter tunables, take PHYs out of reset, and
7048 * initialize the MDIO interface.
7049 */
t4_prep_adapter(struct adapter * adapter)7050 int t4_prep_adapter(struct adapter *adapter)
7051 {
7052 int ret, ver;
7053 uint16_t device_id;
7054 u32 pl_rev;
7055
7056 get_pci_mode(adapter, &adapter->params.pci);
7057 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7058
7059 ret = get_flash_params(adapter);
7060 if (ret < 0) {
7061 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7062 return ret;
7063 }
7064
7065 /* Retrieve adapter's device ID
7066 */
7067 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7068 ver = device_id >> 12;
7069 adapter->params.chip = 0;
7070 switch (ver) {
7071 case CHELSIO_T4:
7072 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7073 adapter->params.arch.sge_fl_db = DBPRIO_F;
7074 adapter->params.arch.mps_tcam_size =
7075 NUM_MPS_CLS_SRAM_L_INSTANCES;
7076 adapter->params.arch.mps_rplc_size = 128;
7077 adapter->params.arch.nchan = NCHAN;
7078 adapter->params.arch.vfcount = 128;
7079 break;
7080 case CHELSIO_T5:
7081 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7082 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7083 adapter->params.arch.mps_tcam_size =
7084 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7085 adapter->params.arch.mps_rplc_size = 128;
7086 adapter->params.arch.nchan = NCHAN;
7087 adapter->params.arch.vfcount = 128;
7088 break;
7089 case CHELSIO_T6:
7090 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7091 adapter->params.arch.sge_fl_db = 0;
7092 adapter->params.arch.mps_tcam_size =
7093 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7094 adapter->params.arch.mps_rplc_size = 256;
7095 adapter->params.arch.nchan = 2;
7096 adapter->params.arch.vfcount = 256;
7097 break;
7098 default:
7099 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7100 device_id);
7101 return -EINVAL;
7102 }
7103
7104 adapter->params.cim_la_size = CIMLA_SIZE;
7105 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7106
7107 /*
7108 * Default port for debugging in case we can't reach FW.
7109 */
7110 adapter->params.nports = 1;
7111 adapter->params.portvec = 1;
7112 adapter->params.vpd.cclk = 50000;
7113
7114 /* Set pci completion timeout value to 4 seconds. */
7115 set_pcie_completion_timeout(adapter, 0xd);
7116 return 0;
7117 }
7118
7119 /**
7120 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7121 * @adapter: the adapter
7122 * @qid: the Queue ID
7123 * @qtype: the Ingress or Egress type for @qid
7124 * @user: true if this request is for a user mode queue
7125 * @pbar2_qoffset: BAR2 Queue Offset
7126 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7127 *
7128 * Returns the BAR2 SGE Queue Registers information associated with the
7129 * indicated Absolute Queue ID. These are passed back in return value
7130 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7131 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7132 *
7133 * This may return an error which indicates that BAR2 SGE Queue
7134 * registers aren't available. If an error is not returned, then the
7135 * following values are returned:
7136 *
7137 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7138 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7139 *
7140 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7141 * require the "Inferred Queue ID" ability may be used. E.g. the
7142 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7143 * then these "Inferred Queue ID" register may not be used.
7144 */
t4_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)7145 int t4_bar2_sge_qregs(struct adapter *adapter,
7146 unsigned int qid,
7147 enum t4_bar2_qtype qtype,
7148 int user,
7149 u64 *pbar2_qoffset,
7150 unsigned int *pbar2_qid)
7151 {
7152 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7153 u64 bar2_page_offset, bar2_qoffset;
7154 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7155
7156 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7157 if (!user && is_t4(adapter->params.chip))
7158 return -EINVAL;
7159
7160 /* Get our SGE Page Size parameters.
7161 */
7162 page_shift = adapter->params.sge.hps + 10;
7163 page_size = 1 << page_shift;
7164
7165 /* Get the right Queues per Page parameters for our Queue.
7166 */
7167 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7168 ? adapter->params.sge.eq_qpp
7169 : adapter->params.sge.iq_qpp);
7170 qpp_mask = (1 << qpp_shift) - 1;
7171
7172 /* Calculate the basics of the BAR2 SGE Queue register area:
7173 * o The BAR2 page the Queue registers will be in.
7174 * o The BAR2 Queue ID.
7175 * o The BAR2 Queue ID Offset into the BAR2 page.
7176 */
7177 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7178 bar2_qid = qid & qpp_mask;
7179 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7180
7181 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7182 * hardware will infer the Absolute Queue ID simply from the writes to
7183 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7184 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
7185 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7186 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7187 * from the BAR2 Page and BAR2 Queue ID.
7188 *
7189 * One important censequence of this is that some BAR2 SGE registers
7190 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7191 * there. But other registers synthesize the SGE Queue ID purely
7192 * from the writes to the registers -- the Write Combined Doorbell
7193 * Buffer is a good example. These BAR2 SGE Registers are only
7194 * available for those BAR2 SGE Register areas where the SGE Absolute
7195 * Queue ID can be inferred from simple writes.
7196 */
7197 bar2_qoffset = bar2_page_offset;
7198 bar2_qinferred = (bar2_qid_offset < page_size);
7199 if (bar2_qinferred) {
7200 bar2_qoffset += bar2_qid_offset;
7201 bar2_qid = 0;
7202 }
7203
7204 *pbar2_qoffset = bar2_qoffset;
7205 *pbar2_qid = bar2_qid;
7206 return 0;
7207 }
7208
7209 /**
7210 * t4_init_devlog_params - initialize adapter->params.devlog
7211 * @adap: the adapter
7212 *
7213 * Initialize various fields of the adapter's Firmware Device Log
7214 * Parameters structure.
7215 */
t4_init_devlog_params(struct adapter * adap)7216 int t4_init_devlog_params(struct adapter *adap)
7217 {
7218 struct devlog_params *dparams = &adap->params.devlog;
7219 u32 pf_dparams;
7220 unsigned int devlog_meminfo;
7221 struct fw_devlog_cmd devlog_cmd;
7222 int ret;
7223
7224 /* If we're dealing with newer firmware, the Device Log Paramerters
7225 * are stored in a designated register which allows us to access the
7226 * Device Log even if we can't talk to the firmware.
7227 */
7228 pf_dparams =
7229 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7230 if (pf_dparams) {
7231 unsigned int nentries, nentries128;
7232
7233 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7234 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7235
7236 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7237 nentries = (nentries128 + 1) * 128;
7238 dparams->size = nentries * sizeof(struct fw_devlog_e);
7239
7240 return 0;
7241 }
7242
7243 /* Otherwise, ask the firmware for it's Device Log Parameters.
7244 */
7245 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7246 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7247 FW_CMD_REQUEST_F | FW_CMD_READ_F);
7248 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7249 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7250 &devlog_cmd);
7251 if (ret)
7252 return ret;
7253
7254 devlog_meminfo =
7255 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7256 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7257 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7258 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7259
7260 return 0;
7261 }
7262
7263 /**
7264 * t4_init_sge_params - initialize adap->params.sge
7265 * @adapter: the adapter
7266 *
7267 * Initialize various fields of the adapter's SGE Parameters structure.
7268 */
t4_init_sge_params(struct adapter * adapter)7269 int t4_init_sge_params(struct adapter *adapter)
7270 {
7271 struct sge_params *sge_params = &adapter->params.sge;
7272 u32 hps, qpp;
7273 unsigned int s_hps, s_qpp;
7274
7275 /* Extract the SGE Page Size for our PF.
7276 */
7277 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7278 s_hps = (HOSTPAGESIZEPF0_S +
7279 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7280 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7281
7282 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7283 */
7284 s_qpp = (QUEUESPERPAGEPF0_S +
7285 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7286 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7287 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7288 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7289 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7290
7291 return 0;
7292 }
7293
7294 /**
7295 * t4_init_tp_params - initialize adap->params.tp
7296 * @adap: the adapter
7297 *
7298 * Initialize various fields of the adapter's TP Parameters structure.
7299 */
t4_init_tp_params(struct adapter * adap)7300 int t4_init_tp_params(struct adapter *adap)
7301 {
7302 int chan;
7303 u32 v;
7304
7305 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7306 adap->params.tp.tre = TIMERRESOLUTION_G(v);
7307 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7308
7309 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7310 for (chan = 0; chan < NCHAN; chan++)
7311 adap->params.tp.tx_modq[chan] = chan;
7312
7313 /* Cache the adapter's Compressed Filter Mode and global Incress
7314 * Configuration.
7315 */
7316 if (t4_use_ldst(adap)) {
7317 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7318 TP_VLAN_PRI_MAP_A, 1);
7319 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7320 TP_INGRESS_CONFIG_A, 1);
7321 } else {
7322 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7323 &adap->params.tp.vlan_pri_map, 1,
7324 TP_VLAN_PRI_MAP_A);
7325 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7326 &adap->params.tp.ingress_config, 1,
7327 TP_INGRESS_CONFIG_A);
7328 }
7329
7330 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7331 * shift positions of several elements of the Compressed Filter Tuple
7332 * for this adapter which we need frequently ...
7333 */
7334 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7335 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7336 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7337 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7338 PROTOCOL_F);
7339
7340 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7341 * represents the presence of an Outer VLAN instead of a VNIC ID.
7342 */
7343 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7344 adap->params.tp.vnic_shift = -1;
7345
7346 return 0;
7347 }
7348
7349 /**
7350 * t4_filter_field_shift - calculate filter field shift
7351 * @adap: the adapter
7352 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7353 *
7354 * Return the shift position of a filter field within the Compressed
7355 * Filter Tuple. The filter field is specified via its selection bit
7356 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
7357 */
t4_filter_field_shift(const struct adapter * adap,int filter_sel)7358 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7359 {
7360 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7361 unsigned int sel;
7362 int field_shift;
7363
7364 if ((filter_mode & filter_sel) == 0)
7365 return -1;
7366
7367 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7368 switch (filter_mode & sel) {
7369 case FCOE_F:
7370 field_shift += FT_FCOE_W;
7371 break;
7372 case PORT_F:
7373 field_shift += FT_PORT_W;
7374 break;
7375 case VNIC_ID_F:
7376 field_shift += FT_VNIC_ID_W;
7377 break;
7378 case VLAN_F:
7379 field_shift += FT_VLAN_W;
7380 break;
7381 case TOS_F:
7382 field_shift += FT_TOS_W;
7383 break;
7384 case PROTOCOL_F:
7385 field_shift += FT_PROTOCOL_W;
7386 break;
7387 case ETHERTYPE_F:
7388 field_shift += FT_ETHERTYPE_W;
7389 break;
7390 case MACMATCH_F:
7391 field_shift += FT_MACMATCH_W;
7392 break;
7393 case MPSHITTYPE_F:
7394 field_shift += FT_MPSHITTYPE_W;
7395 break;
7396 case FRAGMENTATION_F:
7397 field_shift += FT_FRAGMENTATION_W;
7398 break;
7399 }
7400 }
7401 return field_shift;
7402 }
7403
t4_init_rss_mode(struct adapter * adap,int mbox)7404 int t4_init_rss_mode(struct adapter *adap, int mbox)
7405 {
7406 int i, ret;
7407 struct fw_rss_vi_config_cmd rvc;
7408
7409 memset(&rvc, 0, sizeof(rvc));
7410
7411 for_each_port(adap, i) {
7412 struct port_info *p = adap2pinfo(adap, i);
7413
7414 rvc.op_to_viid =
7415 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7416 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7417 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7418 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7419 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7420 if (ret)
7421 return ret;
7422 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7423 }
7424 return 0;
7425 }
7426
t4_port_init(struct adapter * adap,int mbox,int pf,int vf)7427 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7428 {
7429 u8 addr[6];
7430 int ret, i, j = 0;
7431 struct fw_port_cmd c;
7432 struct fw_rss_vi_config_cmd rvc;
7433
7434 memset(&c, 0, sizeof(c));
7435 memset(&rvc, 0, sizeof(rvc));
7436
7437 for_each_port(adap, i) {
7438 unsigned int rss_size;
7439 struct port_info *p = adap2pinfo(adap, i);
7440
7441 while ((adap->params.portvec & (1 << j)) == 0)
7442 j++;
7443
7444 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7445 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7446 FW_PORT_CMD_PORTID_V(j));
7447 c.action_to_len16 = cpu_to_be32(
7448 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7449 FW_LEN16(c));
7450 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7451 if (ret)
7452 return ret;
7453
7454 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7455 if (ret < 0)
7456 return ret;
7457
7458 p->viid = ret;
7459 p->tx_chan = j;
7460 p->lport = j;
7461 p->rss_size = rss_size;
7462 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7463 adap->port[i]->dev_port = j;
7464
7465 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7466 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7467 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7468 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
7469 p->mod_type = FW_PORT_MOD_TYPE_NA;
7470
7471 rvc.op_to_viid =
7472 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7473 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7474 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
7475 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7476 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7477 if (ret)
7478 return ret;
7479 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7480
7481 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7482 j++;
7483 }
7484 return 0;
7485 }
7486
7487 /**
7488 * t4_read_cimq_cfg - read CIM queue configuration
7489 * @adap: the adapter
7490 * @base: holds the queue base addresses in bytes
7491 * @size: holds the queue sizes in bytes
7492 * @thres: holds the queue full thresholds in bytes
7493 *
7494 * Returns the current configuration of the CIM queues, starting with
7495 * the IBQs, then the OBQs.
7496 */
t4_read_cimq_cfg(struct adapter * adap,u16 * base,u16 * size,u16 * thres)7497 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7498 {
7499 unsigned int i, v;
7500 int cim_num_obq = is_t4(adap->params.chip) ?
7501 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7502
7503 for (i = 0; i < CIM_NUM_IBQ; i++) {
7504 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7505 QUENUMSELECT_V(i));
7506 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7507 /* value is in 256-byte units */
7508 *base++ = CIMQBASE_G(v) * 256;
7509 *size++ = CIMQSIZE_G(v) * 256;
7510 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7511 }
7512 for (i = 0; i < cim_num_obq; i++) {
7513 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7514 QUENUMSELECT_V(i));
7515 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7516 /* value is in 256-byte units */
7517 *base++ = CIMQBASE_G(v) * 256;
7518 *size++ = CIMQSIZE_G(v) * 256;
7519 }
7520 }
7521
7522 /**
7523 * t4_read_cim_ibq - read the contents of a CIM inbound queue
7524 * @adap: the adapter
7525 * @qid: the queue index
7526 * @data: where to store the queue contents
7527 * @n: capacity of @data in 32-bit words
7528 *
7529 * Reads the contents of the selected CIM queue starting at address 0 up
7530 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7531 * error and the number of 32-bit words actually read on success.
7532 */
t4_read_cim_ibq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)7533 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7534 {
7535 int i, err, attempts;
7536 unsigned int addr;
7537 const unsigned int nwords = CIM_IBQ_SIZE * 4;
7538
7539 if (qid > 5 || (n & 3))
7540 return -EINVAL;
7541
7542 addr = qid * nwords;
7543 if (n > nwords)
7544 n = nwords;
7545
7546 /* It might take 3-10ms before the IBQ debug read access is allowed.
7547 * Wait for 1 Sec with a delay of 1 usec.
7548 */
7549 attempts = 1000000;
7550
7551 for (i = 0; i < n; i++, addr++) {
7552 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7553 IBQDBGEN_F);
7554 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7555 attempts, 1);
7556 if (err)
7557 return err;
7558 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7559 }
7560 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7561 return i;
7562 }
7563
7564 /**
7565 * t4_read_cim_obq - read the contents of a CIM outbound queue
7566 * @adap: the adapter
7567 * @qid: the queue index
7568 * @data: where to store the queue contents
7569 * @n: capacity of @data in 32-bit words
7570 *
7571 * Reads the contents of the selected CIM queue starting at address 0 up
7572 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7573 * error and the number of 32-bit words actually read on success.
7574 */
t4_read_cim_obq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)7575 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7576 {
7577 int i, err;
7578 unsigned int addr, v, nwords;
7579 int cim_num_obq = is_t4(adap->params.chip) ?
7580 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7581
7582 if ((qid > (cim_num_obq - 1)) || (n & 3))
7583 return -EINVAL;
7584
7585 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7586 QUENUMSELECT_V(qid));
7587 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7588
7589 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
7590 nwords = CIMQSIZE_G(v) * 64; /* same */
7591 if (n > nwords)
7592 n = nwords;
7593
7594 for (i = 0; i < n; i++, addr++) {
7595 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7596 OBQDBGEN_F);
7597 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7598 2, 1);
7599 if (err)
7600 return err;
7601 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7602 }
7603 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7604 return i;
7605 }
7606
7607 /**
7608 * t4_cim_read - read a block from CIM internal address space
7609 * @adap: the adapter
7610 * @addr: the start address within the CIM address space
7611 * @n: number of words to read
7612 * @valp: where to store the result
7613 *
7614 * Reads a block of 4-byte words from the CIM intenal address space.
7615 */
t4_cim_read(struct adapter * adap,unsigned int addr,unsigned int n,unsigned int * valp)7616 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7617 unsigned int *valp)
7618 {
7619 int ret = 0;
7620
7621 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7622 return -EBUSY;
7623
7624 for ( ; !ret && n--; addr += 4) {
7625 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7626 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7627 0, 5, 2);
7628 if (!ret)
7629 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7630 }
7631 return ret;
7632 }
7633
7634 /**
7635 * t4_cim_write - write a block into CIM internal address space
7636 * @adap: the adapter
7637 * @addr: the start address within the CIM address space
7638 * @n: number of words to write
7639 * @valp: set of values to write
7640 *
7641 * Writes a block of 4-byte words into the CIM intenal address space.
7642 */
t4_cim_write(struct adapter * adap,unsigned int addr,unsigned int n,const unsigned int * valp)7643 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7644 const unsigned int *valp)
7645 {
7646 int ret = 0;
7647
7648 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7649 return -EBUSY;
7650
7651 for ( ; !ret && n--; addr += 4) {
7652 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7653 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7654 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7655 0, 5, 2);
7656 }
7657 return ret;
7658 }
7659
t4_cim_write1(struct adapter * adap,unsigned int addr,unsigned int val)7660 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7661 unsigned int val)
7662 {
7663 return t4_cim_write(adap, addr, 1, &val);
7664 }
7665
7666 /**
7667 * t4_cim_read_la - read CIM LA capture buffer
7668 * @adap: the adapter
7669 * @la_buf: where to store the LA data
7670 * @wrptr: the HW write pointer within the capture buffer
7671 *
7672 * Reads the contents of the CIM LA buffer with the most recent entry at
7673 * the end of the returned data and with the entry at @wrptr first.
7674 * We try to leave the LA in the running state we find it in.
7675 */
t4_cim_read_la(struct adapter * adap,u32 * la_buf,unsigned int * wrptr)7676 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
7677 {
7678 int i, ret;
7679 unsigned int cfg, val, idx;
7680
7681 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
7682 if (ret)
7683 return ret;
7684
7685 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
7686 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
7687 if (ret)
7688 return ret;
7689 }
7690
7691 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7692 if (ret)
7693 goto restart;
7694
7695 idx = UPDBGLAWRPTR_G(val);
7696 if (wrptr)
7697 *wrptr = idx;
7698
7699 for (i = 0; i < adap->params.cim_la_size; i++) {
7700 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7701 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
7702 if (ret)
7703 break;
7704 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7705 if (ret)
7706 break;
7707 if (val & UPDBGLARDEN_F) {
7708 ret = -ETIMEDOUT;
7709 break;
7710 }
7711 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
7712 if (ret)
7713 break;
7714
7715 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
7716 * identify the 32-bit portion of the full 312-bit data
7717 */
7718 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
7719 idx = (idx & 0xff0) + 0x10;
7720 else
7721 idx++;
7722 /* address can't exceed 0xfff */
7723 idx &= UPDBGLARDPTR_M;
7724 }
7725 restart:
7726 if (cfg & UPDBGLAEN_F) {
7727 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7728 cfg & ~UPDBGLARDEN_F);
7729 if (!ret)
7730 ret = r;
7731 }
7732 return ret;
7733 }
7734
7735 /**
7736 * t4_tp_read_la - read TP LA capture buffer
7737 * @adap: the adapter
7738 * @la_buf: where to store the LA data
7739 * @wrptr: the HW write pointer within the capture buffer
7740 *
7741 * Reads the contents of the TP LA buffer with the most recent entry at
7742 * the end of the returned data and with the entry at @wrptr first.
7743 * We leave the LA in the running state we find it in.
7744 */
t4_tp_read_la(struct adapter * adap,u64 * la_buf,unsigned int * wrptr)7745 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
7746 {
7747 bool last_incomplete;
7748 unsigned int i, cfg, val, idx;
7749
7750 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
7751 if (cfg & DBGLAENABLE_F) /* freeze LA */
7752 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7753 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
7754
7755 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
7756 idx = DBGLAWPTR_G(val);
7757 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
7758 if (last_incomplete)
7759 idx = (idx + 1) & DBGLARPTR_M;
7760 if (wrptr)
7761 *wrptr = idx;
7762
7763 val &= 0xffff;
7764 val &= ~DBGLARPTR_V(DBGLARPTR_M);
7765 val |= adap->params.tp.la_mask;
7766
7767 for (i = 0; i < TPLA_SIZE; i++) {
7768 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
7769 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
7770 idx = (idx + 1) & DBGLARPTR_M;
7771 }
7772
7773 /* Wipe out last entry if it isn't valid */
7774 if (last_incomplete)
7775 la_buf[TPLA_SIZE - 1] = ~0ULL;
7776
7777 if (cfg & DBGLAENABLE_F) /* restore running state */
7778 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7779 cfg | adap->params.tp.la_mask);
7780 }
7781
7782 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
7783 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
7784 * state for more than the Warning Threshold then we'll issue a warning about
7785 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
7786 * appears to be hung every Warning Repeat second till the situation clears.
7787 * If the situation clears, we'll note that as well.
7788 */
7789 #define SGE_IDMA_WARN_THRESH 1
7790 #define SGE_IDMA_WARN_REPEAT 300
7791
7792 /**
7793 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
7794 * @adapter: the adapter
7795 * @idma: the adapter IDMA Monitor state
7796 *
7797 * Initialize the state of an SGE Ingress DMA Monitor.
7798 */
t4_idma_monitor_init(struct adapter * adapter,struct sge_idma_monitor_state * idma)7799 void t4_idma_monitor_init(struct adapter *adapter,
7800 struct sge_idma_monitor_state *idma)
7801 {
7802 /* Initialize the state variables for detecting an SGE Ingress DMA
7803 * hang. The SGE has internal counters which count up on each clock
7804 * tick whenever the SGE finds its Ingress DMA State Engines in the
7805 * same state they were on the previous clock tick. The clock used is
7806 * the Core Clock so we have a limit on the maximum "time" they can
7807 * record; typically a very small number of seconds. For instance,
7808 * with a 600MHz Core Clock, we can only count up to a bit more than
7809 * 7s. So we'll synthesize a larger counter in order to not run the
7810 * risk of having the "timers" overflow and give us the flexibility to
7811 * maintain a Hung SGE State Machine of our own which operates across
7812 * a longer time frame.
7813 */
7814 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
7815 idma->idma_stalled[0] = 0;
7816 idma->idma_stalled[1] = 0;
7817 }
7818
7819 /**
7820 * t4_idma_monitor - monitor SGE Ingress DMA state
7821 * @adapter: the adapter
7822 * @idma: the adapter IDMA Monitor state
7823 * @hz: number of ticks/second
7824 * @ticks: number of ticks since the last IDMA Monitor call
7825 */
t4_idma_monitor(struct adapter * adapter,struct sge_idma_monitor_state * idma,int hz,int ticks)7826 void t4_idma_monitor(struct adapter *adapter,
7827 struct sge_idma_monitor_state *idma,
7828 int hz, int ticks)
7829 {
7830 int i, idma_same_state_cnt[2];
7831
7832 /* Read the SGE Debug Ingress DMA Same State Count registers. These
7833 * are counters inside the SGE which count up on each clock when the
7834 * SGE finds its Ingress DMA State Engines in the same states they
7835 * were in the previous clock. The counters will peg out at
7836 * 0xffffffff without wrapping around so once they pass the 1s
7837 * threshold they'll stay above that till the IDMA state changes.
7838 */
7839 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
7840 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
7841 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7842
7843 for (i = 0; i < 2; i++) {
7844 u32 debug0, debug11;
7845
7846 /* If the Ingress DMA Same State Counter ("timer") is less
7847 * than 1s, then we can reset our synthesized Stall Timer and
7848 * continue. If we have previously emitted warnings about a
7849 * potential stalled Ingress Queue, issue a note indicating
7850 * that the Ingress Queue has resumed forward progress.
7851 */
7852 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
7853 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
7854 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
7855 "resumed after %d seconds\n",
7856 i, idma->idma_qid[i],
7857 idma->idma_stalled[i] / hz);
7858 idma->idma_stalled[i] = 0;
7859 continue;
7860 }
7861
7862 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
7863 * domain. The first time we get here it'll be because we
7864 * passed the 1s Threshold; each additional time it'll be
7865 * because the RX Timer Callback is being fired on its regular
7866 * schedule.
7867 *
7868 * If the stall is below our Potential Hung Ingress Queue
7869 * Warning Threshold, continue.
7870 */
7871 if (idma->idma_stalled[i] == 0) {
7872 idma->idma_stalled[i] = hz;
7873 idma->idma_warn[i] = 0;
7874 } else {
7875 idma->idma_stalled[i] += ticks;
7876 idma->idma_warn[i] -= ticks;
7877 }
7878
7879 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
7880 continue;
7881
7882 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
7883 */
7884 if (idma->idma_warn[i] > 0)
7885 continue;
7886 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
7887
7888 /* Read and save the SGE IDMA State and Queue ID information.
7889 * We do this every time in case it changes across time ...
7890 * can't be too careful ...
7891 */
7892 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
7893 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7894 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
7895
7896 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
7897 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7898 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
7899
7900 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
7901 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
7902 i, idma->idma_qid[i], idma->idma_state[i],
7903 idma->idma_stalled[i] / hz,
7904 debug0, debug11);
7905 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
7906 }
7907 }
7908