• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
t4_wait_op_done_val(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay,u32 * valp)57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
t4_wait_op_done(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay)75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
t4_set_reg_field(struct adapter * adapter,unsigned int addr,u32 mask,u32 val)92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
t4_read_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,u32 * vals,unsigned int nregs,unsigned int start_idx)113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
t4_write_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,const u32 * vals,unsigned int nregs,unsigned int start_idx)136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
t4_hw_pci_read_cfg4(struct adapter * adap,int reg,u32 * val)152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
t4_report_fw_error(struct adapter * adap)183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
get_mbox_rpl(struct adapter * adap,__be64 * rpl,int nflit,u32 mbox_addr)206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
fw_asrt(struct adapter * adap,u32 mbox_addr)216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
dump_mbox(struct adapter * adap,int mbox,u32 data_reg)227 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228 {
229 	dev_err(adap->pdev_dev,
230 		"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231 		(unsigned long long)t4_read_reg64(adap, data_reg),
232 		(unsigned long long)t4_read_reg64(adap, data_reg + 8),
233 		(unsigned long long)t4_read_reg64(adap, data_reg + 16),
234 		(unsigned long long)t4_read_reg64(adap, data_reg + 24),
235 		(unsigned long long)t4_read_reg64(adap, data_reg + 32),
236 		(unsigned long long)t4_read_reg64(adap, data_reg + 40),
237 		(unsigned long long)t4_read_reg64(adap, data_reg + 48),
238 		(unsigned long long)t4_read_reg64(adap, data_reg + 56));
239 }
240 
241 /**
242  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *	@adap: the adapter
244  *	@mbox: index of the mailbox to use
245  *	@cmd: the command to write
246  *	@size: command length in bytes
247  *	@rpl: where to optionally store the reply
248  *	@sleep_ok: if true we may sleep while awaiting command completion
249  *	@timeout: time to wait for command to finish before timing out
250  *
251  *	Sends the given command to FW through the selected mailbox and waits
252  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
253  *	store the FW's reply to the command.  The command and its optional
254  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
255  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
256  *	the response.  If sleeping is allowed we use progressive backoff
257  *	otherwise we spin.
258  *
259  *	The return value is 0 on success or a negative errno on failure.  A
260  *	failure can happen either because we are not able to execute the
261  *	command or FW executes it but signals an error.  In the latter case
262  *	the return value is the error code indicated by FW (negated).
263  */
t4_wr_mbox_meat_timeout(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok,int timeout)264 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265 			    int size, void *rpl, bool sleep_ok, int timeout)
266 {
267 	static const int delay[] = {
268 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269 	};
270 
271 	u32 v;
272 	u64 res;
273 	int i, ms, delay_idx;
274 	const __be64 *p = cmd;
275 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
277 
278 	if ((size & 15) || size > MBOX_LEN)
279 		return -EINVAL;
280 
281 	/*
282 	 * If the device is off-line, as in EEH, commands will time out.
283 	 * Fail them early so we don't waste time waiting.
284 	 */
285 	if (adap->pdev->error_state != pci_channel_io_normal)
286 		return -EIO;
287 
288 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
289 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
290 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
291 
292 	if (v != MBOX_OWNER_DRV)
293 		return v ? -EBUSY : -ETIMEDOUT;
294 
295 	for (i = 0; i < size; i += 8)
296 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297 
298 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
299 	t4_read_reg(adap, ctl_reg);          /* flush write */
300 
301 	delay_idx = 0;
302 	ms = delay[0];
303 
304 	for (i = 0; i < timeout; i += ms) {
305 		if (sleep_ok) {
306 			ms = delay[delay_idx];  /* last element may repeat */
307 			if (delay_idx < ARRAY_SIZE(delay) - 1)
308 				delay_idx++;
309 			msleep(ms);
310 		} else
311 			mdelay(ms);
312 
313 		v = t4_read_reg(adap, ctl_reg);
314 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315 			if (!(v & MBMSGVALID_F)) {
316 				t4_write_reg(adap, ctl_reg, 0);
317 				continue;
318 			}
319 
320 			res = t4_read_reg64(adap, data_reg);
321 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
322 				fw_asrt(adap, data_reg);
323 				res = FW_CMD_RETVAL_V(EIO);
324 			} else if (rpl) {
325 				get_mbox_rpl(adap, rpl, size / 8, data_reg);
326 			}
327 
328 			if (FW_CMD_RETVAL_G((int)res))
329 				dump_mbox(adap, mbox, data_reg);
330 			t4_write_reg(adap, ctl_reg, 0);
331 			return -FW_CMD_RETVAL_G((int)res);
332 		}
333 	}
334 
335 	dump_mbox(adap, mbox, data_reg);
336 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337 		*(const u8 *)cmd, mbox);
338 	t4_report_fw_error(adap);
339 	return -ETIMEDOUT;
340 }
341 
t4_wr_mbox_meat(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok)342 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343 		    void *rpl, bool sleep_ok)
344 {
345 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346 				       FW_CMD_MAX_TIMEOUT);
347 }
348 
t4_edc_err_read(struct adapter * adap,int idx)349 static int t4_edc_err_read(struct adapter *adap, int idx)
350 {
351 	u32 edc_ecc_err_addr_reg;
352 	u32 rdata_reg;
353 
354 	if (is_t4(adap->params.chip)) {
355 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356 		return 0;
357 	}
358 	if (idx != 0 && idx != 1) {
359 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360 		return 0;
361 	}
362 
363 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365 
366 	CH_WARN(adap,
367 		"edc%d err addr 0x%x: 0x%x.\n",
368 		idx, edc_ecc_err_addr_reg,
369 		t4_read_reg(adap, edc_ecc_err_addr_reg));
370 	CH_WARN(adap,
371 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372 		rdata_reg,
373 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
374 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382 
383 	return 0;
384 }
385 
386 /**
387  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388  *	@adap: the adapter
389  *	@win: PCI-E Memory Window to use
390  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391  *	@addr: address within indicated memory type
392  *	@len: amount of memory to transfer
393  *	@hbuf: host memory buffer
394  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
395  *
396  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
397  *	firmware memory address and host buffer must be aligned on 32-bit
398  *	boudaries; the length may be arbitrary.  The memory is transferred as
399  *	a raw byte sequence from/to the firmware's memory.  If this memory
400  *	contains data structures which contain multi-byte integers, it's the
401  *	caller's responsibility to perform appropriate byte order conversions.
402  */
t4_memory_rw(struct adapter * adap,int win,int mtype,u32 addr,u32 len,void * hbuf,int dir)403 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
404 		 u32 len, void *hbuf, int dir)
405 {
406 	u32 pos, offset, resid, memoffset;
407 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
408 	u32 *buf;
409 
410 	/* Argument sanity checks ...
411 	 */
412 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
413 		return -EINVAL;
414 	buf = (u32 *)hbuf;
415 
416 	/* It's convenient to be able to handle lengths which aren't a
417 	 * multiple of 32-bits because we often end up transferring files to
418 	 * the firmware.  So we'll handle that by normalizing the length here
419 	 * and then handling any residual transfer at the end.
420 	 */
421 	resid = len & 0x3;
422 	len -= resid;
423 
424 	/* Offset into the region of memory which is being accessed
425 	 * MEM_EDC0 = 0
426 	 * MEM_EDC1 = 1
427 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
428 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
429 	 */
430 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
431 	if (mtype != MEM_MC1)
432 		memoffset = (mtype * (edc_size * 1024 * 1024));
433 	else {
434 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
435 						      MA_EXT_MEMORY0_BAR_A));
436 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437 	}
438 
439 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
440 	addr = addr + memoffset;
441 
442 	/* Each PCI-E Memory Window is programmed with a window size -- or
443 	 * "aperture" -- which controls the granularity of its mapping onto
444 	 * adapter memory.  We need to grab that aperture in order to know
445 	 * how to use the specified window.  The window is also programmed
446 	 * with the base address of the Memory Window in BAR0's address
447 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
448 	 * the address is relative to BAR0.
449 	 */
450 	mem_reg = t4_read_reg(adap,
451 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
452 						  win));
453 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
455 	if (is_t4(adap->params.chip))
456 		mem_base -= adap->t4_bar0;
457 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
458 
459 	/* Calculate our initial PCI-E Memory Window Position and Offset into
460 	 * that Window.
461 	 */
462 	pos = addr & ~(mem_aperture-1);
463 	offset = addr - pos;
464 
465 	/* Set up initial PCI-E Memory Window to cover the start of our
466 	 * transfer.  (Read it back to ensure that changes propagate before we
467 	 * attempt to use the new value.)
468 	 */
469 	t4_write_reg(adap,
470 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
471 		     pos | win_pf);
472 	t4_read_reg(adap,
473 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
474 
475 	/* Transfer data to/from the adapter as long as there's an integral
476 	 * number of 32-bit transfers to complete.
477 	 *
478 	 * A note on Endianness issues:
479 	 *
480 	 * The "register" reads and writes below from/to the PCI-E Memory
481 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
482 	 * Little-Endian "swizzel."  As a result, if we have the following
483 	 * data in adapter memory:
484 	 *
485 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
486 	 *     Address:      i+0  i+1  i+2  i+3
487 	 *
488 	 * Then a read of the adapter memory via the PCI-E Memory Window
489 	 * will yield:
490 	 *
491 	 *     x = readl(i)
492 	 *         31                  0
493 	 *         [ b3 | b2 | b1 | b0 ]
494 	 *
495 	 * If this value is stored into local memory on a Little-Endian system
496 	 * it will show up correctly in local memory as:
497 	 *
498 	 *     ( ..., b0, b1, b2, b3, ... )
499 	 *
500 	 * But on a Big-Endian system, the store will show up in memory
501 	 * incorrectly swizzled as:
502 	 *
503 	 *     ( ..., b3, b2, b1, b0, ... )
504 	 *
505 	 * So we need to account for this in the reads and writes to the
506 	 * PCI-E Memory Window below by undoing the register read/write
507 	 * swizzels.
508 	 */
509 	while (len > 0) {
510 		if (dir == T4_MEMORY_READ)
511 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512 						mem_base + offset));
513 		else
514 			t4_write_reg(adap, mem_base + offset,
515 				     (__force u32)cpu_to_le32(*buf++));
516 		offset += sizeof(__be32);
517 		len -= sizeof(__be32);
518 
519 		/* If we've reached the end of our current window aperture,
520 		 * move the PCI-E Memory Window on to the next.  Note that
521 		 * doing this here after "len" may be 0 allows us to set up
522 		 * the PCI-E Memory Window for a possible final residual
523 		 * transfer below ...
524 		 */
525 		if (offset == mem_aperture) {
526 			pos += mem_aperture;
527 			offset = 0;
528 			t4_write_reg(adap,
529 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530 						    win), pos | win_pf);
531 			t4_read_reg(adap,
532 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533 						    win));
534 		}
535 	}
536 
537 	/* If the original transfer had a length which wasn't a multiple of
538 	 * 32-bits, now's where we need to finish off the transfer of the
539 	 * residual amount.  The PCI-E Memory Window has already been moved
540 	 * above (if necessary) to cover this final transfer.
541 	 */
542 	if (resid) {
543 		union {
544 			u32 word;
545 			char byte[4];
546 		} last;
547 		unsigned char *bp;
548 		int i;
549 
550 		if (dir == T4_MEMORY_READ) {
551 			last.word = le32_to_cpu(
552 					(__force __le32)t4_read_reg(adap,
553 						mem_base + offset));
554 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555 				bp[i] = last.byte[i];
556 		} else {
557 			last.word = *buf;
558 			for (i = resid; i < 4; i++)
559 				last.byte[i] = 0;
560 			t4_write_reg(adap, mem_base + offset,
561 				     (__force u32)cpu_to_le32(last.word));
562 		}
563 	}
564 
565 	return 0;
566 }
567 
568 /* Return the specified PCI-E Configuration Space register from our Physical
569  * Function.  We try first via a Firmware LDST Command since we prefer to let
570  * the firmware own all of these registers, but if that fails we go for it
571  * directly ourselves.
572  */
t4_read_pcie_cfg4(struct adapter * adap,int reg)573 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574 {
575 	u32 val, ldst_addrspace;
576 
577 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
578 	 * retrieve the specified PCI-E Configuration Space register.
579 	 */
580 	struct fw_ldst_cmd ldst_cmd;
581 	int ret;
582 
583 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586 					       FW_CMD_REQUEST_F |
587 					       FW_CMD_READ_F |
588 					       ldst_addrspace);
589 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591 	ldst_cmd.u.pcie.ctrl_to_fn =
592 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
593 	ldst_cmd.u.pcie.r = reg;
594 
595 	/* If the LDST Command succeeds, return the result, otherwise
596 	 * fall through to reading it directly ourselves ...
597 	 */
598 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599 			 &ldst_cmd);
600 	if (ret == 0)
601 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602 	else
603 		/* Read the desired Configuration Space register via the PCI-E
604 		 * Backdoor mechanism.
605 		 */
606 		t4_hw_pci_read_cfg4(adap, reg, &val);
607 	return val;
608 }
609 
610 /* Get the window based on base passed to it.
611  * Window aperture is currently unhandled, but there is no use case for it
612  * right now
613  */
t4_get_window(struct adapter * adap,u32 pci_base,u64 pci_mask,u32 memwin_base)614 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615 			 u32 memwin_base)
616 {
617 	u32 ret;
618 
619 	if (is_t4(adap->params.chip)) {
620 		u32 bar0;
621 
622 		/* Truncation intentional: we only read the bottom 32-bits of
623 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
624 		 * mechanism to read BAR0 instead of using
625 		 * pci_resource_start() because we could be operating from
626 		 * within a Virtual Machine which is trapping our accesses to
627 		 * our Configuration Space and we need to set up the PCI-E
628 		 * Memory Window decoders with the actual addresses which will
629 		 * be coming across the PCI-E link.
630 		 */
631 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
632 		bar0 &= pci_mask;
633 		adap->t4_bar0 = bar0;
634 
635 		ret = bar0 + memwin_base;
636 	} else {
637 		/* For T5, only relative offset inside the PCIe BAR is passed */
638 		ret = memwin_base;
639 	}
640 	return ret;
641 }
642 
643 /* Get the default utility window (win0) used by everyone */
t4_get_util_window(struct adapter * adap)644 u32 t4_get_util_window(struct adapter *adap)
645 {
646 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648 }
649 
650 /* Set up memory window for accessing adapter memory ranges.  (Read
651  * back MA register to ensure that changes propagate before we attempt
652  * to use the new values.)
653  */
t4_setup_memwin(struct adapter * adap,u32 memwin_base,u32 window)654 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655 {
656 	t4_write_reg(adap,
657 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658 		     memwin_base | BIR_V(0) |
659 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660 	t4_read_reg(adap,
661 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662 }
663 
664 /**
665  *	t4_get_regs_len - return the size of the chips register set
666  *	@adapter: the adapter
667  *
668  *	Returns the size of the chip's BAR0 register space.
669  */
t4_get_regs_len(struct adapter * adapter)670 unsigned int t4_get_regs_len(struct adapter *adapter)
671 {
672 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673 
674 	switch (chip_version) {
675 	case CHELSIO_T4:
676 		return T4_REGMAP_SIZE;
677 
678 	case CHELSIO_T5:
679 	case CHELSIO_T6:
680 		return T5_REGMAP_SIZE;
681 	}
682 
683 	dev_err(adapter->pdev_dev,
684 		"Unsupported chip version %d\n", chip_version);
685 	return 0;
686 }
687 
688 /**
689  *	t4_get_regs - read chip registers into provided buffer
690  *	@adap: the adapter
691  *	@buf: register buffer
692  *	@buf_size: size (in bytes) of register buffer
693  *
694  *	If the provided register buffer isn't large enough for the chip's
695  *	full register range, the register dump will be truncated to the
696  *	register buffer's size.
697  */
t4_get_regs(struct adapter * adap,void * buf,size_t buf_size)698 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699 {
700 	static const unsigned int t4_reg_ranges[] = {
701 		0x1008, 0x1108,
702 		0x1180, 0x1184,
703 		0x1190, 0x1194,
704 		0x11a0, 0x11a4,
705 		0x11b0, 0x11b4,
706 		0x11fc, 0x123c,
707 		0x1300, 0x173c,
708 		0x1800, 0x18fc,
709 		0x3000, 0x30d8,
710 		0x30e0, 0x30e4,
711 		0x30ec, 0x5910,
712 		0x5920, 0x5924,
713 		0x5960, 0x5960,
714 		0x5968, 0x5968,
715 		0x5970, 0x5970,
716 		0x5978, 0x5978,
717 		0x5980, 0x5980,
718 		0x5988, 0x5988,
719 		0x5990, 0x5990,
720 		0x5998, 0x5998,
721 		0x59a0, 0x59d4,
722 		0x5a00, 0x5ae0,
723 		0x5ae8, 0x5ae8,
724 		0x5af0, 0x5af0,
725 		0x5af8, 0x5af8,
726 		0x6000, 0x6098,
727 		0x6100, 0x6150,
728 		0x6200, 0x6208,
729 		0x6240, 0x6248,
730 		0x6280, 0x62b0,
731 		0x62c0, 0x6338,
732 		0x6370, 0x638c,
733 		0x6400, 0x643c,
734 		0x6500, 0x6524,
735 		0x6a00, 0x6a04,
736 		0x6a14, 0x6a38,
737 		0x6a60, 0x6a70,
738 		0x6a78, 0x6a78,
739 		0x6b00, 0x6b0c,
740 		0x6b1c, 0x6b84,
741 		0x6bf0, 0x6bf8,
742 		0x6c00, 0x6c0c,
743 		0x6c1c, 0x6c84,
744 		0x6cf0, 0x6cf8,
745 		0x6d00, 0x6d0c,
746 		0x6d1c, 0x6d84,
747 		0x6df0, 0x6df8,
748 		0x6e00, 0x6e0c,
749 		0x6e1c, 0x6e84,
750 		0x6ef0, 0x6ef8,
751 		0x6f00, 0x6f0c,
752 		0x6f1c, 0x6f84,
753 		0x6ff0, 0x6ff8,
754 		0x7000, 0x700c,
755 		0x701c, 0x7084,
756 		0x70f0, 0x70f8,
757 		0x7100, 0x710c,
758 		0x711c, 0x7184,
759 		0x71f0, 0x71f8,
760 		0x7200, 0x720c,
761 		0x721c, 0x7284,
762 		0x72f0, 0x72f8,
763 		0x7300, 0x730c,
764 		0x731c, 0x7384,
765 		0x73f0, 0x73f8,
766 		0x7400, 0x7450,
767 		0x7500, 0x7530,
768 		0x7600, 0x760c,
769 		0x7614, 0x761c,
770 		0x7680, 0x76cc,
771 		0x7700, 0x7798,
772 		0x77c0, 0x77fc,
773 		0x7900, 0x79fc,
774 		0x7b00, 0x7b58,
775 		0x7b60, 0x7b84,
776 		0x7b8c, 0x7c38,
777 		0x7d00, 0x7d38,
778 		0x7d40, 0x7d80,
779 		0x7d8c, 0x7ddc,
780 		0x7de4, 0x7e04,
781 		0x7e10, 0x7e1c,
782 		0x7e24, 0x7e38,
783 		0x7e40, 0x7e44,
784 		0x7e4c, 0x7e78,
785 		0x7e80, 0x7ea4,
786 		0x7eac, 0x7edc,
787 		0x7ee8, 0x7efc,
788 		0x8dc0, 0x8e04,
789 		0x8e10, 0x8e1c,
790 		0x8e30, 0x8e78,
791 		0x8ea0, 0x8eb8,
792 		0x8ec0, 0x8f6c,
793 		0x8fc0, 0x9008,
794 		0x9010, 0x9058,
795 		0x9060, 0x9060,
796 		0x9068, 0x9074,
797 		0x90fc, 0x90fc,
798 		0x9400, 0x9408,
799 		0x9410, 0x9458,
800 		0x9600, 0x9600,
801 		0x9608, 0x9638,
802 		0x9640, 0x96bc,
803 		0x9800, 0x9808,
804 		0x9820, 0x983c,
805 		0x9850, 0x9864,
806 		0x9c00, 0x9c6c,
807 		0x9c80, 0x9cec,
808 		0x9d00, 0x9d6c,
809 		0x9d80, 0x9dec,
810 		0x9e00, 0x9e6c,
811 		0x9e80, 0x9eec,
812 		0x9f00, 0x9f6c,
813 		0x9f80, 0x9fec,
814 		0xd004, 0xd004,
815 		0xd010, 0xd03c,
816 		0xdfc0, 0xdfe0,
817 		0xe000, 0xea7c,
818 		0xf000, 0x11190,
819 		0x19040, 0x1906c,
820 		0x19078, 0x19080,
821 		0x1908c, 0x190e4,
822 		0x190f0, 0x190f8,
823 		0x19100, 0x19110,
824 		0x19120, 0x19124,
825 		0x19150, 0x19194,
826 		0x1919c, 0x191b0,
827 		0x191d0, 0x191e8,
828 		0x19238, 0x1924c,
829 		0x193f8, 0x1943c,
830 		0x1944c, 0x19474,
831 		0x19490, 0x194e0,
832 		0x194f0, 0x194f8,
833 		0x19800, 0x19c08,
834 		0x19c10, 0x19c90,
835 		0x19ca0, 0x19ce4,
836 		0x19cf0, 0x19d40,
837 		0x19d50, 0x19d94,
838 		0x19da0, 0x19de8,
839 		0x19df0, 0x19e40,
840 		0x19e50, 0x19e90,
841 		0x19ea0, 0x19f4c,
842 		0x1a000, 0x1a004,
843 		0x1a010, 0x1a06c,
844 		0x1a0b0, 0x1a0e4,
845 		0x1a0ec, 0x1a0f4,
846 		0x1a100, 0x1a108,
847 		0x1a114, 0x1a120,
848 		0x1a128, 0x1a130,
849 		0x1a138, 0x1a138,
850 		0x1a190, 0x1a1c4,
851 		0x1a1fc, 0x1a1fc,
852 		0x1e040, 0x1e04c,
853 		0x1e284, 0x1e28c,
854 		0x1e2c0, 0x1e2c0,
855 		0x1e2e0, 0x1e2e0,
856 		0x1e300, 0x1e384,
857 		0x1e3c0, 0x1e3c8,
858 		0x1e440, 0x1e44c,
859 		0x1e684, 0x1e68c,
860 		0x1e6c0, 0x1e6c0,
861 		0x1e6e0, 0x1e6e0,
862 		0x1e700, 0x1e784,
863 		0x1e7c0, 0x1e7c8,
864 		0x1e840, 0x1e84c,
865 		0x1ea84, 0x1ea8c,
866 		0x1eac0, 0x1eac0,
867 		0x1eae0, 0x1eae0,
868 		0x1eb00, 0x1eb84,
869 		0x1ebc0, 0x1ebc8,
870 		0x1ec40, 0x1ec4c,
871 		0x1ee84, 0x1ee8c,
872 		0x1eec0, 0x1eec0,
873 		0x1eee0, 0x1eee0,
874 		0x1ef00, 0x1ef84,
875 		0x1efc0, 0x1efc8,
876 		0x1f040, 0x1f04c,
877 		0x1f284, 0x1f28c,
878 		0x1f2c0, 0x1f2c0,
879 		0x1f2e0, 0x1f2e0,
880 		0x1f300, 0x1f384,
881 		0x1f3c0, 0x1f3c8,
882 		0x1f440, 0x1f44c,
883 		0x1f684, 0x1f68c,
884 		0x1f6c0, 0x1f6c0,
885 		0x1f6e0, 0x1f6e0,
886 		0x1f700, 0x1f784,
887 		0x1f7c0, 0x1f7c8,
888 		0x1f840, 0x1f84c,
889 		0x1fa84, 0x1fa8c,
890 		0x1fac0, 0x1fac0,
891 		0x1fae0, 0x1fae0,
892 		0x1fb00, 0x1fb84,
893 		0x1fbc0, 0x1fbc8,
894 		0x1fc40, 0x1fc4c,
895 		0x1fe84, 0x1fe8c,
896 		0x1fec0, 0x1fec0,
897 		0x1fee0, 0x1fee0,
898 		0x1ff00, 0x1ff84,
899 		0x1ffc0, 0x1ffc8,
900 		0x20000, 0x2002c,
901 		0x20100, 0x2013c,
902 		0x20190, 0x201a0,
903 		0x201a8, 0x201b8,
904 		0x201c4, 0x201c8,
905 		0x20200, 0x20318,
906 		0x20400, 0x204b4,
907 		0x204c0, 0x20528,
908 		0x20540, 0x20614,
909 		0x21000, 0x21040,
910 		0x2104c, 0x21060,
911 		0x210c0, 0x210ec,
912 		0x21200, 0x21268,
913 		0x21270, 0x21284,
914 		0x212fc, 0x21388,
915 		0x21400, 0x21404,
916 		0x21500, 0x21500,
917 		0x21510, 0x21518,
918 		0x2152c, 0x21530,
919 		0x2153c, 0x2153c,
920 		0x21550, 0x21554,
921 		0x21600, 0x21600,
922 		0x21608, 0x2161c,
923 		0x21624, 0x21628,
924 		0x21630, 0x21634,
925 		0x2163c, 0x2163c,
926 		0x21700, 0x2171c,
927 		0x21780, 0x2178c,
928 		0x21800, 0x21818,
929 		0x21820, 0x21828,
930 		0x21830, 0x21848,
931 		0x21850, 0x21854,
932 		0x21860, 0x21868,
933 		0x21870, 0x21870,
934 		0x21878, 0x21898,
935 		0x218a0, 0x218a8,
936 		0x218b0, 0x218c8,
937 		0x218d0, 0x218d4,
938 		0x218e0, 0x218e8,
939 		0x218f0, 0x218f0,
940 		0x218f8, 0x21a18,
941 		0x21a20, 0x21a28,
942 		0x21a30, 0x21a48,
943 		0x21a50, 0x21a54,
944 		0x21a60, 0x21a68,
945 		0x21a70, 0x21a70,
946 		0x21a78, 0x21a98,
947 		0x21aa0, 0x21aa8,
948 		0x21ab0, 0x21ac8,
949 		0x21ad0, 0x21ad4,
950 		0x21ae0, 0x21ae8,
951 		0x21af0, 0x21af0,
952 		0x21af8, 0x21c18,
953 		0x21c20, 0x21c20,
954 		0x21c28, 0x21c30,
955 		0x21c38, 0x21c38,
956 		0x21c80, 0x21c98,
957 		0x21ca0, 0x21ca8,
958 		0x21cb0, 0x21cc8,
959 		0x21cd0, 0x21cd4,
960 		0x21ce0, 0x21ce8,
961 		0x21cf0, 0x21cf0,
962 		0x21cf8, 0x21d7c,
963 		0x21e00, 0x21e04,
964 		0x22000, 0x2202c,
965 		0x22100, 0x2213c,
966 		0x22190, 0x221a0,
967 		0x221a8, 0x221b8,
968 		0x221c4, 0x221c8,
969 		0x22200, 0x22318,
970 		0x22400, 0x224b4,
971 		0x224c0, 0x22528,
972 		0x22540, 0x22614,
973 		0x23000, 0x23040,
974 		0x2304c, 0x23060,
975 		0x230c0, 0x230ec,
976 		0x23200, 0x23268,
977 		0x23270, 0x23284,
978 		0x232fc, 0x23388,
979 		0x23400, 0x23404,
980 		0x23500, 0x23500,
981 		0x23510, 0x23518,
982 		0x2352c, 0x23530,
983 		0x2353c, 0x2353c,
984 		0x23550, 0x23554,
985 		0x23600, 0x23600,
986 		0x23608, 0x2361c,
987 		0x23624, 0x23628,
988 		0x23630, 0x23634,
989 		0x2363c, 0x2363c,
990 		0x23700, 0x2371c,
991 		0x23780, 0x2378c,
992 		0x23800, 0x23818,
993 		0x23820, 0x23828,
994 		0x23830, 0x23848,
995 		0x23850, 0x23854,
996 		0x23860, 0x23868,
997 		0x23870, 0x23870,
998 		0x23878, 0x23898,
999 		0x238a0, 0x238a8,
1000 		0x238b0, 0x238c8,
1001 		0x238d0, 0x238d4,
1002 		0x238e0, 0x238e8,
1003 		0x238f0, 0x238f0,
1004 		0x238f8, 0x23a18,
1005 		0x23a20, 0x23a28,
1006 		0x23a30, 0x23a48,
1007 		0x23a50, 0x23a54,
1008 		0x23a60, 0x23a68,
1009 		0x23a70, 0x23a70,
1010 		0x23a78, 0x23a98,
1011 		0x23aa0, 0x23aa8,
1012 		0x23ab0, 0x23ac8,
1013 		0x23ad0, 0x23ad4,
1014 		0x23ae0, 0x23ae8,
1015 		0x23af0, 0x23af0,
1016 		0x23af8, 0x23c18,
1017 		0x23c20, 0x23c20,
1018 		0x23c28, 0x23c30,
1019 		0x23c38, 0x23c38,
1020 		0x23c80, 0x23c98,
1021 		0x23ca0, 0x23ca8,
1022 		0x23cb0, 0x23cc8,
1023 		0x23cd0, 0x23cd4,
1024 		0x23ce0, 0x23ce8,
1025 		0x23cf0, 0x23cf0,
1026 		0x23cf8, 0x23d7c,
1027 		0x23e00, 0x23e04,
1028 		0x24000, 0x2402c,
1029 		0x24100, 0x2413c,
1030 		0x24190, 0x241a0,
1031 		0x241a8, 0x241b8,
1032 		0x241c4, 0x241c8,
1033 		0x24200, 0x24318,
1034 		0x24400, 0x244b4,
1035 		0x244c0, 0x24528,
1036 		0x24540, 0x24614,
1037 		0x25000, 0x25040,
1038 		0x2504c, 0x25060,
1039 		0x250c0, 0x250ec,
1040 		0x25200, 0x25268,
1041 		0x25270, 0x25284,
1042 		0x252fc, 0x25388,
1043 		0x25400, 0x25404,
1044 		0x25500, 0x25500,
1045 		0x25510, 0x25518,
1046 		0x2552c, 0x25530,
1047 		0x2553c, 0x2553c,
1048 		0x25550, 0x25554,
1049 		0x25600, 0x25600,
1050 		0x25608, 0x2561c,
1051 		0x25624, 0x25628,
1052 		0x25630, 0x25634,
1053 		0x2563c, 0x2563c,
1054 		0x25700, 0x2571c,
1055 		0x25780, 0x2578c,
1056 		0x25800, 0x25818,
1057 		0x25820, 0x25828,
1058 		0x25830, 0x25848,
1059 		0x25850, 0x25854,
1060 		0x25860, 0x25868,
1061 		0x25870, 0x25870,
1062 		0x25878, 0x25898,
1063 		0x258a0, 0x258a8,
1064 		0x258b0, 0x258c8,
1065 		0x258d0, 0x258d4,
1066 		0x258e0, 0x258e8,
1067 		0x258f0, 0x258f0,
1068 		0x258f8, 0x25a18,
1069 		0x25a20, 0x25a28,
1070 		0x25a30, 0x25a48,
1071 		0x25a50, 0x25a54,
1072 		0x25a60, 0x25a68,
1073 		0x25a70, 0x25a70,
1074 		0x25a78, 0x25a98,
1075 		0x25aa0, 0x25aa8,
1076 		0x25ab0, 0x25ac8,
1077 		0x25ad0, 0x25ad4,
1078 		0x25ae0, 0x25ae8,
1079 		0x25af0, 0x25af0,
1080 		0x25af8, 0x25c18,
1081 		0x25c20, 0x25c20,
1082 		0x25c28, 0x25c30,
1083 		0x25c38, 0x25c38,
1084 		0x25c80, 0x25c98,
1085 		0x25ca0, 0x25ca8,
1086 		0x25cb0, 0x25cc8,
1087 		0x25cd0, 0x25cd4,
1088 		0x25ce0, 0x25ce8,
1089 		0x25cf0, 0x25cf0,
1090 		0x25cf8, 0x25d7c,
1091 		0x25e00, 0x25e04,
1092 		0x26000, 0x2602c,
1093 		0x26100, 0x2613c,
1094 		0x26190, 0x261a0,
1095 		0x261a8, 0x261b8,
1096 		0x261c4, 0x261c8,
1097 		0x26200, 0x26318,
1098 		0x26400, 0x264b4,
1099 		0x264c0, 0x26528,
1100 		0x26540, 0x26614,
1101 		0x27000, 0x27040,
1102 		0x2704c, 0x27060,
1103 		0x270c0, 0x270ec,
1104 		0x27200, 0x27268,
1105 		0x27270, 0x27284,
1106 		0x272fc, 0x27388,
1107 		0x27400, 0x27404,
1108 		0x27500, 0x27500,
1109 		0x27510, 0x27518,
1110 		0x2752c, 0x27530,
1111 		0x2753c, 0x2753c,
1112 		0x27550, 0x27554,
1113 		0x27600, 0x27600,
1114 		0x27608, 0x2761c,
1115 		0x27624, 0x27628,
1116 		0x27630, 0x27634,
1117 		0x2763c, 0x2763c,
1118 		0x27700, 0x2771c,
1119 		0x27780, 0x2778c,
1120 		0x27800, 0x27818,
1121 		0x27820, 0x27828,
1122 		0x27830, 0x27848,
1123 		0x27850, 0x27854,
1124 		0x27860, 0x27868,
1125 		0x27870, 0x27870,
1126 		0x27878, 0x27898,
1127 		0x278a0, 0x278a8,
1128 		0x278b0, 0x278c8,
1129 		0x278d0, 0x278d4,
1130 		0x278e0, 0x278e8,
1131 		0x278f0, 0x278f0,
1132 		0x278f8, 0x27a18,
1133 		0x27a20, 0x27a28,
1134 		0x27a30, 0x27a48,
1135 		0x27a50, 0x27a54,
1136 		0x27a60, 0x27a68,
1137 		0x27a70, 0x27a70,
1138 		0x27a78, 0x27a98,
1139 		0x27aa0, 0x27aa8,
1140 		0x27ab0, 0x27ac8,
1141 		0x27ad0, 0x27ad4,
1142 		0x27ae0, 0x27ae8,
1143 		0x27af0, 0x27af0,
1144 		0x27af8, 0x27c18,
1145 		0x27c20, 0x27c20,
1146 		0x27c28, 0x27c30,
1147 		0x27c38, 0x27c38,
1148 		0x27c80, 0x27c98,
1149 		0x27ca0, 0x27ca8,
1150 		0x27cb0, 0x27cc8,
1151 		0x27cd0, 0x27cd4,
1152 		0x27ce0, 0x27ce8,
1153 		0x27cf0, 0x27cf0,
1154 		0x27cf8, 0x27d7c,
1155 		0x27e00, 0x27e04,
1156 	};
1157 
1158 	static const unsigned int t5_reg_ranges[] = {
1159 		0x1008, 0x10c0,
1160 		0x10cc, 0x10f8,
1161 		0x1100, 0x1100,
1162 		0x110c, 0x1148,
1163 		0x1180, 0x1184,
1164 		0x1190, 0x1194,
1165 		0x11a0, 0x11a4,
1166 		0x11b0, 0x11b4,
1167 		0x11fc, 0x123c,
1168 		0x1280, 0x173c,
1169 		0x1800, 0x18fc,
1170 		0x3000, 0x3028,
1171 		0x3060, 0x30b0,
1172 		0x30b8, 0x30d8,
1173 		0x30e0, 0x30fc,
1174 		0x3140, 0x357c,
1175 		0x35a8, 0x35cc,
1176 		0x35ec, 0x35ec,
1177 		0x3600, 0x5624,
1178 		0x56cc, 0x56ec,
1179 		0x56f4, 0x5720,
1180 		0x5728, 0x575c,
1181 		0x580c, 0x5814,
1182 		0x5890, 0x589c,
1183 		0x58a4, 0x58ac,
1184 		0x58b8, 0x58bc,
1185 		0x5940, 0x59c8,
1186 		0x59d0, 0x59dc,
1187 		0x59fc, 0x5a18,
1188 		0x5a60, 0x5a70,
1189 		0x5a80, 0x5a9c,
1190 		0x5b94, 0x5bfc,
1191 		0x6000, 0x6020,
1192 		0x6028, 0x6040,
1193 		0x6058, 0x609c,
1194 		0x60a8, 0x614c,
1195 		0x7700, 0x7798,
1196 		0x77c0, 0x78fc,
1197 		0x7b00, 0x7b58,
1198 		0x7b60, 0x7b84,
1199 		0x7b8c, 0x7c54,
1200 		0x7d00, 0x7d38,
1201 		0x7d40, 0x7d80,
1202 		0x7d8c, 0x7ddc,
1203 		0x7de4, 0x7e04,
1204 		0x7e10, 0x7e1c,
1205 		0x7e24, 0x7e38,
1206 		0x7e40, 0x7e44,
1207 		0x7e4c, 0x7e78,
1208 		0x7e80, 0x7edc,
1209 		0x7ee8, 0x7efc,
1210 		0x8dc0, 0x8de0,
1211 		0x8df8, 0x8e04,
1212 		0x8e10, 0x8e84,
1213 		0x8ea0, 0x8f84,
1214 		0x8fc0, 0x9058,
1215 		0x9060, 0x9060,
1216 		0x9068, 0x90f8,
1217 		0x9400, 0x9408,
1218 		0x9410, 0x9470,
1219 		0x9600, 0x9600,
1220 		0x9608, 0x9638,
1221 		0x9640, 0x96f4,
1222 		0x9800, 0x9808,
1223 		0x9820, 0x983c,
1224 		0x9850, 0x9864,
1225 		0x9c00, 0x9c6c,
1226 		0x9c80, 0x9cec,
1227 		0x9d00, 0x9d6c,
1228 		0x9d80, 0x9dec,
1229 		0x9e00, 0x9e6c,
1230 		0x9e80, 0x9eec,
1231 		0x9f00, 0x9f6c,
1232 		0x9f80, 0xa020,
1233 		0xd004, 0xd004,
1234 		0xd010, 0xd03c,
1235 		0xdfc0, 0xdfe0,
1236 		0xe000, 0x1106c,
1237 		0x11074, 0x11088,
1238 		0x1109c, 0x1117c,
1239 		0x11190, 0x11204,
1240 		0x19040, 0x1906c,
1241 		0x19078, 0x19080,
1242 		0x1908c, 0x190e8,
1243 		0x190f0, 0x190f8,
1244 		0x19100, 0x19110,
1245 		0x19120, 0x19124,
1246 		0x19150, 0x19194,
1247 		0x1919c, 0x191b0,
1248 		0x191d0, 0x191e8,
1249 		0x19238, 0x19290,
1250 		0x193f8, 0x19428,
1251 		0x19430, 0x19444,
1252 		0x1944c, 0x1946c,
1253 		0x19474, 0x19474,
1254 		0x19490, 0x194cc,
1255 		0x194f0, 0x194f8,
1256 		0x19c00, 0x19c08,
1257 		0x19c10, 0x19c60,
1258 		0x19c94, 0x19ce4,
1259 		0x19cf0, 0x19d40,
1260 		0x19d50, 0x19d94,
1261 		0x19da0, 0x19de8,
1262 		0x19df0, 0x19e10,
1263 		0x19e50, 0x19e90,
1264 		0x19ea0, 0x19f24,
1265 		0x19f34, 0x19f34,
1266 		0x19f40, 0x19f50,
1267 		0x19f90, 0x19fb4,
1268 		0x19fc4, 0x19fe4,
1269 		0x1a000, 0x1a004,
1270 		0x1a010, 0x1a06c,
1271 		0x1a0b0, 0x1a0e4,
1272 		0x1a0ec, 0x1a0f8,
1273 		0x1a100, 0x1a108,
1274 		0x1a114, 0x1a120,
1275 		0x1a128, 0x1a130,
1276 		0x1a138, 0x1a138,
1277 		0x1a190, 0x1a1c4,
1278 		0x1a1fc, 0x1a1fc,
1279 		0x1e008, 0x1e00c,
1280 		0x1e040, 0x1e044,
1281 		0x1e04c, 0x1e04c,
1282 		0x1e284, 0x1e290,
1283 		0x1e2c0, 0x1e2c0,
1284 		0x1e2e0, 0x1e2e0,
1285 		0x1e300, 0x1e384,
1286 		0x1e3c0, 0x1e3c8,
1287 		0x1e408, 0x1e40c,
1288 		0x1e440, 0x1e444,
1289 		0x1e44c, 0x1e44c,
1290 		0x1e684, 0x1e690,
1291 		0x1e6c0, 0x1e6c0,
1292 		0x1e6e0, 0x1e6e0,
1293 		0x1e700, 0x1e784,
1294 		0x1e7c0, 0x1e7c8,
1295 		0x1e808, 0x1e80c,
1296 		0x1e840, 0x1e844,
1297 		0x1e84c, 0x1e84c,
1298 		0x1ea84, 0x1ea90,
1299 		0x1eac0, 0x1eac0,
1300 		0x1eae0, 0x1eae0,
1301 		0x1eb00, 0x1eb84,
1302 		0x1ebc0, 0x1ebc8,
1303 		0x1ec08, 0x1ec0c,
1304 		0x1ec40, 0x1ec44,
1305 		0x1ec4c, 0x1ec4c,
1306 		0x1ee84, 0x1ee90,
1307 		0x1eec0, 0x1eec0,
1308 		0x1eee0, 0x1eee0,
1309 		0x1ef00, 0x1ef84,
1310 		0x1efc0, 0x1efc8,
1311 		0x1f008, 0x1f00c,
1312 		0x1f040, 0x1f044,
1313 		0x1f04c, 0x1f04c,
1314 		0x1f284, 0x1f290,
1315 		0x1f2c0, 0x1f2c0,
1316 		0x1f2e0, 0x1f2e0,
1317 		0x1f300, 0x1f384,
1318 		0x1f3c0, 0x1f3c8,
1319 		0x1f408, 0x1f40c,
1320 		0x1f440, 0x1f444,
1321 		0x1f44c, 0x1f44c,
1322 		0x1f684, 0x1f690,
1323 		0x1f6c0, 0x1f6c0,
1324 		0x1f6e0, 0x1f6e0,
1325 		0x1f700, 0x1f784,
1326 		0x1f7c0, 0x1f7c8,
1327 		0x1f808, 0x1f80c,
1328 		0x1f840, 0x1f844,
1329 		0x1f84c, 0x1f84c,
1330 		0x1fa84, 0x1fa90,
1331 		0x1fac0, 0x1fac0,
1332 		0x1fae0, 0x1fae0,
1333 		0x1fb00, 0x1fb84,
1334 		0x1fbc0, 0x1fbc8,
1335 		0x1fc08, 0x1fc0c,
1336 		0x1fc40, 0x1fc44,
1337 		0x1fc4c, 0x1fc4c,
1338 		0x1fe84, 0x1fe90,
1339 		0x1fec0, 0x1fec0,
1340 		0x1fee0, 0x1fee0,
1341 		0x1ff00, 0x1ff84,
1342 		0x1ffc0, 0x1ffc8,
1343 		0x30000, 0x30030,
1344 		0x30038, 0x30038,
1345 		0x30040, 0x30040,
1346 		0x30100, 0x30144,
1347 		0x30190, 0x301a0,
1348 		0x301a8, 0x301b8,
1349 		0x301c4, 0x301c8,
1350 		0x301d0, 0x301d0,
1351 		0x30200, 0x30318,
1352 		0x30400, 0x304b4,
1353 		0x304c0, 0x3052c,
1354 		0x30540, 0x3061c,
1355 		0x30800, 0x30828,
1356 		0x30834, 0x30834,
1357 		0x308c0, 0x30908,
1358 		0x30910, 0x309ac,
1359 		0x30a00, 0x30a14,
1360 		0x30a1c, 0x30a2c,
1361 		0x30a44, 0x30a50,
1362 		0x30a74, 0x30a74,
1363 		0x30a7c, 0x30afc,
1364 		0x30b08, 0x30c24,
1365 		0x30d00, 0x30d00,
1366 		0x30d08, 0x30d14,
1367 		0x30d1c, 0x30d20,
1368 		0x30d3c, 0x30d3c,
1369 		0x30d48, 0x30d50,
1370 		0x31200, 0x3120c,
1371 		0x31220, 0x31220,
1372 		0x31240, 0x31240,
1373 		0x31600, 0x3160c,
1374 		0x31a00, 0x31a1c,
1375 		0x31e00, 0x31e20,
1376 		0x31e38, 0x31e3c,
1377 		0x31e80, 0x31e80,
1378 		0x31e88, 0x31ea8,
1379 		0x31eb0, 0x31eb4,
1380 		0x31ec8, 0x31ed4,
1381 		0x31fb8, 0x32004,
1382 		0x32200, 0x32200,
1383 		0x32208, 0x32240,
1384 		0x32248, 0x32280,
1385 		0x32288, 0x322c0,
1386 		0x322c8, 0x322fc,
1387 		0x32600, 0x32630,
1388 		0x32a00, 0x32abc,
1389 		0x32b00, 0x32b10,
1390 		0x32b20, 0x32b30,
1391 		0x32b40, 0x32b50,
1392 		0x32b60, 0x32b70,
1393 		0x33000, 0x33028,
1394 		0x33030, 0x33048,
1395 		0x33060, 0x33068,
1396 		0x33070, 0x3309c,
1397 		0x330f0, 0x33128,
1398 		0x33130, 0x33148,
1399 		0x33160, 0x33168,
1400 		0x33170, 0x3319c,
1401 		0x331f0, 0x33238,
1402 		0x33240, 0x33240,
1403 		0x33248, 0x33250,
1404 		0x3325c, 0x33264,
1405 		0x33270, 0x332b8,
1406 		0x332c0, 0x332e4,
1407 		0x332f8, 0x33338,
1408 		0x33340, 0x33340,
1409 		0x33348, 0x33350,
1410 		0x3335c, 0x33364,
1411 		0x33370, 0x333b8,
1412 		0x333c0, 0x333e4,
1413 		0x333f8, 0x33428,
1414 		0x33430, 0x33448,
1415 		0x33460, 0x33468,
1416 		0x33470, 0x3349c,
1417 		0x334f0, 0x33528,
1418 		0x33530, 0x33548,
1419 		0x33560, 0x33568,
1420 		0x33570, 0x3359c,
1421 		0x335f0, 0x33638,
1422 		0x33640, 0x33640,
1423 		0x33648, 0x33650,
1424 		0x3365c, 0x33664,
1425 		0x33670, 0x336b8,
1426 		0x336c0, 0x336e4,
1427 		0x336f8, 0x33738,
1428 		0x33740, 0x33740,
1429 		0x33748, 0x33750,
1430 		0x3375c, 0x33764,
1431 		0x33770, 0x337b8,
1432 		0x337c0, 0x337e4,
1433 		0x337f8, 0x337fc,
1434 		0x33814, 0x33814,
1435 		0x3382c, 0x3382c,
1436 		0x33880, 0x3388c,
1437 		0x338e8, 0x338ec,
1438 		0x33900, 0x33928,
1439 		0x33930, 0x33948,
1440 		0x33960, 0x33968,
1441 		0x33970, 0x3399c,
1442 		0x339f0, 0x33a38,
1443 		0x33a40, 0x33a40,
1444 		0x33a48, 0x33a50,
1445 		0x33a5c, 0x33a64,
1446 		0x33a70, 0x33ab8,
1447 		0x33ac0, 0x33ae4,
1448 		0x33af8, 0x33b10,
1449 		0x33b28, 0x33b28,
1450 		0x33b3c, 0x33b50,
1451 		0x33bf0, 0x33c10,
1452 		0x33c28, 0x33c28,
1453 		0x33c3c, 0x33c50,
1454 		0x33cf0, 0x33cfc,
1455 		0x34000, 0x34030,
1456 		0x34038, 0x34038,
1457 		0x34040, 0x34040,
1458 		0x34100, 0x34144,
1459 		0x34190, 0x341a0,
1460 		0x341a8, 0x341b8,
1461 		0x341c4, 0x341c8,
1462 		0x341d0, 0x341d0,
1463 		0x34200, 0x34318,
1464 		0x34400, 0x344b4,
1465 		0x344c0, 0x3452c,
1466 		0x34540, 0x3461c,
1467 		0x34800, 0x34828,
1468 		0x34834, 0x34834,
1469 		0x348c0, 0x34908,
1470 		0x34910, 0x349ac,
1471 		0x34a00, 0x34a14,
1472 		0x34a1c, 0x34a2c,
1473 		0x34a44, 0x34a50,
1474 		0x34a74, 0x34a74,
1475 		0x34a7c, 0x34afc,
1476 		0x34b08, 0x34c24,
1477 		0x34d00, 0x34d00,
1478 		0x34d08, 0x34d14,
1479 		0x34d1c, 0x34d20,
1480 		0x34d3c, 0x34d3c,
1481 		0x34d48, 0x34d50,
1482 		0x35200, 0x3520c,
1483 		0x35220, 0x35220,
1484 		0x35240, 0x35240,
1485 		0x35600, 0x3560c,
1486 		0x35a00, 0x35a1c,
1487 		0x35e00, 0x35e20,
1488 		0x35e38, 0x35e3c,
1489 		0x35e80, 0x35e80,
1490 		0x35e88, 0x35ea8,
1491 		0x35eb0, 0x35eb4,
1492 		0x35ec8, 0x35ed4,
1493 		0x35fb8, 0x36004,
1494 		0x36200, 0x36200,
1495 		0x36208, 0x36240,
1496 		0x36248, 0x36280,
1497 		0x36288, 0x362c0,
1498 		0x362c8, 0x362fc,
1499 		0x36600, 0x36630,
1500 		0x36a00, 0x36abc,
1501 		0x36b00, 0x36b10,
1502 		0x36b20, 0x36b30,
1503 		0x36b40, 0x36b50,
1504 		0x36b60, 0x36b70,
1505 		0x37000, 0x37028,
1506 		0x37030, 0x37048,
1507 		0x37060, 0x37068,
1508 		0x37070, 0x3709c,
1509 		0x370f0, 0x37128,
1510 		0x37130, 0x37148,
1511 		0x37160, 0x37168,
1512 		0x37170, 0x3719c,
1513 		0x371f0, 0x37238,
1514 		0x37240, 0x37240,
1515 		0x37248, 0x37250,
1516 		0x3725c, 0x37264,
1517 		0x37270, 0x372b8,
1518 		0x372c0, 0x372e4,
1519 		0x372f8, 0x37338,
1520 		0x37340, 0x37340,
1521 		0x37348, 0x37350,
1522 		0x3735c, 0x37364,
1523 		0x37370, 0x373b8,
1524 		0x373c0, 0x373e4,
1525 		0x373f8, 0x37428,
1526 		0x37430, 0x37448,
1527 		0x37460, 0x37468,
1528 		0x37470, 0x3749c,
1529 		0x374f0, 0x37528,
1530 		0x37530, 0x37548,
1531 		0x37560, 0x37568,
1532 		0x37570, 0x3759c,
1533 		0x375f0, 0x37638,
1534 		0x37640, 0x37640,
1535 		0x37648, 0x37650,
1536 		0x3765c, 0x37664,
1537 		0x37670, 0x376b8,
1538 		0x376c0, 0x376e4,
1539 		0x376f8, 0x37738,
1540 		0x37740, 0x37740,
1541 		0x37748, 0x37750,
1542 		0x3775c, 0x37764,
1543 		0x37770, 0x377b8,
1544 		0x377c0, 0x377e4,
1545 		0x377f8, 0x377fc,
1546 		0x37814, 0x37814,
1547 		0x3782c, 0x3782c,
1548 		0x37880, 0x3788c,
1549 		0x378e8, 0x378ec,
1550 		0x37900, 0x37928,
1551 		0x37930, 0x37948,
1552 		0x37960, 0x37968,
1553 		0x37970, 0x3799c,
1554 		0x379f0, 0x37a38,
1555 		0x37a40, 0x37a40,
1556 		0x37a48, 0x37a50,
1557 		0x37a5c, 0x37a64,
1558 		0x37a70, 0x37ab8,
1559 		0x37ac0, 0x37ae4,
1560 		0x37af8, 0x37b10,
1561 		0x37b28, 0x37b28,
1562 		0x37b3c, 0x37b50,
1563 		0x37bf0, 0x37c10,
1564 		0x37c28, 0x37c28,
1565 		0x37c3c, 0x37c50,
1566 		0x37cf0, 0x37cfc,
1567 		0x38000, 0x38030,
1568 		0x38038, 0x38038,
1569 		0x38040, 0x38040,
1570 		0x38100, 0x38144,
1571 		0x38190, 0x381a0,
1572 		0x381a8, 0x381b8,
1573 		0x381c4, 0x381c8,
1574 		0x381d0, 0x381d0,
1575 		0x38200, 0x38318,
1576 		0x38400, 0x384b4,
1577 		0x384c0, 0x3852c,
1578 		0x38540, 0x3861c,
1579 		0x38800, 0x38828,
1580 		0x38834, 0x38834,
1581 		0x388c0, 0x38908,
1582 		0x38910, 0x389ac,
1583 		0x38a00, 0x38a14,
1584 		0x38a1c, 0x38a2c,
1585 		0x38a44, 0x38a50,
1586 		0x38a74, 0x38a74,
1587 		0x38a7c, 0x38afc,
1588 		0x38b08, 0x38c24,
1589 		0x38d00, 0x38d00,
1590 		0x38d08, 0x38d14,
1591 		0x38d1c, 0x38d20,
1592 		0x38d3c, 0x38d3c,
1593 		0x38d48, 0x38d50,
1594 		0x39200, 0x3920c,
1595 		0x39220, 0x39220,
1596 		0x39240, 0x39240,
1597 		0x39600, 0x3960c,
1598 		0x39a00, 0x39a1c,
1599 		0x39e00, 0x39e20,
1600 		0x39e38, 0x39e3c,
1601 		0x39e80, 0x39e80,
1602 		0x39e88, 0x39ea8,
1603 		0x39eb0, 0x39eb4,
1604 		0x39ec8, 0x39ed4,
1605 		0x39fb8, 0x3a004,
1606 		0x3a200, 0x3a200,
1607 		0x3a208, 0x3a240,
1608 		0x3a248, 0x3a280,
1609 		0x3a288, 0x3a2c0,
1610 		0x3a2c8, 0x3a2fc,
1611 		0x3a600, 0x3a630,
1612 		0x3aa00, 0x3aabc,
1613 		0x3ab00, 0x3ab10,
1614 		0x3ab20, 0x3ab30,
1615 		0x3ab40, 0x3ab50,
1616 		0x3ab60, 0x3ab70,
1617 		0x3b000, 0x3b028,
1618 		0x3b030, 0x3b048,
1619 		0x3b060, 0x3b068,
1620 		0x3b070, 0x3b09c,
1621 		0x3b0f0, 0x3b128,
1622 		0x3b130, 0x3b148,
1623 		0x3b160, 0x3b168,
1624 		0x3b170, 0x3b19c,
1625 		0x3b1f0, 0x3b238,
1626 		0x3b240, 0x3b240,
1627 		0x3b248, 0x3b250,
1628 		0x3b25c, 0x3b264,
1629 		0x3b270, 0x3b2b8,
1630 		0x3b2c0, 0x3b2e4,
1631 		0x3b2f8, 0x3b338,
1632 		0x3b340, 0x3b340,
1633 		0x3b348, 0x3b350,
1634 		0x3b35c, 0x3b364,
1635 		0x3b370, 0x3b3b8,
1636 		0x3b3c0, 0x3b3e4,
1637 		0x3b3f8, 0x3b428,
1638 		0x3b430, 0x3b448,
1639 		0x3b460, 0x3b468,
1640 		0x3b470, 0x3b49c,
1641 		0x3b4f0, 0x3b528,
1642 		0x3b530, 0x3b548,
1643 		0x3b560, 0x3b568,
1644 		0x3b570, 0x3b59c,
1645 		0x3b5f0, 0x3b638,
1646 		0x3b640, 0x3b640,
1647 		0x3b648, 0x3b650,
1648 		0x3b65c, 0x3b664,
1649 		0x3b670, 0x3b6b8,
1650 		0x3b6c0, 0x3b6e4,
1651 		0x3b6f8, 0x3b738,
1652 		0x3b740, 0x3b740,
1653 		0x3b748, 0x3b750,
1654 		0x3b75c, 0x3b764,
1655 		0x3b770, 0x3b7b8,
1656 		0x3b7c0, 0x3b7e4,
1657 		0x3b7f8, 0x3b7fc,
1658 		0x3b814, 0x3b814,
1659 		0x3b82c, 0x3b82c,
1660 		0x3b880, 0x3b88c,
1661 		0x3b8e8, 0x3b8ec,
1662 		0x3b900, 0x3b928,
1663 		0x3b930, 0x3b948,
1664 		0x3b960, 0x3b968,
1665 		0x3b970, 0x3b99c,
1666 		0x3b9f0, 0x3ba38,
1667 		0x3ba40, 0x3ba40,
1668 		0x3ba48, 0x3ba50,
1669 		0x3ba5c, 0x3ba64,
1670 		0x3ba70, 0x3bab8,
1671 		0x3bac0, 0x3bae4,
1672 		0x3baf8, 0x3bb10,
1673 		0x3bb28, 0x3bb28,
1674 		0x3bb3c, 0x3bb50,
1675 		0x3bbf0, 0x3bc10,
1676 		0x3bc28, 0x3bc28,
1677 		0x3bc3c, 0x3bc50,
1678 		0x3bcf0, 0x3bcfc,
1679 		0x3c000, 0x3c030,
1680 		0x3c038, 0x3c038,
1681 		0x3c040, 0x3c040,
1682 		0x3c100, 0x3c144,
1683 		0x3c190, 0x3c1a0,
1684 		0x3c1a8, 0x3c1b8,
1685 		0x3c1c4, 0x3c1c8,
1686 		0x3c1d0, 0x3c1d0,
1687 		0x3c200, 0x3c318,
1688 		0x3c400, 0x3c4b4,
1689 		0x3c4c0, 0x3c52c,
1690 		0x3c540, 0x3c61c,
1691 		0x3c800, 0x3c828,
1692 		0x3c834, 0x3c834,
1693 		0x3c8c0, 0x3c908,
1694 		0x3c910, 0x3c9ac,
1695 		0x3ca00, 0x3ca14,
1696 		0x3ca1c, 0x3ca2c,
1697 		0x3ca44, 0x3ca50,
1698 		0x3ca74, 0x3ca74,
1699 		0x3ca7c, 0x3cafc,
1700 		0x3cb08, 0x3cc24,
1701 		0x3cd00, 0x3cd00,
1702 		0x3cd08, 0x3cd14,
1703 		0x3cd1c, 0x3cd20,
1704 		0x3cd3c, 0x3cd3c,
1705 		0x3cd48, 0x3cd50,
1706 		0x3d200, 0x3d20c,
1707 		0x3d220, 0x3d220,
1708 		0x3d240, 0x3d240,
1709 		0x3d600, 0x3d60c,
1710 		0x3da00, 0x3da1c,
1711 		0x3de00, 0x3de20,
1712 		0x3de38, 0x3de3c,
1713 		0x3de80, 0x3de80,
1714 		0x3de88, 0x3dea8,
1715 		0x3deb0, 0x3deb4,
1716 		0x3dec8, 0x3ded4,
1717 		0x3dfb8, 0x3e004,
1718 		0x3e200, 0x3e200,
1719 		0x3e208, 0x3e240,
1720 		0x3e248, 0x3e280,
1721 		0x3e288, 0x3e2c0,
1722 		0x3e2c8, 0x3e2fc,
1723 		0x3e600, 0x3e630,
1724 		0x3ea00, 0x3eabc,
1725 		0x3eb00, 0x3eb10,
1726 		0x3eb20, 0x3eb30,
1727 		0x3eb40, 0x3eb50,
1728 		0x3eb60, 0x3eb70,
1729 		0x3f000, 0x3f028,
1730 		0x3f030, 0x3f048,
1731 		0x3f060, 0x3f068,
1732 		0x3f070, 0x3f09c,
1733 		0x3f0f0, 0x3f128,
1734 		0x3f130, 0x3f148,
1735 		0x3f160, 0x3f168,
1736 		0x3f170, 0x3f19c,
1737 		0x3f1f0, 0x3f238,
1738 		0x3f240, 0x3f240,
1739 		0x3f248, 0x3f250,
1740 		0x3f25c, 0x3f264,
1741 		0x3f270, 0x3f2b8,
1742 		0x3f2c0, 0x3f2e4,
1743 		0x3f2f8, 0x3f338,
1744 		0x3f340, 0x3f340,
1745 		0x3f348, 0x3f350,
1746 		0x3f35c, 0x3f364,
1747 		0x3f370, 0x3f3b8,
1748 		0x3f3c0, 0x3f3e4,
1749 		0x3f3f8, 0x3f428,
1750 		0x3f430, 0x3f448,
1751 		0x3f460, 0x3f468,
1752 		0x3f470, 0x3f49c,
1753 		0x3f4f0, 0x3f528,
1754 		0x3f530, 0x3f548,
1755 		0x3f560, 0x3f568,
1756 		0x3f570, 0x3f59c,
1757 		0x3f5f0, 0x3f638,
1758 		0x3f640, 0x3f640,
1759 		0x3f648, 0x3f650,
1760 		0x3f65c, 0x3f664,
1761 		0x3f670, 0x3f6b8,
1762 		0x3f6c0, 0x3f6e4,
1763 		0x3f6f8, 0x3f738,
1764 		0x3f740, 0x3f740,
1765 		0x3f748, 0x3f750,
1766 		0x3f75c, 0x3f764,
1767 		0x3f770, 0x3f7b8,
1768 		0x3f7c0, 0x3f7e4,
1769 		0x3f7f8, 0x3f7fc,
1770 		0x3f814, 0x3f814,
1771 		0x3f82c, 0x3f82c,
1772 		0x3f880, 0x3f88c,
1773 		0x3f8e8, 0x3f8ec,
1774 		0x3f900, 0x3f928,
1775 		0x3f930, 0x3f948,
1776 		0x3f960, 0x3f968,
1777 		0x3f970, 0x3f99c,
1778 		0x3f9f0, 0x3fa38,
1779 		0x3fa40, 0x3fa40,
1780 		0x3fa48, 0x3fa50,
1781 		0x3fa5c, 0x3fa64,
1782 		0x3fa70, 0x3fab8,
1783 		0x3fac0, 0x3fae4,
1784 		0x3faf8, 0x3fb10,
1785 		0x3fb28, 0x3fb28,
1786 		0x3fb3c, 0x3fb50,
1787 		0x3fbf0, 0x3fc10,
1788 		0x3fc28, 0x3fc28,
1789 		0x3fc3c, 0x3fc50,
1790 		0x3fcf0, 0x3fcfc,
1791 		0x40000, 0x4000c,
1792 		0x40040, 0x40050,
1793 		0x40060, 0x40068,
1794 		0x4007c, 0x4008c,
1795 		0x40094, 0x400b0,
1796 		0x400c0, 0x40144,
1797 		0x40180, 0x4018c,
1798 		0x40200, 0x40254,
1799 		0x40260, 0x40264,
1800 		0x40270, 0x40288,
1801 		0x40290, 0x40298,
1802 		0x402ac, 0x402c8,
1803 		0x402d0, 0x402e0,
1804 		0x402f0, 0x402f0,
1805 		0x40300, 0x4033c,
1806 		0x403f8, 0x403fc,
1807 		0x41304, 0x413c4,
1808 		0x41400, 0x4140c,
1809 		0x41414, 0x4141c,
1810 		0x41480, 0x414d0,
1811 		0x44000, 0x44054,
1812 		0x4405c, 0x44078,
1813 		0x440c0, 0x44174,
1814 		0x44180, 0x441ac,
1815 		0x441b4, 0x441b8,
1816 		0x441c0, 0x44254,
1817 		0x4425c, 0x44278,
1818 		0x442c0, 0x44374,
1819 		0x44380, 0x443ac,
1820 		0x443b4, 0x443b8,
1821 		0x443c0, 0x44454,
1822 		0x4445c, 0x44478,
1823 		0x444c0, 0x44574,
1824 		0x44580, 0x445ac,
1825 		0x445b4, 0x445b8,
1826 		0x445c0, 0x44654,
1827 		0x4465c, 0x44678,
1828 		0x446c0, 0x44774,
1829 		0x44780, 0x447ac,
1830 		0x447b4, 0x447b8,
1831 		0x447c0, 0x44854,
1832 		0x4485c, 0x44878,
1833 		0x448c0, 0x44974,
1834 		0x44980, 0x449ac,
1835 		0x449b4, 0x449b8,
1836 		0x449c0, 0x449fc,
1837 		0x45000, 0x45004,
1838 		0x45010, 0x45030,
1839 		0x45040, 0x45060,
1840 		0x45068, 0x45068,
1841 		0x45080, 0x45084,
1842 		0x450a0, 0x450b0,
1843 		0x45200, 0x45204,
1844 		0x45210, 0x45230,
1845 		0x45240, 0x45260,
1846 		0x45268, 0x45268,
1847 		0x45280, 0x45284,
1848 		0x452a0, 0x452b0,
1849 		0x460c0, 0x460e4,
1850 		0x47000, 0x4703c,
1851 		0x47044, 0x4708c,
1852 		0x47200, 0x47250,
1853 		0x47400, 0x47408,
1854 		0x47414, 0x47420,
1855 		0x47600, 0x47618,
1856 		0x47800, 0x47814,
1857 		0x48000, 0x4800c,
1858 		0x48040, 0x48050,
1859 		0x48060, 0x48068,
1860 		0x4807c, 0x4808c,
1861 		0x48094, 0x480b0,
1862 		0x480c0, 0x48144,
1863 		0x48180, 0x4818c,
1864 		0x48200, 0x48254,
1865 		0x48260, 0x48264,
1866 		0x48270, 0x48288,
1867 		0x48290, 0x48298,
1868 		0x482ac, 0x482c8,
1869 		0x482d0, 0x482e0,
1870 		0x482f0, 0x482f0,
1871 		0x48300, 0x4833c,
1872 		0x483f8, 0x483fc,
1873 		0x49304, 0x493c4,
1874 		0x49400, 0x4940c,
1875 		0x49414, 0x4941c,
1876 		0x49480, 0x494d0,
1877 		0x4c000, 0x4c054,
1878 		0x4c05c, 0x4c078,
1879 		0x4c0c0, 0x4c174,
1880 		0x4c180, 0x4c1ac,
1881 		0x4c1b4, 0x4c1b8,
1882 		0x4c1c0, 0x4c254,
1883 		0x4c25c, 0x4c278,
1884 		0x4c2c0, 0x4c374,
1885 		0x4c380, 0x4c3ac,
1886 		0x4c3b4, 0x4c3b8,
1887 		0x4c3c0, 0x4c454,
1888 		0x4c45c, 0x4c478,
1889 		0x4c4c0, 0x4c574,
1890 		0x4c580, 0x4c5ac,
1891 		0x4c5b4, 0x4c5b8,
1892 		0x4c5c0, 0x4c654,
1893 		0x4c65c, 0x4c678,
1894 		0x4c6c0, 0x4c774,
1895 		0x4c780, 0x4c7ac,
1896 		0x4c7b4, 0x4c7b8,
1897 		0x4c7c0, 0x4c854,
1898 		0x4c85c, 0x4c878,
1899 		0x4c8c0, 0x4c974,
1900 		0x4c980, 0x4c9ac,
1901 		0x4c9b4, 0x4c9b8,
1902 		0x4c9c0, 0x4c9fc,
1903 		0x4d000, 0x4d004,
1904 		0x4d010, 0x4d030,
1905 		0x4d040, 0x4d060,
1906 		0x4d068, 0x4d068,
1907 		0x4d080, 0x4d084,
1908 		0x4d0a0, 0x4d0b0,
1909 		0x4d200, 0x4d204,
1910 		0x4d210, 0x4d230,
1911 		0x4d240, 0x4d260,
1912 		0x4d268, 0x4d268,
1913 		0x4d280, 0x4d284,
1914 		0x4d2a0, 0x4d2b0,
1915 		0x4e0c0, 0x4e0e4,
1916 		0x4f000, 0x4f03c,
1917 		0x4f044, 0x4f08c,
1918 		0x4f200, 0x4f250,
1919 		0x4f400, 0x4f408,
1920 		0x4f414, 0x4f420,
1921 		0x4f600, 0x4f618,
1922 		0x4f800, 0x4f814,
1923 		0x50000, 0x50084,
1924 		0x50090, 0x500cc,
1925 		0x50400, 0x50400,
1926 		0x50800, 0x50884,
1927 		0x50890, 0x508cc,
1928 		0x50c00, 0x50c00,
1929 		0x51000, 0x5101c,
1930 		0x51300, 0x51308,
1931 	};
1932 
1933 	static const unsigned int t6_reg_ranges[] = {
1934 		0x1008, 0x101c,
1935 		0x1024, 0x10a8,
1936 		0x10b4, 0x10f8,
1937 		0x1100, 0x1114,
1938 		0x111c, 0x112c,
1939 		0x1138, 0x113c,
1940 		0x1144, 0x114c,
1941 		0x1180, 0x1184,
1942 		0x1190, 0x1194,
1943 		0x11a0, 0x11a4,
1944 		0x11b0, 0x11b4,
1945 		0x11fc, 0x1254,
1946 		0x1280, 0x133c,
1947 		0x1800, 0x18fc,
1948 		0x3000, 0x302c,
1949 		0x3060, 0x30b0,
1950 		0x30b8, 0x30d8,
1951 		0x30e0, 0x30fc,
1952 		0x3140, 0x357c,
1953 		0x35a8, 0x35cc,
1954 		0x35ec, 0x35ec,
1955 		0x3600, 0x5624,
1956 		0x56cc, 0x56ec,
1957 		0x56f4, 0x5720,
1958 		0x5728, 0x575c,
1959 		0x580c, 0x5814,
1960 		0x5890, 0x589c,
1961 		0x58a4, 0x58ac,
1962 		0x58b8, 0x58bc,
1963 		0x5940, 0x595c,
1964 		0x5980, 0x598c,
1965 		0x59b0, 0x59c8,
1966 		0x59d0, 0x59dc,
1967 		0x59fc, 0x5a18,
1968 		0x5a60, 0x5a6c,
1969 		0x5a80, 0x5a8c,
1970 		0x5a94, 0x5a9c,
1971 		0x5b94, 0x5bfc,
1972 		0x5c10, 0x5e48,
1973 		0x5e50, 0x5e94,
1974 		0x5ea0, 0x5eb0,
1975 		0x5ec0, 0x5ec0,
1976 		0x5ec8, 0x5ecc,
1977 		0x6000, 0x6020,
1978 		0x6028, 0x6040,
1979 		0x6058, 0x609c,
1980 		0x60a8, 0x619c,
1981 		0x7700, 0x7798,
1982 		0x77c0, 0x7880,
1983 		0x78cc, 0x78fc,
1984 		0x7b00, 0x7b58,
1985 		0x7b60, 0x7b84,
1986 		0x7b8c, 0x7c54,
1987 		0x7d00, 0x7d38,
1988 		0x7d40, 0x7d84,
1989 		0x7d8c, 0x7ddc,
1990 		0x7de4, 0x7e04,
1991 		0x7e10, 0x7e1c,
1992 		0x7e24, 0x7e38,
1993 		0x7e40, 0x7e44,
1994 		0x7e4c, 0x7e78,
1995 		0x7e80, 0x7edc,
1996 		0x7ee8, 0x7efc,
1997 		0x8dc0, 0x8de4,
1998 		0x8df8, 0x8e04,
1999 		0x8e10, 0x8e84,
2000 		0x8ea0, 0x8f88,
2001 		0x8fb8, 0x9058,
2002 		0x9060, 0x9060,
2003 		0x9068, 0x90f8,
2004 		0x9100, 0x9124,
2005 		0x9400, 0x9470,
2006 		0x9600, 0x9600,
2007 		0x9608, 0x9638,
2008 		0x9640, 0x9704,
2009 		0x9710, 0x971c,
2010 		0x9800, 0x9808,
2011 		0x9820, 0x983c,
2012 		0x9850, 0x9864,
2013 		0x9c00, 0x9c6c,
2014 		0x9c80, 0x9cec,
2015 		0x9d00, 0x9d6c,
2016 		0x9d80, 0x9dec,
2017 		0x9e00, 0x9e6c,
2018 		0x9e80, 0x9eec,
2019 		0x9f00, 0x9f6c,
2020 		0x9f80, 0xa020,
2021 		0xd004, 0xd03c,
2022 		0xd100, 0xd118,
2023 		0xd200, 0xd214,
2024 		0xd220, 0xd234,
2025 		0xd240, 0xd254,
2026 		0xd260, 0xd274,
2027 		0xd280, 0xd294,
2028 		0xd2a0, 0xd2b4,
2029 		0xd2c0, 0xd2d4,
2030 		0xd2e0, 0xd2f4,
2031 		0xd300, 0xd31c,
2032 		0xdfc0, 0xdfe0,
2033 		0xe000, 0xf008,
2034 		0x11000, 0x11014,
2035 		0x11048, 0x1106c,
2036 		0x11074, 0x11088,
2037 		0x11098, 0x11120,
2038 		0x1112c, 0x1117c,
2039 		0x11190, 0x112e0,
2040 		0x11300, 0x1130c,
2041 		0x12000, 0x1206c,
2042 		0x19040, 0x1906c,
2043 		0x19078, 0x19080,
2044 		0x1908c, 0x190e8,
2045 		0x190f0, 0x190f8,
2046 		0x19100, 0x19110,
2047 		0x19120, 0x19124,
2048 		0x19150, 0x19194,
2049 		0x1919c, 0x191b0,
2050 		0x191d0, 0x191e8,
2051 		0x19238, 0x192b0,
2052 		0x192bc, 0x192bc,
2053 		0x19348, 0x1934c,
2054 		0x193f8, 0x19418,
2055 		0x19420, 0x19428,
2056 		0x19430, 0x19444,
2057 		0x1944c, 0x1946c,
2058 		0x19474, 0x19474,
2059 		0x19490, 0x194cc,
2060 		0x194f0, 0x194f8,
2061 		0x19c00, 0x19c48,
2062 		0x19c50, 0x19c80,
2063 		0x19c94, 0x19c98,
2064 		0x19ca0, 0x19cbc,
2065 		0x19ce4, 0x19ce4,
2066 		0x19cf0, 0x19cf8,
2067 		0x19d00, 0x19d28,
2068 		0x19d50, 0x19d78,
2069 		0x19d94, 0x19d98,
2070 		0x19da0, 0x19dc8,
2071 		0x19df0, 0x19e10,
2072 		0x19e50, 0x19e6c,
2073 		0x19ea0, 0x19ebc,
2074 		0x19ec4, 0x19ef4,
2075 		0x19f04, 0x19f2c,
2076 		0x19f34, 0x19f34,
2077 		0x19f40, 0x19f50,
2078 		0x19f90, 0x19fac,
2079 		0x19fc4, 0x19fc8,
2080 		0x19fd0, 0x19fe4,
2081 		0x1a000, 0x1a004,
2082 		0x1a010, 0x1a06c,
2083 		0x1a0b0, 0x1a0e4,
2084 		0x1a0ec, 0x1a0f8,
2085 		0x1a100, 0x1a108,
2086 		0x1a114, 0x1a120,
2087 		0x1a128, 0x1a130,
2088 		0x1a138, 0x1a138,
2089 		0x1a190, 0x1a1c4,
2090 		0x1a1fc, 0x1a1fc,
2091 		0x1e008, 0x1e00c,
2092 		0x1e040, 0x1e044,
2093 		0x1e04c, 0x1e04c,
2094 		0x1e284, 0x1e290,
2095 		0x1e2c0, 0x1e2c0,
2096 		0x1e2e0, 0x1e2e0,
2097 		0x1e300, 0x1e384,
2098 		0x1e3c0, 0x1e3c8,
2099 		0x1e408, 0x1e40c,
2100 		0x1e440, 0x1e444,
2101 		0x1e44c, 0x1e44c,
2102 		0x1e684, 0x1e690,
2103 		0x1e6c0, 0x1e6c0,
2104 		0x1e6e0, 0x1e6e0,
2105 		0x1e700, 0x1e784,
2106 		0x1e7c0, 0x1e7c8,
2107 		0x1e808, 0x1e80c,
2108 		0x1e840, 0x1e844,
2109 		0x1e84c, 0x1e84c,
2110 		0x1ea84, 0x1ea90,
2111 		0x1eac0, 0x1eac0,
2112 		0x1eae0, 0x1eae0,
2113 		0x1eb00, 0x1eb84,
2114 		0x1ebc0, 0x1ebc8,
2115 		0x1ec08, 0x1ec0c,
2116 		0x1ec40, 0x1ec44,
2117 		0x1ec4c, 0x1ec4c,
2118 		0x1ee84, 0x1ee90,
2119 		0x1eec0, 0x1eec0,
2120 		0x1eee0, 0x1eee0,
2121 		0x1ef00, 0x1ef84,
2122 		0x1efc0, 0x1efc8,
2123 		0x1f008, 0x1f00c,
2124 		0x1f040, 0x1f044,
2125 		0x1f04c, 0x1f04c,
2126 		0x1f284, 0x1f290,
2127 		0x1f2c0, 0x1f2c0,
2128 		0x1f2e0, 0x1f2e0,
2129 		0x1f300, 0x1f384,
2130 		0x1f3c0, 0x1f3c8,
2131 		0x1f408, 0x1f40c,
2132 		0x1f440, 0x1f444,
2133 		0x1f44c, 0x1f44c,
2134 		0x1f684, 0x1f690,
2135 		0x1f6c0, 0x1f6c0,
2136 		0x1f6e0, 0x1f6e0,
2137 		0x1f700, 0x1f784,
2138 		0x1f7c0, 0x1f7c8,
2139 		0x1f808, 0x1f80c,
2140 		0x1f840, 0x1f844,
2141 		0x1f84c, 0x1f84c,
2142 		0x1fa84, 0x1fa90,
2143 		0x1fac0, 0x1fac0,
2144 		0x1fae0, 0x1fae0,
2145 		0x1fb00, 0x1fb84,
2146 		0x1fbc0, 0x1fbc8,
2147 		0x1fc08, 0x1fc0c,
2148 		0x1fc40, 0x1fc44,
2149 		0x1fc4c, 0x1fc4c,
2150 		0x1fe84, 0x1fe90,
2151 		0x1fec0, 0x1fec0,
2152 		0x1fee0, 0x1fee0,
2153 		0x1ff00, 0x1ff84,
2154 		0x1ffc0, 0x1ffc8,
2155 		0x30000, 0x30030,
2156 		0x30038, 0x30038,
2157 		0x30040, 0x30040,
2158 		0x30048, 0x30048,
2159 		0x30050, 0x30050,
2160 		0x3005c, 0x30060,
2161 		0x30068, 0x30068,
2162 		0x30070, 0x30070,
2163 		0x30100, 0x30168,
2164 		0x30190, 0x301a0,
2165 		0x301a8, 0x301b8,
2166 		0x301c4, 0x301c8,
2167 		0x301d0, 0x301d0,
2168 		0x30200, 0x30320,
2169 		0x30400, 0x304b4,
2170 		0x304c0, 0x3052c,
2171 		0x30540, 0x3061c,
2172 		0x30800, 0x308a0,
2173 		0x308c0, 0x30908,
2174 		0x30910, 0x309b8,
2175 		0x30a00, 0x30a04,
2176 		0x30a0c, 0x30a14,
2177 		0x30a1c, 0x30a2c,
2178 		0x30a44, 0x30a50,
2179 		0x30a74, 0x30a74,
2180 		0x30a7c, 0x30afc,
2181 		0x30b08, 0x30c24,
2182 		0x30d00, 0x30d14,
2183 		0x30d1c, 0x30d3c,
2184 		0x30d44, 0x30d4c,
2185 		0x30d54, 0x30d74,
2186 		0x30d7c, 0x30d7c,
2187 		0x30de0, 0x30de0,
2188 		0x30e00, 0x30ed4,
2189 		0x30f00, 0x30fa4,
2190 		0x30fc0, 0x30fc4,
2191 		0x31000, 0x31004,
2192 		0x31080, 0x310fc,
2193 		0x31208, 0x31220,
2194 		0x3123c, 0x31254,
2195 		0x31300, 0x31300,
2196 		0x31308, 0x3131c,
2197 		0x31338, 0x3133c,
2198 		0x31380, 0x31380,
2199 		0x31388, 0x313a8,
2200 		0x313b4, 0x313b4,
2201 		0x31400, 0x31420,
2202 		0x31438, 0x3143c,
2203 		0x31480, 0x31480,
2204 		0x314a8, 0x314a8,
2205 		0x314b0, 0x314b4,
2206 		0x314c8, 0x314d4,
2207 		0x31a40, 0x31a4c,
2208 		0x31af0, 0x31b20,
2209 		0x31b38, 0x31b3c,
2210 		0x31b80, 0x31b80,
2211 		0x31ba8, 0x31ba8,
2212 		0x31bb0, 0x31bb4,
2213 		0x31bc8, 0x31bd4,
2214 		0x32140, 0x3218c,
2215 		0x321f0, 0x321f4,
2216 		0x32200, 0x32200,
2217 		0x32218, 0x32218,
2218 		0x32400, 0x32400,
2219 		0x32408, 0x3241c,
2220 		0x32618, 0x32620,
2221 		0x32664, 0x32664,
2222 		0x326a8, 0x326a8,
2223 		0x326ec, 0x326ec,
2224 		0x32a00, 0x32abc,
2225 		0x32b00, 0x32b38,
2226 		0x32b40, 0x32b58,
2227 		0x32b60, 0x32b78,
2228 		0x32c00, 0x32c00,
2229 		0x32c08, 0x32c3c,
2230 		0x32e00, 0x32e2c,
2231 		0x32f00, 0x32f2c,
2232 		0x33000, 0x3302c,
2233 		0x33034, 0x33050,
2234 		0x33058, 0x33058,
2235 		0x33060, 0x3308c,
2236 		0x3309c, 0x330ac,
2237 		0x330c0, 0x330c0,
2238 		0x330c8, 0x330d0,
2239 		0x330d8, 0x330e0,
2240 		0x330ec, 0x3312c,
2241 		0x33134, 0x33150,
2242 		0x33158, 0x33158,
2243 		0x33160, 0x3318c,
2244 		0x3319c, 0x331ac,
2245 		0x331c0, 0x331c0,
2246 		0x331c8, 0x331d0,
2247 		0x331d8, 0x331e0,
2248 		0x331ec, 0x33290,
2249 		0x33298, 0x332c4,
2250 		0x332e4, 0x33390,
2251 		0x33398, 0x333c4,
2252 		0x333e4, 0x3342c,
2253 		0x33434, 0x33450,
2254 		0x33458, 0x33458,
2255 		0x33460, 0x3348c,
2256 		0x3349c, 0x334ac,
2257 		0x334c0, 0x334c0,
2258 		0x334c8, 0x334d0,
2259 		0x334d8, 0x334e0,
2260 		0x334ec, 0x3352c,
2261 		0x33534, 0x33550,
2262 		0x33558, 0x33558,
2263 		0x33560, 0x3358c,
2264 		0x3359c, 0x335ac,
2265 		0x335c0, 0x335c0,
2266 		0x335c8, 0x335d0,
2267 		0x335d8, 0x335e0,
2268 		0x335ec, 0x33690,
2269 		0x33698, 0x336c4,
2270 		0x336e4, 0x33790,
2271 		0x33798, 0x337c4,
2272 		0x337e4, 0x337fc,
2273 		0x33814, 0x33814,
2274 		0x33854, 0x33868,
2275 		0x33880, 0x3388c,
2276 		0x338c0, 0x338d0,
2277 		0x338e8, 0x338ec,
2278 		0x33900, 0x3392c,
2279 		0x33934, 0x33950,
2280 		0x33958, 0x33958,
2281 		0x33960, 0x3398c,
2282 		0x3399c, 0x339ac,
2283 		0x339c0, 0x339c0,
2284 		0x339c8, 0x339d0,
2285 		0x339d8, 0x339e0,
2286 		0x339ec, 0x33a90,
2287 		0x33a98, 0x33ac4,
2288 		0x33ae4, 0x33b10,
2289 		0x33b24, 0x33b28,
2290 		0x33b38, 0x33b50,
2291 		0x33bf0, 0x33c10,
2292 		0x33c24, 0x33c28,
2293 		0x33c38, 0x33c50,
2294 		0x33cf0, 0x33cfc,
2295 		0x34000, 0x34030,
2296 		0x34038, 0x34038,
2297 		0x34040, 0x34040,
2298 		0x34048, 0x34048,
2299 		0x34050, 0x34050,
2300 		0x3405c, 0x34060,
2301 		0x34068, 0x34068,
2302 		0x34070, 0x34070,
2303 		0x34100, 0x34168,
2304 		0x34190, 0x341a0,
2305 		0x341a8, 0x341b8,
2306 		0x341c4, 0x341c8,
2307 		0x341d0, 0x341d0,
2308 		0x34200, 0x34320,
2309 		0x34400, 0x344b4,
2310 		0x344c0, 0x3452c,
2311 		0x34540, 0x3461c,
2312 		0x34800, 0x348a0,
2313 		0x348c0, 0x34908,
2314 		0x34910, 0x349b8,
2315 		0x34a00, 0x34a04,
2316 		0x34a0c, 0x34a14,
2317 		0x34a1c, 0x34a2c,
2318 		0x34a44, 0x34a50,
2319 		0x34a74, 0x34a74,
2320 		0x34a7c, 0x34afc,
2321 		0x34b08, 0x34c24,
2322 		0x34d00, 0x34d14,
2323 		0x34d1c, 0x34d3c,
2324 		0x34d44, 0x34d4c,
2325 		0x34d54, 0x34d74,
2326 		0x34d7c, 0x34d7c,
2327 		0x34de0, 0x34de0,
2328 		0x34e00, 0x34ed4,
2329 		0x34f00, 0x34fa4,
2330 		0x34fc0, 0x34fc4,
2331 		0x35000, 0x35004,
2332 		0x35080, 0x350fc,
2333 		0x35208, 0x35220,
2334 		0x3523c, 0x35254,
2335 		0x35300, 0x35300,
2336 		0x35308, 0x3531c,
2337 		0x35338, 0x3533c,
2338 		0x35380, 0x35380,
2339 		0x35388, 0x353a8,
2340 		0x353b4, 0x353b4,
2341 		0x35400, 0x35420,
2342 		0x35438, 0x3543c,
2343 		0x35480, 0x35480,
2344 		0x354a8, 0x354a8,
2345 		0x354b0, 0x354b4,
2346 		0x354c8, 0x354d4,
2347 		0x35a40, 0x35a4c,
2348 		0x35af0, 0x35b20,
2349 		0x35b38, 0x35b3c,
2350 		0x35b80, 0x35b80,
2351 		0x35ba8, 0x35ba8,
2352 		0x35bb0, 0x35bb4,
2353 		0x35bc8, 0x35bd4,
2354 		0x36140, 0x3618c,
2355 		0x361f0, 0x361f4,
2356 		0x36200, 0x36200,
2357 		0x36218, 0x36218,
2358 		0x36400, 0x36400,
2359 		0x36408, 0x3641c,
2360 		0x36618, 0x36620,
2361 		0x36664, 0x36664,
2362 		0x366a8, 0x366a8,
2363 		0x366ec, 0x366ec,
2364 		0x36a00, 0x36abc,
2365 		0x36b00, 0x36b38,
2366 		0x36b40, 0x36b58,
2367 		0x36b60, 0x36b78,
2368 		0x36c00, 0x36c00,
2369 		0x36c08, 0x36c3c,
2370 		0x36e00, 0x36e2c,
2371 		0x36f00, 0x36f2c,
2372 		0x37000, 0x3702c,
2373 		0x37034, 0x37050,
2374 		0x37058, 0x37058,
2375 		0x37060, 0x3708c,
2376 		0x3709c, 0x370ac,
2377 		0x370c0, 0x370c0,
2378 		0x370c8, 0x370d0,
2379 		0x370d8, 0x370e0,
2380 		0x370ec, 0x3712c,
2381 		0x37134, 0x37150,
2382 		0x37158, 0x37158,
2383 		0x37160, 0x3718c,
2384 		0x3719c, 0x371ac,
2385 		0x371c0, 0x371c0,
2386 		0x371c8, 0x371d0,
2387 		0x371d8, 0x371e0,
2388 		0x371ec, 0x37290,
2389 		0x37298, 0x372c4,
2390 		0x372e4, 0x37390,
2391 		0x37398, 0x373c4,
2392 		0x373e4, 0x3742c,
2393 		0x37434, 0x37450,
2394 		0x37458, 0x37458,
2395 		0x37460, 0x3748c,
2396 		0x3749c, 0x374ac,
2397 		0x374c0, 0x374c0,
2398 		0x374c8, 0x374d0,
2399 		0x374d8, 0x374e0,
2400 		0x374ec, 0x3752c,
2401 		0x37534, 0x37550,
2402 		0x37558, 0x37558,
2403 		0x37560, 0x3758c,
2404 		0x3759c, 0x375ac,
2405 		0x375c0, 0x375c0,
2406 		0x375c8, 0x375d0,
2407 		0x375d8, 0x375e0,
2408 		0x375ec, 0x37690,
2409 		0x37698, 0x376c4,
2410 		0x376e4, 0x37790,
2411 		0x37798, 0x377c4,
2412 		0x377e4, 0x377fc,
2413 		0x37814, 0x37814,
2414 		0x37854, 0x37868,
2415 		0x37880, 0x3788c,
2416 		0x378c0, 0x378d0,
2417 		0x378e8, 0x378ec,
2418 		0x37900, 0x3792c,
2419 		0x37934, 0x37950,
2420 		0x37958, 0x37958,
2421 		0x37960, 0x3798c,
2422 		0x3799c, 0x379ac,
2423 		0x379c0, 0x379c0,
2424 		0x379c8, 0x379d0,
2425 		0x379d8, 0x379e0,
2426 		0x379ec, 0x37a90,
2427 		0x37a98, 0x37ac4,
2428 		0x37ae4, 0x37b10,
2429 		0x37b24, 0x37b28,
2430 		0x37b38, 0x37b50,
2431 		0x37bf0, 0x37c10,
2432 		0x37c24, 0x37c28,
2433 		0x37c38, 0x37c50,
2434 		0x37cf0, 0x37cfc,
2435 		0x40040, 0x40040,
2436 		0x40080, 0x40084,
2437 		0x40100, 0x40100,
2438 		0x40140, 0x401bc,
2439 		0x40200, 0x40214,
2440 		0x40228, 0x40228,
2441 		0x40240, 0x40258,
2442 		0x40280, 0x40280,
2443 		0x40304, 0x40304,
2444 		0x40330, 0x4033c,
2445 		0x41304, 0x413c8,
2446 		0x413d0, 0x413dc,
2447 		0x413f0, 0x413f0,
2448 		0x41400, 0x4140c,
2449 		0x41414, 0x4141c,
2450 		0x41480, 0x414d0,
2451 		0x44000, 0x4407c,
2452 		0x440c0, 0x441ac,
2453 		0x441b4, 0x4427c,
2454 		0x442c0, 0x443ac,
2455 		0x443b4, 0x4447c,
2456 		0x444c0, 0x445ac,
2457 		0x445b4, 0x4467c,
2458 		0x446c0, 0x447ac,
2459 		0x447b4, 0x4487c,
2460 		0x448c0, 0x449ac,
2461 		0x449b4, 0x44a7c,
2462 		0x44ac0, 0x44bac,
2463 		0x44bb4, 0x44c7c,
2464 		0x44cc0, 0x44dac,
2465 		0x44db4, 0x44e7c,
2466 		0x44ec0, 0x44fac,
2467 		0x44fb4, 0x4507c,
2468 		0x450c0, 0x451ac,
2469 		0x451b4, 0x451fc,
2470 		0x45800, 0x45804,
2471 		0x45810, 0x45830,
2472 		0x45840, 0x45860,
2473 		0x45868, 0x45868,
2474 		0x45880, 0x45884,
2475 		0x458a0, 0x458b0,
2476 		0x45a00, 0x45a04,
2477 		0x45a10, 0x45a30,
2478 		0x45a40, 0x45a60,
2479 		0x45a68, 0x45a68,
2480 		0x45a80, 0x45a84,
2481 		0x45aa0, 0x45ab0,
2482 		0x460c0, 0x460e4,
2483 		0x47000, 0x4703c,
2484 		0x47044, 0x4708c,
2485 		0x47200, 0x47250,
2486 		0x47400, 0x47408,
2487 		0x47414, 0x47420,
2488 		0x47600, 0x47618,
2489 		0x47800, 0x47814,
2490 		0x47820, 0x4782c,
2491 		0x50000, 0x50084,
2492 		0x50090, 0x500cc,
2493 		0x50300, 0x50384,
2494 		0x50400, 0x50400,
2495 		0x50800, 0x50884,
2496 		0x50890, 0x508cc,
2497 		0x50b00, 0x50b84,
2498 		0x50c00, 0x50c00,
2499 		0x51000, 0x51020,
2500 		0x51028, 0x510b0,
2501 		0x51300, 0x51324,
2502 	};
2503 
2504 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2505 	const unsigned int *reg_ranges;
2506 	int reg_ranges_size, range;
2507 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2508 
2509 	/* Select the right set of register ranges to dump depending on the
2510 	 * adapter chip type.
2511 	 */
2512 	switch (chip_version) {
2513 	case CHELSIO_T4:
2514 		reg_ranges = t4_reg_ranges;
2515 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2516 		break;
2517 
2518 	case CHELSIO_T5:
2519 		reg_ranges = t5_reg_ranges;
2520 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2521 		break;
2522 
2523 	case CHELSIO_T6:
2524 		reg_ranges = t6_reg_ranges;
2525 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2526 		break;
2527 
2528 	default:
2529 		dev_err(adap->pdev_dev,
2530 			"Unsupported chip version %d\n", chip_version);
2531 		return;
2532 	}
2533 
2534 	/* Clear the register buffer and insert the appropriate register
2535 	 * values selected by the above register ranges.
2536 	 */
2537 	memset(buf, 0, buf_size);
2538 	for (range = 0; range < reg_ranges_size; range += 2) {
2539 		unsigned int reg = reg_ranges[range];
2540 		unsigned int last_reg = reg_ranges[range + 1];
2541 		u32 *bufp = (u32 *)((char *)buf + reg);
2542 
2543 		/* Iterate across the register range filling in the register
2544 		 * buffer but don't write past the end of the register buffer.
2545 		 */
2546 		while (reg <= last_reg && bufp < buf_end) {
2547 			*bufp++ = t4_read_reg(adap, reg);
2548 			reg += sizeof(u32);
2549 		}
2550 	}
2551 }
2552 
2553 #define EEPROM_STAT_ADDR   0x7bfc
2554 #define VPD_BASE           0x400
2555 #define VPD_BASE_OLD       0
2556 #define VPD_LEN            1024
2557 #define CHELSIO_VPD_UNIQUE_ID 0x82
2558 
2559 /**
2560  *	t4_seeprom_wp - enable/disable EEPROM write protection
2561  *	@adapter: the adapter
2562  *	@enable: whether to enable or disable write protection
2563  *
2564  *	Enables or disables write protection on the serial EEPROM.
2565  */
t4_seeprom_wp(struct adapter * adapter,bool enable)2566 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2567 {
2568 	unsigned int v = enable ? 0xc : 0;
2569 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2570 	return ret < 0 ? ret : 0;
2571 }
2572 
2573 /**
2574  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2575  *	@adapter: adapter to read
2576  *	@p: where to store the parameters
2577  *
2578  *	Reads card parameters stored in VPD EEPROM.
2579  */
t4_get_raw_vpd_params(struct adapter * adapter,struct vpd_params * p)2580 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2581 {
2582 	int i, ret = 0, addr;
2583 	int ec, sn, pn, na;
2584 	u8 *vpd, csum;
2585 	unsigned int vpdr_len, kw_offset, id_len;
2586 
2587 	vpd = vmalloc(VPD_LEN);
2588 	if (!vpd)
2589 		return -ENOMEM;
2590 
2591 	/* Card information normally starts at VPD_BASE but early cards had
2592 	 * it at 0.
2593 	 */
2594 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2595 	if (ret < 0)
2596 		goto out;
2597 
2598 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2599 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2600 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2601 	 * is expected to automatically put this entry at the
2602 	 * beginning of the VPD.
2603 	 */
2604 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2605 
2606 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2607 	if (ret < 0)
2608 		goto out;
2609 
2610 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2611 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2612 		ret = -EINVAL;
2613 		goto out;
2614 	}
2615 
2616 	id_len = pci_vpd_lrdt_size(vpd);
2617 	if (id_len > ID_LEN)
2618 		id_len = ID_LEN;
2619 
2620 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2621 	if (i < 0) {
2622 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2623 		ret = -EINVAL;
2624 		goto out;
2625 	}
2626 
2627 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2628 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2629 	if (vpdr_len + kw_offset > VPD_LEN) {
2630 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2631 		ret = -EINVAL;
2632 		goto out;
2633 	}
2634 
2635 #define FIND_VPD_KW(var, name) do { \
2636 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2637 	if (var < 0) { \
2638 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2639 		ret = -EINVAL; \
2640 		goto out; \
2641 	} \
2642 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2643 } while (0)
2644 
2645 	FIND_VPD_KW(i, "RV");
2646 	for (csum = 0; i >= 0; i--)
2647 		csum += vpd[i];
2648 
2649 	if (csum) {
2650 		dev_err(adapter->pdev_dev,
2651 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2652 		ret = -EINVAL;
2653 		goto out;
2654 	}
2655 
2656 	FIND_VPD_KW(ec, "EC");
2657 	FIND_VPD_KW(sn, "SN");
2658 	FIND_VPD_KW(pn, "PN");
2659 	FIND_VPD_KW(na, "NA");
2660 #undef FIND_VPD_KW
2661 
2662 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2663 	strim(p->id);
2664 	memcpy(p->ec, vpd + ec, EC_LEN);
2665 	strim(p->ec);
2666 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2667 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2668 	strim(p->sn);
2669 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2670 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2671 	strim(p->pn);
2672 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2673 	strim((char *)p->na);
2674 
2675 out:
2676 	vfree(vpd);
2677 	return ret;
2678 }
2679 
2680 /**
2681  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2682  *	@adapter: adapter to read
2683  *	@p: where to store the parameters
2684  *
2685  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2686  *	Clock.  This can only be called after a connection to the firmware
2687  *	is established.
2688  */
t4_get_vpd_params(struct adapter * adapter,struct vpd_params * p)2689 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2690 {
2691 	u32 cclk_param, cclk_val;
2692 	int ret;
2693 
2694 	/* Grab the raw VPD parameters.
2695 	 */
2696 	ret = t4_get_raw_vpd_params(adapter, p);
2697 	if (ret)
2698 		return ret;
2699 
2700 	/* Ask firmware for the Core Clock since it knows how to translate the
2701 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2702 	 */
2703 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2704 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2705 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2706 			      1, &cclk_param, &cclk_val);
2707 
2708 	if (ret)
2709 		return ret;
2710 	p->cclk = cclk_val;
2711 
2712 	return 0;
2713 }
2714 
2715 /* serial flash and firmware constants */
2716 enum {
2717 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2718 
2719 	/* flash command opcodes */
2720 	SF_PROG_PAGE    = 2,          /* program page */
2721 	SF_WR_DISABLE   = 4,          /* disable writes */
2722 	SF_RD_STATUS    = 5,          /* read status register */
2723 	SF_WR_ENABLE    = 6,          /* enable writes */
2724 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2725 	SF_RD_ID        = 0x9f,       /* read ID */
2726 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2727 
2728 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2729 };
2730 
2731 /**
2732  *	sf1_read - read data from the serial flash
2733  *	@adapter: the adapter
2734  *	@byte_cnt: number of bytes to read
2735  *	@cont: whether another operation will be chained
2736  *	@lock: whether to lock SF for PL access only
2737  *	@valp: where to store the read data
2738  *
2739  *	Reads up to 4 bytes of data from the serial flash.  The location of
2740  *	the read needs to be specified prior to calling this by issuing the
2741  *	appropriate commands to the serial flash.
2742  */
sf1_read(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 * valp)2743 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2744 		    int lock, u32 *valp)
2745 {
2746 	int ret;
2747 
2748 	if (!byte_cnt || byte_cnt > 4)
2749 		return -EINVAL;
2750 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2751 		return -EBUSY;
2752 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2753 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2754 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2755 	if (!ret)
2756 		*valp = t4_read_reg(adapter, SF_DATA_A);
2757 	return ret;
2758 }
2759 
2760 /**
2761  *	sf1_write - write data to the serial flash
2762  *	@adapter: the adapter
2763  *	@byte_cnt: number of bytes to write
2764  *	@cont: whether another operation will be chained
2765  *	@lock: whether to lock SF for PL access only
2766  *	@val: value to write
2767  *
2768  *	Writes up to 4 bytes of data to the serial flash.  The location of
2769  *	the write needs to be specified prior to calling this by issuing the
2770  *	appropriate commands to the serial flash.
2771  */
sf1_write(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 val)2772 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2773 		     int lock, u32 val)
2774 {
2775 	if (!byte_cnt || byte_cnt > 4)
2776 		return -EINVAL;
2777 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2778 		return -EBUSY;
2779 	t4_write_reg(adapter, SF_DATA_A, val);
2780 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2781 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2782 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2783 }
2784 
2785 /**
2786  *	flash_wait_op - wait for a flash operation to complete
2787  *	@adapter: the adapter
2788  *	@attempts: max number of polls of the status register
2789  *	@delay: delay between polls in ms
2790  *
2791  *	Wait for a flash operation to complete by polling the status register.
2792  */
flash_wait_op(struct adapter * adapter,int attempts,int delay)2793 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2794 {
2795 	int ret;
2796 	u32 status;
2797 
2798 	while (1) {
2799 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2800 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2801 			return ret;
2802 		if (!(status & 1))
2803 			return 0;
2804 		if (--attempts == 0)
2805 			return -EAGAIN;
2806 		if (delay)
2807 			msleep(delay);
2808 	}
2809 }
2810 
2811 /**
2812  *	t4_read_flash - read words from serial flash
2813  *	@adapter: the adapter
2814  *	@addr: the start address for the read
2815  *	@nwords: how many 32-bit words to read
2816  *	@data: where to store the read data
2817  *	@byte_oriented: whether to store data as bytes or as words
2818  *
2819  *	Read the specified number of 32-bit words from the serial flash.
2820  *	If @byte_oriented is set the read data is stored as a byte array
2821  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2822  *	natural endianness.
2823  */
t4_read_flash(struct adapter * adapter,unsigned int addr,unsigned int nwords,u32 * data,int byte_oriented)2824 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2825 		  unsigned int nwords, u32 *data, int byte_oriented)
2826 {
2827 	int ret;
2828 
2829 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2830 		return -EINVAL;
2831 
2832 	addr = swab32(addr) | SF_RD_DATA_FAST;
2833 
2834 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2835 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2836 		return ret;
2837 
2838 	for ( ; nwords; nwords--, data++) {
2839 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2840 		if (nwords == 1)
2841 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2842 		if (ret)
2843 			return ret;
2844 		if (byte_oriented)
2845 			*data = (__force __u32)(cpu_to_be32(*data));
2846 	}
2847 	return 0;
2848 }
2849 
2850 /**
2851  *	t4_write_flash - write up to a page of data to the serial flash
2852  *	@adapter: the adapter
2853  *	@addr: the start address to write
2854  *	@n: length of data to write in bytes
2855  *	@data: the data to write
2856  *
2857  *	Writes up to a page of data (256 bytes) to the serial flash starting
2858  *	at the given address.  All the data must be written to the same page.
2859  */
t4_write_flash(struct adapter * adapter,unsigned int addr,unsigned int n,const u8 * data)2860 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2861 			  unsigned int n, const u8 *data)
2862 {
2863 	int ret;
2864 	u32 buf[64];
2865 	unsigned int i, c, left, val, offset = addr & 0xff;
2866 
2867 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2868 		return -EINVAL;
2869 
2870 	val = swab32(addr) | SF_PROG_PAGE;
2871 
2872 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2873 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2874 		goto unlock;
2875 
2876 	for (left = n; left; left -= c) {
2877 		c = min(left, 4U);
2878 		for (val = 0, i = 0; i < c; ++i)
2879 			val = (val << 8) + *data++;
2880 
2881 		ret = sf1_write(adapter, c, c != left, 1, val);
2882 		if (ret)
2883 			goto unlock;
2884 	}
2885 	ret = flash_wait_op(adapter, 8, 1);
2886 	if (ret)
2887 		goto unlock;
2888 
2889 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2890 
2891 	/* Read the page to verify the write succeeded */
2892 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2893 	if (ret)
2894 		return ret;
2895 
2896 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
2897 		dev_err(adapter->pdev_dev,
2898 			"failed to correctly write the flash page at %#x\n",
2899 			addr);
2900 		return -EIO;
2901 	}
2902 	return 0;
2903 
2904 unlock:
2905 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2906 	return ret;
2907 }
2908 
2909 /**
2910  *	t4_get_fw_version - read the firmware version
2911  *	@adapter: the adapter
2912  *	@vers: where to place the version
2913  *
2914  *	Reads the FW version from flash.
2915  */
t4_get_fw_version(struct adapter * adapter,u32 * vers)2916 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2917 {
2918 	return t4_read_flash(adapter, FLASH_FW_START +
2919 			     offsetof(struct fw_hdr, fw_ver), 1,
2920 			     vers, 0);
2921 }
2922 
2923 /**
2924  *	t4_get_tp_version - read the TP microcode version
2925  *	@adapter: the adapter
2926  *	@vers: where to place the version
2927  *
2928  *	Reads the TP microcode version from flash.
2929  */
t4_get_tp_version(struct adapter * adapter,u32 * vers)2930 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2931 {
2932 	return t4_read_flash(adapter, FLASH_FW_START +
2933 			     offsetof(struct fw_hdr, tp_microcode_ver),
2934 			     1, vers, 0);
2935 }
2936 
2937 /**
2938  *	t4_get_exprom_version - return the Expansion ROM version (if any)
2939  *	@adapter: the adapter
2940  *	@vers: where to place the version
2941  *
2942  *	Reads the Expansion ROM header from FLASH and returns the version
2943  *	number (if present) through the @vers return value pointer.  We return
2944  *	this in the Firmware Version Format since it's convenient.  Return
2945  *	0 on success, -ENOENT if no Expansion ROM is present.
2946  */
t4_get_exprom_version(struct adapter * adap,u32 * vers)2947 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2948 {
2949 	struct exprom_header {
2950 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
2951 		unsigned char hdr_ver[4];	/* Expansion ROM version */
2952 	} *hdr;
2953 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2954 					   sizeof(u32))];
2955 	int ret;
2956 
2957 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2958 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2959 			    0);
2960 	if (ret)
2961 		return ret;
2962 
2963 	hdr = (struct exprom_header *)exprom_header_buf;
2964 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2965 		return -ENOENT;
2966 
2967 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2968 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2969 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2970 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2971 	return 0;
2972 }
2973 
2974 /**
2975  *	t4_check_fw_version - check if the FW is supported with this driver
2976  *	@adap: the adapter
2977  *
2978  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
2979  *	if there's exact match, a negative error if the version could not be
2980  *	read or there's a major version mismatch
2981  */
t4_check_fw_version(struct adapter * adap)2982 int t4_check_fw_version(struct adapter *adap)
2983 {
2984 	int i, ret, major, minor, micro;
2985 	int exp_major, exp_minor, exp_micro;
2986 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2987 
2988 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2989 	/* Try multiple times before returning error */
2990 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
2991 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2992 
2993 	if (ret)
2994 		return ret;
2995 
2996 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
2997 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
2998 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
2999 
3000 	switch (chip_version) {
3001 	case CHELSIO_T4:
3002 		exp_major = T4FW_MIN_VERSION_MAJOR;
3003 		exp_minor = T4FW_MIN_VERSION_MINOR;
3004 		exp_micro = T4FW_MIN_VERSION_MICRO;
3005 		break;
3006 	case CHELSIO_T5:
3007 		exp_major = T5FW_MIN_VERSION_MAJOR;
3008 		exp_minor = T5FW_MIN_VERSION_MINOR;
3009 		exp_micro = T5FW_MIN_VERSION_MICRO;
3010 		break;
3011 	case CHELSIO_T6:
3012 		exp_major = T6FW_MIN_VERSION_MAJOR;
3013 		exp_minor = T6FW_MIN_VERSION_MINOR;
3014 		exp_micro = T6FW_MIN_VERSION_MICRO;
3015 		break;
3016 	default:
3017 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3018 			adap->chip);
3019 		return -EINVAL;
3020 	}
3021 
3022 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3023 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3024 		dev_err(adap->pdev_dev,
3025 			"Card has firmware version %u.%u.%u, minimum "
3026 			"supported firmware is %u.%u.%u.\n", major, minor,
3027 			micro, exp_major, exp_minor, exp_micro);
3028 		return -EFAULT;
3029 	}
3030 	return 0;
3031 }
3032 
3033 /* Is the given firmware API compatible with the one the driver was compiled
3034  * with?
3035  */
fw_compatible(const struct fw_hdr * hdr1,const struct fw_hdr * hdr2)3036 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3037 {
3038 
3039 	/* short circuit if it's the exact same firmware version */
3040 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3041 		return 1;
3042 
3043 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3044 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3045 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3046 		return 1;
3047 #undef SAME_INTF
3048 
3049 	return 0;
3050 }
3051 
3052 /* The firmware in the filesystem is usable, but should it be installed?
3053  * This routine explains itself in detail if it indicates the filesystem
3054  * firmware should be installed.
3055  */
should_install_fs_fw(struct adapter * adap,int card_fw_usable,int k,int c)3056 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3057 				int k, int c)
3058 {
3059 	const char *reason;
3060 
3061 	if (!card_fw_usable) {
3062 		reason = "incompatible or unusable";
3063 		goto install;
3064 	}
3065 
3066 	if (k > c) {
3067 		reason = "older than the version supported with this driver";
3068 		goto install;
3069 	}
3070 
3071 	return 0;
3072 
3073 install:
3074 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3075 		"installing firmware %u.%u.%u.%u on card.\n",
3076 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3077 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3078 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3079 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3080 
3081 	return 1;
3082 }
3083 
t4_prep_fw(struct adapter * adap,struct fw_info * fw_info,const u8 * fw_data,unsigned int fw_size,struct fw_hdr * card_fw,enum dev_state state,int * reset)3084 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3085 	       const u8 *fw_data, unsigned int fw_size,
3086 	       struct fw_hdr *card_fw, enum dev_state state,
3087 	       int *reset)
3088 {
3089 	int ret, card_fw_usable, fs_fw_usable;
3090 	const struct fw_hdr *fs_fw;
3091 	const struct fw_hdr *drv_fw;
3092 
3093 	drv_fw = &fw_info->fw_hdr;
3094 
3095 	/* Read the header of the firmware on the card */
3096 	ret = t4_read_flash(adap, FLASH_FW_START,
3097 			    sizeof(*card_fw) / sizeof(uint32_t),
3098 			    (uint32_t *)card_fw, 1);
3099 	if (ret == 0) {
3100 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3101 	} else {
3102 		dev_err(adap->pdev_dev,
3103 			"Unable to read card's firmware header: %d\n", ret);
3104 		card_fw_usable = 0;
3105 	}
3106 
3107 	if (fw_data != NULL) {
3108 		fs_fw = (const void *)fw_data;
3109 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3110 	} else {
3111 		fs_fw = NULL;
3112 		fs_fw_usable = 0;
3113 	}
3114 
3115 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3116 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3117 		/* Common case: the firmware on the card is an exact match and
3118 		 * the filesystem one is an exact match too, or the filesystem
3119 		 * one is absent/incompatible.
3120 		 */
3121 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3122 		   should_install_fs_fw(adap, card_fw_usable,
3123 					be32_to_cpu(fs_fw->fw_ver),
3124 					be32_to_cpu(card_fw->fw_ver))) {
3125 		ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3126 				    fw_size, 0);
3127 		if (ret != 0) {
3128 			dev_err(adap->pdev_dev,
3129 				"failed to install firmware: %d\n", ret);
3130 			goto bye;
3131 		}
3132 
3133 		/* Installed successfully, update the cached header too. */
3134 		*card_fw = *fs_fw;
3135 		card_fw_usable = 1;
3136 		*reset = 0;	/* already reset as part of load_fw */
3137 	}
3138 
3139 	if (!card_fw_usable) {
3140 		uint32_t d, c, k;
3141 
3142 		d = be32_to_cpu(drv_fw->fw_ver);
3143 		c = be32_to_cpu(card_fw->fw_ver);
3144 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3145 
3146 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3147 			"chip state %d, "
3148 			"driver compiled with %d.%d.%d.%d, "
3149 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3150 			state,
3151 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3152 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3153 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3154 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3155 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3156 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3157 		ret = -EINVAL;
3158 		goto bye;
3159 	}
3160 
3161 	/* We're using whatever's on the card and it's known to be good. */
3162 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3163 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3164 
3165 bye:
3166 	return ret;
3167 }
3168 
3169 /**
3170  *	t4_flash_erase_sectors - erase a range of flash sectors
3171  *	@adapter: the adapter
3172  *	@start: the first sector to erase
3173  *	@end: the last sector to erase
3174  *
3175  *	Erases the sectors in the given inclusive range.
3176  */
t4_flash_erase_sectors(struct adapter * adapter,int start,int end)3177 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3178 {
3179 	int ret = 0;
3180 
3181 	if (end >= adapter->params.sf_nsec)
3182 		return -EINVAL;
3183 
3184 	while (start <= end) {
3185 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3186 		    (ret = sf1_write(adapter, 4, 0, 1,
3187 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3188 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3189 			dev_err(adapter->pdev_dev,
3190 				"erase of flash sector %d failed, error %d\n",
3191 				start, ret);
3192 			break;
3193 		}
3194 		start++;
3195 	}
3196 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3197 	return ret;
3198 }
3199 
3200 /**
3201  *	t4_flash_cfg_addr - return the address of the flash configuration file
3202  *	@adapter: the adapter
3203  *
3204  *	Return the address within the flash where the Firmware Configuration
3205  *	File is stored.
3206  */
t4_flash_cfg_addr(struct adapter * adapter)3207 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3208 {
3209 	if (adapter->params.sf_size == 0x100000)
3210 		return FLASH_FPGA_CFG_START;
3211 	else
3212 		return FLASH_CFG_START;
3213 }
3214 
3215 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3216  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3217  * and emit an error message for mismatched firmware to save our caller the
3218  * effort ...
3219  */
t4_fw_matches_chip(const struct adapter * adap,const struct fw_hdr * hdr)3220 static bool t4_fw_matches_chip(const struct adapter *adap,
3221 			       const struct fw_hdr *hdr)
3222 {
3223 	/* The expression below will return FALSE for any unsupported adapter
3224 	 * which will keep us "honest" in the future ...
3225 	 */
3226 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3227 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3228 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3229 		return true;
3230 
3231 	dev_err(adap->pdev_dev,
3232 		"FW image (%d) is not suitable for this adapter (%d)\n",
3233 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3234 	return false;
3235 }
3236 
3237 /**
3238  *	t4_load_fw - download firmware
3239  *	@adap: the adapter
3240  *	@fw_data: the firmware image to write
3241  *	@size: image size
3242  *
3243  *	Write the supplied firmware image to the card's serial flash.
3244  */
t4_load_fw(struct adapter * adap,const u8 * fw_data,unsigned int size)3245 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3246 {
3247 	u32 csum;
3248 	int ret, addr;
3249 	unsigned int i;
3250 	u8 first_page[SF_PAGE_SIZE];
3251 	const __be32 *p = (const __be32 *)fw_data;
3252 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3253 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3254 	unsigned int fw_img_start = adap->params.sf_fw_start;
3255 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3256 
3257 	if (!size) {
3258 		dev_err(adap->pdev_dev, "FW image has no data\n");
3259 		return -EINVAL;
3260 	}
3261 	if (size & 511) {
3262 		dev_err(adap->pdev_dev,
3263 			"FW image size not multiple of 512 bytes\n");
3264 		return -EINVAL;
3265 	}
3266 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3267 		dev_err(adap->pdev_dev,
3268 			"FW image size differs from size in FW header\n");
3269 		return -EINVAL;
3270 	}
3271 	if (size > FW_MAX_SIZE) {
3272 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3273 			FW_MAX_SIZE);
3274 		return -EFBIG;
3275 	}
3276 	if (!t4_fw_matches_chip(adap, hdr))
3277 		return -EINVAL;
3278 
3279 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3280 		csum += be32_to_cpu(p[i]);
3281 
3282 	if (csum != 0xffffffff) {
3283 		dev_err(adap->pdev_dev,
3284 			"corrupted firmware image, checksum %#x\n", csum);
3285 		return -EINVAL;
3286 	}
3287 
3288 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3289 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3290 	if (ret)
3291 		goto out;
3292 
3293 	/*
3294 	 * We write the correct version at the end so the driver can see a bad
3295 	 * version if the FW write fails.  Start by writing a copy of the
3296 	 * first page with a bad version.
3297 	 */
3298 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3299 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3300 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3301 	if (ret)
3302 		goto out;
3303 
3304 	addr = fw_img_start;
3305 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3306 		addr += SF_PAGE_SIZE;
3307 		fw_data += SF_PAGE_SIZE;
3308 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3309 		if (ret)
3310 			goto out;
3311 	}
3312 
3313 	ret = t4_write_flash(adap,
3314 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3315 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3316 out:
3317 	if (ret)
3318 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3319 			ret);
3320 	else
3321 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3322 	return ret;
3323 }
3324 
3325 /**
3326  *	t4_phy_fw_ver - return current PHY firmware version
3327  *	@adap: the adapter
3328  *	@phy_fw_ver: return value buffer for PHY firmware version
3329  *
3330  *	Returns the current version of external PHY firmware on the
3331  *	adapter.
3332  */
t4_phy_fw_ver(struct adapter * adap,int * phy_fw_ver)3333 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3334 {
3335 	u32 param, val;
3336 	int ret;
3337 
3338 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3339 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3340 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3341 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3342 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3343 			      &param, &val);
3344 	if (ret)
3345 		return ret;
3346 	*phy_fw_ver = val;
3347 	return 0;
3348 }
3349 
3350 /**
3351  *	t4_load_phy_fw - download port PHY firmware
3352  *	@adap: the adapter
3353  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3354  *	@win_lock: the lock to use to guard the memory copy
3355  *	@phy_fw_version: function to check PHY firmware versions
3356  *	@phy_fw_data: the PHY firmware image to write
3357  *	@phy_fw_size: image size
3358  *
3359  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3360  *	@phy_fw_version is supplied, then it will be used to determine if
3361  *	it's necessary to perform the transfer by comparing the version
3362  *	of any existing adapter PHY firmware with that of the passed in
3363  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3364  *	around the call to t4_memory_rw() which transfers the PHY firmware
3365  *	to the adapter.
3366  *
3367  *	A negative error number will be returned if an error occurs.  If
3368  *	version number support is available and there's no need to upgrade
3369  *	the firmware, 0 will be returned.  If firmware is successfully
3370  *	transferred to the adapter, 1 will be retured.
3371  *
3372  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3373  *	a result, a RESET of the adapter would cause that RAM to lose its
3374  *	contents.  Thus, loading PHY firmware on such adapters must happen
3375  *	after any FW_RESET_CMDs ...
3376  */
t4_load_phy_fw(struct adapter * adap,int win,spinlock_t * win_lock,int (* phy_fw_version)(const u8 *,size_t),const u8 * phy_fw_data,size_t phy_fw_size)3377 int t4_load_phy_fw(struct adapter *adap,
3378 		   int win, spinlock_t *win_lock,
3379 		   int (*phy_fw_version)(const u8 *, size_t),
3380 		   const u8 *phy_fw_data, size_t phy_fw_size)
3381 {
3382 	unsigned long mtype = 0, maddr = 0;
3383 	u32 param, val;
3384 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3385 	int ret;
3386 
3387 	/* If we have version number support, then check to see if the adapter
3388 	 * already has up-to-date PHY firmware loaded.
3389 	 */
3390 	 if (phy_fw_version) {
3391 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3392 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3393 		if (ret < 0)
3394 			return ret;
3395 
3396 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3397 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3398 				"version %#x\n", cur_phy_fw_ver);
3399 			return 0;
3400 		}
3401 	}
3402 
3403 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3404 	 * The size of the file requires a special version of the READ coommand
3405 	 * which will pass the file size via the values field in PARAMS_CMD and
3406 	 * retrieve the return value from firmware and place it in the same
3407 	 * buffer values
3408 	 */
3409 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3410 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3411 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3412 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3413 	val = phy_fw_size;
3414 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3415 				 &param, &val, 1);
3416 	if (ret < 0)
3417 		return ret;
3418 	mtype = val >> 8;
3419 	maddr = (val & 0xff) << 16;
3420 
3421 	/* Copy the supplied PHY Firmware image to the adapter memory location
3422 	 * allocated by the adapter firmware.
3423 	 */
3424 	if (win_lock)
3425 		spin_lock_bh(win_lock);
3426 	ret = t4_memory_rw(adap, win, mtype, maddr,
3427 			   phy_fw_size, (__be32 *)phy_fw_data,
3428 			   T4_MEMORY_WRITE);
3429 	if (win_lock)
3430 		spin_unlock_bh(win_lock);
3431 	if (ret)
3432 		return ret;
3433 
3434 	/* Tell the firmware that the PHY firmware image has been written to
3435 	 * RAM and it can now start copying it over to the PHYs.  The chip
3436 	 * firmware will RESET the affected PHYs as part of this operation
3437 	 * leaving them running the new PHY firmware image.
3438 	 */
3439 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3440 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3441 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3442 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3443 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3444 				    &param, &val, 30000);
3445 
3446 	/* If we have version number support, then check to see that the new
3447 	 * firmware got loaded properly.
3448 	 */
3449 	if (phy_fw_version) {
3450 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3451 		if (ret < 0)
3452 			return ret;
3453 
3454 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3455 			CH_WARN(adap, "PHY Firmware did not update: "
3456 				"version on adapter %#x, "
3457 				"version flashed %#x\n",
3458 				cur_phy_fw_ver, new_phy_fw_vers);
3459 			return -ENXIO;
3460 		}
3461 	}
3462 
3463 	return 1;
3464 }
3465 
3466 /**
3467  *	t4_fwcache - firmware cache operation
3468  *	@adap: the adapter
3469  *	@op  : the operation (flush or flush and invalidate)
3470  */
t4_fwcache(struct adapter * adap,enum fw_params_param_dev_fwcache op)3471 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3472 {
3473 	struct fw_params_cmd c;
3474 
3475 	memset(&c, 0, sizeof(c));
3476 	c.op_to_vfn =
3477 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3478 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3479 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3480 			    FW_PARAMS_CMD_VFN_V(0));
3481 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3482 	c.param[0].mnem =
3483 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3484 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3485 	c.param[0].val = cpu_to_be32(op);
3486 
3487 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3488 }
3489 
t4_cim_read_pif_la(struct adapter * adap,u32 * pif_req,u32 * pif_rsp,unsigned int * pif_req_wrptr,unsigned int * pif_rsp_wrptr)3490 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3491 			unsigned int *pif_req_wrptr,
3492 			unsigned int *pif_rsp_wrptr)
3493 {
3494 	int i, j;
3495 	u32 cfg, val, req, rsp;
3496 
3497 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3498 	if (cfg & LADBGEN_F)
3499 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3500 
3501 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3502 	req = POLADBGWRPTR_G(val);
3503 	rsp = PILADBGWRPTR_G(val);
3504 	if (pif_req_wrptr)
3505 		*pif_req_wrptr = req;
3506 	if (pif_rsp_wrptr)
3507 		*pif_rsp_wrptr = rsp;
3508 
3509 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3510 		for (j = 0; j < 6; j++) {
3511 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3512 				     PILADBGRDPTR_V(rsp));
3513 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3514 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3515 			req++;
3516 			rsp++;
3517 		}
3518 		req = (req + 2) & POLADBGRDPTR_M;
3519 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3520 	}
3521 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3522 }
3523 
t4_cim_read_ma_la(struct adapter * adap,u32 * ma_req,u32 * ma_rsp)3524 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3525 {
3526 	u32 cfg;
3527 	int i, j, idx;
3528 
3529 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3530 	if (cfg & LADBGEN_F)
3531 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3532 
3533 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3534 		for (j = 0; j < 5; j++) {
3535 			idx = 8 * i + j;
3536 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3537 				     PILADBGRDPTR_V(idx));
3538 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3539 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3540 		}
3541 	}
3542 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3543 }
3544 
t4_ulprx_read_la(struct adapter * adap,u32 * la_buf)3545 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3546 {
3547 	unsigned int i, j;
3548 
3549 	for (i = 0; i < 8; i++) {
3550 		u32 *p = la_buf + i;
3551 
3552 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3553 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3554 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3555 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3556 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3557 	}
3558 }
3559 
3560 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3561 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3562 		     FW_PORT_CAP_ANEG)
3563 
3564 /**
3565  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3566  *	@phy: the PHY to setup
3567  *	@mac: the MAC to setup
3568  *	@lc: the requested link configuration
3569  *
3570  *	Set up a port's MAC and PHY according to a desired link configuration.
3571  *	- If the PHY can auto-negotiate first decide what to advertise, then
3572  *	  enable/disable auto-negotiation as desired, and reset.
3573  *	- If the PHY does not auto-negotiate just reset it.
3574  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3575  *	  otherwise do it later based on the outcome of auto-negotiation.
3576  */
t4_link_l1cfg(struct adapter * adap,unsigned int mbox,unsigned int port,struct link_config * lc)3577 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3578 		  struct link_config *lc)
3579 {
3580 	struct fw_port_cmd c;
3581 	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3582 
3583 	lc->link_ok = 0;
3584 	if (lc->requested_fc & PAUSE_RX)
3585 		fc |= FW_PORT_CAP_FC_RX;
3586 	if (lc->requested_fc & PAUSE_TX)
3587 		fc |= FW_PORT_CAP_FC_TX;
3588 
3589 	memset(&c, 0, sizeof(c));
3590 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3591 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3592 				     FW_PORT_CMD_PORTID_V(port));
3593 	c.action_to_len16 =
3594 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3595 			    FW_LEN16(c));
3596 
3597 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3598 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3599 					     fc);
3600 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3601 	} else if (lc->autoneg == AUTONEG_DISABLE) {
3602 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3603 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3604 	} else
3605 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3606 
3607 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3608 }
3609 
3610 /**
3611  *	t4_restart_aneg - restart autonegotiation
3612  *	@adap: the adapter
3613  *	@mbox: mbox to use for the FW command
3614  *	@port: the port id
3615  *
3616  *	Restarts autonegotiation for the selected port.
3617  */
t4_restart_aneg(struct adapter * adap,unsigned int mbox,unsigned int port)3618 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3619 {
3620 	struct fw_port_cmd c;
3621 
3622 	memset(&c, 0, sizeof(c));
3623 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3624 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3625 				     FW_PORT_CMD_PORTID_V(port));
3626 	c.action_to_len16 =
3627 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3628 			    FW_LEN16(c));
3629 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3630 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3631 }
3632 
3633 typedef void (*int_handler_t)(struct adapter *adap);
3634 
3635 struct intr_info {
3636 	unsigned int mask;       /* bits to check in interrupt status */
3637 	const char *msg;         /* message to print or NULL */
3638 	short stat_idx;          /* stat counter to increment or -1 */
3639 	unsigned short fatal;    /* whether the condition reported is fatal */
3640 	int_handler_t int_handler; /* platform-specific int handler */
3641 };
3642 
3643 /**
3644  *	t4_handle_intr_status - table driven interrupt handler
3645  *	@adapter: the adapter that generated the interrupt
3646  *	@reg: the interrupt status register to process
3647  *	@acts: table of interrupt actions
3648  *
3649  *	A table driven interrupt handler that applies a set of masks to an
3650  *	interrupt status word and performs the corresponding actions if the
3651  *	interrupts described by the mask have occurred.  The actions include
3652  *	optionally emitting a warning or alert message.  The table is terminated
3653  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3654  *	conditions.
3655  */
t4_handle_intr_status(struct adapter * adapter,unsigned int reg,const struct intr_info * acts)3656 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3657 				 const struct intr_info *acts)
3658 {
3659 	int fatal = 0;
3660 	unsigned int mask = 0;
3661 	unsigned int status = t4_read_reg(adapter, reg);
3662 
3663 	for ( ; acts->mask; ++acts) {
3664 		if (!(status & acts->mask))
3665 			continue;
3666 		if (acts->fatal) {
3667 			fatal++;
3668 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3669 				  status & acts->mask);
3670 		} else if (acts->msg && printk_ratelimit())
3671 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3672 				 status & acts->mask);
3673 		if (acts->int_handler)
3674 			acts->int_handler(adapter);
3675 		mask |= acts->mask;
3676 	}
3677 	status &= mask;
3678 	if (status)                           /* clear processed interrupts */
3679 		t4_write_reg(adapter, reg, status);
3680 	return fatal;
3681 }
3682 
3683 /*
3684  * Interrupt handler for the PCIE module.
3685  */
pcie_intr_handler(struct adapter * adapter)3686 static void pcie_intr_handler(struct adapter *adapter)
3687 {
3688 	static const struct intr_info sysbus_intr_info[] = {
3689 		{ RNPP_F, "RXNP array parity error", -1, 1 },
3690 		{ RPCP_F, "RXPC array parity error", -1, 1 },
3691 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
3692 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
3693 		{ RFTP_F, "RXFT array parity error", -1, 1 },
3694 		{ 0 }
3695 	};
3696 	static const struct intr_info pcie_port_intr_info[] = {
3697 		{ TPCP_F, "TXPC array parity error", -1, 1 },
3698 		{ TNPP_F, "TXNP array parity error", -1, 1 },
3699 		{ TFTP_F, "TXFT array parity error", -1, 1 },
3700 		{ TCAP_F, "TXCA array parity error", -1, 1 },
3701 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
3702 		{ RCAP_F, "RXCA array parity error", -1, 1 },
3703 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
3704 		{ RDPE_F, "Rx data parity error", -1, 1 },
3705 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
3706 		{ 0 }
3707 	};
3708 	static const struct intr_info pcie_intr_info[] = {
3709 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3710 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3711 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3712 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3713 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3714 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3715 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3716 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3717 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3718 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3719 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3720 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3721 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3722 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3723 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3724 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3725 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3726 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3727 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3728 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3729 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3730 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3731 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3732 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3733 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3734 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3735 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3736 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
3737 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
3738 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
3739 		  -1, 0 },
3740 		{ 0 }
3741 	};
3742 
3743 	static struct intr_info t5_pcie_intr_info[] = {
3744 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
3745 		  -1, 1 },
3746 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3747 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3748 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3749 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3750 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3751 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3752 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3753 		  -1, 1 },
3754 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3755 		  -1, 1 },
3756 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3757 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3758 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3759 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3760 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
3761 		  -1, 1 },
3762 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3763 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3764 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3765 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3766 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3767 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3768 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3769 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3770 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3771 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3772 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3773 		  -1, 1 },
3774 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3775 		  -1, 1 },
3776 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3777 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3778 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3779 		{ READRSPERR_F, "Outbound read error", -1, 0 },
3780 		{ 0 }
3781 	};
3782 
3783 	int fat;
3784 
3785 	if (is_t4(adapter->params.chip))
3786 		fat = t4_handle_intr_status(adapter,
3787 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3788 				sysbus_intr_info) +
3789 			t4_handle_intr_status(adapter,
3790 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3791 					pcie_port_intr_info) +
3792 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3793 					      pcie_intr_info);
3794 	else
3795 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3796 					    t5_pcie_intr_info);
3797 
3798 	if (fat)
3799 		t4_fatal_err(adapter);
3800 }
3801 
3802 /*
3803  * TP interrupt handler.
3804  */
tp_intr_handler(struct adapter * adapter)3805 static void tp_intr_handler(struct adapter *adapter)
3806 {
3807 	static const struct intr_info tp_intr_info[] = {
3808 		{ 0x3fffffff, "TP parity error", -1, 1 },
3809 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3810 		{ 0 }
3811 	};
3812 
3813 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3814 		t4_fatal_err(adapter);
3815 }
3816 
3817 /*
3818  * SGE interrupt handler.
3819  */
sge_intr_handler(struct adapter * adapter)3820 static void sge_intr_handler(struct adapter *adapter)
3821 {
3822 	u64 v;
3823 	u32 err;
3824 
3825 	static const struct intr_info sge_intr_info[] = {
3826 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3827 		  "SGE received CPL exceeding IQE size", -1, 1 },
3828 		{ ERR_INVALID_CIDX_INC_F,
3829 		  "SGE GTS CIDX increment too large", -1, 0 },
3830 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3831 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3832 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3833 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3834 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3835 		  0 },
3836 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3837 		  0 },
3838 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3839 		  0 },
3840 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3841 		  0 },
3842 		{ ERR_ING_CTXT_PRIO_F,
3843 		  "SGE too many priority ingress contexts", -1, 0 },
3844 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3845 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3846 		{ 0 }
3847 	};
3848 
3849 	static struct intr_info t4t5_sge_intr_info[] = {
3850 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3851 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3852 		{ ERR_EGR_CTXT_PRIO_F,
3853 		  "SGE too many priority egress contexts", -1, 0 },
3854 		{ 0 }
3855 	};
3856 
3857 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3858 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3859 	if (v) {
3860 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3861 				(unsigned long long)v);
3862 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3863 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3864 	}
3865 
3866 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3867 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3868 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3869 					   t4t5_sge_intr_info);
3870 
3871 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3872 	if (err & ERROR_QID_VALID_F) {
3873 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3874 			ERROR_QID_G(err));
3875 		if (err & UNCAPTURED_ERROR_F)
3876 			dev_err(adapter->pdev_dev,
3877 				"SGE UNCAPTURED_ERROR set (clearing)\n");
3878 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3879 			     UNCAPTURED_ERROR_F);
3880 	}
3881 
3882 	if (v != 0)
3883 		t4_fatal_err(adapter);
3884 }
3885 
3886 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3887 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3888 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3889 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3890 
3891 /*
3892  * CIM interrupt handler.
3893  */
cim_intr_handler(struct adapter * adapter)3894 static void cim_intr_handler(struct adapter *adapter)
3895 {
3896 	static const struct intr_info cim_intr_info[] = {
3897 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3898 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3899 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3900 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3901 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3902 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3903 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3904 		{ 0 }
3905 	};
3906 	static const struct intr_info cim_upintr_info[] = {
3907 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3908 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3909 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
3910 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
3911 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3912 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3913 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3914 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3915 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3916 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3917 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3918 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3919 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3920 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3921 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3922 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3923 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3924 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3925 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3926 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3927 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3928 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3929 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3930 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3931 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3932 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3933 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3934 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3935 		{ 0 }
3936 	};
3937 
3938 	int fat;
3939 
3940 	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3941 		t4_report_fw_error(adapter);
3942 
3943 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3944 				    cim_intr_info) +
3945 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3946 				    cim_upintr_info);
3947 	if (fat)
3948 		t4_fatal_err(adapter);
3949 }
3950 
3951 /*
3952  * ULP RX interrupt handler.
3953  */
ulprx_intr_handler(struct adapter * adapter)3954 static void ulprx_intr_handler(struct adapter *adapter)
3955 {
3956 	static const struct intr_info ulprx_intr_info[] = {
3957 		{ 0x1800000, "ULPRX context error", -1, 1 },
3958 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3959 		{ 0 }
3960 	};
3961 
3962 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3963 		t4_fatal_err(adapter);
3964 }
3965 
3966 /*
3967  * ULP TX interrupt handler.
3968  */
ulptx_intr_handler(struct adapter * adapter)3969 static void ulptx_intr_handler(struct adapter *adapter)
3970 {
3971 	static const struct intr_info ulptx_intr_info[] = {
3972 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3973 		  0 },
3974 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3975 		  0 },
3976 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3977 		  0 },
3978 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3979 		  0 },
3980 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3981 		{ 0 }
3982 	};
3983 
3984 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3985 		t4_fatal_err(adapter);
3986 }
3987 
3988 /*
3989  * PM TX interrupt handler.
3990  */
pmtx_intr_handler(struct adapter * adapter)3991 static void pmtx_intr_handler(struct adapter *adapter)
3992 {
3993 	static const struct intr_info pmtx_intr_info[] = {
3994 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3995 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3996 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3997 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3998 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
3999 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4000 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4001 		  -1, 1 },
4002 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4003 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4004 		{ 0 }
4005 	};
4006 
4007 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4008 		t4_fatal_err(adapter);
4009 }
4010 
4011 /*
4012  * PM RX interrupt handler.
4013  */
pmrx_intr_handler(struct adapter * adapter)4014 static void pmrx_intr_handler(struct adapter *adapter)
4015 {
4016 	static const struct intr_info pmrx_intr_info[] = {
4017 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4018 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4019 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4020 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4021 		  -1, 1 },
4022 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4023 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4024 		{ 0 }
4025 	};
4026 
4027 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4028 		t4_fatal_err(adapter);
4029 }
4030 
4031 /*
4032  * CPL switch interrupt handler.
4033  */
cplsw_intr_handler(struct adapter * adapter)4034 static void cplsw_intr_handler(struct adapter *adapter)
4035 {
4036 	static const struct intr_info cplsw_intr_info[] = {
4037 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4038 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4039 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4040 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4041 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4042 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4043 		{ 0 }
4044 	};
4045 
4046 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4047 		t4_fatal_err(adapter);
4048 }
4049 
4050 /*
4051  * LE interrupt handler.
4052  */
le_intr_handler(struct adapter * adap)4053 static void le_intr_handler(struct adapter *adap)
4054 {
4055 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4056 	static const struct intr_info le_intr_info[] = {
4057 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4058 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4059 		{ PARITYERR_F, "LE parity error", -1, 1 },
4060 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4061 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4062 		{ 0 }
4063 	};
4064 
4065 	static struct intr_info t6_le_intr_info[] = {
4066 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4067 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4068 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4069 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4070 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4071 		{ 0 }
4072 	};
4073 
4074 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4075 				  (chip <= CHELSIO_T5) ?
4076 				  le_intr_info : t6_le_intr_info))
4077 		t4_fatal_err(adap);
4078 }
4079 
4080 /*
4081  * MPS interrupt handler.
4082  */
mps_intr_handler(struct adapter * adapter)4083 static void mps_intr_handler(struct adapter *adapter)
4084 {
4085 	static const struct intr_info mps_rx_intr_info[] = {
4086 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4087 		{ 0 }
4088 	};
4089 	static const struct intr_info mps_tx_intr_info[] = {
4090 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4091 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4092 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4093 		  -1, 1 },
4094 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4095 		  -1, 1 },
4096 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4097 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4098 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4099 		{ 0 }
4100 	};
4101 	static const struct intr_info mps_trc_intr_info[] = {
4102 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4103 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4104 		  -1, 1 },
4105 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4106 		{ 0 }
4107 	};
4108 	static const struct intr_info mps_stat_sram_intr_info[] = {
4109 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4110 		{ 0 }
4111 	};
4112 	static const struct intr_info mps_stat_tx_intr_info[] = {
4113 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4114 		{ 0 }
4115 	};
4116 	static const struct intr_info mps_stat_rx_intr_info[] = {
4117 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4118 		{ 0 }
4119 	};
4120 	static const struct intr_info mps_cls_intr_info[] = {
4121 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4122 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4123 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4124 		{ 0 }
4125 	};
4126 
4127 	int fat;
4128 
4129 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4130 				    mps_rx_intr_info) +
4131 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4132 				    mps_tx_intr_info) +
4133 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4134 				    mps_trc_intr_info) +
4135 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4136 				    mps_stat_sram_intr_info) +
4137 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4138 				    mps_stat_tx_intr_info) +
4139 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4140 				    mps_stat_rx_intr_info) +
4141 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4142 				    mps_cls_intr_info);
4143 
4144 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4145 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4146 	if (fat)
4147 		t4_fatal_err(adapter);
4148 }
4149 
4150 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4151 		      ECC_UE_INT_CAUSE_F)
4152 
4153 /*
4154  * EDC/MC interrupt handler.
4155  */
mem_intr_handler(struct adapter * adapter,int idx)4156 static void mem_intr_handler(struct adapter *adapter, int idx)
4157 {
4158 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4159 
4160 	unsigned int addr, cnt_addr, v;
4161 
4162 	if (idx <= MEM_EDC1) {
4163 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4164 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4165 	} else if (idx == MEM_MC) {
4166 		if (is_t4(adapter->params.chip)) {
4167 			addr = MC_INT_CAUSE_A;
4168 			cnt_addr = MC_ECC_STATUS_A;
4169 		} else {
4170 			addr = MC_P_INT_CAUSE_A;
4171 			cnt_addr = MC_P_ECC_STATUS_A;
4172 		}
4173 	} else {
4174 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4175 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4176 	}
4177 
4178 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4179 	if (v & PERR_INT_CAUSE_F)
4180 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4181 			  name[idx]);
4182 	if (v & ECC_CE_INT_CAUSE_F) {
4183 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4184 
4185 		t4_edc_err_read(adapter, idx);
4186 
4187 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4188 		if (printk_ratelimit())
4189 			dev_warn(adapter->pdev_dev,
4190 				 "%u %s correctable ECC data error%s\n",
4191 				 cnt, name[idx], cnt > 1 ? "s" : "");
4192 	}
4193 	if (v & ECC_UE_INT_CAUSE_F)
4194 		dev_alert(adapter->pdev_dev,
4195 			  "%s uncorrectable ECC data error\n", name[idx]);
4196 
4197 	t4_write_reg(adapter, addr, v);
4198 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4199 		t4_fatal_err(adapter);
4200 }
4201 
4202 /*
4203  * MA interrupt handler.
4204  */
ma_intr_handler(struct adapter * adap)4205 static void ma_intr_handler(struct adapter *adap)
4206 {
4207 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4208 
4209 	if (status & MEM_PERR_INT_CAUSE_F) {
4210 		dev_alert(adap->pdev_dev,
4211 			  "MA parity error, parity status %#x\n",
4212 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4213 		if (is_t5(adap->params.chip))
4214 			dev_alert(adap->pdev_dev,
4215 				  "MA parity error, parity status %#x\n",
4216 				  t4_read_reg(adap,
4217 					      MA_PARITY_ERROR_STATUS2_A));
4218 	}
4219 	if (status & MEM_WRAP_INT_CAUSE_F) {
4220 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4221 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4222 			  "client %u to address %#x\n",
4223 			  MEM_WRAP_CLIENT_NUM_G(v),
4224 			  MEM_WRAP_ADDRESS_G(v) << 4);
4225 	}
4226 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4227 	t4_fatal_err(adap);
4228 }
4229 
4230 /*
4231  * SMB interrupt handler.
4232  */
smb_intr_handler(struct adapter * adap)4233 static void smb_intr_handler(struct adapter *adap)
4234 {
4235 	static const struct intr_info smb_intr_info[] = {
4236 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4237 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4238 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4239 		{ 0 }
4240 	};
4241 
4242 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4243 		t4_fatal_err(adap);
4244 }
4245 
4246 /*
4247  * NC-SI interrupt handler.
4248  */
ncsi_intr_handler(struct adapter * adap)4249 static void ncsi_intr_handler(struct adapter *adap)
4250 {
4251 	static const struct intr_info ncsi_intr_info[] = {
4252 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4253 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4254 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4255 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4256 		{ 0 }
4257 	};
4258 
4259 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4260 		t4_fatal_err(adap);
4261 }
4262 
4263 /*
4264  * XGMAC interrupt handler.
4265  */
xgmac_intr_handler(struct adapter * adap,int port)4266 static void xgmac_intr_handler(struct adapter *adap, int port)
4267 {
4268 	u32 v, int_cause_reg;
4269 
4270 	if (is_t4(adap->params.chip))
4271 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4272 	else
4273 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4274 
4275 	v = t4_read_reg(adap, int_cause_reg);
4276 
4277 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4278 	if (!v)
4279 		return;
4280 
4281 	if (v & TXFIFO_PRTY_ERR_F)
4282 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4283 			  port);
4284 	if (v & RXFIFO_PRTY_ERR_F)
4285 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4286 			  port);
4287 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4288 	t4_fatal_err(adap);
4289 }
4290 
4291 /*
4292  * PL interrupt handler.
4293  */
pl_intr_handler(struct adapter * adap)4294 static void pl_intr_handler(struct adapter *adap)
4295 {
4296 	static const struct intr_info pl_intr_info[] = {
4297 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4298 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4299 		{ 0 }
4300 	};
4301 
4302 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4303 		t4_fatal_err(adap);
4304 }
4305 
4306 #define PF_INTR_MASK (PFSW_F)
4307 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4308 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4309 		CPL_SWITCH_F | SGE_F | ULP_TX_F)
4310 
4311 /**
4312  *	t4_slow_intr_handler - control path interrupt handler
4313  *	@adapter: the adapter
4314  *
4315  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4316  *	The designation 'slow' is because it involves register reads, while
4317  *	data interrupts typically don't involve any MMIOs.
4318  */
t4_slow_intr_handler(struct adapter * adapter)4319 int t4_slow_intr_handler(struct adapter *adapter)
4320 {
4321 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4322 
4323 	if (!(cause & GLBL_INTR_MASK))
4324 		return 0;
4325 	if (cause & CIM_F)
4326 		cim_intr_handler(adapter);
4327 	if (cause & MPS_F)
4328 		mps_intr_handler(adapter);
4329 	if (cause & NCSI_F)
4330 		ncsi_intr_handler(adapter);
4331 	if (cause & PL_F)
4332 		pl_intr_handler(adapter);
4333 	if (cause & SMB_F)
4334 		smb_intr_handler(adapter);
4335 	if (cause & XGMAC0_F)
4336 		xgmac_intr_handler(adapter, 0);
4337 	if (cause & XGMAC1_F)
4338 		xgmac_intr_handler(adapter, 1);
4339 	if (cause & XGMAC_KR0_F)
4340 		xgmac_intr_handler(adapter, 2);
4341 	if (cause & XGMAC_KR1_F)
4342 		xgmac_intr_handler(adapter, 3);
4343 	if (cause & PCIE_F)
4344 		pcie_intr_handler(adapter);
4345 	if (cause & MC_F)
4346 		mem_intr_handler(adapter, MEM_MC);
4347 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4348 		mem_intr_handler(adapter, MEM_MC1);
4349 	if (cause & EDC0_F)
4350 		mem_intr_handler(adapter, MEM_EDC0);
4351 	if (cause & EDC1_F)
4352 		mem_intr_handler(adapter, MEM_EDC1);
4353 	if (cause & LE_F)
4354 		le_intr_handler(adapter);
4355 	if (cause & TP_F)
4356 		tp_intr_handler(adapter);
4357 	if (cause & MA_F)
4358 		ma_intr_handler(adapter);
4359 	if (cause & PM_TX_F)
4360 		pmtx_intr_handler(adapter);
4361 	if (cause & PM_RX_F)
4362 		pmrx_intr_handler(adapter);
4363 	if (cause & ULP_RX_F)
4364 		ulprx_intr_handler(adapter);
4365 	if (cause & CPL_SWITCH_F)
4366 		cplsw_intr_handler(adapter);
4367 	if (cause & SGE_F)
4368 		sge_intr_handler(adapter);
4369 	if (cause & ULP_TX_F)
4370 		ulptx_intr_handler(adapter);
4371 
4372 	/* Clear the interrupts just processed for which we are the master. */
4373 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4374 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4375 	return 1;
4376 }
4377 
4378 /**
4379  *	t4_intr_enable - enable interrupts
4380  *	@adapter: the adapter whose interrupts should be enabled
4381  *
4382  *	Enable PF-specific interrupts for the calling function and the top-level
4383  *	interrupt concentrator for global interrupts.  Interrupts are already
4384  *	enabled at each module,	here we just enable the roots of the interrupt
4385  *	hierarchies.
4386  *
4387  *	Note: this function should be called only when the driver manages
4388  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4389  *	function at a time should be doing this.
4390  */
t4_intr_enable(struct adapter * adapter)4391 void t4_intr_enable(struct adapter *adapter)
4392 {
4393 	u32 val = 0;
4394 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4395 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4396 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4397 
4398 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4399 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4400 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4401 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4402 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4403 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4404 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4405 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4406 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4407 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4408 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4409 }
4410 
4411 /**
4412  *	t4_intr_disable - disable interrupts
4413  *	@adapter: the adapter whose interrupts should be disabled
4414  *
4415  *	Disable interrupts.  We only disable the top-level interrupt
4416  *	concentrators.  The caller must be a PCI function managing global
4417  *	interrupts.
4418  */
t4_intr_disable(struct adapter * adapter)4419 void t4_intr_disable(struct adapter *adapter)
4420 {
4421 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4422 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4423 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4424 
4425 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4426 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4427 }
4428 
4429 /**
4430  *	hash_mac_addr - return the hash value of a MAC address
4431  *	@addr: the 48-bit Ethernet MAC address
4432  *
4433  *	Hashes a MAC address according to the hash function used by HW inexact
4434  *	(hash) address matching.
4435  */
hash_mac_addr(const u8 * addr)4436 static int hash_mac_addr(const u8 *addr)
4437 {
4438 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4439 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4440 	a ^= b;
4441 	a ^= (a >> 12);
4442 	a ^= (a >> 6);
4443 	return a & 0x3f;
4444 }
4445 
4446 /**
4447  *	t4_config_rss_range - configure a portion of the RSS mapping table
4448  *	@adapter: the adapter
4449  *	@mbox: mbox to use for the FW command
4450  *	@viid: virtual interface whose RSS subtable is to be written
4451  *	@start: start entry in the table to write
4452  *	@n: how many table entries to write
4453  *	@rspq: values for the response queue lookup table
4454  *	@nrspq: number of values in @rspq
4455  *
4456  *	Programs the selected part of the VI's RSS mapping table with the
4457  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4458  *	until the full table range is populated.
4459  *
4460  *	The caller must ensure the values in @rspq are in the range allowed for
4461  *	@viid.
4462  */
t4_config_rss_range(struct adapter * adapter,int mbox,unsigned int viid,int start,int n,const u16 * rspq,unsigned int nrspq)4463 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4464 			int start, int n, const u16 *rspq, unsigned int nrspq)
4465 {
4466 	int ret;
4467 	const u16 *rsp = rspq;
4468 	const u16 *rsp_end = rspq + nrspq;
4469 	struct fw_rss_ind_tbl_cmd cmd;
4470 
4471 	memset(&cmd, 0, sizeof(cmd));
4472 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4473 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4474 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4475 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4476 
4477 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4478 	while (n > 0) {
4479 		int nq = min(n, 32);
4480 		__be32 *qp = &cmd.iq0_to_iq2;
4481 
4482 		cmd.niqid = cpu_to_be16(nq);
4483 		cmd.startidx = cpu_to_be16(start);
4484 
4485 		start += nq;
4486 		n -= nq;
4487 
4488 		while (nq > 0) {
4489 			unsigned int v;
4490 
4491 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4492 			if (++rsp >= rsp_end)
4493 				rsp = rspq;
4494 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4495 			if (++rsp >= rsp_end)
4496 				rsp = rspq;
4497 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4498 			if (++rsp >= rsp_end)
4499 				rsp = rspq;
4500 
4501 			*qp++ = cpu_to_be32(v);
4502 			nq -= 3;
4503 		}
4504 
4505 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4506 		if (ret)
4507 			return ret;
4508 	}
4509 	return 0;
4510 }
4511 
4512 /**
4513  *	t4_config_glbl_rss - configure the global RSS mode
4514  *	@adapter: the adapter
4515  *	@mbox: mbox to use for the FW command
4516  *	@mode: global RSS mode
4517  *	@flags: mode-specific flags
4518  *
4519  *	Sets the global RSS mode.
4520  */
t4_config_glbl_rss(struct adapter * adapter,int mbox,unsigned int mode,unsigned int flags)4521 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4522 		       unsigned int flags)
4523 {
4524 	struct fw_rss_glb_config_cmd c;
4525 
4526 	memset(&c, 0, sizeof(c));
4527 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4528 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4529 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4530 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4531 		c.u.manual.mode_pkd =
4532 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4533 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4534 		c.u.basicvirtual.mode_pkd =
4535 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4536 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4537 	} else
4538 		return -EINVAL;
4539 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4540 }
4541 
4542 /**
4543  *	t4_config_vi_rss - configure per VI RSS settings
4544  *	@adapter: the adapter
4545  *	@mbox: mbox to use for the FW command
4546  *	@viid: the VI id
4547  *	@flags: RSS flags
4548  *	@defq: id of the default RSS queue for the VI.
4549  *
4550  *	Configures VI-specific RSS properties.
4551  */
t4_config_vi_rss(struct adapter * adapter,int mbox,unsigned int viid,unsigned int flags,unsigned int defq)4552 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4553 		     unsigned int flags, unsigned int defq)
4554 {
4555 	struct fw_rss_vi_config_cmd c;
4556 
4557 	memset(&c, 0, sizeof(c));
4558 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4559 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4560 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4561 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4562 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4563 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4564 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4565 }
4566 
4567 /* Read an RSS table row */
rd_rss_row(struct adapter * adap,int row,u32 * val)4568 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4569 {
4570 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4571 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4572 				   5, 0, val);
4573 }
4574 
4575 /**
4576  *	t4_read_rss - read the contents of the RSS mapping table
4577  *	@adapter: the adapter
4578  *	@map: holds the contents of the RSS mapping table
4579  *
4580  *	Reads the contents of the RSS hash->queue mapping table.
4581  */
t4_read_rss(struct adapter * adapter,u16 * map)4582 int t4_read_rss(struct adapter *adapter, u16 *map)
4583 {
4584 	u32 val;
4585 	int i, ret;
4586 
4587 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4588 		ret = rd_rss_row(adapter, i, &val);
4589 		if (ret)
4590 			return ret;
4591 		*map++ = LKPTBLQUEUE0_G(val);
4592 		*map++ = LKPTBLQUEUE1_G(val);
4593 	}
4594 	return 0;
4595 }
4596 
t4_use_ldst(struct adapter * adap)4597 static unsigned int t4_use_ldst(struct adapter *adap)
4598 {
4599 	return (adap->flags & FW_OK) || !adap->use_bd;
4600 }
4601 
4602 /**
4603  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4604  *	@adap: the adapter
4605  *	@vals: where the indirect register values are stored/written
4606  *	@nregs: how many indirect registers to read/write
4607  *	@start_idx: index of first indirect register to read/write
4608  *	@rw: Read (1) or Write (0)
4609  *
4610  *	Access TP PIO registers through LDST
4611  */
t4_fw_tp_pio_rw(struct adapter * adap,u32 * vals,unsigned int nregs,unsigned int start_index,unsigned int rw)4612 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4613 			    unsigned int start_index, unsigned int rw)
4614 {
4615 	int ret, i;
4616 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4617 	struct fw_ldst_cmd c;
4618 
4619 	for (i = 0 ; i < nregs; i++) {
4620 		memset(&c, 0, sizeof(c));
4621 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4622 						FW_CMD_REQUEST_F |
4623 						(rw ? FW_CMD_READ_F :
4624 						      FW_CMD_WRITE_F) |
4625 						FW_LDST_CMD_ADDRSPACE_V(cmd));
4626 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4627 
4628 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4629 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4630 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4631 		if (!ret && rw)
4632 			vals[i] = be32_to_cpu(c.u.addrval.val);
4633 	}
4634 }
4635 
4636 /**
4637  *	t4_read_rss_key - read the global RSS key
4638  *	@adap: the adapter
4639  *	@key: 10-entry array holding the 320-bit RSS key
4640  *
4641  *	Reads the global 320-bit RSS key.
4642  */
t4_read_rss_key(struct adapter * adap,u32 * key)4643 void t4_read_rss_key(struct adapter *adap, u32 *key)
4644 {
4645 	if (t4_use_ldst(adap))
4646 		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4647 	else
4648 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4649 				 TP_RSS_SECRET_KEY0_A);
4650 }
4651 
4652 /**
4653  *	t4_write_rss_key - program one of the RSS keys
4654  *	@adap: the adapter
4655  *	@key: 10-entry array holding the 320-bit RSS key
4656  *	@idx: which RSS key to write
4657  *
4658  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4659  *	0..15 the corresponding entry in the RSS key table is written,
4660  *	otherwise the global RSS key is written.
4661  */
t4_write_rss_key(struct adapter * adap,const u32 * key,int idx)4662 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4663 {
4664 	u8 rss_key_addr_cnt = 16;
4665 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4666 
4667 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4668 	 * allows access to key addresses 16-63 by using KeyWrAddrX
4669 	 * as index[5:4](upper 2) into key table
4670 	 */
4671 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4672 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4673 		rss_key_addr_cnt = 32;
4674 
4675 	if (t4_use_ldst(adap))
4676 		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4677 	else
4678 		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4679 				  TP_RSS_SECRET_KEY0_A);
4680 
4681 	if (idx >= 0 && idx < rss_key_addr_cnt) {
4682 		if (rss_key_addr_cnt > 16)
4683 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4684 				     KEYWRADDRX_V(idx >> 4) |
4685 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
4686 		else
4687 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4688 				     KEYWRADDR_V(idx) | KEYWREN_F);
4689 	}
4690 }
4691 
4692 /**
4693  *	t4_read_rss_pf_config - read PF RSS Configuration Table
4694  *	@adapter: the adapter
4695  *	@index: the entry in the PF RSS table to read
4696  *	@valp: where to store the returned value
4697  *
4698  *	Reads the PF RSS Configuration Table at the specified index and returns
4699  *	the value found there.
4700  */
t4_read_rss_pf_config(struct adapter * adapter,unsigned int index,u32 * valp)4701 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4702 			   u32 *valp)
4703 {
4704 	if (t4_use_ldst(adapter))
4705 		t4_fw_tp_pio_rw(adapter, valp, 1,
4706 				TP_RSS_PF0_CONFIG_A + index, 1);
4707 	else
4708 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4709 				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
4710 }
4711 
4712 /**
4713  *	t4_read_rss_vf_config - read VF RSS Configuration Table
4714  *	@adapter: the adapter
4715  *	@index: the entry in the VF RSS table to read
4716  *	@vfl: where to store the returned VFL
4717  *	@vfh: where to store the returned VFH
4718  *
4719  *	Reads the VF RSS Configuration Table at the specified index and returns
4720  *	the (VFL, VFH) values found there.
4721  */
t4_read_rss_vf_config(struct adapter * adapter,unsigned int index,u32 * vfl,u32 * vfh)4722 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4723 			   u32 *vfl, u32 *vfh)
4724 {
4725 	u32 vrt, mask, data;
4726 
4727 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4728 		mask = VFWRADDR_V(VFWRADDR_M);
4729 		data = VFWRADDR_V(index);
4730 	} else {
4731 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4732 		 data = T6_VFWRADDR_V(index);
4733 	}
4734 
4735 	/* Request that the index'th VF Table values be read into VFL/VFH.
4736 	 */
4737 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4738 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4739 	vrt |= data | VFRDEN_F;
4740 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4741 
4742 	/* Grab the VFL/VFH values ...
4743 	 */
4744 	if (t4_use_ldst(adapter)) {
4745 		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4746 		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4747 	} else {
4748 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4749 				 vfl, 1, TP_RSS_VFL_CONFIG_A);
4750 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4751 				 vfh, 1, TP_RSS_VFH_CONFIG_A);
4752 	}
4753 }
4754 
4755 /**
4756  *	t4_read_rss_pf_map - read PF RSS Map
4757  *	@adapter: the adapter
4758  *
4759  *	Reads the PF RSS Map register and returns its value.
4760  */
t4_read_rss_pf_map(struct adapter * adapter)4761 u32 t4_read_rss_pf_map(struct adapter *adapter)
4762 {
4763 	u32 pfmap;
4764 
4765 	if (t4_use_ldst(adapter))
4766 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4767 	else
4768 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4769 				 &pfmap, 1, TP_RSS_PF_MAP_A);
4770 	return pfmap;
4771 }
4772 
4773 /**
4774  *	t4_read_rss_pf_mask - read PF RSS Mask
4775  *	@adapter: the adapter
4776  *
4777  *	Reads the PF RSS Mask register and returns its value.
4778  */
t4_read_rss_pf_mask(struct adapter * adapter)4779 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4780 {
4781 	u32 pfmask;
4782 
4783 	if (t4_use_ldst(adapter))
4784 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4785 	else
4786 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4787 				 &pfmask, 1, TP_RSS_PF_MSK_A);
4788 	return pfmask;
4789 }
4790 
4791 /**
4792  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
4793  *	@adap: the adapter
4794  *	@v4: holds the TCP/IP counter values
4795  *	@v6: holds the TCP/IPv6 counter values
4796  *
4797  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4798  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4799  */
t4_tp_get_tcp_stats(struct adapter * adap,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)4800 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4801 			 struct tp_tcp_stats *v6)
4802 {
4803 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4804 
4805 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4806 #define STAT(x)     val[STAT_IDX(x)]
4807 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4808 
4809 	if (v4) {
4810 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4811 				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4812 		v4->tcp_out_rsts = STAT(OUT_RST);
4813 		v4->tcp_in_segs  = STAT64(IN_SEG);
4814 		v4->tcp_out_segs = STAT64(OUT_SEG);
4815 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
4816 	}
4817 	if (v6) {
4818 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4819 				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4820 		v6->tcp_out_rsts = STAT(OUT_RST);
4821 		v6->tcp_in_segs  = STAT64(IN_SEG);
4822 		v6->tcp_out_segs = STAT64(OUT_SEG);
4823 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
4824 	}
4825 #undef STAT64
4826 #undef STAT
4827 #undef STAT_IDX
4828 }
4829 
4830 /**
4831  *	t4_tp_get_err_stats - read TP's error MIB counters
4832  *	@adap: the adapter
4833  *	@st: holds the counter values
4834  *
4835  *	Returns the values of TP's error counters.
4836  */
t4_tp_get_err_stats(struct adapter * adap,struct tp_err_stats * st)4837 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4838 {
4839 	int nchan = adap->params.arch.nchan;
4840 
4841 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4842 			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4843 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4844 			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4845 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4846 			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4847 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4848 			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4849 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4850 			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4851 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4852 			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4853 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4854 			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4855 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4856 			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4857 
4858 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4859 			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4860 }
4861 
4862 /**
4863  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
4864  *	@adap: the adapter
4865  *	@st: holds the counter values
4866  *
4867  *	Returns the values of TP's CPL counters.
4868  */
t4_tp_get_cpl_stats(struct adapter * adap,struct tp_cpl_stats * st)4869 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4870 {
4871 	int nchan = adap->params.arch.nchan;
4872 
4873 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4874 			 nchan, TP_MIB_CPL_IN_REQ_0_A);
4875 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4876 			 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4877 
4878 }
4879 
4880 /**
4881  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4882  *	@adap: the adapter
4883  *	@st: holds the counter values
4884  *
4885  *	Returns the values of TP's RDMA counters.
4886  */
t4_tp_get_rdma_stats(struct adapter * adap,struct tp_rdma_stats * st)4887 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4888 {
4889 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4890 			 2, TP_MIB_RQE_DFR_PKT_A);
4891 }
4892 
4893 /**
4894  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4895  *	@adap: the adapter
4896  *	@idx: the port index
4897  *	@st: holds the counter values
4898  *
4899  *	Returns the values of TP's FCoE counters for the selected port.
4900  */
t4_get_fcoe_stats(struct adapter * adap,unsigned int idx,struct tp_fcoe_stats * st)4901 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4902 		       struct tp_fcoe_stats *st)
4903 {
4904 	u32 val[2];
4905 
4906 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4907 			 1, TP_MIB_FCOE_DDP_0_A + idx);
4908 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4909 			 1, TP_MIB_FCOE_DROP_0_A + idx);
4910 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4911 			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4912 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
4913 }
4914 
4915 /**
4916  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4917  *	@adap: the adapter
4918  *	@st: holds the counter values
4919  *
4920  *	Returns the values of TP's counters for non-TCP directly-placed packets.
4921  */
t4_get_usm_stats(struct adapter * adap,struct tp_usm_stats * st)4922 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4923 {
4924 	u32 val[4];
4925 
4926 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4927 			 TP_MIB_USM_PKTS_A);
4928 	st->frames = val[0];
4929 	st->drops = val[1];
4930 	st->octets = ((u64)val[2] << 32) | val[3];
4931 }
4932 
4933 /**
4934  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
4935  *	@adap: the adapter
4936  *	@mtus: where to store the MTU values
4937  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
4938  *
4939  *	Reads the HW path MTU table.
4940  */
t4_read_mtu_tbl(struct adapter * adap,u16 * mtus,u8 * mtu_log)4941 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4942 {
4943 	u32 v;
4944 	int i;
4945 
4946 	for (i = 0; i < NMTUS; ++i) {
4947 		t4_write_reg(adap, TP_MTU_TABLE_A,
4948 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
4949 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
4950 		mtus[i] = MTUVALUE_G(v);
4951 		if (mtu_log)
4952 			mtu_log[i] = MTUWIDTH_G(v);
4953 	}
4954 }
4955 
4956 /**
4957  *	t4_read_cong_tbl - reads the congestion control table
4958  *	@adap: the adapter
4959  *	@incr: where to store the alpha values
4960  *
4961  *	Reads the additive increments programmed into the HW congestion
4962  *	control table.
4963  */
t4_read_cong_tbl(struct adapter * adap,u16 incr[NMTUS][NCCTRL_WIN])4964 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4965 {
4966 	unsigned int mtu, w;
4967 
4968 	for (mtu = 0; mtu < NMTUS; ++mtu)
4969 		for (w = 0; w < NCCTRL_WIN; ++w) {
4970 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
4971 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
4972 			incr[mtu][w] = (u16)t4_read_reg(adap,
4973 						TP_CCTRL_TABLE_A) & 0x1fff;
4974 		}
4975 }
4976 
4977 /**
4978  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4979  *	@adap: the adapter
4980  *	@addr: the indirect TP register address
4981  *	@mask: specifies the field within the register to modify
4982  *	@val: new value for the field
4983  *
4984  *	Sets a field of an indirect TP register to the given value.
4985  */
t4_tp_wr_bits_indirect(struct adapter * adap,unsigned int addr,unsigned int mask,unsigned int val)4986 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4987 			    unsigned int mask, unsigned int val)
4988 {
4989 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4990 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4991 	t4_write_reg(adap, TP_PIO_DATA_A, val);
4992 }
4993 
4994 /**
4995  *	init_cong_ctrl - initialize congestion control parameters
4996  *	@a: the alpha values for congestion control
4997  *	@b: the beta values for congestion control
4998  *
4999  *	Initialize the congestion control parameters.
5000  */
init_cong_ctrl(unsigned short * a,unsigned short * b)5001 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5002 {
5003 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5004 	a[9] = 2;
5005 	a[10] = 3;
5006 	a[11] = 4;
5007 	a[12] = 5;
5008 	a[13] = 6;
5009 	a[14] = 7;
5010 	a[15] = 8;
5011 	a[16] = 9;
5012 	a[17] = 10;
5013 	a[18] = 14;
5014 	a[19] = 17;
5015 	a[20] = 21;
5016 	a[21] = 25;
5017 	a[22] = 30;
5018 	a[23] = 35;
5019 	a[24] = 45;
5020 	a[25] = 60;
5021 	a[26] = 80;
5022 	a[27] = 100;
5023 	a[28] = 200;
5024 	a[29] = 300;
5025 	a[30] = 400;
5026 	a[31] = 500;
5027 
5028 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5029 	b[9] = b[10] = 1;
5030 	b[11] = b[12] = 2;
5031 	b[13] = b[14] = b[15] = b[16] = 3;
5032 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5033 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5034 	b[28] = b[29] = 6;
5035 	b[30] = b[31] = 7;
5036 }
5037 
5038 /* The minimum additive increment value for the congestion control table */
5039 #define CC_MIN_INCR 2U
5040 
5041 /**
5042  *	t4_load_mtus - write the MTU and congestion control HW tables
5043  *	@adap: the adapter
5044  *	@mtus: the values for the MTU table
5045  *	@alpha: the values for the congestion control alpha parameter
5046  *	@beta: the values for the congestion control beta parameter
5047  *
5048  *	Write the HW MTU table with the supplied MTUs and the high-speed
5049  *	congestion control table with the supplied alpha, beta, and MTUs.
5050  *	We write the two tables together because the additive increments
5051  *	depend on the MTUs.
5052  */
t4_load_mtus(struct adapter * adap,const unsigned short * mtus,const unsigned short * alpha,const unsigned short * beta)5053 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5054 		  const unsigned short *alpha, const unsigned short *beta)
5055 {
5056 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5057 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5058 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5059 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5060 	};
5061 
5062 	unsigned int i, w;
5063 
5064 	for (i = 0; i < NMTUS; ++i) {
5065 		unsigned int mtu = mtus[i];
5066 		unsigned int log2 = fls(mtu);
5067 
5068 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5069 			log2--;
5070 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5071 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5072 
5073 		for (w = 0; w < NCCTRL_WIN; ++w) {
5074 			unsigned int inc;
5075 
5076 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5077 				  CC_MIN_INCR);
5078 
5079 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5080 				     (w << 16) | (beta[w] << 13) | inc);
5081 		}
5082 	}
5083 }
5084 
5085 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5086  * clocks.  The formula is
5087  *
5088  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5089  *
5090  * which is equivalent to
5091  *
5092  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5093  */
chan_rate(struct adapter * adap,unsigned int bytes256)5094 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5095 {
5096 	u64 v = bytes256 * adap->params.vpd.cclk;
5097 
5098 	return v * 62 + v / 2;
5099 }
5100 
5101 /**
5102  *	t4_get_chan_txrate - get the current per channel Tx rates
5103  *	@adap: the adapter
5104  *	@nic_rate: rates for NIC traffic
5105  *	@ofld_rate: rates for offloaded traffic
5106  *
5107  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5108  *	for each channel.
5109  */
t4_get_chan_txrate(struct adapter * adap,u64 * nic_rate,u64 * ofld_rate)5110 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5111 {
5112 	u32 v;
5113 
5114 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5115 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5116 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5117 	if (adap->params.arch.nchan == NCHAN) {
5118 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5119 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5120 	}
5121 
5122 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5123 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5124 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5125 	if (adap->params.arch.nchan == NCHAN) {
5126 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5127 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5128 	}
5129 }
5130 
5131 /**
5132  *	t4_set_trace_filter - configure one of the tracing filters
5133  *	@adap: the adapter
5134  *	@tp: the desired trace filter parameters
5135  *	@idx: which filter to configure
5136  *	@enable: whether to enable or disable the filter
5137  *
5138  *	Configures one of the tracing filters available in HW.  If @enable is
5139  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5140  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5141  */
t4_set_trace_filter(struct adapter * adap,const struct trace_params * tp,int idx,int enable)5142 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5143 			int idx, int enable)
5144 {
5145 	int i, ofst = idx * 4;
5146 	u32 data_reg, mask_reg, cfg;
5147 	u32 multitrc = TRCMULTIFILTER_F;
5148 
5149 	if (!enable) {
5150 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5151 		return 0;
5152 	}
5153 
5154 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5155 	if (cfg & TRCMULTIFILTER_F) {
5156 		/* If multiple tracers are enabled, then maximum
5157 		 * capture size is 2.5KB (FIFO size of a single channel)
5158 		 * minus 2 flits for CPL_TRACE_PKT header.
5159 		 */
5160 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5161 			return -EINVAL;
5162 	} else {
5163 		/* If multiple tracers are disabled, to avoid deadlocks
5164 		 * maximum packet capture size of 9600 bytes is recommended.
5165 		 * Also in this mode, only trace0 can be enabled and running.
5166 		 */
5167 		multitrc = 0;
5168 		if (tp->snap_len > 9600 || idx)
5169 			return -EINVAL;
5170 	}
5171 
5172 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5173 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5174 	    tp->min_len > TFMINPKTSIZE_M)
5175 		return -EINVAL;
5176 
5177 	/* stop the tracer we'll be changing */
5178 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5179 
5180 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5181 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5182 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5183 
5184 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5185 		t4_write_reg(adap, data_reg, tp->data[i]);
5186 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5187 	}
5188 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5189 		     TFCAPTUREMAX_V(tp->snap_len) |
5190 		     TFMINPKTSIZE_V(tp->min_len));
5191 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5192 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5193 		     (is_t4(adap->params.chip) ?
5194 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5195 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5196 		     T5_TFINVERTMATCH_V(tp->invert)));
5197 
5198 	return 0;
5199 }
5200 
5201 /**
5202  *	t4_get_trace_filter - query one of the tracing filters
5203  *	@adap: the adapter
5204  *	@tp: the current trace filter parameters
5205  *	@idx: which trace filter to query
5206  *	@enabled: non-zero if the filter is enabled
5207  *
5208  *	Returns the current settings of one of the HW tracing filters.
5209  */
t4_get_trace_filter(struct adapter * adap,struct trace_params * tp,int idx,int * enabled)5210 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5211 			 int *enabled)
5212 {
5213 	u32 ctla, ctlb;
5214 	int i, ofst = idx * 4;
5215 	u32 data_reg, mask_reg;
5216 
5217 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5218 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5219 
5220 	if (is_t4(adap->params.chip)) {
5221 		*enabled = !!(ctla & TFEN_F);
5222 		tp->port =  TFPORT_G(ctla);
5223 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5224 	} else {
5225 		*enabled = !!(ctla & T5_TFEN_F);
5226 		tp->port = T5_TFPORT_G(ctla);
5227 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5228 	}
5229 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5230 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5231 	tp->skip_ofst = TFOFFSET_G(ctla);
5232 	tp->skip_len = TFLENGTH_G(ctla);
5233 
5234 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5235 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5236 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5237 
5238 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5239 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5240 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5241 	}
5242 }
5243 
5244 /**
5245  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5246  *	@adap: the adapter
5247  *	@cnt: where to store the count statistics
5248  *	@cycles: where to store the cycle statistics
5249  *
5250  *	Returns performance statistics from PMTX.
5251  */
t4_pmtx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])5252 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5253 {
5254 	int i;
5255 	u32 data[2];
5256 
5257 	for (i = 0; i < PM_NSTATS; i++) {
5258 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5259 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5260 		if (is_t4(adap->params.chip)) {
5261 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5262 		} else {
5263 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5264 					 PM_TX_DBG_DATA_A, data, 2,
5265 					 PM_TX_DBG_STAT_MSB_A);
5266 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5267 		}
5268 	}
5269 }
5270 
5271 /**
5272  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5273  *	@adap: the adapter
5274  *	@cnt: where to store the count statistics
5275  *	@cycles: where to store the cycle statistics
5276  *
5277  *	Returns performance statistics from PMRX.
5278  */
t4_pmrx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])5279 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5280 {
5281 	int i;
5282 	u32 data[2];
5283 
5284 	for (i = 0; i < PM_NSTATS; i++) {
5285 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5286 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5287 		if (is_t4(adap->params.chip)) {
5288 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5289 		} else {
5290 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5291 					 PM_RX_DBG_DATA_A, data, 2,
5292 					 PM_RX_DBG_STAT_MSB_A);
5293 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5294 		}
5295 	}
5296 }
5297 
5298 /**
5299  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5300  *	@adap: the adapter
5301  *	@idx: the port index
5302  *
5303  *	Returns a bitmap indicating which MPS buffer groups are associated
5304  *	with the given port.  Bit i is set if buffer group i is used by the
5305  *	port.
5306  */
t4_get_mps_bg_map(struct adapter * adap,int idx)5307 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5308 {
5309 	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5310 
5311 	if (n == 0)
5312 		return idx == 0 ? 0xf : 0;
5313 	if (n == 1)
5314 		return idx < 2 ? (3 << (2 * idx)) : 0;
5315 	return 1 << idx;
5316 }
5317 
5318 /**
5319  *      t4_get_port_type_description - return Port Type string description
5320  *      @port_type: firmware Port Type enumeration
5321  */
t4_get_port_type_description(enum fw_port_type port_type)5322 const char *t4_get_port_type_description(enum fw_port_type port_type)
5323 {
5324 	static const char *const port_type_description[] = {
5325 		"R XFI",
5326 		"R XAUI",
5327 		"T SGMII",
5328 		"T XFI",
5329 		"T XAUI",
5330 		"KX4",
5331 		"CX4",
5332 		"KX",
5333 		"KR",
5334 		"R SFP+",
5335 		"KR/KX",
5336 		"KR/KX/KX4",
5337 		"R QSFP_10G",
5338 		"R QSA",
5339 		"R QSFP",
5340 		"R BP40_BA",
5341 	};
5342 
5343 	if (port_type < ARRAY_SIZE(port_type_description))
5344 		return port_type_description[port_type];
5345 	return "UNKNOWN";
5346 }
5347 
5348 /**
5349  *      t4_get_port_stats_offset - collect port stats relative to a previous
5350  *                                 snapshot
5351  *      @adap: The adapter
5352  *      @idx: The port
5353  *      @stats: Current stats to fill
5354  *      @offset: Previous stats snapshot
5355  */
t4_get_port_stats_offset(struct adapter * adap,int idx,struct port_stats * stats,struct port_stats * offset)5356 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5357 			      struct port_stats *stats,
5358 			      struct port_stats *offset)
5359 {
5360 	u64 *s, *o;
5361 	int i;
5362 
5363 	t4_get_port_stats(adap, idx, stats);
5364 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5365 			i < (sizeof(struct port_stats) / sizeof(u64));
5366 			i++, s++, o++)
5367 		*s -= *o;
5368 }
5369 
5370 /**
5371  *	t4_get_port_stats - collect port statistics
5372  *	@adap: the adapter
5373  *	@idx: the port index
5374  *	@p: the stats structure to fill
5375  *
5376  *	Collect statistics related to the given port from HW.
5377  */
t4_get_port_stats(struct adapter * adap,int idx,struct port_stats * p)5378 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5379 {
5380 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5381 
5382 #define GET_STAT(name) \
5383 	t4_read_reg64(adap, \
5384 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5385 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5386 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5387 
5388 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5389 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5390 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5391 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5392 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5393 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5394 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5395 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5396 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5397 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5398 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5399 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5400 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5401 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
5402 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5403 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5404 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5405 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5406 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5407 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5408 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5409 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5410 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5411 
5412 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5413 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5414 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5415 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5416 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5417 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5418 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5419 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5420 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5421 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5422 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5423 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5424 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5425 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5426 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5427 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5428 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5429 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5430 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5431 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5432 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5433 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5434 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5435 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5436 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5437 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5438 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5439 
5440 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5441 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5442 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5443 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5444 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5445 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5446 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5447 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5448 
5449 #undef GET_STAT
5450 #undef GET_STAT_COM
5451 }
5452 
5453 /**
5454  *	t4_get_lb_stats - collect loopback port statistics
5455  *	@adap: the adapter
5456  *	@idx: the loopback port index
5457  *	@p: the stats structure to fill
5458  *
5459  *	Return HW statistics for the given loopback port.
5460  */
t4_get_lb_stats(struct adapter * adap,int idx,struct lb_port_stats * p)5461 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5462 {
5463 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5464 
5465 #define GET_STAT(name) \
5466 	t4_read_reg64(adap, \
5467 	(is_t4(adap->params.chip) ? \
5468 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5469 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5470 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5471 
5472 	p->octets           = GET_STAT(BYTES);
5473 	p->frames           = GET_STAT(FRAMES);
5474 	p->bcast_frames     = GET_STAT(BCAST);
5475 	p->mcast_frames     = GET_STAT(MCAST);
5476 	p->ucast_frames     = GET_STAT(UCAST);
5477 	p->error_frames     = GET_STAT(ERROR);
5478 
5479 	p->frames_64        = GET_STAT(64B);
5480 	p->frames_65_127    = GET_STAT(65B_127B);
5481 	p->frames_128_255   = GET_STAT(128B_255B);
5482 	p->frames_256_511   = GET_STAT(256B_511B);
5483 	p->frames_512_1023  = GET_STAT(512B_1023B);
5484 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
5485 	p->frames_1519_max  = GET_STAT(1519B_MAX);
5486 	p->drop             = GET_STAT(DROP_FRAMES);
5487 
5488 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5489 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5490 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5491 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5492 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5493 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5494 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5495 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5496 
5497 #undef GET_STAT
5498 #undef GET_STAT_COM
5499 }
5500 
5501 /*     t4_mk_filtdelwr - create a delete filter WR
5502  *     @ftid: the filter ID
5503  *     @wr: the filter work request to populate
5504  *     @qid: ingress queue to receive the delete notification
5505  *
5506  *     Creates a filter work request to delete the supplied filter.  If @qid is
5507  *     negative the delete notification is suppressed.
5508  */
t4_mk_filtdelwr(unsigned int ftid,struct fw_filter_wr * wr,int qid)5509 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5510 {
5511 	memset(wr, 0, sizeof(*wr));
5512 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5513 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5514 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5515 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
5516 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5517 	if (qid >= 0)
5518 		wr->rx_chan_rx_rpl_iq =
5519 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5520 }
5521 
5522 #define INIT_CMD(var, cmd, rd_wr) do { \
5523 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5524 					FW_CMD_REQUEST_F | \
5525 					FW_CMD_##rd_wr##_F); \
5526 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5527 } while (0)
5528 
t4_fwaddrspace_write(struct adapter * adap,unsigned int mbox,u32 addr,u32 val)5529 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5530 			  u32 addr, u32 val)
5531 {
5532 	u32 ldst_addrspace;
5533 	struct fw_ldst_cmd c;
5534 
5535 	memset(&c, 0, sizeof(c));
5536 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5537 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5538 					FW_CMD_REQUEST_F |
5539 					FW_CMD_WRITE_F |
5540 					ldst_addrspace);
5541 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5542 	c.u.addrval.addr = cpu_to_be32(addr);
5543 	c.u.addrval.val = cpu_to_be32(val);
5544 
5545 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5546 }
5547 
5548 /**
5549  *	t4_mdio_rd - read a PHY register through MDIO
5550  *	@adap: the adapter
5551  *	@mbox: mailbox to use for the FW command
5552  *	@phy_addr: the PHY address
5553  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5554  *	@reg: the register to read
5555  *	@valp: where to store the value
5556  *
5557  *	Issues a FW command through the given mailbox to read a PHY register.
5558  */
t4_mdio_rd(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 * valp)5559 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5560 	       unsigned int mmd, unsigned int reg, u16 *valp)
5561 {
5562 	int ret;
5563 	u32 ldst_addrspace;
5564 	struct fw_ldst_cmd c;
5565 
5566 	memset(&c, 0, sizeof(c));
5567 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5568 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5569 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5570 					ldst_addrspace);
5571 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5572 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5573 					 FW_LDST_CMD_MMD_V(mmd));
5574 	c.u.mdio.raddr = cpu_to_be16(reg);
5575 
5576 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5577 	if (ret == 0)
5578 		*valp = be16_to_cpu(c.u.mdio.rval);
5579 	return ret;
5580 }
5581 
5582 /**
5583  *	t4_mdio_wr - write a PHY register through MDIO
5584  *	@adap: the adapter
5585  *	@mbox: mailbox to use for the FW command
5586  *	@phy_addr: the PHY address
5587  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5588  *	@reg: the register to write
5589  *	@valp: value to write
5590  *
5591  *	Issues a FW command through the given mailbox to write a PHY register.
5592  */
t4_mdio_wr(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 val)5593 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5594 	       unsigned int mmd, unsigned int reg, u16 val)
5595 {
5596 	u32 ldst_addrspace;
5597 	struct fw_ldst_cmd c;
5598 
5599 	memset(&c, 0, sizeof(c));
5600 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5601 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5602 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5603 					ldst_addrspace);
5604 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5605 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5606 					 FW_LDST_CMD_MMD_V(mmd));
5607 	c.u.mdio.raddr = cpu_to_be16(reg);
5608 	c.u.mdio.rval = cpu_to_be16(val);
5609 
5610 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5611 }
5612 
5613 /**
5614  *	t4_sge_decode_idma_state - decode the idma state
5615  *	@adap: the adapter
5616  *	@state: the state idma is stuck in
5617  */
t4_sge_decode_idma_state(struct adapter * adapter,int state)5618 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5619 {
5620 	static const char * const t4_decode[] = {
5621 		"IDMA_IDLE",
5622 		"IDMA_PUSH_MORE_CPL_FIFO",
5623 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5624 		"Not used",
5625 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5626 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5627 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5628 		"IDMA_SEND_FIFO_TO_IMSG",
5629 		"IDMA_FL_REQ_DATA_FL_PREP",
5630 		"IDMA_FL_REQ_DATA_FL",
5631 		"IDMA_FL_DROP",
5632 		"IDMA_FL_H_REQ_HEADER_FL",
5633 		"IDMA_FL_H_SEND_PCIEHDR",
5634 		"IDMA_FL_H_PUSH_CPL_FIFO",
5635 		"IDMA_FL_H_SEND_CPL",
5636 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5637 		"IDMA_FL_H_SEND_IP_HDR",
5638 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5639 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5640 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5641 		"IDMA_FL_D_SEND_PCIEHDR",
5642 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5643 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5644 		"IDMA_FL_SEND_PCIEHDR",
5645 		"IDMA_FL_PUSH_CPL_FIFO",
5646 		"IDMA_FL_SEND_CPL",
5647 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5648 		"IDMA_FL_SEND_PAYLOAD",
5649 		"IDMA_FL_REQ_NEXT_DATA_FL",
5650 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5651 		"IDMA_FL_SEND_PADDING",
5652 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5653 		"IDMA_FL_SEND_FIFO_TO_IMSG",
5654 		"IDMA_FL_REQ_DATAFL_DONE",
5655 		"IDMA_FL_REQ_HEADERFL_DONE",
5656 	};
5657 	static const char * const t5_decode[] = {
5658 		"IDMA_IDLE",
5659 		"IDMA_ALMOST_IDLE",
5660 		"IDMA_PUSH_MORE_CPL_FIFO",
5661 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5662 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5663 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5664 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5665 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5666 		"IDMA_SEND_FIFO_TO_IMSG",
5667 		"IDMA_FL_REQ_DATA_FL",
5668 		"IDMA_FL_DROP",
5669 		"IDMA_FL_DROP_SEND_INC",
5670 		"IDMA_FL_H_REQ_HEADER_FL",
5671 		"IDMA_FL_H_SEND_PCIEHDR",
5672 		"IDMA_FL_H_PUSH_CPL_FIFO",
5673 		"IDMA_FL_H_SEND_CPL",
5674 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5675 		"IDMA_FL_H_SEND_IP_HDR",
5676 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5677 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5678 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5679 		"IDMA_FL_D_SEND_PCIEHDR",
5680 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5681 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5682 		"IDMA_FL_SEND_PCIEHDR",
5683 		"IDMA_FL_PUSH_CPL_FIFO",
5684 		"IDMA_FL_SEND_CPL",
5685 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5686 		"IDMA_FL_SEND_PAYLOAD",
5687 		"IDMA_FL_REQ_NEXT_DATA_FL",
5688 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5689 		"IDMA_FL_SEND_PADDING",
5690 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5691 	};
5692 	static const u32 sge_regs[] = {
5693 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
5694 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
5695 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5696 	};
5697 	const char **sge_idma_decode;
5698 	int sge_idma_decode_nstates;
5699 	int i;
5700 
5701 	if (is_t4(adapter->params.chip)) {
5702 		sge_idma_decode = (const char **)t4_decode;
5703 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5704 	} else {
5705 		sge_idma_decode = (const char **)t5_decode;
5706 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5707 	}
5708 
5709 	if (state < sge_idma_decode_nstates)
5710 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5711 	else
5712 		CH_WARN(adapter, "idma state %d unknown\n", state);
5713 
5714 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5715 		CH_WARN(adapter, "SGE register %#x value %#x\n",
5716 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5717 }
5718 
5719 /**
5720  *      t4_sge_ctxt_flush - flush the SGE context cache
5721  *      @adap: the adapter
5722  *      @mbox: mailbox to use for the FW command
5723  *
5724  *      Issues a FW command through the given mailbox to flush the
5725  *      SGE context cache.
5726  */
t4_sge_ctxt_flush(struct adapter * adap,unsigned int mbox)5727 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5728 {
5729 	int ret;
5730 	u32 ldst_addrspace;
5731 	struct fw_ldst_cmd c;
5732 
5733 	memset(&c, 0, sizeof(c));
5734 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5735 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5736 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5737 					ldst_addrspace);
5738 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5739 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5740 
5741 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5742 	return ret;
5743 }
5744 
5745 /**
5746  *      t4_fw_hello - establish communication with FW
5747  *      @adap: the adapter
5748  *      @mbox: mailbox to use for the FW command
5749  *      @evt_mbox: mailbox to receive async FW events
5750  *      @master: specifies the caller's willingness to be the device master
5751  *	@state: returns the current device state (if non-NULL)
5752  *
5753  *	Issues a command to establish communication with FW.  Returns either
5754  *	an error (negative integer) or the mailbox of the Master PF.
5755  */
t4_fw_hello(struct adapter * adap,unsigned int mbox,unsigned int evt_mbox,enum dev_master master,enum dev_state * state)5756 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5757 		enum dev_master master, enum dev_state *state)
5758 {
5759 	int ret;
5760 	struct fw_hello_cmd c;
5761 	u32 v;
5762 	unsigned int master_mbox;
5763 	int retries = FW_CMD_HELLO_RETRIES;
5764 
5765 retry:
5766 	memset(&c, 0, sizeof(c));
5767 	INIT_CMD(c, HELLO, WRITE);
5768 	c.err_to_clearinit = cpu_to_be32(
5769 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5770 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5771 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5772 					mbox : FW_HELLO_CMD_MBMASTER_M) |
5773 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5774 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5775 		FW_HELLO_CMD_CLEARINIT_F);
5776 
5777 	/*
5778 	 * Issue the HELLO command to the firmware.  If it's not successful
5779 	 * but indicates that we got a "busy" or "timeout" condition, retry
5780 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
5781 	 * retry limit, check to see if the firmware left us any error
5782 	 * information and report that if so.
5783 	 */
5784 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5785 	if (ret < 0) {
5786 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5787 			goto retry;
5788 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5789 			t4_report_fw_error(adap);
5790 		return ret;
5791 	}
5792 
5793 	v = be32_to_cpu(c.err_to_clearinit);
5794 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5795 	if (state) {
5796 		if (v & FW_HELLO_CMD_ERR_F)
5797 			*state = DEV_STATE_ERR;
5798 		else if (v & FW_HELLO_CMD_INIT_F)
5799 			*state = DEV_STATE_INIT;
5800 		else
5801 			*state = DEV_STATE_UNINIT;
5802 	}
5803 
5804 	/*
5805 	 * If we're not the Master PF then we need to wait around for the
5806 	 * Master PF Driver to finish setting up the adapter.
5807 	 *
5808 	 * Note that we also do this wait if we're a non-Master-capable PF and
5809 	 * there is no current Master PF; a Master PF may show up momentarily
5810 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
5811 	 * OS loads lots of different drivers rapidly at the same time).  In
5812 	 * this case, the Master PF returned by the firmware will be
5813 	 * PCIE_FW_MASTER_M so the test below will work ...
5814 	 */
5815 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5816 	    master_mbox != mbox) {
5817 		int waiting = FW_CMD_HELLO_TIMEOUT;
5818 
5819 		/*
5820 		 * Wait for the firmware to either indicate an error or
5821 		 * initialized state.  If we see either of these we bail out
5822 		 * and report the issue to the caller.  If we exhaust the
5823 		 * "hello timeout" and we haven't exhausted our retries, try
5824 		 * again.  Otherwise bail with a timeout error.
5825 		 */
5826 		for (;;) {
5827 			u32 pcie_fw;
5828 
5829 			msleep(50);
5830 			waiting -= 50;
5831 
5832 			/*
5833 			 * If neither Error nor Initialialized are indicated
5834 			 * by the firmware keep waiting till we exaust our
5835 			 * timeout ... and then retry if we haven't exhausted
5836 			 * our retries ...
5837 			 */
5838 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5839 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5840 				if (waiting <= 0) {
5841 					if (retries-- > 0)
5842 						goto retry;
5843 
5844 					return -ETIMEDOUT;
5845 				}
5846 				continue;
5847 			}
5848 
5849 			/*
5850 			 * We either have an Error or Initialized condition
5851 			 * report errors preferentially.
5852 			 */
5853 			if (state) {
5854 				if (pcie_fw & PCIE_FW_ERR_F)
5855 					*state = DEV_STATE_ERR;
5856 				else if (pcie_fw & PCIE_FW_INIT_F)
5857 					*state = DEV_STATE_INIT;
5858 			}
5859 
5860 			/*
5861 			 * If we arrived before a Master PF was selected and
5862 			 * there's not a valid Master PF, grab its identity
5863 			 * for our caller.
5864 			 */
5865 			if (master_mbox == PCIE_FW_MASTER_M &&
5866 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
5867 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5868 			break;
5869 		}
5870 	}
5871 
5872 	return master_mbox;
5873 }
5874 
5875 /**
5876  *	t4_fw_bye - end communication with FW
5877  *	@adap: the adapter
5878  *	@mbox: mailbox to use for the FW command
5879  *
5880  *	Issues a command to terminate communication with FW.
5881  */
t4_fw_bye(struct adapter * adap,unsigned int mbox)5882 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5883 {
5884 	struct fw_bye_cmd c;
5885 
5886 	memset(&c, 0, sizeof(c));
5887 	INIT_CMD(c, BYE, WRITE);
5888 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5889 }
5890 
5891 /**
5892  *	t4_init_cmd - ask FW to initialize the device
5893  *	@adap: the adapter
5894  *	@mbox: mailbox to use for the FW command
5895  *
5896  *	Issues a command to FW to partially initialize the device.  This
5897  *	performs initialization that generally doesn't depend on user input.
5898  */
t4_early_init(struct adapter * adap,unsigned int mbox)5899 int t4_early_init(struct adapter *adap, unsigned int mbox)
5900 {
5901 	struct fw_initialize_cmd c;
5902 
5903 	memset(&c, 0, sizeof(c));
5904 	INIT_CMD(c, INITIALIZE, WRITE);
5905 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5906 }
5907 
5908 /**
5909  *	t4_fw_reset - issue a reset to FW
5910  *	@adap: the adapter
5911  *	@mbox: mailbox to use for the FW command
5912  *	@reset: specifies the type of reset to perform
5913  *
5914  *	Issues a reset command of the specified type to FW.
5915  */
t4_fw_reset(struct adapter * adap,unsigned int mbox,int reset)5916 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5917 {
5918 	struct fw_reset_cmd c;
5919 
5920 	memset(&c, 0, sizeof(c));
5921 	INIT_CMD(c, RESET, WRITE);
5922 	c.val = cpu_to_be32(reset);
5923 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5924 }
5925 
5926 /**
5927  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5928  *	@adap: the adapter
5929  *	@mbox: mailbox to use for the FW RESET command (if desired)
5930  *	@force: force uP into RESET even if FW RESET command fails
5931  *
5932  *	Issues a RESET command to firmware (if desired) with a HALT indication
5933  *	and then puts the microprocessor into RESET state.  The RESET command
5934  *	will only be issued if a legitimate mailbox is provided (mbox <=
5935  *	PCIE_FW_MASTER_M).
5936  *
5937  *	This is generally used in order for the host to safely manipulate the
5938  *	adapter without fear of conflicting with whatever the firmware might
5939  *	be doing.  The only way out of this state is to RESTART the firmware
5940  *	...
5941  */
t4_fw_halt(struct adapter * adap,unsigned int mbox,int force)5942 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
5943 {
5944 	int ret = 0;
5945 
5946 	/*
5947 	 * If a legitimate mailbox is provided, issue a RESET command
5948 	 * with a HALT indication.
5949 	 */
5950 	if (mbox <= PCIE_FW_MASTER_M) {
5951 		struct fw_reset_cmd c;
5952 
5953 		memset(&c, 0, sizeof(c));
5954 		INIT_CMD(c, RESET, WRITE);
5955 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
5956 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
5957 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5958 	}
5959 
5960 	/*
5961 	 * Normally we won't complete the operation if the firmware RESET
5962 	 * command fails but if our caller insists we'll go ahead and put the
5963 	 * uP into RESET.  This can be useful if the firmware is hung or even
5964 	 * missing ...  We'll have to take the risk of putting the uP into
5965 	 * RESET without the cooperation of firmware in that case.
5966 	 *
5967 	 * We also force the firmware's HALT flag to be on in case we bypassed
5968 	 * the firmware RESET command above or we're dealing with old firmware
5969 	 * which doesn't have the HALT capability.  This will serve as a flag
5970 	 * for the incoming firmware to know that it's coming out of a HALT
5971 	 * rather than a RESET ... if it's new enough to understand that ...
5972 	 */
5973 	if (ret == 0 || force) {
5974 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
5975 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
5976 				 PCIE_FW_HALT_F);
5977 	}
5978 
5979 	/*
5980 	 * And we always return the result of the firmware RESET command
5981 	 * even when we force the uP into RESET ...
5982 	 */
5983 	return ret;
5984 }
5985 
5986 /**
5987  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
5988  *	@adap: the adapter
5989  *	@reset: if we want to do a RESET to restart things
5990  *
5991  *	Restart firmware previously halted by t4_fw_halt().  On successful
5992  *	return the previous PF Master remains as the new PF Master and there
5993  *	is no need to issue a new HELLO command, etc.
5994  *
5995  *	We do this in two ways:
5996  *
5997  *	 1. If we're dealing with newer firmware we'll simply want to take
5998  *	    the chip's microprocessor out of RESET.  This will cause the
5999  *	    firmware to start up from its start vector.  And then we'll loop
6000  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6001  *	    reset to 0) or we timeout.
6002  *
6003  *	 2. If we're dealing with older firmware then we'll need to RESET
6004  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6005  *	    flag and automatically RESET itself on startup.
6006  */
t4_fw_restart(struct adapter * adap,unsigned int mbox,int reset)6007 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6008 {
6009 	if (reset) {
6010 		/*
6011 		 * Since we're directing the RESET instead of the firmware
6012 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6013 		 * bit.
6014 		 */
6015 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6016 
6017 		/*
6018 		 * If we've been given a valid mailbox, first try to get the
6019 		 * firmware to do the RESET.  If that works, great and we can
6020 		 * return success.  Otherwise, if we haven't been given a
6021 		 * valid mailbox or the RESET command failed, fall back to
6022 		 * hitting the chip with a hammer.
6023 		 */
6024 		if (mbox <= PCIE_FW_MASTER_M) {
6025 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6026 			msleep(100);
6027 			if (t4_fw_reset(adap, mbox,
6028 					PIORST_F | PIORSTMODE_F) == 0)
6029 				return 0;
6030 		}
6031 
6032 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6033 		msleep(2000);
6034 	} else {
6035 		int ms;
6036 
6037 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6038 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6039 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6040 				return 0;
6041 			msleep(100);
6042 			ms += 100;
6043 		}
6044 		return -ETIMEDOUT;
6045 	}
6046 	return 0;
6047 }
6048 
6049 /**
6050  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6051  *	@adap: the adapter
6052  *	@mbox: mailbox to use for the FW RESET command (if desired)
6053  *	@fw_data: the firmware image to write
6054  *	@size: image size
6055  *	@force: force upgrade even if firmware doesn't cooperate
6056  *
6057  *	Perform all of the steps necessary for upgrading an adapter's
6058  *	firmware image.  Normally this requires the cooperation of the
6059  *	existing firmware in order to halt all existing activities
6060  *	but if an invalid mailbox token is passed in we skip that step
6061  *	(though we'll still put the adapter microprocessor into RESET in
6062  *	that case).
6063  *
6064  *	On successful return the new firmware will have been loaded and
6065  *	the adapter will have been fully RESET losing all previous setup
6066  *	state.  On unsuccessful return the adapter may be completely hosed ...
6067  *	positive errno indicates that the adapter is ~probably~ intact, a
6068  *	negative errno indicates that things are looking bad ...
6069  */
t4_fw_upgrade(struct adapter * adap,unsigned int mbox,const u8 * fw_data,unsigned int size,int force)6070 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6071 		  const u8 *fw_data, unsigned int size, int force)
6072 {
6073 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6074 	int reset, ret;
6075 
6076 	if (!t4_fw_matches_chip(adap, fw_hdr))
6077 		return -EINVAL;
6078 
6079 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
6080 	 * wont be sent when we are flashing FW.
6081 	 */
6082 	adap->flags &= ~FW_OK;
6083 
6084 	ret = t4_fw_halt(adap, mbox, force);
6085 	if (ret < 0 && !force)
6086 		goto out;
6087 
6088 	ret = t4_load_fw(adap, fw_data, size);
6089 	if (ret < 0)
6090 		goto out;
6091 
6092 	/*
6093 	 * Older versions of the firmware don't understand the new
6094 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6095 	 * restart.  So for newly loaded older firmware we'll have to do the
6096 	 * RESET for it so it starts up on a clean slate.  We can tell if
6097 	 * the newly loaded firmware will handle this right by checking
6098 	 * its header flags to see if it advertises the capability.
6099 	 */
6100 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6101 	ret = t4_fw_restart(adap, mbox, reset);
6102 
6103 	/* Grab potentially new Firmware Device Log parameters so we can see
6104 	 * how healthy the new Firmware is.  It's okay to contact the new
6105 	 * Firmware for these parameters even though, as far as it's
6106 	 * concerned, we've never said "HELLO" to it ...
6107 	 */
6108 	(void)t4_init_devlog_params(adap);
6109 out:
6110 	adap->flags |= FW_OK;
6111 	return ret;
6112 }
6113 
6114 /**
6115  *	t4_fixup_host_params - fix up host-dependent parameters
6116  *	@adap: the adapter
6117  *	@page_size: the host's Base Page Size
6118  *	@cache_line_size: the host's Cache Line Size
6119  *
6120  *	Various registers in T4 contain values which are dependent on the
6121  *	host's Base Page and Cache Line Sizes.  This function will fix all of
6122  *	those registers with the appropriate values as passed in ...
6123  */
t4_fixup_host_params(struct adapter * adap,unsigned int page_size,unsigned int cache_line_size)6124 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6125 			 unsigned int cache_line_size)
6126 {
6127 	unsigned int page_shift = fls(page_size) - 1;
6128 	unsigned int sge_hps = page_shift - 10;
6129 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6130 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6131 	unsigned int fl_align_log = fls(fl_align) - 1;
6132 
6133 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6134 		     HOSTPAGESIZEPF0_V(sge_hps) |
6135 		     HOSTPAGESIZEPF1_V(sge_hps) |
6136 		     HOSTPAGESIZEPF2_V(sge_hps) |
6137 		     HOSTPAGESIZEPF3_V(sge_hps) |
6138 		     HOSTPAGESIZEPF4_V(sge_hps) |
6139 		     HOSTPAGESIZEPF5_V(sge_hps) |
6140 		     HOSTPAGESIZEPF6_V(sge_hps) |
6141 		     HOSTPAGESIZEPF7_V(sge_hps));
6142 
6143 	if (is_t4(adap->params.chip)) {
6144 		t4_set_reg_field(adap, SGE_CONTROL_A,
6145 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6146 				 EGRSTATUSPAGESIZE_F,
6147 				 INGPADBOUNDARY_V(fl_align_log -
6148 						  INGPADBOUNDARY_SHIFT_X) |
6149 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6150 	} else {
6151 		/* T5 introduced the separation of the Free List Padding and
6152 		 * Packing Boundaries.  Thus, we can select a smaller Padding
6153 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6154 		 * Bandwidth, and use a Packing Boundary which is large enough
6155 		 * to avoid false sharing between CPUs, etc.
6156 		 *
6157 		 * For the PCI Link, the smaller the Padding Boundary the
6158 		 * better.  For the Memory Controller, a smaller Padding
6159 		 * Boundary is better until we cross under the Memory Line
6160 		 * Size (the minimum unit of transfer to/from Memory).  If we
6161 		 * have a Padding Boundary which is smaller than the Memory
6162 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
6163 		 * Memory Controller which is never good.  For T5 the smallest
6164 		 * Padding Boundary which we can select is 32 bytes which is
6165 		 * larger than any known Memory Controller Line Size so we'll
6166 		 * use that.
6167 		 *
6168 		 * T5 has a different interpretation of the "0" value for the
6169 		 * Packing Boundary.  This corresponds to 16 bytes instead of
6170 		 * the expected 32 bytes.  We never have a Packing Boundary
6171 		 * less than 32 bytes so we can't use that special value but
6172 		 * on the other hand, if we wanted 32 bytes, the best we can
6173 		 * really do is 64 bytes.
6174 		*/
6175 		if (fl_align <= 32) {
6176 			fl_align = 64;
6177 			fl_align_log = 6;
6178 		}
6179 		t4_set_reg_field(adap, SGE_CONTROL_A,
6180 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6181 				 EGRSTATUSPAGESIZE_F,
6182 				 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
6183 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6184 		t4_set_reg_field(adap, SGE_CONTROL2_A,
6185 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6186 				 INGPACKBOUNDARY_V(fl_align_log -
6187 						   INGPACKBOUNDARY_SHIFT_X));
6188 	}
6189 	/*
6190 	 * Adjust various SGE Free List Host Buffer Sizes.
6191 	 *
6192 	 * This is something of a crock since we're using fixed indices into
6193 	 * the array which are also known by the sge.c code and the T4
6194 	 * Firmware Configuration File.  We need to come up with a much better
6195 	 * approach to managing this array.  For now, the first four entries
6196 	 * are:
6197 	 *
6198 	 *   0: Host Page Size
6199 	 *   1: 64KB
6200 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6201 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6202 	 *
6203 	 * For the single-MTU buffers in unpacked mode we need to include
6204 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6205 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6206 	 * Padding boundary.  All of these are accommodated in the Factory
6207 	 * Default Firmware Configuration File but we need to adjust it for
6208 	 * this host's cache line size.
6209 	 */
6210 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6211 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6212 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6213 		     & ~(fl_align-1));
6214 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6215 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6216 		     & ~(fl_align-1));
6217 
6218 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6219 
6220 	return 0;
6221 }
6222 
6223 /**
6224  *	t4_fw_initialize - ask FW to initialize the device
6225  *	@adap: the adapter
6226  *	@mbox: mailbox to use for the FW command
6227  *
6228  *	Issues a command to FW to partially initialize the device.  This
6229  *	performs initialization that generally doesn't depend on user input.
6230  */
t4_fw_initialize(struct adapter * adap,unsigned int mbox)6231 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6232 {
6233 	struct fw_initialize_cmd c;
6234 
6235 	memset(&c, 0, sizeof(c));
6236 	INIT_CMD(c, INITIALIZE, WRITE);
6237 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6238 }
6239 
6240 /**
6241  *	t4_query_params_rw - query FW or device parameters
6242  *	@adap: the adapter
6243  *	@mbox: mailbox to use for the FW command
6244  *	@pf: the PF
6245  *	@vf: the VF
6246  *	@nparams: the number of parameters
6247  *	@params: the parameter names
6248  *	@val: the parameter values
6249  *	@rw: Write and read flag
6250  *
6251  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6252  *	queried at once.
6253  */
t4_query_params_rw(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val,int rw)6254 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6255 		       unsigned int vf, unsigned int nparams, const u32 *params,
6256 		       u32 *val, int rw)
6257 {
6258 	int i, ret;
6259 	struct fw_params_cmd c;
6260 	__be32 *p = &c.param[0].mnem;
6261 
6262 	if (nparams > 7)
6263 		return -EINVAL;
6264 
6265 	memset(&c, 0, sizeof(c));
6266 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6267 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
6268 				  FW_PARAMS_CMD_PFN_V(pf) |
6269 				  FW_PARAMS_CMD_VFN_V(vf));
6270 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6271 
6272 	for (i = 0; i < nparams; i++) {
6273 		*p++ = cpu_to_be32(*params++);
6274 		if (rw)
6275 			*p = cpu_to_be32(*(val + i));
6276 		p++;
6277 	}
6278 
6279 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6280 	if (ret == 0)
6281 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6282 			*val++ = be32_to_cpu(*p);
6283 	return ret;
6284 }
6285 
t4_query_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)6286 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6287 		    unsigned int vf, unsigned int nparams, const u32 *params,
6288 		    u32 *val)
6289 {
6290 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6291 }
6292 
6293 /**
6294  *      t4_set_params_timeout - sets FW or device parameters
6295  *      @adap: the adapter
6296  *      @mbox: mailbox to use for the FW command
6297  *      @pf: the PF
6298  *      @vf: the VF
6299  *      @nparams: the number of parameters
6300  *      @params: the parameter names
6301  *      @val: the parameter values
6302  *      @timeout: the timeout time
6303  *
6304  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6305  *      specified at once.
6306  */
t4_set_params_timeout(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val,int timeout)6307 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6308 			  unsigned int pf, unsigned int vf,
6309 			  unsigned int nparams, const u32 *params,
6310 			  const u32 *val, int timeout)
6311 {
6312 	struct fw_params_cmd c;
6313 	__be32 *p = &c.param[0].mnem;
6314 
6315 	if (nparams > 7)
6316 		return -EINVAL;
6317 
6318 	memset(&c, 0, sizeof(c));
6319 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6320 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6321 				  FW_PARAMS_CMD_PFN_V(pf) |
6322 				  FW_PARAMS_CMD_VFN_V(vf));
6323 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6324 
6325 	while (nparams--) {
6326 		*p++ = cpu_to_be32(*params++);
6327 		*p++ = cpu_to_be32(*val++);
6328 	}
6329 
6330 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6331 }
6332 
6333 /**
6334  *	t4_set_params - sets FW or device parameters
6335  *	@adap: the adapter
6336  *	@mbox: mailbox to use for the FW command
6337  *	@pf: the PF
6338  *	@vf: the VF
6339  *	@nparams: the number of parameters
6340  *	@params: the parameter names
6341  *	@val: the parameter values
6342  *
6343  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6344  *	specified at once.
6345  */
t4_set_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val)6346 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6347 		  unsigned int vf, unsigned int nparams, const u32 *params,
6348 		  const u32 *val)
6349 {
6350 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6351 				     FW_CMD_MAX_TIMEOUT);
6352 }
6353 
6354 /**
6355  *	t4_cfg_pfvf - configure PF/VF resource limits
6356  *	@adap: the adapter
6357  *	@mbox: mailbox to use for the FW command
6358  *	@pf: the PF being configured
6359  *	@vf: the VF being configured
6360  *	@txq: the max number of egress queues
6361  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6362  *	@rxqi: the max number of interrupt-capable ingress queues
6363  *	@rxq: the max number of interruptless ingress queues
6364  *	@tc: the PCI traffic class
6365  *	@vi: the max number of virtual interfaces
6366  *	@cmask: the channel access rights mask for the PF/VF
6367  *	@pmask: the port access rights mask for the PF/VF
6368  *	@nexact: the maximum number of exact MPS filters
6369  *	@rcaps: read capabilities
6370  *	@wxcaps: write/execute capabilities
6371  *
6372  *	Configures resource limits and capabilities for a physical or virtual
6373  *	function.
6374  */
t4_cfg_pfvf(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int txq,unsigned int txq_eth_ctrl,unsigned int rxqi,unsigned int rxq,unsigned int tc,unsigned int vi,unsigned int cmask,unsigned int pmask,unsigned int nexact,unsigned int rcaps,unsigned int wxcaps)6375 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6376 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6377 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6378 		unsigned int vi, unsigned int cmask, unsigned int pmask,
6379 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6380 {
6381 	struct fw_pfvf_cmd c;
6382 
6383 	memset(&c, 0, sizeof(c));
6384 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6385 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6386 				  FW_PFVF_CMD_VFN_V(vf));
6387 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6388 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6389 				     FW_PFVF_CMD_NIQ_V(rxq));
6390 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6391 				    FW_PFVF_CMD_PMASK_V(pmask) |
6392 				    FW_PFVF_CMD_NEQ_V(txq));
6393 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6394 				      FW_PFVF_CMD_NVI_V(vi) |
6395 				      FW_PFVF_CMD_NEXACTF_V(nexact));
6396 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6397 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6398 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6399 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6400 }
6401 
6402 /**
6403  *	t4_alloc_vi - allocate a virtual interface
6404  *	@adap: the adapter
6405  *	@mbox: mailbox to use for the FW command
6406  *	@port: physical port associated with the VI
6407  *	@pf: the PF owning the VI
6408  *	@vf: the VF owning the VI
6409  *	@nmac: number of MAC addresses needed (1 to 5)
6410  *	@mac: the MAC addresses of the VI
6411  *	@rss_size: size of RSS table slice associated with this VI
6412  *
6413  *	Allocates a virtual interface for the given physical port.  If @mac is
6414  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6415  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6416  *	stored consecutively so the space needed is @nmac * 6 bytes.
6417  *	Returns a negative error number or the non-negative VI id.
6418  */
t4_alloc_vi(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,unsigned int * rss_size)6419 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6420 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6421 		unsigned int *rss_size)
6422 {
6423 	int ret;
6424 	struct fw_vi_cmd c;
6425 
6426 	memset(&c, 0, sizeof(c));
6427 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6428 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6429 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6430 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6431 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6432 	c.nmac = nmac - 1;
6433 
6434 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6435 	if (ret)
6436 		return ret;
6437 
6438 	if (mac) {
6439 		memcpy(mac, c.mac, sizeof(c.mac));
6440 		switch (nmac) {
6441 		case 5:
6442 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6443 		case 4:
6444 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6445 		case 3:
6446 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6447 		case 2:
6448 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6449 		}
6450 	}
6451 	if (rss_size)
6452 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6453 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6454 }
6455 
6456 /**
6457  *	t4_free_vi - free a virtual interface
6458  *	@adap: the adapter
6459  *	@mbox: mailbox to use for the FW command
6460  *	@pf: the PF owning the VI
6461  *	@vf: the VF owning the VI
6462  *	@viid: virtual interface identifiler
6463  *
6464  *	Free a previously allocated virtual interface.
6465  */
t4_free_vi(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int viid)6466 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6467 	       unsigned int vf, unsigned int viid)
6468 {
6469 	struct fw_vi_cmd c;
6470 
6471 	memset(&c, 0, sizeof(c));
6472 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6473 				  FW_CMD_REQUEST_F |
6474 				  FW_CMD_EXEC_F |
6475 				  FW_VI_CMD_PFN_V(pf) |
6476 				  FW_VI_CMD_VFN_V(vf));
6477 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6478 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6479 
6480 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6481 }
6482 
6483 /**
6484  *	t4_set_rxmode - set Rx properties of a virtual interface
6485  *	@adap: the adapter
6486  *	@mbox: mailbox to use for the FW command
6487  *	@viid: the VI id
6488  *	@mtu: the new MTU or -1
6489  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6490  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6491  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6492  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6493  *	@sleep_ok: if true we may sleep while awaiting command completion
6494  *
6495  *	Sets Rx properties of a virtual interface.
6496  */
t4_set_rxmode(struct adapter * adap,unsigned int mbox,unsigned int viid,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)6497 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6498 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6499 		  bool sleep_ok)
6500 {
6501 	struct fw_vi_rxmode_cmd c;
6502 
6503 	/* convert to FW values */
6504 	if (mtu < 0)
6505 		mtu = FW_RXMODE_MTU_NO_CHG;
6506 	if (promisc < 0)
6507 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6508 	if (all_multi < 0)
6509 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6510 	if (bcast < 0)
6511 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6512 	if (vlanex < 0)
6513 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6514 
6515 	memset(&c, 0, sizeof(c));
6516 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6517 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6518 				   FW_VI_RXMODE_CMD_VIID_V(viid));
6519 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6520 	c.mtu_to_vlanexen =
6521 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6522 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6523 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6524 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6525 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6526 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6527 }
6528 
6529 /**
6530  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6531  *	@adap: the adapter
6532  *	@mbox: mailbox to use for the FW command
6533  *	@viid: the VI id
6534  *	@free: if true any existing filters for this VI id are first removed
6535  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6536  *	@addr: the MAC address(es)
6537  *	@idx: where to store the index of each allocated filter
6538  *	@hash: pointer to hash address filter bitmap
6539  *	@sleep_ok: call is allowed to sleep
6540  *
6541  *	Allocates an exact-match filter for each of the supplied addresses and
6542  *	sets it to the corresponding address.  If @idx is not %NULL it should
6543  *	have at least @naddr entries, each of which will be set to the index of
6544  *	the filter allocated for the corresponding MAC address.  If a filter
6545  *	could not be allocated for an address its index is set to 0xffff.
6546  *	If @hash is not %NULL addresses that fail to allocate an exact filter
6547  *	are hashed and update the hash filter bitmap pointed at by @hash.
6548  *
6549  *	Returns a negative error number or the number of filters allocated.
6550  */
t4_alloc_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)6551 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6552 		      unsigned int viid, bool free, unsigned int naddr,
6553 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6554 {
6555 	int offset, ret = 0;
6556 	struct fw_vi_mac_cmd c;
6557 	unsigned int nfilters = 0;
6558 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6559 	unsigned int rem = naddr;
6560 
6561 	if (naddr > max_naddr)
6562 		return -EINVAL;
6563 
6564 	for (offset = 0; offset < naddr ; /**/) {
6565 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6566 					 rem : ARRAY_SIZE(c.u.exact));
6567 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6568 						     u.exact[fw_naddr]), 16);
6569 		struct fw_vi_mac_exact *p;
6570 		int i;
6571 
6572 		memset(&c, 0, sizeof(c));
6573 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6574 					   FW_CMD_REQUEST_F |
6575 					   FW_CMD_WRITE_F |
6576 					   FW_CMD_EXEC_V(free) |
6577 					   FW_VI_MAC_CMD_VIID_V(viid));
6578 		c.freemacs_to_len16 =
6579 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6580 				    FW_CMD_LEN16_V(len16));
6581 
6582 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6583 			p->valid_to_idx =
6584 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6585 					    FW_VI_MAC_CMD_IDX_V(
6586 						    FW_VI_MAC_ADD_MAC));
6587 			memcpy(p->macaddr, addr[offset + i],
6588 			       sizeof(p->macaddr));
6589 		}
6590 
6591 		/* It's okay if we run out of space in our MAC address arena.
6592 		 * Some of the addresses we submit may get stored so we need
6593 		 * to run through the reply to see what the results were ...
6594 		 */
6595 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6596 		if (ret && ret != -FW_ENOMEM)
6597 			break;
6598 
6599 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6600 			u16 index = FW_VI_MAC_CMD_IDX_G(
6601 					be16_to_cpu(p->valid_to_idx));
6602 
6603 			if (idx)
6604 				idx[offset + i] = (index >= max_naddr ?
6605 						   0xffff : index);
6606 			if (index < max_naddr)
6607 				nfilters++;
6608 			else if (hash)
6609 				*hash |= (1ULL <<
6610 					  hash_mac_addr(addr[offset + i]));
6611 		}
6612 
6613 		free = false;
6614 		offset += fw_naddr;
6615 		rem -= fw_naddr;
6616 	}
6617 
6618 	if (ret == 0 || ret == -FW_ENOMEM)
6619 		ret = nfilters;
6620 	return ret;
6621 }
6622 
6623 /**
6624  *	t4_change_mac - modifies the exact-match filter for a MAC address
6625  *	@adap: the adapter
6626  *	@mbox: mailbox to use for the FW command
6627  *	@viid: the VI id
6628  *	@idx: index of existing filter for old value of MAC address, or -1
6629  *	@addr: the new MAC address value
6630  *	@persist: whether a new MAC allocation should be persistent
6631  *	@add_smt: if true also add the address to the HW SMT
6632  *
6633  *	Modifies an exact-match filter and sets it to the new MAC address.
6634  *	Note that in general it is not possible to modify the value of a given
6635  *	filter so the generic way to modify an address filter is to free the one
6636  *	being used by the old address value and allocate a new filter for the
6637  *	new address value.  @idx can be -1 if the address is a new addition.
6638  *
6639  *	Returns a negative error number or the index of the filter with the new
6640  *	MAC value.
6641  */
t4_change_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,int idx,const u8 * addr,bool persist,bool add_smt)6642 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6643 		  int idx, const u8 *addr, bool persist, bool add_smt)
6644 {
6645 	int ret, mode;
6646 	struct fw_vi_mac_cmd c;
6647 	struct fw_vi_mac_exact *p = c.u.exact;
6648 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6649 
6650 	if (idx < 0)                             /* new allocation */
6651 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6652 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6653 
6654 	memset(&c, 0, sizeof(c));
6655 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6656 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6657 				   FW_VI_MAC_CMD_VIID_V(viid));
6658 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6659 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6660 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6661 				      FW_VI_MAC_CMD_IDX_V(idx));
6662 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
6663 
6664 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6665 	if (ret == 0) {
6666 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6667 		if (ret >= max_mac_addr)
6668 			ret = -ENOMEM;
6669 	}
6670 	return ret;
6671 }
6672 
6673 /**
6674  *	t4_set_addr_hash - program the MAC inexact-match hash filter
6675  *	@adap: the adapter
6676  *	@mbox: mailbox to use for the FW command
6677  *	@viid: the VI id
6678  *	@ucast: whether the hash filter should also match unicast addresses
6679  *	@vec: the value to be written to the hash filter
6680  *	@sleep_ok: call is allowed to sleep
6681  *
6682  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
6683  */
t4_set_addr_hash(struct adapter * adap,unsigned int mbox,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)6684 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6685 		     bool ucast, u64 vec, bool sleep_ok)
6686 {
6687 	struct fw_vi_mac_cmd c;
6688 
6689 	memset(&c, 0, sizeof(c));
6690 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6691 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6692 				   FW_VI_ENABLE_CMD_VIID_V(viid));
6693 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6694 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6695 					  FW_CMD_LEN16_V(1));
6696 	c.u.hash.hashvec = cpu_to_be64(vec);
6697 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6698 }
6699 
6700 /**
6701  *      t4_enable_vi_params - enable/disable a virtual interface
6702  *      @adap: the adapter
6703  *      @mbox: mailbox to use for the FW command
6704  *      @viid: the VI id
6705  *      @rx_en: 1=enable Rx, 0=disable Rx
6706  *      @tx_en: 1=enable Tx, 0=disable Tx
6707  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
6708  *
6709  *      Enables/disables a virtual interface.  Note that setting DCB Enable
6710  *      only makes sense when enabling a Virtual Interface ...
6711  */
t4_enable_vi_params(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en,bool dcb_en)6712 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6713 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6714 {
6715 	struct fw_vi_enable_cmd c;
6716 
6717 	memset(&c, 0, sizeof(c));
6718 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6719 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6720 				   FW_VI_ENABLE_CMD_VIID_V(viid));
6721 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6722 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6723 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6724 				     FW_LEN16(c));
6725 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6726 }
6727 
6728 /**
6729  *	t4_enable_vi - enable/disable a virtual interface
6730  *	@adap: the adapter
6731  *	@mbox: mailbox to use for the FW command
6732  *	@viid: the VI id
6733  *	@rx_en: 1=enable Rx, 0=disable Rx
6734  *	@tx_en: 1=enable Tx, 0=disable Tx
6735  *
6736  *	Enables/disables a virtual interface.
6737  */
t4_enable_vi(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en)6738 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6739 		 bool rx_en, bool tx_en)
6740 {
6741 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6742 }
6743 
6744 /**
6745  *	t4_identify_port - identify a VI's port by blinking its LED
6746  *	@adap: the adapter
6747  *	@mbox: mailbox to use for the FW command
6748  *	@viid: the VI id
6749  *	@nblinks: how many times to blink LED at 2.5 Hz
6750  *
6751  *	Identifies a VI's port by blinking its LED.
6752  */
t4_identify_port(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int nblinks)6753 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6754 		     unsigned int nblinks)
6755 {
6756 	struct fw_vi_enable_cmd c;
6757 
6758 	memset(&c, 0, sizeof(c));
6759 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6760 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6761 				   FW_VI_ENABLE_CMD_VIID_V(viid));
6762 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6763 	c.blinkdur = cpu_to_be16(nblinks);
6764 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6765 }
6766 
6767 /**
6768  *	t4_iq_free - free an ingress queue and its FLs
6769  *	@adap: the adapter
6770  *	@mbox: mailbox to use for the FW command
6771  *	@pf: the PF owning the queues
6772  *	@vf: the VF owning the queues
6773  *	@iqtype: the ingress queue type
6774  *	@iqid: ingress queue id
6775  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
6776  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
6777  *
6778  *	Frees an ingress queue and its associated FLs, if any.
6779  */
t4_iq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)6780 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6781 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
6782 	       unsigned int fl0id, unsigned int fl1id)
6783 {
6784 	struct fw_iq_cmd c;
6785 
6786 	memset(&c, 0, sizeof(c));
6787 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6788 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6789 				  FW_IQ_CMD_VFN_V(vf));
6790 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
6791 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6792 	c.iqid = cpu_to_be16(iqid);
6793 	c.fl0id = cpu_to_be16(fl0id);
6794 	c.fl1id = cpu_to_be16(fl1id);
6795 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6796 }
6797 
6798 /**
6799  *	t4_eth_eq_free - free an Ethernet egress queue
6800  *	@adap: the adapter
6801  *	@mbox: mailbox to use for the FW command
6802  *	@pf: the PF owning the queue
6803  *	@vf: the VF owning the queue
6804  *	@eqid: egress queue id
6805  *
6806  *	Frees an Ethernet egress queue.
6807  */
t4_eth_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)6808 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6809 		   unsigned int vf, unsigned int eqid)
6810 {
6811 	struct fw_eq_eth_cmd c;
6812 
6813 	memset(&c, 0, sizeof(c));
6814 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
6815 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6816 				  FW_EQ_ETH_CMD_PFN_V(pf) |
6817 				  FW_EQ_ETH_CMD_VFN_V(vf));
6818 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
6819 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
6820 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6821 }
6822 
6823 /**
6824  *	t4_ctrl_eq_free - free a control egress queue
6825  *	@adap: the adapter
6826  *	@mbox: mailbox to use for the FW command
6827  *	@pf: the PF owning the queue
6828  *	@vf: the VF owning the queue
6829  *	@eqid: egress queue id
6830  *
6831  *	Frees a control egress queue.
6832  */
t4_ctrl_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)6833 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6834 		    unsigned int vf, unsigned int eqid)
6835 {
6836 	struct fw_eq_ctrl_cmd c;
6837 
6838 	memset(&c, 0, sizeof(c));
6839 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
6840 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6841 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
6842 				  FW_EQ_CTRL_CMD_VFN_V(vf));
6843 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
6844 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
6845 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6846 }
6847 
6848 /**
6849  *	t4_ofld_eq_free - free an offload egress queue
6850  *	@adap: the adapter
6851  *	@mbox: mailbox to use for the FW command
6852  *	@pf: the PF owning the queue
6853  *	@vf: the VF owning the queue
6854  *	@eqid: egress queue id
6855  *
6856  *	Frees a control egress queue.
6857  */
t4_ofld_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)6858 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6859 		    unsigned int vf, unsigned int eqid)
6860 {
6861 	struct fw_eq_ofld_cmd c;
6862 
6863 	memset(&c, 0, sizeof(c));
6864 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
6865 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6866 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
6867 				  FW_EQ_OFLD_CMD_VFN_V(vf));
6868 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
6869 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
6870 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6871 }
6872 
6873 /**
6874  *	t4_handle_fw_rpl - process a FW reply message
6875  *	@adap: the adapter
6876  *	@rpl: start of the FW message
6877  *
6878  *	Processes a FW message, such as link state change messages.
6879  */
t4_handle_fw_rpl(struct adapter * adap,const __be64 * rpl)6880 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
6881 {
6882 	u8 opcode = *(const u8 *)rpl;
6883 
6884 	if (opcode == FW_PORT_CMD) {    /* link/module state change message */
6885 		int speed = 0, fc = 0;
6886 		const struct fw_port_cmd *p = (void *)rpl;
6887 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
6888 		int port = adap->chan_map[chan];
6889 		struct port_info *pi = adap2pinfo(adap, port);
6890 		struct link_config *lc = &pi->link_cfg;
6891 		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
6892 		int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
6893 		u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
6894 
6895 		if (stat & FW_PORT_CMD_RXPAUSE_F)
6896 			fc |= PAUSE_RX;
6897 		if (stat & FW_PORT_CMD_TXPAUSE_F)
6898 			fc |= PAUSE_TX;
6899 		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
6900 			speed = 100;
6901 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
6902 			speed = 1000;
6903 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
6904 			speed = 10000;
6905 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
6906 			speed = 40000;
6907 
6908 		if (link_ok != lc->link_ok || speed != lc->speed ||
6909 		    fc != lc->fc) {                    /* something changed */
6910 			lc->link_ok = link_ok;
6911 			lc->speed = speed;
6912 			lc->fc = fc;
6913 			lc->supported = be16_to_cpu(p->u.info.pcap);
6914 			t4_os_link_changed(adap, port, link_ok);
6915 		}
6916 		if (mod != pi->mod_type) {
6917 			pi->mod_type = mod;
6918 			t4_os_portmod_changed(adap, port);
6919 		}
6920 	}
6921 	return 0;
6922 }
6923 
get_pci_mode(struct adapter * adapter,struct pci_params * p)6924 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
6925 {
6926 	u16 val;
6927 
6928 	if (pci_is_pcie(adapter->pdev)) {
6929 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
6930 		p->speed = val & PCI_EXP_LNKSTA_CLS;
6931 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
6932 	}
6933 }
6934 
6935 /**
6936  *	init_link_config - initialize a link's SW state
6937  *	@lc: structure holding the link state
6938  *	@caps: link capabilities
6939  *
6940  *	Initializes the SW state maintained for each link, including the link's
6941  *	capabilities and default speed/flow-control/autonegotiation settings.
6942  */
init_link_config(struct link_config * lc,unsigned int caps)6943 static void init_link_config(struct link_config *lc, unsigned int caps)
6944 {
6945 	lc->supported = caps;
6946 	lc->requested_speed = 0;
6947 	lc->speed = 0;
6948 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
6949 	if (lc->supported & FW_PORT_CAP_ANEG) {
6950 		lc->advertising = lc->supported & ADVERT_MASK;
6951 		lc->autoneg = AUTONEG_ENABLE;
6952 		lc->requested_fc |= PAUSE_AUTONEG;
6953 	} else {
6954 		lc->advertising = 0;
6955 		lc->autoneg = AUTONEG_DISABLE;
6956 	}
6957 }
6958 
6959 #define CIM_PF_NOACCESS 0xeeeeeeee
6960 
t4_wait_dev_ready(void __iomem * regs)6961 int t4_wait_dev_ready(void __iomem *regs)
6962 {
6963 	u32 whoami;
6964 
6965 	whoami = readl(regs + PL_WHOAMI_A);
6966 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
6967 		return 0;
6968 
6969 	msleep(500);
6970 	whoami = readl(regs + PL_WHOAMI_A);
6971 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
6972 }
6973 
6974 struct flash_desc {
6975 	u32 vendor_and_model_id;
6976 	u32 size_mb;
6977 };
6978 
get_flash_params(struct adapter * adap)6979 static int get_flash_params(struct adapter *adap)
6980 {
6981 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
6982 	 * to the preexisting code.  All flash parts have 64KB sectors.
6983 	 */
6984 	static struct flash_desc supported_flash[] = {
6985 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
6986 	};
6987 
6988 	int ret;
6989 	u32 info;
6990 
6991 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
6992 	if (!ret)
6993 		ret = sf1_read(adap, 3, 0, 1, &info);
6994 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
6995 	if (ret)
6996 		return ret;
6997 
6998 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
6999 		if (supported_flash[ret].vendor_and_model_id == info) {
7000 			adap->params.sf_size = supported_flash[ret].size_mb;
7001 			adap->params.sf_nsec =
7002 				adap->params.sf_size / SF_SEC_SIZE;
7003 			return 0;
7004 		}
7005 
7006 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
7007 		return -EINVAL;
7008 	info >>= 16;                           /* log2 of size */
7009 	if (info >= 0x14 && info < 0x18)
7010 		adap->params.sf_nsec = 1 << (info - 16);
7011 	else if (info == 0x18)
7012 		adap->params.sf_nsec = 64;
7013 	else
7014 		return -EINVAL;
7015 	adap->params.sf_size = 1 << info;
7016 	adap->params.sf_fw_start =
7017 		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7018 
7019 	if (adap->params.sf_size < FLASH_MIN_SIZE)
7020 		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7021 			 adap->params.sf_size, FLASH_MIN_SIZE);
7022 	return 0;
7023 }
7024 
set_pcie_completion_timeout(struct adapter * adapter,u8 range)7025 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7026 {
7027 	u16 val;
7028 	u32 pcie_cap;
7029 
7030 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7031 	if (pcie_cap) {
7032 		pci_read_config_word(adapter->pdev,
7033 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
7034 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7035 		val |= range;
7036 		pci_write_config_word(adapter->pdev,
7037 				      pcie_cap + PCI_EXP_DEVCTL2, val);
7038 	}
7039 }
7040 
7041 /**
7042  *	t4_prep_adapter - prepare SW and HW for operation
7043  *	@adapter: the adapter
7044  *	@reset: if true perform a HW reset
7045  *
7046  *	Initialize adapter SW state for the various HW modules, set initial
7047  *	values for some adapter tunables, take PHYs out of reset, and
7048  *	initialize the MDIO interface.
7049  */
t4_prep_adapter(struct adapter * adapter)7050 int t4_prep_adapter(struct adapter *adapter)
7051 {
7052 	int ret, ver;
7053 	uint16_t device_id;
7054 	u32 pl_rev;
7055 
7056 	get_pci_mode(adapter, &adapter->params.pci);
7057 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7058 
7059 	ret = get_flash_params(adapter);
7060 	if (ret < 0) {
7061 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7062 		return ret;
7063 	}
7064 
7065 	/* Retrieve adapter's device ID
7066 	 */
7067 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7068 	ver = device_id >> 12;
7069 	adapter->params.chip = 0;
7070 	switch (ver) {
7071 	case CHELSIO_T4:
7072 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7073 		adapter->params.arch.sge_fl_db = DBPRIO_F;
7074 		adapter->params.arch.mps_tcam_size =
7075 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
7076 		adapter->params.arch.mps_rplc_size = 128;
7077 		adapter->params.arch.nchan = NCHAN;
7078 		adapter->params.arch.vfcount = 128;
7079 		break;
7080 	case CHELSIO_T5:
7081 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7082 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7083 		adapter->params.arch.mps_tcam_size =
7084 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7085 		adapter->params.arch.mps_rplc_size = 128;
7086 		adapter->params.arch.nchan = NCHAN;
7087 		adapter->params.arch.vfcount = 128;
7088 		break;
7089 	case CHELSIO_T6:
7090 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7091 		adapter->params.arch.sge_fl_db = 0;
7092 		adapter->params.arch.mps_tcam_size =
7093 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7094 		adapter->params.arch.mps_rplc_size = 256;
7095 		adapter->params.arch.nchan = 2;
7096 		adapter->params.arch.vfcount = 256;
7097 		break;
7098 	default:
7099 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7100 			device_id);
7101 		return -EINVAL;
7102 	}
7103 
7104 	adapter->params.cim_la_size = CIMLA_SIZE;
7105 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7106 
7107 	/*
7108 	 * Default port for debugging in case we can't reach FW.
7109 	 */
7110 	adapter->params.nports = 1;
7111 	adapter->params.portvec = 1;
7112 	adapter->params.vpd.cclk = 50000;
7113 
7114 	/* Set pci completion timeout value to 4 seconds. */
7115 	set_pcie_completion_timeout(adapter, 0xd);
7116 	return 0;
7117 }
7118 
7119 /**
7120  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7121  *	@adapter: the adapter
7122  *	@qid: the Queue ID
7123  *	@qtype: the Ingress or Egress type for @qid
7124  *	@user: true if this request is for a user mode queue
7125  *	@pbar2_qoffset: BAR2 Queue Offset
7126  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7127  *
7128  *	Returns the BAR2 SGE Queue Registers information associated with the
7129  *	indicated Absolute Queue ID.  These are passed back in return value
7130  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7131  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7132  *
7133  *	This may return an error which indicates that BAR2 SGE Queue
7134  *	registers aren't available.  If an error is not returned, then the
7135  *	following values are returned:
7136  *
7137  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7138  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7139  *
7140  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7141  *	require the "Inferred Queue ID" ability may be used.  E.g. the
7142  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7143  *	then these "Inferred Queue ID" register may not be used.
7144  */
t4_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)7145 int t4_bar2_sge_qregs(struct adapter *adapter,
7146 		      unsigned int qid,
7147 		      enum t4_bar2_qtype qtype,
7148 		      int user,
7149 		      u64 *pbar2_qoffset,
7150 		      unsigned int *pbar2_qid)
7151 {
7152 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7153 	u64 bar2_page_offset, bar2_qoffset;
7154 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7155 
7156 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7157 	if (!user && is_t4(adapter->params.chip))
7158 		return -EINVAL;
7159 
7160 	/* Get our SGE Page Size parameters.
7161 	 */
7162 	page_shift = adapter->params.sge.hps + 10;
7163 	page_size = 1 << page_shift;
7164 
7165 	/* Get the right Queues per Page parameters for our Queue.
7166 	 */
7167 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7168 		     ? adapter->params.sge.eq_qpp
7169 		     : adapter->params.sge.iq_qpp);
7170 	qpp_mask = (1 << qpp_shift) - 1;
7171 
7172 	/*  Calculate the basics of the BAR2 SGE Queue register area:
7173 	 *  o The BAR2 page the Queue registers will be in.
7174 	 *  o The BAR2 Queue ID.
7175 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
7176 	 */
7177 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7178 	bar2_qid = qid & qpp_mask;
7179 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7180 
7181 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
7182 	 * hardware will infer the Absolute Queue ID simply from the writes to
7183 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7184 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7185 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7186 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7187 	 * from the BAR2 Page and BAR2 Queue ID.
7188 	 *
7189 	 * One important censequence of this is that some BAR2 SGE registers
7190 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7191 	 * there.  But other registers synthesize the SGE Queue ID purely
7192 	 * from the writes to the registers -- the Write Combined Doorbell
7193 	 * Buffer is a good example.  These BAR2 SGE Registers are only
7194 	 * available for those BAR2 SGE Register areas where the SGE Absolute
7195 	 * Queue ID can be inferred from simple writes.
7196 	 */
7197 	bar2_qoffset = bar2_page_offset;
7198 	bar2_qinferred = (bar2_qid_offset < page_size);
7199 	if (bar2_qinferred) {
7200 		bar2_qoffset += bar2_qid_offset;
7201 		bar2_qid = 0;
7202 	}
7203 
7204 	*pbar2_qoffset = bar2_qoffset;
7205 	*pbar2_qid = bar2_qid;
7206 	return 0;
7207 }
7208 
7209 /**
7210  *	t4_init_devlog_params - initialize adapter->params.devlog
7211  *	@adap: the adapter
7212  *
7213  *	Initialize various fields of the adapter's Firmware Device Log
7214  *	Parameters structure.
7215  */
t4_init_devlog_params(struct adapter * adap)7216 int t4_init_devlog_params(struct adapter *adap)
7217 {
7218 	struct devlog_params *dparams = &adap->params.devlog;
7219 	u32 pf_dparams;
7220 	unsigned int devlog_meminfo;
7221 	struct fw_devlog_cmd devlog_cmd;
7222 	int ret;
7223 
7224 	/* If we're dealing with newer firmware, the Device Log Paramerters
7225 	 * are stored in a designated register which allows us to access the
7226 	 * Device Log even if we can't talk to the firmware.
7227 	 */
7228 	pf_dparams =
7229 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7230 	if (pf_dparams) {
7231 		unsigned int nentries, nentries128;
7232 
7233 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7234 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7235 
7236 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7237 		nentries = (nentries128 + 1) * 128;
7238 		dparams->size = nentries * sizeof(struct fw_devlog_e);
7239 
7240 		return 0;
7241 	}
7242 
7243 	/* Otherwise, ask the firmware for it's Device Log Parameters.
7244 	 */
7245 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7246 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7247 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
7248 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7249 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7250 			 &devlog_cmd);
7251 	if (ret)
7252 		return ret;
7253 
7254 	devlog_meminfo =
7255 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7256 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7257 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7258 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7259 
7260 	return 0;
7261 }
7262 
7263 /**
7264  *	t4_init_sge_params - initialize adap->params.sge
7265  *	@adapter: the adapter
7266  *
7267  *	Initialize various fields of the adapter's SGE Parameters structure.
7268  */
t4_init_sge_params(struct adapter * adapter)7269 int t4_init_sge_params(struct adapter *adapter)
7270 {
7271 	struct sge_params *sge_params = &adapter->params.sge;
7272 	u32 hps, qpp;
7273 	unsigned int s_hps, s_qpp;
7274 
7275 	/* Extract the SGE Page Size for our PF.
7276 	 */
7277 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7278 	s_hps = (HOSTPAGESIZEPF0_S +
7279 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7280 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7281 
7282 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7283 	 */
7284 	s_qpp = (QUEUESPERPAGEPF0_S +
7285 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7286 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7287 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7288 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7289 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7290 
7291 	return 0;
7292 }
7293 
7294 /**
7295  *      t4_init_tp_params - initialize adap->params.tp
7296  *      @adap: the adapter
7297  *
7298  *      Initialize various fields of the adapter's TP Parameters structure.
7299  */
t4_init_tp_params(struct adapter * adap)7300 int t4_init_tp_params(struct adapter *adap)
7301 {
7302 	int chan;
7303 	u32 v;
7304 
7305 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7306 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
7307 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7308 
7309 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7310 	for (chan = 0; chan < NCHAN; chan++)
7311 		adap->params.tp.tx_modq[chan] = chan;
7312 
7313 	/* Cache the adapter's Compressed Filter Mode and global Incress
7314 	 * Configuration.
7315 	 */
7316 	if (t4_use_ldst(adap)) {
7317 		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7318 				TP_VLAN_PRI_MAP_A, 1);
7319 		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7320 				TP_INGRESS_CONFIG_A, 1);
7321 	} else {
7322 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7323 				 &adap->params.tp.vlan_pri_map, 1,
7324 				 TP_VLAN_PRI_MAP_A);
7325 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7326 				 &adap->params.tp.ingress_config, 1,
7327 				 TP_INGRESS_CONFIG_A);
7328 	}
7329 
7330 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7331 	 * shift positions of several elements of the Compressed Filter Tuple
7332 	 * for this adapter which we need frequently ...
7333 	 */
7334 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7335 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7336 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7337 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7338 							       PROTOCOL_F);
7339 
7340 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7341 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7342 	 */
7343 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7344 		adap->params.tp.vnic_shift = -1;
7345 
7346 	return 0;
7347 }
7348 
7349 /**
7350  *      t4_filter_field_shift - calculate filter field shift
7351  *      @adap: the adapter
7352  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7353  *
7354  *      Return the shift position of a filter field within the Compressed
7355  *      Filter Tuple.  The filter field is specified via its selection bit
7356  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7357  */
t4_filter_field_shift(const struct adapter * adap,int filter_sel)7358 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7359 {
7360 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7361 	unsigned int sel;
7362 	int field_shift;
7363 
7364 	if ((filter_mode & filter_sel) == 0)
7365 		return -1;
7366 
7367 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7368 		switch (filter_mode & sel) {
7369 		case FCOE_F:
7370 			field_shift += FT_FCOE_W;
7371 			break;
7372 		case PORT_F:
7373 			field_shift += FT_PORT_W;
7374 			break;
7375 		case VNIC_ID_F:
7376 			field_shift += FT_VNIC_ID_W;
7377 			break;
7378 		case VLAN_F:
7379 			field_shift += FT_VLAN_W;
7380 			break;
7381 		case TOS_F:
7382 			field_shift += FT_TOS_W;
7383 			break;
7384 		case PROTOCOL_F:
7385 			field_shift += FT_PROTOCOL_W;
7386 			break;
7387 		case ETHERTYPE_F:
7388 			field_shift += FT_ETHERTYPE_W;
7389 			break;
7390 		case MACMATCH_F:
7391 			field_shift += FT_MACMATCH_W;
7392 			break;
7393 		case MPSHITTYPE_F:
7394 			field_shift += FT_MPSHITTYPE_W;
7395 			break;
7396 		case FRAGMENTATION_F:
7397 			field_shift += FT_FRAGMENTATION_W;
7398 			break;
7399 		}
7400 	}
7401 	return field_shift;
7402 }
7403 
t4_init_rss_mode(struct adapter * adap,int mbox)7404 int t4_init_rss_mode(struct adapter *adap, int mbox)
7405 {
7406 	int i, ret;
7407 	struct fw_rss_vi_config_cmd rvc;
7408 
7409 	memset(&rvc, 0, sizeof(rvc));
7410 
7411 	for_each_port(adap, i) {
7412 		struct port_info *p = adap2pinfo(adap, i);
7413 
7414 		rvc.op_to_viid =
7415 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7416 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
7417 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7418 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7419 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7420 		if (ret)
7421 			return ret;
7422 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7423 	}
7424 	return 0;
7425 }
7426 
t4_port_init(struct adapter * adap,int mbox,int pf,int vf)7427 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7428 {
7429 	u8 addr[6];
7430 	int ret, i, j = 0;
7431 	struct fw_port_cmd c;
7432 	struct fw_rss_vi_config_cmd rvc;
7433 
7434 	memset(&c, 0, sizeof(c));
7435 	memset(&rvc, 0, sizeof(rvc));
7436 
7437 	for_each_port(adap, i) {
7438 		unsigned int rss_size;
7439 		struct port_info *p = adap2pinfo(adap, i);
7440 
7441 		while ((adap->params.portvec & (1 << j)) == 0)
7442 			j++;
7443 
7444 		c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7445 					     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7446 					     FW_PORT_CMD_PORTID_V(j));
7447 		c.action_to_len16 = cpu_to_be32(
7448 			FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7449 			FW_LEN16(c));
7450 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7451 		if (ret)
7452 			return ret;
7453 
7454 		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7455 		if (ret < 0)
7456 			return ret;
7457 
7458 		p->viid = ret;
7459 		p->tx_chan = j;
7460 		p->lport = j;
7461 		p->rss_size = rss_size;
7462 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7463 		adap->port[i]->dev_port = j;
7464 
7465 		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7466 		p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7467 			FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7468 		p->port_type = FW_PORT_CMD_PTYPE_G(ret);
7469 		p->mod_type = FW_PORT_MOD_TYPE_NA;
7470 
7471 		rvc.op_to_viid =
7472 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7473 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
7474 				    FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
7475 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7476 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7477 		if (ret)
7478 			return ret;
7479 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7480 
7481 		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7482 		j++;
7483 	}
7484 	return 0;
7485 }
7486 
7487 /**
7488  *	t4_read_cimq_cfg - read CIM queue configuration
7489  *	@adap: the adapter
7490  *	@base: holds the queue base addresses in bytes
7491  *	@size: holds the queue sizes in bytes
7492  *	@thres: holds the queue full thresholds in bytes
7493  *
7494  *	Returns the current configuration of the CIM queues, starting with
7495  *	the IBQs, then the OBQs.
7496  */
t4_read_cimq_cfg(struct adapter * adap,u16 * base,u16 * size,u16 * thres)7497 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7498 {
7499 	unsigned int i, v;
7500 	int cim_num_obq = is_t4(adap->params.chip) ?
7501 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7502 
7503 	for (i = 0; i < CIM_NUM_IBQ; i++) {
7504 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7505 			     QUENUMSELECT_V(i));
7506 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7507 		/* value is in 256-byte units */
7508 		*base++ = CIMQBASE_G(v) * 256;
7509 		*size++ = CIMQSIZE_G(v) * 256;
7510 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7511 	}
7512 	for (i = 0; i < cim_num_obq; i++) {
7513 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7514 			     QUENUMSELECT_V(i));
7515 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7516 		/* value is in 256-byte units */
7517 		*base++ = CIMQBASE_G(v) * 256;
7518 		*size++ = CIMQSIZE_G(v) * 256;
7519 	}
7520 }
7521 
7522 /**
7523  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
7524  *	@adap: the adapter
7525  *	@qid: the queue index
7526  *	@data: where to store the queue contents
7527  *	@n: capacity of @data in 32-bit words
7528  *
7529  *	Reads the contents of the selected CIM queue starting at address 0 up
7530  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7531  *	error and the number of 32-bit words actually read on success.
7532  */
t4_read_cim_ibq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)7533 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7534 {
7535 	int i, err, attempts;
7536 	unsigned int addr;
7537 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
7538 
7539 	if (qid > 5 || (n & 3))
7540 		return -EINVAL;
7541 
7542 	addr = qid * nwords;
7543 	if (n > nwords)
7544 		n = nwords;
7545 
7546 	/* It might take 3-10ms before the IBQ debug read access is allowed.
7547 	 * Wait for 1 Sec with a delay of 1 usec.
7548 	 */
7549 	attempts = 1000000;
7550 
7551 	for (i = 0; i < n; i++, addr++) {
7552 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7553 			     IBQDBGEN_F);
7554 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7555 				      attempts, 1);
7556 		if (err)
7557 			return err;
7558 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7559 	}
7560 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7561 	return i;
7562 }
7563 
7564 /**
7565  *	t4_read_cim_obq - read the contents of a CIM outbound queue
7566  *	@adap: the adapter
7567  *	@qid: the queue index
7568  *	@data: where to store the queue contents
7569  *	@n: capacity of @data in 32-bit words
7570  *
7571  *	Reads the contents of the selected CIM queue starting at address 0 up
7572  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7573  *	error and the number of 32-bit words actually read on success.
7574  */
t4_read_cim_obq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)7575 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7576 {
7577 	int i, err;
7578 	unsigned int addr, v, nwords;
7579 	int cim_num_obq = is_t4(adap->params.chip) ?
7580 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7581 
7582 	if ((qid > (cim_num_obq - 1)) || (n & 3))
7583 		return -EINVAL;
7584 
7585 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7586 		     QUENUMSELECT_V(qid));
7587 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7588 
7589 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
7590 	nwords = CIMQSIZE_G(v) * 64;  /* same */
7591 	if (n > nwords)
7592 		n = nwords;
7593 
7594 	for (i = 0; i < n; i++, addr++) {
7595 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7596 			     OBQDBGEN_F);
7597 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7598 				      2, 1);
7599 		if (err)
7600 			return err;
7601 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7602 	}
7603 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7604 	return i;
7605 }
7606 
7607 /**
7608  *	t4_cim_read - read a block from CIM internal address space
7609  *	@adap: the adapter
7610  *	@addr: the start address within the CIM address space
7611  *	@n: number of words to read
7612  *	@valp: where to store the result
7613  *
7614  *	Reads a block of 4-byte words from the CIM intenal address space.
7615  */
t4_cim_read(struct adapter * adap,unsigned int addr,unsigned int n,unsigned int * valp)7616 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7617 		unsigned int *valp)
7618 {
7619 	int ret = 0;
7620 
7621 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7622 		return -EBUSY;
7623 
7624 	for ( ; !ret && n--; addr += 4) {
7625 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7626 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7627 				      0, 5, 2);
7628 		if (!ret)
7629 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7630 	}
7631 	return ret;
7632 }
7633 
7634 /**
7635  *	t4_cim_write - write a block into CIM internal address space
7636  *	@adap: the adapter
7637  *	@addr: the start address within the CIM address space
7638  *	@n: number of words to write
7639  *	@valp: set of values to write
7640  *
7641  *	Writes a block of 4-byte words into the CIM intenal address space.
7642  */
t4_cim_write(struct adapter * adap,unsigned int addr,unsigned int n,const unsigned int * valp)7643 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7644 		 const unsigned int *valp)
7645 {
7646 	int ret = 0;
7647 
7648 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7649 		return -EBUSY;
7650 
7651 	for ( ; !ret && n--; addr += 4) {
7652 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7653 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7654 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7655 				      0, 5, 2);
7656 	}
7657 	return ret;
7658 }
7659 
t4_cim_write1(struct adapter * adap,unsigned int addr,unsigned int val)7660 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7661 			 unsigned int val)
7662 {
7663 	return t4_cim_write(adap, addr, 1, &val);
7664 }
7665 
7666 /**
7667  *	t4_cim_read_la - read CIM LA capture buffer
7668  *	@adap: the adapter
7669  *	@la_buf: where to store the LA data
7670  *	@wrptr: the HW write pointer within the capture buffer
7671  *
7672  *	Reads the contents of the CIM LA buffer with the most recent entry at
7673  *	the end	of the returned data and with the entry at @wrptr first.
7674  *	We try to leave the LA in the running state we find it in.
7675  */
t4_cim_read_la(struct adapter * adap,u32 * la_buf,unsigned int * wrptr)7676 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
7677 {
7678 	int i, ret;
7679 	unsigned int cfg, val, idx;
7680 
7681 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
7682 	if (ret)
7683 		return ret;
7684 
7685 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
7686 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
7687 		if (ret)
7688 			return ret;
7689 	}
7690 
7691 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7692 	if (ret)
7693 		goto restart;
7694 
7695 	idx = UPDBGLAWRPTR_G(val);
7696 	if (wrptr)
7697 		*wrptr = idx;
7698 
7699 	for (i = 0; i < adap->params.cim_la_size; i++) {
7700 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7701 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
7702 		if (ret)
7703 			break;
7704 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7705 		if (ret)
7706 			break;
7707 		if (val & UPDBGLARDEN_F) {
7708 			ret = -ETIMEDOUT;
7709 			break;
7710 		}
7711 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
7712 		if (ret)
7713 			break;
7714 
7715 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
7716 		 * identify the 32-bit portion of the full 312-bit data
7717 		 */
7718 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
7719 			idx = (idx & 0xff0) + 0x10;
7720 		else
7721 			idx++;
7722 		/* address can't exceed 0xfff */
7723 		idx &= UPDBGLARDPTR_M;
7724 	}
7725 restart:
7726 	if (cfg & UPDBGLAEN_F) {
7727 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7728 				      cfg & ~UPDBGLARDEN_F);
7729 		if (!ret)
7730 			ret = r;
7731 	}
7732 	return ret;
7733 }
7734 
7735 /**
7736  *	t4_tp_read_la - read TP LA capture buffer
7737  *	@adap: the adapter
7738  *	@la_buf: where to store the LA data
7739  *	@wrptr: the HW write pointer within the capture buffer
7740  *
7741  *	Reads the contents of the TP LA buffer with the most recent entry at
7742  *	the end	of the returned data and with the entry at @wrptr first.
7743  *	We leave the LA in the running state we find it in.
7744  */
t4_tp_read_la(struct adapter * adap,u64 * la_buf,unsigned int * wrptr)7745 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
7746 {
7747 	bool last_incomplete;
7748 	unsigned int i, cfg, val, idx;
7749 
7750 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
7751 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
7752 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7753 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
7754 
7755 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
7756 	idx = DBGLAWPTR_G(val);
7757 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
7758 	if (last_incomplete)
7759 		idx = (idx + 1) & DBGLARPTR_M;
7760 	if (wrptr)
7761 		*wrptr = idx;
7762 
7763 	val &= 0xffff;
7764 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
7765 	val |= adap->params.tp.la_mask;
7766 
7767 	for (i = 0; i < TPLA_SIZE; i++) {
7768 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
7769 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
7770 		idx = (idx + 1) & DBGLARPTR_M;
7771 	}
7772 
7773 	/* Wipe out last entry if it isn't valid */
7774 	if (last_incomplete)
7775 		la_buf[TPLA_SIZE - 1] = ~0ULL;
7776 
7777 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
7778 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7779 			     cfg | adap->params.tp.la_mask);
7780 }
7781 
7782 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
7783  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
7784  * state for more than the Warning Threshold then we'll issue a warning about
7785  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
7786  * appears to be hung every Warning Repeat second till the situation clears.
7787  * If the situation clears, we'll note that as well.
7788  */
7789 #define SGE_IDMA_WARN_THRESH 1
7790 #define SGE_IDMA_WARN_REPEAT 300
7791 
7792 /**
7793  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
7794  *	@adapter: the adapter
7795  *	@idma: the adapter IDMA Monitor state
7796  *
7797  *	Initialize the state of an SGE Ingress DMA Monitor.
7798  */
t4_idma_monitor_init(struct adapter * adapter,struct sge_idma_monitor_state * idma)7799 void t4_idma_monitor_init(struct adapter *adapter,
7800 			  struct sge_idma_monitor_state *idma)
7801 {
7802 	/* Initialize the state variables for detecting an SGE Ingress DMA
7803 	 * hang.  The SGE has internal counters which count up on each clock
7804 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
7805 	 * same state they were on the previous clock tick.  The clock used is
7806 	 * the Core Clock so we have a limit on the maximum "time" they can
7807 	 * record; typically a very small number of seconds.  For instance,
7808 	 * with a 600MHz Core Clock, we can only count up to a bit more than
7809 	 * 7s.  So we'll synthesize a larger counter in order to not run the
7810 	 * risk of having the "timers" overflow and give us the flexibility to
7811 	 * maintain a Hung SGE State Machine of our own which operates across
7812 	 * a longer time frame.
7813 	 */
7814 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
7815 	idma->idma_stalled[0] = 0;
7816 	idma->idma_stalled[1] = 0;
7817 }
7818 
7819 /**
7820  *	t4_idma_monitor - monitor SGE Ingress DMA state
7821  *	@adapter: the adapter
7822  *	@idma: the adapter IDMA Monitor state
7823  *	@hz: number of ticks/second
7824  *	@ticks: number of ticks since the last IDMA Monitor call
7825  */
t4_idma_monitor(struct adapter * adapter,struct sge_idma_monitor_state * idma,int hz,int ticks)7826 void t4_idma_monitor(struct adapter *adapter,
7827 		     struct sge_idma_monitor_state *idma,
7828 		     int hz, int ticks)
7829 {
7830 	int i, idma_same_state_cnt[2];
7831 
7832 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
7833 	  * are counters inside the SGE which count up on each clock when the
7834 	  * SGE finds its Ingress DMA State Engines in the same states they
7835 	  * were in the previous clock.  The counters will peg out at
7836 	  * 0xffffffff without wrapping around so once they pass the 1s
7837 	  * threshold they'll stay above that till the IDMA state changes.
7838 	  */
7839 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
7840 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
7841 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7842 
7843 	for (i = 0; i < 2; i++) {
7844 		u32 debug0, debug11;
7845 
7846 		/* If the Ingress DMA Same State Counter ("timer") is less
7847 		 * than 1s, then we can reset our synthesized Stall Timer and
7848 		 * continue.  If we have previously emitted warnings about a
7849 		 * potential stalled Ingress Queue, issue a note indicating
7850 		 * that the Ingress Queue has resumed forward progress.
7851 		 */
7852 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
7853 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
7854 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
7855 					 "resumed after %d seconds\n",
7856 					 i, idma->idma_qid[i],
7857 					 idma->idma_stalled[i] / hz);
7858 			idma->idma_stalled[i] = 0;
7859 			continue;
7860 		}
7861 
7862 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
7863 		 * domain.  The first time we get here it'll be because we
7864 		 * passed the 1s Threshold; each additional time it'll be
7865 		 * because the RX Timer Callback is being fired on its regular
7866 		 * schedule.
7867 		 *
7868 		 * If the stall is below our Potential Hung Ingress Queue
7869 		 * Warning Threshold, continue.
7870 		 */
7871 		if (idma->idma_stalled[i] == 0) {
7872 			idma->idma_stalled[i] = hz;
7873 			idma->idma_warn[i] = 0;
7874 		} else {
7875 			idma->idma_stalled[i] += ticks;
7876 			idma->idma_warn[i] -= ticks;
7877 		}
7878 
7879 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
7880 			continue;
7881 
7882 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
7883 		 */
7884 		if (idma->idma_warn[i] > 0)
7885 			continue;
7886 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
7887 
7888 		/* Read and save the SGE IDMA State and Queue ID information.
7889 		 * We do this every time in case it changes across time ...
7890 		 * can't be too careful ...
7891 		 */
7892 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
7893 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7894 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
7895 
7896 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
7897 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7898 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
7899 
7900 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
7901 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
7902 			 i, idma->idma_qid[i], idma->idma_state[i],
7903 			 idma->idma_stalled[i] / hz,
7904 			 debug0, debug11);
7905 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
7906 	}
7907 }
7908