1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux.
2
3 Copyright 2000,2001 The Linux Kernel Team
4 Written/copyright 1994-2001 by Donald Becker.
5
6 This software may be used and distributed according to the terms
7 of the GNU General Public License, incorporated herein by reference.
8
9 Please submit bugs to http://bugzilla.kernel.org/ .
10 */
11
12 #define pr_fmt(fmt) "tulip: " fmt
13
14 #define DRV_NAME "tulip"
15 #ifdef CONFIG_TULIP_NAPI
16 #define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
17 #else
18 #define DRV_VERSION "1.1.15"
19 #endif
20 #define DRV_RELDATE "Feb 27, 2007"
21
22
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "tulip.h"
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/mii.h>
32 #include <linux/crc32.h>
33 #include <asm/unaligned.h>
34 #include <asm/uaccess.h>
35
36 #ifdef CONFIG_SPARC
37 #include <asm/prom.h>
38 #endif
39
40 static char version[] =
41 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
42
43 /* A few user-configurable values. */
44
45 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
46 static unsigned int max_interrupt_work = 25;
47
48 #define MAX_UNITS 8
49 /* Used to pass the full-duplex flag, etc. */
50 static int full_duplex[MAX_UNITS];
51 static int options[MAX_UNITS];
52 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
53
54 /* The possible media types that can be set in options[] are: */
55 const char * const medianame[32] = {
56 "10baseT", "10base2", "AUI", "100baseTx",
57 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
58 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
59 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
60 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
61 "","","","", "","","","", "","","","Transceiver reset",
62 };
63
64 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
65 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
66 defined(CONFIG_SPARC) || defined(__ia64__) || \
67 defined(__sh__) || defined(__mips__)
68 static int rx_copybreak = 1518;
69 #else
70 static int rx_copybreak = 100;
71 #endif
72
73 /*
74 Set the bus performance register.
75 Typical: Set 16 longword cache alignment, no burst limit.
76 Cache alignment bits 15:14 Burst length 13:8
77 0000 No alignment 0x00000000 unlimited 0800 8 longwords
78 4000 8 longwords 0100 1 longword 1000 16 longwords
79 8000 16 longwords 0200 2 longwords 2000 32 longwords
80 C000 32 longwords 0400 4 longwords
81 Warning: many older 486 systems are broken and require setting 0x00A04800
82 8 longword cache alignment, 8 longword burst.
83 ToDo: Non-Intel setting could be better.
84 */
85
86 #if defined(__alpha__) || defined(__ia64__)
87 static int csr0 = 0x01A00000 | 0xE000;
88 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
89 static int csr0 = 0x01A00000 | 0x8000;
90 #elif defined(CONFIG_SPARC) || defined(__hppa__)
91 /* The UltraSparc PCI controllers will disconnect at every 64-byte
92 * crossing anyways so it makes no sense to tell Tulip to burst
93 * any more than that.
94 */
95 static int csr0 = 0x01A00000 | 0x9000;
96 #elif defined(__arm__) || defined(__sh__)
97 static int csr0 = 0x01A00000 | 0x4800;
98 #elif defined(__mips__)
99 static int csr0 = 0x00200000 | 0x4000;
100 #else
101 static int csr0;
102 #endif
103
104 /* Operational parameters that usually are not changed. */
105 /* Time in jiffies before concluding the transmitter is hung. */
106 #define TX_TIMEOUT (4*HZ)
107
108
109 MODULE_AUTHOR("The Linux Kernel Team");
110 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
111 MODULE_LICENSE("GPL");
112 MODULE_VERSION(DRV_VERSION);
113 module_param(tulip_debug, int, 0);
114 module_param(max_interrupt_work, int, 0);
115 module_param(rx_copybreak, int, 0);
116 module_param(csr0, int, 0);
117 module_param_array(options, int, NULL, 0);
118 module_param_array(full_duplex, int, NULL, 0);
119
120 #ifdef TULIP_DEBUG
121 int tulip_debug = TULIP_DEBUG;
122 #else
123 int tulip_debug = 1;
124 #endif
125
tulip_timer(unsigned long data)126 static void tulip_timer(unsigned long data)
127 {
128 struct net_device *dev = (struct net_device *)data;
129 struct tulip_private *tp = netdev_priv(dev);
130
131 if (netif_running(dev))
132 schedule_work(&tp->media_work);
133 }
134
135 /*
136 * This table use during operation for capabilities and media timer.
137 *
138 * It is indexed via the values in 'enum chips'
139 */
140
141 struct tulip_chip_table tulip_tbl[] = {
142 { }, /* placeholder for array, slot unused currently */
143 { }, /* placeholder for array, slot unused currently */
144
145 /* DC21140 */
146 { "Digital DS21140 Tulip", 128, 0x0001ebef,
147 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
148 tulip_media_task },
149
150 /* DC21142, DC21143 */
151 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
152 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
153 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
154
155 /* LC82C168 */
156 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
157 HAS_MII | HAS_PNICNWAY, pnic_timer, },
158
159 /* MX98713 */
160 { "Macronix 98713 PMAC", 128, 0x0001ebef,
161 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
162
163 /* MX98715 */
164 { "Macronix 98715 PMAC", 256, 0x0001ebef,
165 HAS_MEDIA_TABLE, mxic_timer, },
166
167 /* MX98725 */
168 { "Macronix 98725 PMAC", 256, 0x0001ebef,
169 HAS_MEDIA_TABLE, mxic_timer, },
170
171 /* AX88140 */
172 { "ASIX AX88140", 128, 0x0001fbff,
173 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
174 | IS_ASIX, tulip_timer, tulip_media_task },
175
176 /* PNIC2 */
177 { "Lite-On PNIC-II", 256, 0x0801fbff,
178 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
179
180 /* COMET */
181 { "ADMtek Comet", 256, 0x0001abef,
182 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
183
184 /* COMPEX9881 */
185 { "Compex 9881 PMAC", 128, 0x0001ebef,
186 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
187
188 /* I21145 */
189 { "Intel DS21145 Tulip", 128, 0x0801fbff,
190 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
191 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
192
193 /* DM910X */
194 #ifdef CONFIG_TULIP_DM910X
195 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
196 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
197 tulip_timer, tulip_media_task },
198 #else
199 { NULL },
200 #endif
201
202 /* RS7112 */
203 { "Conexant LANfinity", 256, 0x0001ebef,
204 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
205
206 };
207
208
209 static const struct pci_device_id tulip_pci_tbl[] = {
210 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
211 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
212 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
213 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
214 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
215 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
216 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
217 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
218 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
219 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
220 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
221 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
229 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
230 #ifdef CONFIG_TULIP_DM910X
231 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
232 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
233 #endif
234 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
235 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
236 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
237 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
240 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
241 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
242 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
245 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
246 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
247 { 0x1414, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Microsoft MN-120 */
248 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
249 { } /* terminate list */
250 };
251 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
252
253
254 /* A full-duplex map for media types. */
255 const char tulip_media_cap[32] =
256 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
257
258 static void tulip_tx_timeout(struct net_device *dev);
259 static void tulip_init_ring(struct net_device *dev);
260 static void tulip_free_ring(struct net_device *dev);
261 static netdev_tx_t tulip_start_xmit(struct sk_buff *skb,
262 struct net_device *dev);
263 static int tulip_open(struct net_device *dev);
264 static int tulip_close(struct net_device *dev);
265 static void tulip_up(struct net_device *dev);
266 static void tulip_down(struct net_device *dev);
267 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
268 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
269 static void set_rx_mode(struct net_device *dev);
270 static void tulip_set_wolopts(struct pci_dev *pdev, u32 wolopts);
271 #ifdef CONFIG_NET_POLL_CONTROLLER
272 static void poll_tulip(struct net_device *dev);
273 #endif
274
tulip_set_power_state(struct tulip_private * tp,int sleep,int snooze)275 static void tulip_set_power_state (struct tulip_private *tp,
276 int sleep, int snooze)
277 {
278 if (tp->flags & HAS_ACPI) {
279 u32 tmp, newtmp;
280 pci_read_config_dword (tp->pdev, CFDD, &tmp);
281 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
282 if (sleep)
283 newtmp |= CFDD_Sleep;
284 else if (snooze)
285 newtmp |= CFDD_Snooze;
286 if (tmp != newtmp)
287 pci_write_config_dword (tp->pdev, CFDD, newtmp);
288 }
289
290 }
291
292
tulip_up(struct net_device * dev)293 static void tulip_up(struct net_device *dev)
294 {
295 struct tulip_private *tp = netdev_priv(dev);
296 void __iomem *ioaddr = tp->base_addr;
297 int next_tick = 3*HZ;
298 u32 reg;
299 int i;
300
301 #ifdef CONFIG_TULIP_NAPI
302 napi_enable(&tp->napi);
303 #endif
304
305 /* Wake the chip from sleep/snooze mode. */
306 tulip_set_power_state (tp, 0, 0);
307
308 /* Disable all WOL events */
309 pci_enable_wake(tp->pdev, PCI_D3hot, 0);
310 pci_enable_wake(tp->pdev, PCI_D3cold, 0);
311 tulip_set_wolopts(tp->pdev, 0);
312
313 /* On some chip revs we must set the MII/SYM port before the reset!? */
314 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
315 iowrite32(0x00040000, ioaddr + CSR6);
316
317 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
318 iowrite32(0x00000001, ioaddr + CSR0);
319 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
320 udelay(100);
321
322 /* Deassert reset.
323 Wait the specified 50 PCI cycles after a reset by initializing
324 Tx and Rx queues and the address filter list. */
325 iowrite32(tp->csr0, ioaddr + CSR0);
326 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
327 udelay(100);
328
329 if (tulip_debug > 1)
330 netdev_dbg(dev, "tulip_up(), irq==%d\n", tp->pdev->irq);
331
332 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
333 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
334 tp->cur_rx = tp->cur_tx = 0;
335 tp->dirty_rx = tp->dirty_tx = 0;
336
337 if (tp->flags & MC_HASH_ONLY) {
338 u32 addr_low = get_unaligned_le32(dev->dev_addr);
339 u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
340 if (tp->chip_id == AX88140) {
341 iowrite32(0, ioaddr + CSR13);
342 iowrite32(addr_low, ioaddr + CSR14);
343 iowrite32(1, ioaddr + CSR13);
344 iowrite32(addr_high, ioaddr + CSR14);
345 } else if (tp->flags & COMET_MAC_ADDR) {
346 iowrite32(addr_low, ioaddr + 0xA4);
347 iowrite32(addr_high, ioaddr + 0xA8);
348 iowrite32(0, ioaddr + CSR27);
349 iowrite32(0, ioaddr + CSR28);
350 }
351 } else {
352 /* This is set_rx_mode(), but without starting the transmitter. */
353 u16 *eaddrs = (u16 *)dev->dev_addr;
354 u16 *setup_frm = &tp->setup_frame[15*6];
355 dma_addr_t mapping;
356
357 /* 21140 bug: you must add the broadcast address. */
358 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
359 /* Fill the final entry of the table with our physical address. */
360 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
361 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
362 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
363
364 mapping = pci_map_single(tp->pdev, tp->setup_frame,
365 sizeof(tp->setup_frame),
366 PCI_DMA_TODEVICE);
367 tp->tx_buffers[tp->cur_tx].skb = NULL;
368 tp->tx_buffers[tp->cur_tx].mapping = mapping;
369
370 /* Put the setup frame on the Tx list. */
371 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
372 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
373 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
374
375 tp->cur_tx++;
376 }
377
378 tp->saved_if_port = dev->if_port;
379 if (dev->if_port == 0)
380 dev->if_port = tp->default_port;
381
382 /* Allow selecting a default media. */
383 i = 0;
384 if (tp->mtable == NULL)
385 goto media_picked;
386 if (dev->if_port) {
387 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
388 (dev->if_port == 12 ? 0 : dev->if_port);
389 for (i = 0; i < tp->mtable->leafcount; i++)
390 if (tp->mtable->mleaf[i].media == looking_for) {
391 dev_info(&dev->dev,
392 "Using user-specified media %s\n",
393 medianame[dev->if_port]);
394 goto media_picked;
395 }
396 }
397 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
398 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
399 for (i = 0; i < tp->mtable->leafcount; i++)
400 if (tp->mtable->mleaf[i].media == looking_for) {
401 dev_info(&dev->dev,
402 "Using EEPROM-set media %s\n",
403 medianame[looking_for]);
404 goto media_picked;
405 }
406 }
407 /* Start sensing first non-full-duplex media. */
408 for (i = tp->mtable->leafcount - 1;
409 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
410 ;
411 media_picked:
412
413 tp->csr6 = 0;
414 tp->cur_index = i;
415 tp->nwayset = 0;
416
417 if (dev->if_port) {
418 if (tp->chip_id == DC21143 &&
419 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
420 /* We must reset the media CSRs when we force-select MII mode. */
421 iowrite32(0x0000, ioaddr + CSR13);
422 iowrite32(0x0000, ioaddr + CSR14);
423 iowrite32(0x0008, ioaddr + CSR15);
424 }
425 tulip_select_media(dev, 1);
426 } else if (tp->chip_id == DC21142) {
427 if (tp->mii_cnt) {
428 tulip_select_media(dev, 1);
429 if (tulip_debug > 1)
430 dev_info(&dev->dev,
431 "Using MII transceiver %d, status %04x\n",
432 tp->phys[0],
433 tulip_mdio_read(dev, tp->phys[0], 1));
434 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
435 tp->csr6 = csr6_mask_hdcap;
436 dev->if_port = 11;
437 iowrite32(0x0000, ioaddr + CSR13);
438 iowrite32(0x0000, ioaddr + CSR14);
439 } else
440 t21142_start_nway(dev);
441 } else if (tp->chip_id == PNIC2) {
442 /* for initial startup advertise 10/100 Full and Half */
443 tp->sym_advertise = 0x01E0;
444 /* enable autonegotiate end interrupt */
445 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
446 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
447 pnic2_start_nway(dev);
448 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
449 if (tp->mii_cnt) {
450 dev->if_port = 11;
451 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
452 iowrite32(0x0001, ioaddr + CSR15);
453 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
454 pnic_do_nway(dev);
455 else {
456 /* Start with 10mbps to do autonegotiation. */
457 iowrite32(0x32, ioaddr + CSR12);
458 tp->csr6 = 0x00420000;
459 iowrite32(0x0001B078, ioaddr + 0xB8);
460 iowrite32(0x0201B078, ioaddr + 0xB8);
461 next_tick = 1*HZ;
462 }
463 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881) &&
464 ! tp->medialock) {
465 dev->if_port = 0;
466 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
467 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
468 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
469 /* Provided by BOLO, Macronix - 12/10/1998. */
470 dev->if_port = 0;
471 tp->csr6 = 0x01a80200;
472 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
473 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
474 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
475 /* Enable automatic Tx underrun recovery. */
476 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
477 dev->if_port = tp->mii_cnt ? 11 : 0;
478 tp->csr6 = 0x00040000;
479 } else if (tp->chip_id == AX88140) {
480 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
481 } else
482 tulip_select_media(dev, 1);
483
484 /* Start the chip's Tx to process setup frame. */
485 tulip_stop_rxtx(tp);
486 barrier();
487 udelay(5);
488 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
489
490 /* Enable interrupts by setting the interrupt mask. */
491 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
492 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
493 tulip_start_rxtx(tp);
494 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
495
496 if (tulip_debug > 2) {
497 netdev_dbg(dev, "Done tulip_up(), CSR0 %08x, CSR5 %08x CSR6 %08x\n",
498 ioread32(ioaddr + CSR0),
499 ioread32(ioaddr + CSR5),
500 ioread32(ioaddr + CSR6));
501 }
502
503 /* Set the timer to switch to check for link beat and perhaps switch
504 to an alternate media type. */
505 tp->timer.expires = RUN_AT(next_tick);
506 add_timer(&tp->timer);
507 #ifdef CONFIG_TULIP_NAPI
508 init_timer(&tp->oom_timer);
509 tp->oom_timer.data = (unsigned long)dev;
510 tp->oom_timer.function = oom_timer;
511 #endif
512 }
513
514 static int
tulip_open(struct net_device * dev)515 tulip_open(struct net_device *dev)
516 {
517 struct tulip_private *tp = netdev_priv(dev);
518 int retval;
519
520 tulip_init_ring (dev);
521
522 retval = request_irq(tp->pdev->irq, tulip_interrupt, IRQF_SHARED,
523 dev->name, dev);
524 if (retval)
525 goto free_ring;
526
527 tulip_up (dev);
528
529 netif_start_queue (dev);
530
531 return 0;
532
533 free_ring:
534 tulip_free_ring (dev);
535 return retval;
536 }
537
538
tulip_tx_timeout(struct net_device * dev)539 static void tulip_tx_timeout(struct net_device *dev)
540 {
541 struct tulip_private *tp = netdev_priv(dev);
542 void __iomem *ioaddr = tp->base_addr;
543 unsigned long flags;
544
545 spin_lock_irqsave (&tp->lock, flags);
546
547 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
548 /* Do nothing -- the media monitor should handle this. */
549 if (tulip_debug > 1)
550 dev_warn(&dev->dev,
551 "Transmit timeout using MII device\n");
552 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142 ||
553 tp->chip_id == MX98713 || tp->chip_id == COMPEX9881 ||
554 tp->chip_id == DM910X) {
555 dev_warn(&dev->dev,
556 "21140 transmit timed out, status %08x, SIA %08x %08x %08x %08x, resetting...\n",
557 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
558 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14),
559 ioread32(ioaddr + CSR15));
560 tp->timeout_recovery = 1;
561 schedule_work(&tp->media_work);
562 goto out_unlock;
563 } else if (tp->chip_id == PNIC2) {
564 dev_warn(&dev->dev,
565 "PNIC2 transmit timed out, status %08x, CSR6/7 %08x / %08x CSR12 %08x, resetting...\n",
566 (int)ioread32(ioaddr + CSR5),
567 (int)ioread32(ioaddr + CSR6),
568 (int)ioread32(ioaddr + CSR7),
569 (int)ioread32(ioaddr + CSR12));
570 } else {
571 dev_warn(&dev->dev,
572 "Transmit timed out, status %08x, CSR12 %08x, resetting...\n",
573 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
574 dev->if_port = 0;
575 }
576
577 #if defined(way_too_many_messages)
578 if (tulip_debug > 3) {
579 int i;
580 for (i = 0; i < RX_RING_SIZE; i++) {
581 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
582 int j;
583 printk(KERN_DEBUG
584 "%2d: %08x %08x %08x %08x %02x %02x %02x\n",
585 i,
586 (unsigned int)tp->rx_ring[i].status,
587 (unsigned int)tp->rx_ring[i].length,
588 (unsigned int)tp->rx_ring[i].buffer1,
589 (unsigned int)tp->rx_ring[i].buffer2,
590 buf[0], buf[1], buf[2]);
591 for (j = 0; ((j < 1600) && buf[j] != 0xee); j++)
592 if (j < 100)
593 pr_cont(" %02x", buf[j]);
594 pr_cont(" j=%d\n", j);
595 }
596 printk(KERN_DEBUG " Rx ring %p: ", tp->rx_ring);
597 for (i = 0; i < RX_RING_SIZE; i++)
598 pr_cont(" %08x", (unsigned int)tp->rx_ring[i].status);
599 printk(KERN_DEBUG " Tx ring %p: ", tp->tx_ring);
600 for (i = 0; i < TX_RING_SIZE; i++)
601 pr_cont(" %08x", (unsigned int)tp->tx_ring[i].status);
602 pr_cont("\n");
603 }
604 #endif
605
606 tulip_tx_timeout_complete(tp, ioaddr);
607
608 out_unlock:
609 spin_unlock_irqrestore (&tp->lock, flags);
610 dev->trans_start = jiffies; /* prevent tx timeout */
611 netif_wake_queue (dev);
612 }
613
614
615 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
tulip_init_ring(struct net_device * dev)616 static void tulip_init_ring(struct net_device *dev)
617 {
618 struct tulip_private *tp = netdev_priv(dev);
619 int i;
620
621 tp->susp_rx = 0;
622 tp->ttimer = 0;
623 tp->nir = 0;
624
625 for (i = 0; i < RX_RING_SIZE; i++) {
626 tp->rx_ring[i].status = 0x00000000;
627 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
628 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
629 tp->rx_buffers[i].skb = NULL;
630 tp->rx_buffers[i].mapping = 0;
631 }
632 /* Mark the last entry as wrapping the ring. */
633 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
634 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
635
636 for (i = 0; i < RX_RING_SIZE; i++) {
637 dma_addr_t mapping;
638
639 /* Note the receive buffer must be longword aligned.
640 netdev_alloc_skb() provides 16 byte alignment. But do *not*
641 use skb_reserve() to align the IP header! */
642 struct sk_buff *skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
643 tp->rx_buffers[i].skb = skb;
644 if (skb == NULL)
645 break;
646 mapping = pci_map_single(tp->pdev, skb->data,
647 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
648 tp->rx_buffers[i].mapping = mapping;
649 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
650 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
651 }
652 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
653
654 /* The Tx buffer descriptor is filled in as needed, but we
655 do need to clear the ownership bit. */
656 for (i = 0; i < TX_RING_SIZE; i++) {
657 tp->tx_buffers[i].skb = NULL;
658 tp->tx_buffers[i].mapping = 0;
659 tp->tx_ring[i].status = 0x00000000;
660 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
661 }
662 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
663 }
664
665 static netdev_tx_t
tulip_start_xmit(struct sk_buff * skb,struct net_device * dev)666 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
667 {
668 struct tulip_private *tp = netdev_priv(dev);
669 int entry;
670 u32 flag;
671 dma_addr_t mapping;
672 unsigned long flags;
673
674 spin_lock_irqsave(&tp->lock, flags);
675
676 /* Calculate the next Tx descriptor entry. */
677 entry = tp->cur_tx % TX_RING_SIZE;
678
679 tp->tx_buffers[entry].skb = skb;
680 mapping = pci_map_single(tp->pdev, skb->data,
681 skb->len, PCI_DMA_TODEVICE);
682 tp->tx_buffers[entry].mapping = mapping;
683 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
684
685 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
686 flag = 0x60000000; /* No interrupt */
687 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
688 flag = 0xe0000000; /* Tx-done intr. */
689 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
690 flag = 0x60000000; /* No Tx-done intr. */
691 } else { /* Leave room for set_rx_mode() to fill entries. */
692 flag = 0xe0000000; /* Tx-done intr. */
693 netif_stop_queue(dev);
694 }
695 if (entry == TX_RING_SIZE-1)
696 flag = 0xe0000000 | DESC_RING_WRAP;
697
698 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
699 /* if we were using Transmit Automatic Polling, we would need a
700 * wmb() here. */
701 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
702 wmb();
703
704 tp->cur_tx++;
705
706 /* Trigger an immediate transmit demand. */
707 iowrite32(0, tp->base_addr + CSR1);
708
709 spin_unlock_irqrestore(&tp->lock, flags);
710
711 return NETDEV_TX_OK;
712 }
713
tulip_clean_tx_ring(struct tulip_private * tp)714 static void tulip_clean_tx_ring(struct tulip_private *tp)
715 {
716 unsigned int dirty_tx;
717
718 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
719 dirty_tx++) {
720 int entry = dirty_tx % TX_RING_SIZE;
721 int status = le32_to_cpu(tp->tx_ring[entry].status);
722
723 if (status < 0) {
724 tp->dev->stats.tx_errors++; /* It wasn't Txed */
725 tp->tx_ring[entry].status = 0;
726 }
727
728 /* Check for Tx filter setup frames. */
729 if (tp->tx_buffers[entry].skb == NULL) {
730 /* test because dummy frames not mapped */
731 if (tp->tx_buffers[entry].mapping)
732 pci_unmap_single(tp->pdev,
733 tp->tx_buffers[entry].mapping,
734 sizeof(tp->setup_frame),
735 PCI_DMA_TODEVICE);
736 continue;
737 }
738
739 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
740 tp->tx_buffers[entry].skb->len,
741 PCI_DMA_TODEVICE);
742
743 /* Free the original skb. */
744 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
745 tp->tx_buffers[entry].skb = NULL;
746 tp->tx_buffers[entry].mapping = 0;
747 }
748 }
749
tulip_down(struct net_device * dev)750 static void tulip_down (struct net_device *dev)
751 {
752 struct tulip_private *tp = netdev_priv(dev);
753 void __iomem *ioaddr = tp->base_addr;
754 unsigned long flags;
755
756 cancel_work_sync(&tp->media_work);
757
758 #ifdef CONFIG_TULIP_NAPI
759 napi_disable(&tp->napi);
760 #endif
761
762 del_timer_sync (&tp->timer);
763 #ifdef CONFIG_TULIP_NAPI
764 del_timer_sync (&tp->oom_timer);
765 #endif
766 spin_lock_irqsave (&tp->lock, flags);
767
768 /* Disable interrupts by clearing the interrupt mask. */
769 iowrite32 (0x00000000, ioaddr + CSR7);
770
771 /* Stop the Tx and Rx processes. */
772 tulip_stop_rxtx(tp);
773
774 /* prepare receive buffers */
775 tulip_refill_rx(dev);
776
777 /* release any unconsumed transmit buffers */
778 tulip_clean_tx_ring(tp);
779
780 if (ioread32(ioaddr + CSR6) != 0xffffffff)
781 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
782
783 spin_unlock_irqrestore (&tp->lock, flags);
784
785 init_timer(&tp->timer);
786 tp->timer.data = (unsigned long)dev;
787 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
788
789 dev->if_port = tp->saved_if_port;
790
791 /* Leave the driver in snooze, not sleep, mode. */
792 tulip_set_power_state (tp, 0, 1);
793 }
794
tulip_free_ring(struct net_device * dev)795 static void tulip_free_ring (struct net_device *dev)
796 {
797 struct tulip_private *tp = netdev_priv(dev);
798 int i;
799
800 /* Free all the skbuffs in the Rx queue. */
801 for (i = 0; i < RX_RING_SIZE; i++) {
802 struct sk_buff *skb = tp->rx_buffers[i].skb;
803 dma_addr_t mapping = tp->rx_buffers[i].mapping;
804
805 tp->rx_buffers[i].skb = NULL;
806 tp->rx_buffers[i].mapping = 0;
807
808 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
809 tp->rx_ring[i].length = 0;
810 /* An invalid address. */
811 tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
812 if (skb) {
813 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
814 PCI_DMA_FROMDEVICE);
815 dev_kfree_skb (skb);
816 }
817 }
818
819 for (i = 0; i < TX_RING_SIZE; i++) {
820 struct sk_buff *skb = tp->tx_buffers[i].skb;
821
822 if (skb != NULL) {
823 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
824 skb->len, PCI_DMA_TODEVICE);
825 dev_kfree_skb (skb);
826 }
827 tp->tx_buffers[i].skb = NULL;
828 tp->tx_buffers[i].mapping = 0;
829 }
830 }
831
tulip_close(struct net_device * dev)832 static int tulip_close (struct net_device *dev)
833 {
834 struct tulip_private *tp = netdev_priv(dev);
835 void __iomem *ioaddr = tp->base_addr;
836
837 netif_stop_queue (dev);
838
839 tulip_down (dev);
840
841 if (tulip_debug > 1)
842 netdev_dbg(dev, "Shutting down ethercard, status was %02x\n",
843 ioread32 (ioaddr + CSR5));
844
845 free_irq (tp->pdev->irq, dev);
846
847 tulip_free_ring (dev);
848
849 return 0;
850 }
851
tulip_get_stats(struct net_device * dev)852 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
853 {
854 struct tulip_private *tp = netdev_priv(dev);
855 void __iomem *ioaddr = tp->base_addr;
856
857 if (netif_running(dev)) {
858 unsigned long flags;
859
860 spin_lock_irqsave (&tp->lock, flags);
861
862 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
863
864 spin_unlock_irqrestore(&tp->lock, flags);
865 }
866
867 return &dev->stats;
868 }
869
870
tulip_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)871 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
872 {
873 struct tulip_private *np = netdev_priv(dev);
874 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
875 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
876 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
877 }
878
879
tulip_ethtool_set_wol(struct net_device * dev,struct ethtool_wolinfo * wolinfo)880 static int tulip_ethtool_set_wol(struct net_device *dev,
881 struct ethtool_wolinfo *wolinfo)
882 {
883 struct tulip_private *tp = netdev_priv(dev);
884
885 if (wolinfo->wolopts & (~tp->wolinfo.supported))
886 return -EOPNOTSUPP;
887
888 tp->wolinfo.wolopts = wolinfo->wolopts;
889 device_set_wakeup_enable(&tp->pdev->dev, tp->wolinfo.wolopts);
890 return 0;
891 }
892
tulip_ethtool_get_wol(struct net_device * dev,struct ethtool_wolinfo * wolinfo)893 static void tulip_ethtool_get_wol(struct net_device *dev,
894 struct ethtool_wolinfo *wolinfo)
895 {
896 struct tulip_private *tp = netdev_priv(dev);
897
898 wolinfo->supported = tp->wolinfo.supported;
899 wolinfo->wolopts = tp->wolinfo.wolopts;
900 return;
901 }
902
903
904 static const struct ethtool_ops ops = {
905 .get_drvinfo = tulip_get_drvinfo,
906 .set_wol = tulip_ethtool_set_wol,
907 .get_wol = tulip_ethtool_get_wol,
908 };
909
910 /* Provide ioctl() calls to examine the MII xcvr state. */
private_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)911 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
912 {
913 struct tulip_private *tp = netdev_priv(dev);
914 void __iomem *ioaddr = tp->base_addr;
915 struct mii_ioctl_data *data = if_mii(rq);
916 const unsigned int phy_idx = 0;
917 int phy = tp->phys[phy_idx] & 0x1f;
918 unsigned int regnum = data->reg_num;
919
920 switch (cmd) {
921 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
922 if (tp->mii_cnt)
923 data->phy_id = phy;
924 else if (tp->flags & HAS_NWAY)
925 data->phy_id = 32;
926 else if (tp->chip_id == COMET)
927 data->phy_id = 1;
928 else
929 return -ENODEV;
930
931 case SIOCGMIIREG: /* Read MII PHY register. */
932 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
933 int csr12 = ioread32 (ioaddr + CSR12);
934 int csr14 = ioread32 (ioaddr + CSR14);
935 switch (regnum) {
936 case 0:
937 if (((csr14<<5) & 0x1000) ||
938 (dev->if_port == 5 && tp->nwayset))
939 data->val_out = 0x1000;
940 else
941 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
942 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
943 break;
944 case 1:
945 data->val_out =
946 0x1848 +
947 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
948 ((csr12&0x06) == 6 ? 0 : 4);
949 data->val_out |= 0x6048;
950 break;
951 case 4:
952 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
953 data->val_out =
954 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
955 ((csr14 >> 1) & 0x20) + 1;
956 data->val_out |= ((csr14 >> 9) & 0x03C0);
957 break;
958 case 5: data->val_out = tp->lpar; break;
959 default: data->val_out = 0; break;
960 }
961 } else {
962 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
963 }
964 return 0;
965
966 case SIOCSMIIREG: /* Write MII PHY register. */
967 if (regnum & ~0x1f)
968 return -EINVAL;
969 if (data->phy_id == phy) {
970 u16 value = data->val_in;
971 switch (regnum) {
972 case 0: /* Check for autonegotiation on or reset. */
973 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
974 if (tp->full_duplex_lock)
975 tp->full_duplex = (value & 0x0100) ? 1 : 0;
976 break;
977 case 4:
978 tp->advertising[phy_idx] =
979 tp->mii_advertise = data->val_in;
980 break;
981 }
982 }
983 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
984 u16 value = data->val_in;
985 if (regnum == 0) {
986 if ((value & 0x1200) == 0x1200) {
987 if (tp->chip_id == PNIC2) {
988 pnic2_start_nway (dev);
989 } else {
990 t21142_start_nway (dev);
991 }
992 }
993 } else if (regnum == 4)
994 tp->sym_advertise = value;
995 } else {
996 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
997 }
998 return 0;
999 default:
1000 return -EOPNOTSUPP;
1001 }
1002
1003 return -EOPNOTSUPP;
1004 }
1005
1006
1007 /* Set or clear the multicast filter for this adaptor.
1008 Note that we only use exclusion around actually queueing the
1009 new frame, not around filling tp->setup_frame. This is non-deterministic
1010 when re-entered but still correct. */
1011
build_setup_frame_hash(u16 * setup_frm,struct net_device * dev)1012 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
1013 {
1014 struct tulip_private *tp = netdev_priv(dev);
1015 u16 hash_table[32];
1016 struct netdev_hw_addr *ha;
1017 int i;
1018 u16 *eaddrs;
1019
1020 memset(hash_table, 0, sizeof(hash_table));
1021 __set_bit_le(255, hash_table); /* Broadcast entry */
1022 /* This should work on big-endian machines as well. */
1023 netdev_for_each_mc_addr(ha, dev) {
1024 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;
1025
1026 __set_bit_le(index, hash_table);
1027 }
1028 for (i = 0; i < 32; i++) {
1029 *setup_frm++ = hash_table[i];
1030 *setup_frm++ = hash_table[i];
1031 }
1032 setup_frm = &tp->setup_frame[13*6];
1033
1034 /* Fill the final entry with our physical address. */
1035 eaddrs = (u16 *)dev->dev_addr;
1036 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1037 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1038 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1039 }
1040
build_setup_frame_perfect(u16 * setup_frm,struct net_device * dev)1041 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
1042 {
1043 struct tulip_private *tp = netdev_priv(dev);
1044 struct netdev_hw_addr *ha;
1045 u16 *eaddrs;
1046
1047 /* We have <= 14 addresses so we can use the wonderful
1048 16 address perfect filtering of the Tulip. */
1049 netdev_for_each_mc_addr(ha, dev) {
1050 eaddrs = (u16 *) ha->addr;
1051 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1052 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1053 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1054 }
1055 /* Fill the unused entries with the broadcast address. */
1056 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
1057 setup_frm = &tp->setup_frame[15*6];
1058
1059 /* Fill the final entry with our physical address. */
1060 eaddrs = (u16 *)dev->dev_addr;
1061 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1062 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1063 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1064 }
1065
1066
set_rx_mode(struct net_device * dev)1067 static void set_rx_mode(struct net_device *dev)
1068 {
1069 struct tulip_private *tp = netdev_priv(dev);
1070 void __iomem *ioaddr = tp->base_addr;
1071 int csr6;
1072
1073 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1074
1075 tp->csr6 &= ~0x00D5;
1076 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1077 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1078 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1079 } else if ((netdev_mc_count(dev) > 1000) ||
1080 (dev->flags & IFF_ALLMULTI)) {
1081 /* Too many to filter well -- accept all multicasts. */
1082 tp->csr6 |= AcceptAllMulticast;
1083 csr6 |= AcceptAllMulticast;
1084 } else if (tp->flags & MC_HASH_ONLY) {
1085 /* Some work-alikes have only a 64-entry hash filter table. */
1086 /* Should verify correctness on big-endian/__powerpc__ */
1087 struct netdev_hw_addr *ha;
1088 if (netdev_mc_count(dev) > 64) {
1089 /* Arbitrary non-effective limit. */
1090 tp->csr6 |= AcceptAllMulticast;
1091 csr6 |= AcceptAllMulticast;
1092 } else {
1093 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1094 int filterbit;
1095 netdev_for_each_mc_addr(ha, dev) {
1096 if (tp->flags & COMET_MAC_ADDR)
1097 filterbit = ether_crc_le(ETH_ALEN,
1098 ha->addr);
1099 else
1100 filterbit = ether_crc(ETH_ALEN,
1101 ha->addr) >> 26;
1102 filterbit &= 0x3f;
1103 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1104 if (tulip_debug > 2)
1105 dev_info(&dev->dev,
1106 "Added filter for %pM %08x bit %d\n",
1107 ha->addr,
1108 ether_crc(ETH_ALEN, ha->addr),
1109 filterbit);
1110 }
1111 if (mc_filter[0] == tp->mc_filter[0] &&
1112 mc_filter[1] == tp->mc_filter[1])
1113 ; /* No change. */
1114 else if (tp->flags & IS_ASIX) {
1115 iowrite32(2, ioaddr + CSR13);
1116 iowrite32(mc_filter[0], ioaddr + CSR14);
1117 iowrite32(3, ioaddr + CSR13);
1118 iowrite32(mc_filter[1], ioaddr + CSR14);
1119 } else if (tp->flags & COMET_MAC_ADDR) {
1120 iowrite32(mc_filter[0], ioaddr + CSR27);
1121 iowrite32(mc_filter[1], ioaddr + CSR28);
1122 }
1123 tp->mc_filter[0] = mc_filter[0];
1124 tp->mc_filter[1] = mc_filter[1];
1125 }
1126 } else {
1127 unsigned long flags;
1128 u32 tx_flags = 0x08000000 | 192;
1129
1130 /* Note that only the low-address shortword of setup_frame is valid!
1131 The values are doubled for big-endian architectures. */
1132 if (netdev_mc_count(dev) > 14) {
1133 /* Must use a multicast hash table. */
1134 build_setup_frame_hash(tp->setup_frame, dev);
1135 tx_flags = 0x08400000 | 192;
1136 } else {
1137 build_setup_frame_perfect(tp->setup_frame, dev);
1138 }
1139
1140 spin_lock_irqsave(&tp->lock, flags);
1141
1142 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1143 /* Same setup recently queued, we need not add it. */
1144 } else {
1145 unsigned int entry;
1146 int dummy = -1;
1147
1148 /* Now add this frame to the Tx list. */
1149
1150 entry = tp->cur_tx++ % TX_RING_SIZE;
1151
1152 if (entry != 0) {
1153 /* Avoid a chip errata by prefixing a dummy entry. */
1154 tp->tx_buffers[entry].skb = NULL;
1155 tp->tx_buffers[entry].mapping = 0;
1156 tp->tx_ring[entry].length =
1157 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1158 tp->tx_ring[entry].buffer1 = 0;
1159 /* Must set DescOwned later to avoid race with chip */
1160 dummy = entry;
1161 entry = tp->cur_tx++ % TX_RING_SIZE;
1162
1163 }
1164
1165 tp->tx_buffers[entry].skb = NULL;
1166 tp->tx_buffers[entry].mapping =
1167 pci_map_single(tp->pdev, tp->setup_frame,
1168 sizeof(tp->setup_frame),
1169 PCI_DMA_TODEVICE);
1170 /* Put the setup frame on the Tx list. */
1171 if (entry == TX_RING_SIZE-1)
1172 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1173 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1174 tp->tx_ring[entry].buffer1 =
1175 cpu_to_le32(tp->tx_buffers[entry].mapping);
1176 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1177 if (dummy >= 0)
1178 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1179 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1180 netif_stop_queue(dev);
1181
1182 /* Trigger an immediate transmit demand. */
1183 iowrite32(0, ioaddr + CSR1);
1184 }
1185
1186 spin_unlock_irqrestore(&tp->lock, flags);
1187 }
1188
1189 iowrite32(csr6, ioaddr + CSR6);
1190 }
1191
1192 #ifdef CONFIG_TULIP_MWI
tulip_mwi_config(struct pci_dev * pdev,struct net_device * dev)1193 static void tulip_mwi_config(struct pci_dev *pdev, struct net_device *dev)
1194 {
1195 struct tulip_private *tp = netdev_priv(dev);
1196 u8 cache;
1197 u16 pci_command;
1198 u32 csr0;
1199
1200 if (tulip_debug > 3)
1201 netdev_dbg(dev, "tulip_mwi_config()\n");
1202
1203 tp->csr0 = csr0 = 0;
1204
1205 /* if we have any cache line size at all, we can do MRM and MWI */
1206 csr0 |= MRM | MWI;
1207
1208 /* Enable MWI in the standard PCI command bit.
1209 * Check for the case where MWI is desired but not available
1210 */
1211 pci_try_set_mwi(pdev);
1212
1213 /* read result from hardware (in case bit refused to enable) */
1214 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1215 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1216 csr0 &= ~MWI;
1217
1218 /* if cache line size hardwired to zero, no MWI */
1219 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1220 if ((csr0 & MWI) && (cache == 0)) {
1221 csr0 &= ~MWI;
1222 pci_clear_mwi(pdev);
1223 }
1224
1225 /* assign per-cacheline-size cache alignment and
1226 * burst length values
1227 */
1228 switch (cache) {
1229 case 8:
1230 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1231 break;
1232 case 16:
1233 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1234 break;
1235 case 32:
1236 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1237 break;
1238 default:
1239 cache = 0;
1240 break;
1241 }
1242
1243 /* if we have a good cache line size, we by now have a good
1244 * csr0, so save it and exit
1245 */
1246 if (cache)
1247 goto out;
1248
1249 /* we don't have a good csr0 or cache line size, disable MWI */
1250 if (csr0 & MWI) {
1251 pci_clear_mwi(pdev);
1252 csr0 &= ~MWI;
1253 }
1254
1255 /* sane defaults for burst length and cache alignment
1256 * originally from de4x5 driver
1257 */
1258 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1259
1260 out:
1261 tp->csr0 = csr0;
1262 if (tulip_debug > 2)
1263 netdev_dbg(dev, "MWI config cacheline=%d, csr0=%08x\n",
1264 cache, csr0);
1265 }
1266 #endif
1267
1268 /*
1269 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1270 * is the DM910X and the on chip ULi devices
1271 */
1272
tulip_uli_dm_quirk(struct pci_dev * pdev)1273 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1274 {
1275 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1276 return 1;
1277 return 0;
1278 }
1279
1280 static const struct net_device_ops tulip_netdev_ops = {
1281 .ndo_open = tulip_open,
1282 .ndo_start_xmit = tulip_start_xmit,
1283 .ndo_tx_timeout = tulip_tx_timeout,
1284 .ndo_stop = tulip_close,
1285 .ndo_get_stats = tulip_get_stats,
1286 .ndo_do_ioctl = private_ioctl,
1287 .ndo_set_rx_mode = set_rx_mode,
1288 .ndo_change_mtu = eth_change_mtu,
1289 .ndo_set_mac_address = eth_mac_addr,
1290 .ndo_validate_addr = eth_validate_addr,
1291 #ifdef CONFIG_NET_POLL_CONTROLLER
1292 .ndo_poll_controller = poll_tulip,
1293 #endif
1294 };
1295
1296 const struct pci_device_id early_486_chipsets[] = {
1297 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1298 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1299 { },
1300 };
1301
tulip_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1302 static int tulip_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1303 {
1304 struct tulip_private *tp;
1305 /* See note below on the multiport cards. */
1306 static unsigned char last_phys_addr[ETH_ALEN] = {
1307 0x00, 'L', 'i', 'n', 'u', 'x'
1308 };
1309 static int last_irq;
1310 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1311 int i, irq;
1312 unsigned short sum;
1313 unsigned char *ee_data;
1314 struct net_device *dev;
1315 void __iomem *ioaddr;
1316 static int board_idx = -1;
1317 int chip_idx = ent->driver_data;
1318 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1319 unsigned int eeprom_missing = 0;
1320 unsigned int force_csr0 = 0;
1321
1322 #ifndef MODULE
1323 if (tulip_debug > 0)
1324 printk_once(KERN_INFO "%s", version);
1325 #endif
1326
1327 board_idx++;
1328
1329 /*
1330 * Lan media wire a tulip chip to a wan interface. Needs a very
1331 * different driver (lmc driver)
1332 */
1333
1334 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1335 pr_err("skipping LMC card\n");
1336 return -ENODEV;
1337 } else if (pdev->subsystem_vendor == PCI_VENDOR_ID_SBE &&
1338 (pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_T3E3 ||
1339 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P0 ||
1340 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P1)) {
1341 pr_err("skipping SBE T3E3 port\n");
1342 return -ENODEV;
1343 }
1344
1345 /*
1346 * DM910x chips should be handled by the dmfe driver, except
1347 * on-board chips on SPARC systems. Also, early DM9100s need
1348 * software CRC which only the dmfe driver supports.
1349 */
1350
1351 #ifdef CONFIG_TULIP_DM910X
1352 if (chip_idx == DM910X) {
1353 struct device_node *dp;
1354
1355 if (pdev->vendor == 0x1282 && pdev->device == 0x9100 &&
1356 pdev->revision < 0x30) {
1357 pr_info("skipping early DM9100 with Crc bug (use dmfe)\n");
1358 return -ENODEV;
1359 }
1360
1361 dp = pci_device_to_OF_node(pdev);
1362 if (!(dp && of_get_property(dp, "local-mac-address", NULL))) {
1363 pr_info("skipping DM910x expansion card (use dmfe)\n");
1364 return -ENODEV;
1365 }
1366 }
1367 #endif
1368
1369 /*
1370 * Looks for early PCI chipsets where people report hangs
1371 * without the workarounds being on.
1372 */
1373
1374 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1375 aligned. Aries might need this too. The Saturn errata are not
1376 pretty reading but thankfully it's an old 486 chipset.
1377
1378 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1379 Saturn.
1380 */
1381
1382 if (pci_dev_present(early_486_chipsets)) {
1383 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1384 force_csr0 = 1;
1385 }
1386
1387 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1388 if (chip_idx == AX88140) {
1389 if ((csr0 & 0x3f00) == 0)
1390 csr0 |= 0x2000;
1391 }
1392
1393 /* PNIC doesn't have MWI/MRL/MRM... */
1394 if (chip_idx == LC82C168)
1395 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1396
1397 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1398 if (tulip_uli_dm_quirk(pdev)) {
1399 csr0 &= ~0x01f100ff;
1400 #if defined(CONFIG_SPARC)
1401 csr0 = (csr0 & ~0xff00) | 0xe000;
1402 #endif
1403 }
1404 /*
1405 * And back to business
1406 */
1407
1408 i = pci_enable_device(pdev);
1409 if (i) {
1410 pr_err("Cannot enable tulip board #%d, aborting\n", board_idx);
1411 return i;
1412 }
1413
1414 irq = pdev->irq;
1415
1416 /* alloc_etherdev ensures aligned and zeroed private structures */
1417 dev = alloc_etherdev (sizeof (*tp));
1418 if (!dev)
1419 return -ENOMEM;
1420
1421 SET_NETDEV_DEV(dev, &pdev->dev);
1422 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1423 pr_err("%s: I/O region (0x%llx@0x%llx) too small, aborting\n",
1424 pci_name(pdev),
1425 (unsigned long long)pci_resource_len (pdev, 0),
1426 (unsigned long long)pci_resource_start (pdev, 0));
1427 goto err_out_free_netdev;
1428 }
1429
1430 /* grab all resources from both PIO and MMIO regions, as we
1431 * don't want anyone else messing around with our hardware */
1432 if (pci_request_regions (pdev, DRV_NAME))
1433 goto err_out_free_netdev;
1434
1435 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1436
1437 if (!ioaddr)
1438 goto err_out_free_res;
1439
1440 /*
1441 * initialize private data structure 'tp'
1442 * it is zeroed and aligned in alloc_etherdev
1443 */
1444 tp = netdev_priv(dev);
1445 tp->dev = dev;
1446
1447 tp->rx_ring = pci_alloc_consistent(pdev,
1448 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1449 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1450 &tp->rx_ring_dma);
1451 if (!tp->rx_ring)
1452 goto err_out_mtable;
1453 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1454 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1455
1456 tp->chip_id = chip_idx;
1457 tp->flags = tulip_tbl[chip_idx].flags;
1458
1459 tp->wolinfo.supported = 0;
1460 tp->wolinfo.wolopts = 0;
1461 /* COMET: Enable power management only for AN983B */
1462 if (chip_idx == COMET ) {
1463 u32 sig;
1464 pci_read_config_dword (pdev, 0x80, &sig);
1465 if (sig == 0x09811317) {
1466 tp->flags |= COMET_PM;
1467 tp->wolinfo.supported = WAKE_PHY | WAKE_MAGIC;
1468 pr_info("%s: Enabled WOL support for AN983B\n",
1469 __func__);
1470 }
1471 }
1472 tp->pdev = pdev;
1473 tp->base_addr = ioaddr;
1474 tp->revision = pdev->revision;
1475 tp->csr0 = csr0;
1476 spin_lock_init(&tp->lock);
1477 spin_lock_init(&tp->mii_lock);
1478 init_timer(&tp->timer);
1479 tp->timer.data = (unsigned long)dev;
1480 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1481
1482 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1483
1484 #ifdef CONFIG_TULIP_MWI
1485 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1486 tulip_mwi_config (pdev, dev);
1487 #endif
1488
1489 /* Stop the chip's Tx and Rx processes. */
1490 tulip_stop_rxtx(tp);
1491
1492 pci_set_master(pdev);
1493
1494 #ifdef CONFIG_GSC
1495 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1496 switch (pdev->subsystem_device) {
1497 default:
1498 break;
1499 case 0x1061:
1500 case 0x1062:
1501 case 0x1063:
1502 case 0x1098:
1503 case 0x1099:
1504 case 0x10EE:
1505 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1506 chip_name = "GSC DS21140 Tulip";
1507 }
1508 }
1509 #endif
1510
1511 /* Clear the missed-packet counter. */
1512 ioread32(ioaddr + CSR8);
1513
1514 /* The station address ROM is read byte serially. The register must
1515 be polled, waiting for the value to be read bit serially from the
1516 EEPROM.
1517 */
1518 ee_data = tp->eeprom;
1519 memset(ee_data, 0, sizeof(tp->eeprom));
1520 sum = 0;
1521 if (chip_idx == LC82C168) {
1522 for (i = 0; i < 3; i++) {
1523 int value, boguscnt = 100000;
1524 iowrite32(0x600 | i, ioaddr + 0x98);
1525 do {
1526 value = ioread32(ioaddr + CSR9);
1527 } while (value < 0 && --boguscnt > 0);
1528 put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i);
1529 sum += value & 0xffff;
1530 }
1531 } else if (chip_idx == COMET) {
1532 /* No need to read the EEPROM. */
1533 put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr);
1534 put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4);
1535 for (i = 0; i < 6; i ++)
1536 sum += dev->dev_addr[i];
1537 } else {
1538 /* A serial EEPROM interface, we read now and sort it out later. */
1539 int sa_offset = 0;
1540 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1541 int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);
1542
1543 if (ee_max_addr > sizeof(tp->eeprom))
1544 ee_max_addr = sizeof(tp->eeprom);
1545
1546 for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
1547 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1548 ee_data[i] = data & 0xff;
1549 ee_data[i + 1] = data >> 8;
1550 }
1551
1552 /* DEC now has a specification (see Notes) but early board makers
1553 just put the address in the first EEPROM locations. */
1554 /* This does memcmp(ee_data, ee_data+16, 8) */
1555 for (i = 0; i < 8; i ++)
1556 if (ee_data[i] != ee_data[16+i])
1557 sa_offset = 20;
1558 if (chip_idx == CONEXANT) {
1559 /* Check that the tuple type and length is correct. */
1560 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1561 sa_offset = 0x19A;
1562 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1563 ee_data[2] == 0) {
1564 sa_offset = 2; /* Grrr, damn Matrox boards. */
1565 multiport_cnt = 4;
1566 }
1567 #ifdef CONFIG_MIPS_COBALT
1568 if ((pdev->bus->number == 0) &&
1569 ((PCI_SLOT(pdev->devfn) == 7) ||
1570 (PCI_SLOT(pdev->devfn) == 12))) {
1571 /* Cobalt MAC address in first EEPROM locations. */
1572 sa_offset = 0;
1573 /* Ensure our media table fixup get's applied */
1574 memcpy(ee_data + 16, ee_data, 8);
1575 }
1576 #endif
1577 #ifdef CONFIG_GSC
1578 /* Check to see if we have a broken srom */
1579 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1580 /* pci_vendor_id and subsystem_id are swapped */
1581 ee_data[0] = ee_data[2];
1582 ee_data[1] = ee_data[3];
1583 ee_data[2] = 0x61;
1584 ee_data[3] = 0x10;
1585
1586 /* HSC-PCI boards need to be byte-swaped and shifted
1587 * up 1 word. This shift needs to happen at the end
1588 * of the MAC first because of the 2 byte overlap.
1589 */
1590 for (i = 4; i >= 0; i -= 2) {
1591 ee_data[17 + i + 3] = ee_data[17 + i];
1592 ee_data[16 + i + 5] = ee_data[16 + i];
1593 }
1594 }
1595 #endif
1596
1597 for (i = 0; i < 6; i ++) {
1598 dev->dev_addr[i] = ee_data[i + sa_offset];
1599 sum += ee_data[i + sa_offset];
1600 }
1601 }
1602 /* Lite-On boards have the address byte-swapped. */
1603 if ((dev->dev_addr[0] == 0xA0 ||
1604 dev->dev_addr[0] == 0xC0 ||
1605 dev->dev_addr[0] == 0x02) &&
1606 dev->dev_addr[1] == 0x00)
1607 for (i = 0; i < 6; i+=2) {
1608 char tmp = dev->dev_addr[i];
1609 dev->dev_addr[i] = dev->dev_addr[i+1];
1610 dev->dev_addr[i+1] = tmp;
1611 }
1612 /* On the Zynx 315 Etherarray and other multiport boards only the
1613 first Tulip has an EEPROM.
1614 On Sparc systems the mac address is held in the OBP property
1615 "local-mac-address".
1616 The addresses of the subsequent ports are derived from the first.
1617 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1618 that here as well. */
1619 if (sum == 0 || sum == 6*0xff) {
1620 #if defined(CONFIG_SPARC)
1621 struct device_node *dp = pci_device_to_OF_node(pdev);
1622 const unsigned char *addr;
1623 int len;
1624 #endif
1625 eeprom_missing = 1;
1626 for (i = 0; i < 5; i++)
1627 dev->dev_addr[i] = last_phys_addr[i];
1628 dev->dev_addr[i] = last_phys_addr[i] + 1;
1629 #if defined(CONFIG_SPARC)
1630 addr = of_get_property(dp, "local-mac-address", &len);
1631 if (addr && len == ETH_ALEN)
1632 memcpy(dev->dev_addr, addr, ETH_ALEN);
1633 #endif
1634 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1635 if (last_irq)
1636 irq = last_irq;
1637 #endif
1638 }
1639
1640 for (i = 0; i < 6; i++)
1641 last_phys_addr[i] = dev->dev_addr[i];
1642 last_irq = irq;
1643
1644 /* The lower four bits are the media type. */
1645 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1646 if (options[board_idx] & MEDIA_MASK)
1647 tp->default_port = options[board_idx] & MEDIA_MASK;
1648 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1649 tp->full_duplex = 1;
1650 if (mtu[board_idx] > 0)
1651 dev->mtu = mtu[board_idx];
1652 }
1653 if (dev->mem_start & MEDIA_MASK)
1654 tp->default_port = dev->mem_start & MEDIA_MASK;
1655 if (tp->default_port) {
1656 pr_info(DRV_NAME "%d: Transceiver selection forced to %s\n",
1657 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1658 tp->medialock = 1;
1659 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1660 tp->full_duplex = 1;
1661 }
1662 if (tp->full_duplex)
1663 tp->full_duplex_lock = 1;
1664
1665 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1666 static const u16 media2advert[] = {
1667 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200
1668 };
1669 tp->mii_advertise = media2advert[tp->default_port - 9];
1670 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1671 }
1672
1673 if (tp->flags & HAS_MEDIA_TABLE) {
1674 sprintf(dev->name, DRV_NAME "%d", board_idx); /* hack */
1675 tulip_parse_eeprom(dev);
1676 strcpy(dev->name, "eth%d"); /* un-hack */
1677 }
1678
1679 if ((tp->flags & ALWAYS_CHECK_MII) ||
1680 (tp->mtable && tp->mtable->has_mii) ||
1681 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1682 if (tp->mtable && tp->mtable->has_mii) {
1683 for (i = 0; i < tp->mtable->leafcount; i++)
1684 if (tp->mtable->mleaf[i].media == 11) {
1685 tp->cur_index = i;
1686 tp->saved_if_port = dev->if_port;
1687 tulip_select_media(dev, 2);
1688 dev->if_port = tp->saved_if_port;
1689 break;
1690 }
1691 }
1692
1693 /* Find the connected MII xcvrs.
1694 Doing this in open() would allow detecting external xcvrs
1695 later, but takes much time. */
1696 tulip_find_mii (dev, board_idx);
1697 }
1698
1699 /* The Tulip-specific entries in the device structure. */
1700 dev->netdev_ops = &tulip_netdev_ops;
1701 dev->watchdog_timeo = TX_TIMEOUT;
1702 #ifdef CONFIG_TULIP_NAPI
1703 netif_napi_add(dev, &tp->napi, tulip_poll, 16);
1704 #endif
1705 dev->ethtool_ops = &ops;
1706
1707 if (register_netdev(dev))
1708 goto err_out_free_ring;
1709
1710 pci_set_drvdata(pdev, dev);
1711
1712 dev_info(&dev->dev,
1713 #ifdef CONFIG_TULIP_MMIO
1714 "%s rev %d at MMIO %#llx,%s %pM, IRQ %d\n",
1715 #else
1716 "%s rev %d at Port %#llx,%s %pM, IRQ %d\n",
1717 #endif
1718 chip_name, pdev->revision,
1719 (unsigned long long)pci_resource_start(pdev, TULIP_BAR),
1720 eeprom_missing ? " EEPROM not present," : "",
1721 dev->dev_addr, irq);
1722
1723 if (tp->chip_id == PNIC2)
1724 tp->link_change = pnic2_lnk_change;
1725 else if (tp->flags & HAS_NWAY)
1726 tp->link_change = t21142_lnk_change;
1727 else if (tp->flags & HAS_PNICNWAY)
1728 tp->link_change = pnic_lnk_change;
1729
1730 /* Reset the xcvr interface and turn on heartbeat. */
1731 switch (chip_idx) {
1732 case DC21140:
1733 case DM910X:
1734 default:
1735 if (tp->mtable)
1736 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1737 break;
1738 case DC21142:
1739 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1740 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1741 iowrite32(0x0000, ioaddr + CSR13);
1742 iowrite32(0x0000, ioaddr + CSR14);
1743 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1744 } else
1745 t21142_start_nway(dev);
1746 break;
1747 case PNIC2:
1748 /* just do a reset for sanity sake */
1749 iowrite32(0x0000, ioaddr + CSR13);
1750 iowrite32(0x0000, ioaddr + CSR14);
1751 break;
1752 case LC82C168:
1753 if ( ! tp->mii_cnt) {
1754 tp->nway = 1;
1755 tp->nwayset = 0;
1756 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1757 iowrite32(0x30, ioaddr + CSR12);
1758 iowrite32(0x0001F078, ioaddr + CSR6);
1759 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1760 }
1761 break;
1762 case MX98713:
1763 case COMPEX9881:
1764 iowrite32(0x00000000, ioaddr + CSR6);
1765 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1766 iowrite32(0x00000001, ioaddr + CSR13);
1767 break;
1768 case MX98715:
1769 case MX98725:
1770 iowrite32(0x01a80000, ioaddr + CSR6);
1771 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1772 iowrite32(0x00001000, ioaddr + CSR12);
1773 break;
1774 case COMET:
1775 /* No initialization necessary. */
1776 break;
1777 }
1778
1779 /* put the chip in snooze mode until opened */
1780 tulip_set_power_state (tp, 0, 1);
1781
1782 return 0;
1783
1784 err_out_free_ring:
1785 pci_free_consistent (pdev,
1786 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1787 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1788 tp->rx_ring, tp->rx_ring_dma);
1789
1790 err_out_mtable:
1791 kfree (tp->mtable);
1792 pci_iounmap(pdev, ioaddr);
1793
1794 err_out_free_res:
1795 pci_release_regions (pdev);
1796
1797 err_out_free_netdev:
1798 free_netdev (dev);
1799 return -ENODEV;
1800 }
1801
1802
1803 /* set the registers according to the given wolopts */
tulip_set_wolopts(struct pci_dev * pdev,u32 wolopts)1804 static void tulip_set_wolopts (struct pci_dev *pdev, u32 wolopts)
1805 {
1806 struct net_device *dev = pci_get_drvdata(pdev);
1807 struct tulip_private *tp = netdev_priv(dev);
1808 void __iomem *ioaddr = tp->base_addr;
1809
1810 if (tp->flags & COMET_PM) {
1811
1812 unsigned int tmp;
1813
1814 tmp = ioread32(ioaddr + CSR18);
1815 tmp &= ~(comet_csr18_pmes_sticky | comet_csr18_apm_mode | comet_csr18_d3a);
1816 tmp |= comet_csr18_pm_mode;
1817 iowrite32(tmp, ioaddr + CSR18);
1818
1819 /* Set the Wake-up Control/Status Register to the given WOL options*/
1820 tmp = ioread32(ioaddr + CSR13);
1821 tmp &= ~(comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_wfre | comet_csr13_lsce | comet_csr13_mpre);
1822 if (wolopts & WAKE_MAGIC)
1823 tmp |= comet_csr13_mpre;
1824 if (wolopts & WAKE_PHY)
1825 tmp |= comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_lsce;
1826 /* Clear the event flags */
1827 tmp |= comet_csr13_wfr | comet_csr13_mpr | comet_csr13_lsc;
1828 iowrite32(tmp, ioaddr + CSR13);
1829 }
1830 }
1831
1832 #ifdef CONFIG_PM
1833
1834
tulip_suspend(struct pci_dev * pdev,pm_message_t state)1835 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1836 {
1837 pci_power_t pstate;
1838 struct net_device *dev = pci_get_drvdata(pdev);
1839 struct tulip_private *tp = netdev_priv(dev);
1840
1841 if (!dev)
1842 return -EINVAL;
1843
1844 if (!netif_running(dev))
1845 goto save_state;
1846
1847 tulip_down(dev);
1848
1849 netif_device_detach(dev);
1850 /* FIXME: it needlessly adds an error path. */
1851 free_irq(tp->pdev->irq, dev);
1852
1853 save_state:
1854 pci_save_state(pdev);
1855 pci_disable_device(pdev);
1856 pstate = pci_choose_state(pdev, state);
1857 if (state.event == PM_EVENT_SUSPEND && pstate != PCI_D0) {
1858 int rc;
1859
1860 tulip_set_wolopts(pdev, tp->wolinfo.wolopts);
1861 rc = pci_enable_wake(pdev, pstate, tp->wolinfo.wolopts);
1862 if (rc)
1863 pr_err("pci_enable_wake failed (%d)\n", rc);
1864 }
1865 pci_set_power_state(pdev, pstate);
1866
1867 return 0;
1868 }
1869
1870
tulip_resume(struct pci_dev * pdev)1871 static int tulip_resume(struct pci_dev *pdev)
1872 {
1873 struct net_device *dev = pci_get_drvdata(pdev);
1874 struct tulip_private *tp = netdev_priv(dev);
1875 void __iomem *ioaddr = tp->base_addr;
1876 int retval;
1877 unsigned int tmp;
1878
1879 if (!dev)
1880 return -EINVAL;
1881
1882 pci_set_power_state(pdev, PCI_D0);
1883 pci_restore_state(pdev);
1884
1885 if (!netif_running(dev))
1886 return 0;
1887
1888 if ((retval = pci_enable_device(pdev))) {
1889 pr_err("pci_enable_device failed in resume\n");
1890 return retval;
1891 }
1892
1893 retval = request_irq(pdev->irq, tulip_interrupt, IRQF_SHARED,
1894 dev->name, dev);
1895 if (retval) {
1896 pr_err("request_irq failed in resume\n");
1897 return retval;
1898 }
1899
1900 if (tp->flags & COMET_PM) {
1901 pci_enable_wake(pdev, PCI_D3hot, 0);
1902 pci_enable_wake(pdev, PCI_D3cold, 0);
1903
1904 /* Clear the PMES flag */
1905 tmp = ioread32(ioaddr + CSR20);
1906 tmp |= comet_csr20_pmes;
1907 iowrite32(tmp, ioaddr + CSR20);
1908
1909 /* Disable all wake-up events */
1910 tulip_set_wolopts(pdev, 0);
1911 }
1912 netif_device_attach(dev);
1913
1914 if (netif_running(dev))
1915 tulip_up(dev);
1916
1917 return 0;
1918 }
1919
1920 #endif /* CONFIG_PM */
1921
1922
tulip_remove_one(struct pci_dev * pdev)1923 static void tulip_remove_one(struct pci_dev *pdev)
1924 {
1925 struct net_device *dev = pci_get_drvdata (pdev);
1926 struct tulip_private *tp;
1927
1928 if (!dev)
1929 return;
1930
1931 tp = netdev_priv(dev);
1932 unregister_netdev(dev);
1933 pci_free_consistent (pdev,
1934 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1935 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1936 tp->rx_ring, tp->rx_ring_dma);
1937 kfree (tp->mtable);
1938 pci_iounmap(pdev, tp->base_addr);
1939 free_netdev (dev);
1940 pci_release_regions (pdev);
1941 pci_disable_device(pdev);
1942
1943 /* pci_power_off (pdev, -1); */
1944 }
1945
1946 #ifdef CONFIG_NET_POLL_CONTROLLER
1947 /*
1948 * Polling 'interrupt' - used by things like netconsole to send skbs
1949 * without having to re-enable interrupts. It's not called while
1950 * the interrupt routine is executing.
1951 */
1952
poll_tulip(struct net_device * dev)1953 static void poll_tulip (struct net_device *dev)
1954 {
1955 struct tulip_private *tp = netdev_priv(dev);
1956 const int irq = tp->pdev->irq;
1957
1958 /* disable_irq here is not very nice, but with the lockless
1959 interrupt handler we have no other choice. */
1960 disable_irq(irq);
1961 tulip_interrupt (irq, dev);
1962 enable_irq(irq);
1963 }
1964 #endif
1965
1966 static struct pci_driver tulip_driver = {
1967 .name = DRV_NAME,
1968 .id_table = tulip_pci_tbl,
1969 .probe = tulip_init_one,
1970 .remove = tulip_remove_one,
1971 #ifdef CONFIG_PM
1972 .suspend = tulip_suspend,
1973 .resume = tulip_resume,
1974 #endif /* CONFIG_PM */
1975 };
1976
1977
tulip_init(void)1978 static int __init tulip_init (void)
1979 {
1980 #ifdef MODULE
1981 pr_info("%s", version);
1982 #endif
1983
1984 if (!csr0) {
1985 pr_warn("tulip: unknown CPU architecture, using default csr0\n");
1986 /* default to 8 longword cache line alignment */
1987 csr0 = 0x00A00000 | 0x4800;
1988 }
1989
1990 /* copy module parms into globals */
1991 tulip_rx_copybreak = rx_copybreak;
1992 tulip_max_interrupt_work = max_interrupt_work;
1993
1994 /* probe for and init boards */
1995 return pci_register_driver(&tulip_driver);
1996 }
1997
1998
tulip_cleanup(void)1999 static void __exit tulip_cleanup (void)
2000 {
2001 pci_unregister_driver (&tulip_driver);
2002 }
2003
2004
2005 module_init(tulip_init);
2006 module_exit(tulip_cleanup);
2007