• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * FCC driver for Motorola MPC82xx (PQ2).
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * This file is licensed under the terms of the GNU General Public License
11  * version 2. This program is licensed "as is" without any warranty of any
12  * kind, whether express or implied.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/spinlock.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/fs.h>
32 #include <linux/platform_device.h>
33 #include <linux/phy.h>
34 #include <linux/of_address.h>
35 #include <linux/of_device.h>
36 #include <linux/of_irq.h>
37 #include <linux/gfp.h>
38 
39 #include <asm/immap_cpm2.h>
40 #include <asm/mpc8260.h>
41 #include <asm/cpm2.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/irq.h>
45 #include <asm/uaccess.h>
46 
47 #include "fs_enet.h"
48 
49 /*************************************************/
50 
51 /* FCC access macros */
52 
53 /* write, read, set bits, clear bits */
54 #define W32(_p, _m, _v)	out_be32(&(_p)->_m, (_v))
55 #define R32(_p, _m)	in_be32(&(_p)->_m)
56 #define S32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) | (_v))
57 #define C32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) & ~(_v))
58 
59 #define W16(_p, _m, _v)	out_be16(&(_p)->_m, (_v))
60 #define R16(_p, _m)	in_be16(&(_p)->_m)
61 #define S16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) | (_v))
62 #define C16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) & ~(_v))
63 
64 #define W8(_p, _m, _v)	out_8(&(_p)->_m, (_v))
65 #define R8(_p, _m)	in_8(&(_p)->_m)
66 #define S8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) | (_v))
67 #define C8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) & ~(_v))
68 
69 /*************************************************/
70 
71 #define FCC_MAX_MULTICAST_ADDRS	64
72 
73 #define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
74 #define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
75 #define mk_mii_end		0
76 
77 #define MAX_CR_CMD_LOOPS	10000
78 
fcc_cr_cmd(struct fs_enet_private * fep,u32 op)79 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
80 {
81 	const struct fs_platform_info *fpi = fep->fpi;
82 
83 	return cpm_command(fpi->cp_command, op);
84 }
85 
do_pd_setup(struct fs_enet_private * fep)86 static int do_pd_setup(struct fs_enet_private *fep)
87 {
88 	struct platform_device *ofdev = to_platform_device(fep->dev);
89 	struct fs_platform_info *fpi = fep->fpi;
90 	int ret = -EINVAL;
91 
92 	fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
93 	if (fep->interrupt == NO_IRQ)
94 		goto out;
95 
96 	fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
97 	if (!fep->fcc.fccp)
98 		goto out;
99 
100 	fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
101 	if (!fep->fcc.ep)
102 		goto out_fccp;
103 
104 	fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
105 	if (!fep->fcc.fcccp)
106 		goto out_ep;
107 
108 	fep->fcc.mem = (void __iomem *)cpm2_immr;
109 	fpi->dpram_offset = cpm_dpalloc(128, 32);
110 	if (IS_ERR_VALUE(fpi->dpram_offset)) {
111 		ret = fpi->dpram_offset;
112 		goto out_fcccp;
113 	}
114 
115 	return 0;
116 
117 out_fcccp:
118 	iounmap(fep->fcc.fcccp);
119 out_ep:
120 	iounmap(fep->fcc.ep);
121 out_fccp:
122 	iounmap(fep->fcc.fccp);
123 out:
124 	return ret;
125 }
126 
127 #define FCC_NAPI_RX_EVENT_MSK	(FCC_ENET_RXF | FCC_ENET_RXB)
128 #define FCC_NAPI_TX_EVENT_MSK	(FCC_ENET_TXB)
129 #define FCC_RX_EVENT		(FCC_ENET_RXF)
130 #define FCC_TX_EVENT		(FCC_ENET_TXB)
131 #define FCC_ERR_EVENT_MSK	(FCC_ENET_TXE)
132 
setup_data(struct net_device * dev)133 static int setup_data(struct net_device *dev)
134 {
135 	struct fs_enet_private *fep = netdev_priv(dev);
136 
137 	if (do_pd_setup(fep) != 0)
138 		return -EINVAL;
139 
140 	fep->ev_napi_rx = FCC_NAPI_RX_EVENT_MSK;
141 	fep->ev_napi_tx = FCC_NAPI_TX_EVENT_MSK;
142 	fep->ev_rx = FCC_RX_EVENT;
143 	fep->ev_tx = FCC_TX_EVENT;
144 	fep->ev_err = FCC_ERR_EVENT_MSK;
145 
146 	return 0;
147 }
148 
allocate_bd(struct net_device * dev)149 static int allocate_bd(struct net_device *dev)
150 {
151 	struct fs_enet_private *fep = netdev_priv(dev);
152 	const struct fs_platform_info *fpi = fep->fpi;
153 
154 	fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
155 					    (fpi->tx_ring + fpi->rx_ring) *
156 					    sizeof(cbd_t), &fep->ring_mem_addr,
157 					    GFP_KERNEL);
158 	if (fep->ring_base == NULL)
159 		return -ENOMEM;
160 
161 	return 0;
162 }
163 
free_bd(struct net_device * dev)164 static void free_bd(struct net_device *dev)
165 {
166 	struct fs_enet_private *fep = netdev_priv(dev);
167 	const struct fs_platform_info *fpi = fep->fpi;
168 
169 	if (fep->ring_base)
170 		dma_free_coherent(fep->dev,
171 			(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
172 			(void __force *)fep->ring_base, fep->ring_mem_addr);
173 }
174 
cleanup_data(struct net_device * dev)175 static void cleanup_data(struct net_device *dev)
176 {
177 	/* nothing */
178 }
179 
set_promiscuous_mode(struct net_device * dev)180 static void set_promiscuous_mode(struct net_device *dev)
181 {
182 	struct fs_enet_private *fep = netdev_priv(dev);
183 	fcc_t __iomem *fccp = fep->fcc.fccp;
184 
185 	S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
186 }
187 
set_multicast_start(struct net_device * dev)188 static void set_multicast_start(struct net_device *dev)
189 {
190 	struct fs_enet_private *fep = netdev_priv(dev);
191 	fcc_enet_t __iomem *ep = fep->fcc.ep;
192 
193 	W32(ep, fen_gaddrh, 0);
194 	W32(ep, fen_gaddrl, 0);
195 }
196 
set_multicast_one(struct net_device * dev,const u8 * mac)197 static void set_multicast_one(struct net_device *dev, const u8 *mac)
198 {
199 	struct fs_enet_private *fep = netdev_priv(dev);
200 	fcc_enet_t __iomem *ep = fep->fcc.ep;
201 	u16 taddrh, taddrm, taddrl;
202 
203 	taddrh = ((u16)mac[5] << 8) | mac[4];
204 	taddrm = ((u16)mac[3] << 8) | mac[2];
205 	taddrl = ((u16)mac[1] << 8) | mac[0];
206 
207 	W16(ep, fen_taddrh, taddrh);
208 	W16(ep, fen_taddrm, taddrm);
209 	W16(ep, fen_taddrl, taddrl);
210 	fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
211 }
212 
set_multicast_finish(struct net_device * dev)213 static void set_multicast_finish(struct net_device *dev)
214 {
215 	struct fs_enet_private *fep = netdev_priv(dev);
216 	fcc_t __iomem *fccp = fep->fcc.fccp;
217 	fcc_enet_t __iomem *ep = fep->fcc.ep;
218 
219 	/* clear promiscuous always */
220 	C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
221 
222 	/* if all multi or too many multicasts; just enable all */
223 	if ((dev->flags & IFF_ALLMULTI) != 0 ||
224 	    netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
225 
226 		W32(ep, fen_gaddrh, 0xffffffff);
227 		W32(ep, fen_gaddrl, 0xffffffff);
228 	}
229 
230 	/* read back */
231 	fep->fcc.gaddrh = R32(ep, fen_gaddrh);
232 	fep->fcc.gaddrl = R32(ep, fen_gaddrl);
233 }
234 
set_multicast_list(struct net_device * dev)235 static void set_multicast_list(struct net_device *dev)
236 {
237 	struct netdev_hw_addr *ha;
238 
239 	if ((dev->flags & IFF_PROMISC) == 0) {
240 		set_multicast_start(dev);
241 		netdev_for_each_mc_addr(ha, dev)
242 			set_multicast_one(dev, ha->addr);
243 		set_multicast_finish(dev);
244 	} else
245 		set_promiscuous_mode(dev);
246 }
247 
restart(struct net_device * dev)248 static void restart(struct net_device *dev)
249 {
250 	struct fs_enet_private *fep = netdev_priv(dev);
251 	const struct fs_platform_info *fpi = fep->fpi;
252 	fcc_t __iomem *fccp = fep->fcc.fccp;
253 	fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
254 	fcc_enet_t __iomem *ep = fep->fcc.ep;
255 	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
256 	u16 paddrh, paddrm, paddrl;
257 	const unsigned char *mac;
258 	int i;
259 
260 	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
261 
262 	/* clear everything (slow & steady does it) */
263 	for (i = 0; i < sizeof(*ep); i++)
264 		out_8((u8 __iomem *)ep + i, 0);
265 
266 	/* get physical address */
267 	rx_bd_base_phys = fep->ring_mem_addr;
268 	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
269 
270 	/* point to bds */
271 	W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
272 	W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
273 
274 	/* Set maximum bytes per receive buffer.
275 	 * It must be a multiple of 32.
276 	 */
277 	W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
278 
279 	W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
280 	W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
281 
282 	/* Allocate space in the reserved FCC area of DPRAM for the
283 	 * internal buffers.  No one uses this space (yet), so we
284 	 * can do this.  Later, we will add resource management for
285 	 * this area.
286 	 */
287 
288 	W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
289 	W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
290 
291 	W16(ep, fen_padptr, fpi->dpram_offset + 64);
292 
293 	/* fill with special symbol...  */
294 	memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
295 
296 	W32(ep, fen_genfcc.fcc_rbptr, 0);
297 	W32(ep, fen_genfcc.fcc_tbptr, 0);
298 	W32(ep, fen_genfcc.fcc_rcrc, 0);
299 	W32(ep, fen_genfcc.fcc_tcrc, 0);
300 	W16(ep, fen_genfcc.fcc_res1, 0);
301 	W32(ep, fen_genfcc.fcc_res2, 0);
302 
303 	/* no CAM */
304 	W32(ep, fen_camptr, 0);
305 
306 	/* Set CRC preset and mask */
307 	W32(ep, fen_cmask, 0xdebb20e3);
308 	W32(ep, fen_cpres, 0xffffffff);
309 
310 	W32(ep, fen_crcec, 0);		/* CRC Error counter       */
311 	W32(ep, fen_alec, 0);		/* alignment error counter */
312 	W32(ep, fen_disfc, 0);		/* discard frame counter   */
313 	W16(ep, fen_retlim, 15);	/* Retry limit threshold   */
314 	W16(ep, fen_pper, 0);		/* Normal persistence      */
315 
316 	/* set group address */
317 	W32(ep, fen_gaddrh, fep->fcc.gaddrh);
318 	W32(ep, fen_gaddrl, fep->fcc.gaddrh);
319 
320 	/* Clear hash filter tables */
321 	W32(ep, fen_iaddrh, 0);
322 	W32(ep, fen_iaddrl, 0);
323 
324 	/* Clear the Out-of-sequence TxBD  */
325 	W16(ep, fen_tfcstat, 0);
326 	W16(ep, fen_tfclen, 0);
327 	W32(ep, fen_tfcptr, 0);
328 
329 	W16(ep, fen_mflr, PKT_MAXBUF_SIZE);	/* maximum frame length register */
330 	W16(ep, fen_minflr, PKT_MINBUF_SIZE);	/* minimum frame length register */
331 
332 	/* set address */
333 	mac = dev->dev_addr;
334 	paddrh = ((u16)mac[5] << 8) | mac[4];
335 	paddrm = ((u16)mac[3] << 8) | mac[2];
336 	paddrl = ((u16)mac[1] << 8) | mac[0];
337 
338 	W16(ep, fen_paddrh, paddrh);
339 	W16(ep, fen_paddrm, paddrm);
340 	W16(ep, fen_paddrl, paddrl);
341 
342 	W16(ep, fen_taddrh, 0);
343 	W16(ep, fen_taddrm, 0);
344 	W16(ep, fen_taddrl, 0);
345 
346 	W16(ep, fen_maxd1, 1520);	/* maximum DMA1 length */
347 	W16(ep, fen_maxd2, 1520);	/* maximum DMA2 length */
348 
349 	/* Clear stat counters, in case we ever enable RMON */
350 	W32(ep, fen_octc, 0);
351 	W32(ep, fen_colc, 0);
352 	W32(ep, fen_broc, 0);
353 	W32(ep, fen_mulc, 0);
354 	W32(ep, fen_uspc, 0);
355 	W32(ep, fen_frgc, 0);
356 	W32(ep, fen_ospc, 0);
357 	W32(ep, fen_jbrc, 0);
358 	W32(ep, fen_p64c, 0);
359 	W32(ep, fen_p65c, 0);
360 	W32(ep, fen_p128c, 0);
361 	W32(ep, fen_p256c, 0);
362 	W32(ep, fen_p512c, 0);
363 	W32(ep, fen_p1024c, 0);
364 
365 	W16(ep, fen_rfthr, 0);	/* Suggested by manual */
366 	W16(ep, fen_rfcnt, 0);
367 	W16(ep, fen_cftype, 0);
368 
369 	fs_init_bds(dev);
370 
371 	/* adjust to speed (for RMII mode) */
372 	if (fpi->use_rmii) {
373 		if (fep->phydev->speed == 100)
374 			C8(fcccp, fcc_gfemr, 0x20);
375 		else
376 			S8(fcccp, fcc_gfemr, 0x20);
377 	}
378 
379 	fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
380 
381 	/* clear events */
382 	W16(fccp, fcc_fcce, 0xffff);
383 
384 	/* Enable interrupts we wish to service */
385 	W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
386 
387 	/* Set GFMR to enable Ethernet operating mode */
388 	W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
389 
390 	/* set sync/delimiters */
391 	W16(fccp, fcc_fdsr, 0xd555);
392 
393 	W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
394 
395 	if (fpi->use_rmii)
396 		S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
397 
398 	/* adjust to duplex mode */
399 	if (fep->phydev->duplex)
400 		S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
401 	else
402 		C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
403 
404 	/* Restore multicast and promiscuous settings */
405 	set_multicast_list(dev);
406 
407 	S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
408 }
409 
stop(struct net_device * dev)410 static void stop(struct net_device *dev)
411 {
412 	struct fs_enet_private *fep = netdev_priv(dev);
413 	fcc_t __iomem *fccp = fep->fcc.fccp;
414 
415 	/* stop ethernet */
416 	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
417 
418 	/* clear events */
419 	W16(fccp, fcc_fcce, 0xffff);
420 
421 	/* clear interrupt mask */
422 	W16(fccp, fcc_fccm, 0);
423 
424 	fs_cleanup_bds(dev);
425 }
426 
napi_clear_rx_event(struct net_device * dev)427 static void napi_clear_rx_event(struct net_device *dev)
428 {
429 	struct fs_enet_private *fep = netdev_priv(dev);
430 	fcc_t __iomem *fccp = fep->fcc.fccp;
431 
432 	W16(fccp, fcc_fcce, FCC_NAPI_RX_EVENT_MSK);
433 }
434 
napi_enable_rx(struct net_device * dev)435 static void napi_enable_rx(struct net_device *dev)
436 {
437 	struct fs_enet_private *fep = netdev_priv(dev);
438 	fcc_t __iomem *fccp = fep->fcc.fccp;
439 
440 	S16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
441 }
442 
napi_disable_rx(struct net_device * dev)443 static void napi_disable_rx(struct net_device *dev)
444 {
445 	struct fs_enet_private *fep = netdev_priv(dev);
446 	fcc_t __iomem *fccp = fep->fcc.fccp;
447 
448 	C16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
449 }
450 
napi_clear_tx_event(struct net_device * dev)451 static void napi_clear_tx_event(struct net_device *dev)
452 {
453 	struct fs_enet_private *fep = netdev_priv(dev);
454 	fcc_t __iomem *fccp = fep->fcc.fccp;
455 
456 	W16(fccp, fcc_fcce, FCC_NAPI_TX_EVENT_MSK);
457 }
458 
napi_enable_tx(struct net_device * dev)459 static void napi_enable_tx(struct net_device *dev)
460 {
461 	struct fs_enet_private *fep = netdev_priv(dev);
462 	fcc_t __iomem *fccp = fep->fcc.fccp;
463 
464 	S16(fccp, fcc_fccm, FCC_NAPI_TX_EVENT_MSK);
465 }
466 
napi_disable_tx(struct net_device * dev)467 static void napi_disable_tx(struct net_device *dev)
468 {
469 	struct fs_enet_private *fep = netdev_priv(dev);
470 	fcc_t __iomem *fccp = fep->fcc.fccp;
471 
472 	C16(fccp, fcc_fccm, FCC_NAPI_TX_EVENT_MSK);
473 }
474 
rx_bd_done(struct net_device * dev)475 static void rx_bd_done(struct net_device *dev)
476 {
477 	/* nothing */
478 }
479 
tx_kickstart(struct net_device * dev)480 static void tx_kickstart(struct net_device *dev)
481 {
482 	struct fs_enet_private *fep = netdev_priv(dev);
483 	fcc_t __iomem *fccp = fep->fcc.fccp;
484 
485 	S16(fccp, fcc_ftodr, 0x8000);
486 }
487 
get_int_events(struct net_device * dev)488 static u32 get_int_events(struct net_device *dev)
489 {
490 	struct fs_enet_private *fep = netdev_priv(dev);
491 	fcc_t __iomem *fccp = fep->fcc.fccp;
492 
493 	return (u32)R16(fccp, fcc_fcce);
494 }
495 
clear_int_events(struct net_device * dev,u32 int_events)496 static void clear_int_events(struct net_device *dev, u32 int_events)
497 {
498 	struct fs_enet_private *fep = netdev_priv(dev);
499 	fcc_t __iomem *fccp = fep->fcc.fccp;
500 
501 	W16(fccp, fcc_fcce, int_events & 0xffff);
502 }
503 
ev_error(struct net_device * dev,u32 int_events)504 static void ev_error(struct net_device *dev, u32 int_events)
505 {
506 	struct fs_enet_private *fep = netdev_priv(dev);
507 
508 	dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
509 }
510 
get_regs(struct net_device * dev,void * p,int * sizep)511 static int get_regs(struct net_device *dev, void *p, int *sizep)
512 {
513 	struct fs_enet_private *fep = netdev_priv(dev);
514 
515 	if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
516 		return -EINVAL;
517 
518 	memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
519 	p = (char *)p + sizeof(fcc_t);
520 
521 	memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
522 	p = (char *)p + sizeof(fcc_enet_t);
523 
524 	memcpy_fromio(p, fep->fcc.fcccp, 1);
525 	return 0;
526 }
527 
get_regs_len(struct net_device * dev)528 static int get_regs_len(struct net_device *dev)
529 {
530 	return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
531 }
532 
533 /* Some transmit errors cause the transmitter to shut
534  * down.  We now issue a restart transmit.
535  * Also, to workaround 8260 device erratum CPM37, we must
536  * disable and then re-enable the transmitterfollowing a
537  * Late Collision, Underrun, or Retry Limit error.
538  * In addition, tbptr may point beyond BDs beyond still marked
539  * as ready due to internal pipelining, so we need to look back
540  * through the BDs and adjust tbptr to point to the last BD
541  * marked as ready.  This may result in some buffers being
542  * retransmitted.
543  */
tx_restart(struct net_device * dev)544 static void tx_restart(struct net_device *dev)
545 {
546 	struct fs_enet_private *fep = netdev_priv(dev);
547 	fcc_t __iomem *fccp = fep->fcc.fccp;
548 	const struct fs_platform_info *fpi = fep->fpi;
549 	fcc_enet_t __iomem *ep = fep->fcc.ep;
550 	cbd_t __iomem *curr_tbptr;
551 	cbd_t __iomem *recheck_bd;
552 	cbd_t __iomem *prev_bd;
553 	cbd_t __iomem *last_tx_bd;
554 
555 	last_tx_bd = fep->tx_bd_base + ((fpi->tx_ring - 1) * sizeof(cbd_t));
556 
557 	/* get the current bd held in TBPTR  and scan back from this point */
558 	recheck_bd = curr_tbptr = (cbd_t __iomem *)
559 		((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
560 		fep->ring_base);
561 
562 	prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
563 
564 	/* Move through the bds in reverse, look for the earliest buffer
565 	 * that is not ready.  Adjust TBPTR to the following buffer */
566 	while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
567 		/* Go back one buffer */
568 		recheck_bd = prev_bd;
569 
570 		/* update the previous buffer */
571 		prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
572 
573 		/* We should never see all bds marked as ready, check anyway */
574 		if (recheck_bd == curr_tbptr)
575 			break;
576 	}
577 	/* Now update the TBPTR and dirty flag to the current buffer */
578 	W32(ep, fen_genfcc.fcc_tbptr,
579 		(uint) (((void *)recheck_bd - fep->ring_base) +
580 		fep->ring_mem_addr));
581 	fep->dirty_tx = recheck_bd;
582 
583 	C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
584 	udelay(10);
585 	S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
586 
587 	fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
588 }
589 
590 /*************************************************************************/
591 
592 const struct fs_ops fs_fcc_ops = {
593 	.setup_data		= setup_data,
594 	.cleanup_data		= cleanup_data,
595 	.set_multicast_list	= set_multicast_list,
596 	.restart		= restart,
597 	.stop			= stop,
598 	.napi_clear_rx_event	= napi_clear_rx_event,
599 	.napi_enable_rx		= napi_enable_rx,
600 	.napi_disable_rx	= napi_disable_rx,
601 	.napi_clear_tx_event	= napi_clear_tx_event,
602 	.napi_enable_tx		= napi_enable_tx,
603 	.napi_disable_tx	= napi_disable_tx,
604 	.rx_bd_done		= rx_bd_done,
605 	.tx_kickstart		= tx_kickstart,
606 	.get_int_events		= get_int_events,
607 	.clear_int_events	= clear_int_events,
608 	.ev_error		= ev_error,
609 	.get_regs		= get_regs,
610 	.get_regs_len		= get_regs_len,
611 	.tx_restart		= tx_restart,
612 	.allocate_bd		= allocate_bd,
613 	.free_bd		= free_bd,
614 };
615