• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 /* e1000_82575
25  * e1000_82576
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33 
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37 
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
54 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61 						 u16 *);
62 static s32  igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32  igb_reset_init_script_82575(struct e1000_hw *);
66 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] = {
74 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75 
76 /**
77  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
78  *  @hw: pointer to the HW structure
79  *
80  *  Called to determine if the I2C pins are being used for I2C or as an
81  *  external MDIO interface since the two options are mutually exclusive.
82  **/
igb_sgmii_uses_mdio_82575(struct e1000_hw * hw)83 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
84 {
85 	u32 reg = 0;
86 	bool ext_mdio = false;
87 
88 	switch (hw->mac.type) {
89 	case e1000_82575:
90 	case e1000_82576:
91 		reg = rd32(E1000_MDIC);
92 		ext_mdio = !!(reg & E1000_MDIC_DEST);
93 		break;
94 	case e1000_82580:
95 	case e1000_i350:
96 	case e1000_i354:
97 	case e1000_i210:
98 	case e1000_i211:
99 		reg = rd32(E1000_MDICNFG);
100 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101 		break;
102 	default:
103 		break;
104 	}
105 	return ext_mdio;
106 }
107 
108 /**
109  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
110  *  @hw: pointer to the HW structure
111  *
112  *  Poll the M88E1112 interfaces to see which interface achieved link.
113  */
igb_check_for_link_media_swap(struct e1000_hw * hw)114 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
115 {
116 	struct e1000_phy_info *phy = &hw->phy;
117 	s32 ret_val;
118 	u16 data;
119 	u8 port = 0;
120 
121 	/* Check the copper medium. */
122 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
123 	if (ret_val)
124 		return ret_val;
125 
126 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
127 	if (ret_val)
128 		return ret_val;
129 
130 	if (data & E1000_M88E1112_STATUS_LINK)
131 		port = E1000_MEDIA_PORT_COPPER;
132 
133 	/* Check the other medium. */
134 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
135 	if (ret_val)
136 		return ret_val;
137 
138 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
139 	if (ret_val)
140 		return ret_val;
141 
142 
143 	if (data & E1000_M88E1112_STATUS_LINK)
144 		port = E1000_MEDIA_PORT_OTHER;
145 
146 	/* Determine if a swap needs to happen. */
147 	if (port && (hw->dev_spec._82575.media_port != port)) {
148 		hw->dev_spec._82575.media_port = port;
149 		hw->dev_spec._82575.media_changed = true;
150 	}
151 
152 	if (port == E1000_MEDIA_PORT_COPPER) {
153 		/* reset page to 0 */
154 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
155 		if (ret_val)
156 			return ret_val;
157 		igb_check_for_link_82575(hw);
158 	} else {
159 		igb_check_for_link_82575(hw);
160 		/* reset page to 0 */
161 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
162 		if (ret_val)
163 			return ret_val;
164 	}
165 
166 	return 0;
167 }
168 
169 /**
170  *  igb_init_phy_params_82575 - Init PHY func ptrs.
171  *  @hw: pointer to the HW structure
172  **/
igb_init_phy_params_82575(struct e1000_hw * hw)173 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
174 {
175 	struct e1000_phy_info *phy = &hw->phy;
176 	s32 ret_val = 0;
177 	u32 ctrl_ext;
178 
179 	if (hw->phy.media_type != e1000_media_type_copper) {
180 		phy->type = e1000_phy_none;
181 		goto out;
182 	}
183 
184 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
185 	phy->reset_delay_us	= 100;
186 
187 	ctrl_ext = rd32(E1000_CTRL_EXT);
188 
189 	if (igb_sgmii_active_82575(hw)) {
190 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
191 		ctrl_ext |= E1000_CTRL_I2C_ENA;
192 	} else {
193 		phy->ops.reset = igb_phy_hw_reset;
194 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
195 	}
196 
197 	wr32(E1000_CTRL_EXT, ctrl_ext);
198 	igb_reset_mdicnfg_82580(hw);
199 
200 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
201 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
202 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
203 	} else {
204 		switch (hw->mac.type) {
205 		case e1000_82580:
206 		case e1000_i350:
207 		case e1000_i354:
208 			phy->ops.read_reg = igb_read_phy_reg_82580;
209 			phy->ops.write_reg = igb_write_phy_reg_82580;
210 			break;
211 		case e1000_i210:
212 		case e1000_i211:
213 			phy->ops.read_reg = igb_read_phy_reg_gs40g;
214 			phy->ops.write_reg = igb_write_phy_reg_gs40g;
215 			break;
216 		default:
217 			phy->ops.read_reg = igb_read_phy_reg_igp;
218 			phy->ops.write_reg = igb_write_phy_reg_igp;
219 		}
220 	}
221 
222 	/* set lan id */
223 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
224 			E1000_STATUS_FUNC_SHIFT;
225 
226 	/* Set phy->phy_addr and phy->id. */
227 	ret_val = igb_get_phy_id_82575(hw);
228 	if (ret_val)
229 		return ret_val;
230 
231 	/* Verify phy id and set remaining function pointers */
232 	switch (phy->id) {
233 	case M88E1543_E_PHY_ID:
234 	case M88E1512_E_PHY_ID:
235 	case I347AT4_E_PHY_ID:
236 	case M88E1112_E_PHY_ID:
237 	case M88E1111_I_PHY_ID:
238 		phy->type		= e1000_phy_m88;
239 		phy->ops.check_polarity	= igb_check_polarity_m88;
240 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
241 		if (phy->id != M88E1111_I_PHY_ID)
242 			phy->ops.get_cable_length =
243 					 igb_get_cable_length_m88_gen2;
244 		else
245 			phy->ops.get_cable_length = igb_get_cable_length_m88;
246 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
247 		/* Check if this PHY is configured for media swap. */
248 		if (phy->id == M88E1112_E_PHY_ID) {
249 			u16 data;
250 
251 			ret_val = phy->ops.write_reg(hw,
252 						     E1000_M88E1112_PAGE_ADDR,
253 						     2);
254 			if (ret_val)
255 				goto out;
256 
257 			ret_val = phy->ops.read_reg(hw,
258 						    E1000_M88E1112_MAC_CTRL_1,
259 						    &data);
260 			if (ret_val)
261 				goto out;
262 
263 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
264 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
265 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
266 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
267 				hw->mac.ops.check_for_link =
268 						igb_check_for_link_media_swap;
269 		}
270 		if (phy->id == M88E1512_E_PHY_ID) {
271 			ret_val = igb_initialize_M88E1512_phy(hw);
272 			if (ret_val)
273 				goto out;
274 		}
275 		break;
276 	case IGP03E1000_E_PHY_ID:
277 		phy->type = e1000_phy_igp_3;
278 		phy->ops.get_phy_info = igb_get_phy_info_igp;
279 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
280 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
281 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
282 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
283 		break;
284 	case I82580_I_PHY_ID:
285 	case I350_I_PHY_ID:
286 		phy->type = e1000_phy_82580;
287 		phy->ops.force_speed_duplex =
288 					 igb_phy_force_speed_duplex_82580;
289 		phy->ops.get_cable_length = igb_get_cable_length_82580;
290 		phy->ops.get_phy_info = igb_get_phy_info_82580;
291 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
292 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
293 		break;
294 	case I210_I_PHY_ID:
295 		phy->type		= e1000_phy_i210;
296 		phy->ops.check_polarity	= igb_check_polarity_m88;
297 		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
298 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
299 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
300 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
301 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
302 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
303 		break;
304 	default:
305 		ret_val = -E1000_ERR_PHY;
306 		goto out;
307 	}
308 
309 out:
310 	return ret_val;
311 }
312 
313 /**
314  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
315  *  @hw: pointer to the HW structure
316  **/
igb_init_nvm_params_82575(struct e1000_hw * hw)317 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
318 {
319 	struct e1000_nvm_info *nvm = &hw->nvm;
320 	u32 eecd = rd32(E1000_EECD);
321 	u16 size;
322 
323 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
324 		     E1000_EECD_SIZE_EX_SHIFT);
325 
326 	/* Added to a constant, "size" becomes the left-shift value
327 	 * for setting word_size.
328 	 */
329 	size += NVM_WORD_SIZE_BASE_SHIFT;
330 
331 	/* Just in case size is out of range, cap it to the largest
332 	 * EEPROM size supported
333 	 */
334 	if (size > 15)
335 		size = 15;
336 
337 	nvm->word_size = 1 << size;
338 	nvm->opcode_bits = 8;
339 	nvm->delay_usec = 1;
340 
341 	switch (nvm->override) {
342 	case e1000_nvm_override_spi_large:
343 		nvm->page_size = 32;
344 		nvm->address_bits = 16;
345 		break;
346 	case e1000_nvm_override_spi_small:
347 		nvm->page_size = 8;
348 		nvm->address_bits = 8;
349 		break;
350 	default:
351 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
352 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
353 				    16 : 8;
354 		break;
355 	}
356 	if (nvm->word_size == (1 << 15))
357 		nvm->page_size = 128;
358 
359 	nvm->type = e1000_nvm_eeprom_spi;
360 
361 	/* NVM Function Pointers */
362 	nvm->ops.acquire = igb_acquire_nvm_82575;
363 	nvm->ops.release = igb_release_nvm_82575;
364 	nvm->ops.write = igb_write_nvm_spi;
365 	nvm->ops.validate = igb_validate_nvm_checksum;
366 	nvm->ops.update = igb_update_nvm_checksum;
367 	if (nvm->word_size < (1 << 15))
368 		nvm->ops.read = igb_read_nvm_eerd;
369 	else
370 		nvm->ops.read = igb_read_nvm_spi;
371 
372 	/* override generic family function pointers for specific descendants */
373 	switch (hw->mac.type) {
374 	case e1000_82580:
375 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
376 		nvm->ops.update = igb_update_nvm_checksum_82580;
377 		break;
378 	case e1000_i354:
379 	case e1000_i350:
380 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
381 		nvm->ops.update = igb_update_nvm_checksum_i350;
382 		break;
383 	default:
384 		break;
385 	}
386 
387 	return 0;
388 }
389 
390 /**
391  *  igb_init_mac_params_82575 - Init MAC func ptrs.
392  *  @hw: pointer to the HW structure
393  **/
igb_init_mac_params_82575(struct e1000_hw * hw)394 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
395 {
396 	struct e1000_mac_info *mac = &hw->mac;
397 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
398 
399 	/* Set mta register count */
400 	mac->mta_reg_count = 128;
401 	/* Set rar entry count */
402 	switch (mac->type) {
403 	case e1000_82576:
404 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
405 		break;
406 	case e1000_82580:
407 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
408 		break;
409 	case e1000_i350:
410 	case e1000_i354:
411 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
412 		break;
413 	default:
414 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
415 		break;
416 	}
417 	/* reset */
418 	if (mac->type >= e1000_82580)
419 		mac->ops.reset_hw = igb_reset_hw_82580;
420 	else
421 		mac->ops.reset_hw = igb_reset_hw_82575;
422 
423 	if (mac->type >= e1000_i210) {
424 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
425 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
426 
427 	} else {
428 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
429 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
430 	}
431 
432 	/* Set if part includes ASF firmware */
433 	mac->asf_firmware_present = true;
434 	/* Set if manageability features are enabled. */
435 	mac->arc_subsystem_valid =
436 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
437 			? true : false;
438 	/* enable EEE on i350 parts and later parts */
439 	if (mac->type >= e1000_i350)
440 		dev_spec->eee_disable = false;
441 	else
442 		dev_spec->eee_disable = true;
443 	/* Allow a single clear of the SW semaphore on I210 and newer */
444 	if (mac->type >= e1000_i210)
445 		dev_spec->clear_semaphore_once = true;
446 	/* physical interface link setup */
447 	mac->ops.setup_physical_interface =
448 		(hw->phy.media_type == e1000_media_type_copper)
449 			? igb_setup_copper_link_82575
450 			: igb_setup_serdes_link_82575;
451 
452 	if (mac->type == e1000_82580) {
453 		switch (hw->device_id) {
454 		/* feature not supported on these id's */
455 		case E1000_DEV_ID_DH89XXCC_SGMII:
456 		case E1000_DEV_ID_DH89XXCC_SERDES:
457 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
458 		case E1000_DEV_ID_DH89XXCC_SFP:
459 			break;
460 		default:
461 			hw->dev_spec._82575.mas_capable = true;
462 			break;
463 		}
464 	}
465 	return 0;
466 }
467 
468 /**
469  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
470  *  @hw: pointer to the HW structure
471  *
472  *  The media type is chosen based on SFP module.
473  *  compatibility flags retrieved from SFP ID EEPROM.
474  **/
igb_set_sfp_media_type_82575(struct e1000_hw * hw)475 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
476 {
477 	s32 ret_val = E1000_ERR_CONFIG;
478 	u32 ctrl_ext = 0;
479 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
480 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
481 	u8 tranceiver_type = 0;
482 	s32 timeout = 3;
483 
484 	/* Turn I2C interface ON and power on sfp cage */
485 	ctrl_ext = rd32(E1000_CTRL_EXT);
486 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
487 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
488 
489 	wrfl();
490 
491 	/* Read SFP module data */
492 	while (timeout) {
493 		ret_val = igb_read_sfp_data_byte(hw,
494 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
495 			&tranceiver_type);
496 		if (ret_val == 0)
497 			break;
498 		msleep(100);
499 		timeout--;
500 	}
501 	if (ret_val != 0)
502 		goto out;
503 
504 	ret_val = igb_read_sfp_data_byte(hw,
505 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
506 			(u8 *)eth_flags);
507 	if (ret_val != 0)
508 		goto out;
509 
510 	/* Check if there is some SFP module plugged and powered */
511 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
512 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
513 		dev_spec->module_plugged = true;
514 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
515 			hw->phy.media_type = e1000_media_type_internal_serdes;
516 		} else if (eth_flags->e100_base_fx) {
517 			dev_spec->sgmii_active = true;
518 			hw->phy.media_type = e1000_media_type_internal_serdes;
519 		} else if (eth_flags->e1000_base_t) {
520 			dev_spec->sgmii_active = true;
521 			hw->phy.media_type = e1000_media_type_copper;
522 		} else {
523 			hw->phy.media_type = e1000_media_type_unknown;
524 			hw_dbg("PHY module has not been recognized\n");
525 			goto out;
526 		}
527 	} else {
528 		hw->phy.media_type = e1000_media_type_unknown;
529 	}
530 	ret_val = 0;
531 out:
532 	/* Restore I2C interface setting */
533 	wr32(E1000_CTRL_EXT, ctrl_ext);
534 	return ret_val;
535 }
536 
igb_get_invariants_82575(struct e1000_hw * hw)537 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
538 {
539 	struct e1000_mac_info *mac = &hw->mac;
540 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
541 	s32 ret_val;
542 	u32 ctrl_ext = 0;
543 	u32 link_mode = 0;
544 
545 	switch (hw->device_id) {
546 	case E1000_DEV_ID_82575EB_COPPER:
547 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
548 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
549 		mac->type = e1000_82575;
550 		break;
551 	case E1000_DEV_ID_82576:
552 	case E1000_DEV_ID_82576_NS:
553 	case E1000_DEV_ID_82576_NS_SERDES:
554 	case E1000_DEV_ID_82576_FIBER:
555 	case E1000_DEV_ID_82576_SERDES:
556 	case E1000_DEV_ID_82576_QUAD_COPPER:
557 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
558 	case E1000_DEV_ID_82576_SERDES_QUAD:
559 		mac->type = e1000_82576;
560 		break;
561 	case E1000_DEV_ID_82580_COPPER:
562 	case E1000_DEV_ID_82580_FIBER:
563 	case E1000_DEV_ID_82580_QUAD_FIBER:
564 	case E1000_DEV_ID_82580_SERDES:
565 	case E1000_DEV_ID_82580_SGMII:
566 	case E1000_DEV_ID_82580_COPPER_DUAL:
567 	case E1000_DEV_ID_DH89XXCC_SGMII:
568 	case E1000_DEV_ID_DH89XXCC_SERDES:
569 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
570 	case E1000_DEV_ID_DH89XXCC_SFP:
571 		mac->type = e1000_82580;
572 		break;
573 	case E1000_DEV_ID_I350_COPPER:
574 	case E1000_DEV_ID_I350_FIBER:
575 	case E1000_DEV_ID_I350_SERDES:
576 	case E1000_DEV_ID_I350_SGMII:
577 		mac->type = e1000_i350;
578 		break;
579 	case E1000_DEV_ID_I210_COPPER:
580 	case E1000_DEV_ID_I210_FIBER:
581 	case E1000_DEV_ID_I210_SERDES:
582 	case E1000_DEV_ID_I210_SGMII:
583 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
584 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
585 		mac->type = e1000_i210;
586 		break;
587 	case E1000_DEV_ID_I211_COPPER:
588 		mac->type = e1000_i211;
589 		break;
590 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
591 	case E1000_DEV_ID_I354_SGMII:
592 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
593 		mac->type = e1000_i354;
594 		break;
595 	default:
596 		return -E1000_ERR_MAC_INIT;
597 	}
598 
599 	/* Set media type */
600 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
601 	 * based on the EEPROM. We cannot rely upon device ID. There
602 	 * is no distinguishable difference between fiber and internal
603 	 * SerDes mode on the 82575. There can be an external PHY attached
604 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
605 	 */
606 	hw->phy.media_type = e1000_media_type_copper;
607 	dev_spec->sgmii_active = false;
608 	dev_spec->module_plugged = false;
609 
610 	ctrl_ext = rd32(E1000_CTRL_EXT);
611 
612 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
613 	switch (link_mode) {
614 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
615 		hw->phy.media_type = e1000_media_type_internal_serdes;
616 		break;
617 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
618 		/* Get phy control interface type set (MDIO vs. I2C)*/
619 		if (igb_sgmii_uses_mdio_82575(hw)) {
620 			hw->phy.media_type = e1000_media_type_copper;
621 			dev_spec->sgmii_active = true;
622 			break;
623 		}
624 		/* fall through for I2C based SGMII */
625 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
626 		/* read media type from SFP EEPROM */
627 		ret_val = igb_set_sfp_media_type_82575(hw);
628 		if ((ret_val != 0) ||
629 		    (hw->phy.media_type == e1000_media_type_unknown)) {
630 			/* If media type was not identified then return media
631 			 * type defined by the CTRL_EXT settings.
632 			 */
633 			hw->phy.media_type = e1000_media_type_internal_serdes;
634 
635 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
636 				hw->phy.media_type = e1000_media_type_copper;
637 				dev_spec->sgmii_active = true;
638 			}
639 
640 			break;
641 		}
642 
643 		/* do not change link mode for 100BaseFX */
644 		if (dev_spec->eth_flags.e100_base_fx)
645 			break;
646 
647 		/* change current link mode setting */
648 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
649 
650 		if (hw->phy.media_type == e1000_media_type_copper)
651 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
652 		else
653 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
654 
655 		wr32(E1000_CTRL_EXT, ctrl_ext);
656 
657 		break;
658 	default:
659 		break;
660 	}
661 
662 	/* mac initialization and operations */
663 	ret_val = igb_init_mac_params_82575(hw);
664 	if (ret_val)
665 		goto out;
666 
667 	/* NVM initialization */
668 	ret_val = igb_init_nvm_params_82575(hw);
669 	switch (hw->mac.type) {
670 	case e1000_i210:
671 	case e1000_i211:
672 		ret_val = igb_init_nvm_params_i210(hw);
673 		break;
674 	default:
675 		break;
676 	}
677 
678 	if (ret_val)
679 		goto out;
680 
681 	/* if part supports SR-IOV then initialize mailbox parameters */
682 	switch (mac->type) {
683 	case e1000_82576:
684 	case e1000_i350:
685 		igb_init_mbx_params_pf(hw);
686 		break;
687 	default:
688 		break;
689 	}
690 
691 	/* setup PHY parameters */
692 	ret_val = igb_init_phy_params_82575(hw);
693 
694 out:
695 	return ret_val;
696 }
697 
698 /**
699  *  igb_acquire_phy_82575 - Acquire rights to access PHY
700  *  @hw: pointer to the HW structure
701  *
702  *  Acquire access rights to the correct PHY.  This is a
703  *  function pointer entry point called by the api module.
704  **/
igb_acquire_phy_82575(struct e1000_hw * hw)705 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
706 {
707 	u16 mask = E1000_SWFW_PHY0_SM;
708 
709 	if (hw->bus.func == E1000_FUNC_1)
710 		mask = E1000_SWFW_PHY1_SM;
711 	else if (hw->bus.func == E1000_FUNC_2)
712 		mask = E1000_SWFW_PHY2_SM;
713 	else if (hw->bus.func == E1000_FUNC_3)
714 		mask = E1000_SWFW_PHY3_SM;
715 
716 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
717 }
718 
719 /**
720  *  igb_release_phy_82575 - Release rights to access PHY
721  *  @hw: pointer to the HW structure
722  *
723  *  A wrapper to release access rights to the correct PHY.  This is a
724  *  function pointer entry point called by the api module.
725  **/
igb_release_phy_82575(struct e1000_hw * hw)726 static void igb_release_phy_82575(struct e1000_hw *hw)
727 {
728 	u16 mask = E1000_SWFW_PHY0_SM;
729 
730 	if (hw->bus.func == E1000_FUNC_1)
731 		mask = E1000_SWFW_PHY1_SM;
732 	else if (hw->bus.func == E1000_FUNC_2)
733 		mask = E1000_SWFW_PHY2_SM;
734 	else if (hw->bus.func == E1000_FUNC_3)
735 		mask = E1000_SWFW_PHY3_SM;
736 
737 	hw->mac.ops.release_swfw_sync(hw, mask);
738 }
739 
740 /**
741  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
742  *  @hw: pointer to the HW structure
743  *  @offset: register offset to be read
744  *  @data: pointer to the read data
745  *
746  *  Reads the PHY register at offset using the serial gigabit media independent
747  *  interface and stores the retrieved information in data.
748  **/
igb_read_phy_reg_sgmii_82575(struct e1000_hw * hw,u32 offset,u16 * data)749 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
750 					  u16 *data)
751 {
752 	s32 ret_val = -E1000_ERR_PARAM;
753 
754 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
755 		hw_dbg("PHY Address %u is out of range\n", offset);
756 		goto out;
757 	}
758 
759 	ret_val = hw->phy.ops.acquire(hw);
760 	if (ret_val)
761 		goto out;
762 
763 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
764 
765 	hw->phy.ops.release(hw);
766 
767 out:
768 	return ret_val;
769 }
770 
771 /**
772  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
773  *  @hw: pointer to the HW structure
774  *  @offset: register offset to write to
775  *  @data: data to write at register offset
776  *
777  *  Writes the data to PHY register at the offset using the serial gigabit
778  *  media independent interface.
779  **/
igb_write_phy_reg_sgmii_82575(struct e1000_hw * hw,u32 offset,u16 data)780 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
781 					   u16 data)
782 {
783 	s32 ret_val = -E1000_ERR_PARAM;
784 
785 
786 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
787 		hw_dbg("PHY Address %d is out of range\n", offset);
788 		goto out;
789 	}
790 
791 	ret_val = hw->phy.ops.acquire(hw);
792 	if (ret_val)
793 		goto out;
794 
795 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
796 
797 	hw->phy.ops.release(hw);
798 
799 out:
800 	return ret_val;
801 }
802 
803 /**
804  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
805  *  @hw: pointer to the HW structure
806  *
807  *  Retrieves the PHY address and ID for both PHY's which do and do not use
808  *  sgmi interface.
809  **/
igb_get_phy_id_82575(struct e1000_hw * hw)810 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
811 {
812 	struct e1000_phy_info *phy = &hw->phy;
813 	s32  ret_val = 0;
814 	u16 phy_id;
815 	u32 ctrl_ext;
816 	u32 mdic;
817 
818 	/* Extra read required for some PHY's on i354 */
819 	if (hw->mac.type == e1000_i354)
820 		igb_get_phy_id(hw);
821 
822 	/* For SGMII PHYs, we try the list of possible addresses until
823 	 * we find one that works.  For non-SGMII PHYs
824 	 * (e.g. integrated copper PHYs), an address of 1 should
825 	 * work.  The result of this function should mean phy->phy_addr
826 	 * and phy->id are set correctly.
827 	 */
828 	if (!(igb_sgmii_active_82575(hw))) {
829 		phy->addr = 1;
830 		ret_val = igb_get_phy_id(hw);
831 		goto out;
832 	}
833 
834 	if (igb_sgmii_uses_mdio_82575(hw)) {
835 		switch (hw->mac.type) {
836 		case e1000_82575:
837 		case e1000_82576:
838 			mdic = rd32(E1000_MDIC);
839 			mdic &= E1000_MDIC_PHY_MASK;
840 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
841 			break;
842 		case e1000_82580:
843 		case e1000_i350:
844 		case e1000_i354:
845 		case e1000_i210:
846 		case e1000_i211:
847 			mdic = rd32(E1000_MDICNFG);
848 			mdic &= E1000_MDICNFG_PHY_MASK;
849 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
850 			break;
851 		default:
852 			ret_val = -E1000_ERR_PHY;
853 			goto out;
854 		}
855 		ret_val = igb_get_phy_id(hw);
856 		goto out;
857 	}
858 
859 	/* Power on sgmii phy if it is disabled */
860 	ctrl_ext = rd32(E1000_CTRL_EXT);
861 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
862 	wrfl();
863 	msleep(300);
864 
865 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
866 	 * Therefore, we need to test 1-7
867 	 */
868 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
869 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
870 		if (ret_val == 0) {
871 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
872 			       phy_id, phy->addr);
873 			/* At the time of this writing, The M88 part is
874 			 * the only supported SGMII PHY product.
875 			 */
876 			if (phy_id == M88_VENDOR)
877 				break;
878 		} else {
879 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
880 		}
881 	}
882 
883 	/* A valid PHY type couldn't be found. */
884 	if (phy->addr == 8) {
885 		phy->addr = 0;
886 		ret_val = -E1000_ERR_PHY;
887 		goto out;
888 	} else {
889 		ret_val = igb_get_phy_id(hw);
890 	}
891 
892 	/* restore previous sfp cage power state */
893 	wr32(E1000_CTRL_EXT, ctrl_ext);
894 
895 out:
896 	return ret_val;
897 }
898 
899 /**
900  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
901  *  @hw: pointer to the HW structure
902  *
903  *  Resets the PHY using the serial gigabit media independent interface.
904  **/
igb_phy_hw_reset_sgmii_82575(struct e1000_hw * hw)905 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
906 {
907 	struct e1000_phy_info *phy = &hw->phy;
908 	s32 ret_val;
909 
910 	/* This isn't a true "hard" reset, but is the only reset
911 	 * available to us at this time.
912 	 */
913 
914 	hw_dbg("Soft resetting SGMII attached PHY...\n");
915 
916 	/* SFP documentation requires the following to configure the SPF module
917 	 * to work on SGMII.  No further documentation is given.
918 	 */
919 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
920 	if (ret_val)
921 		goto out;
922 
923 	ret_val = igb_phy_sw_reset(hw);
924 	if (ret_val)
925 		goto out;
926 
927 	if (phy->id == M88E1512_E_PHY_ID)
928 		ret_val = igb_initialize_M88E1512_phy(hw);
929 out:
930 	return ret_val;
931 }
932 
933 /**
934  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
935  *  @hw: pointer to the HW structure
936  *  @active: true to enable LPLU, false to disable
937  *
938  *  Sets the LPLU D0 state according to the active flag.  When
939  *  activating LPLU this function also disables smart speed
940  *  and vice versa.  LPLU will not be activated unless the
941  *  device autonegotiation advertisement meets standards of
942  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
943  *  This is a function pointer entry point only called by
944  *  PHY setup routines.
945  **/
igb_set_d0_lplu_state_82575(struct e1000_hw * hw,bool active)946 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
947 {
948 	struct e1000_phy_info *phy = &hw->phy;
949 	s32 ret_val;
950 	u16 data;
951 
952 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
953 	if (ret_val)
954 		goto out;
955 
956 	if (active) {
957 		data |= IGP02E1000_PM_D0_LPLU;
958 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
959 						 data);
960 		if (ret_val)
961 			goto out;
962 
963 		/* When LPLU is enabled, we should disable SmartSpeed */
964 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
965 						&data);
966 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
967 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
968 						 data);
969 		if (ret_val)
970 			goto out;
971 	} else {
972 		data &= ~IGP02E1000_PM_D0_LPLU;
973 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
974 						 data);
975 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
976 		 * during Dx states where the power conservation is most
977 		 * important.  During driver activity we should enable
978 		 * SmartSpeed, so performance is maintained.
979 		 */
980 		if (phy->smart_speed == e1000_smart_speed_on) {
981 			ret_val = phy->ops.read_reg(hw,
982 					IGP01E1000_PHY_PORT_CONFIG, &data);
983 			if (ret_val)
984 				goto out;
985 
986 			data |= IGP01E1000_PSCFR_SMART_SPEED;
987 			ret_val = phy->ops.write_reg(hw,
988 					IGP01E1000_PHY_PORT_CONFIG, data);
989 			if (ret_val)
990 				goto out;
991 		} else if (phy->smart_speed == e1000_smart_speed_off) {
992 			ret_val = phy->ops.read_reg(hw,
993 					IGP01E1000_PHY_PORT_CONFIG, &data);
994 			if (ret_val)
995 				goto out;
996 
997 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
998 			ret_val = phy->ops.write_reg(hw,
999 					IGP01E1000_PHY_PORT_CONFIG, data);
1000 			if (ret_val)
1001 				goto out;
1002 		}
1003 	}
1004 
1005 out:
1006 	return ret_val;
1007 }
1008 
1009 /**
1010  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1011  *  @hw: pointer to the HW structure
1012  *  @active: true to enable LPLU, false to disable
1013  *
1014  *  Sets the LPLU D0 state according to the active flag.  When
1015  *  activating LPLU this function also disables smart speed
1016  *  and vice versa.  LPLU will not be activated unless the
1017  *  device autonegotiation advertisement meets standards of
1018  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1019  *  This is a function pointer entry point only called by
1020  *  PHY setup routines.
1021  **/
igb_set_d0_lplu_state_82580(struct e1000_hw * hw,bool active)1022 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1023 {
1024 	struct e1000_phy_info *phy = &hw->phy;
1025 	u16 data;
1026 
1027 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1028 
1029 	if (active) {
1030 		data |= E1000_82580_PM_D0_LPLU;
1031 
1032 		/* When LPLU is enabled, we should disable SmartSpeed */
1033 		data &= ~E1000_82580_PM_SPD;
1034 	} else {
1035 		data &= ~E1000_82580_PM_D0_LPLU;
1036 
1037 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1038 		 * during Dx states where the power conservation is most
1039 		 * important.  During driver activity we should enable
1040 		 * SmartSpeed, so performance is maintained.
1041 		 */
1042 		if (phy->smart_speed == e1000_smart_speed_on)
1043 			data |= E1000_82580_PM_SPD;
1044 		else if (phy->smart_speed == e1000_smart_speed_off)
1045 			data &= ~E1000_82580_PM_SPD; }
1046 
1047 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1048 	return 0;
1049 }
1050 
1051 /**
1052  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1053  *  @hw: pointer to the HW structure
1054  *  @active: boolean used to enable/disable lplu
1055  *
1056  *  Success returns 0, Failure returns 1
1057  *
1058  *  The low power link up (lplu) state is set to the power management level D3
1059  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1060  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1061  *  is used during Dx states where the power conservation is most important.
1062  *  During driver activity, SmartSpeed should be enabled so performance is
1063  *  maintained.
1064  **/
igb_set_d3_lplu_state_82580(struct e1000_hw * hw,bool active)1065 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1066 {
1067 	struct e1000_phy_info *phy = &hw->phy;
1068 	u16 data;
1069 
1070 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1071 
1072 	if (!active) {
1073 		data &= ~E1000_82580_PM_D3_LPLU;
1074 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1075 		 * during Dx states where the power conservation is most
1076 		 * important.  During driver activity we should enable
1077 		 * SmartSpeed, so performance is maintained.
1078 		 */
1079 		if (phy->smart_speed == e1000_smart_speed_on)
1080 			data |= E1000_82580_PM_SPD;
1081 		else if (phy->smart_speed == e1000_smart_speed_off)
1082 			data &= ~E1000_82580_PM_SPD;
1083 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1084 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1085 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1086 		data |= E1000_82580_PM_D3_LPLU;
1087 		/* When LPLU is enabled, we should disable SmartSpeed */
1088 		data &= ~E1000_82580_PM_SPD;
1089 	}
1090 
1091 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1092 	return 0;
1093 }
1094 
1095 /**
1096  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1097  *  @hw: pointer to the HW structure
1098  *
1099  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1100  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1101  *  Return successful if access grant bit set, else clear the request for
1102  *  EEPROM access and return -E1000_ERR_NVM (-1).
1103  **/
igb_acquire_nvm_82575(struct e1000_hw * hw)1104 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1105 {
1106 	s32 ret_val;
1107 
1108 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1109 	if (ret_val)
1110 		goto out;
1111 
1112 	ret_val = igb_acquire_nvm(hw);
1113 
1114 	if (ret_val)
1115 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1116 
1117 out:
1118 	return ret_val;
1119 }
1120 
1121 /**
1122  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1123  *  @hw: pointer to the HW structure
1124  *
1125  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1126  *  then release the semaphores acquired.
1127  **/
igb_release_nvm_82575(struct e1000_hw * hw)1128 static void igb_release_nvm_82575(struct e1000_hw *hw)
1129 {
1130 	igb_release_nvm(hw);
1131 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1132 }
1133 
1134 /**
1135  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1136  *  @hw: pointer to the HW structure
1137  *  @mask: specifies which semaphore to acquire
1138  *
1139  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1140  *  will also specify which port we're acquiring the lock for.
1141  **/
igb_acquire_swfw_sync_82575(struct e1000_hw * hw,u16 mask)1142 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1143 {
1144 	u32 swfw_sync;
1145 	u32 swmask = mask;
1146 	u32 fwmask = mask << 16;
1147 	s32 ret_val = 0;
1148 	s32 i = 0, timeout = 200;
1149 
1150 	while (i < timeout) {
1151 		if (igb_get_hw_semaphore(hw)) {
1152 			ret_val = -E1000_ERR_SWFW_SYNC;
1153 			goto out;
1154 		}
1155 
1156 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1157 		if (!(swfw_sync & (fwmask | swmask)))
1158 			break;
1159 
1160 		/* Firmware currently using resource (fwmask)
1161 		 * or other software thread using resource (swmask)
1162 		 */
1163 		igb_put_hw_semaphore(hw);
1164 		mdelay(5);
1165 		i++;
1166 	}
1167 
1168 	if (i == timeout) {
1169 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1170 		ret_val = -E1000_ERR_SWFW_SYNC;
1171 		goto out;
1172 	}
1173 
1174 	swfw_sync |= swmask;
1175 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1176 
1177 	igb_put_hw_semaphore(hw);
1178 
1179 out:
1180 	return ret_val;
1181 }
1182 
1183 /**
1184  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1185  *  @hw: pointer to the HW structure
1186  *  @mask: specifies which semaphore to acquire
1187  *
1188  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1189  *  will also specify which port we're releasing the lock for.
1190  **/
igb_release_swfw_sync_82575(struct e1000_hw * hw,u16 mask)1191 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1192 {
1193 	u32 swfw_sync;
1194 
1195 	while (igb_get_hw_semaphore(hw) != 0)
1196 		; /* Empty */
1197 
1198 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1199 	swfw_sync &= ~mask;
1200 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1201 
1202 	igb_put_hw_semaphore(hw);
1203 }
1204 
1205 /**
1206  *  igb_get_cfg_done_82575 - Read config done bit
1207  *  @hw: pointer to the HW structure
1208  *
1209  *  Read the management control register for the config done bit for
1210  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1211  *  to read the config done bit, so an error is *ONLY* logged and returns
1212  *  0.  If we were to return with error, EEPROM-less silicon
1213  *  would not be able to be reset or change link.
1214  **/
igb_get_cfg_done_82575(struct e1000_hw * hw)1215 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1216 {
1217 	s32 timeout = PHY_CFG_TIMEOUT;
1218 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1219 
1220 	if (hw->bus.func == 1)
1221 		mask = E1000_NVM_CFG_DONE_PORT_1;
1222 	else if (hw->bus.func == E1000_FUNC_2)
1223 		mask = E1000_NVM_CFG_DONE_PORT_2;
1224 	else if (hw->bus.func == E1000_FUNC_3)
1225 		mask = E1000_NVM_CFG_DONE_PORT_3;
1226 
1227 	while (timeout) {
1228 		if (rd32(E1000_EEMNGCTL) & mask)
1229 			break;
1230 		usleep_range(1000, 2000);
1231 		timeout--;
1232 	}
1233 	if (!timeout)
1234 		hw_dbg("MNG configuration cycle has not completed.\n");
1235 
1236 	/* If EEPROM is not marked present, init the PHY manually */
1237 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1238 	    (hw->phy.type == e1000_phy_igp_3))
1239 		igb_phy_init_script_igp3(hw);
1240 
1241 	return 0;
1242 }
1243 
1244 /**
1245  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1246  *  @hw: pointer to the HW structure
1247  *  @speed: stores the current speed
1248  *  @duplex: stores the current duplex
1249  *
1250  *  This is a wrapper function, if using the serial gigabit media independent
1251  *  interface, use PCS to retrieve the link speed and duplex information.
1252  *  Otherwise, use the generic function to get the link speed and duplex info.
1253  **/
igb_get_link_up_info_82575(struct e1000_hw * hw,u16 * speed,u16 * duplex)1254 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1255 					u16 *duplex)
1256 {
1257 	s32 ret_val;
1258 
1259 	if (hw->phy.media_type != e1000_media_type_copper)
1260 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1261 							       duplex);
1262 	else
1263 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1264 								    duplex);
1265 
1266 	return ret_val;
1267 }
1268 
1269 /**
1270  *  igb_check_for_link_82575 - Check for link
1271  *  @hw: pointer to the HW structure
1272  *
1273  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1274  *  use the generic interface for determining link.
1275  **/
igb_check_for_link_82575(struct e1000_hw * hw)1276 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1277 {
1278 	s32 ret_val;
1279 	u16 speed, duplex;
1280 
1281 	if (hw->phy.media_type != e1000_media_type_copper) {
1282 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1283 							     &duplex);
1284 		/* Use this flag to determine if link needs to be checked or
1285 		 * not.  If  we have link clear the flag so that we do not
1286 		 * continue to check for link.
1287 		 */
1288 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1289 
1290 		/* Configure Flow Control now that Auto-Neg has completed.
1291 		 * First, we need to restore the desired flow control
1292 		 * settings because we may have had to re-autoneg with a
1293 		 * different link partner.
1294 		 */
1295 		ret_val = igb_config_fc_after_link_up(hw);
1296 		if (ret_val)
1297 			hw_dbg("Error configuring flow control\n");
1298 	} else {
1299 		ret_val = igb_check_for_copper_link(hw);
1300 	}
1301 
1302 	return ret_val;
1303 }
1304 
1305 /**
1306  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1307  *  @hw: pointer to the HW structure
1308  **/
igb_power_up_serdes_link_82575(struct e1000_hw * hw)1309 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1310 {
1311 	u32 reg;
1312 
1313 
1314 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1315 	    !igb_sgmii_active_82575(hw))
1316 		return;
1317 
1318 	/* Enable PCS to turn on link */
1319 	reg = rd32(E1000_PCS_CFG0);
1320 	reg |= E1000_PCS_CFG_PCS_EN;
1321 	wr32(E1000_PCS_CFG0, reg);
1322 
1323 	/* Power up the laser */
1324 	reg = rd32(E1000_CTRL_EXT);
1325 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1326 	wr32(E1000_CTRL_EXT, reg);
1327 
1328 	/* flush the write to verify completion */
1329 	wrfl();
1330 	usleep_range(1000, 2000);
1331 }
1332 
1333 /**
1334  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1335  *  @hw: pointer to the HW structure
1336  *  @speed: stores the current speed
1337  *  @duplex: stores the current duplex
1338  *
1339  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1340  *  duplex, then store the values in the pointers provided.
1341  **/
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw * hw,u16 * speed,u16 * duplex)1342 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1343 						u16 *duplex)
1344 {
1345 	struct e1000_mac_info *mac = &hw->mac;
1346 	u32 pcs, status;
1347 
1348 	/* Set up defaults for the return values of this function */
1349 	mac->serdes_has_link = false;
1350 	*speed = 0;
1351 	*duplex = 0;
1352 
1353 	/* Read the PCS Status register for link state. For non-copper mode,
1354 	 * the status register is not accurate. The PCS status register is
1355 	 * used instead.
1356 	 */
1357 	pcs = rd32(E1000_PCS_LSTAT);
1358 
1359 	/* The link up bit determines when link is up on autoneg. The sync ok
1360 	 * gets set once both sides sync up and agree upon link. Stable link
1361 	 * can be determined by checking for both link up and link sync ok
1362 	 */
1363 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1364 		mac->serdes_has_link = true;
1365 
1366 		/* Detect and store PCS speed */
1367 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1368 			*speed = SPEED_1000;
1369 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1370 			*speed = SPEED_100;
1371 		else
1372 			*speed = SPEED_10;
1373 
1374 		/* Detect and store PCS duplex */
1375 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1376 			*duplex = FULL_DUPLEX;
1377 		else
1378 			*duplex = HALF_DUPLEX;
1379 
1380 	/* Check if it is an I354 2.5Gb backplane connection. */
1381 		if (mac->type == e1000_i354) {
1382 			status = rd32(E1000_STATUS);
1383 			if ((status & E1000_STATUS_2P5_SKU) &&
1384 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1385 				*speed = SPEED_2500;
1386 				*duplex = FULL_DUPLEX;
1387 				hw_dbg("2500 Mbs, ");
1388 				hw_dbg("Full Duplex\n");
1389 			}
1390 		}
1391 
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 /**
1398  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1399  *  @hw: pointer to the HW structure
1400  *
1401  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1402  *  when management pass thru is not enabled.
1403  **/
igb_shutdown_serdes_link_82575(struct e1000_hw * hw)1404 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1405 {
1406 	u32 reg;
1407 
1408 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1409 	    igb_sgmii_active_82575(hw))
1410 		return;
1411 
1412 	if (!igb_enable_mng_pass_thru(hw)) {
1413 		/* Disable PCS to turn off link */
1414 		reg = rd32(E1000_PCS_CFG0);
1415 		reg &= ~E1000_PCS_CFG_PCS_EN;
1416 		wr32(E1000_PCS_CFG0, reg);
1417 
1418 		/* shutdown the laser */
1419 		reg = rd32(E1000_CTRL_EXT);
1420 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1421 		wr32(E1000_CTRL_EXT, reg);
1422 
1423 		/* flush the write to verify completion */
1424 		wrfl();
1425 		usleep_range(1000, 2000);
1426 	}
1427 }
1428 
1429 /**
1430  *  igb_reset_hw_82575 - Reset hardware
1431  *  @hw: pointer to the HW structure
1432  *
1433  *  This resets the hardware into a known state.  This is a
1434  *  function pointer entry point called by the api module.
1435  **/
igb_reset_hw_82575(struct e1000_hw * hw)1436 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1437 {
1438 	u32 ctrl;
1439 	s32 ret_val;
1440 
1441 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1442 	 * on the last TLP read/write transaction when MAC is reset.
1443 	 */
1444 	ret_val = igb_disable_pcie_master(hw);
1445 	if (ret_val)
1446 		hw_dbg("PCI-E Master disable polling has failed.\n");
1447 
1448 	/* set the completion timeout for interface */
1449 	ret_val = igb_set_pcie_completion_timeout(hw);
1450 	if (ret_val)
1451 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1452 
1453 	hw_dbg("Masking off all interrupts\n");
1454 	wr32(E1000_IMC, 0xffffffff);
1455 
1456 	wr32(E1000_RCTL, 0);
1457 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1458 	wrfl();
1459 
1460 	usleep_range(10000, 20000);
1461 
1462 	ctrl = rd32(E1000_CTRL);
1463 
1464 	hw_dbg("Issuing a global reset to MAC\n");
1465 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1466 
1467 	ret_val = igb_get_auto_rd_done(hw);
1468 	if (ret_val) {
1469 		/* When auto config read does not complete, do not
1470 		 * return with an error. This can happen in situations
1471 		 * where there is no eeprom and prevents getting link.
1472 		 */
1473 		hw_dbg("Auto Read Done did not complete\n");
1474 	}
1475 
1476 	/* If EEPROM is not present, run manual init scripts */
1477 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1478 		igb_reset_init_script_82575(hw);
1479 
1480 	/* Clear any pending interrupt events. */
1481 	wr32(E1000_IMC, 0xffffffff);
1482 	rd32(E1000_ICR);
1483 
1484 	/* Install any alternate MAC address into RAR0 */
1485 	ret_val = igb_check_alt_mac_addr(hw);
1486 
1487 	return ret_val;
1488 }
1489 
1490 /**
1491  *  igb_init_hw_82575 - Initialize hardware
1492  *  @hw: pointer to the HW structure
1493  *
1494  *  This inits the hardware readying it for operation.
1495  **/
igb_init_hw_82575(struct e1000_hw * hw)1496 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1497 {
1498 	struct e1000_mac_info *mac = &hw->mac;
1499 	s32 ret_val;
1500 	u16 i, rar_count = mac->rar_entry_count;
1501 
1502 	if ((hw->mac.type >= e1000_i210) &&
1503 	    !(igb_get_flash_presence_i210(hw))) {
1504 		ret_val = igb_pll_workaround_i210(hw);
1505 		if (ret_val)
1506 			return ret_val;
1507 	}
1508 
1509 	/* Initialize identification LED */
1510 	ret_val = igb_id_led_init(hw);
1511 	if (ret_val) {
1512 		hw_dbg("Error initializing identification LED\n");
1513 		/* This is not fatal and we should not stop init due to this */
1514 	}
1515 
1516 	/* Disabling VLAN filtering */
1517 	hw_dbg("Initializing the IEEE VLAN\n");
1518 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1519 		igb_clear_vfta_i350(hw);
1520 	else
1521 		igb_clear_vfta(hw);
1522 
1523 	/* Setup the receive address */
1524 	igb_init_rx_addrs(hw, rar_count);
1525 
1526 	/* Zero out the Multicast HASH table */
1527 	hw_dbg("Zeroing the MTA\n");
1528 	for (i = 0; i < mac->mta_reg_count; i++)
1529 		array_wr32(E1000_MTA, i, 0);
1530 
1531 	/* Zero out the Unicast HASH table */
1532 	hw_dbg("Zeroing the UTA\n");
1533 	for (i = 0; i < mac->uta_reg_count; i++)
1534 		array_wr32(E1000_UTA, i, 0);
1535 
1536 	/* Setup link and flow control */
1537 	ret_val = igb_setup_link(hw);
1538 
1539 	/* Clear all of the statistics registers (clear on read).  It is
1540 	 * important that we do this after we have tried to establish link
1541 	 * because the symbol error count will increment wildly if there
1542 	 * is no link.
1543 	 */
1544 	igb_clear_hw_cntrs_82575(hw);
1545 	return ret_val;
1546 }
1547 
1548 /**
1549  *  igb_setup_copper_link_82575 - Configure copper link settings
1550  *  @hw: pointer to the HW structure
1551  *
1552  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1553  *  for link, once link is established calls to configure collision distance
1554  *  and flow control are called.
1555  **/
igb_setup_copper_link_82575(struct e1000_hw * hw)1556 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1557 {
1558 	u32 ctrl;
1559 	s32  ret_val;
1560 	u32 phpm_reg;
1561 
1562 	ctrl = rd32(E1000_CTRL);
1563 	ctrl |= E1000_CTRL_SLU;
1564 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1565 	wr32(E1000_CTRL, ctrl);
1566 
1567 	/* Clear Go Link Disconnect bit on supported devices */
1568 	switch (hw->mac.type) {
1569 	case e1000_82580:
1570 	case e1000_i350:
1571 	case e1000_i210:
1572 	case e1000_i211:
1573 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1574 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1575 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1576 		break;
1577 	default:
1578 		break;
1579 	}
1580 
1581 	ret_val = igb_setup_serdes_link_82575(hw);
1582 	if (ret_val)
1583 		goto out;
1584 
1585 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1586 		/* allow time for SFP cage time to power up phy */
1587 		msleep(300);
1588 
1589 		ret_val = hw->phy.ops.reset(hw);
1590 		if (ret_val) {
1591 			hw_dbg("Error resetting the PHY.\n");
1592 			goto out;
1593 		}
1594 	}
1595 	switch (hw->phy.type) {
1596 	case e1000_phy_i210:
1597 	case e1000_phy_m88:
1598 		switch (hw->phy.id) {
1599 		case I347AT4_E_PHY_ID:
1600 		case M88E1112_E_PHY_ID:
1601 		case M88E1543_E_PHY_ID:
1602 		case M88E1512_E_PHY_ID:
1603 		case I210_I_PHY_ID:
1604 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1605 			break;
1606 		default:
1607 			ret_val = igb_copper_link_setup_m88(hw);
1608 			break;
1609 		}
1610 		break;
1611 	case e1000_phy_igp_3:
1612 		ret_val = igb_copper_link_setup_igp(hw);
1613 		break;
1614 	case e1000_phy_82580:
1615 		ret_val = igb_copper_link_setup_82580(hw);
1616 		break;
1617 	default:
1618 		ret_val = -E1000_ERR_PHY;
1619 		break;
1620 	}
1621 
1622 	if (ret_val)
1623 		goto out;
1624 
1625 	ret_val = igb_setup_copper_link(hw);
1626 out:
1627 	return ret_val;
1628 }
1629 
1630 /**
1631  *  igb_setup_serdes_link_82575 - Setup link for serdes
1632  *  @hw: pointer to the HW structure
1633  *
1634  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1635  *  used on copper connections where the serialized gigabit media independent
1636  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1637  *  for auto-negotiation or forces speed/duplex.
1638  **/
igb_setup_serdes_link_82575(struct e1000_hw * hw)1639 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1640 {
1641 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1642 	bool pcs_autoneg;
1643 	s32 ret_val = 0;
1644 	u16 data;
1645 
1646 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1647 	    !igb_sgmii_active_82575(hw))
1648 		return ret_val;
1649 
1650 
1651 	/* On the 82575, SerDes loopback mode persists until it is
1652 	 * explicitly turned off or a power cycle is performed.  A read to
1653 	 * the register does not indicate its status.  Therefore, we ensure
1654 	 * loopback mode is disabled during initialization.
1655 	 */
1656 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1657 
1658 	/* power on the sfp cage if present and turn on I2C */
1659 	ctrl_ext = rd32(E1000_CTRL_EXT);
1660 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1661 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1662 	wr32(E1000_CTRL_EXT, ctrl_ext);
1663 
1664 	ctrl_reg = rd32(E1000_CTRL);
1665 	ctrl_reg |= E1000_CTRL_SLU;
1666 
1667 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1668 		/* set both sw defined pins */
1669 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1670 
1671 		/* Set switch control to serdes energy detect */
1672 		reg = rd32(E1000_CONNSW);
1673 		reg |= E1000_CONNSW_ENRGSRC;
1674 		wr32(E1000_CONNSW, reg);
1675 	}
1676 
1677 	reg = rd32(E1000_PCS_LCTL);
1678 
1679 	/* default pcs_autoneg to the same setting as mac autoneg */
1680 	pcs_autoneg = hw->mac.autoneg;
1681 
1682 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1683 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1684 		/* sgmii mode lets the phy handle forcing speed/duplex */
1685 		pcs_autoneg = true;
1686 		/* autoneg time out should be disabled for SGMII mode */
1687 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1688 		break;
1689 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1690 		/* disable PCS autoneg and support parallel detect only */
1691 		pcs_autoneg = false;
1692 	default:
1693 		if (hw->mac.type == e1000_82575 ||
1694 		    hw->mac.type == e1000_82576) {
1695 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1696 			if (ret_val) {
1697 				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1698 				return ret_val;
1699 			}
1700 
1701 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1702 				pcs_autoneg = false;
1703 		}
1704 
1705 		/* non-SGMII modes only supports a speed of 1000/Full for the
1706 		 * link so it is best to just force the MAC and let the pcs
1707 		 * link either autoneg or be forced to 1000/Full
1708 		 */
1709 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1710 				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1711 
1712 		/* set speed of 1000/Full if speed/duplex is forced */
1713 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1714 		break;
1715 	}
1716 
1717 	wr32(E1000_CTRL, ctrl_reg);
1718 
1719 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1720 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1721 	 * mode that will be compatible with older link partners and switches.
1722 	 * However, both are supported by the hardware and some drivers/tools.
1723 	 */
1724 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1725 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1726 
1727 	if (pcs_autoneg) {
1728 		/* Set PCS register for autoneg */
1729 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1730 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1731 
1732 		/* Disable force flow control for autoneg */
1733 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1734 
1735 		/* Configure flow control advertisement for autoneg */
1736 		anadv_reg = rd32(E1000_PCS_ANADV);
1737 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1738 		switch (hw->fc.requested_mode) {
1739 		case e1000_fc_full:
1740 		case e1000_fc_rx_pause:
1741 			anadv_reg |= E1000_TXCW_ASM_DIR;
1742 			anadv_reg |= E1000_TXCW_PAUSE;
1743 			break;
1744 		case e1000_fc_tx_pause:
1745 			anadv_reg |= E1000_TXCW_ASM_DIR;
1746 			break;
1747 		default:
1748 			break;
1749 		}
1750 		wr32(E1000_PCS_ANADV, anadv_reg);
1751 
1752 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1753 	} else {
1754 		/* Set PCS register for forced link */
1755 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1756 
1757 		/* Force flow control for forced link */
1758 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1759 
1760 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1761 	}
1762 
1763 	wr32(E1000_PCS_LCTL, reg);
1764 
1765 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1766 		igb_force_mac_fc(hw);
1767 
1768 	return ret_val;
1769 }
1770 
1771 /**
1772  *  igb_sgmii_active_82575 - Return sgmii state
1773  *  @hw: pointer to the HW structure
1774  *
1775  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1776  *  which can be enabled for use in the embedded applications.  Simply
1777  *  return the current state of the sgmii interface.
1778  **/
igb_sgmii_active_82575(struct e1000_hw * hw)1779 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1780 {
1781 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1782 	return dev_spec->sgmii_active;
1783 }
1784 
1785 /**
1786  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1787  *  @hw: pointer to the HW structure
1788  *
1789  *  Inits recommended HW defaults after a reset when there is no EEPROM
1790  *  detected. This is only for the 82575.
1791  **/
igb_reset_init_script_82575(struct e1000_hw * hw)1792 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1793 {
1794 	if (hw->mac.type == e1000_82575) {
1795 		hw_dbg("Running reset init script for 82575\n");
1796 		/* SerDes configuration via SERDESCTRL */
1797 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1798 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1799 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1800 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1801 
1802 		/* CCM configuration via CCMCTL register */
1803 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1804 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1805 
1806 		/* PCIe lanes configuration */
1807 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1808 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1809 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1810 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1811 
1812 		/* PCIe PLL Configuration */
1813 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1814 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1815 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1816 	}
1817 
1818 	return 0;
1819 }
1820 
1821 /**
1822  *  igb_read_mac_addr_82575 - Read device MAC address
1823  *  @hw: pointer to the HW structure
1824  **/
igb_read_mac_addr_82575(struct e1000_hw * hw)1825 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1826 {
1827 	s32 ret_val = 0;
1828 
1829 	/* If there's an alternate MAC address place it in RAR0
1830 	 * so that it will override the Si installed default perm
1831 	 * address.
1832 	 */
1833 	ret_val = igb_check_alt_mac_addr(hw);
1834 	if (ret_val)
1835 		goto out;
1836 
1837 	ret_val = igb_read_mac_addr(hw);
1838 
1839 out:
1840 	return ret_val;
1841 }
1842 
1843 /**
1844  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1845  * @hw: pointer to the HW structure
1846  *
1847  * In the case of a PHY power down to save power, or to turn off link during a
1848  * driver unload, or wake on lan is not enabled, remove the link.
1849  **/
igb_power_down_phy_copper_82575(struct e1000_hw * hw)1850 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1851 {
1852 	/* If the management interface is not enabled, then power down */
1853 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1854 		igb_power_down_phy_copper(hw);
1855 }
1856 
1857 /**
1858  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1859  *  @hw: pointer to the HW structure
1860  *
1861  *  Clears the hardware counters by reading the counter registers.
1862  **/
igb_clear_hw_cntrs_82575(struct e1000_hw * hw)1863 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1864 {
1865 	igb_clear_hw_cntrs_base(hw);
1866 
1867 	rd32(E1000_PRC64);
1868 	rd32(E1000_PRC127);
1869 	rd32(E1000_PRC255);
1870 	rd32(E1000_PRC511);
1871 	rd32(E1000_PRC1023);
1872 	rd32(E1000_PRC1522);
1873 	rd32(E1000_PTC64);
1874 	rd32(E1000_PTC127);
1875 	rd32(E1000_PTC255);
1876 	rd32(E1000_PTC511);
1877 	rd32(E1000_PTC1023);
1878 	rd32(E1000_PTC1522);
1879 
1880 	rd32(E1000_ALGNERRC);
1881 	rd32(E1000_RXERRC);
1882 	rd32(E1000_TNCRS);
1883 	rd32(E1000_CEXTERR);
1884 	rd32(E1000_TSCTC);
1885 	rd32(E1000_TSCTFC);
1886 
1887 	rd32(E1000_MGTPRC);
1888 	rd32(E1000_MGTPDC);
1889 	rd32(E1000_MGTPTC);
1890 
1891 	rd32(E1000_IAC);
1892 	rd32(E1000_ICRXOC);
1893 
1894 	rd32(E1000_ICRXPTC);
1895 	rd32(E1000_ICRXATC);
1896 	rd32(E1000_ICTXPTC);
1897 	rd32(E1000_ICTXATC);
1898 	rd32(E1000_ICTXQEC);
1899 	rd32(E1000_ICTXQMTC);
1900 	rd32(E1000_ICRXDMTC);
1901 
1902 	rd32(E1000_CBTMPC);
1903 	rd32(E1000_HTDPMC);
1904 	rd32(E1000_CBRMPC);
1905 	rd32(E1000_RPTHC);
1906 	rd32(E1000_HGPTC);
1907 	rd32(E1000_HTCBDPC);
1908 	rd32(E1000_HGORCL);
1909 	rd32(E1000_HGORCH);
1910 	rd32(E1000_HGOTCL);
1911 	rd32(E1000_HGOTCH);
1912 	rd32(E1000_LENERRS);
1913 
1914 	/* This register should not be read in copper configurations */
1915 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1916 	    igb_sgmii_active_82575(hw))
1917 		rd32(E1000_SCVPC);
1918 }
1919 
1920 /**
1921  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1922  *  @hw: pointer to the HW structure
1923  *
1924  *  After rx enable if manageability is enabled then there is likely some
1925  *  bad data at the start of the fifo and possibly in the DMA fifo. This
1926  *  function clears the fifos and flushes any packets that came in as rx was
1927  *  being enabled.
1928  **/
igb_rx_fifo_flush_82575(struct e1000_hw * hw)1929 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1930 {
1931 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1932 	int i, ms_wait;
1933 
1934 	/* disable IPv6 options as per hardware errata */
1935 	rfctl = rd32(E1000_RFCTL);
1936 	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1937 	wr32(E1000_RFCTL, rfctl);
1938 
1939 	if (hw->mac.type != e1000_82575 ||
1940 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1941 		return;
1942 
1943 	/* Disable all RX queues */
1944 	for (i = 0; i < 4; i++) {
1945 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1946 		wr32(E1000_RXDCTL(i),
1947 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1948 	}
1949 	/* Poll all queues to verify they have shut down */
1950 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1951 		usleep_range(1000, 2000);
1952 		rx_enabled = 0;
1953 		for (i = 0; i < 4; i++)
1954 			rx_enabled |= rd32(E1000_RXDCTL(i));
1955 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1956 			break;
1957 	}
1958 
1959 	if (ms_wait == 10)
1960 		hw_dbg("Queue disable timed out after 10ms\n");
1961 
1962 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1963 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1964 	 * any packet that was coming in as RCTL.EN was set is flushed
1965 	 */
1966 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1967 
1968 	rlpml = rd32(E1000_RLPML);
1969 	wr32(E1000_RLPML, 0);
1970 
1971 	rctl = rd32(E1000_RCTL);
1972 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1973 	temp_rctl |= E1000_RCTL_LPE;
1974 
1975 	wr32(E1000_RCTL, temp_rctl);
1976 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1977 	wrfl();
1978 	usleep_range(2000, 3000);
1979 
1980 	/* Enable RX queues that were previously enabled and restore our
1981 	 * previous state
1982 	 */
1983 	for (i = 0; i < 4; i++)
1984 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1985 	wr32(E1000_RCTL, rctl);
1986 	wrfl();
1987 
1988 	wr32(E1000_RLPML, rlpml);
1989 	wr32(E1000_RFCTL, rfctl);
1990 
1991 	/* Flush receive errors generated by workaround */
1992 	rd32(E1000_ROC);
1993 	rd32(E1000_RNBC);
1994 	rd32(E1000_MPC);
1995 }
1996 
1997 /**
1998  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1999  *  @hw: pointer to the HW structure
2000  *
2001  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2002  *  however the hardware default for these parts is 500us to 1ms which is less
2003  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2004  *  increase the value to either 10ms to 200ms for capability version 1 config,
2005  *  or 16ms to 55ms for version 2.
2006  **/
igb_set_pcie_completion_timeout(struct e1000_hw * hw)2007 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2008 {
2009 	u32 gcr = rd32(E1000_GCR);
2010 	s32 ret_val = 0;
2011 	u16 pcie_devctl2;
2012 
2013 	/* only take action if timeout value is defaulted to 0 */
2014 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2015 		goto out;
2016 
2017 	/* if capabilities version is type 1 we can write the
2018 	 * timeout of 10ms to 200ms through the GCR register
2019 	 */
2020 	if (!(gcr & E1000_GCR_CAP_VER2)) {
2021 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2022 		goto out;
2023 	}
2024 
2025 	/* for version 2 capabilities we need to write the config space
2026 	 * directly in order to set the completion timeout value for
2027 	 * 16ms to 55ms
2028 	 */
2029 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2030 					&pcie_devctl2);
2031 	if (ret_val)
2032 		goto out;
2033 
2034 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2035 
2036 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2037 					 &pcie_devctl2);
2038 out:
2039 	/* disable completion timeout resend */
2040 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2041 
2042 	wr32(E1000_GCR, gcr);
2043 	return ret_val;
2044 }
2045 
2046 /**
2047  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2048  *  @hw: pointer to the hardware struct
2049  *  @enable: state to enter, either enabled or disabled
2050  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2051  *
2052  *  enables/disables L2 switch anti-spoofing functionality.
2053  **/
igb_vmdq_set_anti_spoofing_pf(struct e1000_hw * hw,bool enable,int pf)2054 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2055 {
2056 	u32 reg_val, reg_offset;
2057 
2058 	switch (hw->mac.type) {
2059 	case e1000_82576:
2060 		reg_offset = E1000_DTXSWC;
2061 		break;
2062 	case e1000_i350:
2063 	case e1000_i354:
2064 		reg_offset = E1000_TXSWC;
2065 		break;
2066 	default:
2067 		return;
2068 	}
2069 
2070 	reg_val = rd32(reg_offset);
2071 	if (enable) {
2072 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2073 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2074 		/* The PF can spoof - it has to in order to
2075 		 * support emulation mode NICs
2076 		 */
2077 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2078 	} else {
2079 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2080 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2081 	}
2082 	wr32(reg_offset, reg_val);
2083 }
2084 
2085 /**
2086  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2087  *  @hw: pointer to the hardware struct
2088  *  @enable: state to enter, either enabled or disabled
2089  *
2090  *  enables/disables L2 switch loopback functionality.
2091  **/
igb_vmdq_set_loopback_pf(struct e1000_hw * hw,bool enable)2092 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2093 {
2094 	u32 dtxswc;
2095 
2096 	switch (hw->mac.type) {
2097 	case e1000_82576:
2098 		dtxswc = rd32(E1000_DTXSWC);
2099 		if (enable)
2100 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2101 		else
2102 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2103 		wr32(E1000_DTXSWC, dtxswc);
2104 		break;
2105 	case e1000_i354:
2106 	case e1000_i350:
2107 		dtxswc = rd32(E1000_TXSWC);
2108 		if (enable)
2109 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2110 		else
2111 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2112 		wr32(E1000_TXSWC, dtxswc);
2113 		break;
2114 	default:
2115 		/* Currently no other hardware supports loopback */
2116 		break;
2117 	}
2118 
2119 }
2120 
2121 /**
2122  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2123  *  @hw: pointer to the hardware struct
2124  *  @enable: state to enter, either enabled or disabled
2125  *
2126  *  enables/disables replication of packets across multiple pools.
2127  **/
igb_vmdq_set_replication_pf(struct e1000_hw * hw,bool enable)2128 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2129 {
2130 	u32 vt_ctl = rd32(E1000_VT_CTL);
2131 
2132 	if (enable)
2133 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2134 	else
2135 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2136 
2137 	wr32(E1000_VT_CTL, vt_ctl);
2138 }
2139 
2140 /**
2141  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2142  *  @hw: pointer to the HW structure
2143  *  @offset: register offset to be read
2144  *  @data: pointer to the read data
2145  *
2146  *  Reads the MDI control register in the PHY at offset and stores the
2147  *  information read to data.
2148  **/
igb_read_phy_reg_82580(struct e1000_hw * hw,u32 offset,u16 * data)2149 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2150 {
2151 	s32 ret_val;
2152 
2153 	ret_val = hw->phy.ops.acquire(hw);
2154 	if (ret_val)
2155 		goto out;
2156 
2157 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2158 
2159 	hw->phy.ops.release(hw);
2160 
2161 out:
2162 	return ret_val;
2163 }
2164 
2165 /**
2166  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2167  *  @hw: pointer to the HW structure
2168  *  @offset: register offset to write to
2169  *  @data: data to write to register at offset
2170  *
2171  *  Writes data to MDI control register in the PHY at offset.
2172  **/
igb_write_phy_reg_82580(struct e1000_hw * hw,u32 offset,u16 data)2173 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2174 {
2175 	s32 ret_val;
2176 
2177 
2178 	ret_val = hw->phy.ops.acquire(hw);
2179 	if (ret_val)
2180 		goto out;
2181 
2182 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2183 
2184 	hw->phy.ops.release(hw);
2185 
2186 out:
2187 	return ret_val;
2188 }
2189 
2190 /**
2191  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2192  *  @hw: pointer to the HW structure
2193  *
2194  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2195  *  the values found in the EEPROM.  This addresses an issue in which these
2196  *  bits are not restored from EEPROM after reset.
2197  **/
igb_reset_mdicnfg_82580(struct e1000_hw * hw)2198 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2199 {
2200 	s32 ret_val = 0;
2201 	u32 mdicnfg;
2202 	u16 nvm_data = 0;
2203 
2204 	if (hw->mac.type != e1000_82580)
2205 		goto out;
2206 	if (!igb_sgmii_active_82575(hw))
2207 		goto out;
2208 
2209 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2210 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2211 				   &nvm_data);
2212 	if (ret_val) {
2213 		hw_dbg("NVM Read Error\n");
2214 		goto out;
2215 	}
2216 
2217 	mdicnfg = rd32(E1000_MDICNFG);
2218 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2219 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2220 	if (nvm_data & NVM_WORD24_COM_MDIO)
2221 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2222 	wr32(E1000_MDICNFG, mdicnfg);
2223 out:
2224 	return ret_val;
2225 }
2226 
2227 /**
2228  *  igb_reset_hw_82580 - Reset hardware
2229  *  @hw: pointer to the HW structure
2230  *
2231  *  This resets function or entire device (all ports, etc.)
2232  *  to a known state.
2233  **/
igb_reset_hw_82580(struct e1000_hw * hw)2234 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2235 {
2236 	s32 ret_val = 0;
2237 	/* BH SW mailbox bit in SW_FW_SYNC */
2238 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2239 	u32 ctrl;
2240 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2241 
2242 	hw->dev_spec._82575.global_device_reset = false;
2243 
2244 	/* due to hw errata, global device reset doesn't always
2245 	 * work on 82580
2246 	 */
2247 	if (hw->mac.type == e1000_82580)
2248 		global_device_reset = false;
2249 
2250 	/* Get current control state. */
2251 	ctrl = rd32(E1000_CTRL);
2252 
2253 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2254 	 * on the last TLP read/write transaction when MAC is reset.
2255 	 */
2256 	ret_val = igb_disable_pcie_master(hw);
2257 	if (ret_val)
2258 		hw_dbg("PCI-E Master disable polling has failed.\n");
2259 
2260 	hw_dbg("Masking off all interrupts\n");
2261 	wr32(E1000_IMC, 0xffffffff);
2262 	wr32(E1000_RCTL, 0);
2263 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2264 	wrfl();
2265 
2266 	usleep_range(10000, 11000);
2267 
2268 	/* Determine whether or not a global dev reset is requested */
2269 	if (global_device_reset &&
2270 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2271 			global_device_reset = false;
2272 
2273 	if (global_device_reset &&
2274 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2275 		ctrl |= E1000_CTRL_DEV_RST;
2276 	else
2277 		ctrl |= E1000_CTRL_RST;
2278 
2279 	wr32(E1000_CTRL, ctrl);
2280 	wrfl();
2281 
2282 	/* Add delay to insure DEV_RST has time to complete */
2283 	if (global_device_reset)
2284 		usleep_range(5000, 6000);
2285 
2286 	ret_val = igb_get_auto_rd_done(hw);
2287 	if (ret_val) {
2288 		/* When auto config read does not complete, do not
2289 		 * return with an error. This can happen in situations
2290 		 * where there is no eeprom and prevents getting link.
2291 		 */
2292 		hw_dbg("Auto Read Done did not complete\n");
2293 	}
2294 
2295 	/* clear global device reset status bit */
2296 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2297 
2298 	/* Clear any pending interrupt events. */
2299 	wr32(E1000_IMC, 0xffffffff);
2300 	rd32(E1000_ICR);
2301 
2302 	ret_val = igb_reset_mdicnfg_82580(hw);
2303 	if (ret_val)
2304 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2305 
2306 	/* Install any alternate MAC address into RAR0 */
2307 	ret_val = igb_check_alt_mac_addr(hw);
2308 
2309 	/* Release semaphore */
2310 	if (global_device_reset)
2311 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2312 
2313 	return ret_val;
2314 }
2315 
2316 /**
2317  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2318  *  @data: data received by reading RXPBS register
2319  *
2320  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2321  *  This function converts the retrieved value into the correct table value
2322  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2323  *  0x0 36  72 144   1   2   4   8  16
2324  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2325  */
igb_rxpbs_adjust_82580(u32 data)2326 u16 igb_rxpbs_adjust_82580(u32 data)
2327 {
2328 	u16 ret_val = 0;
2329 
2330 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2331 		ret_val = e1000_82580_rxpbs_table[data];
2332 
2333 	return ret_val;
2334 }
2335 
2336 /**
2337  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2338  *  checksum
2339  *  @hw: pointer to the HW structure
2340  *  @offset: offset in words of the checksum protected region
2341  *
2342  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2343  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2344  **/
igb_validate_nvm_checksum_with_offset(struct e1000_hw * hw,u16 offset)2345 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2346 						 u16 offset)
2347 {
2348 	s32 ret_val = 0;
2349 	u16 checksum = 0;
2350 	u16 i, nvm_data;
2351 
2352 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2353 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2354 		if (ret_val) {
2355 			hw_dbg("NVM Read Error\n");
2356 			goto out;
2357 		}
2358 		checksum += nvm_data;
2359 	}
2360 
2361 	if (checksum != (u16) NVM_SUM) {
2362 		hw_dbg("NVM Checksum Invalid\n");
2363 		ret_val = -E1000_ERR_NVM;
2364 		goto out;
2365 	}
2366 
2367 out:
2368 	return ret_val;
2369 }
2370 
2371 /**
2372  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2373  *  checksum
2374  *  @hw: pointer to the HW structure
2375  *  @offset: offset in words of the checksum protected region
2376  *
2377  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2378  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2379  *  value to the EEPROM.
2380  **/
igb_update_nvm_checksum_with_offset(struct e1000_hw * hw,u16 offset)2381 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2382 {
2383 	s32 ret_val;
2384 	u16 checksum = 0;
2385 	u16 i, nvm_data;
2386 
2387 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2388 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2389 		if (ret_val) {
2390 			hw_dbg("NVM Read Error while updating checksum.\n");
2391 			goto out;
2392 		}
2393 		checksum += nvm_data;
2394 	}
2395 	checksum = (u16) NVM_SUM - checksum;
2396 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2397 				&checksum);
2398 	if (ret_val)
2399 		hw_dbg("NVM Write Error while updating checksum.\n");
2400 
2401 out:
2402 	return ret_val;
2403 }
2404 
2405 /**
2406  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2407  *  @hw: pointer to the HW structure
2408  *
2409  *  Calculates the EEPROM section checksum by reading/adding each word of
2410  *  the EEPROM and then verifies that the sum of the EEPROM is
2411  *  equal to 0xBABA.
2412  **/
igb_validate_nvm_checksum_82580(struct e1000_hw * hw)2413 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2414 {
2415 	s32 ret_val = 0;
2416 	u16 eeprom_regions_count = 1;
2417 	u16 j, nvm_data;
2418 	u16 nvm_offset;
2419 
2420 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2421 	if (ret_val) {
2422 		hw_dbg("NVM Read Error\n");
2423 		goto out;
2424 	}
2425 
2426 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2427 		/* if checksums compatibility bit is set validate checksums
2428 		 * for all 4 ports.
2429 		 */
2430 		eeprom_regions_count = 4;
2431 	}
2432 
2433 	for (j = 0; j < eeprom_regions_count; j++) {
2434 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2435 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2436 								nvm_offset);
2437 		if (ret_val != 0)
2438 			goto out;
2439 	}
2440 
2441 out:
2442 	return ret_val;
2443 }
2444 
2445 /**
2446  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2447  *  @hw: pointer to the HW structure
2448  *
2449  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2450  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2451  *  checksum and writes the value to the EEPROM.
2452  **/
igb_update_nvm_checksum_82580(struct e1000_hw * hw)2453 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2454 {
2455 	s32 ret_val;
2456 	u16 j, nvm_data;
2457 	u16 nvm_offset;
2458 
2459 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2460 	if (ret_val) {
2461 		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2462 		goto out;
2463 	}
2464 
2465 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2466 		/* set compatibility bit to validate checksums appropriately */
2467 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2468 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2469 					&nvm_data);
2470 		if (ret_val) {
2471 			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2472 			goto out;
2473 		}
2474 	}
2475 
2476 	for (j = 0; j < 4; j++) {
2477 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2478 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2479 		if (ret_val)
2480 			goto out;
2481 	}
2482 
2483 out:
2484 	return ret_val;
2485 }
2486 
2487 /**
2488  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2489  *  @hw: pointer to the HW structure
2490  *
2491  *  Calculates the EEPROM section checksum by reading/adding each word of
2492  *  the EEPROM and then verifies that the sum of the EEPROM is
2493  *  equal to 0xBABA.
2494  **/
igb_validate_nvm_checksum_i350(struct e1000_hw * hw)2495 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2496 {
2497 	s32 ret_val = 0;
2498 	u16 j;
2499 	u16 nvm_offset;
2500 
2501 	for (j = 0; j < 4; j++) {
2502 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2503 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2504 								nvm_offset);
2505 		if (ret_val != 0)
2506 			goto out;
2507 	}
2508 
2509 out:
2510 	return ret_val;
2511 }
2512 
2513 /**
2514  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2515  *  @hw: pointer to the HW structure
2516  *
2517  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2518  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2519  *  checksum and writes the value to the EEPROM.
2520  **/
igb_update_nvm_checksum_i350(struct e1000_hw * hw)2521 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2522 {
2523 	s32 ret_val = 0;
2524 	u16 j;
2525 	u16 nvm_offset;
2526 
2527 	for (j = 0; j < 4; j++) {
2528 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2529 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2530 		if (ret_val != 0)
2531 			goto out;
2532 	}
2533 
2534 out:
2535 	return ret_val;
2536 }
2537 
2538 /**
2539  *  __igb_access_emi_reg - Read/write EMI register
2540  *  @hw: pointer to the HW structure
2541  *  @addr: EMI address to program
2542  *  @data: pointer to value to read/write from/to the EMI address
2543  *  @read: boolean flag to indicate read or write
2544  **/
__igb_access_emi_reg(struct e1000_hw * hw,u16 address,u16 * data,bool read)2545 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2546 				  u16 *data, bool read)
2547 {
2548 	s32 ret_val = 0;
2549 
2550 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2551 	if (ret_val)
2552 		return ret_val;
2553 
2554 	if (read)
2555 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2556 	else
2557 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2558 
2559 	return ret_val;
2560 }
2561 
2562 /**
2563  *  igb_read_emi_reg - Read Extended Management Interface register
2564  *  @hw: pointer to the HW structure
2565  *  @addr: EMI address to program
2566  *  @data: value to be read from the EMI address
2567  **/
igb_read_emi_reg(struct e1000_hw * hw,u16 addr,u16 * data)2568 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2569 {
2570 	return __igb_access_emi_reg(hw, addr, data, true);
2571 }
2572 
2573 /**
2574  *  igb_set_eee_i350 - Enable/disable EEE support
2575  *  @hw: pointer to the HW structure
2576  *  @adv1G: boolean flag enabling 1G EEE advertisement
2577  *  @adv100m: boolean flag enabling 100M EEE advertisement
2578  *
2579  *  Enable/disable EEE based on setting in dev_spec structure.
2580  *
2581  **/
igb_set_eee_i350(struct e1000_hw * hw,bool adv1G,bool adv100M)2582 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2583 {
2584 	u32 ipcnfg, eeer;
2585 
2586 	if ((hw->mac.type < e1000_i350) ||
2587 	    (hw->phy.media_type != e1000_media_type_copper))
2588 		goto out;
2589 	ipcnfg = rd32(E1000_IPCNFG);
2590 	eeer = rd32(E1000_EEER);
2591 
2592 	/* enable or disable per user setting */
2593 	if (!(hw->dev_spec._82575.eee_disable)) {
2594 		u32 eee_su = rd32(E1000_EEE_SU);
2595 
2596 		if (adv100M)
2597 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2598 		else
2599 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2600 
2601 		if (adv1G)
2602 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2603 		else
2604 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2605 
2606 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2607 			E1000_EEER_LPI_FC);
2608 
2609 		/* This bit should not be set in normal operation. */
2610 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2611 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2612 
2613 	} else {
2614 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2615 			E1000_IPCNFG_EEE_100M_AN);
2616 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2617 			E1000_EEER_RX_LPI_EN |
2618 			E1000_EEER_LPI_FC);
2619 	}
2620 	wr32(E1000_IPCNFG, ipcnfg);
2621 	wr32(E1000_EEER, eeer);
2622 	rd32(E1000_IPCNFG);
2623 	rd32(E1000_EEER);
2624 out:
2625 
2626 	return 0;
2627 }
2628 
2629 /**
2630  *  igb_set_eee_i354 - Enable/disable EEE support
2631  *  @hw: pointer to the HW structure
2632  *  @adv1G: boolean flag enabling 1G EEE advertisement
2633  *  @adv100m: boolean flag enabling 100M EEE advertisement
2634  *
2635  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2636  *
2637  **/
igb_set_eee_i354(struct e1000_hw * hw,bool adv1G,bool adv100M)2638 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2639 {
2640 	struct e1000_phy_info *phy = &hw->phy;
2641 	s32 ret_val = 0;
2642 	u16 phy_data;
2643 
2644 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2645 	    ((phy->id != M88E1543_E_PHY_ID) &&
2646 	     (phy->id != M88E1512_E_PHY_ID)))
2647 		goto out;
2648 
2649 	if (!hw->dev_spec._82575.eee_disable) {
2650 		/* Switch to PHY page 18. */
2651 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2652 		if (ret_val)
2653 			goto out;
2654 
2655 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2656 					    &phy_data);
2657 		if (ret_val)
2658 			goto out;
2659 
2660 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2661 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2662 					     phy_data);
2663 		if (ret_val)
2664 			goto out;
2665 
2666 		/* Return the PHY to page 0. */
2667 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2668 		if (ret_val)
2669 			goto out;
2670 
2671 		/* Turn on EEE advertisement. */
2672 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2673 					     E1000_EEE_ADV_DEV_I354,
2674 					     &phy_data);
2675 		if (ret_val)
2676 			goto out;
2677 
2678 		if (adv100M)
2679 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2680 		else
2681 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2682 
2683 		if (adv1G)
2684 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2685 		else
2686 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2687 
2688 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2689 						E1000_EEE_ADV_DEV_I354,
2690 						phy_data);
2691 	} else {
2692 		/* Turn off EEE advertisement. */
2693 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2694 					     E1000_EEE_ADV_DEV_I354,
2695 					     &phy_data);
2696 		if (ret_val)
2697 			goto out;
2698 
2699 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2700 			      E1000_EEE_ADV_1000_SUPPORTED);
2701 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2702 					      E1000_EEE_ADV_DEV_I354,
2703 					      phy_data);
2704 	}
2705 
2706 out:
2707 	return ret_val;
2708 }
2709 
2710 /**
2711  *  igb_get_eee_status_i354 - Get EEE status
2712  *  @hw: pointer to the HW structure
2713  *  @status: EEE status
2714  *
2715  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2716  *  been received.
2717  **/
igb_get_eee_status_i354(struct e1000_hw * hw,bool * status)2718 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2719 {
2720 	struct e1000_phy_info *phy = &hw->phy;
2721 	s32 ret_val = 0;
2722 	u16 phy_data;
2723 
2724 	/* Check if EEE is supported on this device. */
2725 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2726 	    ((phy->id != M88E1543_E_PHY_ID) &&
2727 	     (phy->id != M88E1512_E_PHY_ID)))
2728 		goto out;
2729 
2730 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2731 				     E1000_PCS_STATUS_DEV_I354,
2732 				     &phy_data);
2733 	if (ret_val)
2734 		goto out;
2735 
2736 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2737 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2738 
2739 out:
2740 	return ret_val;
2741 }
2742 
2743 static const u8 e1000_emc_temp_data[4] = {
2744 	E1000_EMC_INTERNAL_DATA,
2745 	E1000_EMC_DIODE1_DATA,
2746 	E1000_EMC_DIODE2_DATA,
2747 	E1000_EMC_DIODE3_DATA
2748 };
2749 static const u8 e1000_emc_therm_limit[4] = {
2750 	E1000_EMC_INTERNAL_THERM_LIMIT,
2751 	E1000_EMC_DIODE1_THERM_LIMIT,
2752 	E1000_EMC_DIODE2_THERM_LIMIT,
2753 	E1000_EMC_DIODE3_THERM_LIMIT
2754 };
2755 
2756 #ifdef CONFIG_IGB_HWMON
2757 /**
2758  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2759  *  @hw: pointer to hardware structure
2760  *
2761  *  Updates the temperatures in mac.thermal_sensor_data
2762  **/
igb_get_thermal_sensor_data_generic(struct e1000_hw * hw)2763 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2764 {
2765 	u16 ets_offset;
2766 	u16 ets_cfg;
2767 	u16 ets_sensor;
2768 	u8  num_sensors;
2769 	u8  sensor_index;
2770 	u8  sensor_location;
2771 	u8  i;
2772 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2773 
2774 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2775 		return E1000_NOT_IMPLEMENTED;
2776 
2777 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2778 
2779 	/* Return the internal sensor only if ETS is unsupported */
2780 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2781 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2782 		return 0;
2783 
2784 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2785 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2786 	    != NVM_ETS_TYPE_EMC)
2787 		return E1000_NOT_IMPLEMENTED;
2788 
2789 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2790 	if (num_sensors > E1000_MAX_SENSORS)
2791 		num_sensors = E1000_MAX_SENSORS;
2792 
2793 	for (i = 1; i < num_sensors; i++) {
2794 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2795 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2796 				NVM_ETS_DATA_INDEX_SHIFT);
2797 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2798 				   NVM_ETS_DATA_LOC_SHIFT);
2799 
2800 		if (sensor_location != 0)
2801 			hw->phy.ops.read_i2c_byte(hw,
2802 					e1000_emc_temp_data[sensor_index],
2803 					E1000_I2C_THERMAL_SENSOR_ADDR,
2804 					&data->sensor[i].temp);
2805 	}
2806 	return 0;
2807 }
2808 
2809 /**
2810  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2811  *  @hw: pointer to hardware structure
2812  *
2813  *  Sets the thermal sensor thresholds according to the NVM map
2814  *  and save off the threshold and location values into mac.thermal_sensor_data
2815  **/
igb_init_thermal_sensor_thresh_generic(struct e1000_hw * hw)2816 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2817 {
2818 	u16 ets_offset;
2819 	u16 ets_cfg;
2820 	u16 ets_sensor;
2821 	u8  low_thresh_delta;
2822 	u8  num_sensors;
2823 	u8  sensor_index;
2824 	u8  sensor_location;
2825 	u8  therm_limit;
2826 	u8  i;
2827 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2828 
2829 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2830 		return E1000_NOT_IMPLEMENTED;
2831 
2832 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2833 
2834 	data->sensor[0].location = 0x1;
2835 	data->sensor[0].caution_thresh =
2836 		(rd32(E1000_THHIGHTC) & 0xFF);
2837 	data->sensor[0].max_op_thresh =
2838 		(rd32(E1000_THLOWTC) & 0xFF);
2839 
2840 	/* Return the internal sensor only if ETS is unsupported */
2841 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2842 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2843 		return 0;
2844 
2845 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2846 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2847 	    != NVM_ETS_TYPE_EMC)
2848 		return E1000_NOT_IMPLEMENTED;
2849 
2850 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2851 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2852 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2853 
2854 	for (i = 1; i <= num_sensors; i++) {
2855 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2856 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2857 				NVM_ETS_DATA_INDEX_SHIFT);
2858 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2859 				   NVM_ETS_DATA_LOC_SHIFT);
2860 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2861 
2862 		hw->phy.ops.write_i2c_byte(hw,
2863 			e1000_emc_therm_limit[sensor_index],
2864 			E1000_I2C_THERMAL_SENSOR_ADDR,
2865 			therm_limit);
2866 
2867 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2868 			data->sensor[i].location = sensor_location;
2869 			data->sensor[i].caution_thresh = therm_limit;
2870 			data->sensor[i].max_op_thresh = therm_limit -
2871 							low_thresh_delta;
2872 		}
2873 	}
2874 	return 0;
2875 }
2876 
2877 #endif
2878 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2879 	.init_hw              = igb_init_hw_82575,
2880 	.check_for_link       = igb_check_for_link_82575,
2881 	.rar_set              = igb_rar_set,
2882 	.read_mac_addr        = igb_read_mac_addr_82575,
2883 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2884 #ifdef CONFIG_IGB_HWMON
2885 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2886 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2887 #endif
2888 };
2889 
2890 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2891 	.acquire              = igb_acquire_phy_82575,
2892 	.get_cfg_done         = igb_get_cfg_done_82575,
2893 	.release              = igb_release_phy_82575,
2894 	.write_i2c_byte       = igb_write_i2c_byte,
2895 	.read_i2c_byte        = igb_read_i2c_byte,
2896 };
2897 
2898 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2899 	.acquire              = igb_acquire_nvm_82575,
2900 	.read                 = igb_read_nvm_eerd,
2901 	.release              = igb_release_nvm_82575,
2902 	.write                = igb_write_nvm_spi,
2903 };
2904 
2905 const struct e1000_info e1000_82575_info = {
2906 	.get_invariants = igb_get_invariants_82575,
2907 	.mac_ops = &e1000_mac_ops_82575,
2908 	.phy_ops = &e1000_phy_ops_82575,
2909 	.nvm_ops = &e1000_nvm_ops_82575,
2910 };
2911 
2912