• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  * This software may be used and distributed according to the terms of
3  * the GNU General Public License (GPL), incorporated herein by reference.
4  * Drivers based on or derived from this code fall under the GPL and must
5  * retain the authorship, copyright and license notice.  This file is not
6  * a complete program and may only be used when the entire operating
7  * system is licensed under the GPL.
8  * See the file COPYING in this distribution for more information.
9  *
10  * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11  *                Virtualized Server Adapter.
12  * Copyright(c) 2002-2010 Exar Corp.
13  ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/pci_hotplug.h>
18 #include <linux/slab.h>
19 
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
23 
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) {				\
25 	status = __vxge_hw_vpath_stats_access(vpath,			\
26 					      VXGE_HW_STATS_OP_READ,	\
27 					      offset,			\
28 					      &val64);			\
29 	if (status != VXGE_HW_OK)					\
30 		return status;						\
31 }
32 
33 static void
vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem * vp_reg)34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
35 {
36 	u64 val64;
37 
38 	val64 = readq(&vp_reg->rxmac_vcfg0);
39 	val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 	writeq(val64, &vp_reg->rxmac_vcfg0);
41 	val64 = readq(&vp_reg->rxmac_vcfg0);
42 }
43 
44 /*
45  * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
46  */
vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device * hldev,u32 vp_id)47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
48 {
49 	struct vxge_hw_vpath_reg __iomem *vp_reg;
50 	struct __vxge_hw_virtualpath *vpath;
51 	u64 val64, rxd_count, rxd_spat;
52 	int count = 0, total_count = 0;
53 
54 	vpath = &hldev->virtual_paths[vp_id];
55 	vp_reg = vpath->vp_reg;
56 
57 	vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
58 
59 	/* Check that the ring controller for this vpath has enough free RxDs
60 	 * to send frames to the host.  This is done by reading the
61 	 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 	 * RXD_SPAT value for the vpath.
63 	 */
64 	val64 = readq(&vp_reg->prc_cfg6);
65 	rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
66 	/* Use a factor of 2 when comparing rxd_count against rxd_spat for some
67 	 * leg room.
68 	 */
69 	rxd_spat *= 2;
70 
71 	do {
72 		mdelay(1);
73 
74 		rxd_count = readq(&vp_reg->prc_rxd_doorbell);
75 
76 		/* Check that the ring controller for this vpath does
77 		 * not have any frame in its pipeline.
78 		 */
79 		val64 = readq(&vp_reg->frm_in_progress_cnt);
80 		if ((rxd_count <= rxd_spat) || (val64 > 0))
81 			count = 0;
82 		else
83 			count++;
84 		total_count++;
85 	} while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
86 			(total_count < VXGE_HW_MAX_POLLING_COUNT));
87 
88 	if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
89 		printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
90 			__func__);
91 
92 	return total_count;
93 }
94 
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96  * stored in the frame buffer for each vpath assigned to the given
97  * function (hldev) have been sent to the host.
98  */
vxge_hw_device_wait_receive_idle(struct __vxge_hw_device * hldev)99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
100 {
101 	int i, total_count = 0;
102 
103 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
104 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
105 			continue;
106 
107 		total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
108 		if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
109 			break;
110 	}
111 }
112 
113 /*
114  * __vxge_hw_device_register_poll
115  * Will poll certain register for specified amount of time.
116  * Will poll until masked bit is not cleared.
117  */
118 static enum vxge_hw_status
__vxge_hw_device_register_poll(void __iomem * reg,u64 mask,u32 max_millis)119 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
120 {
121 	u64 val64;
122 	u32 i = 0;
123 
124 	udelay(10);
125 
126 	do {
127 		val64 = readq(reg);
128 		if (!(val64 & mask))
129 			return VXGE_HW_OK;
130 		udelay(100);
131 	} while (++i <= 9);
132 
133 	i = 0;
134 	do {
135 		val64 = readq(reg);
136 		if (!(val64 & mask))
137 			return VXGE_HW_OK;
138 		mdelay(1);
139 	} while (++i <= max_millis);
140 
141 	return VXGE_HW_FAIL;
142 }
143 
144 static inline enum vxge_hw_status
__vxge_hw_pio_mem_write64(u64 val64,void __iomem * addr,u64 mask,u32 max_millis)145 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
146 			  u64 mask, u32 max_millis)
147 {
148 	__vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
149 	wmb();
150 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
151 	wmb();
152 
153 	return __vxge_hw_device_register_poll(addr, mask, max_millis);
154 }
155 
156 static enum vxge_hw_status
vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath * vpath,u32 action,u32 fw_memo,u32 offset,u64 * data0,u64 * data1,u64 * steer_ctrl)157 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
158 		     u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
159 		     u64 *steer_ctrl)
160 {
161 	struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
162 	enum vxge_hw_status status;
163 	u64 val64;
164 	u32 retry = 0, max_retry = 3;
165 
166 	spin_lock(&vpath->lock);
167 	if (!vpath->vp_open) {
168 		spin_unlock(&vpath->lock);
169 		max_retry = 100;
170 	}
171 
172 	writeq(*data0, &vp_reg->rts_access_steer_data0);
173 	writeq(*data1, &vp_reg->rts_access_steer_data1);
174 	wmb();
175 
176 	val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
177 		VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
178 		VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
179 		VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
180 		*steer_ctrl;
181 
182 	status = __vxge_hw_pio_mem_write64(val64,
183 					   &vp_reg->rts_access_steer_ctrl,
184 					   VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
185 					   VXGE_HW_DEF_DEVICE_POLL_MILLIS);
186 
187 	/* The __vxge_hw_device_register_poll can udelay for a significant
188 	 * amount of time, blocking other process from the CPU.  If it delays
189 	 * for ~5secs, a NMI error can occur.  A way around this is to give up
190 	 * the processor via msleep, but this is not allowed is under lock.
191 	 * So, only allow it to sleep for ~4secs if open.  Otherwise, delay for
192 	 * 1sec and sleep for 10ms until the firmware operation has completed
193 	 * or timed-out.
194 	 */
195 	while ((status != VXGE_HW_OK) && retry++ < max_retry) {
196 		if (!vpath->vp_open)
197 			msleep(20);
198 		status = __vxge_hw_device_register_poll(
199 					&vp_reg->rts_access_steer_ctrl,
200 					VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
201 					VXGE_HW_DEF_DEVICE_POLL_MILLIS);
202 	}
203 
204 	if (status != VXGE_HW_OK)
205 		goto out;
206 
207 	val64 = readq(&vp_reg->rts_access_steer_ctrl);
208 	if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
209 		*data0 = readq(&vp_reg->rts_access_steer_data0);
210 		*data1 = readq(&vp_reg->rts_access_steer_data1);
211 		*steer_ctrl = val64;
212 	} else
213 		status = VXGE_HW_FAIL;
214 
215 out:
216 	if (vpath->vp_open)
217 		spin_unlock(&vpath->lock);
218 	return status;
219 }
220 
221 enum vxge_hw_status
vxge_hw_upgrade_read_version(struct __vxge_hw_device * hldev,u32 * major,u32 * minor,u32 * build)222 vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
223 			     u32 *minor, u32 *build)
224 {
225 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
226 	struct __vxge_hw_virtualpath *vpath;
227 	enum vxge_hw_status status;
228 
229 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
230 
231 	status = vxge_hw_vpath_fw_api(vpath,
232 				      VXGE_HW_FW_UPGRADE_ACTION,
233 				      VXGE_HW_FW_UPGRADE_MEMO,
234 				      VXGE_HW_FW_UPGRADE_OFFSET_READ,
235 				      &data0, &data1, &steer_ctrl);
236 	if (status != VXGE_HW_OK)
237 		return status;
238 
239 	*major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
240 	*minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
241 	*build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
242 
243 	return status;
244 }
245 
vxge_hw_flash_fw(struct __vxge_hw_device * hldev)246 enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
247 {
248 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
249 	struct __vxge_hw_virtualpath *vpath;
250 	enum vxge_hw_status status;
251 	u32 ret;
252 
253 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
254 
255 	status = vxge_hw_vpath_fw_api(vpath,
256 				      VXGE_HW_FW_UPGRADE_ACTION,
257 				      VXGE_HW_FW_UPGRADE_MEMO,
258 				      VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
259 				      &data0, &data1, &steer_ctrl);
260 	if (status != VXGE_HW_OK) {
261 		vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
262 		goto exit;
263 	}
264 
265 	ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
266 	if (ret != 1) {
267 		vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
268 				__func__, ret);
269 		status = VXGE_HW_FAIL;
270 	}
271 
272 exit:
273 	return status;
274 }
275 
276 enum vxge_hw_status
vxge_update_fw_image(struct __vxge_hw_device * hldev,const u8 * fwdata,int size)277 vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
278 {
279 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
280 	struct __vxge_hw_virtualpath *vpath;
281 	enum vxge_hw_status status;
282 	int ret_code, sec_code;
283 
284 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
285 
286 	/* send upgrade start command */
287 	status = vxge_hw_vpath_fw_api(vpath,
288 				      VXGE_HW_FW_UPGRADE_ACTION,
289 				      VXGE_HW_FW_UPGRADE_MEMO,
290 				      VXGE_HW_FW_UPGRADE_OFFSET_START,
291 				      &data0, &data1, &steer_ctrl);
292 	if (status != VXGE_HW_OK) {
293 		vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
294 				__func__);
295 		return status;
296 	}
297 
298 	/* Transfer fw image to adapter 16 bytes at a time */
299 	for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
300 		steer_ctrl = 0;
301 
302 		/* The next 128bits of fwdata to be loaded onto the adapter */
303 		data0 = *((u64 *)fwdata);
304 		data1 = *((u64 *)fwdata + 1);
305 
306 		status = vxge_hw_vpath_fw_api(vpath,
307 					      VXGE_HW_FW_UPGRADE_ACTION,
308 					      VXGE_HW_FW_UPGRADE_MEMO,
309 					      VXGE_HW_FW_UPGRADE_OFFSET_SEND,
310 					      &data0, &data1, &steer_ctrl);
311 		if (status != VXGE_HW_OK) {
312 			vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
313 					__func__);
314 			goto out;
315 		}
316 
317 		ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
318 		switch (ret_code) {
319 		case VXGE_HW_FW_UPGRADE_OK:
320 			/* All OK, send next 16 bytes. */
321 			break;
322 		case VXGE_FW_UPGRADE_BYTES2SKIP:
323 			/* skip bytes in the stream */
324 			fwdata += (data0 >> 8) & 0xFFFFFFFF;
325 			break;
326 		case VXGE_HW_FW_UPGRADE_DONE:
327 			goto out;
328 		case VXGE_HW_FW_UPGRADE_ERR:
329 			sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
330 			switch (sec_code) {
331 			case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
332 			case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
333 				printk(KERN_ERR
334 				       "corrupted data from .ncf file\n");
335 				break;
336 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
337 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
338 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
339 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
340 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
341 				printk(KERN_ERR "invalid .ncf file\n");
342 				break;
343 			case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
344 				printk(KERN_ERR "buffer overflow\n");
345 				break;
346 			case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
347 				printk(KERN_ERR "failed to flash the image\n");
348 				break;
349 			case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
350 				printk(KERN_ERR
351 				       "generic error. Unknown error type\n");
352 				break;
353 			default:
354 				printk(KERN_ERR "Unknown error of type %d\n",
355 				       sec_code);
356 				break;
357 			}
358 			status = VXGE_HW_FAIL;
359 			goto out;
360 		default:
361 			printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
362 			status = VXGE_HW_FAIL;
363 			goto out;
364 		}
365 		/* point to next 16 bytes */
366 		fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
367 	}
368 out:
369 	return status;
370 }
371 
372 enum vxge_hw_status
vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device * hldev,struct eprom_image * img)373 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
374 				struct eprom_image *img)
375 {
376 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
377 	struct __vxge_hw_virtualpath *vpath;
378 	enum vxge_hw_status status;
379 	int i;
380 
381 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
382 
383 	for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
384 		data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
385 		data1 = steer_ctrl = 0;
386 
387 		status = vxge_hw_vpath_fw_api(vpath,
388 			VXGE_HW_FW_API_GET_EPROM_REV,
389 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
390 			0, &data0, &data1, &steer_ctrl);
391 		if (status != VXGE_HW_OK)
392 			break;
393 
394 		img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
395 		img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
396 		img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
397 		img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
398 	}
399 
400 	return status;
401 }
402 
403 /*
404  * __vxge_hw_channel_free - Free memory allocated for channel
405  * This function deallocates memory from the channel and various arrays
406  * in the channel
407  */
__vxge_hw_channel_free(struct __vxge_hw_channel * channel)408 static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
409 {
410 	kfree(channel->work_arr);
411 	kfree(channel->free_arr);
412 	kfree(channel->reserve_arr);
413 	kfree(channel->orig_arr);
414 	kfree(channel);
415 }
416 
417 /*
418  * __vxge_hw_channel_initialize - Initialize a channel
419  * This function initializes a channel by properly setting the
420  * various references
421  */
422 static enum vxge_hw_status
__vxge_hw_channel_initialize(struct __vxge_hw_channel * channel)423 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
424 {
425 	u32 i;
426 	struct __vxge_hw_virtualpath *vpath;
427 
428 	vpath = channel->vph->vpath;
429 
430 	if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
431 		for (i = 0; i < channel->length; i++)
432 			channel->orig_arr[i] = channel->reserve_arr[i];
433 	}
434 
435 	switch (channel->type) {
436 	case VXGE_HW_CHANNEL_TYPE_FIFO:
437 		vpath->fifoh = (struct __vxge_hw_fifo *)channel;
438 		channel->stats = &((struct __vxge_hw_fifo *)
439 				channel)->stats->common_stats;
440 		break;
441 	case VXGE_HW_CHANNEL_TYPE_RING:
442 		vpath->ringh = (struct __vxge_hw_ring *)channel;
443 		channel->stats = &((struct __vxge_hw_ring *)
444 				channel)->stats->common_stats;
445 		break;
446 	default:
447 		break;
448 	}
449 
450 	return VXGE_HW_OK;
451 }
452 
453 /*
454  * __vxge_hw_channel_reset - Resets a channel
455  * This function resets a channel by properly setting the various references
456  */
457 static enum vxge_hw_status
__vxge_hw_channel_reset(struct __vxge_hw_channel * channel)458 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
459 {
460 	u32 i;
461 
462 	for (i = 0; i < channel->length; i++) {
463 		if (channel->reserve_arr != NULL)
464 			channel->reserve_arr[i] = channel->orig_arr[i];
465 		if (channel->free_arr != NULL)
466 			channel->free_arr[i] = NULL;
467 		if (channel->work_arr != NULL)
468 			channel->work_arr[i] = NULL;
469 	}
470 	channel->free_ptr = channel->length;
471 	channel->reserve_ptr = channel->length;
472 	channel->reserve_top = 0;
473 	channel->post_index = 0;
474 	channel->compl_index = 0;
475 
476 	return VXGE_HW_OK;
477 }
478 
479 /*
480  * __vxge_hw_device_pci_e_init
481  * Initialize certain PCI/PCI-X configuration registers
482  * with recommended values. Save config space for future hw resets.
483  */
__vxge_hw_device_pci_e_init(struct __vxge_hw_device * hldev)484 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
485 {
486 	u16 cmd = 0;
487 
488 	/* Set the PErr Repconse bit and SERR in PCI command register. */
489 	pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
490 	cmd |= 0x140;
491 	pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
492 
493 	pci_save_state(hldev->pdev);
494 }
495 
496 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
497  * in progress
498  * This routine checks the vpath reset in progress register is turned zero
499  */
500 static enum vxge_hw_status
__vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem * vpath_rst_in_prog)501 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
502 {
503 	enum vxge_hw_status status;
504 	status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
505 			VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
506 			VXGE_HW_DEF_DEVICE_POLL_MILLIS);
507 	return status;
508 }
509 
510 /*
511  * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
512  * Set the swapper bits appropriately for the lagacy section.
513  */
514 static enum vxge_hw_status
__vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem * legacy_reg)515 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
516 {
517 	u64 val64;
518 	enum vxge_hw_status status = VXGE_HW_OK;
519 
520 	val64 = readq(&legacy_reg->toc_swapper_fb);
521 
522 	wmb();
523 
524 	switch (val64) {
525 	case VXGE_HW_SWAPPER_INITIAL_VALUE:
526 		return status;
527 
528 	case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
529 		writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
530 			&legacy_reg->pifm_rd_swap_en);
531 		writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
532 			&legacy_reg->pifm_rd_flip_en);
533 		writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
534 			&legacy_reg->pifm_wr_swap_en);
535 		writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
536 			&legacy_reg->pifm_wr_flip_en);
537 		break;
538 
539 	case VXGE_HW_SWAPPER_BYTE_SWAPPED:
540 		writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
541 			&legacy_reg->pifm_rd_swap_en);
542 		writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
543 			&legacy_reg->pifm_wr_swap_en);
544 		break;
545 
546 	case VXGE_HW_SWAPPER_BIT_FLIPPED:
547 		writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
548 			&legacy_reg->pifm_rd_flip_en);
549 		writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
550 			&legacy_reg->pifm_wr_flip_en);
551 		break;
552 	}
553 
554 	wmb();
555 
556 	val64 = readq(&legacy_reg->toc_swapper_fb);
557 
558 	if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
559 		status = VXGE_HW_ERR_SWAPPER_CTRL;
560 
561 	return status;
562 }
563 
564 /*
565  * __vxge_hw_device_toc_get
566  * This routine sets the swapper and reads the toc pointer and returns the
567  * memory mapped address of the toc
568  */
569 static struct vxge_hw_toc_reg __iomem *
__vxge_hw_device_toc_get(void __iomem * bar0)570 __vxge_hw_device_toc_get(void __iomem *bar0)
571 {
572 	u64 val64;
573 	struct vxge_hw_toc_reg __iomem *toc = NULL;
574 	enum vxge_hw_status status;
575 
576 	struct vxge_hw_legacy_reg __iomem *legacy_reg =
577 		(struct vxge_hw_legacy_reg __iomem *)bar0;
578 
579 	status = __vxge_hw_legacy_swapper_set(legacy_reg);
580 	if (status != VXGE_HW_OK)
581 		goto exit;
582 
583 	val64 =	readq(&legacy_reg->toc_first_pointer);
584 	toc = bar0 + val64;
585 exit:
586 	return toc;
587 }
588 
589 /*
590  * __vxge_hw_device_reg_addr_get
591  * This routine sets the swapper and reads the toc pointer and initializes the
592  * register location pointers in the device object. It waits until the ric is
593  * completed initializing registers.
594  */
595 static enum vxge_hw_status
__vxge_hw_device_reg_addr_get(struct __vxge_hw_device * hldev)596 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
597 {
598 	u64 val64;
599 	u32 i;
600 	enum vxge_hw_status status = VXGE_HW_OK;
601 
602 	hldev->legacy_reg = hldev->bar0;
603 
604 	hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
605 	if (hldev->toc_reg  == NULL) {
606 		status = VXGE_HW_FAIL;
607 		goto exit;
608 	}
609 
610 	val64 = readq(&hldev->toc_reg->toc_common_pointer);
611 	hldev->common_reg = hldev->bar0 + val64;
612 
613 	val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
614 	hldev->mrpcim_reg = hldev->bar0 + val64;
615 
616 	for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
617 		val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
618 		hldev->srpcim_reg[i] = hldev->bar0 + val64;
619 	}
620 
621 	for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
622 		val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
623 		hldev->vpmgmt_reg[i] = hldev->bar0 + val64;
624 	}
625 
626 	for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
627 		val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
628 		hldev->vpath_reg[i] = hldev->bar0 + val64;
629 	}
630 
631 	val64 = readq(&hldev->toc_reg->toc_kdfc);
632 
633 	switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
634 	case 0:
635 		hldev->kdfc = hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64) ;
636 		break;
637 	default:
638 		break;
639 	}
640 
641 	status = __vxge_hw_device_vpath_reset_in_prog_check(
642 			(u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
643 exit:
644 	return status;
645 }
646 
647 /*
648  * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
649  * This routine returns the Access Rights of the driver
650  */
651 static u32
__vxge_hw_device_access_rights_get(u32 host_type,u32 func_id)652 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
653 {
654 	u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
655 
656 	switch (host_type) {
657 	case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
658 		if (func_id == 0) {
659 			access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
660 					VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
661 		}
662 		break;
663 	case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
664 		access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
665 				VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
666 		break;
667 	case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
668 		access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
669 				VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
670 		break;
671 	case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
672 	case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
673 	case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
674 		break;
675 	case VXGE_HW_SR_VH_FUNCTION0:
676 	case VXGE_HW_VH_NORMAL_FUNCTION:
677 		access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
678 		break;
679 	}
680 
681 	return access_rights;
682 }
683 /*
684  * __vxge_hw_device_is_privilaged
685  * This routine checks if the device function is privilaged or not
686  */
687 
688 enum vxge_hw_status
__vxge_hw_device_is_privilaged(u32 host_type,u32 func_id)689 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
690 {
691 	if (__vxge_hw_device_access_rights_get(host_type,
692 		func_id) &
693 		VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
694 		return VXGE_HW_OK;
695 	else
696 		return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
697 }
698 
699 /*
700  * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
701  * Returns the function number of the vpath.
702  */
703 static u32
__vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem * vpmgmt_reg)704 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
705 {
706 	u64 val64;
707 
708 	val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
709 
710 	return
711 	 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
712 }
713 
714 /*
715  * __vxge_hw_device_host_info_get
716  * This routine returns the host type assignments
717  */
__vxge_hw_device_host_info_get(struct __vxge_hw_device * hldev)718 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
719 {
720 	u64 val64;
721 	u32 i;
722 
723 	val64 = readq(&hldev->common_reg->host_type_assignments);
724 
725 	hldev->host_type =
726 	   (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
727 
728 	hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
729 
730 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
731 		if (!(hldev->vpath_assignments & vxge_mBIT(i)))
732 			continue;
733 
734 		hldev->func_id =
735 			__vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
736 
737 		hldev->access_rights = __vxge_hw_device_access_rights_get(
738 			hldev->host_type, hldev->func_id);
739 
740 		hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
741 		hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
742 
743 		hldev->first_vp_id = i;
744 		break;
745 	}
746 }
747 
748 /*
749  * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
750  * link width and signalling rate.
751  */
752 static enum vxge_hw_status
__vxge_hw_verify_pci_e_info(struct __vxge_hw_device * hldev)753 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
754 {
755 	struct pci_dev *dev = hldev->pdev;
756 	u16 lnk;
757 
758 	/* Get the negotiated link width and speed from PCI config space */
759 	pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
760 
761 	if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
762 		return VXGE_HW_ERR_INVALID_PCI_INFO;
763 
764 	switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
765 	case PCIE_LNK_WIDTH_RESRV:
766 	case PCIE_LNK_X1:
767 	case PCIE_LNK_X2:
768 	case PCIE_LNK_X4:
769 	case PCIE_LNK_X8:
770 		break;
771 	default:
772 		return VXGE_HW_ERR_INVALID_PCI_INFO;
773 	}
774 
775 	return VXGE_HW_OK;
776 }
777 
778 /*
779  * __vxge_hw_device_initialize
780  * Initialize Titan-V hardware.
781  */
782 static enum vxge_hw_status
__vxge_hw_device_initialize(struct __vxge_hw_device * hldev)783 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
784 {
785 	enum vxge_hw_status status = VXGE_HW_OK;
786 
787 	if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
788 				hldev->func_id)) {
789 		/* Validate the pci-e link width and speed */
790 		status = __vxge_hw_verify_pci_e_info(hldev);
791 		if (status != VXGE_HW_OK)
792 			goto exit;
793 	}
794 
795 exit:
796 	return status;
797 }
798 
799 /*
800  * __vxge_hw_vpath_fw_ver_get - Get the fw version
801  * Returns FW Version
802  */
803 static enum vxge_hw_status
__vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_device_hw_info * hw_info)804 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
805 			   struct vxge_hw_device_hw_info *hw_info)
806 {
807 	struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
808 	struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
809 	struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
810 	struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
811 	u64 data0, data1 = 0, steer_ctrl = 0;
812 	enum vxge_hw_status status;
813 
814 	status = vxge_hw_vpath_fw_api(vpath,
815 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
816 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
817 			0, &data0, &data1, &steer_ctrl);
818 	if (status != VXGE_HW_OK)
819 		goto exit;
820 
821 	fw_date->day =
822 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
823 	fw_date->month =
824 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
825 	fw_date->year =
826 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
827 
828 	snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
829 		 fw_date->month, fw_date->day, fw_date->year);
830 
831 	fw_version->major =
832 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
833 	fw_version->minor =
834 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
835 	fw_version->build =
836 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
837 
838 	snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
839 		 fw_version->major, fw_version->minor, fw_version->build);
840 
841 	flash_date->day =
842 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
843 	flash_date->month =
844 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
845 	flash_date->year =
846 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
847 
848 	snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
849 		 flash_date->month, flash_date->day, flash_date->year);
850 
851 	flash_version->major =
852 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
853 	flash_version->minor =
854 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
855 	flash_version->build =
856 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
857 
858 	snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
859 		 flash_version->major, flash_version->minor,
860 		 flash_version->build);
861 
862 exit:
863 	return status;
864 }
865 
866 /*
867  * __vxge_hw_vpath_card_info_get - Get the serial numbers,
868  * part number and product description.
869  */
870 static enum vxge_hw_status
__vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_device_hw_info * hw_info)871 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
872 			      struct vxge_hw_device_hw_info *hw_info)
873 {
874 	enum vxge_hw_status status;
875 	u64 data0, data1 = 0, steer_ctrl = 0;
876 	u8 *serial_number = hw_info->serial_number;
877 	u8 *part_number = hw_info->part_number;
878 	u8 *product_desc = hw_info->product_desc;
879 	u32 i, j = 0;
880 
881 	data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
882 
883 	status = vxge_hw_vpath_fw_api(vpath,
884 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
885 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
886 			0, &data0, &data1, &steer_ctrl);
887 	if (status != VXGE_HW_OK)
888 		return status;
889 
890 	((u64 *)serial_number)[0] = be64_to_cpu(data0);
891 	((u64 *)serial_number)[1] = be64_to_cpu(data1);
892 
893 	data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
894 	data1 = steer_ctrl = 0;
895 
896 	status = vxge_hw_vpath_fw_api(vpath,
897 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
898 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
899 			0, &data0, &data1, &steer_ctrl);
900 	if (status != VXGE_HW_OK)
901 		return status;
902 
903 	((u64 *)part_number)[0] = be64_to_cpu(data0);
904 	((u64 *)part_number)[1] = be64_to_cpu(data1);
905 
906 	for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
907 	     i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
908 		data0 = i;
909 		data1 = steer_ctrl = 0;
910 
911 		status = vxge_hw_vpath_fw_api(vpath,
912 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
913 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
914 			0, &data0, &data1, &steer_ctrl);
915 		if (status != VXGE_HW_OK)
916 			return status;
917 
918 		((u64 *)product_desc)[j++] = be64_to_cpu(data0);
919 		((u64 *)product_desc)[j++] = be64_to_cpu(data1);
920 	}
921 
922 	return status;
923 }
924 
925 /*
926  * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
927  * Returns pci function mode
928  */
929 static enum vxge_hw_status
__vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_device_hw_info * hw_info)930 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
931 				  struct vxge_hw_device_hw_info *hw_info)
932 {
933 	u64 data0, data1 = 0, steer_ctrl = 0;
934 	enum vxge_hw_status status;
935 
936 	data0 = 0;
937 
938 	status = vxge_hw_vpath_fw_api(vpath,
939 			VXGE_HW_FW_API_GET_FUNC_MODE,
940 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
941 			0, &data0, &data1, &steer_ctrl);
942 	if (status != VXGE_HW_OK)
943 		return status;
944 
945 	hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
946 	return status;
947 }
948 
949 /*
950  * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
951  *               from MAC address table.
952  */
953 static enum vxge_hw_status
__vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath * vpath,u8 * macaddr,u8 * macaddr_mask)954 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
955 			 u8 *macaddr, u8 *macaddr_mask)
956 {
957 	u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
958 	    data0 = 0, data1 = 0, steer_ctrl = 0;
959 	enum vxge_hw_status status;
960 	int i;
961 
962 	do {
963 		status = vxge_hw_vpath_fw_api(vpath, action,
964 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
965 			0, &data0, &data1, &steer_ctrl);
966 		if (status != VXGE_HW_OK)
967 			goto exit;
968 
969 		data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
970 		data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
971 									data1);
972 
973 		for (i = ETH_ALEN; i > 0; i--) {
974 			macaddr[i - 1] = (u8) (data0 & 0xFF);
975 			data0 >>= 8;
976 
977 			macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
978 			data1 >>= 8;
979 		}
980 
981 		action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
982 		data0 = 0, data1 = 0, steer_ctrl = 0;
983 
984 	} while (!is_valid_ether_addr(macaddr));
985 exit:
986 	return status;
987 }
988 
989 /**
990  * vxge_hw_device_hw_info_get - Get the hw information
991  * Returns the vpath mask that has the bits set for each vpath allocated
992  * for the driver, FW version information, and the first mac address for
993  * each vpath
994  */
995 enum vxge_hw_status
vxge_hw_device_hw_info_get(void __iomem * bar0,struct vxge_hw_device_hw_info * hw_info)996 vxge_hw_device_hw_info_get(void __iomem *bar0,
997 			   struct vxge_hw_device_hw_info *hw_info)
998 {
999 	u32 i;
1000 	u64 val64;
1001 	struct vxge_hw_toc_reg __iomem *toc;
1002 	struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
1003 	struct vxge_hw_common_reg __iomem *common_reg;
1004 	struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
1005 	enum vxge_hw_status status;
1006 	struct __vxge_hw_virtualpath vpath;
1007 
1008 	memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
1009 
1010 	toc = __vxge_hw_device_toc_get(bar0);
1011 	if (toc == NULL) {
1012 		status = VXGE_HW_ERR_CRITICAL;
1013 		goto exit;
1014 	}
1015 
1016 	val64 = readq(&toc->toc_common_pointer);
1017 	common_reg = bar0 + val64;
1018 
1019 	status = __vxge_hw_device_vpath_reset_in_prog_check(
1020 		(u64 __iomem *)&common_reg->vpath_rst_in_prog);
1021 	if (status != VXGE_HW_OK)
1022 		goto exit;
1023 
1024 	hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
1025 
1026 	val64 = readq(&common_reg->host_type_assignments);
1027 
1028 	hw_info->host_type =
1029 	   (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
1030 
1031 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1032 		if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1033 			continue;
1034 
1035 		val64 = readq(&toc->toc_vpmgmt_pointer[i]);
1036 
1037 		vpmgmt_reg = bar0 + val64;
1038 
1039 		hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
1040 		if (__vxge_hw_device_access_rights_get(hw_info->host_type,
1041 			hw_info->func_id) &
1042 			VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
1043 
1044 			val64 = readq(&toc->toc_mrpcim_pointer);
1045 
1046 			mrpcim_reg = bar0 + val64;
1047 
1048 			writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
1049 			wmb();
1050 		}
1051 
1052 		val64 = readq(&toc->toc_vpath_pointer[i]);
1053 
1054 		spin_lock_init(&vpath.lock);
1055 		vpath.vp_reg = bar0 + val64;
1056 		vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1057 
1058 		status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
1059 		if (status != VXGE_HW_OK)
1060 			goto exit;
1061 
1062 		status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
1063 		if (status != VXGE_HW_OK)
1064 			goto exit;
1065 
1066 		status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
1067 		if (status != VXGE_HW_OK)
1068 			goto exit;
1069 
1070 		break;
1071 	}
1072 
1073 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1074 		if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1075 			continue;
1076 
1077 		val64 = readq(&toc->toc_vpath_pointer[i]);
1078 		vpath.vp_reg = bar0 + val64;
1079 		vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1080 
1081 		status =  __vxge_hw_vpath_addr_get(&vpath,
1082 				hw_info->mac_addrs[i],
1083 				hw_info->mac_addr_masks[i]);
1084 		if (status != VXGE_HW_OK)
1085 			goto exit;
1086 	}
1087 exit:
1088 	return status;
1089 }
1090 
1091 /*
1092  * __vxge_hw_blockpool_destroy - Deallocates the block pool
1093  */
__vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool * blockpool)1094 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
1095 {
1096 	struct __vxge_hw_device *hldev;
1097 	struct list_head *p, *n;
1098 	u16 ret;
1099 
1100 	if (blockpool == NULL) {
1101 		ret = 1;
1102 		goto exit;
1103 	}
1104 
1105 	hldev = blockpool->hldev;
1106 
1107 	list_for_each_safe(p, n, &blockpool->free_block_list) {
1108 		pci_unmap_single(hldev->pdev,
1109 			((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
1110 			((struct __vxge_hw_blockpool_entry *)p)->length,
1111 			PCI_DMA_BIDIRECTIONAL);
1112 
1113 		vxge_os_dma_free(hldev->pdev,
1114 			((struct __vxge_hw_blockpool_entry *)p)->memblock,
1115 			&((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
1116 
1117 		list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1118 		kfree(p);
1119 		blockpool->pool_size--;
1120 	}
1121 
1122 	list_for_each_safe(p, n, &blockpool->free_entry_list) {
1123 		list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1124 		kfree((void *)p);
1125 	}
1126 	ret = 0;
1127 exit:
1128 	return;
1129 }
1130 
1131 /*
1132  * __vxge_hw_blockpool_create - Create block pool
1133  */
1134 static enum vxge_hw_status
__vxge_hw_blockpool_create(struct __vxge_hw_device * hldev,struct __vxge_hw_blockpool * blockpool,u32 pool_size,u32 pool_max)1135 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1136 			   struct __vxge_hw_blockpool *blockpool,
1137 			   u32 pool_size,
1138 			   u32 pool_max)
1139 {
1140 	u32 i;
1141 	struct __vxge_hw_blockpool_entry *entry = NULL;
1142 	void *memblock;
1143 	dma_addr_t dma_addr;
1144 	struct pci_dev *dma_handle;
1145 	struct pci_dev *acc_handle;
1146 	enum vxge_hw_status status = VXGE_HW_OK;
1147 
1148 	if (blockpool == NULL) {
1149 		status = VXGE_HW_FAIL;
1150 		goto blockpool_create_exit;
1151 	}
1152 
1153 	blockpool->hldev = hldev;
1154 	blockpool->block_size = VXGE_HW_BLOCK_SIZE;
1155 	blockpool->pool_size = 0;
1156 	blockpool->pool_max = pool_max;
1157 	blockpool->req_out = 0;
1158 
1159 	INIT_LIST_HEAD(&blockpool->free_block_list);
1160 	INIT_LIST_HEAD(&blockpool->free_entry_list);
1161 
1162 	for (i = 0; i < pool_size + pool_max; i++) {
1163 		entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1164 				GFP_KERNEL);
1165 		if (entry == NULL) {
1166 			__vxge_hw_blockpool_destroy(blockpool);
1167 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1168 			goto blockpool_create_exit;
1169 		}
1170 		list_add(&entry->item, &blockpool->free_entry_list);
1171 	}
1172 
1173 	for (i = 0; i < pool_size; i++) {
1174 		memblock = vxge_os_dma_malloc(
1175 				hldev->pdev,
1176 				VXGE_HW_BLOCK_SIZE,
1177 				&dma_handle,
1178 				&acc_handle);
1179 		if (memblock == NULL) {
1180 			__vxge_hw_blockpool_destroy(blockpool);
1181 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1182 			goto blockpool_create_exit;
1183 		}
1184 
1185 		dma_addr = pci_map_single(hldev->pdev, memblock,
1186 				VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
1187 		if (unlikely(pci_dma_mapping_error(hldev->pdev,
1188 				dma_addr))) {
1189 			vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
1190 			__vxge_hw_blockpool_destroy(blockpool);
1191 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1192 			goto blockpool_create_exit;
1193 		}
1194 
1195 		if (!list_empty(&blockpool->free_entry_list))
1196 			entry = (struct __vxge_hw_blockpool_entry *)
1197 				list_first_entry(&blockpool->free_entry_list,
1198 					struct __vxge_hw_blockpool_entry,
1199 					item);
1200 
1201 		if (entry == NULL)
1202 			entry =
1203 			    kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1204 					GFP_KERNEL);
1205 		if (entry != NULL) {
1206 			list_del(&entry->item);
1207 			entry->length = VXGE_HW_BLOCK_SIZE;
1208 			entry->memblock = memblock;
1209 			entry->dma_addr = dma_addr;
1210 			entry->acc_handle = acc_handle;
1211 			entry->dma_handle = dma_handle;
1212 			list_add(&entry->item,
1213 					  &blockpool->free_block_list);
1214 			blockpool->pool_size++;
1215 		} else {
1216 			__vxge_hw_blockpool_destroy(blockpool);
1217 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1218 			goto blockpool_create_exit;
1219 		}
1220 	}
1221 
1222 blockpool_create_exit:
1223 	return status;
1224 }
1225 
1226 /*
1227  * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1228  * Check the fifo configuration
1229  */
1230 static enum vxge_hw_status
__vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config * fifo_config)1231 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1232 {
1233 	if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1234 	    (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1235 		return VXGE_HW_BADCFG_FIFO_BLOCKS;
1236 
1237 	return VXGE_HW_OK;
1238 }
1239 
1240 /*
1241  * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1242  * Check the vpath configuration
1243  */
1244 static enum vxge_hw_status
__vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config * vp_config)1245 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1246 {
1247 	enum vxge_hw_status status;
1248 
1249 	if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1250 	    (vp_config->min_bandwidth >	VXGE_HW_VPATH_BANDWIDTH_MAX))
1251 		return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1252 
1253 	status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1254 	if (status != VXGE_HW_OK)
1255 		return status;
1256 
1257 	if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1258 		((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1259 		(vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1260 		return VXGE_HW_BADCFG_VPATH_MTU;
1261 
1262 	if ((vp_config->rpa_strip_vlan_tag !=
1263 		VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1264 		(vp_config->rpa_strip_vlan_tag !=
1265 		VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1266 		(vp_config->rpa_strip_vlan_tag !=
1267 		VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1268 		return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1269 
1270 	return VXGE_HW_OK;
1271 }
1272 
1273 /*
1274  * __vxge_hw_device_config_check - Check device configuration.
1275  * Check the device configuration
1276  */
1277 static enum vxge_hw_status
__vxge_hw_device_config_check(struct vxge_hw_device_config * new_config)1278 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1279 {
1280 	u32 i;
1281 	enum vxge_hw_status status;
1282 
1283 	if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1284 	    (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1285 	    (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1286 	    (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1287 		return VXGE_HW_BADCFG_INTR_MODE;
1288 
1289 	if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1290 	    (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1291 		return VXGE_HW_BADCFG_RTS_MAC_EN;
1292 
1293 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1294 		status = __vxge_hw_device_vpath_config_check(
1295 				&new_config->vp_config[i]);
1296 		if (status != VXGE_HW_OK)
1297 			return status;
1298 	}
1299 
1300 	return VXGE_HW_OK;
1301 }
1302 
1303 /*
1304  * vxge_hw_device_initialize - Initialize Titan device.
1305  * Initialize Titan device. Note that all the arguments of this public API
1306  * are 'IN', including @hldev. Driver cooperates with
1307  * OS to find new Titan device, locate its PCI and memory spaces.
1308  *
1309  * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1310  * to enable the latter to perform Titan hardware initialization.
1311  */
1312 enum vxge_hw_status
vxge_hw_device_initialize(struct __vxge_hw_device ** devh,struct vxge_hw_device_attr * attr,struct vxge_hw_device_config * device_config)1313 vxge_hw_device_initialize(
1314 	struct __vxge_hw_device **devh,
1315 	struct vxge_hw_device_attr *attr,
1316 	struct vxge_hw_device_config *device_config)
1317 {
1318 	u32 i;
1319 	u32 nblocks = 0;
1320 	struct __vxge_hw_device *hldev = NULL;
1321 	enum vxge_hw_status status = VXGE_HW_OK;
1322 
1323 	status = __vxge_hw_device_config_check(device_config);
1324 	if (status != VXGE_HW_OK)
1325 		goto exit;
1326 
1327 	hldev = vzalloc(sizeof(struct __vxge_hw_device));
1328 	if (hldev == NULL) {
1329 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
1330 		goto exit;
1331 	}
1332 
1333 	hldev->magic = VXGE_HW_DEVICE_MAGIC;
1334 
1335 	vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
1336 
1337 	/* apply config */
1338 	memcpy(&hldev->config, device_config,
1339 		sizeof(struct vxge_hw_device_config));
1340 
1341 	hldev->bar0 = attr->bar0;
1342 	hldev->pdev = attr->pdev;
1343 
1344 	hldev->uld_callbacks = attr->uld_callbacks;
1345 
1346 	__vxge_hw_device_pci_e_init(hldev);
1347 
1348 	status = __vxge_hw_device_reg_addr_get(hldev);
1349 	if (status != VXGE_HW_OK) {
1350 		vfree(hldev);
1351 		goto exit;
1352 	}
1353 
1354 	__vxge_hw_device_host_info_get(hldev);
1355 
1356 	/* Incrementing for stats blocks */
1357 	nblocks++;
1358 
1359 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1360 		if (!(hldev->vpath_assignments & vxge_mBIT(i)))
1361 			continue;
1362 
1363 		if (device_config->vp_config[i].ring.enable ==
1364 			VXGE_HW_RING_ENABLE)
1365 			nblocks += device_config->vp_config[i].ring.ring_blocks;
1366 
1367 		if (device_config->vp_config[i].fifo.enable ==
1368 			VXGE_HW_FIFO_ENABLE)
1369 			nblocks += device_config->vp_config[i].fifo.fifo_blocks;
1370 		nblocks++;
1371 	}
1372 
1373 	if (__vxge_hw_blockpool_create(hldev,
1374 		&hldev->block_pool,
1375 		device_config->dma_blockpool_initial + nblocks,
1376 		device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
1377 
1378 		vxge_hw_device_terminate(hldev);
1379 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
1380 		goto exit;
1381 	}
1382 
1383 	status = __vxge_hw_device_initialize(hldev);
1384 	if (status != VXGE_HW_OK) {
1385 		vxge_hw_device_terminate(hldev);
1386 		goto exit;
1387 	}
1388 
1389 	*devh = hldev;
1390 exit:
1391 	return status;
1392 }
1393 
1394 /*
1395  * vxge_hw_device_terminate - Terminate Titan device.
1396  * Terminate HW device.
1397  */
1398 void
vxge_hw_device_terminate(struct __vxge_hw_device * hldev)1399 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
1400 {
1401 	vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
1402 
1403 	hldev->magic = VXGE_HW_DEVICE_DEAD;
1404 	__vxge_hw_blockpool_destroy(&hldev->block_pool);
1405 	vfree(hldev);
1406 }
1407 
1408 /*
1409  * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1410  *                           and offset and perform an operation
1411  */
1412 static enum vxge_hw_status
__vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath * vpath,u32 operation,u32 offset,u64 * stat)1413 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
1414 			     u32 operation, u32 offset, u64 *stat)
1415 {
1416 	u64 val64;
1417 	enum vxge_hw_status status = VXGE_HW_OK;
1418 	struct vxge_hw_vpath_reg __iomem *vp_reg;
1419 
1420 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1421 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1422 		goto vpath_stats_access_exit;
1423 	}
1424 
1425 	vp_reg = vpath->vp_reg;
1426 
1427 	val64 =  VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
1428 		 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
1429 		 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
1430 
1431 	status = __vxge_hw_pio_mem_write64(val64,
1432 				&vp_reg->xmac_stats_access_cmd,
1433 				VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
1434 				vpath->hldev->config.device_poll_millis);
1435 	if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1436 		*stat = readq(&vp_reg->xmac_stats_access_data);
1437 	else
1438 		*stat = 0;
1439 
1440 vpath_stats_access_exit:
1441 	return status;
1442 }
1443 
1444 /*
1445  * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1446  */
1447 static enum vxge_hw_status
__vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_xmac_vpath_tx_stats * vpath_tx_stats)1448 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
1449 			struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
1450 {
1451 	u64 *val64;
1452 	int i;
1453 	u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
1454 	enum vxge_hw_status status = VXGE_HW_OK;
1455 
1456 	val64 = (u64 *)vpath_tx_stats;
1457 
1458 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1459 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1460 		goto exit;
1461 	}
1462 
1463 	for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
1464 		status = __vxge_hw_vpath_stats_access(vpath,
1465 					VXGE_HW_STATS_OP_READ,
1466 					offset, val64);
1467 		if (status != VXGE_HW_OK)
1468 			goto exit;
1469 		offset++;
1470 		val64++;
1471 	}
1472 exit:
1473 	return status;
1474 }
1475 
1476 /*
1477  * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1478  */
1479 static enum vxge_hw_status
__vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_xmac_vpath_rx_stats * vpath_rx_stats)1480 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
1481 			struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
1482 {
1483 	u64 *val64;
1484 	enum vxge_hw_status status = VXGE_HW_OK;
1485 	int i;
1486 	u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
1487 	val64 = (u64 *) vpath_rx_stats;
1488 
1489 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1490 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1491 		goto exit;
1492 	}
1493 	for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
1494 		status = __vxge_hw_vpath_stats_access(vpath,
1495 					VXGE_HW_STATS_OP_READ,
1496 					offset >> 3, val64);
1497 		if (status != VXGE_HW_OK)
1498 			goto exit;
1499 
1500 		offset += 8;
1501 		val64++;
1502 	}
1503 exit:
1504 	return status;
1505 }
1506 
1507 /*
1508  * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1509  */
1510 static enum vxge_hw_status
__vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_vpath_stats_hw_info * hw_stats)1511 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
1512 			  struct vxge_hw_vpath_stats_hw_info *hw_stats)
1513 {
1514 	u64 val64;
1515 	enum vxge_hw_status status = VXGE_HW_OK;
1516 	struct vxge_hw_vpath_reg __iomem *vp_reg;
1517 
1518 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1519 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1520 		goto exit;
1521 	}
1522 	vp_reg = vpath->vp_reg;
1523 
1524 	val64 = readq(&vp_reg->vpath_debug_stats0);
1525 	hw_stats->ini_num_mwr_sent =
1526 		(u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
1527 
1528 	val64 = readq(&vp_reg->vpath_debug_stats1);
1529 	hw_stats->ini_num_mrd_sent =
1530 		(u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
1531 
1532 	val64 = readq(&vp_reg->vpath_debug_stats2);
1533 	hw_stats->ini_num_cpl_rcvd =
1534 		(u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
1535 
1536 	val64 = readq(&vp_reg->vpath_debug_stats3);
1537 	hw_stats->ini_num_mwr_byte_sent =
1538 		VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
1539 
1540 	val64 = readq(&vp_reg->vpath_debug_stats4);
1541 	hw_stats->ini_num_cpl_byte_rcvd =
1542 		VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
1543 
1544 	val64 = readq(&vp_reg->vpath_debug_stats5);
1545 	hw_stats->wrcrdtarb_xoff =
1546 		(u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
1547 
1548 	val64 = readq(&vp_reg->vpath_debug_stats6);
1549 	hw_stats->rdcrdtarb_xoff =
1550 		(u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
1551 
1552 	val64 = readq(&vp_reg->vpath_genstats_count01);
1553 	hw_stats->vpath_genstats_count0 =
1554 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1555 		val64);
1556 
1557 	val64 = readq(&vp_reg->vpath_genstats_count01);
1558 	hw_stats->vpath_genstats_count1 =
1559 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1560 		val64);
1561 
1562 	val64 = readq(&vp_reg->vpath_genstats_count23);
1563 	hw_stats->vpath_genstats_count2 =
1564 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1565 		val64);
1566 
1567 	val64 = readq(&vp_reg->vpath_genstats_count01);
1568 	hw_stats->vpath_genstats_count3 =
1569 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1570 		val64);
1571 
1572 	val64 = readq(&vp_reg->vpath_genstats_count4);
1573 	hw_stats->vpath_genstats_count4 =
1574 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1575 		val64);
1576 
1577 	val64 = readq(&vp_reg->vpath_genstats_count5);
1578 	hw_stats->vpath_genstats_count5 =
1579 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1580 		val64);
1581 
1582 	status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
1583 	if (status != VXGE_HW_OK)
1584 		goto exit;
1585 
1586 	status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
1587 	if (status != VXGE_HW_OK)
1588 		goto exit;
1589 
1590 	VXGE_HW_VPATH_STATS_PIO_READ(
1591 		VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
1592 
1593 	hw_stats->prog_event_vnum0 =
1594 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
1595 
1596 	hw_stats->prog_event_vnum1 =
1597 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
1598 
1599 	VXGE_HW_VPATH_STATS_PIO_READ(
1600 		VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
1601 
1602 	hw_stats->prog_event_vnum2 =
1603 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
1604 
1605 	hw_stats->prog_event_vnum3 =
1606 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
1607 
1608 	val64 = readq(&vp_reg->rx_multi_cast_stats);
1609 	hw_stats->rx_multi_cast_frame_discard =
1610 		(u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
1611 
1612 	val64 = readq(&vp_reg->rx_frm_transferred);
1613 	hw_stats->rx_frm_transferred =
1614 		(u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
1615 
1616 	val64 = readq(&vp_reg->rxd_returned);
1617 	hw_stats->rxd_returned =
1618 		(u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
1619 
1620 	val64 = readq(&vp_reg->dbg_stats_rx_mpa);
1621 	hw_stats->rx_mpa_len_fail_frms =
1622 		(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
1623 	hw_stats->rx_mpa_mrk_fail_frms =
1624 		(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
1625 	hw_stats->rx_mpa_crc_fail_frms =
1626 		(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
1627 
1628 	val64 = readq(&vp_reg->dbg_stats_rx_fau);
1629 	hw_stats->rx_permitted_frms =
1630 		(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
1631 	hw_stats->rx_vp_reset_discarded_frms =
1632 	(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
1633 	hw_stats->rx_wol_frms =
1634 		(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
1635 
1636 	val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
1637 	hw_stats->tx_vp_reset_discarded_frms =
1638 	(u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1639 		val64);
1640 exit:
1641 	return status;
1642 }
1643 
1644 /*
1645  * vxge_hw_device_stats_get - Get the device hw statistics.
1646  * Returns the vpath h/w stats for the device.
1647  */
1648 enum vxge_hw_status
vxge_hw_device_stats_get(struct __vxge_hw_device * hldev,struct vxge_hw_device_stats_hw_info * hw_stats)1649 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
1650 			struct vxge_hw_device_stats_hw_info *hw_stats)
1651 {
1652 	u32 i;
1653 	enum vxge_hw_status status = VXGE_HW_OK;
1654 
1655 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1656 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
1657 			(hldev->virtual_paths[i].vp_open ==
1658 				VXGE_HW_VP_NOT_OPEN))
1659 			continue;
1660 
1661 		memcpy(hldev->virtual_paths[i].hw_stats_sav,
1662 				hldev->virtual_paths[i].hw_stats,
1663 				sizeof(struct vxge_hw_vpath_stats_hw_info));
1664 
1665 		status = __vxge_hw_vpath_stats_get(
1666 			&hldev->virtual_paths[i],
1667 			hldev->virtual_paths[i].hw_stats);
1668 	}
1669 
1670 	memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
1671 			sizeof(struct vxge_hw_device_stats_hw_info));
1672 
1673 	return status;
1674 }
1675 
1676 /*
1677  * vxge_hw_driver_stats_get - Get the device sw statistics.
1678  * Returns the vpath s/w stats for the device.
1679  */
vxge_hw_driver_stats_get(struct __vxge_hw_device * hldev,struct vxge_hw_device_stats_sw_info * sw_stats)1680 enum vxge_hw_status vxge_hw_driver_stats_get(
1681 			struct __vxge_hw_device *hldev,
1682 			struct vxge_hw_device_stats_sw_info *sw_stats)
1683 {
1684 	memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
1685 		sizeof(struct vxge_hw_device_stats_sw_info));
1686 
1687 	return VXGE_HW_OK;
1688 }
1689 
1690 /*
1691  * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1692  *                           and offset and perform an operation
1693  * Get the statistics from the given location and offset.
1694  */
1695 enum vxge_hw_status
vxge_hw_mrpcim_stats_access(struct __vxge_hw_device * hldev,u32 operation,u32 location,u32 offset,u64 * stat)1696 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
1697 			    u32 operation, u32 location, u32 offset, u64 *stat)
1698 {
1699 	u64 val64;
1700 	enum vxge_hw_status status = VXGE_HW_OK;
1701 
1702 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1703 			hldev->func_id);
1704 	if (status != VXGE_HW_OK)
1705 		goto exit;
1706 
1707 	val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
1708 		VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
1709 		VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
1710 		VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
1711 
1712 	status = __vxge_hw_pio_mem_write64(val64,
1713 				&hldev->mrpcim_reg->xmac_stats_sys_cmd,
1714 				VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
1715 				hldev->config.device_poll_millis);
1716 
1717 	if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1718 		*stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
1719 	else
1720 		*stat = 0;
1721 exit:
1722 	return status;
1723 }
1724 
1725 /*
1726  * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1727  * Get the Statistics on aggregate port
1728  */
1729 static enum vxge_hw_status
vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device * hldev,u32 port,struct vxge_hw_xmac_aggr_stats * aggr_stats)1730 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
1731 				   struct vxge_hw_xmac_aggr_stats *aggr_stats)
1732 {
1733 	u64 *val64;
1734 	int i;
1735 	u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
1736 	enum vxge_hw_status status = VXGE_HW_OK;
1737 
1738 	val64 = (u64 *)aggr_stats;
1739 
1740 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1741 			hldev->func_id);
1742 	if (status != VXGE_HW_OK)
1743 		goto exit;
1744 
1745 	for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1746 		status = vxge_hw_mrpcim_stats_access(hldev,
1747 					VXGE_HW_STATS_OP_READ,
1748 					VXGE_HW_STATS_LOC_AGGR,
1749 					((offset + (104 * port)) >> 3), val64);
1750 		if (status != VXGE_HW_OK)
1751 			goto exit;
1752 
1753 		offset += 8;
1754 		val64++;
1755 	}
1756 exit:
1757 	return status;
1758 }
1759 
1760 /*
1761  * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1762  * Get the Statistics on port
1763  */
1764 static enum vxge_hw_status
vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device * hldev,u32 port,struct vxge_hw_xmac_port_stats * port_stats)1765 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1766 				   struct vxge_hw_xmac_port_stats *port_stats)
1767 {
1768 	u64 *val64;
1769 	enum vxge_hw_status status = VXGE_HW_OK;
1770 	int i;
1771 	u32 offset = 0x0;
1772 	val64 = (u64 *) port_stats;
1773 
1774 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1775 			hldev->func_id);
1776 	if (status != VXGE_HW_OK)
1777 		goto exit;
1778 
1779 	for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1780 		status = vxge_hw_mrpcim_stats_access(hldev,
1781 					VXGE_HW_STATS_OP_READ,
1782 					VXGE_HW_STATS_LOC_AGGR,
1783 					((offset + (608 * port)) >> 3), val64);
1784 		if (status != VXGE_HW_OK)
1785 			goto exit;
1786 
1787 		offset += 8;
1788 		val64++;
1789 	}
1790 
1791 exit:
1792 	return status;
1793 }
1794 
1795 /*
1796  * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1797  * Get the XMAC Statistics
1798  */
1799 enum vxge_hw_status
vxge_hw_device_xmac_stats_get(struct __vxge_hw_device * hldev,struct vxge_hw_xmac_stats * xmac_stats)1800 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1801 			      struct vxge_hw_xmac_stats *xmac_stats)
1802 {
1803 	enum vxge_hw_status status = VXGE_HW_OK;
1804 	u32 i;
1805 
1806 	status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1807 					0, &xmac_stats->aggr_stats[0]);
1808 	if (status != VXGE_HW_OK)
1809 		goto exit;
1810 
1811 	status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1812 				1, &xmac_stats->aggr_stats[1]);
1813 	if (status != VXGE_HW_OK)
1814 		goto exit;
1815 
1816 	for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1817 
1818 		status = vxge_hw_device_xmac_port_stats_get(hldev,
1819 					i, &xmac_stats->port_stats[i]);
1820 		if (status != VXGE_HW_OK)
1821 			goto exit;
1822 	}
1823 
1824 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1825 
1826 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1827 			continue;
1828 
1829 		status = __vxge_hw_vpath_xmac_tx_stats_get(
1830 					&hldev->virtual_paths[i],
1831 					&xmac_stats->vpath_tx_stats[i]);
1832 		if (status != VXGE_HW_OK)
1833 			goto exit;
1834 
1835 		status = __vxge_hw_vpath_xmac_rx_stats_get(
1836 					&hldev->virtual_paths[i],
1837 					&xmac_stats->vpath_rx_stats[i]);
1838 		if (status != VXGE_HW_OK)
1839 			goto exit;
1840 	}
1841 exit:
1842 	return status;
1843 }
1844 
1845 /*
1846  * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1847  * This routine is used to dynamically change the debug output
1848  */
vxge_hw_device_debug_set(struct __vxge_hw_device * hldev,enum vxge_debug_level level,u32 mask)1849 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1850 			      enum vxge_debug_level level, u32 mask)
1851 {
1852 	if (hldev == NULL)
1853 		return;
1854 
1855 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1856 	defined(VXGE_DEBUG_ERR_MASK)
1857 	hldev->debug_module_mask = mask;
1858 	hldev->debug_level = level;
1859 #endif
1860 
1861 #if defined(VXGE_DEBUG_ERR_MASK)
1862 	hldev->level_err = level & VXGE_ERR;
1863 #endif
1864 
1865 #if defined(VXGE_DEBUG_TRACE_MASK)
1866 	hldev->level_trace = level & VXGE_TRACE;
1867 #endif
1868 }
1869 
1870 /*
1871  * vxge_hw_device_error_level_get - Get the error level
1872  * This routine returns the current error level set
1873  */
vxge_hw_device_error_level_get(struct __vxge_hw_device * hldev)1874 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1875 {
1876 #if defined(VXGE_DEBUG_ERR_MASK)
1877 	if (hldev == NULL)
1878 		return VXGE_ERR;
1879 	else
1880 		return hldev->level_err;
1881 #else
1882 	return 0;
1883 #endif
1884 }
1885 
1886 /*
1887  * vxge_hw_device_trace_level_get - Get the trace level
1888  * This routine returns the current trace level set
1889  */
vxge_hw_device_trace_level_get(struct __vxge_hw_device * hldev)1890 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1891 {
1892 #if defined(VXGE_DEBUG_TRACE_MASK)
1893 	if (hldev == NULL)
1894 		return VXGE_TRACE;
1895 	else
1896 		return hldev->level_trace;
1897 #else
1898 	return 0;
1899 #endif
1900 }
1901 
1902 /*
1903  * vxge_hw_getpause_data -Pause frame frame generation and reception.
1904  * Returns the Pause frame generation and reception capability of the NIC.
1905  */
vxge_hw_device_getpause_data(struct __vxge_hw_device * hldev,u32 port,u32 * tx,u32 * rx)1906 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1907 						 u32 port, u32 *tx, u32 *rx)
1908 {
1909 	u64 val64;
1910 	enum vxge_hw_status status = VXGE_HW_OK;
1911 
1912 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1913 		status = VXGE_HW_ERR_INVALID_DEVICE;
1914 		goto exit;
1915 	}
1916 
1917 	if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1918 		status = VXGE_HW_ERR_INVALID_PORT;
1919 		goto exit;
1920 	}
1921 
1922 	if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1923 		status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
1924 		goto exit;
1925 	}
1926 
1927 	val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1928 	if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1929 		*tx = 1;
1930 	if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1931 		*rx = 1;
1932 exit:
1933 	return status;
1934 }
1935 
1936 /*
1937  * vxge_hw_device_setpause_data -  set/reset pause frame generation.
1938  * It can be used to set or reset Pause frame generation or reception
1939  * support of the NIC.
1940  */
vxge_hw_device_setpause_data(struct __vxge_hw_device * hldev,u32 port,u32 tx,u32 rx)1941 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1942 						 u32 port, u32 tx, u32 rx)
1943 {
1944 	u64 val64;
1945 	enum vxge_hw_status status = VXGE_HW_OK;
1946 
1947 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1948 		status = VXGE_HW_ERR_INVALID_DEVICE;
1949 		goto exit;
1950 	}
1951 
1952 	if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1953 		status = VXGE_HW_ERR_INVALID_PORT;
1954 		goto exit;
1955 	}
1956 
1957 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1958 			hldev->func_id);
1959 	if (status != VXGE_HW_OK)
1960 		goto exit;
1961 
1962 	val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1963 	if (tx)
1964 		val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1965 	else
1966 		val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1967 	if (rx)
1968 		val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1969 	else
1970 		val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1971 
1972 	writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1973 exit:
1974 	return status;
1975 }
1976 
vxge_hw_device_link_width_get(struct __vxge_hw_device * hldev)1977 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1978 {
1979 	struct pci_dev *dev = hldev->pdev;
1980 	u16 lnk;
1981 
1982 	pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
1983 	return (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1984 }
1985 
1986 /*
1987  * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1988  * This function returns the index of memory block
1989  */
1990 static inline u32
__vxge_hw_ring_block_memblock_idx(u8 * block)1991 __vxge_hw_ring_block_memblock_idx(u8 *block)
1992 {
1993 	return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1994 }
1995 
1996 /*
1997  * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1998  * This function sets index to a memory block
1999  */
2000 static inline void
__vxge_hw_ring_block_memblock_idx_set(u8 * block,u32 memblock_idx)2001 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
2002 {
2003 	*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
2004 }
2005 
2006 /*
2007  * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2008  * in RxD block
2009  * Sets the next block pointer in RxD block
2010  */
2011 static inline void
__vxge_hw_ring_block_next_pointer_set(u8 * block,dma_addr_t dma_next)2012 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
2013 {
2014 	*((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
2015 }
2016 
2017 /*
2018  * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2019  *             first block
2020  * Returns the dma address of the first RxD block
2021  */
__vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring * ring)2022 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
2023 {
2024 	struct vxge_hw_mempool_dma *dma_object;
2025 
2026 	dma_object = ring->mempool->memblocks_dma_arr;
2027 	vxge_assert(dma_object != NULL);
2028 
2029 	return dma_object->addr;
2030 }
2031 
2032 /*
2033  * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2034  * This function returns the dma address of a given item
2035  */
__vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool * mempoolh,void * item)2036 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
2037 					       void *item)
2038 {
2039 	u32 memblock_idx;
2040 	void *memblock;
2041 	struct vxge_hw_mempool_dma *memblock_dma_object;
2042 	ptrdiff_t dma_item_offset;
2043 
2044 	/* get owner memblock index */
2045 	memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
2046 
2047 	/* get owner memblock by memblock index */
2048 	memblock = mempoolh->memblocks_arr[memblock_idx];
2049 
2050 	/* get memblock DMA object by memblock index */
2051 	memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
2052 
2053 	/* calculate offset in the memblock of this item */
2054 	dma_item_offset = (u8 *)item - (u8 *)memblock;
2055 
2056 	return memblock_dma_object->addr + dma_item_offset;
2057 }
2058 
2059 /*
2060  * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2061  * This function returns the dma address of a given item
2062  */
__vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool * mempoolh,struct __vxge_hw_ring * ring,u32 from,u32 to)2063 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
2064 					 struct __vxge_hw_ring *ring, u32 from,
2065 					 u32 to)
2066 {
2067 	u8 *to_item , *from_item;
2068 	dma_addr_t to_dma;
2069 
2070 	/* get "from" RxD block */
2071 	from_item = mempoolh->items_arr[from];
2072 	vxge_assert(from_item);
2073 
2074 	/* get "to" RxD block */
2075 	to_item = mempoolh->items_arr[to];
2076 	vxge_assert(to_item);
2077 
2078 	/* return address of the beginning of previous RxD block */
2079 	to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
2080 
2081 	/* set next pointer for this RxD block to point on
2082 	 * previous item's DMA start address */
2083 	__vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
2084 }
2085 
2086 /*
2087  * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2088  * block callback
2089  * This function is callback passed to __vxge_hw_mempool_create to create memory
2090  * pool for RxD block
2091  */
2092 static void
__vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool * mempoolh,u32 memblock_index,struct vxge_hw_mempool_dma * dma_object,u32 index,u32 is_last)2093 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
2094 				  u32 memblock_index,
2095 				  struct vxge_hw_mempool_dma *dma_object,
2096 				  u32 index, u32 is_last)
2097 {
2098 	u32 i;
2099 	void *item = mempoolh->items_arr[index];
2100 	struct __vxge_hw_ring *ring =
2101 		(struct __vxge_hw_ring *)mempoolh->userdata;
2102 
2103 	/* format rxds array */
2104 	for (i = 0; i < ring->rxds_per_block; i++) {
2105 		void *rxdblock_priv;
2106 		void *uld_priv;
2107 		struct vxge_hw_ring_rxd_1 *rxdp;
2108 
2109 		u32 reserve_index = ring->channel.reserve_ptr -
2110 				(index * ring->rxds_per_block + i + 1);
2111 		u32 memblock_item_idx;
2112 
2113 		ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
2114 						i * ring->rxd_size;
2115 
2116 		/* Note: memblock_item_idx is index of the item within
2117 		 *       the memblock. For instance, in case of three RxD-blocks
2118 		 *       per memblock this value can be 0, 1 or 2. */
2119 		rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
2120 					memblock_index, item,
2121 					&memblock_item_idx);
2122 
2123 		rxdp = ring->channel.reserve_arr[reserve_index];
2124 
2125 		uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
2126 
2127 		/* pre-format Host_Control */
2128 		rxdp->host_control = (u64)(size_t)uld_priv;
2129 	}
2130 
2131 	__vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
2132 
2133 	if (is_last) {
2134 		/* link last one with first one */
2135 		__vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
2136 	}
2137 
2138 	if (index > 0) {
2139 		/* link this RxD block with previous one */
2140 		__vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
2141 	}
2142 }
2143 
2144 /*
2145  * __vxge_hw_ring_replenish - Initial replenish of RxDs
2146  * This function replenishes the RxDs from reserve array to work array
2147  */
2148 static enum vxge_hw_status
vxge_hw_ring_replenish(struct __vxge_hw_ring * ring)2149 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
2150 {
2151 	void *rxd;
2152 	struct __vxge_hw_channel *channel;
2153 	enum vxge_hw_status status = VXGE_HW_OK;
2154 
2155 	channel = &ring->channel;
2156 
2157 	while (vxge_hw_channel_dtr_count(channel) > 0) {
2158 
2159 		status = vxge_hw_ring_rxd_reserve(ring, &rxd);
2160 
2161 		vxge_assert(status == VXGE_HW_OK);
2162 
2163 		if (ring->rxd_init) {
2164 			status = ring->rxd_init(rxd, channel->userdata);
2165 			if (status != VXGE_HW_OK) {
2166 				vxge_hw_ring_rxd_free(ring, rxd);
2167 				goto exit;
2168 			}
2169 		}
2170 
2171 		vxge_hw_ring_rxd_post(ring, rxd);
2172 	}
2173 	status = VXGE_HW_OK;
2174 exit:
2175 	return status;
2176 }
2177 
2178 /*
2179  * __vxge_hw_channel_allocate - Allocate memory for channel
2180  * This function allocates required memory for the channel and various arrays
2181  * in the channel
2182  */
2183 static struct __vxge_hw_channel *
__vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle * vph,enum __vxge_hw_channel_type type,u32 length,u32 per_dtr_space,void * userdata)2184 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2185 			   enum __vxge_hw_channel_type type,
2186 			   u32 length, u32 per_dtr_space,
2187 			   void *userdata)
2188 {
2189 	struct __vxge_hw_channel *channel;
2190 	struct __vxge_hw_device *hldev;
2191 	int size = 0;
2192 	u32 vp_id;
2193 
2194 	hldev = vph->vpath->hldev;
2195 	vp_id = vph->vpath->vp_id;
2196 
2197 	switch (type) {
2198 	case VXGE_HW_CHANNEL_TYPE_FIFO:
2199 		size = sizeof(struct __vxge_hw_fifo);
2200 		break;
2201 	case VXGE_HW_CHANNEL_TYPE_RING:
2202 		size = sizeof(struct __vxge_hw_ring);
2203 		break;
2204 	default:
2205 		break;
2206 	}
2207 
2208 	channel = kzalloc(size, GFP_KERNEL);
2209 	if (channel == NULL)
2210 		goto exit0;
2211 	INIT_LIST_HEAD(&channel->item);
2212 
2213 	channel->common_reg = hldev->common_reg;
2214 	channel->first_vp_id = hldev->first_vp_id;
2215 	channel->type = type;
2216 	channel->devh = hldev;
2217 	channel->vph = vph;
2218 	channel->userdata = userdata;
2219 	channel->per_dtr_space = per_dtr_space;
2220 	channel->length = length;
2221 	channel->vp_id = vp_id;
2222 
2223 	channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2224 	if (channel->work_arr == NULL)
2225 		goto exit1;
2226 
2227 	channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2228 	if (channel->free_arr == NULL)
2229 		goto exit1;
2230 	channel->free_ptr = length;
2231 
2232 	channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2233 	if (channel->reserve_arr == NULL)
2234 		goto exit1;
2235 	channel->reserve_ptr = length;
2236 	channel->reserve_top = 0;
2237 
2238 	channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2239 	if (channel->orig_arr == NULL)
2240 		goto exit1;
2241 
2242 	return channel;
2243 exit1:
2244 	__vxge_hw_channel_free(channel);
2245 
2246 exit0:
2247 	return NULL;
2248 }
2249 
2250 /*
2251  * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2252  * Adds a block to block pool
2253  */
vxge_hw_blockpool_block_add(struct __vxge_hw_device * devh,void * block_addr,u32 length,struct pci_dev * dma_h,struct pci_dev * acc_handle)2254 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
2255 					void *block_addr,
2256 					u32 length,
2257 					struct pci_dev *dma_h,
2258 					struct pci_dev *acc_handle)
2259 {
2260 	struct __vxge_hw_blockpool *blockpool;
2261 	struct __vxge_hw_blockpool_entry *entry = NULL;
2262 	dma_addr_t dma_addr;
2263 	enum vxge_hw_status status = VXGE_HW_OK;
2264 	u32 req_out;
2265 
2266 	blockpool = &devh->block_pool;
2267 
2268 	if (block_addr == NULL) {
2269 		blockpool->req_out--;
2270 		status = VXGE_HW_FAIL;
2271 		goto exit;
2272 	}
2273 
2274 	dma_addr = pci_map_single(devh->pdev, block_addr, length,
2275 				PCI_DMA_BIDIRECTIONAL);
2276 
2277 	if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
2278 		vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
2279 		blockpool->req_out--;
2280 		status = VXGE_HW_FAIL;
2281 		goto exit;
2282 	}
2283 
2284 	if (!list_empty(&blockpool->free_entry_list))
2285 		entry = (struct __vxge_hw_blockpool_entry *)
2286 			list_first_entry(&blockpool->free_entry_list,
2287 				struct __vxge_hw_blockpool_entry,
2288 				item);
2289 
2290 	if (entry == NULL)
2291 		entry =	vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
2292 	else
2293 		list_del(&entry->item);
2294 
2295 	if (entry != NULL) {
2296 		entry->length = length;
2297 		entry->memblock = block_addr;
2298 		entry->dma_addr = dma_addr;
2299 		entry->acc_handle = acc_handle;
2300 		entry->dma_handle = dma_h;
2301 		list_add(&entry->item, &blockpool->free_block_list);
2302 		blockpool->pool_size++;
2303 		status = VXGE_HW_OK;
2304 	} else
2305 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2306 
2307 	blockpool->req_out--;
2308 
2309 	req_out = blockpool->req_out;
2310 exit:
2311 	return;
2312 }
2313 
2314 static inline void
vxge_os_dma_malloc_async(struct pci_dev * pdev,void * devh,unsigned long size)2315 vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
2316 {
2317 	gfp_t flags;
2318 	void *vaddr;
2319 
2320 	if (in_interrupt())
2321 		flags = GFP_ATOMIC | GFP_DMA;
2322 	else
2323 		flags = GFP_KERNEL | GFP_DMA;
2324 
2325 	vaddr = kmalloc((size), flags);
2326 
2327 	vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
2328 }
2329 
2330 /*
2331  * __vxge_hw_blockpool_blocks_add - Request additional blocks
2332  */
2333 static
__vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool * blockpool)2334 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
2335 {
2336 	u32 nreq = 0, i;
2337 
2338 	if ((blockpool->pool_size  +  blockpool->req_out) <
2339 		VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
2340 		nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
2341 		blockpool->req_out += nreq;
2342 	}
2343 
2344 	for (i = 0; i < nreq; i++)
2345 		vxge_os_dma_malloc_async(
2346 			(blockpool->hldev)->pdev,
2347 			blockpool->hldev, VXGE_HW_BLOCK_SIZE);
2348 }
2349 
2350 /*
2351  * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2352  * Allocates a block of memory of given size, either from block pool
2353  * or by calling vxge_os_dma_malloc()
2354  */
__vxge_hw_blockpool_malloc(struct __vxge_hw_device * devh,u32 size,struct vxge_hw_mempool_dma * dma_object)2355 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
2356 					struct vxge_hw_mempool_dma *dma_object)
2357 {
2358 	struct __vxge_hw_blockpool_entry *entry = NULL;
2359 	struct __vxge_hw_blockpool  *blockpool;
2360 	void *memblock = NULL;
2361 	enum vxge_hw_status status = VXGE_HW_OK;
2362 
2363 	blockpool = &devh->block_pool;
2364 
2365 	if (size != blockpool->block_size) {
2366 
2367 		memblock = vxge_os_dma_malloc(devh->pdev, size,
2368 						&dma_object->handle,
2369 						&dma_object->acc_handle);
2370 
2371 		if (memblock == NULL) {
2372 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2373 			goto exit;
2374 		}
2375 
2376 		dma_object->addr = pci_map_single(devh->pdev, memblock, size,
2377 					PCI_DMA_BIDIRECTIONAL);
2378 
2379 		if (unlikely(pci_dma_mapping_error(devh->pdev,
2380 				dma_object->addr))) {
2381 			vxge_os_dma_free(devh->pdev, memblock,
2382 				&dma_object->acc_handle);
2383 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2384 			goto exit;
2385 		}
2386 
2387 	} else {
2388 
2389 		if (!list_empty(&blockpool->free_block_list))
2390 			entry = (struct __vxge_hw_blockpool_entry *)
2391 				list_first_entry(&blockpool->free_block_list,
2392 					struct __vxge_hw_blockpool_entry,
2393 					item);
2394 
2395 		if (entry != NULL) {
2396 			list_del(&entry->item);
2397 			dma_object->addr = entry->dma_addr;
2398 			dma_object->handle = entry->dma_handle;
2399 			dma_object->acc_handle = entry->acc_handle;
2400 			memblock = entry->memblock;
2401 
2402 			list_add(&entry->item,
2403 				&blockpool->free_entry_list);
2404 			blockpool->pool_size--;
2405 		}
2406 
2407 		if (memblock != NULL)
2408 			__vxge_hw_blockpool_blocks_add(blockpool);
2409 	}
2410 exit:
2411 	return memblock;
2412 }
2413 
2414 /*
2415  * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2416  */
2417 static void
__vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool * blockpool)2418 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
2419 {
2420 	struct list_head *p, *n;
2421 
2422 	list_for_each_safe(p, n, &blockpool->free_block_list) {
2423 
2424 		if (blockpool->pool_size < blockpool->pool_max)
2425 			break;
2426 
2427 		pci_unmap_single(
2428 			(blockpool->hldev)->pdev,
2429 			((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
2430 			((struct __vxge_hw_blockpool_entry *)p)->length,
2431 			PCI_DMA_BIDIRECTIONAL);
2432 
2433 		vxge_os_dma_free(
2434 			(blockpool->hldev)->pdev,
2435 			((struct __vxge_hw_blockpool_entry *)p)->memblock,
2436 			&((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
2437 
2438 		list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
2439 
2440 		list_add(p, &blockpool->free_entry_list);
2441 
2442 		blockpool->pool_size--;
2443 
2444 	}
2445 }
2446 
2447 /*
2448  * __vxge_hw_blockpool_free - Frees the memory allcoated with
2449  *				__vxge_hw_blockpool_malloc
2450  */
__vxge_hw_blockpool_free(struct __vxge_hw_device * devh,void * memblock,u32 size,struct vxge_hw_mempool_dma * dma_object)2451 static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
2452 				     void *memblock, u32 size,
2453 				     struct vxge_hw_mempool_dma *dma_object)
2454 {
2455 	struct __vxge_hw_blockpool_entry *entry = NULL;
2456 	struct __vxge_hw_blockpool  *blockpool;
2457 	enum vxge_hw_status status = VXGE_HW_OK;
2458 
2459 	blockpool = &devh->block_pool;
2460 
2461 	if (size != blockpool->block_size) {
2462 		pci_unmap_single(devh->pdev, dma_object->addr, size,
2463 			PCI_DMA_BIDIRECTIONAL);
2464 		vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
2465 	} else {
2466 
2467 		if (!list_empty(&blockpool->free_entry_list))
2468 			entry = (struct __vxge_hw_blockpool_entry *)
2469 				list_first_entry(&blockpool->free_entry_list,
2470 					struct __vxge_hw_blockpool_entry,
2471 					item);
2472 
2473 		if (entry == NULL)
2474 			entry =	vmalloc(sizeof(
2475 					struct __vxge_hw_blockpool_entry));
2476 		else
2477 			list_del(&entry->item);
2478 
2479 		if (entry != NULL) {
2480 			entry->length = size;
2481 			entry->memblock = memblock;
2482 			entry->dma_addr = dma_object->addr;
2483 			entry->acc_handle = dma_object->acc_handle;
2484 			entry->dma_handle = dma_object->handle;
2485 			list_add(&entry->item,
2486 					&blockpool->free_block_list);
2487 			blockpool->pool_size++;
2488 			status = VXGE_HW_OK;
2489 		} else
2490 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2491 
2492 		if (status == VXGE_HW_OK)
2493 			__vxge_hw_blockpool_blocks_remove(blockpool);
2494 	}
2495 }
2496 
2497 /*
2498  * vxge_hw_mempool_destroy
2499  */
__vxge_hw_mempool_destroy(struct vxge_hw_mempool * mempool)2500 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
2501 {
2502 	u32 i, j;
2503 	struct __vxge_hw_device *devh = mempool->devh;
2504 
2505 	for (i = 0; i < mempool->memblocks_allocated; i++) {
2506 		struct vxge_hw_mempool_dma *dma_object;
2507 
2508 		vxge_assert(mempool->memblocks_arr[i]);
2509 		vxge_assert(mempool->memblocks_dma_arr + i);
2510 
2511 		dma_object = mempool->memblocks_dma_arr + i;
2512 
2513 		for (j = 0; j < mempool->items_per_memblock; j++) {
2514 			u32 index = i * mempool->items_per_memblock + j;
2515 
2516 			/* to skip last partially filled(if any) memblock */
2517 			if (index >= mempool->items_current)
2518 				break;
2519 		}
2520 
2521 		vfree(mempool->memblocks_priv_arr[i]);
2522 
2523 		__vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
2524 				mempool->memblock_size, dma_object);
2525 	}
2526 
2527 	vfree(mempool->items_arr);
2528 	vfree(mempool->memblocks_dma_arr);
2529 	vfree(mempool->memblocks_priv_arr);
2530 	vfree(mempool->memblocks_arr);
2531 	vfree(mempool);
2532 }
2533 
2534 /*
2535  * __vxge_hw_mempool_grow
2536  * Will resize mempool up to %num_allocate value.
2537  */
2538 static enum vxge_hw_status
__vxge_hw_mempool_grow(struct vxge_hw_mempool * mempool,u32 num_allocate,u32 * num_allocated)2539 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
2540 		       u32 *num_allocated)
2541 {
2542 	u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
2543 	u32 n_items = mempool->items_per_memblock;
2544 	u32 start_block_idx = mempool->memblocks_allocated;
2545 	u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
2546 	enum vxge_hw_status status = VXGE_HW_OK;
2547 
2548 	*num_allocated = 0;
2549 
2550 	if (end_block_idx > mempool->memblocks_max) {
2551 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2552 		goto exit;
2553 	}
2554 
2555 	for (i = start_block_idx; i < end_block_idx; i++) {
2556 		u32 j;
2557 		u32 is_last = ((end_block_idx - 1) == i);
2558 		struct vxge_hw_mempool_dma *dma_object =
2559 			mempool->memblocks_dma_arr + i;
2560 		void *the_memblock;
2561 
2562 		/* allocate memblock's private part. Each DMA memblock
2563 		 * has a space allocated for item's private usage upon
2564 		 * mempool's user request. Each time mempool grows, it will
2565 		 * allocate new memblock and its private part at once.
2566 		 * This helps to minimize memory usage a lot. */
2567 		mempool->memblocks_priv_arr[i] =
2568 				vzalloc(mempool->items_priv_size * n_items);
2569 		if (mempool->memblocks_priv_arr[i] == NULL) {
2570 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2571 			goto exit;
2572 		}
2573 
2574 		/* allocate DMA-capable memblock */
2575 		mempool->memblocks_arr[i] =
2576 			__vxge_hw_blockpool_malloc(mempool->devh,
2577 				mempool->memblock_size, dma_object);
2578 		if (mempool->memblocks_arr[i] == NULL) {
2579 			vfree(mempool->memblocks_priv_arr[i]);
2580 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2581 			goto exit;
2582 		}
2583 
2584 		(*num_allocated)++;
2585 		mempool->memblocks_allocated++;
2586 
2587 		memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
2588 
2589 		the_memblock = mempool->memblocks_arr[i];
2590 
2591 		/* fill the items hash array */
2592 		for (j = 0; j < n_items; j++) {
2593 			u32 index = i * n_items + j;
2594 
2595 			if (first_time && index >= mempool->items_initial)
2596 				break;
2597 
2598 			mempool->items_arr[index] =
2599 				((char *)the_memblock + j*mempool->item_size);
2600 
2601 			/* let caller to do more job on each item */
2602 			if (mempool->item_func_alloc != NULL)
2603 				mempool->item_func_alloc(mempool, i,
2604 					dma_object, index, is_last);
2605 
2606 			mempool->items_current = index + 1;
2607 		}
2608 
2609 		if (first_time && mempool->items_current ==
2610 					mempool->items_initial)
2611 			break;
2612 	}
2613 exit:
2614 	return status;
2615 }
2616 
2617 /*
2618  * vxge_hw_mempool_create
2619  * This function will create memory pool object. Pool may grow but will
2620  * never shrink. Pool consists of number of dynamically allocated blocks
2621  * with size enough to hold %items_initial number of items. Memory is
2622  * DMA-able but client must map/unmap before interoperating with the device.
2623  */
2624 static struct vxge_hw_mempool *
__vxge_hw_mempool_create(struct __vxge_hw_device * devh,u32 memblock_size,u32 item_size,u32 items_priv_size,u32 items_initial,u32 items_max,const struct vxge_hw_mempool_cbs * mp_callback,void * userdata)2625 __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
2626 			 u32 memblock_size,
2627 			 u32 item_size,
2628 			 u32 items_priv_size,
2629 			 u32 items_initial,
2630 			 u32 items_max,
2631 			 const struct vxge_hw_mempool_cbs *mp_callback,
2632 			 void *userdata)
2633 {
2634 	enum vxge_hw_status status = VXGE_HW_OK;
2635 	u32 memblocks_to_allocate;
2636 	struct vxge_hw_mempool *mempool = NULL;
2637 	u32 allocated;
2638 
2639 	if (memblock_size < item_size) {
2640 		status = VXGE_HW_FAIL;
2641 		goto exit;
2642 	}
2643 
2644 	mempool = vzalloc(sizeof(struct vxge_hw_mempool));
2645 	if (mempool == NULL) {
2646 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2647 		goto exit;
2648 	}
2649 
2650 	mempool->devh			= devh;
2651 	mempool->memblock_size		= memblock_size;
2652 	mempool->items_max		= items_max;
2653 	mempool->items_initial		= items_initial;
2654 	mempool->item_size		= item_size;
2655 	mempool->items_priv_size	= items_priv_size;
2656 	mempool->item_func_alloc	= mp_callback->item_func_alloc;
2657 	mempool->userdata		= userdata;
2658 
2659 	mempool->memblocks_allocated = 0;
2660 
2661 	mempool->items_per_memblock = memblock_size / item_size;
2662 
2663 	mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
2664 					mempool->items_per_memblock;
2665 
2666 	/* allocate array of memblocks */
2667 	mempool->memblocks_arr =
2668 		vzalloc(sizeof(void *) * mempool->memblocks_max);
2669 	if (mempool->memblocks_arr == NULL) {
2670 		__vxge_hw_mempool_destroy(mempool);
2671 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2672 		mempool = NULL;
2673 		goto exit;
2674 	}
2675 
2676 	/* allocate array of private parts of items per memblocks */
2677 	mempool->memblocks_priv_arr =
2678 		vzalloc(sizeof(void *) * mempool->memblocks_max);
2679 	if (mempool->memblocks_priv_arr == NULL) {
2680 		__vxge_hw_mempool_destroy(mempool);
2681 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2682 		mempool = NULL;
2683 		goto exit;
2684 	}
2685 
2686 	/* allocate array of memblocks DMA objects */
2687 	mempool->memblocks_dma_arr =
2688 		vzalloc(sizeof(struct vxge_hw_mempool_dma) *
2689 			mempool->memblocks_max);
2690 	if (mempool->memblocks_dma_arr == NULL) {
2691 		__vxge_hw_mempool_destroy(mempool);
2692 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2693 		mempool = NULL;
2694 		goto exit;
2695 	}
2696 
2697 	/* allocate hash array of items */
2698 	mempool->items_arr = vzalloc(sizeof(void *) * mempool->items_max);
2699 	if (mempool->items_arr == NULL) {
2700 		__vxge_hw_mempool_destroy(mempool);
2701 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2702 		mempool = NULL;
2703 		goto exit;
2704 	}
2705 
2706 	/* calculate initial number of memblocks */
2707 	memblocks_to_allocate = (mempool->items_initial +
2708 				 mempool->items_per_memblock - 1) /
2709 						mempool->items_per_memblock;
2710 
2711 	/* pre-allocate the mempool */
2712 	status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
2713 					&allocated);
2714 	if (status != VXGE_HW_OK) {
2715 		__vxge_hw_mempool_destroy(mempool);
2716 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2717 		mempool = NULL;
2718 		goto exit;
2719 	}
2720 
2721 exit:
2722 	return mempool;
2723 }
2724 
2725 /*
2726  * __vxge_hw_ring_abort - Returns the RxD
2727  * This function terminates the RxDs of ring
2728  */
__vxge_hw_ring_abort(struct __vxge_hw_ring * ring)2729 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
2730 {
2731 	void *rxdh;
2732 	struct __vxge_hw_channel *channel;
2733 
2734 	channel = &ring->channel;
2735 
2736 	for (;;) {
2737 		vxge_hw_channel_dtr_try_complete(channel, &rxdh);
2738 
2739 		if (rxdh == NULL)
2740 			break;
2741 
2742 		vxge_hw_channel_dtr_complete(channel);
2743 
2744 		if (ring->rxd_term)
2745 			ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
2746 				channel->userdata);
2747 
2748 		vxge_hw_channel_dtr_free(channel, rxdh);
2749 	}
2750 
2751 	return VXGE_HW_OK;
2752 }
2753 
2754 /*
2755  * __vxge_hw_ring_reset - Resets the ring
2756  * This function resets the ring during vpath reset operation
2757  */
__vxge_hw_ring_reset(struct __vxge_hw_ring * ring)2758 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
2759 {
2760 	enum vxge_hw_status status = VXGE_HW_OK;
2761 	struct __vxge_hw_channel *channel;
2762 
2763 	channel = &ring->channel;
2764 
2765 	__vxge_hw_ring_abort(ring);
2766 
2767 	status = __vxge_hw_channel_reset(channel);
2768 
2769 	if (status != VXGE_HW_OK)
2770 		goto exit;
2771 
2772 	if (ring->rxd_init) {
2773 		status = vxge_hw_ring_replenish(ring);
2774 		if (status != VXGE_HW_OK)
2775 			goto exit;
2776 	}
2777 exit:
2778 	return status;
2779 }
2780 
2781 /*
2782  * __vxge_hw_ring_delete - Removes the ring
2783  * This function freeup the memory pool and removes the ring
2784  */
2785 static enum vxge_hw_status
__vxge_hw_ring_delete(struct __vxge_hw_vpath_handle * vp)2786 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
2787 {
2788 	struct __vxge_hw_ring *ring = vp->vpath->ringh;
2789 
2790 	__vxge_hw_ring_abort(ring);
2791 
2792 	if (ring->mempool)
2793 		__vxge_hw_mempool_destroy(ring->mempool);
2794 
2795 	vp->vpath->ringh = NULL;
2796 	__vxge_hw_channel_free(&ring->channel);
2797 
2798 	return VXGE_HW_OK;
2799 }
2800 
2801 /*
2802  * __vxge_hw_ring_create - Create a Ring
2803  * This function creates Ring and initializes it.
2804  */
2805 static enum vxge_hw_status
__vxge_hw_ring_create(struct __vxge_hw_vpath_handle * vp,struct vxge_hw_ring_attr * attr)2806 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
2807 		      struct vxge_hw_ring_attr *attr)
2808 {
2809 	enum vxge_hw_status status = VXGE_HW_OK;
2810 	struct __vxge_hw_ring *ring;
2811 	u32 ring_length;
2812 	struct vxge_hw_ring_config *config;
2813 	struct __vxge_hw_device *hldev;
2814 	u32 vp_id;
2815 	static const struct vxge_hw_mempool_cbs ring_mp_callback = {
2816 		.item_func_alloc = __vxge_hw_ring_mempool_item_alloc,
2817 	};
2818 
2819 	if ((vp == NULL) || (attr == NULL)) {
2820 		status = VXGE_HW_FAIL;
2821 		goto exit;
2822 	}
2823 
2824 	hldev = vp->vpath->hldev;
2825 	vp_id = vp->vpath->vp_id;
2826 
2827 	config = &hldev->config.vp_config[vp_id].ring;
2828 
2829 	ring_length = config->ring_blocks *
2830 			vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2831 
2832 	ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
2833 						VXGE_HW_CHANNEL_TYPE_RING,
2834 						ring_length,
2835 						attr->per_rxd_space,
2836 						attr->userdata);
2837 	if (ring == NULL) {
2838 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2839 		goto exit;
2840 	}
2841 
2842 	vp->vpath->ringh = ring;
2843 	ring->vp_id = vp_id;
2844 	ring->vp_reg = vp->vpath->vp_reg;
2845 	ring->common_reg = hldev->common_reg;
2846 	ring->stats = &vp->vpath->sw_stats->ring_stats;
2847 	ring->config = config;
2848 	ring->callback = attr->callback;
2849 	ring->rxd_init = attr->rxd_init;
2850 	ring->rxd_term = attr->rxd_term;
2851 	ring->buffer_mode = config->buffer_mode;
2852 	ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
2853 	ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
2854 	ring->rxds_limit = config->rxds_limit;
2855 
2856 	ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
2857 	ring->rxd_priv_size =
2858 		sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
2859 	ring->per_rxd_space = attr->per_rxd_space;
2860 
2861 	ring->rxd_priv_size =
2862 		((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2863 		VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2864 
2865 	/* how many RxDs can fit into one block. Depends on configured
2866 	 * buffer_mode. */
2867 	ring->rxds_per_block =
2868 		vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2869 
2870 	/* calculate actual RxD block private size */
2871 	ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
2872 	ring->mempool = __vxge_hw_mempool_create(hldev,
2873 				VXGE_HW_BLOCK_SIZE,
2874 				VXGE_HW_BLOCK_SIZE,
2875 				ring->rxdblock_priv_size,
2876 				ring->config->ring_blocks,
2877 				ring->config->ring_blocks,
2878 				&ring_mp_callback,
2879 				ring);
2880 	if (ring->mempool == NULL) {
2881 		__vxge_hw_ring_delete(vp);
2882 		return VXGE_HW_ERR_OUT_OF_MEMORY;
2883 	}
2884 
2885 	status = __vxge_hw_channel_initialize(&ring->channel);
2886 	if (status != VXGE_HW_OK) {
2887 		__vxge_hw_ring_delete(vp);
2888 		goto exit;
2889 	}
2890 
2891 	/* Note:
2892 	 * Specifying rxd_init callback means two things:
2893 	 * 1) rxds need to be initialized by driver at channel-open time;
2894 	 * 2) rxds need to be posted at channel-open time
2895 	 *    (that's what the initial_replenish() below does)
2896 	 * Currently we don't have a case when the 1) is done without the 2).
2897 	 */
2898 	if (ring->rxd_init) {
2899 		status = vxge_hw_ring_replenish(ring);
2900 		if (status != VXGE_HW_OK) {
2901 			__vxge_hw_ring_delete(vp);
2902 			goto exit;
2903 		}
2904 	}
2905 
2906 	/* initial replenish will increment the counter in its post() routine,
2907 	 * we have to reset it */
2908 	ring->stats->common_stats.usage_cnt = 0;
2909 exit:
2910 	return status;
2911 }
2912 
2913 /*
2914  * vxge_hw_device_config_default_get - Initialize device config with defaults.
2915  * Initialize Titan device config with default values.
2916  */
2917 enum vxge_hw_status
vxge_hw_device_config_default_get(struct vxge_hw_device_config * device_config)2918 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
2919 {
2920 	u32 i;
2921 
2922 	device_config->dma_blockpool_initial =
2923 					VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
2924 	device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
2925 	device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
2926 	device_config->rth_en = VXGE_HW_RTH_DEFAULT;
2927 	device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
2928 	device_config->device_poll_millis =  VXGE_HW_DEF_DEVICE_POLL_MILLIS;
2929 	device_config->rts_mac_en =  VXGE_HW_RTS_MAC_DEFAULT;
2930 
2931 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2932 		device_config->vp_config[i].vp_id = i;
2933 
2934 		device_config->vp_config[i].min_bandwidth =
2935 				VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2936 
2937 		device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2938 
2939 		device_config->vp_config[i].ring.ring_blocks =
2940 				VXGE_HW_DEF_RING_BLOCKS;
2941 
2942 		device_config->vp_config[i].ring.buffer_mode =
2943 				VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2944 
2945 		device_config->vp_config[i].ring.scatter_mode =
2946 				VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2947 
2948 		device_config->vp_config[i].ring.rxds_limit =
2949 				VXGE_HW_DEF_RING_RXDS_LIMIT;
2950 
2951 		device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2952 
2953 		device_config->vp_config[i].fifo.fifo_blocks =
2954 				VXGE_HW_MIN_FIFO_BLOCKS;
2955 
2956 		device_config->vp_config[i].fifo.max_frags =
2957 				VXGE_HW_MAX_FIFO_FRAGS;
2958 
2959 		device_config->vp_config[i].fifo.memblock_size =
2960 				VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2961 
2962 		device_config->vp_config[i].fifo.alignment_size =
2963 				VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2964 
2965 		device_config->vp_config[i].fifo.intr =
2966 				VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2967 
2968 		device_config->vp_config[i].fifo.no_snoop_bits =
2969 				VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2970 		device_config->vp_config[i].tti.intr_enable =
2971 				VXGE_HW_TIM_INTR_DEFAULT;
2972 
2973 		device_config->vp_config[i].tti.btimer_val =
2974 				VXGE_HW_USE_FLASH_DEFAULT;
2975 
2976 		device_config->vp_config[i].tti.timer_ac_en =
2977 				VXGE_HW_USE_FLASH_DEFAULT;
2978 
2979 		device_config->vp_config[i].tti.timer_ci_en =
2980 				VXGE_HW_USE_FLASH_DEFAULT;
2981 
2982 		device_config->vp_config[i].tti.timer_ri_en =
2983 				VXGE_HW_USE_FLASH_DEFAULT;
2984 
2985 		device_config->vp_config[i].tti.rtimer_val =
2986 				VXGE_HW_USE_FLASH_DEFAULT;
2987 
2988 		device_config->vp_config[i].tti.util_sel =
2989 				VXGE_HW_USE_FLASH_DEFAULT;
2990 
2991 		device_config->vp_config[i].tti.ltimer_val =
2992 				VXGE_HW_USE_FLASH_DEFAULT;
2993 
2994 		device_config->vp_config[i].tti.urange_a =
2995 				VXGE_HW_USE_FLASH_DEFAULT;
2996 
2997 		device_config->vp_config[i].tti.uec_a =
2998 				VXGE_HW_USE_FLASH_DEFAULT;
2999 
3000 		device_config->vp_config[i].tti.urange_b =
3001 				VXGE_HW_USE_FLASH_DEFAULT;
3002 
3003 		device_config->vp_config[i].tti.uec_b =
3004 				VXGE_HW_USE_FLASH_DEFAULT;
3005 
3006 		device_config->vp_config[i].tti.urange_c =
3007 				VXGE_HW_USE_FLASH_DEFAULT;
3008 
3009 		device_config->vp_config[i].tti.uec_c =
3010 				VXGE_HW_USE_FLASH_DEFAULT;
3011 
3012 		device_config->vp_config[i].tti.uec_d =
3013 				VXGE_HW_USE_FLASH_DEFAULT;
3014 
3015 		device_config->vp_config[i].rti.intr_enable =
3016 				VXGE_HW_TIM_INTR_DEFAULT;
3017 
3018 		device_config->vp_config[i].rti.btimer_val =
3019 				VXGE_HW_USE_FLASH_DEFAULT;
3020 
3021 		device_config->vp_config[i].rti.timer_ac_en =
3022 				VXGE_HW_USE_FLASH_DEFAULT;
3023 
3024 		device_config->vp_config[i].rti.timer_ci_en =
3025 				VXGE_HW_USE_FLASH_DEFAULT;
3026 
3027 		device_config->vp_config[i].rti.timer_ri_en =
3028 				VXGE_HW_USE_FLASH_DEFAULT;
3029 
3030 		device_config->vp_config[i].rti.rtimer_val =
3031 				VXGE_HW_USE_FLASH_DEFAULT;
3032 
3033 		device_config->vp_config[i].rti.util_sel =
3034 				VXGE_HW_USE_FLASH_DEFAULT;
3035 
3036 		device_config->vp_config[i].rti.ltimer_val =
3037 				VXGE_HW_USE_FLASH_DEFAULT;
3038 
3039 		device_config->vp_config[i].rti.urange_a =
3040 				VXGE_HW_USE_FLASH_DEFAULT;
3041 
3042 		device_config->vp_config[i].rti.uec_a =
3043 				VXGE_HW_USE_FLASH_DEFAULT;
3044 
3045 		device_config->vp_config[i].rti.urange_b =
3046 				VXGE_HW_USE_FLASH_DEFAULT;
3047 
3048 		device_config->vp_config[i].rti.uec_b =
3049 				VXGE_HW_USE_FLASH_DEFAULT;
3050 
3051 		device_config->vp_config[i].rti.urange_c =
3052 				VXGE_HW_USE_FLASH_DEFAULT;
3053 
3054 		device_config->vp_config[i].rti.uec_c =
3055 				VXGE_HW_USE_FLASH_DEFAULT;
3056 
3057 		device_config->vp_config[i].rti.uec_d =
3058 				VXGE_HW_USE_FLASH_DEFAULT;
3059 
3060 		device_config->vp_config[i].mtu =
3061 				VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
3062 
3063 		device_config->vp_config[i].rpa_strip_vlan_tag =
3064 			VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
3065 	}
3066 
3067 	return VXGE_HW_OK;
3068 }
3069 
3070 /*
3071  * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3072  * Set the swapper bits appropriately for the vpath.
3073  */
3074 static enum vxge_hw_status
__vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem * vpath_reg)3075 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
3076 {
3077 #ifndef __BIG_ENDIAN
3078 	u64 val64;
3079 
3080 	val64 = readq(&vpath_reg->vpath_general_cfg1);
3081 	wmb();
3082 	val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
3083 	writeq(val64, &vpath_reg->vpath_general_cfg1);
3084 	wmb();
3085 #endif
3086 	return VXGE_HW_OK;
3087 }
3088 
3089 /*
3090  * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3091  * Set the swapper bits appropriately for the vpath.
3092  */
3093 static enum vxge_hw_status
__vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem * legacy_reg,struct vxge_hw_vpath_reg __iomem * vpath_reg)3094 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
3095 			   struct vxge_hw_vpath_reg __iomem *vpath_reg)
3096 {
3097 	u64 val64;
3098 
3099 	val64 = readq(&legacy_reg->pifm_wr_swap_en);
3100 
3101 	if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
3102 		val64 = readq(&vpath_reg->kdfcctl_cfg0);
3103 		wmb();
3104 
3105 		val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0	|
3106 			VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1	|
3107 			VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
3108 
3109 		writeq(val64, &vpath_reg->kdfcctl_cfg0);
3110 		wmb();
3111 	}
3112 
3113 	return VXGE_HW_OK;
3114 }
3115 
3116 /*
3117  * vxge_hw_mgmt_reg_read - Read Titan register.
3118  */
3119 enum vxge_hw_status
vxge_hw_mgmt_reg_read(struct __vxge_hw_device * hldev,enum vxge_hw_mgmt_reg_type type,u32 index,u32 offset,u64 * value)3120 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
3121 		      enum vxge_hw_mgmt_reg_type type,
3122 		      u32 index, u32 offset, u64 *value)
3123 {
3124 	enum vxge_hw_status status = VXGE_HW_OK;
3125 
3126 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3127 		status = VXGE_HW_ERR_INVALID_DEVICE;
3128 		goto exit;
3129 	}
3130 
3131 	switch (type) {
3132 	case vxge_hw_mgmt_reg_type_legacy:
3133 		if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3134 			status = VXGE_HW_ERR_INVALID_OFFSET;
3135 			break;
3136 		}
3137 		*value = readq((void __iomem *)hldev->legacy_reg + offset);
3138 		break;
3139 	case vxge_hw_mgmt_reg_type_toc:
3140 		if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3141 			status = VXGE_HW_ERR_INVALID_OFFSET;
3142 			break;
3143 		}
3144 		*value = readq((void __iomem *)hldev->toc_reg + offset);
3145 		break;
3146 	case vxge_hw_mgmt_reg_type_common:
3147 		if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3148 			status = VXGE_HW_ERR_INVALID_OFFSET;
3149 			break;
3150 		}
3151 		*value = readq((void __iomem *)hldev->common_reg + offset);
3152 		break;
3153 	case vxge_hw_mgmt_reg_type_mrpcim:
3154 		if (!(hldev->access_rights &
3155 			VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3156 			status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3157 			break;
3158 		}
3159 		if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3160 			status = VXGE_HW_ERR_INVALID_OFFSET;
3161 			break;
3162 		}
3163 		*value = readq((void __iomem *)hldev->mrpcim_reg + offset);
3164 		break;
3165 	case vxge_hw_mgmt_reg_type_srpcim:
3166 		if (!(hldev->access_rights &
3167 			VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3168 			status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3169 			break;
3170 		}
3171 		if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3172 			status = VXGE_HW_ERR_INVALID_INDEX;
3173 			break;
3174 		}
3175 		if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3176 			status = VXGE_HW_ERR_INVALID_OFFSET;
3177 			break;
3178 		}
3179 		*value = readq((void __iomem *)hldev->srpcim_reg[index] +
3180 				offset);
3181 		break;
3182 	case vxge_hw_mgmt_reg_type_vpmgmt:
3183 		if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3184 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3185 			status = VXGE_HW_ERR_INVALID_INDEX;
3186 			break;
3187 		}
3188 		if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3189 			status = VXGE_HW_ERR_INVALID_OFFSET;
3190 			break;
3191 		}
3192 		*value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
3193 				offset);
3194 		break;
3195 	case vxge_hw_mgmt_reg_type_vpath:
3196 		if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
3197 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3198 			status = VXGE_HW_ERR_INVALID_INDEX;
3199 			break;
3200 		}
3201 		if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
3202 			status = VXGE_HW_ERR_INVALID_INDEX;
3203 			break;
3204 		}
3205 		if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3206 			status = VXGE_HW_ERR_INVALID_OFFSET;
3207 			break;
3208 		}
3209 		*value = readq((void __iomem *)hldev->vpath_reg[index] +
3210 				offset);
3211 		break;
3212 	default:
3213 		status = VXGE_HW_ERR_INVALID_TYPE;
3214 		break;
3215 	}
3216 
3217 exit:
3218 	return status;
3219 }
3220 
3221 /*
3222  * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3223  */
3224 enum vxge_hw_status
vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device * hldev,u64 vpath_mask)3225 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
3226 {
3227 	struct vxge_hw_vpmgmt_reg       __iomem *vpmgmt_reg;
3228 	int i = 0, j = 0;
3229 
3230 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3231 		if (!((vpath_mask) & vxge_mBIT(i)))
3232 			continue;
3233 		vpmgmt_reg = hldev->vpmgmt_reg[i];
3234 		for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
3235 			if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
3236 			& VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
3237 				return VXGE_HW_FAIL;
3238 		}
3239 	}
3240 	return VXGE_HW_OK;
3241 }
3242 /*
3243  * vxge_hw_mgmt_reg_Write - Write Titan register.
3244  */
3245 enum vxge_hw_status
vxge_hw_mgmt_reg_write(struct __vxge_hw_device * hldev,enum vxge_hw_mgmt_reg_type type,u32 index,u32 offset,u64 value)3246 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
3247 		      enum vxge_hw_mgmt_reg_type type,
3248 		      u32 index, u32 offset, u64 value)
3249 {
3250 	enum vxge_hw_status status = VXGE_HW_OK;
3251 
3252 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3253 		status = VXGE_HW_ERR_INVALID_DEVICE;
3254 		goto exit;
3255 	}
3256 
3257 	switch (type) {
3258 	case vxge_hw_mgmt_reg_type_legacy:
3259 		if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3260 			status = VXGE_HW_ERR_INVALID_OFFSET;
3261 			break;
3262 		}
3263 		writeq(value, (void __iomem *)hldev->legacy_reg + offset);
3264 		break;
3265 	case vxge_hw_mgmt_reg_type_toc:
3266 		if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3267 			status = VXGE_HW_ERR_INVALID_OFFSET;
3268 			break;
3269 		}
3270 		writeq(value, (void __iomem *)hldev->toc_reg + offset);
3271 		break;
3272 	case vxge_hw_mgmt_reg_type_common:
3273 		if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3274 			status = VXGE_HW_ERR_INVALID_OFFSET;
3275 			break;
3276 		}
3277 		writeq(value, (void __iomem *)hldev->common_reg + offset);
3278 		break;
3279 	case vxge_hw_mgmt_reg_type_mrpcim:
3280 		if (!(hldev->access_rights &
3281 			VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3282 			status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3283 			break;
3284 		}
3285 		if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3286 			status = VXGE_HW_ERR_INVALID_OFFSET;
3287 			break;
3288 		}
3289 		writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
3290 		break;
3291 	case vxge_hw_mgmt_reg_type_srpcim:
3292 		if (!(hldev->access_rights &
3293 			VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3294 			status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3295 			break;
3296 		}
3297 		if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3298 			status = VXGE_HW_ERR_INVALID_INDEX;
3299 			break;
3300 		}
3301 		if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3302 			status = VXGE_HW_ERR_INVALID_OFFSET;
3303 			break;
3304 		}
3305 		writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
3306 			offset);
3307 
3308 		break;
3309 	case vxge_hw_mgmt_reg_type_vpmgmt:
3310 		if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3311 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3312 			status = VXGE_HW_ERR_INVALID_INDEX;
3313 			break;
3314 		}
3315 		if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3316 			status = VXGE_HW_ERR_INVALID_OFFSET;
3317 			break;
3318 		}
3319 		writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
3320 			offset);
3321 		break;
3322 	case vxge_hw_mgmt_reg_type_vpath:
3323 		if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
3324 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3325 			status = VXGE_HW_ERR_INVALID_INDEX;
3326 			break;
3327 		}
3328 		if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3329 			status = VXGE_HW_ERR_INVALID_OFFSET;
3330 			break;
3331 		}
3332 		writeq(value, (void __iomem *)hldev->vpath_reg[index] +
3333 			offset);
3334 		break;
3335 	default:
3336 		status = VXGE_HW_ERR_INVALID_TYPE;
3337 		break;
3338 	}
3339 exit:
3340 	return status;
3341 }
3342 
3343 /*
3344  * __vxge_hw_fifo_abort - Returns the TxD
3345  * This function terminates the TxDs of fifo
3346  */
__vxge_hw_fifo_abort(struct __vxge_hw_fifo * fifo)3347 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
3348 {
3349 	void *txdlh;
3350 
3351 	for (;;) {
3352 		vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
3353 
3354 		if (txdlh == NULL)
3355 			break;
3356 
3357 		vxge_hw_channel_dtr_complete(&fifo->channel);
3358 
3359 		if (fifo->txdl_term) {
3360 			fifo->txdl_term(txdlh,
3361 			VXGE_HW_TXDL_STATE_POSTED,
3362 			fifo->channel.userdata);
3363 		}
3364 
3365 		vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
3366 	}
3367 
3368 	return VXGE_HW_OK;
3369 }
3370 
3371 /*
3372  * __vxge_hw_fifo_reset - Resets the fifo
3373  * This function resets the fifo during vpath reset operation
3374  */
__vxge_hw_fifo_reset(struct __vxge_hw_fifo * fifo)3375 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
3376 {
3377 	enum vxge_hw_status status = VXGE_HW_OK;
3378 
3379 	__vxge_hw_fifo_abort(fifo);
3380 	status = __vxge_hw_channel_reset(&fifo->channel);
3381 
3382 	return status;
3383 }
3384 
3385 /*
3386  * __vxge_hw_fifo_delete - Removes the FIFO
3387  * This function freeup the memory pool and removes the FIFO
3388  */
3389 static enum vxge_hw_status
__vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle * vp)3390 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
3391 {
3392 	struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
3393 
3394 	__vxge_hw_fifo_abort(fifo);
3395 
3396 	if (fifo->mempool)
3397 		__vxge_hw_mempool_destroy(fifo->mempool);
3398 
3399 	vp->vpath->fifoh = NULL;
3400 
3401 	__vxge_hw_channel_free(&fifo->channel);
3402 
3403 	return VXGE_HW_OK;
3404 }
3405 
3406 /*
3407  * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3408  * list callback
3409  * This function is callback passed to __vxge_hw_mempool_create to create memory
3410  * pool for TxD list
3411  */
3412 static void
__vxge_hw_fifo_mempool_item_alloc(struct vxge_hw_mempool * mempoolh,u32 memblock_index,struct vxge_hw_mempool_dma * dma_object,u32 index,u32 is_last)3413 __vxge_hw_fifo_mempool_item_alloc(
3414 	struct vxge_hw_mempool *mempoolh,
3415 	u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
3416 	u32 index, u32 is_last)
3417 {
3418 	u32 memblock_item_idx;
3419 	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
3420 	struct vxge_hw_fifo_txd *txdp =
3421 		(struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
3422 	struct __vxge_hw_fifo *fifo =
3423 			(struct __vxge_hw_fifo *)mempoolh->userdata;
3424 	void *memblock = mempoolh->memblocks_arr[memblock_index];
3425 
3426 	vxge_assert(txdp);
3427 
3428 	txdp->host_control = (u64) (size_t)
3429 	__vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
3430 					&memblock_item_idx);
3431 
3432 	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
3433 
3434 	vxge_assert(txdl_priv);
3435 
3436 	fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
3437 
3438 	/* pre-format HW's TxDL's private */
3439 	txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
3440 	txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
3441 	txdl_priv->dma_handle = dma_object->handle;
3442 	txdl_priv->memblock   = memblock;
3443 	txdl_priv->first_txdp = txdp;
3444 	txdl_priv->next_txdl_priv = NULL;
3445 	txdl_priv->alloc_frags = 0;
3446 }
3447 
3448 /*
3449  * __vxge_hw_fifo_create - Create a FIFO
3450  * This function creates FIFO and initializes it.
3451  */
3452 static enum vxge_hw_status
__vxge_hw_fifo_create(struct __vxge_hw_vpath_handle * vp,struct vxge_hw_fifo_attr * attr)3453 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
3454 		      struct vxge_hw_fifo_attr *attr)
3455 {
3456 	enum vxge_hw_status status = VXGE_HW_OK;
3457 	struct __vxge_hw_fifo *fifo;
3458 	struct vxge_hw_fifo_config *config;
3459 	u32 txdl_size, txdl_per_memblock;
3460 	struct vxge_hw_mempool_cbs fifo_mp_callback;
3461 	struct __vxge_hw_virtualpath *vpath;
3462 
3463 	if ((vp == NULL) || (attr == NULL)) {
3464 		status = VXGE_HW_ERR_INVALID_HANDLE;
3465 		goto exit;
3466 	}
3467 	vpath = vp->vpath;
3468 	config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
3469 
3470 	txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
3471 
3472 	txdl_per_memblock = config->memblock_size / txdl_size;
3473 
3474 	fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
3475 					VXGE_HW_CHANNEL_TYPE_FIFO,
3476 					config->fifo_blocks * txdl_per_memblock,
3477 					attr->per_txdl_space, attr->userdata);
3478 
3479 	if (fifo == NULL) {
3480 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
3481 		goto exit;
3482 	}
3483 
3484 	vpath->fifoh = fifo;
3485 	fifo->nofl_db = vpath->nofl_db;
3486 
3487 	fifo->vp_id = vpath->vp_id;
3488 	fifo->vp_reg = vpath->vp_reg;
3489 	fifo->stats = &vpath->sw_stats->fifo_stats;
3490 
3491 	fifo->config = config;
3492 
3493 	/* apply "interrupts per txdl" attribute */
3494 	fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
3495 	fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
3496 	fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
3497 
3498 	if (fifo->config->intr)
3499 		fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
3500 
3501 	fifo->no_snoop_bits = config->no_snoop_bits;
3502 
3503 	/*
3504 	 * FIFO memory management strategy:
3505 	 *
3506 	 * TxDL split into three independent parts:
3507 	 *	- set of TxD's
3508 	 *	- TxD HW private part
3509 	 *	- driver private part
3510 	 *
3511 	 * Adaptative memory allocation used. i.e. Memory allocated on
3512 	 * demand with the size which will fit into one memory block.
3513 	 * One memory block may contain more than one TxDL.
3514 	 *
3515 	 * During "reserve" operations more memory can be allocated on demand
3516 	 * for example due to FIFO full condition.
3517 	 *
3518 	 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3519 	 * routine which will essentially stop the channel and free resources.
3520 	 */
3521 
3522 	/* TxDL common private size == TxDL private  +  driver private */
3523 	fifo->priv_size =
3524 		sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
3525 	fifo->priv_size = ((fifo->priv_size  +  VXGE_CACHE_LINE_SIZE - 1) /
3526 			VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
3527 
3528 	fifo->per_txdl_space = attr->per_txdl_space;
3529 
3530 	/* recompute txdl size to be cacheline aligned */
3531 	fifo->txdl_size = txdl_size;
3532 	fifo->txdl_per_memblock = txdl_per_memblock;
3533 
3534 	fifo->txdl_term = attr->txdl_term;
3535 	fifo->callback = attr->callback;
3536 
3537 	if (fifo->txdl_per_memblock == 0) {
3538 		__vxge_hw_fifo_delete(vp);
3539 		status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
3540 		goto exit;
3541 	}
3542 
3543 	fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
3544 
3545 	fifo->mempool =
3546 		__vxge_hw_mempool_create(vpath->hldev,
3547 			fifo->config->memblock_size,
3548 			fifo->txdl_size,
3549 			fifo->priv_size,
3550 			(fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3551 			(fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3552 			&fifo_mp_callback,
3553 			fifo);
3554 
3555 	if (fifo->mempool == NULL) {
3556 		__vxge_hw_fifo_delete(vp);
3557 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
3558 		goto exit;
3559 	}
3560 
3561 	status = __vxge_hw_channel_initialize(&fifo->channel);
3562 	if (status != VXGE_HW_OK) {
3563 		__vxge_hw_fifo_delete(vp);
3564 		goto exit;
3565 	}
3566 
3567 	vxge_assert(fifo->channel.reserve_ptr);
3568 exit:
3569 	return status;
3570 }
3571 
3572 /*
3573  * __vxge_hw_vpath_pci_read - Read the content of given address
3574  *                          in pci config space.
3575  * Read from the vpath pci config space.
3576  */
3577 static enum vxge_hw_status
__vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath * vpath,u32 phy_func_0,u32 offset,u32 * val)3578 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
3579 			 u32 phy_func_0, u32 offset, u32 *val)
3580 {
3581 	u64 val64;
3582 	enum vxge_hw_status status = VXGE_HW_OK;
3583 	struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
3584 
3585 	val64 =	VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
3586 
3587 	if (phy_func_0)
3588 		val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
3589 
3590 	writeq(val64, &vp_reg->pci_config_access_cfg1);
3591 	wmb();
3592 	writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
3593 			&vp_reg->pci_config_access_cfg2);
3594 	wmb();
3595 
3596 	status = __vxge_hw_device_register_poll(
3597 			&vp_reg->pci_config_access_cfg2,
3598 			VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3599 
3600 	if (status != VXGE_HW_OK)
3601 		goto exit;
3602 
3603 	val64 = readq(&vp_reg->pci_config_access_status);
3604 
3605 	if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
3606 		status = VXGE_HW_FAIL;
3607 		*val = 0;
3608 	} else
3609 		*val = (u32)vxge_bVALn(val64, 32, 32);
3610 exit:
3611 	return status;
3612 }
3613 
3614 /**
3615  * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3616  * @hldev: HW device.
3617  * @on_off: TRUE if flickering to be on, FALSE to be off
3618  *
3619  * Flicker the link LED.
3620  */
3621 enum vxge_hw_status
vxge_hw_device_flick_link_led(struct __vxge_hw_device * hldev,u64 on_off)3622 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
3623 {
3624 	struct __vxge_hw_virtualpath *vpath;
3625 	u64 data0, data1 = 0, steer_ctrl = 0;
3626 	enum vxge_hw_status status;
3627 
3628 	if (hldev == NULL) {
3629 		status = VXGE_HW_ERR_INVALID_DEVICE;
3630 		goto exit;
3631 	}
3632 
3633 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
3634 
3635 	data0 = on_off;
3636 	status = vxge_hw_vpath_fw_api(vpath,
3637 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
3638 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
3639 			0, &data0, &data1, &steer_ctrl);
3640 exit:
3641 	return status;
3642 }
3643 
3644 /*
3645  * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3646  */
3647 enum vxge_hw_status
__vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle * vp,u32 action,u32 rts_table,u32 offset,u64 * data0,u64 * data1)3648 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
3649 			      u32 action, u32 rts_table, u32 offset,
3650 			      u64 *data0, u64 *data1)
3651 {
3652 	enum vxge_hw_status status;
3653 	u64 steer_ctrl = 0;
3654 
3655 	if (vp == NULL) {
3656 		status = VXGE_HW_ERR_INVALID_HANDLE;
3657 		goto exit;
3658 	}
3659 
3660 	if ((rts_table ==
3661 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3662 	    (rts_table ==
3663 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3664 	    (rts_table ==
3665 	     VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3666 	    (rts_table ==
3667 	     VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3668 		steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3669 	}
3670 
3671 	status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3672 				      data0, data1, &steer_ctrl);
3673 	if (status != VXGE_HW_OK)
3674 		goto exit;
3675 
3676 	if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
3677 	    (rts_table !=
3678 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3679 		*data1 = 0;
3680 exit:
3681 	return status;
3682 }
3683 
3684 /*
3685  * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3686  */
3687 enum vxge_hw_status
__vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle * vp,u32 action,u32 rts_table,u32 offset,u64 steer_data0,u64 steer_data1)3688 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
3689 			      u32 rts_table, u32 offset, u64 steer_data0,
3690 			      u64 steer_data1)
3691 {
3692 	u64 data0, data1 = 0, steer_ctrl = 0;
3693 	enum vxge_hw_status status;
3694 
3695 	if (vp == NULL) {
3696 		status = VXGE_HW_ERR_INVALID_HANDLE;
3697 		goto exit;
3698 	}
3699 
3700 	data0 = steer_data0;
3701 
3702 	if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3703 	    (rts_table ==
3704 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3705 		data1 = steer_data1;
3706 
3707 	status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3708 				      &data0, &data1, &steer_ctrl);
3709 exit:
3710 	return status;
3711 }
3712 
3713 /*
3714  * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3715  */
vxge_hw_vpath_rts_rth_set(struct __vxge_hw_vpath_handle * vp,enum vxge_hw_rth_algoritms algorithm,struct vxge_hw_rth_hash_types * hash_type,u16 bucket_size)3716 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3717 			struct __vxge_hw_vpath_handle *vp,
3718 			enum vxge_hw_rth_algoritms algorithm,
3719 			struct vxge_hw_rth_hash_types *hash_type,
3720 			u16 bucket_size)
3721 {
3722 	u64 data0, data1;
3723 	enum vxge_hw_status status = VXGE_HW_OK;
3724 
3725 	if (vp == NULL) {
3726 		status = VXGE_HW_ERR_INVALID_HANDLE;
3727 		goto exit;
3728 	}
3729 
3730 	status = __vxge_hw_vpath_rts_table_get(vp,
3731 		     VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3732 		     VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3733 			0, &data0, &data1);
3734 	if (status != VXGE_HW_OK)
3735 		goto exit;
3736 
3737 	data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3738 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3739 
3740 	data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3741 	VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3742 	VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3743 
3744 	if (hash_type->hash_type_tcpipv4_en)
3745 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3746 
3747 	if (hash_type->hash_type_ipv4_en)
3748 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3749 
3750 	if (hash_type->hash_type_tcpipv6_en)
3751 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3752 
3753 	if (hash_type->hash_type_ipv6_en)
3754 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3755 
3756 	if (hash_type->hash_type_tcpipv6ex_en)
3757 		data0 |=
3758 		VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3759 
3760 	if (hash_type->hash_type_ipv6ex_en)
3761 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3762 
3763 	if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3764 		data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3765 	else
3766 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3767 
3768 	status = __vxge_hw_vpath_rts_table_set(vp,
3769 		VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3770 		VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3771 		0, data0, 0);
3772 exit:
3773 	return status;
3774 }
3775 
3776 static void
vxge_hw_rts_rth_data0_data1_get(u32 j,u64 * data0,u64 * data1,u16 flag,u8 * itable)3777 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3778 				u16 flag, u8 *itable)
3779 {
3780 	switch (flag) {
3781 	case 1:
3782 		*data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3783 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3784 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3785 			itable[j]);
3786 	case 2:
3787 		*data0 |=
3788 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3789 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3790 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3791 			itable[j]);
3792 	case 3:
3793 		*data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3794 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3795 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3796 			itable[j]);
3797 	case 4:
3798 		*data1 |=
3799 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3800 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3801 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3802 			itable[j]);
3803 	default:
3804 		return;
3805 	}
3806 }
3807 /*
3808  * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3809  */
vxge_hw_vpath_rts_rth_itable_set(struct __vxge_hw_vpath_handle ** vpath_handles,u32 vpath_count,u8 * mtable,u8 * itable,u32 itable_size)3810 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3811 			struct __vxge_hw_vpath_handle **vpath_handles,
3812 			u32 vpath_count,
3813 			u8 *mtable,
3814 			u8 *itable,
3815 			u32 itable_size)
3816 {
3817 	u32 i, j, action, rts_table;
3818 	u64 data0;
3819 	u64 data1;
3820 	u32 max_entries;
3821 	enum vxge_hw_status status = VXGE_HW_OK;
3822 	struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3823 
3824 	if (vp == NULL) {
3825 		status = VXGE_HW_ERR_INVALID_HANDLE;
3826 		goto exit;
3827 	}
3828 
3829 	max_entries = (((u32)1) << itable_size);
3830 
3831 	if (vp->vpath->hldev->config.rth_it_type
3832 				== VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3833 		action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3834 		rts_table =
3835 			VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3836 
3837 		for (j = 0; j < max_entries; j++) {
3838 
3839 			data1 = 0;
3840 
3841 			data0 =
3842 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3843 				itable[j]);
3844 
3845 			status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3846 				action, rts_table, j, data0, data1);
3847 
3848 			if (status != VXGE_HW_OK)
3849 				goto exit;
3850 		}
3851 
3852 		for (j = 0; j < max_entries; j++) {
3853 
3854 			data1 = 0;
3855 
3856 			data0 =
3857 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3858 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3859 				itable[j]);
3860 
3861 			status = __vxge_hw_vpath_rts_table_set(
3862 				vpath_handles[mtable[itable[j]]], action,
3863 				rts_table, j, data0, data1);
3864 
3865 			if (status != VXGE_HW_OK)
3866 				goto exit;
3867 		}
3868 	} else {
3869 		action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3870 		rts_table =
3871 			VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3872 		for (i = 0; i < vpath_count; i++) {
3873 
3874 			for (j = 0; j < max_entries;) {
3875 
3876 				data0 = 0;
3877 				data1 = 0;
3878 
3879 				while (j < max_entries) {
3880 					if (mtable[itable[j]] != i) {
3881 						j++;
3882 						continue;
3883 					}
3884 					vxge_hw_rts_rth_data0_data1_get(j,
3885 						&data0, &data1, 1, itable);
3886 					j++;
3887 					break;
3888 				}
3889 
3890 				while (j < max_entries) {
3891 					if (mtable[itable[j]] != i) {
3892 						j++;
3893 						continue;
3894 					}
3895 					vxge_hw_rts_rth_data0_data1_get(j,
3896 						&data0, &data1, 2, itable);
3897 					j++;
3898 					break;
3899 				}
3900 
3901 				while (j < max_entries) {
3902 					if (mtable[itable[j]] != i) {
3903 						j++;
3904 						continue;
3905 					}
3906 					vxge_hw_rts_rth_data0_data1_get(j,
3907 						&data0, &data1, 3, itable);
3908 					j++;
3909 					break;
3910 				}
3911 
3912 				while (j < max_entries) {
3913 					if (mtable[itable[j]] != i) {
3914 						j++;
3915 						continue;
3916 					}
3917 					vxge_hw_rts_rth_data0_data1_get(j,
3918 						&data0, &data1, 4, itable);
3919 					j++;
3920 					break;
3921 				}
3922 
3923 				if (data0 != 0) {
3924 					status = __vxge_hw_vpath_rts_table_set(
3925 							vpath_handles[i],
3926 							action, rts_table,
3927 							0, data0, data1);
3928 
3929 					if (status != VXGE_HW_OK)
3930 						goto exit;
3931 				}
3932 			}
3933 		}
3934 	}
3935 exit:
3936 	return status;
3937 }
3938 
3939 /**
3940  * vxge_hw_vpath_check_leak - Check for memory leak
3941  * @ringh: Handle to the ring object used for receive
3942  *
3943  * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3944  * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3945  * Returns: VXGE_HW_FAIL, if leak has occurred.
3946  *
3947  */
3948 enum vxge_hw_status
vxge_hw_vpath_check_leak(struct __vxge_hw_ring * ring)3949 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3950 {
3951 	enum vxge_hw_status status = VXGE_HW_OK;
3952 	u64 rxd_new_count, rxd_spat;
3953 
3954 	if (ring == NULL)
3955 		return status;
3956 
3957 	rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3958 	rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3959 	rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3960 
3961 	if (rxd_new_count >= rxd_spat)
3962 		status = VXGE_HW_FAIL;
3963 
3964 	return status;
3965 }
3966 
3967 /*
3968  * __vxge_hw_vpath_mgmt_read
3969  * This routine reads the vpath_mgmt registers
3970  */
3971 static enum vxge_hw_status
__vxge_hw_vpath_mgmt_read(struct __vxge_hw_device * hldev,struct __vxge_hw_virtualpath * vpath)3972 __vxge_hw_vpath_mgmt_read(
3973 	struct __vxge_hw_device *hldev,
3974 	struct __vxge_hw_virtualpath *vpath)
3975 {
3976 	u32 i, mtu = 0, max_pyld = 0;
3977 	u64 val64;
3978 
3979 	for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3980 
3981 		val64 = readq(&vpath->vpmgmt_reg->
3982 				rxmac_cfg0_port_vpmgmt_clone[i]);
3983 		max_pyld =
3984 			(u32)
3985 			VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3986 			(val64);
3987 		if (mtu < max_pyld)
3988 			mtu = max_pyld;
3989 	}
3990 
3991 	vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3992 
3993 	val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3994 
3995 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3996 		if (val64 & vxge_mBIT(i))
3997 			vpath->vsport_number = i;
3998 	}
3999 
4000 	val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
4001 
4002 	if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
4003 		VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
4004 	else
4005 		VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
4006 
4007 	return VXGE_HW_OK;
4008 }
4009 
4010 /*
4011  * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4012  * This routine checks the vpath_rst_in_prog register to see if
4013  * adapter completed the reset process for the vpath
4014  */
4015 static enum vxge_hw_status
__vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath * vpath)4016 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
4017 {
4018 	enum vxge_hw_status status;
4019 
4020 	status = __vxge_hw_device_register_poll(
4021 			&vpath->hldev->common_reg->vpath_rst_in_prog,
4022 			VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4023 				1 << (16 - vpath->vp_id)),
4024 			vpath->hldev->config.device_poll_millis);
4025 
4026 	return status;
4027 }
4028 
4029 /*
4030  * __vxge_hw_vpath_reset
4031  * This routine resets the vpath on the device
4032  */
4033 static enum vxge_hw_status
__vxge_hw_vpath_reset(struct __vxge_hw_device * hldev,u32 vp_id)4034 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4035 {
4036 	u64 val64;
4037 
4038 	val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
4039 
4040 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4041 				&hldev->common_reg->cmn_rsthdlr_cfg0);
4042 
4043 	return VXGE_HW_OK;
4044 }
4045 
4046 /*
4047  * __vxge_hw_vpath_sw_reset
4048  * This routine resets the vpath structures
4049  */
4050 static enum vxge_hw_status
__vxge_hw_vpath_sw_reset(struct __vxge_hw_device * hldev,u32 vp_id)4051 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4052 {
4053 	enum vxge_hw_status status = VXGE_HW_OK;
4054 	struct __vxge_hw_virtualpath *vpath;
4055 
4056 	vpath = &hldev->virtual_paths[vp_id];
4057 
4058 	if (vpath->ringh) {
4059 		status = __vxge_hw_ring_reset(vpath->ringh);
4060 		if (status != VXGE_HW_OK)
4061 			goto exit;
4062 	}
4063 
4064 	if (vpath->fifoh)
4065 		status = __vxge_hw_fifo_reset(vpath->fifoh);
4066 exit:
4067 	return status;
4068 }
4069 
4070 /*
4071  * __vxge_hw_vpath_prc_configure
4072  * This routine configures the prc registers of virtual path using the config
4073  * passed
4074  */
4075 static void
__vxge_hw_vpath_prc_configure(struct __vxge_hw_device * hldev,u32 vp_id)4076 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4077 {
4078 	u64 val64;
4079 	struct __vxge_hw_virtualpath *vpath;
4080 	struct vxge_hw_vp_config *vp_config;
4081 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4082 
4083 	vpath = &hldev->virtual_paths[vp_id];
4084 	vp_reg = vpath->vp_reg;
4085 	vp_config = vpath->vp_config;
4086 
4087 	if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
4088 		return;
4089 
4090 	val64 = readq(&vp_reg->prc_cfg1);
4091 	val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
4092 	writeq(val64, &vp_reg->prc_cfg1);
4093 
4094 	val64 = readq(&vpath->vp_reg->prc_cfg6);
4095 	val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
4096 	writeq(val64, &vpath->vp_reg->prc_cfg6);
4097 
4098 	val64 = readq(&vp_reg->prc_cfg7);
4099 
4100 	if (vpath->vp_config->ring.scatter_mode !=
4101 		VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
4102 
4103 		val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4104 
4105 		switch (vpath->vp_config->ring.scatter_mode) {
4106 		case VXGE_HW_RING_SCATTER_MODE_A:
4107 			val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4108 					VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
4109 			break;
4110 		case VXGE_HW_RING_SCATTER_MODE_B:
4111 			val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4112 					VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
4113 			break;
4114 		case VXGE_HW_RING_SCATTER_MODE_C:
4115 			val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4116 					VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
4117 			break;
4118 		}
4119 	}
4120 
4121 	writeq(val64, &vp_reg->prc_cfg7);
4122 
4123 	writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4124 				__vxge_hw_ring_first_block_address_get(
4125 					vpath->ringh) >> 3), &vp_reg->prc_cfg5);
4126 
4127 	val64 = readq(&vp_reg->prc_cfg4);
4128 	val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
4129 	val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4130 
4131 	val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
4132 			VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
4133 
4134 	if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
4135 		val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
4136 	else
4137 		val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
4138 
4139 	writeq(val64, &vp_reg->prc_cfg4);
4140 }
4141 
4142 /*
4143  * __vxge_hw_vpath_kdfc_configure
4144  * This routine configures the kdfc registers of virtual path using the
4145  * config passed
4146  */
4147 static enum vxge_hw_status
__vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device * hldev,u32 vp_id)4148 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4149 {
4150 	u64 val64;
4151 	u64 vpath_stride;
4152 	enum vxge_hw_status status = VXGE_HW_OK;
4153 	struct __vxge_hw_virtualpath *vpath;
4154 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4155 
4156 	vpath = &hldev->virtual_paths[vp_id];
4157 	vp_reg = vpath->vp_reg;
4158 	status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
4159 
4160 	if (status != VXGE_HW_OK)
4161 		goto exit;
4162 
4163 	val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
4164 
4165 	vpath->max_kdfc_db =
4166 		(u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4167 			val64+1)/2;
4168 
4169 	if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4170 
4171 		vpath->max_nofl_db = vpath->max_kdfc_db;
4172 
4173 		if (vpath->max_nofl_db <
4174 			((vpath->vp_config->fifo.memblock_size /
4175 			(vpath->vp_config->fifo.max_frags *
4176 			sizeof(struct vxge_hw_fifo_txd))) *
4177 			vpath->vp_config->fifo.fifo_blocks)) {
4178 
4179 			return VXGE_HW_BADCFG_FIFO_BLOCKS;
4180 		}
4181 		val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4182 				(vpath->max_nofl_db*2)-1);
4183 	}
4184 
4185 	writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
4186 
4187 	writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
4188 		&vp_reg->kdfc_fifo_trpl_ctrl);
4189 
4190 	val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
4191 
4192 	val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4193 		   VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4194 
4195 	val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4196 		 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
4197 #ifndef __BIG_ENDIAN
4198 		 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
4199 #endif
4200 		 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4201 
4202 	writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
4203 	writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
4204 	wmb();
4205 	vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
4206 
4207 	vpath->nofl_db =
4208 		(struct __vxge_hw_non_offload_db_wrapper __iomem *)
4209 		(hldev->kdfc + (vp_id *
4210 		VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4211 					vpath_stride)));
4212 exit:
4213 	return status;
4214 }
4215 
4216 /*
4217  * __vxge_hw_vpath_mac_configure
4218  * This routine configures the mac of virtual path using the config passed
4219  */
4220 static enum vxge_hw_status
__vxge_hw_vpath_mac_configure(struct __vxge_hw_device * hldev,u32 vp_id)4221 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4222 {
4223 	u64 val64;
4224 	struct __vxge_hw_virtualpath *vpath;
4225 	struct vxge_hw_vp_config *vp_config;
4226 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4227 
4228 	vpath = &hldev->virtual_paths[vp_id];
4229 	vp_reg = vpath->vp_reg;
4230 	vp_config = vpath->vp_config;
4231 
4232 	writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4233 			vpath->vsport_number), &vp_reg->xmac_vsport_choice);
4234 
4235 	if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4236 
4237 		val64 = readq(&vp_reg->xmac_rpa_vcfg);
4238 
4239 		if (vp_config->rpa_strip_vlan_tag !=
4240 			VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
4241 			if (vp_config->rpa_strip_vlan_tag)
4242 				val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4243 			else
4244 				val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4245 		}
4246 
4247 		writeq(val64, &vp_reg->xmac_rpa_vcfg);
4248 		val64 = readq(&vp_reg->rxmac_vcfg0);
4249 
4250 		if (vp_config->mtu !=
4251 				VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
4252 			val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4253 			if ((vp_config->mtu  +
4254 				VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
4255 				val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4256 					vp_config->mtu  +
4257 					VXGE_HW_MAC_HEADER_MAX_SIZE);
4258 			else
4259 				val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4260 					vpath->max_mtu);
4261 		}
4262 
4263 		writeq(val64, &vp_reg->rxmac_vcfg0);
4264 
4265 		val64 = readq(&vp_reg->rxmac_vcfg1);
4266 
4267 		val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4268 			VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
4269 
4270 		if (hldev->config.rth_it_type ==
4271 				VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
4272 			val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4273 				0x2) |
4274 				VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
4275 		}
4276 
4277 		writeq(val64, &vp_reg->rxmac_vcfg1);
4278 	}
4279 	return VXGE_HW_OK;
4280 }
4281 
4282 /*
4283  * __vxge_hw_vpath_tim_configure
4284  * This routine configures the tim registers of virtual path using the config
4285  * passed
4286  */
4287 static enum vxge_hw_status
__vxge_hw_vpath_tim_configure(struct __vxge_hw_device * hldev,u32 vp_id)4288 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4289 {
4290 	u64 val64;
4291 	struct __vxge_hw_virtualpath *vpath;
4292 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4293 	struct vxge_hw_vp_config *config;
4294 
4295 	vpath = &hldev->virtual_paths[vp_id];
4296 	vp_reg = vpath->vp_reg;
4297 	config = vpath->vp_config;
4298 
4299 	writeq(0, &vp_reg->tim_dest_addr);
4300 	writeq(0, &vp_reg->tim_vpath_map);
4301 	writeq(0, &vp_reg->tim_bitmap);
4302 	writeq(0, &vp_reg->tim_remap);
4303 
4304 	if (config->ring.enable == VXGE_HW_RING_ENABLE)
4305 		writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4306 			(vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4307 			VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
4308 
4309 	val64 = readq(&vp_reg->tim_pci_cfg);
4310 	val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
4311 	writeq(val64, &vp_reg->tim_pci_cfg);
4312 
4313 	if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4314 
4315 		val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4316 
4317 		if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4318 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4319 				0x3ffffff);
4320 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4321 					config->tti.btimer_val);
4322 		}
4323 
4324 		val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4325 
4326 		if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4327 			if (config->tti.timer_ac_en)
4328 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4329 			else
4330 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4331 		}
4332 
4333 		if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4334 			if (config->tti.timer_ci_en)
4335 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4336 			else
4337 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4338 		}
4339 
4340 		if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4341 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4342 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4343 					config->tti.urange_a);
4344 		}
4345 
4346 		if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4347 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4348 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4349 					config->tti.urange_b);
4350 		}
4351 
4352 		if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4353 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4354 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4355 					config->tti.urange_c);
4356 		}
4357 
4358 		writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4359 		vpath->tim_tti_cfg1_saved = val64;
4360 
4361 		val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4362 
4363 		if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4364 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4365 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4366 						config->tti.uec_a);
4367 		}
4368 
4369 		if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4370 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4371 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4372 						config->tti.uec_b);
4373 		}
4374 
4375 		if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4376 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4377 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4378 						config->tti.uec_c);
4379 		}
4380 
4381 		if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4382 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4383 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4384 						config->tti.uec_d);
4385 		}
4386 
4387 		writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4388 		val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4389 
4390 		if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4391 			if (config->tti.timer_ri_en)
4392 				val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4393 			else
4394 				val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4395 		}
4396 
4397 		if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4398 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4399 					0x3ffffff);
4400 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4401 					config->tti.rtimer_val);
4402 		}
4403 
4404 		if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4405 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4406 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4407 		}
4408 
4409 		if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4410 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4411 					0x3ffffff);
4412 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4413 					config->tti.ltimer_val);
4414 		}
4415 
4416 		writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4417 		vpath->tim_tti_cfg3_saved = val64;
4418 	}
4419 
4420 	if (config->ring.enable == VXGE_HW_RING_ENABLE) {
4421 
4422 		val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4423 
4424 		if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4425 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4426 					0x3ffffff);
4427 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4428 					config->rti.btimer_val);
4429 		}
4430 
4431 		val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4432 
4433 		if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4434 			if (config->rti.timer_ac_en)
4435 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4436 			else
4437 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4438 		}
4439 
4440 		if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4441 			if (config->rti.timer_ci_en)
4442 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4443 			else
4444 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4445 		}
4446 
4447 		if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4448 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4449 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4450 					config->rti.urange_a);
4451 		}
4452 
4453 		if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4454 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4455 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4456 					config->rti.urange_b);
4457 		}
4458 
4459 		if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4460 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4461 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4462 					config->rti.urange_c);
4463 		}
4464 
4465 		writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4466 		vpath->tim_rti_cfg1_saved = val64;
4467 
4468 		val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4469 
4470 		if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4471 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4472 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4473 						config->rti.uec_a);
4474 		}
4475 
4476 		if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4477 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4478 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4479 						config->rti.uec_b);
4480 		}
4481 
4482 		if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4483 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4484 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4485 						config->rti.uec_c);
4486 		}
4487 
4488 		if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4489 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4490 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4491 						config->rti.uec_d);
4492 		}
4493 
4494 		writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4495 		val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4496 
4497 		if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4498 			if (config->rti.timer_ri_en)
4499 				val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4500 			else
4501 				val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4502 		}
4503 
4504 		if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4505 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4506 					0x3ffffff);
4507 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4508 					config->rti.rtimer_val);
4509 		}
4510 
4511 		if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4512 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4513 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4514 		}
4515 
4516 		if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4517 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4518 					0x3ffffff);
4519 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4520 					config->rti.ltimer_val);
4521 		}
4522 
4523 		writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4524 		vpath->tim_rti_cfg3_saved = val64;
4525 	}
4526 
4527 	val64 = 0;
4528 	writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4529 	writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4530 	writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4531 	writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4532 	writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4533 	writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4534 
4535 	val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4536 	val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4537 	val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4538 	writeq(val64, &vp_reg->tim_wrkld_clc);
4539 
4540 	return VXGE_HW_OK;
4541 }
4542 
4543 /*
4544  * __vxge_hw_vpath_initialize
4545  * This routine is the final phase of init which initializes the
4546  * registers of the vpath using the configuration passed.
4547  */
4548 static enum vxge_hw_status
__vxge_hw_vpath_initialize(struct __vxge_hw_device * hldev,u32 vp_id)4549 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4550 {
4551 	u64 val64;
4552 	u32 val32;
4553 	enum vxge_hw_status status = VXGE_HW_OK;
4554 	struct __vxge_hw_virtualpath *vpath;
4555 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4556 
4557 	vpath = &hldev->virtual_paths[vp_id];
4558 
4559 	if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4560 		status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4561 		goto exit;
4562 	}
4563 	vp_reg = vpath->vp_reg;
4564 
4565 	status =  __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4566 	if (status != VXGE_HW_OK)
4567 		goto exit;
4568 
4569 	status =  __vxge_hw_vpath_mac_configure(hldev, vp_id);
4570 	if (status != VXGE_HW_OK)
4571 		goto exit;
4572 
4573 	status =  __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4574 	if (status != VXGE_HW_OK)
4575 		goto exit;
4576 
4577 	status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4578 	if (status != VXGE_HW_OK)
4579 		goto exit;
4580 
4581 	val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4582 
4583 	/* Get MRRS value from device control */
4584 	status  = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4585 	if (status == VXGE_HW_OK) {
4586 		val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4587 		val64 &=
4588 		    ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4589 		val64 |=
4590 		    VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4591 
4592 		val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4593 	}
4594 
4595 	val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4596 	val64 |=
4597 	    VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4598 		    VXGE_HW_MAX_PAYLOAD_SIZE_512);
4599 
4600 	val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4601 	writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4602 
4603 exit:
4604 	return status;
4605 }
4606 
4607 /*
4608  * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4609  * This routine closes all channels it opened and freeup memory
4610  */
__vxge_hw_vp_terminate(struct __vxge_hw_device * hldev,u32 vp_id)4611 static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4612 {
4613 	struct __vxge_hw_virtualpath *vpath;
4614 
4615 	vpath = &hldev->virtual_paths[vp_id];
4616 
4617 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4618 		goto exit;
4619 
4620 	VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4621 		vpath->hldev->tim_int_mask1, vpath->vp_id);
4622 	hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4623 
4624 	/* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4625 	 * work after the interface is brought down.
4626 	 */
4627 	spin_lock(&vpath->lock);
4628 	vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4629 	spin_unlock(&vpath->lock);
4630 
4631 	vpath->vpmgmt_reg = NULL;
4632 	vpath->nofl_db = NULL;
4633 	vpath->max_mtu = 0;
4634 	vpath->vsport_number = 0;
4635 	vpath->max_kdfc_db = 0;
4636 	vpath->max_nofl_db = 0;
4637 	vpath->ringh = NULL;
4638 	vpath->fifoh = NULL;
4639 	memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
4640 	vpath->stats_block = NULL;
4641 	vpath->hw_stats = NULL;
4642 	vpath->hw_stats_sav = NULL;
4643 	vpath->sw_stats = NULL;
4644 
4645 exit:
4646 	return;
4647 }
4648 
4649 /*
4650  * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4651  * This routine is the initial phase of init which resets the vpath and
4652  * initializes the software support structures.
4653  */
4654 static enum vxge_hw_status
__vxge_hw_vp_initialize(struct __vxge_hw_device * hldev,u32 vp_id,struct vxge_hw_vp_config * config)4655 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4656 			struct vxge_hw_vp_config *config)
4657 {
4658 	struct __vxge_hw_virtualpath *vpath;
4659 	enum vxge_hw_status status = VXGE_HW_OK;
4660 
4661 	if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4662 		status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4663 		goto exit;
4664 	}
4665 
4666 	vpath = &hldev->virtual_paths[vp_id];
4667 
4668 	spin_lock_init(&vpath->lock);
4669 	vpath->vp_id = vp_id;
4670 	vpath->vp_open = VXGE_HW_VP_OPEN;
4671 	vpath->hldev = hldev;
4672 	vpath->vp_config = config;
4673 	vpath->vp_reg = hldev->vpath_reg[vp_id];
4674 	vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4675 
4676 	__vxge_hw_vpath_reset(hldev, vp_id);
4677 
4678 	status = __vxge_hw_vpath_reset_check(vpath);
4679 	if (status != VXGE_HW_OK) {
4680 		memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4681 		goto exit;
4682 	}
4683 
4684 	status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4685 	if (status != VXGE_HW_OK) {
4686 		memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4687 		goto exit;
4688 	}
4689 
4690 	INIT_LIST_HEAD(&vpath->vpath_handles);
4691 
4692 	vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4693 
4694 	VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4695 		hldev->tim_int_mask1, vp_id);
4696 
4697 	status = __vxge_hw_vpath_initialize(hldev, vp_id);
4698 	if (status != VXGE_HW_OK)
4699 		__vxge_hw_vp_terminate(hldev, vp_id);
4700 exit:
4701 	return status;
4702 }
4703 
4704 /*
4705  * vxge_hw_vpath_mtu_set - Set MTU.
4706  * Set new MTU value. Example, to use jumbo frames:
4707  * vxge_hw_vpath_mtu_set(my_device, 9600);
4708  */
4709 enum vxge_hw_status
vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle * vp,u32 new_mtu)4710 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4711 {
4712 	u64 val64;
4713 	enum vxge_hw_status status = VXGE_HW_OK;
4714 	struct __vxge_hw_virtualpath *vpath;
4715 
4716 	if (vp == NULL) {
4717 		status = VXGE_HW_ERR_INVALID_HANDLE;
4718 		goto exit;
4719 	}
4720 	vpath = vp->vpath;
4721 
4722 	new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4723 
4724 	if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4725 		status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4726 
4727 	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4728 
4729 	val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4730 	val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4731 
4732 	writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4733 
4734 	vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4735 
4736 exit:
4737 	return status;
4738 }
4739 
4740 /*
4741  * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4742  * Enable the DMA vpath statistics. The function is to be called to re-enable
4743  * the adapter to update stats into the host memory
4744  */
4745 static enum vxge_hw_status
vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle * vp)4746 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4747 {
4748 	enum vxge_hw_status status = VXGE_HW_OK;
4749 	struct __vxge_hw_virtualpath *vpath;
4750 
4751 	vpath = vp->vpath;
4752 
4753 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4754 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4755 		goto exit;
4756 	}
4757 
4758 	memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4759 			sizeof(struct vxge_hw_vpath_stats_hw_info));
4760 
4761 	status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4762 exit:
4763 	return status;
4764 }
4765 
4766 /*
4767  * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4768  * This function allocates a block from block pool or from the system
4769  */
4770 static struct __vxge_hw_blockpool_entry *
__vxge_hw_blockpool_block_allocate(struct __vxge_hw_device * devh,u32 size)4771 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
4772 {
4773 	struct __vxge_hw_blockpool_entry *entry = NULL;
4774 	struct __vxge_hw_blockpool  *blockpool;
4775 
4776 	blockpool = &devh->block_pool;
4777 
4778 	if (size == blockpool->block_size) {
4779 
4780 		if (!list_empty(&blockpool->free_block_list))
4781 			entry = (struct __vxge_hw_blockpool_entry *)
4782 				list_first_entry(&blockpool->free_block_list,
4783 					struct __vxge_hw_blockpool_entry,
4784 					item);
4785 
4786 		if (entry != NULL) {
4787 			list_del(&entry->item);
4788 			blockpool->pool_size--;
4789 		}
4790 	}
4791 
4792 	if (entry != NULL)
4793 		__vxge_hw_blockpool_blocks_add(blockpool);
4794 
4795 	return entry;
4796 }
4797 
4798 /*
4799  * vxge_hw_vpath_open - Open a virtual path on a given adapter
4800  * This function is used to open access to virtual path of an
4801  * adapter for offload, GRO operations. This function returns
4802  * synchronously.
4803  */
4804 enum vxge_hw_status
vxge_hw_vpath_open(struct __vxge_hw_device * hldev,struct vxge_hw_vpath_attr * attr,struct __vxge_hw_vpath_handle ** vpath_handle)4805 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4806 		   struct vxge_hw_vpath_attr *attr,
4807 		   struct __vxge_hw_vpath_handle **vpath_handle)
4808 {
4809 	struct __vxge_hw_virtualpath *vpath;
4810 	struct __vxge_hw_vpath_handle *vp;
4811 	enum vxge_hw_status status;
4812 
4813 	vpath = &hldev->virtual_paths[attr->vp_id];
4814 
4815 	if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4816 		status = VXGE_HW_ERR_INVALID_STATE;
4817 		goto vpath_open_exit1;
4818 	}
4819 
4820 	status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4821 			&hldev->config.vp_config[attr->vp_id]);
4822 	if (status != VXGE_HW_OK)
4823 		goto vpath_open_exit1;
4824 
4825 	vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
4826 	if (vp == NULL) {
4827 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
4828 		goto vpath_open_exit2;
4829 	}
4830 
4831 	vp->vpath = vpath;
4832 
4833 	if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4834 		status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4835 		if (status != VXGE_HW_OK)
4836 			goto vpath_open_exit6;
4837 	}
4838 
4839 	if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4840 		status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4841 		if (status != VXGE_HW_OK)
4842 			goto vpath_open_exit7;
4843 
4844 		__vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4845 	}
4846 
4847 	vpath->fifoh->tx_intr_num =
4848 		(attr->vp_id * VXGE_HW_MAX_INTR_PER_VP)  +
4849 			VXGE_HW_VPATH_INTR_TX;
4850 
4851 	vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4852 				VXGE_HW_BLOCK_SIZE);
4853 	if (vpath->stats_block == NULL) {
4854 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
4855 		goto vpath_open_exit8;
4856 	}
4857 
4858 	vpath->hw_stats = vpath->stats_block->memblock;
4859 	memset(vpath->hw_stats, 0,
4860 		sizeof(struct vxge_hw_vpath_stats_hw_info));
4861 
4862 	hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4863 						vpath->hw_stats;
4864 
4865 	vpath->hw_stats_sav =
4866 		&hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4867 	memset(vpath->hw_stats_sav, 0,
4868 			sizeof(struct vxge_hw_vpath_stats_hw_info));
4869 
4870 	writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4871 
4872 	status = vxge_hw_vpath_stats_enable(vp);
4873 	if (status != VXGE_HW_OK)
4874 		goto vpath_open_exit8;
4875 
4876 	list_add(&vp->item, &vpath->vpath_handles);
4877 
4878 	hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4879 
4880 	*vpath_handle = vp;
4881 
4882 	attr->fifo_attr.userdata = vpath->fifoh;
4883 	attr->ring_attr.userdata = vpath->ringh;
4884 
4885 	return VXGE_HW_OK;
4886 
4887 vpath_open_exit8:
4888 	if (vpath->ringh != NULL)
4889 		__vxge_hw_ring_delete(vp);
4890 vpath_open_exit7:
4891 	if (vpath->fifoh != NULL)
4892 		__vxge_hw_fifo_delete(vp);
4893 vpath_open_exit6:
4894 	vfree(vp);
4895 vpath_open_exit2:
4896 	__vxge_hw_vp_terminate(hldev, attr->vp_id);
4897 vpath_open_exit1:
4898 
4899 	return status;
4900 }
4901 
4902 /**
4903  * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4904  * (vpath) open
4905  * @vp: Handle got from previous vpath open
4906  *
4907  * This function is used to close access to virtual path opened
4908  * earlier.
4909  */
vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle * vp)4910 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4911 {
4912 	struct __vxge_hw_virtualpath *vpath = vp->vpath;
4913 	struct __vxge_hw_ring *ring = vpath->ringh;
4914 	struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
4915 	u64 new_count, val64, val164;
4916 
4917 	if (vdev->titan1) {
4918 		new_count = readq(&vpath->vp_reg->rxdmem_size);
4919 		new_count &= 0x1fff;
4920 	} else
4921 		new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
4922 
4923 	val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
4924 
4925 	writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4926 		&vpath->vp_reg->prc_rxd_doorbell);
4927 	readl(&vpath->vp_reg->prc_rxd_doorbell);
4928 
4929 	val164 /= 2;
4930 	val64 = readq(&vpath->vp_reg->prc_cfg6);
4931 	val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4932 	val64 &= 0x1ff;
4933 
4934 	/*
4935 	 * Each RxD is of 4 qwords
4936 	 */
4937 	new_count -= (val64 + 1);
4938 	val64 = min(val164, new_count) / 4;
4939 
4940 	ring->rxds_limit = min(ring->rxds_limit, val64);
4941 	if (ring->rxds_limit < 4)
4942 		ring->rxds_limit = 4;
4943 }
4944 
4945 /*
4946  * __vxge_hw_blockpool_block_free - Frees a block from block pool
4947  * @devh: Hal device
4948  * @entry: Entry of block to be freed
4949  *
4950  * This function frees a block from block pool
4951  */
4952 static void
__vxge_hw_blockpool_block_free(struct __vxge_hw_device * devh,struct __vxge_hw_blockpool_entry * entry)4953 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
4954 			       struct __vxge_hw_blockpool_entry *entry)
4955 {
4956 	struct __vxge_hw_blockpool  *blockpool;
4957 
4958 	blockpool = &devh->block_pool;
4959 
4960 	if (entry->length == blockpool->block_size) {
4961 		list_add(&entry->item, &blockpool->free_block_list);
4962 		blockpool->pool_size++;
4963 	}
4964 
4965 	__vxge_hw_blockpool_blocks_remove(blockpool);
4966 }
4967 
4968 /*
4969  * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4970  * This function is used to close access to virtual path opened
4971  * earlier.
4972  */
vxge_hw_vpath_close(struct __vxge_hw_vpath_handle * vp)4973 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4974 {
4975 	struct __vxge_hw_virtualpath *vpath = NULL;
4976 	struct __vxge_hw_device *devh = NULL;
4977 	u32 vp_id = vp->vpath->vp_id;
4978 	u32 is_empty = TRUE;
4979 	enum vxge_hw_status status = VXGE_HW_OK;
4980 
4981 	vpath = vp->vpath;
4982 	devh = vpath->hldev;
4983 
4984 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4985 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4986 		goto vpath_close_exit;
4987 	}
4988 
4989 	list_del(&vp->item);
4990 
4991 	if (!list_empty(&vpath->vpath_handles)) {
4992 		list_add(&vp->item, &vpath->vpath_handles);
4993 		is_empty = FALSE;
4994 	}
4995 
4996 	if (!is_empty) {
4997 		status = VXGE_HW_FAIL;
4998 		goto vpath_close_exit;
4999 	}
5000 
5001 	devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
5002 
5003 	if (vpath->ringh != NULL)
5004 		__vxge_hw_ring_delete(vp);
5005 
5006 	if (vpath->fifoh != NULL)
5007 		__vxge_hw_fifo_delete(vp);
5008 
5009 	if (vpath->stats_block != NULL)
5010 		__vxge_hw_blockpool_block_free(devh, vpath->stats_block);
5011 
5012 	vfree(vp);
5013 
5014 	__vxge_hw_vp_terminate(devh, vp_id);
5015 
5016 vpath_close_exit:
5017 	return status;
5018 }
5019 
5020 /*
5021  * vxge_hw_vpath_reset - Resets vpath
5022  * This function is used to request a reset of vpath
5023  */
vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle * vp)5024 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
5025 {
5026 	enum vxge_hw_status status;
5027 	u32 vp_id;
5028 	struct __vxge_hw_virtualpath *vpath = vp->vpath;
5029 
5030 	vp_id = vpath->vp_id;
5031 
5032 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5033 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5034 		goto exit;
5035 	}
5036 
5037 	status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
5038 	if (status == VXGE_HW_OK)
5039 		vpath->sw_stats->soft_reset_cnt++;
5040 exit:
5041 	return status;
5042 }
5043 
5044 /*
5045  * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5046  * This function poll's for the vpath reset completion and re initializes
5047  * the vpath.
5048  */
5049 enum vxge_hw_status
vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle * vp)5050 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
5051 {
5052 	struct __vxge_hw_virtualpath *vpath = NULL;
5053 	enum vxge_hw_status status;
5054 	struct __vxge_hw_device *hldev;
5055 	u32 vp_id;
5056 
5057 	vp_id = vp->vpath->vp_id;
5058 	vpath = vp->vpath;
5059 	hldev = vpath->hldev;
5060 
5061 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5062 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5063 		goto exit;
5064 	}
5065 
5066 	status = __vxge_hw_vpath_reset_check(vpath);
5067 	if (status != VXGE_HW_OK)
5068 		goto exit;
5069 
5070 	status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
5071 	if (status != VXGE_HW_OK)
5072 		goto exit;
5073 
5074 	status = __vxge_hw_vpath_initialize(hldev, vp_id);
5075 	if (status != VXGE_HW_OK)
5076 		goto exit;
5077 
5078 	if (vpath->ringh != NULL)
5079 		__vxge_hw_vpath_prc_configure(hldev, vp_id);
5080 
5081 	memset(vpath->hw_stats, 0,
5082 		sizeof(struct vxge_hw_vpath_stats_hw_info));
5083 
5084 	memset(vpath->hw_stats_sav, 0,
5085 		sizeof(struct vxge_hw_vpath_stats_hw_info));
5086 
5087 	writeq(vpath->stats_block->dma_addr,
5088 		&vpath->vp_reg->stats_cfg);
5089 
5090 	status = vxge_hw_vpath_stats_enable(vp);
5091 
5092 exit:
5093 	return status;
5094 }
5095 
5096 /*
5097  * vxge_hw_vpath_enable - Enable vpath.
5098  * This routine clears the vpath reset thereby enabling a vpath
5099  * to start forwarding frames and generating interrupts.
5100  */
5101 void
vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle * vp)5102 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
5103 {
5104 	struct __vxge_hw_device *hldev;
5105 	u64 val64;
5106 
5107 	hldev = vp->vpath->hldev;
5108 
5109 	val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5110 		1 << (16 - vp->vpath->vp_id));
5111 
5112 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
5113 		&hldev->common_reg->cmn_rsthdlr_cfg1);
5114 }
5115