• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4 
5 	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 	Copyright 2001 Manfred Spraul				    [natsemi.c]
8 	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
9        	Written 1997-2001 by Donald Becker.			    [8139too.c]
10 	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11 
12 	This software may be used and distributed according to the terms of
13 	the GNU General Public License (GPL), incorporated herein by reference.
14 	Drivers based on or derived from this code fall under the GPL and must
15 	retain the authorship, copyright and license notice.  This file is not
16 	a complete program and may only be used when the entire operating
17 	system is licensed under the GPL.
18 
19 	See the file COPYING in this distribution for more information.
20 
21 	Contributors:
22 
23 		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
25 		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
26 
27 	TODO:
28 	* Test Tx checksumming thoroughly
29 
30 	Low priority TODO:
31 	* Complete reset on PciErr
32 	* Consider Rx interrupt mitigation using TimerIntr
33 	* Investigate using skb->priority with h/w VLAN priority
34 	* Investigate using High Priority Tx Queue with skb->priority
35 	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 	* Implement Tx software interrupt mitigation via
38 	  Tx descriptor bit
39 	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
40 	  for this to be supported, one must(?) turn on packet padding.
41 	* Support external MII transceivers (patch available)
42 
43 	NOTES:
44 	* TX checksumming is considered experimental.  It is off by
45 	  default, use ethtool to turn it on.
46 
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #define DRV_NAME		"8139cp"
52 #define DRV_VERSION		"1.3"
53 #define DRV_RELDATE		"Mar 22, 2004"
54 
55 
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80 
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89 
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93 
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95    The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99 
100 #define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
101 				 NETIF_MSG_PROBE 	| \
102 				 NETIF_MSG_LINK)
103 #define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE		(0xff + 1)
106 #define CP_REGS_VER		1		/* version 1 */
107 #define CP_RX_RING_SIZE		64
108 #define CP_TX_RING_SIZE		64
109 #define CP_RING_BYTES		\
110 		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
111 		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
112 		 CP_STATS_SIZE)
113 #define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP)					\
116 	(((CP)->tx_tail <= (CP)->tx_head) ?			\
117 	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
118 	  (CP)->tx_tail - (CP)->tx_head - 1)
119 
120 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY		32
122 
123 /* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
125 #define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
128 
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT		(6*HZ)
131 
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
134 #define CP_MAX_MTU		4096
135 
136 enum {
137 	/* NIC register offsets */
138 	MAC0		= 0x00,	/* Ethernet hardware address. */
139 	MAR0		= 0x08,	/* Multicast filter. */
140 	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
141 	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
142 	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
143 	Cmd		= 0x37, /* Command register */
144 	IntrMask	= 0x3C, /* Interrupt mask */
145 	IntrStatus	= 0x3E, /* Interrupt status */
146 	TxConfig	= 0x40, /* Tx configuration */
147 	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
148 	RxConfig	= 0x44, /* Rx configuration */
149 	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
150 	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 	Config1		= 0x52, /* Config1 */
152 	Config3		= 0x59, /* Config3 */
153 	Config4		= 0x5A, /* Config4 */
154 	MultiIntr	= 0x5C, /* Multiple interrupt select */
155 	BasicModeCtrl	= 0x62,	/* MII BMCR */
156 	BasicModeStatus	= 0x64, /* MII BMSR */
157 	NWayAdvert	= 0x66, /* MII ADVERTISE */
158 	NWayLPAR	= 0x68, /* MII LPA */
159 	NWayExpansion	= 0x6A, /* MII Expansion */
160 	TxDmaOkLowDesc  = 0x82, /* Low 16 bit address of a Tx descriptor. */
161 	Config5		= 0xD8,	/* Config5 */
162 	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
163 	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
164 	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
165 	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
166 	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
167 	TxThresh	= 0xEC, /* Early Tx threshold */
168 	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
169 	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
170 
171 	/* Tx and Rx status descriptors */
172 	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
173 	RingEnd		= (1 << 30), /* End of descriptor ring */
174 	FirstFrag	= (1 << 29), /* First segment of a packet */
175 	LastFrag	= (1 << 28), /* Final segment of a packet */
176 	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
177 	MSSShift	= 16,	     /* MSS value position */
178 	MSSMask		= 0x7ff,     /* MSS value: 11 bits */
179 	TxError		= (1 << 23), /* Tx error summary */
180 	RxError		= (1 << 20), /* Rx error summary */
181 	IPCS		= (1 << 18), /* Calculate IP checksum */
182 	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
183 	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
184 	TxVlanTag	= (1 << 17), /* Add VLAN tag */
185 	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
186 	IPFail		= (1 << 15), /* IP checksum failed */
187 	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
188 	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
189 	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
190 	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
191 	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
192 	RxProtoTCP	= 1,
193 	RxProtoUDP	= 2,
194 	RxProtoIP	= 3,
195 	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
196 	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
197 	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
198 	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
199 	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
200 	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
201 	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
202 	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
203 	RxErrCRC	= (1 << 18), /* Rx CRC error */
204 	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
205 	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
206 	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
207 
208 	/* StatsAddr register */
209 	DumpStats	= (1 << 3),  /* Begin stats dump */
210 
211 	/* RxConfig register */
212 	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
213 	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
214 	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
215 	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
216 	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
217 	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
218 	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
219 	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
220 
221 	/* IntrMask / IntrStatus registers */
222 	PciErr		= (1 << 15), /* System error on the PCI bus */
223 	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
224 	LenChg		= (1 << 13), /* Cable length change */
225 	SWInt		= (1 << 8),  /* Software-requested interrupt */
226 	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
227 	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
228 	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
229 	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
230 	TxErr		= (1 << 3),  /* Tx error */
231 	TxOK		= (1 << 2),  /* Tx packet sent */
232 	RxErr		= (1 << 1),  /* Rx error */
233 	RxOK		= (1 << 0),  /* Rx packet received */
234 	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
235 					but hardware likes to raise it */
236 
237 	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
238 			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
239 			  RxErr | RxOK | IntrResvd,
240 
241 	/* C mode command register */
242 	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
243 	RxOn		= (1 << 3),  /* Rx mode enable */
244 	TxOn		= (1 << 2),  /* Tx mode enable */
245 
246 	/* C+ mode command register */
247 	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
248 	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
249 	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
250 	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
251 	CpRxOn		= (1 << 1),  /* Rx mode enable */
252 	CpTxOn		= (1 << 0),  /* Tx mode enable */
253 
254 	/* Cfg9436 EEPROM control register */
255 	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
256 	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
257 
258 	/* TxConfig register */
259 	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
260 	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
261 
262 	/* Early Tx Threshold register */
263 	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
264 	TxThreshMax	= 2048,	     /* Max early Tx threshold */
265 
266 	/* Config1 register */
267 	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
268 	LWACT           = (1 << 4),  /* LWAKE active mode */
269 	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
270 
271 	/* Config3 register */
272 	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
273 	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
274 	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
275 
276 	/* Config4 register */
277 	LWPTN           = (1 << 1),  /* LWAKE Pattern */
278 	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
279 
280 	/* Config5 register */
281 	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
282 	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
283 	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
284 	LANWake         = (1 << 1),  /* Enable LANWake signal */
285 	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
286 
287 	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
288 	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
289 	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
290 };
291 
292 static const unsigned int cp_rx_config =
293 	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
294 	  (RX_DMA_BURST << RxCfgDMAShift);
295 
296 struct cp_desc {
297 	__le32		opts1;
298 	__le32		opts2;
299 	__le64		addr;
300 };
301 
302 struct cp_dma_stats {
303 	__le64			tx_ok;
304 	__le64			rx_ok;
305 	__le64			tx_err;
306 	__le32			rx_err;
307 	__le16			rx_fifo;
308 	__le16			frame_align;
309 	__le32			tx_ok_1col;
310 	__le32			tx_ok_mcol;
311 	__le64			rx_ok_phys;
312 	__le64			rx_ok_bcast;
313 	__le32			rx_ok_mcast;
314 	__le16			tx_abort;
315 	__le16			tx_underrun;
316 } __packed;
317 
318 struct cp_extra_stats {
319 	unsigned long		rx_frags;
320 };
321 
322 struct cp_private {
323 	void			__iomem *regs;
324 	struct net_device	*dev;
325 	spinlock_t		lock;
326 	u32			msg_enable;
327 
328 	struct napi_struct	napi;
329 
330 	struct pci_dev		*pdev;
331 	u32			rx_config;
332 	u16			cpcmd;
333 
334 	struct cp_extra_stats	cp_stats;
335 
336 	unsigned		rx_head		____cacheline_aligned;
337 	unsigned		rx_tail;
338 	struct cp_desc		*rx_ring;
339 	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
340 
341 	unsigned		tx_head		____cacheline_aligned;
342 	unsigned		tx_tail;
343 	struct cp_desc		*tx_ring;
344 	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
345 	u32			tx_opts[CP_TX_RING_SIZE];
346 
347 	unsigned		rx_buf_sz;
348 	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
349 
350 	dma_addr_t		ring_dma;
351 
352 	struct mii_if_info	mii_if;
353 };
354 
355 #define cpr8(reg)	readb(cp->regs + (reg))
356 #define cpr16(reg)	readw(cp->regs + (reg))
357 #define cpr32(reg)	readl(cp->regs + (reg))
358 #define cpw8(reg,val)	writeb((val), cp->regs + (reg))
359 #define cpw16(reg,val)	writew((val), cp->regs + (reg))
360 #define cpw32(reg,val)	writel((val), cp->regs + (reg))
361 #define cpw8_f(reg,val) do {			\
362 	writeb((val), cp->regs + (reg));	\
363 	readb(cp->regs + (reg));		\
364 	} while (0)
365 #define cpw16_f(reg,val) do {			\
366 	writew((val), cp->regs + (reg));	\
367 	readw(cp->regs + (reg));		\
368 	} while (0)
369 #define cpw32_f(reg,val) do {			\
370 	writel((val), cp->regs + (reg));	\
371 	readl(cp->regs + (reg));		\
372 	} while (0)
373 
374 
375 static void __cp_set_rx_mode (struct net_device *dev);
376 static void cp_tx (struct cp_private *cp);
377 static void cp_clean_rings (struct cp_private *cp);
378 #ifdef CONFIG_NET_POLL_CONTROLLER
379 static void cp_poll_controller(struct net_device *dev);
380 #endif
381 static int cp_get_eeprom_len(struct net_device *dev);
382 static int cp_get_eeprom(struct net_device *dev,
383 			 struct ethtool_eeprom *eeprom, u8 *data);
384 static int cp_set_eeprom(struct net_device *dev,
385 			 struct ethtool_eeprom *eeprom, u8 *data);
386 
387 static struct {
388 	const char str[ETH_GSTRING_LEN];
389 } ethtool_stats_keys[] = {
390 	{ "tx_ok" },
391 	{ "rx_ok" },
392 	{ "tx_err" },
393 	{ "rx_err" },
394 	{ "rx_fifo" },
395 	{ "frame_align" },
396 	{ "tx_ok_1col" },
397 	{ "tx_ok_mcol" },
398 	{ "rx_ok_phys" },
399 	{ "rx_ok_bcast" },
400 	{ "rx_ok_mcast" },
401 	{ "tx_abort" },
402 	{ "tx_underrun" },
403 	{ "rx_frags" },
404 };
405 
406 
cp_set_rxbufsize(struct cp_private * cp)407 static inline void cp_set_rxbufsize (struct cp_private *cp)
408 {
409 	unsigned int mtu = cp->dev->mtu;
410 
411 	if (mtu > ETH_DATA_LEN)
412 		/* MTU + ethernet header + FCS + optional VLAN tag */
413 		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
414 	else
415 		cp->rx_buf_sz = PKT_BUF_SZ;
416 }
417 
cp_rx_skb(struct cp_private * cp,struct sk_buff * skb,struct cp_desc * desc)418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
419 			      struct cp_desc *desc)
420 {
421 	u32 opts2 = le32_to_cpu(desc->opts2);
422 
423 	skb->protocol = eth_type_trans (skb, cp->dev);
424 
425 	cp->dev->stats.rx_packets++;
426 	cp->dev->stats.rx_bytes += skb->len;
427 
428 	if (opts2 & RxVlanTagged)
429 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
430 
431 	napi_gro_receive(&cp->napi, skb);
432 }
433 
cp_rx_err_acct(struct cp_private * cp,unsigned rx_tail,u32 status,u32 len)434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
435 			    u32 status, u32 len)
436 {
437 	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
438 		  rx_tail, status, len);
439 	cp->dev->stats.rx_errors++;
440 	if (status & RxErrFrame)
441 		cp->dev->stats.rx_frame_errors++;
442 	if (status & RxErrCRC)
443 		cp->dev->stats.rx_crc_errors++;
444 	if ((status & RxErrRunt) || (status & RxErrLong))
445 		cp->dev->stats.rx_length_errors++;
446 	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
447 		cp->dev->stats.rx_length_errors++;
448 	if (status & RxErrFIFO)
449 		cp->dev->stats.rx_fifo_errors++;
450 }
451 
cp_rx_csum_ok(u32 status)452 static inline unsigned int cp_rx_csum_ok (u32 status)
453 {
454 	unsigned int protocol = (status >> 16) & 0x3;
455 
456 	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
457 	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
458 		return 1;
459 	else
460 		return 0;
461 }
462 
cp_rx_poll(struct napi_struct * napi,int budget)463 static int cp_rx_poll(struct napi_struct *napi, int budget)
464 {
465 	struct cp_private *cp = container_of(napi, struct cp_private, napi);
466 	struct net_device *dev = cp->dev;
467 	unsigned int rx_tail = cp->rx_tail;
468 	int rx;
469 
470 rx_status_loop:
471 	rx = 0;
472 	cpw16(IntrStatus, cp_rx_intr_mask);
473 
474 	while (rx < budget) {
475 		u32 status, len;
476 		dma_addr_t mapping, new_mapping;
477 		struct sk_buff *skb, *new_skb;
478 		struct cp_desc *desc;
479 		const unsigned buflen = cp->rx_buf_sz;
480 
481 		skb = cp->rx_skb[rx_tail];
482 		BUG_ON(!skb);
483 
484 		desc = &cp->rx_ring[rx_tail];
485 		status = le32_to_cpu(desc->opts1);
486 		if (status & DescOwn)
487 			break;
488 
489 		len = (status & 0x1fff) - 4;
490 		mapping = le64_to_cpu(desc->addr);
491 
492 		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
493 			/* we don't support incoming fragmented frames.
494 			 * instead, we attempt to ensure that the
495 			 * pre-allocated RX skbs are properly sized such
496 			 * that RX fragments are never encountered
497 			 */
498 			cp_rx_err_acct(cp, rx_tail, status, len);
499 			dev->stats.rx_dropped++;
500 			cp->cp_stats.rx_frags++;
501 			goto rx_next;
502 		}
503 
504 		if (status & (RxError | RxErrFIFO)) {
505 			cp_rx_err_acct(cp, rx_tail, status, len);
506 			goto rx_next;
507 		}
508 
509 		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
510 			  rx_tail, status, len);
511 
512 		new_skb = napi_alloc_skb(napi, buflen);
513 		if (!new_skb) {
514 			dev->stats.rx_dropped++;
515 			goto rx_next;
516 		}
517 
518 		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
519 					 PCI_DMA_FROMDEVICE);
520 		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
521 			dev->stats.rx_dropped++;
522 			kfree_skb(new_skb);
523 			goto rx_next;
524 		}
525 
526 		dma_unmap_single(&cp->pdev->dev, mapping,
527 				 buflen, PCI_DMA_FROMDEVICE);
528 
529 		/* Handle checksum offloading for incoming packets. */
530 		if (cp_rx_csum_ok(status))
531 			skb->ip_summed = CHECKSUM_UNNECESSARY;
532 		else
533 			skb_checksum_none_assert(skb);
534 
535 		skb_put(skb, len);
536 
537 		cp->rx_skb[rx_tail] = new_skb;
538 
539 		cp_rx_skb(cp, skb, desc);
540 		rx++;
541 		mapping = new_mapping;
542 
543 rx_next:
544 		cp->rx_ring[rx_tail].opts2 = 0;
545 		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
546 		if (rx_tail == (CP_RX_RING_SIZE - 1))
547 			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
548 						  cp->rx_buf_sz);
549 		else
550 			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
551 		rx_tail = NEXT_RX(rx_tail);
552 	}
553 
554 	cp->rx_tail = rx_tail;
555 
556 	/* if we did not reach work limit, then we're done with
557 	 * this round of polling
558 	 */
559 	if (rx < budget) {
560 		unsigned long flags;
561 
562 		if (cpr16(IntrStatus) & cp_rx_intr_mask)
563 			goto rx_status_loop;
564 
565 		napi_gro_flush(napi, false);
566 		spin_lock_irqsave(&cp->lock, flags);
567 		__napi_complete(napi);
568 		cpw16_f(IntrMask, cp_intr_mask);
569 		spin_unlock_irqrestore(&cp->lock, flags);
570 	}
571 
572 	return rx;
573 }
574 
cp_interrupt(int irq,void * dev_instance)575 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
576 {
577 	struct net_device *dev = dev_instance;
578 	struct cp_private *cp;
579 	int handled = 0;
580 	u16 status;
581 	u16 mask;
582 
583 	if (unlikely(dev == NULL))
584 		return IRQ_NONE;
585 	cp = netdev_priv(dev);
586 
587 	spin_lock(&cp->lock);
588 
589 	mask = cpr16(IntrMask);
590 	if (!mask)
591 		goto out_unlock;
592 
593 	status = cpr16(IntrStatus);
594 	if (!status || (status == 0xFFFF))
595 		goto out_unlock;
596 
597 	handled = 1;
598 
599 	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
600 		  status, cpr8(Cmd), cpr16(CpCmd));
601 
602 	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
603 
604 	/* close possible race's with dev_close */
605 	if (unlikely(!netif_running(dev))) {
606 		cpw16(IntrMask, 0);
607 		goto out_unlock;
608 	}
609 
610 	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
611 		if (napi_schedule_prep(&cp->napi)) {
612 			cpw16_f(IntrMask, cp_norx_intr_mask);
613 			__napi_schedule(&cp->napi);
614 		}
615 
616 	if (status & (TxOK | TxErr | TxEmpty | SWInt))
617 		cp_tx(cp);
618 	if (status & LinkChg)
619 		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
620 
621 
622 	if (status & PciErr) {
623 		u16 pci_status;
624 
625 		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
626 		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
627 		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
628 			   status, pci_status);
629 
630 		/* TODO: reset hardware */
631 	}
632 
633 out_unlock:
634 	spin_unlock(&cp->lock);
635 
636 	return IRQ_RETVAL(handled);
637 }
638 
639 #ifdef CONFIG_NET_POLL_CONTROLLER
640 /*
641  * Polling receive - used by netconsole and other diagnostic tools
642  * to allow network i/o with interrupts disabled.
643  */
cp_poll_controller(struct net_device * dev)644 static void cp_poll_controller(struct net_device *dev)
645 {
646 	struct cp_private *cp = netdev_priv(dev);
647 	const int irq = cp->pdev->irq;
648 
649 	disable_irq(irq);
650 	cp_interrupt(irq, dev);
651 	enable_irq(irq);
652 }
653 #endif
654 
cp_tx(struct cp_private * cp)655 static void cp_tx (struct cp_private *cp)
656 {
657 	unsigned tx_head = cp->tx_head;
658 	unsigned tx_tail = cp->tx_tail;
659 	unsigned bytes_compl = 0, pkts_compl = 0;
660 
661 	while (tx_tail != tx_head) {
662 		struct cp_desc *txd = cp->tx_ring + tx_tail;
663 		struct sk_buff *skb;
664 		u32 status;
665 
666 		rmb();
667 		status = le32_to_cpu(txd->opts1);
668 		if (status & DescOwn)
669 			break;
670 
671 		skb = cp->tx_skb[tx_tail];
672 		BUG_ON(!skb);
673 
674 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
675 				 cp->tx_opts[tx_tail] & 0xffff,
676 				 PCI_DMA_TODEVICE);
677 
678 		if (status & LastFrag) {
679 			if (status & (TxError | TxFIFOUnder)) {
680 				netif_dbg(cp, tx_err, cp->dev,
681 					  "tx err, status 0x%x\n", status);
682 				cp->dev->stats.tx_errors++;
683 				if (status & TxOWC)
684 					cp->dev->stats.tx_window_errors++;
685 				if (status & TxMaxCol)
686 					cp->dev->stats.tx_aborted_errors++;
687 				if (status & TxLinkFail)
688 					cp->dev->stats.tx_carrier_errors++;
689 				if (status & TxFIFOUnder)
690 					cp->dev->stats.tx_fifo_errors++;
691 			} else {
692 				cp->dev->stats.collisions +=
693 					((status >> TxColCntShift) & TxColCntMask);
694 				cp->dev->stats.tx_packets++;
695 				cp->dev->stats.tx_bytes += skb->len;
696 				netif_dbg(cp, tx_done, cp->dev,
697 					  "tx done, slot %d\n", tx_tail);
698 			}
699 			bytes_compl += skb->len;
700 			pkts_compl++;
701 			dev_kfree_skb_irq(skb);
702 		}
703 
704 		cp->tx_skb[tx_tail] = NULL;
705 
706 		tx_tail = NEXT_TX(tx_tail);
707 	}
708 
709 	cp->tx_tail = tx_tail;
710 
711 	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
712 	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
713 		netif_wake_queue(cp->dev);
714 }
715 
cp_tx_vlan_tag(struct sk_buff * skb)716 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
717 {
718 	return skb_vlan_tag_present(skb) ?
719 		TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
720 }
721 
unwind_tx_frag_mapping(struct cp_private * cp,struct sk_buff * skb,int first,int entry_last)722 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
723 				   int first, int entry_last)
724 {
725 	int frag, index;
726 	struct cp_desc *txd;
727 	skb_frag_t *this_frag;
728 	for (frag = 0; frag+first < entry_last; frag++) {
729 		index = first+frag;
730 		cp->tx_skb[index] = NULL;
731 		txd = &cp->tx_ring[index];
732 		this_frag = &skb_shinfo(skb)->frags[frag];
733 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
734 				 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
735 	}
736 }
737 
cp_start_xmit(struct sk_buff * skb,struct net_device * dev)738 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
739 					struct net_device *dev)
740 {
741 	struct cp_private *cp = netdev_priv(dev);
742 	unsigned entry;
743 	u32 eor, opts1;
744 	unsigned long intr_flags;
745 	__le32 opts2;
746 	int mss = 0;
747 
748 	spin_lock_irqsave(&cp->lock, intr_flags);
749 
750 	/* This is a hard error, log it. */
751 	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
752 		netif_stop_queue(dev);
753 		spin_unlock_irqrestore(&cp->lock, intr_flags);
754 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
755 		return NETDEV_TX_BUSY;
756 	}
757 
758 	entry = cp->tx_head;
759 	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
760 	mss = skb_shinfo(skb)->gso_size;
761 
762 	if (mss > MSSMask) {
763 		WARN_ONCE(1, "Net bug: GSO size %d too large for 8139CP\n",
764 			  mss);
765 		goto out_dma_error;
766 	}
767 
768 	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
769 	opts1 = DescOwn;
770 	if (mss)
771 		opts1 |= LargeSend | (mss << MSSShift);
772 	else if (skb->ip_summed == CHECKSUM_PARTIAL) {
773 		const struct iphdr *ip = ip_hdr(skb);
774 		if (ip->protocol == IPPROTO_TCP)
775 			opts1 |= IPCS | TCPCS;
776 		else if (ip->protocol == IPPROTO_UDP)
777 			opts1 |= IPCS | UDPCS;
778 		else {
779 			WARN_ONCE(1,
780 				  "Net bug: asked to checksum invalid Legacy IP packet\n");
781 			goto out_dma_error;
782 		}
783 	}
784 
785 	if (skb_shinfo(skb)->nr_frags == 0) {
786 		struct cp_desc *txd = &cp->tx_ring[entry];
787 		u32 len;
788 		dma_addr_t mapping;
789 
790 		len = skb->len;
791 		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
792 		if (dma_mapping_error(&cp->pdev->dev, mapping))
793 			goto out_dma_error;
794 
795 		txd->opts2 = opts2;
796 		txd->addr = cpu_to_le64(mapping);
797 		wmb();
798 
799 		opts1 |= eor | len | FirstFrag | LastFrag;
800 
801 		txd->opts1 = cpu_to_le32(opts1);
802 		wmb();
803 
804 		cp->tx_skb[entry] = skb;
805 		cp->tx_opts[entry] = opts1;
806 		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
807 			  entry, skb->len);
808 	} else {
809 		struct cp_desc *txd;
810 		u32 first_len, first_eor, ctrl;
811 		dma_addr_t first_mapping;
812 		int frag, first_entry = entry;
813 
814 		/* We must give this initial chunk to the device last.
815 		 * Otherwise we could race with the device.
816 		 */
817 		first_eor = eor;
818 		first_len = skb_headlen(skb);
819 		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
820 					       first_len, PCI_DMA_TODEVICE);
821 		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
822 			goto out_dma_error;
823 
824 		cp->tx_skb[entry] = skb;
825 
826 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
827 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
828 			u32 len;
829 			dma_addr_t mapping;
830 
831 			entry = NEXT_TX(entry);
832 
833 			len = skb_frag_size(this_frag);
834 			mapping = dma_map_single(&cp->pdev->dev,
835 						 skb_frag_address(this_frag),
836 						 len, PCI_DMA_TODEVICE);
837 			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
838 				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
839 				goto out_dma_error;
840 			}
841 
842 			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
843 
844 			ctrl = opts1 | eor | len;
845 
846 			if (frag == skb_shinfo(skb)->nr_frags - 1)
847 				ctrl |= LastFrag;
848 
849 			txd = &cp->tx_ring[entry];
850 			txd->opts2 = opts2;
851 			txd->addr = cpu_to_le64(mapping);
852 			wmb();
853 
854 			txd->opts1 = cpu_to_le32(ctrl);
855 			wmb();
856 
857 			cp->tx_opts[entry] = ctrl;
858 			cp->tx_skb[entry] = skb;
859 		}
860 
861 		txd = &cp->tx_ring[first_entry];
862 		txd->opts2 = opts2;
863 		txd->addr = cpu_to_le64(first_mapping);
864 		wmb();
865 
866 		ctrl = opts1 | first_eor | first_len | FirstFrag;
867 		txd->opts1 = cpu_to_le32(ctrl);
868 		wmb();
869 
870 		cp->tx_opts[first_entry] = ctrl;
871 		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
872 			  first_entry, entry, skb->len);
873 	}
874 	cp->tx_head = NEXT_TX(entry);
875 
876 	netdev_sent_queue(dev, skb->len);
877 	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
878 		netif_stop_queue(dev);
879 
880 out_unlock:
881 	spin_unlock_irqrestore(&cp->lock, intr_flags);
882 
883 	cpw8(TxPoll, NormalTxPoll);
884 
885 	return NETDEV_TX_OK;
886 out_dma_error:
887 	dev_kfree_skb_any(skb);
888 	cp->dev->stats.tx_dropped++;
889 	goto out_unlock;
890 }
891 
892 /* Set or clear the multicast filter for this adaptor.
893    This routine is not state sensitive and need not be SMP locked. */
894 
__cp_set_rx_mode(struct net_device * dev)895 static void __cp_set_rx_mode (struct net_device *dev)
896 {
897 	struct cp_private *cp = netdev_priv(dev);
898 	u32 mc_filter[2];	/* Multicast hash filter */
899 	int rx_mode;
900 
901 	/* Note: do not reorder, GCC is clever about common statements. */
902 	if (dev->flags & IFF_PROMISC) {
903 		/* Unconditionally log net taps. */
904 		rx_mode =
905 		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
906 		    AcceptAllPhys;
907 		mc_filter[1] = mc_filter[0] = 0xffffffff;
908 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
909 		   (dev->flags & IFF_ALLMULTI)) {
910 		/* Too many to filter perfectly -- accept all multicasts. */
911 		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
912 		mc_filter[1] = mc_filter[0] = 0xffffffff;
913 	} else {
914 		struct netdev_hw_addr *ha;
915 		rx_mode = AcceptBroadcast | AcceptMyPhys;
916 		mc_filter[1] = mc_filter[0] = 0;
917 		netdev_for_each_mc_addr(ha, dev) {
918 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
919 
920 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
921 			rx_mode |= AcceptMulticast;
922 		}
923 	}
924 
925 	/* We can safely update without stopping the chip. */
926 	cp->rx_config = cp_rx_config | rx_mode;
927 	cpw32_f(RxConfig, cp->rx_config);
928 
929 	cpw32_f (MAR0 + 0, mc_filter[0]);
930 	cpw32_f (MAR0 + 4, mc_filter[1]);
931 }
932 
cp_set_rx_mode(struct net_device * dev)933 static void cp_set_rx_mode (struct net_device *dev)
934 {
935 	unsigned long flags;
936 	struct cp_private *cp = netdev_priv(dev);
937 
938 	spin_lock_irqsave (&cp->lock, flags);
939 	__cp_set_rx_mode(dev);
940 	spin_unlock_irqrestore (&cp->lock, flags);
941 }
942 
__cp_get_stats(struct cp_private * cp)943 static void __cp_get_stats(struct cp_private *cp)
944 {
945 	/* only lower 24 bits valid; write any value to clear */
946 	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
947 	cpw32 (RxMissed, 0);
948 }
949 
cp_get_stats(struct net_device * dev)950 static struct net_device_stats *cp_get_stats(struct net_device *dev)
951 {
952 	struct cp_private *cp = netdev_priv(dev);
953 	unsigned long flags;
954 
955 	/* The chip only need report frame silently dropped. */
956 	spin_lock_irqsave(&cp->lock, flags);
957  	if (netif_running(dev) && netif_device_present(dev))
958  		__cp_get_stats(cp);
959 	spin_unlock_irqrestore(&cp->lock, flags);
960 
961 	return &dev->stats;
962 }
963 
cp_stop_hw(struct cp_private * cp)964 static void cp_stop_hw (struct cp_private *cp)
965 {
966 	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
967 	cpw16_f(IntrMask, 0);
968 	cpw8(Cmd, 0);
969 	cpw16_f(CpCmd, 0);
970 	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
971 
972 	cp->rx_tail = 0;
973 	cp->tx_head = cp->tx_tail = 0;
974 
975 	netdev_reset_queue(cp->dev);
976 }
977 
cp_reset_hw(struct cp_private * cp)978 static void cp_reset_hw (struct cp_private *cp)
979 {
980 	unsigned work = 1000;
981 
982 	cpw8(Cmd, CmdReset);
983 
984 	while (work--) {
985 		if (!(cpr8(Cmd) & CmdReset))
986 			return;
987 
988 		schedule_timeout_uninterruptible(10);
989 	}
990 
991 	netdev_err(cp->dev, "hardware reset timeout\n");
992 }
993 
cp_start_hw(struct cp_private * cp)994 static inline void cp_start_hw (struct cp_private *cp)
995 {
996 	dma_addr_t ring_dma;
997 
998 	cpw16(CpCmd, cp->cpcmd);
999 
1000 	/*
1001 	 * These (at least TxRingAddr) need to be configured after the
1002 	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
1003 	 * (C+ Command Register) recommends that these and more be configured
1004 	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
1005 	 * it's been observed that the TxRingAddr is actually reset to garbage
1006 	 * when C+ mode Tx is enabled in CpCmd.
1007 	 */
1008 	cpw32_f(HiTxRingAddr, 0);
1009 	cpw32_f(HiTxRingAddr + 4, 0);
1010 
1011 	ring_dma = cp->ring_dma;
1012 	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1013 	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1014 
1015 	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1016 	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1017 	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1018 
1019 	/*
1020 	 * Strictly speaking, the datasheet says this should be enabled
1021 	 * *before* setting the descriptor addresses. But what, then, would
1022 	 * prevent it from doing DMA to random unconfigured addresses?
1023 	 * This variant appears to work fine.
1024 	 */
1025 	cpw8(Cmd, RxOn | TxOn);
1026 
1027 	netdev_reset_queue(cp->dev);
1028 }
1029 
cp_enable_irq(struct cp_private * cp)1030 static void cp_enable_irq(struct cp_private *cp)
1031 {
1032 	cpw16_f(IntrMask, cp_intr_mask);
1033 }
1034 
cp_init_hw(struct cp_private * cp)1035 static void cp_init_hw (struct cp_private *cp)
1036 {
1037 	struct net_device *dev = cp->dev;
1038 
1039 	cp_reset_hw(cp);
1040 
1041 	cpw8_f (Cfg9346, Cfg9346_Unlock);
1042 
1043 	/* Restore our idea of the MAC address. */
1044 	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1045 	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1046 
1047 	cp_start_hw(cp);
1048 	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1049 
1050 	__cp_set_rx_mode(dev);
1051 	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1052 
1053 	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1054 	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1055 	cpw8(Config3, PARMEnable);
1056 	cp->wol_enabled = 0;
1057 
1058 	cpw8(Config5, cpr8(Config5) & PMEStatus);
1059 
1060 	cpw16(MultiIntr, 0);
1061 
1062 	cpw8_f(Cfg9346, Cfg9346_Lock);
1063 }
1064 
cp_refill_rx(struct cp_private * cp)1065 static int cp_refill_rx(struct cp_private *cp)
1066 {
1067 	struct net_device *dev = cp->dev;
1068 	unsigned i;
1069 
1070 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1071 		struct sk_buff *skb;
1072 		dma_addr_t mapping;
1073 
1074 		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1075 		if (!skb)
1076 			goto err_out;
1077 
1078 		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1079 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1080 		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1081 			kfree_skb(skb);
1082 			goto err_out;
1083 		}
1084 		cp->rx_skb[i] = skb;
1085 
1086 		cp->rx_ring[i].opts2 = 0;
1087 		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1088 		if (i == (CP_RX_RING_SIZE - 1))
1089 			cp->rx_ring[i].opts1 =
1090 				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1091 		else
1092 			cp->rx_ring[i].opts1 =
1093 				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1094 	}
1095 
1096 	return 0;
1097 
1098 err_out:
1099 	cp_clean_rings(cp);
1100 	return -ENOMEM;
1101 }
1102 
cp_init_rings_index(struct cp_private * cp)1103 static void cp_init_rings_index (struct cp_private *cp)
1104 {
1105 	cp->rx_tail = 0;
1106 	cp->tx_head = cp->tx_tail = 0;
1107 }
1108 
cp_init_rings(struct cp_private * cp)1109 static int cp_init_rings (struct cp_private *cp)
1110 {
1111 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1112 	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1113 	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1114 
1115 	cp_init_rings_index(cp);
1116 
1117 	return cp_refill_rx (cp);
1118 }
1119 
cp_alloc_rings(struct cp_private * cp)1120 static int cp_alloc_rings (struct cp_private *cp)
1121 {
1122 	struct device *d = &cp->pdev->dev;
1123 	void *mem;
1124 	int rc;
1125 
1126 	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1127 	if (!mem)
1128 		return -ENOMEM;
1129 
1130 	cp->rx_ring = mem;
1131 	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1132 
1133 	rc = cp_init_rings(cp);
1134 	if (rc < 0)
1135 		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1136 
1137 	return rc;
1138 }
1139 
cp_clean_rings(struct cp_private * cp)1140 static void cp_clean_rings (struct cp_private *cp)
1141 {
1142 	struct cp_desc *desc;
1143 	unsigned i;
1144 
1145 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1146 		if (cp->rx_skb[i]) {
1147 			desc = cp->rx_ring + i;
1148 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1149 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1150 			dev_kfree_skb_any(cp->rx_skb[i]);
1151 		}
1152 	}
1153 
1154 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1155 		if (cp->tx_skb[i]) {
1156 			struct sk_buff *skb = cp->tx_skb[i];
1157 
1158 			desc = cp->tx_ring + i;
1159 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1160 					 le32_to_cpu(desc->opts1) & 0xffff,
1161 					 PCI_DMA_TODEVICE);
1162 			if (le32_to_cpu(desc->opts1) & LastFrag)
1163 				dev_kfree_skb_any(skb);
1164 			cp->dev->stats.tx_dropped++;
1165 		}
1166 	}
1167 	netdev_reset_queue(cp->dev);
1168 
1169 	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1170 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1171 	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1172 
1173 	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1174 	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1175 }
1176 
cp_free_rings(struct cp_private * cp)1177 static void cp_free_rings (struct cp_private *cp)
1178 {
1179 	cp_clean_rings(cp);
1180 	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1181 			  cp->ring_dma);
1182 	cp->rx_ring = NULL;
1183 	cp->tx_ring = NULL;
1184 }
1185 
cp_open(struct net_device * dev)1186 static int cp_open (struct net_device *dev)
1187 {
1188 	struct cp_private *cp = netdev_priv(dev);
1189 	const int irq = cp->pdev->irq;
1190 	int rc;
1191 
1192 	netif_dbg(cp, ifup, dev, "enabling interface\n");
1193 
1194 	rc = cp_alloc_rings(cp);
1195 	if (rc)
1196 		return rc;
1197 
1198 	napi_enable(&cp->napi);
1199 
1200 	cp_init_hw(cp);
1201 
1202 	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1203 	if (rc)
1204 		goto err_out_hw;
1205 
1206 	cp_enable_irq(cp);
1207 
1208 	netif_carrier_off(dev);
1209 	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1210 	netif_start_queue(dev);
1211 
1212 	return 0;
1213 
1214 err_out_hw:
1215 	napi_disable(&cp->napi);
1216 	cp_stop_hw(cp);
1217 	cp_free_rings(cp);
1218 	return rc;
1219 }
1220 
cp_close(struct net_device * dev)1221 static int cp_close (struct net_device *dev)
1222 {
1223 	struct cp_private *cp = netdev_priv(dev);
1224 	unsigned long flags;
1225 
1226 	napi_disable(&cp->napi);
1227 
1228 	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1229 
1230 	spin_lock_irqsave(&cp->lock, flags);
1231 
1232 	netif_stop_queue(dev);
1233 	netif_carrier_off(dev);
1234 
1235 	cp_stop_hw(cp);
1236 
1237 	spin_unlock_irqrestore(&cp->lock, flags);
1238 
1239 	free_irq(cp->pdev->irq, dev);
1240 
1241 	cp_free_rings(cp);
1242 	return 0;
1243 }
1244 
cp_tx_timeout(struct net_device * dev)1245 static void cp_tx_timeout(struct net_device *dev)
1246 {
1247 	struct cp_private *cp = netdev_priv(dev);
1248 	unsigned long flags;
1249 	int rc, i;
1250 
1251 	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1252 		    cpr8(Cmd), cpr16(CpCmd),
1253 		    cpr16(IntrStatus), cpr16(IntrMask));
1254 
1255 	spin_lock_irqsave(&cp->lock, flags);
1256 
1257 	netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1258 		  cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1259 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1260 		netif_dbg(cp, tx_err, cp->dev,
1261 			  "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1262 			  i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1263 			  cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1264 			  le64_to_cpu(cp->tx_ring[i].addr),
1265 			  cp->tx_skb[i]);
1266 	}
1267 
1268 	cp_stop_hw(cp);
1269 	cp_clean_rings(cp);
1270 	rc = cp_init_rings(cp);
1271 	cp_start_hw(cp);
1272 	__cp_set_rx_mode(dev);
1273 	cpw16_f(IntrMask, cp_norx_intr_mask);
1274 
1275 	netif_wake_queue(dev);
1276 	napi_schedule_irqoff(&cp->napi);
1277 
1278 	spin_unlock_irqrestore(&cp->lock, flags);
1279 }
1280 
cp_change_mtu(struct net_device * dev,int new_mtu)1281 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1282 {
1283 	struct cp_private *cp = netdev_priv(dev);
1284 
1285 	/* check for invalid MTU, according to hardware limits */
1286 	if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1287 		return -EINVAL;
1288 
1289 	/* if network interface not up, no need for complexity */
1290 	if (!netif_running(dev)) {
1291 		dev->mtu = new_mtu;
1292 		cp_set_rxbufsize(cp);	/* set new rx buf size */
1293 		return 0;
1294 	}
1295 
1296 	/* network IS up, close it, reset MTU, and come up again. */
1297 	cp_close(dev);
1298 	dev->mtu = new_mtu;
1299 	cp_set_rxbufsize(cp);
1300 	return cp_open(dev);
1301 }
1302 
1303 static const char mii_2_8139_map[8] = {
1304 	BasicModeCtrl,
1305 	BasicModeStatus,
1306 	0,
1307 	0,
1308 	NWayAdvert,
1309 	NWayLPAR,
1310 	NWayExpansion,
1311 	0
1312 };
1313 
mdio_read(struct net_device * dev,int phy_id,int location)1314 static int mdio_read(struct net_device *dev, int phy_id, int location)
1315 {
1316 	struct cp_private *cp = netdev_priv(dev);
1317 
1318 	return location < 8 && mii_2_8139_map[location] ?
1319 	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1320 }
1321 
1322 
mdio_write(struct net_device * dev,int phy_id,int location,int value)1323 static void mdio_write(struct net_device *dev, int phy_id, int location,
1324 		       int value)
1325 {
1326 	struct cp_private *cp = netdev_priv(dev);
1327 
1328 	if (location == 0) {
1329 		cpw8(Cfg9346, Cfg9346_Unlock);
1330 		cpw16(BasicModeCtrl, value);
1331 		cpw8(Cfg9346, Cfg9346_Lock);
1332 	} else if (location < 8 && mii_2_8139_map[location])
1333 		cpw16(mii_2_8139_map[location], value);
1334 }
1335 
1336 /* Set the ethtool Wake-on-LAN settings */
netdev_set_wol(struct cp_private * cp,const struct ethtool_wolinfo * wol)1337 static int netdev_set_wol (struct cp_private *cp,
1338 			   const struct ethtool_wolinfo *wol)
1339 {
1340 	u8 options;
1341 
1342 	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1343 	/* If WOL is being disabled, no need for complexity */
1344 	if (wol->wolopts) {
1345 		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1346 		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1347 	}
1348 
1349 	cpw8 (Cfg9346, Cfg9346_Unlock);
1350 	cpw8 (Config3, options);
1351 	cpw8 (Cfg9346, Cfg9346_Lock);
1352 
1353 	options = 0; /* Paranoia setting */
1354 	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1355 	/* If WOL is being disabled, no need for complexity */
1356 	if (wol->wolopts) {
1357 		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1358 		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1359 		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1360 	}
1361 
1362 	cpw8 (Config5, options);
1363 
1364 	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1365 
1366 	return 0;
1367 }
1368 
1369 /* Get the ethtool Wake-on-LAN settings */
netdev_get_wol(struct cp_private * cp,struct ethtool_wolinfo * wol)1370 static void netdev_get_wol (struct cp_private *cp,
1371 	             struct ethtool_wolinfo *wol)
1372 {
1373 	u8 options;
1374 
1375 	wol->wolopts   = 0; /* Start from scratch */
1376 	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1377 		         WAKE_MCAST | WAKE_UCAST;
1378 	/* We don't need to go on if WOL is disabled */
1379 	if (!cp->wol_enabled) return;
1380 
1381 	options        = cpr8 (Config3);
1382 	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1383 	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1384 
1385 	options        = 0; /* Paranoia setting */
1386 	options        = cpr8 (Config5);
1387 	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1388 	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1389 	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1390 }
1391 
cp_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1392 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1393 {
1394 	struct cp_private *cp = netdev_priv(dev);
1395 
1396 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1397 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1398 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1399 }
1400 
cp_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)1401 static void cp_get_ringparam(struct net_device *dev,
1402 				struct ethtool_ringparam *ring)
1403 {
1404 	ring->rx_max_pending = CP_RX_RING_SIZE;
1405 	ring->tx_max_pending = CP_TX_RING_SIZE;
1406 	ring->rx_pending = CP_RX_RING_SIZE;
1407 	ring->tx_pending = CP_TX_RING_SIZE;
1408 }
1409 
cp_get_regs_len(struct net_device * dev)1410 static int cp_get_regs_len(struct net_device *dev)
1411 {
1412 	return CP_REGS_SIZE;
1413 }
1414 
cp_get_sset_count(struct net_device * dev,int sset)1415 static int cp_get_sset_count (struct net_device *dev, int sset)
1416 {
1417 	switch (sset) {
1418 	case ETH_SS_STATS:
1419 		return CP_NUM_STATS;
1420 	default:
1421 		return -EOPNOTSUPP;
1422 	}
1423 }
1424 
cp_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1425 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1426 {
1427 	struct cp_private *cp = netdev_priv(dev);
1428 	int rc;
1429 	unsigned long flags;
1430 
1431 	spin_lock_irqsave(&cp->lock, flags);
1432 	rc = mii_ethtool_gset(&cp->mii_if, cmd);
1433 	spin_unlock_irqrestore(&cp->lock, flags);
1434 
1435 	return rc;
1436 }
1437 
cp_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1438 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1439 {
1440 	struct cp_private *cp = netdev_priv(dev);
1441 	int rc;
1442 	unsigned long flags;
1443 
1444 	spin_lock_irqsave(&cp->lock, flags);
1445 	rc = mii_ethtool_sset(&cp->mii_if, cmd);
1446 	spin_unlock_irqrestore(&cp->lock, flags);
1447 
1448 	return rc;
1449 }
1450 
cp_nway_reset(struct net_device * dev)1451 static int cp_nway_reset(struct net_device *dev)
1452 {
1453 	struct cp_private *cp = netdev_priv(dev);
1454 	return mii_nway_restart(&cp->mii_if);
1455 }
1456 
cp_get_msglevel(struct net_device * dev)1457 static u32 cp_get_msglevel(struct net_device *dev)
1458 {
1459 	struct cp_private *cp = netdev_priv(dev);
1460 	return cp->msg_enable;
1461 }
1462 
cp_set_msglevel(struct net_device * dev,u32 value)1463 static void cp_set_msglevel(struct net_device *dev, u32 value)
1464 {
1465 	struct cp_private *cp = netdev_priv(dev);
1466 	cp->msg_enable = value;
1467 }
1468 
cp_set_features(struct net_device * dev,netdev_features_t features)1469 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1470 {
1471 	struct cp_private *cp = netdev_priv(dev);
1472 	unsigned long flags;
1473 
1474 	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1475 		return 0;
1476 
1477 	spin_lock_irqsave(&cp->lock, flags);
1478 
1479 	if (features & NETIF_F_RXCSUM)
1480 		cp->cpcmd |= RxChkSum;
1481 	else
1482 		cp->cpcmd &= ~RxChkSum;
1483 
1484 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1485 		cp->cpcmd |= RxVlanOn;
1486 	else
1487 		cp->cpcmd &= ~RxVlanOn;
1488 
1489 	cpw16_f(CpCmd, cp->cpcmd);
1490 	spin_unlock_irqrestore(&cp->lock, flags);
1491 
1492 	return 0;
1493 }
1494 
cp_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)1495 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1496 		        void *p)
1497 {
1498 	struct cp_private *cp = netdev_priv(dev);
1499 	unsigned long flags;
1500 
1501 	if (regs->len < CP_REGS_SIZE)
1502 		return /* -EINVAL */;
1503 
1504 	regs->version = CP_REGS_VER;
1505 
1506 	spin_lock_irqsave(&cp->lock, flags);
1507 	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1508 	spin_unlock_irqrestore(&cp->lock, flags);
1509 }
1510 
cp_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1511 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1512 {
1513 	struct cp_private *cp = netdev_priv(dev);
1514 	unsigned long flags;
1515 
1516 	spin_lock_irqsave (&cp->lock, flags);
1517 	netdev_get_wol (cp, wol);
1518 	spin_unlock_irqrestore (&cp->lock, flags);
1519 }
1520 
cp_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1521 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1522 {
1523 	struct cp_private *cp = netdev_priv(dev);
1524 	unsigned long flags;
1525 	int rc;
1526 
1527 	spin_lock_irqsave (&cp->lock, flags);
1528 	rc = netdev_set_wol (cp, wol);
1529 	spin_unlock_irqrestore (&cp->lock, flags);
1530 
1531 	return rc;
1532 }
1533 
cp_get_strings(struct net_device * dev,u32 stringset,u8 * buf)1534 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1535 {
1536 	switch (stringset) {
1537 	case ETH_SS_STATS:
1538 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1539 		break;
1540 	default:
1541 		BUG();
1542 		break;
1543 	}
1544 }
1545 
cp_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * tmp_stats)1546 static void cp_get_ethtool_stats (struct net_device *dev,
1547 				  struct ethtool_stats *estats, u64 *tmp_stats)
1548 {
1549 	struct cp_private *cp = netdev_priv(dev);
1550 	struct cp_dma_stats *nic_stats;
1551 	dma_addr_t dma;
1552 	int i;
1553 
1554 	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1555 				       &dma, GFP_KERNEL);
1556 	if (!nic_stats)
1557 		return;
1558 
1559 	/* begin NIC statistics dump */
1560 	cpw32(StatsAddr + 4, (u64)dma >> 32);
1561 	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1562 	cpr32(StatsAddr);
1563 
1564 	for (i = 0; i < 1000; i++) {
1565 		if ((cpr32(StatsAddr) & DumpStats) == 0)
1566 			break;
1567 		udelay(10);
1568 	}
1569 	cpw32(StatsAddr, 0);
1570 	cpw32(StatsAddr + 4, 0);
1571 	cpr32(StatsAddr);
1572 
1573 	i = 0;
1574 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1575 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1576 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1577 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1578 	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1579 	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1580 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1581 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1582 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1583 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1584 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1585 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1586 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1587 	tmp_stats[i++] = cp->cp_stats.rx_frags;
1588 	BUG_ON(i != CP_NUM_STATS);
1589 
1590 	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1591 }
1592 
1593 static const struct ethtool_ops cp_ethtool_ops = {
1594 	.get_drvinfo		= cp_get_drvinfo,
1595 	.get_regs_len		= cp_get_regs_len,
1596 	.get_sset_count		= cp_get_sset_count,
1597 	.get_settings		= cp_get_settings,
1598 	.set_settings		= cp_set_settings,
1599 	.nway_reset		= cp_nway_reset,
1600 	.get_link		= ethtool_op_get_link,
1601 	.get_msglevel		= cp_get_msglevel,
1602 	.set_msglevel		= cp_set_msglevel,
1603 	.get_regs		= cp_get_regs,
1604 	.get_wol		= cp_get_wol,
1605 	.set_wol		= cp_set_wol,
1606 	.get_strings		= cp_get_strings,
1607 	.get_ethtool_stats	= cp_get_ethtool_stats,
1608 	.get_eeprom_len		= cp_get_eeprom_len,
1609 	.get_eeprom		= cp_get_eeprom,
1610 	.set_eeprom		= cp_set_eeprom,
1611 	.get_ringparam		= cp_get_ringparam,
1612 };
1613 
cp_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1614 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1615 {
1616 	struct cp_private *cp = netdev_priv(dev);
1617 	int rc;
1618 	unsigned long flags;
1619 
1620 	if (!netif_running(dev))
1621 		return -EINVAL;
1622 
1623 	spin_lock_irqsave(&cp->lock, flags);
1624 	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1625 	spin_unlock_irqrestore(&cp->lock, flags);
1626 	return rc;
1627 }
1628 
cp_set_mac_address(struct net_device * dev,void * p)1629 static int cp_set_mac_address(struct net_device *dev, void *p)
1630 {
1631 	struct cp_private *cp = netdev_priv(dev);
1632 	struct sockaddr *addr = p;
1633 
1634 	if (!is_valid_ether_addr(addr->sa_data))
1635 		return -EADDRNOTAVAIL;
1636 
1637 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1638 
1639 	spin_lock_irq(&cp->lock);
1640 
1641 	cpw8_f(Cfg9346, Cfg9346_Unlock);
1642 	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1643 	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1644 	cpw8_f(Cfg9346, Cfg9346_Lock);
1645 
1646 	spin_unlock_irq(&cp->lock);
1647 
1648 	return 0;
1649 }
1650 
1651 /* Serial EEPROM section. */
1652 
1653 /*  EEPROM_Ctrl bits. */
1654 #define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1655 #define EE_CS			0x08	/* EEPROM chip select. */
1656 #define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1657 #define EE_WRITE_0		0x00
1658 #define EE_WRITE_1		0x02
1659 #define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1660 #define EE_ENB			(0x80 | EE_CS)
1661 
1662 /* Delay between EEPROM clock transitions.
1663    No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1664  */
1665 
1666 #define eeprom_delay()	readb(ee_addr)
1667 
1668 /* The EEPROM commands include the alway-set leading bit. */
1669 #define EE_EXTEND_CMD	(4)
1670 #define EE_WRITE_CMD	(5)
1671 #define EE_READ_CMD		(6)
1672 #define EE_ERASE_CMD	(7)
1673 
1674 #define EE_EWDS_ADDR	(0)
1675 #define EE_WRAL_ADDR	(1)
1676 #define EE_ERAL_ADDR	(2)
1677 #define EE_EWEN_ADDR	(3)
1678 
1679 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1680 
eeprom_cmd_start(void __iomem * ee_addr)1681 static void eeprom_cmd_start(void __iomem *ee_addr)
1682 {
1683 	writeb (EE_ENB & ~EE_CS, ee_addr);
1684 	writeb (EE_ENB, ee_addr);
1685 	eeprom_delay ();
1686 }
1687 
eeprom_cmd(void __iomem * ee_addr,int cmd,int cmd_len)1688 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1689 {
1690 	int i;
1691 
1692 	/* Shift the command bits out. */
1693 	for (i = cmd_len - 1; i >= 0; i--) {
1694 		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1695 		writeb (EE_ENB | dataval, ee_addr);
1696 		eeprom_delay ();
1697 		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1698 		eeprom_delay ();
1699 	}
1700 	writeb (EE_ENB, ee_addr);
1701 	eeprom_delay ();
1702 }
1703 
eeprom_cmd_end(void __iomem * ee_addr)1704 static void eeprom_cmd_end(void __iomem *ee_addr)
1705 {
1706 	writeb(0, ee_addr);
1707 	eeprom_delay ();
1708 }
1709 
eeprom_extend_cmd(void __iomem * ee_addr,int extend_cmd,int addr_len)1710 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1711 			      int addr_len)
1712 {
1713 	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1714 
1715 	eeprom_cmd_start(ee_addr);
1716 	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1717 	eeprom_cmd_end(ee_addr);
1718 }
1719 
read_eeprom(void __iomem * ioaddr,int location,int addr_len)1720 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1721 {
1722 	int i;
1723 	u16 retval = 0;
1724 	void __iomem *ee_addr = ioaddr + Cfg9346;
1725 	int read_cmd = location | (EE_READ_CMD << addr_len);
1726 
1727 	eeprom_cmd_start(ee_addr);
1728 	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1729 
1730 	for (i = 16; i > 0; i--) {
1731 		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1732 		eeprom_delay ();
1733 		retval =
1734 		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1735 				     0);
1736 		writeb (EE_ENB, ee_addr);
1737 		eeprom_delay ();
1738 	}
1739 
1740 	eeprom_cmd_end(ee_addr);
1741 
1742 	return retval;
1743 }
1744 
write_eeprom(void __iomem * ioaddr,int location,u16 val,int addr_len)1745 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1746 			 int addr_len)
1747 {
1748 	int i;
1749 	void __iomem *ee_addr = ioaddr + Cfg9346;
1750 	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1751 
1752 	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1753 
1754 	eeprom_cmd_start(ee_addr);
1755 	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1756 	eeprom_cmd(ee_addr, val, 16);
1757 	eeprom_cmd_end(ee_addr);
1758 
1759 	eeprom_cmd_start(ee_addr);
1760 	for (i = 0; i < 20000; i++)
1761 		if (readb(ee_addr) & EE_DATA_READ)
1762 			break;
1763 	eeprom_cmd_end(ee_addr);
1764 
1765 	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1766 }
1767 
cp_get_eeprom_len(struct net_device * dev)1768 static int cp_get_eeprom_len(struct net_device *dev)
1769 {
1770 	struct cp_private *cp = netdev_priv(dev);
1771 	int size;
1772 
1773 	spin_lock_irq(&cp->lock);
1774 	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1775 	spin_unlock_irq(&cp->lock);
1776 
1777 	return size;
1778 }
1779 
cp_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1780 static int cp_get_eeprom(struct net_device *dev,
1781 			 struct ethtool_eeprom *eeprom, u8 *data)
1782 {
1783 	struct cp_private *cp = netdev_priv(dev);
1784 	unsigned int addr_len;
1785 	u16 val;
1786 	u32 offset = eeprom->offset >> 1;
1787 	u32 len = eeprom->len;
1788 	u32 i = 0;
1789 
1790 	eeprom->magic = CP_EEPROM_MAGIC;
1791 
1792 	spin_lock_irq(&cp->lock);
1793 
1794 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1795 
1796 	if (eeprom->offset & 1) {
1797 		val = read_eeprom(cp->regs, offset, addr_len);
1798 		data[i++] = (u8)(val >> 8);
1799 		offset++;
1800 	}
1801 
1802 	while (i < len - 1) {
1803 		val = read_eeprom(cp->regs, offset, addr_len);
1804 		data[i++] = (u8)val;
1805 		data[i++] = (u8)(val >> 8);
1806 		offset++;
1807 	}
1808 
1809 	if (i < len) {
1810 		val = read_eeprom(cp->regs, offset, addr_len);
1811 		data[i] = (u8)val;
1812 	}
1813 
1814 	spin_unlock_irq(&cp->lock);
1815 	return 0;
1816 }
1817 
cp_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1818 static int cp_set_eeprom(struct net_device *dev,
1819 			 struct ethtool_eeprom *eeprom, u8 *data)
1820 {
1821 	struct cp_private *cp = netdev_priv(dev);
1822 	unsigned int addr_len;
1823 	u16 val;
1824 	u32 offset = eeprom->offset >> 1;
1825 	u32 len = eeprom->len;
1826 	u32 i = 0;
1827 
1828 	if (eeprom->magic != CP_EEPROM_MAGIC)
1829 		return -EINVAL;
1830 
1831 	spin_lock_irq(&cp->lock);
1832 
1833 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1834 
1835 	if (eeprom->offset & 1) {
1836 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1837 		val |= (u16)data[i++] << 8;
1838 		write_eeprom(cp->regs, offset, val, addr_len);
1839 		offset++;
1840 	}
1841 
1842 	while (i < len - 1) {
1843 		val = (u16)data[i++];
1844 		val |= (u16)data[i++] << 8;
1845 		write_eeprom(cp->regs, offset, val, addr_len);
1846 		offset++;
1847 	}
1848 
1849 	if (i < len) {
1850 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1851 		val |= (u16)data[i];
1852 		write_eeprom(cp->regs, offset, val, addr_len);
1853 	}
1854 
1855 	spin_unlock_irq(&cp->lock);
1856 	return 0;
1857 }
1858 
1859 /* Put the board into D3cold state and wait for WakeUp signal */
cp_set_d3_state(struct cp_private * cp)1860 static void cp_set_d3_state (struct cp_private *cp)
1861 {
1862 	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1863 	pci_set_power_state (cp->pdev, PCI_D3hot);
1864 }
1865 
cp_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1866 static netdev_features_t cp_features_check(struct sk_buff *skb,
1867 					   struct net_device *dev,
1868 					   netdev_features_t features)
1869 {
1870 	if (skb_shinfo(skb)->gso_size > MSSMask)
1871 		features &= ~NETIF_F_TSO;
1872 
1873 	return vlan_features_check(skb, features);
1874 }
1875 static const struct net_device_ops cp_netdev_ops = {
1876 	.ndo_open		= cp_open,
1877 	.ndo_stop		= cp_close,
1878 	.ndo_validate_addr	= eth_validate_addr,
1879 	.ndo_set_mac_address 	= cp_set_mac_address,
1880 	.ndo_set_rx_mode	= cp_set_rx_mode,
1881 	.ndo_get_stats		= cp_get_stats,
1882 	.ndo_do_ioctl		= cp_ioctl,
1883 	.ndo_start_xmit		= cp_start_xmit,
1884 	.ndo_tx_timeout		= cp_tx_timeout,
1885 	.ndo_set_features	= cp_set_features,
1886 	.ndo_change_mtu		= cp_change_mtu,
1887 	.ndo_features_check	= cp_features_check,
1888 
1889 #ifdef CONFIG_NET_POLL_CONTROLLER
1890 	.ndo_poll_controller	= cp_poll_controller,
1891 #endif
1892 };
1893 
cp_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1894 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1895 {
1896 	struct net_device *dev;
1897 	struct cp_private *cp;
1898 	int rc;
1899 	void __iomem *regs;
1900 	resource_size_t pciaddr;
1901 	unsigned int addr_len, i, pci_using_dac;
1902 
1903 	pr_info_once("%s", version);
1904 
1905 	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1906 	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1907 		dev_info(&pdev->dev,
1908 			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1909 			 pdev->vendor, pdev->device, pdev->revision);
1910 		return -ENODEV;
1911 	}
1912 
1913 	dev = alloc_etherdev(sizeof(struct cp_private));
1914 	if (!dev)
1915 		return -ENOMEM;
1916 	SET_NETDEV_DEV(dev, &pdev->dev);
1917 
1918 	cp = netdev_priv(dev);
1919 	cp->pdev = pdev;
1920 	cp->dev = dev;
1921 	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1922 	spin_lock_init (&cp->lock);
1923 	cp->mii_if.dev = dev;
1924 	cp->mii_if.mdio_read = mdio_read;
1925 	cp->mii_if.mdio_write = mdio_write;
1926 	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1927 	cp->mii_if.phy_id_mask = 0x1f;
1928 	cp->mii_if.reg_num_mask = 0x1f;
1929 	cp_set_rxbufsize(cp);
1930 
1931 	rc = pci_enable_device(pdev);
1932 	if (rc)
1933 		goto err_out_free;
1934 
1935 	rc = pci_set_mwi(pdev);
1936 	if (rc)
1937 		goto err_out_disable;
1938 
1939 	rc = pci_request_regions(pdev, DRV_NAME);
1940 	if (rc)
1941 		goto err_out_mwi;
1942 
1943 	pciaddr = pci_resource_start(pdev, 1);
1944 	if (!pciaddr) {
1945 		rc = -EIO;
1946 		dev_err(&pdev->dev, "no MMIO resource\n");
1947 		goto err_out_res;
1948 	}
1949 	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1950 		rc = -EIO;
1951 		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1952 		       (unsigned long long)pci_resource_len(pdev, 1));
1953 		goto err_out_res;
1954 	}
1955 
1956 	/* Configure DMA attributes. */
1957 	if ((sizeof(dma_addr_t) > 4) &&
1958 	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1959 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1960 		pci_using_dac = 1;
1961 	} else {
1962 		pci_using_dac = 0;
1963 
1964 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1965 		if (rc) {
1966 			dev_err(&pdev->dev,
1967 				"No usable DMA configuration, aborting\n");
1968 			goto err_out_res;
1969 		}
1970 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1971 		if (rc) {
1972 			dev_err(&pdev->dev,
1973 				"No usable consistent DMA configuration, aborting\n");
1974 			goto err_out_res;
1975 		}
1976 	}
1977 
1978 	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1979 		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1980 
1981 	dev->features |= NETIF_F_RXCSUM;
1982 	dev->hw_features |= NETIF_F_RXCSUM;
1983 
1984 	regs = ioremap(pciaddr, CP_REGS_SIZE);
1985 	if (!regs) {
1986 		rc = -EIO;
1987 		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1988 			(unsigned long long)pci_resource_len(pdev, 1),
1989 		       (unsigned long long)pciaddr);
1990 		goto err_out_res;
1991 	}
1992 	cp->regs = regs;
1993 
1994 	cp_stop_hw(cp);
1995 
1996 	/* read MAC address from EEPROM */
1997 	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1998 	for (i = 0; i < 3; i++)
1999 		((__le16 *) (dev->dev_addr))[i] =
2000 		    cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
2001 
2002 	dev->netdev_ops = &cp_netdev_ops;
2003 	netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
2004 	dev->ethtool_ops = &cp_ethtool_ops;
2005 	dev->watchdog_timeo = TX_TIMEOUT;
2006 
2007 	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2008 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2009 
2010 	if (pci_using_dac)
2011 		dev->features |= NETIF_F_HIGHDMA;
2012 
2013 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2014 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2015 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2016 		NETIF_F_HIGHDMA;
2017 
2018 	rc = register_netdev(dev);
2019 	if (rc)
2020 		goto err_out_iomap;
2021 
2022 	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2023 		    regs, dev->dev_addr, pdev->irq);
2024 
2025 	pci_set_drvdata(pdev, dev);
2026 
2027 	/* enable busmastering and memory-write-invalidate */
2028 	pci_set_master(pdev);
2029 
2030 	if (cp->wol_enabled)
2031 		cp_set_d3_state (cp);
2032 
2033 	return 0;
2034 
2035 err_out_iomap:
2036 	iounmap(regs);
2037 err_out_res:
2038 	pci_release_regions(pdev);
2039 err_out_mwi:
2040 	pci_clear_mwi(pdev);
2041 err_out_disable:
2042 	pci_disable_device(pdev);
2043 err_out_free:
2044 	free_netdev(dev);
2045 	return rc;
2046 }
2047 
cp_remove_one(struct pci_dev * pdev)2048 static void cp_remove_one (struct pci_dev *pdev)
2049 {
2050 	struct net_device *dev = pci_get_drvdata(pdev);
2051 	struct cp_private *cp = netdev_priv(dev);
2052 
2053 	unregister_netdev(dev);
2054 	iounmap(cp->regs);
2055 	if (cp->wol_enabled)
2056 		pci_set_power_state (pdev, PCI_D0);
2057 	pci_release_regions(pdev);
2058 	pci_clear_mwi(pdev);
2059 	pci_disable_device(pdev);
2060 	free_netdev(dev);
2061 }
2062 
2063 #ifdef CONFIG_PM
cp_suspend(struct pci_dev * pdev,pm_message_t state)2064 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2065 {
2066 	struct net_device *dev = pci_get_drvdata(pdev);
2067 	struct cp_private *cp = netdev_priv(dev);
2068 	unsigned long flags;
2069 
2070 	if (!netif_running(dev))
2071 		return 0;
2072 
2073 	netif_device_detach (dev);
2074 	netif_stop_queue (dev);
2075 
2076 	spin_lock_irqsave (&cp->lock, flags);
2077 
2078 	/* Disable Rx and Tx */
2079 	cpw16 (IntrMask, 0);
2080 	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2081 
2082 	spin_unlock_irqrestore (&cp->lock, flags);
2083 
2084 	pci_save_state(pdev);
2085 	pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2086 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2087 
2088 	return 0;
2089 }
2090 
cp_resume(struct pci_dev * pdev)2091 static int cp_resume (struct pci_dev *pdev)
2092 {
2093 	struct net_device *dev = pci_get_drvdata (pdev);
2094 	struct cp_private *cp = netdev_priv(dev);
2095 	unsigned long flags;
2096 
2097 	if (!netif_running(dev))
2098 		return 0;
2099 
2100 	netif_device_attach (dev);
2101 
2102 	pci_set_power_state(pdev, PCI_D0);
2103 	pci_restore_state(pdev);
2104 	pci_enable_wake(pdev, PCI_D0, 0);
2105 
2106 	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2107 	cp_init_rings_index (cp);
2108 	cp_init_hw (cp);
2109 	cp_enable_irq(cp);
2110 	netif_start_queue (dev);
2111 
2112 	spin_lock_irqsave (&cp->lock, flags);
2113 
2114 	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2115 
2116 	spin_unlock_irqrestore (&cp->lock, flags);
2117 
2118 	return 0;
2119 }
2120 #endif /* CONFIG_PM */
2121 
2122 static const struct pci_device_id cp_pci_tbl[] = {
2123         { PCI_DEVICE(PCI_VENDOR_ID_REALTEK,     PCI_DEVICE_ID_REALTEK_8139), },
2124         { PCI_DEVICE(PCI_VENDOR_ID_TTTECH,      PCI_DEVICE_ID_TTTECH_MC322), },
2125         { },
2126 };
2127 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2128 
2129 static struct pci_driver cp_driver = {
2130 	.name         = DRV_NAME,
2131 	.id_table     = cp_pci_tbl,
2132 	.probe        =	cp_init_one,
2133 	.remove       = cp_remove_one,
2134 #ifdef CONFIG_PM
2135 	.resume       = cp_resume,
2136 	.suspend      = cp_suspend,
2137 #endif
2138 };
2139 
2140 module_pci_driver(cp_driver);
2141