1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
18
19 See the file COPYING in this distribution for more information.
20
21 Contributors:
22
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
26
27 TODO:
28 * Test Tx checksumming thoroughly
29
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
42
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
46
47 */
48
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
54
55
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99
100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
101 NETIF_MSG_PROBE | \
102 NETIF_MSG_LINK)
103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE (0xff + 1)
106 #define CP_REGS_VER 1 /* version 1 */
107 #define CP_RX_RING_SIZE 64
108 #define CP_TX_RING_SIZE 64
109 #define CP_RING_BYTES \
110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
112 CP_STATS_SIZE)
113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP) \
116 (((CP)->tx_tail <= (CP)->tx_head) ? \
117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
118 (CP)->tx_tail - (CP)->tx_head - 1)
119
120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY 32
122
123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
128
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT (6*HZ)
131
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
134 #define CP_MAX_MTU 4096
135
136 enum {
137 /* NIC register offsets */
138 MAC0 = 0x00, /* Ethernet hardware address. */
139 MAR0 = 0x08, /* Multicast filter. */
140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
143 Cmd = 0x37, /* Command register */
144 IntrMask = 0x3C, /* Interrupt mask */
145 IntrStatus = 0x3E, /* Interrupt status */
146 TxConfig = 0x40, /* Tx configuration */
147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
148 RxConfig = 0x44, /* Rx configuration */
149 RxMissed = 0x4C, /* 24 bits valid, write clears */
150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 Config1 = 0x52, /* Config1 */
152 Config3 = 0x59, /* Config3 */
153 Config4 = 0x5A, /* Config4 */
154 MultiIntr = 0x5C, /* Multiple interrupt select */
155 BasicModeCtrl = 0x62, /* MII BMCR */
156 BasicModeStatus = 0x64, /* MII BMSR */
157 NWayAdvert = 0x66, /* MII ADVERTISE */
158 NWayLPAR = 0x68, /* MII LPA */
159 NWayExpansion = 0x6A, /* MII Expansion */
160 TxDmaOkLowDesc = 0x82, /* Low 16 bit address of a Tx descriptor. */
161 Config5 = 0xD8, /* Config5 */
162 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
163 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
164 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
165 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
166 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
167 TxThresh = 0xEC, /* Early Tx threshold */
168 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
169 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
170
171 /* Tx and Rx status descriptors */
172 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
173 RingEnd = (1 << 30), /* End of descriptor ring */
174 FirstFrag = (1 << 29), /* First segment of a packet */
175 LastFrag = (1 << 28), /* Final segment of a packet */
176 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
177 MSSShift = 16, /* MSS value position */
178 MSSMask = 0x7ff, /* MSS value: 11 bits */
179 TxError = (1 << 23), /* Tx error summary */
180 RxError = (1 << 20), /* Rx error summary */
181 IPCS = (1 << 18), /* Calculate IP checksum */
182 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
183 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
184 TxVlanTag = (1 << 17), /* Add VLAN tag */
185 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
186 IPFail = (1 << 15), /* IP checksum failed */
187 UDPFail = (1 << 14), /* UDP/IP checksum failed */
188 TCPFail = (1 << 13), /* TCP/IP checksum failed */
189 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
190 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
191 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
192 RxProtoTCP = 1,
193 RxProtoUDP = 2,
194 RxProtoIP = 3,
195 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
196 TxOWC = (1 << 22), /* Tx Out-of-window collision */
197 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
198 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
199 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
200 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
201 RxErrFrame = (1 << 27), /* Rx frame alignment error */
202 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
203 RxErrCRC = (1 << 18), /* Rx CRC error */
204 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
205 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
206 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
207
208 /* StatsAddr register */
209 DumpStats = (1 << 3), /* Begin stats dump */
210
211 /* RxConfig register */
212 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
213 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
214 AcceptErr = 0x20, /* Accept packets with CRC errors */
215 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
216 AcceptBroadcast = 0x08, /* Accept broadcast packets */
217 AcceptMulticast = 0x04, /* Accept multicast packets */
218 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
219 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
220
221 /* IntrMask / IntrStatus registers */
222 PciErr = (1 << 15), /* System error on the PCI bus */
223 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
224 LenChg = (1 << 13), /* Cable length change */
225 SWInt = (1 << 8), /* Software-requested interrupt */
226 TxEmpty = (1 << 7), /* No Tx descriptors available */
227 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
228 LinkChg = (1 << 5), /* Packet underrun, or link change */
229 RxEmpty = (1 << 4), /* No Rx descriptors available */
230 TxErr = (1 << 3), /* Tx error */
231 TxOK = (1 << 2), /* Tx packet sent */
232 RxErr = (1 << 1), /* Rx error */
233 RxOK = (1 << 0), /* Rx packet received */
234 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
235 but hardware likes to raise it */
236
237 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
238 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
239 RxErr | RxOK | IntrResvd,
240
241 /* C mode command register */
242 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
243 RxOn = (1 << 3), /* Rx mode enable */
244 TxOn = (1 << 2), /* Tx mode enable */
245
246 /* C+ mode command register */
247 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
248 RxChkSum = (1 << 5), /* Rx checksum offload enable */
249 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
250 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
251 CpRxOn = (1 << 1), /* Rx mode enable */
252 CpTxOn = (1 << 0), /* Tx mode enable */
253
254 /* Cfg9436 EEPROM control register */
255 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
256 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
257
258 /* TxConfig register */
259 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
260 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
261
262 /* Early Tx Threshold register */
263 TxThreshMask = 0x3f, /* Mask bits 5-0 */
264 TxThreshMax = 2048, /* Max early Tx threshold */
265
266 /* Config1 register */
267 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
268 LWACT = (1 << 4), /* LWAKE active mode */
269 PMEnable = (1 << 0), /* Enable various PM features of chip */
270
271 /* Config3 register */
272 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
273 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
274 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
275
276 /* Config4 register */
277 LWPTN = (1 << 1), /* LWAKE Pattern */
278 LWPME = (1 << 4), /* LANWAKE vs PMEB */
279
280 /* Config5 register */
281 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
282 MWF = (1 << 5), /* Accept Multicast wakeup frame */
283 UWF = (1 << 4), /* Accept Unicast wakeup frame */
284 LANWake = (1 << 1), /* Enable LANWake signal */
285 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
286
287 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
288 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
289 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
290 };
291
292 static const unsigned int cp_rx_config =
293 (RX_FIFO_THRESH << RxCfgFIFOShift) |
294 (RX_DMA_BURST << RxCfgDMAShift);
295
296 struct cp_desc {
297 __le32 opts1;
298 __le32 opts2;
299 __le64 addr;
300 };
301
302 struct cp_dma_stats {
303 __le64 tx_ok;
304 __le64 rx_ok;
305 __le64 tx_err;
306 __le32 rx_err;
307 __le16 rx_fifo;
308 __le16 frame_align;
309 __le32 tx_ok_1col;
310 __le32 tx_ok_mcol;
311 __le64 rx_ok_phys;
312 __le64 rx_ok_bcast;
313 __le32 rx_ok_mcast;
314 __le16 tx_abort;
315 __le16 tx_underrun;
316 } __packed;
317
318 struct cp_extra_stats {
319 unsigned long rx_frags;
320 };
321
322 struct cp_private {
323 void __iomem *regs;
324 struct net_device *dev;
325 spinlock_t lock;
326 u32 msg_enable;
327
328 struct napi_struct napi;
329
330 struct pci_dev *pdev;
331 u32 rx_config;
332 u16 cpcmd;
333
334 struct cp_extra_stats cp_stats;
335
336 unsigned rx_head ____cacheline_aligned;
337 unsigned rx_tail;
338 struct cp_desc *rx_ring;
339 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
340
341 unsigned tx_head ____cacheline_aligned;
342 unsigned tx_tail;
343 struct cp_desc *tx_ring;
344 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
345 u32 tx_opts[CP_TX_RING_SIZE];
346
347 unsigned rx_buf_sz;
348 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
349
350 dma_addr_t ring_dma;
351
352 struct mii_if_info mii_if;
353 };
354
355 #define cpr8(reg) readb(cp->regs + (reg))
356 #define cpr16(reg) readw(cp->regs + (reg))
357 #define cpr32(reg) readl(cp->regs + (reg))
358 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
359 #define cpw16(reg,val) writew((val), cp->regs + (reg))
360 #define cpw32(reg,val) writel((val), cp->regs + (reg))
361 #define cpw8_f(reg,val) do { \
362 writeb((val), cp->regs + (reg)); \
363 readb(cp->regs + (reg)); \
364 } while (0)
365 #define cpw16_f(reg,val) do { \
366 writew((val), cp->regs + (reg)); \
367 readw(cp->regs + (reg)); \
368 } while (0)
369 #define cpw32_f(reg,val) do { \
370 writel((val), cp->regs + (reg)); \
371 readl(cp->regs + (reg)); \
372 } while (0)
373
374
375 static void __cp_set_rx_mode (struct net_device *dev);
376 static void cp_tx (struct cp_private *cp);
377 static void cp_clean_rings (struct cp_private *cp);
378 #ifdef CONFIG_NET_POLL_CONTROLLER
379 static void cp_poll_controller(struct net_device *dev);
380 #endif
381 static int cp_get_eeprom_len(struct net_device *dev);
382 static int cp_get_eeprom(struct net_device *dev,
383 struct ethtool_eeprom *eeprom, u8 *data);
384 static int cp_set_eeprom(struct net_device *dev,
385 struct ethtool_eeprom *eeprom, u8 *data);
386
387 static struct {
388 const char str[ETH_GSTRING_LEN];
389 } ethtool_stats_keys[] = {
390 { "tx_ok" },
391 { "rx_ok" },
392 { "tx_err" },
393 { "rx_err" },
394 { "rx_fifo" },
395 { "frame_align" },
396 { "tx_ok_1col" },
397 { "tx_ok_mcol" },
398 { "rx_ok_phys" },
399 { "rx_ok_bcast" },
400 { "rx_ok_mcast" },
401 { "tx_abort" },
402 { "tx_underrun" },
403 { "rx_frags" },
404 };
405
406
cp_set_rxbufsize(struct cp_private * cp)407 static inline void cp_set_rxbufsize (struct cp_private *cp)
408 {
409 unsigned int mtu = cp->dev->mtu;
410
411 if (mtu > ETH_DATA_LEN)
412 /* MTU + ethernet header + FCS + optional VLAN tag */
413 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
414 else
415 cp->rx_buf_sz = PKT_BUF_SZ;
416 }
417
cp_rx_skb(struct cp_private * cp,struct sk_buff * skb,struct cp_desc * desc)418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
419 struct cp_desc *desc)
420 {
421 u32 opts2 = le32_to_cpu(desc->opts2);
422
423 skb->protocol = eth_type_trans (skb, cp->dev);
424
425 cp->dev->stats.rx_packets++;
426 cp->dev->stats.rx_bytes += skb->len;
427
428 if (opts2 & RxVlanTagged)
429 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
430
431 napi_gro_receive(&cp->napi, skb);
432 }
433
cp_rx_err_acct(struct cp_private * cp,unsigned rx_tail,u32 status,u32 len)434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
435 u32 status, u32 len)
436 {
437 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
438 rx_tail, status, len);
439 cp->dev->stats.rx_errors++;
440 if (status & RxErrFrame)
441 cp->dev->stats.rx_frame_errors++;
442 if (status & RxErrCRC)
443 cp->dev->stats.rx_crc_errors++;
444 if ((status & RxErrRunt) || (status & RxErrLong))
445 cp->dev->stats.rx_length_errors++;
446 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
447 cp->dev->stats.rx_length_errors++;
448 if (status & RxErrFIFO)
449 cp->dev->stats.rx_fifo_errors++;
450 }
451
cp_rx_csum_ok(u32 status)452 static inline unsigned int cp_rx_csum_ok (u32 status)
453 {
454 unsigned int protocol = (status >> 16) & 0x3;
455
456 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
457 ((protocol == RxProtoUDP) && !(status & UDPFail)))
458 return 1;
459 else
460 return 0;
461 }
462
cp_rx_poll(struct napi_struct * napi,int budget)463 static int cp_rx_poll(struct napi_struct *napi, int budget)
464 {
465 struct cp_private *cp = container_of(napi, struct cp_private, napi);
466 struct net_device *dev = cp->dev;
467 unsigned int rx_tail = cp->rx_tail;
468 int rx;
469
470 rx_status_loop:
471 rx = 0;
472 cpw16(IntrStatus, cp_rx_intr_mask);
473
474 while (rx < budget) {
475 u32 status, len;
476 dma_addr_t mapping, new_mapping;
477 struct sk_buff *skb, *new_skb;
478 struct cp_desc *desc;
479 const unsigned buflen = cp->rx_buf_sz;
480
481 skb = cp->rx_skb[rx_tail];
482 BUG_ON(!skb);
483
484 desc = &cp->rx_ring[rx_tail];
485 status = le32_to_cpu(desc->opts1);
486 if (status & DescOwn)
487 break;
488
489 len = (status & 0x1fff) - 4;
490 mapping = le64_to_cpu(desc->addr);
491
492 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
493 /* we don't support incoming fragmented frames.
494 * instead, we attempt to ensure that the
495 * pre-allocated RX skbs are properly sized such
496 * that RX fragments are never encountered
497 */
498 cp_rx_err_acct(cp, rx_tail, status, len);
499 dev->stats.rx_dropped++;
500 cp->cp_stats.rx_frags++;
501 goto rx_next;
502 }
503
504 if (status & (RxError | RxErrFIFO)) {
505 cp_rx_err_acct(cp, rx_tail, status, len);
506 goto rx_next;
507 }
508
509 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
510 rx_tail, status, len);
511
512 new_skb = napi_alloc_skb(napi, buflen);
513 if (!new_skb) {
514 dev->stats.rx_dropped++;
515 goto rx_next;
516 }
517
518 new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
519 PCI_DMA_FROMDEVICE);
520 if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
521 dev->stats.rx_dropped++;
522 kfree_skb(new_skb);
523 goto rx_next;
524 }
525
526 dma_unmap_single(&cp->pdev->dev, mapping,
527 buflen, PCI_DMA_FROMDEVICE);
528
529 /* Handle checksum offloading for incoming packets. */
530 if (cp_rx_csum_ok(status))
531 skb->ip_summed = CHECKSUM_UNNECESSARY;
532 else
533 skb_checksum_none_assert(skb);
534
535 skb_put(skb, len);
536
537 cp->rx_skb[rx_tail] = new_skb;
538
539 cp_rx_skb(cp, skb, desc);
540 rx++;
541 mapping = new_mapping;
542
543 rx_next:
544 cp->rx_ring[rx_tail].opts2 = 0;
545 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
546 if (rx_tail == (CP_RX_RING_SIZE - 1))
547 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
548 cp->rx_buf_sz);
549 else
550 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
551 rx_tail = NEXT_RX(rx_tail);
552 }
553
554 cp->rx_tail = rx_tail;
555
556 /* if we did not reach work limit, then we're done with
557 * this round of polling
558 */
559 if (rx < budget) {
560 unsigned long flags;
561
562 if (cpr16(IntrStatus) & cp_rx_intr_mask)
563 goto rx_status_loop;
564
565 napi_gro_flush(napi, false);
566 spin_lock_irqsave(&cp->lock, flags);
567 __napi_complete(napi);
568 cpw16_f(IntrMask, cp_intr_mask);
569 spin_unlock_irqrestore(&cp->lock, flags);
570 }
571
572 return rx;
573 }
574
cp_interrupt(int irq,void * dev_instance)575 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
576 {
577 struct net_device *dev = dev_instance;
578 struct cp_private *cp;
579 int handled = 0;
580 u16 status;
581 u16 mask;
582
583 if (unlikely(dev == NULL))
584 return IRQ_NONE;
585 cp = netdev_priv(dev);
586
587 spin_lock(&cp->lock);
588
589 mask = cpr16(IntrMask);
590 if (!mask)
591 goto out_unlock;
592
593 status = cpr16(IntrStatus);
594 if (!status || (status == 0xFFFF))
595 goto out_unlock;
596
597 handled = 1;
598
599 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
600 status, cpr8(Cmd), cpr16(CpCmd));
601
602 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
603
604 /* close possible race's with dev_close */
605 if (unlikely(!netif_running(dev))) {
606 cpw16(IntrMask, 0);
607 goto out_unlock;
608 }
609
610 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
611 if (napi_schedule_prep(&cp->napi)) {
612 cpw16_f(IntrMask, cp_norx_intr_mask);
613 __napi_schedule(&cp->napi);
614 }
615
616 if (status & (TxOK | TxErr | TxEmpty | SWInt))
617 cp_tx(cp);
618 if (status & LinkChg)
619 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
620
621
622 if (status & PciErr) {
623 u16 pci_status;
624
625 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
626 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
627 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
628 status, pci_status);
629
630 /* TODO: reset hardware */
631 }
632
633 out_unlock:
634 spin_unlock(&cp->lock);
635
636 return IRQ_RETVAL(handled);
637 }
638
639 #ifdef CONFIG_NET_POLL_CONTROLLER
640 /*
641 * Polling receive - used by netconsole and other diagnostic tools
642 * to allow network i/o with interrupts disabled.
643 */
cp_poll_controller(struct net_device * dev)644 static void cp_poll_controller(struct net_device *dev)
645 {
646 struct cp_private *cp = netdev_priv(dev);
647 const int irq = cp->pdev->irq;
648
649 disable_irq(irq);
650 cp_interrupt(irq, dev);
651 enable_irq(irq);
652 }
653 #endif
654
cp_tx(struct cp_private * cp)655 static void cp_tx (struct cp_private *cp)
656 {
657 unsigned tx_head = cp->tx_head;
658 unsigned tx_tail = cp->tx_tail;
659 unsigned bytes_compl = 0, pkts_compl = 0;
660
661 while (tx_tail != tx_head) {
662 struct cp_desc *txd = cp->tx_ring + tx_tail;
663 struct sk_buff *skb;
664 u32 status;
665
666 rmb();
667 status = le32_to_cpu(txd->opts1);
668 if (status & DescOwn)
669 break;
670
671 skb = cp->tx_skb[tx_tail];
672 BUG_ON(!skb);
673
674 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
675 cp->tx_opts[tx_tail] & 0xffff,
676 PCI_DMA_TODEVICE);
677
678 if (status & LastFrag) {
679 if (status & (TxError | TxFIFOUnder)) {
680 netif_dbg(cp, tx_err, cp->dev,
681 "tx err, status 0x%x\n", status);
682 cp->dev->stats.tx_errors++;
683 if (status & TxOWC)
684 cp->dev->stats.tx_window_errors++;
685 if (status & TxMaxCol)
686 cp->dev->stats.tx_aborted_errors++;
687 if (status & TxLinkFail)
688 cp->dev->stats.tx_carrier_errors++;
689 if (status & TxFIFOUnder)
690 cp->dev->stats.tx_fifo_errors++;
691 } else {
692 cp->dev->stats.collisions +=
693 ((status >> TxColCntShift) & TxColCntMask);
694 cp->dev->stats.tx_packets++;
695 cp->dev->stats.tx_bytes += skb->len;
696 netif_dbg(cp, tx_done, cp->dev,
697 "tx done, slot %d\n", tx_tail);
698 }
699 bytes_compl += skb->len;
700 pkts_compl++;
701 dev_kfree_skb_irq(skb);
702 }
703
704 cp->tx_skb[tx_tail] = NULL;
705
706 tx_tail = NEXT_TX(tx_tail);
707 }
708
709 cp->tx_tail = tx_tail;
710
711 netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
712 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
713 netif_wake_queue(cp->dev);
714 }
715
cp_tx_vlan_tag(struct sk_buff * skb)716 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
717 {
718 return skb_vlan_tag_present(skb) ?
719 TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
720 }
721
unwind_tx_frag_mapping(struct cp_private * cp,struct sk_buff * skb,int first,int entry_last)722 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
723 int first, int entry_last)
724 {
725 int frag, index;
726 struct cp_desc *txd;
727 skb_frag_t *this_frag;
728 for (frag = 0; frag+first < entry_last; frag++) {
729 index = first+frag;
730 cp->tx_skb[index] = NULL;
731 txd = &cp->tx_ring[index];
732 this_frag = &skb_shinfo(skb)->frags[frag];
733 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
734 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
735 }
736 }
737
cp_start_xmit(struct sk_buff * skb,struct net_device * dev)738 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
739 struct net_device *dev)
740 {
741 struct cp_private *cp = netdev_priv(dev);
742 unsigned entry;
743 u32 eor, opts1;
744 unsigned long intr_flags;
745 __le32 opts2;
746 int mss = 0;
747
748 spin_lock_irqsave(&cp->lock, intr_flags);
749
750 /* This is a hard error, log it. */
751 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
752 netif_stop_queue(dev);
753 spin_unlock_irqrestore(&cp->lock, intr_flags);
754 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
755 return NETDEV_TX_BUSY;
756 }
757
758 entry = cp->tx_head;
759 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
760 mss = skb_shinfo(skb)->gso_size;
761
762 if (mss > MSSMask) {
763 WARN_ONCE(1, "Net bug: GSO size %d too large for 8139CP\n",
764 mss);
765 goto out_dma_error;
766 }
767
768 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
769 opts1 = DescOwn;
770 if (mss)
771 opts1 |= LargeSend | (mss << MSSShift);
772 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
773 const struct iphdr *ip = ip_hdr(skb);
774 if (ip->protocol == IPPROTO_TCP)
775 opts1 |= IPCS | TCPCS;
776 else if (ip->protocol == IPPROTO_UDP)
777 opts1 |= IPCS | UDPCS;
778 else {
779 WARN_ONCE(1,
780 "Net bug: asked to checksum invalid Legacy IP packet\n");
781 goto out_dma_error;
782 }
783 }
784
785 if (skb_shinfo(skb)->nr_frags == 0) {
786 struct cp_desc *txd = &cp->tx_ring[entry];
787 u32 len;
788 dma_addr_t mapping;
789
790 len = skb->len;
791 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
792 if (dma_mapping_error(&cp->pdev->dev, mapping))
793 goto out_dma_error;
794
795 txd->opts2 = opts2;
796 txd->addr = cpu_to_le64(mapping);
797 wmb();
798
799 opts1 |= eor | len | FirstFrag | LastFrag;
800
801 txd->opts1 = cpu_to_le32(opts1);
802 wmb();
803
804 cp->tx_skb[entry] = skb;
805 cp->tx_opts[entry] = opts1;
806 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
807 entry, skb->len);
808 } else {
809 struct cp_desc *txd;
810 u32 first_len, first_eor, ctrl;
811 dma_addr_t first_mapping;
812 int frag, first_entry = entry;
813
814 /* We must give this initial chunk to the device last.
815 * Otherwise we could race with the device.
816 */
817 first_eor = eor;
818 first_len = skb_headlen(skb);
819 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
820 first_len, PCI_DMA_TODEVICE);
821 if (dma_mapping_error(&cp->pdev->dev, first_mapping))
822 goto out_dma_error;
823
824 cp->tx_skb[entry] = skb;
825
826 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
827 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
828 u32 len;
829 dma_addr_t mapping;
830
831 entry = NEXT_TX(entry);
832
833 len = skb_frag_size(this_frag);
834 mapping = dma_map_single(&cp->pdev->dev,
835 skb_frag_address(this_frag),
836 len, PCI_DMA_TODEVICE);
837 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
838 unwind_tx_frag_mapping(cp, skb, first_entry, entry);
839 goto out_dma_error;
840 }
841
842 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
843
844 ctrl = opts1 | eor | len;
845
846 if (frag == skb_shinfo(skb)->nr_frags - 1)
847 ctrl |= LastFrag;
848
849 txd = &cp->tx_ring[entry];
850 txd->opts2 = opts2;
851 txd->addr = cpu_to_le64(mapping);
852 wmb();
853
854 txd->opts1 = cpu_to_le32(ctrl);
855 wmb();
856
857 cp->tx_opts[entry] = ctrl;
858 cp->tx_skb[entry] = skb;
859 }
860
861 txd = &cp->tx_ring[first_entry];
862 txd->opts2 = opts2;
863 txd->addr = cpu_to_le64(first_mapping);
864 wmb();
865
866 ctrl = opts1 | first_eor | first_len | FirstFrag;
867 txd->opts1 = cpu_to_le32(ctrl);
868 wmb();
869
870 cp->tx_opts[first_entry] = ctrl;
871 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
872 first_entry, entry, skb->len);
873 }
874 cp->tx_head = NEXT_TX(entry);
875
876 netdev_sent_queue(dev, skb->len);
877 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
878 netif_stop_queue(dev);
879
880 out_unlock:
881 spin_unlock_irqrestore(&cp->lock, intr_flags);
882
883 cpw8(TxPoll, NormalTxPoll);
884
885 return NETDEV_TX_OK;
886 out_dma_error:
887 dev_kfree_skb_any(skb);
888 cp->dev->stats.tx_dropped++;
889 goto out_unlock;
890 }
891
892 /* Set or clear the multicast filter for this adaptor.
893 This routine is not state sensitive and need not be SMP locked. */
894
__cp_set_rx_mode(struct net_device * dev)895 static void __cp_set_rx_mode (struct net_device *dev)
896 {
897 struct cp_private *cp = netdev_priv(dev);
898 u32 mc_filter[2]; /* Multicast hash filter */
899 int rx_mode;
900
901 /* Note: do not reorder, GCC is clever about common statements. */
902 if (dev->flags & IFF_PROMISC) {
903 /* Unconditionally log net taps. */
904 rx_mode =
905 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
906 AcceptAllPhys;
907 mc_filter[1] = mc_filter[0] = 0xffffffff;
908 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
909 (dev->flags & IFF_ALLMULTI)) {
910 /* Too many to filter perfectly -- accept all multicasts. */
911 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
912 mc_filter[1] = mc_filter[0] = 0xffffffff;
913 } else {
914 struct netdev_hw_addr *ha;
915 rx_mode = AcceptBroadcast | AcceptMyPhys;
916 mc_filter[1] = mc_filter[0] = 0;
917 netdev_for_each_mc_addr(ha, dev) {
918 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
919
920 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
921 rx_mode |= AcceptMulticast;
922 }
923 }
924
925 /* We can safely update without stopping the chip. */
926 cp->rx_config = cp_rx_config | rx_mode;
927 cpw32_f(RxConfig, cp->rx_config);
928
929 cpw32_f (MAR0 + 0, mc_filter[0]);
930 cpw32_f (MAR0 + 4, mc_filter[1]);
931 }
932
cp_set_rx_mode(struct net_device * dev)933 static void cp_set_rx_mode (struct net_device *dev)
934 {
935 unsigned long flags;
936 struct cp_private *cp = netdev_priv(dev);
937
938 spin_lock_irqsave (&cp->lock, flags);
939 __cp_set_rx_mode(dev);
940 spin_unlock_irqrestore (&cp->lock, flags);
941 }
942
__cp_get_stats(struct cp_private * cp)943 static void __cp_get_stats(struct cp_private *cp)
944 {
945 /* only lower 24 bits valid; write any value to clear */
946 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
947 cpw32 (RxMissed, 0);
948 }
949
cp_get_stats(struct net_device * dev)950 static struct net_device_stats *cp_get_stats(struct net_device *dev)
951 {
952 struct cp_private *cp = netdev_priv(dev);
953 unsigned long flags;
954
955 /* The chip only need report frame silently dropped. */
956 spin_lock_irqsave(&cp->lock, flags);
957 if (netif_running(dev) && netif_device_present(dev))
958 __cp_get_stats(cp);
959 spin_unlock_irqrestore(&cp->lock, flags);
960
961 return &dev->stats;
962 }
963
cp_stop_hw(struct cp_private * cp)964 static void cp_stop_hw (struct cp_private *cp)
965 {
966 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
967 cpw16_f(IntrMask, 0);
968 cpw8(Cmd, 0);
969 cpw16_f(CpCmd, 0);
970 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
971
972 cp->rx_tail = 0;
973 cp->tx_head = cp->tx_tail = 0;
974
975 netdev_reset_queue(cp->dev);
976 }
977
cp_reset_hw(struct cp_private * cp)978 static void cp_reset_hw (struct cp_private *cp)
979 {
980 unsigned work = 1000;
981
982 cpw8(Cmd, CmdReset);
983
984 while (work--) {
985 if (!(cpr8(Cmd) & CmdReset))
986 return;
987
988 schedule_timeout_uninterruptible(10);
989 }
990
991 netdev_err(cp->dev, "hardware reset timeout\n");
992 }
993
cp_start_hw(struct cp_private * cp)994 static inline void cp_start_hw (struct cp_private *cp)
995 {
996 dma_addr_t ring_dma;
997
998 cpw16(CpCmd, cp->cpcmd);
999
1000 /*
1001 * These (at least TxRingAddr) need to be configured after the
1002 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
1003 * (C+ Command Register) recommends that these and more be configured
1004 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
1005 * it's been observed that the TxRingAddr is actually reset to garbage
1006 * when C+ mode Tx is enabled in CpCmd.
1007 */
1008 cpw32_f(HiTxRingAddr, 0);
1009 cpw32_f(HiTxRingAddr + 4, 0);
1010
1011 ring_dma = cp->ring_dma;
1012 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1013 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1014
1015 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1016 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1017 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1018
1019 /*
1020 * Strictly speaking, the datasheet says this should be enabled
1021 * *before* setting the descriptor addresses. But what, then, would
1022 * prevent it from doing DMA to random unconfigured addresses?
1023 * This variant appears to work fine.
1024 */
1025 cpw8(Cmd, RxOn | TxOn);
1026
1027 netdev_reset_queue(cp->dev);
1028 }
1029
cp_enable_irq(struct cp_private * cp)1030 static void cp_enable_irq(struct cp_private *cp)
1031 {
1032 cpw16_f(IntrMask, cp_intr_mask);
1033 }
1034
cp_init_hw(struct cp_private * cp)1035 static void cp_init_hw (struct cp_private *cp)
1036 {
1037 struct net_device *dev = cp->dev;
1038
1039 cp_reset_hw(cp);
1040
1041 cpw8_f (Cfg9346, Cfg9346_Unlock);
1042
1043 /* Restore our idea of the MAC address. */
1044 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1045 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1046
1047 cp_start_hw(cp);
1048 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1049
1050 __cp_set_rx_mode(dev);
1051 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1052
1053 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1054 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1055 cpw8(Config3, PARMEnable);
1056 cp->wol_enabled = 0;
1057
1058 cpw8(Config5, cpr8(Config5) & PMEStatus);
1059
1060 cpw16(MultiIntr, 0);
1061
1062 cpw8_f(Cfg9346, Cfg9346_Lock);
1063 }
1064
cp_refill_rx(struct cp_private * cp)1065 static int cp_refill_rx(struct cp_private *cp)
1066 {
1067 struct net_device *dev = cp->dev;
1068 unsigned i;
1069
1070 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1071 struct sk_buff *skb;
1072 dma_addr_t mapping;
1073
1074 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1075 if (!skb)
1076 goto err_out;
1077
1078 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1079 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1080 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1081 kfree_skb(skb);
1082 goto err_out;
1083 }
1084 cp->rx_skb[i] = skb;
1085
1086 cp->rx_ring[i].opts2 = 0;
1087 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1088 if (i == (CP_RX_RING_SIZE - 1))
1089 cp->rx_ring[i].opts1 =
1090 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1091 else
1092 cp->rx_ring[i].opts1 =
1093 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1094 }
1095
1096 return 0;
1097
1098 err_out:
1099 cp_clean_rings(cp);
1100 return -ENOMEM;
1101 }
1102
cp_init_rings_index(struct cp_private * cp)1103 static void cp_init_rings_index (struct cp_private *cp)
1104 {
1105 cp->rx_tail = 0;
1106 cp->tx_head = cp->tx_tail = 0;
1107 }
1108
cp_init_rings(struct cp_private * cp)1109 static int cp_init_rings (struct cp_private *cp)
1110 {
1111 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1112 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1113 memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1114
1115 cp_init_rings_index(cp);
1116
1117 return cp_refill_rx (cp);
1118 }
1119
cp_alloc_rings(struct cp_private * cp)1120 static int cp_alloc_rings (struct cp_private *cp)
1121 {
1122 struct device *d = &cp->pdev->dev;
1123 void *mem;
1124 int rc;
1125
1126 mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1127 if (!mem)
1128 return -ENOMEM;
1129
1130 cp->rx_ring = mem;
1131 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1132
1133 rc = cp_init_rings(cp);
1134 if (rc < 0)
1135 dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1136
1137 return rc;
1138 }
1139
cp_clean_rings(struct cp_private * cp)1140 static void cp_clean_rings (struct cp_private *cp)
1141 {
1142 struct cp_desc *desc;
1143 unsigned i;
1144
1145 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1146 if (cp->rx_skb[i]) {
1147 desc = cp->rx_ring + i;
1148 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1149 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1150 dev_kfree_skb_any(cp->rx_skb[i]);
1151 }
1152 }
1153
1154 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1155 if (cp->tx_skb[i]) {
1156 struct sk_buff *skb = cp->tx_skb[i];
1157
1158 desc = cp->tx_ring + i;
1159 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1160 le32_to_cpu(desc->opts1) & 0xffff,
1161 PCI_DMA_TODEVICE);
1162 if (le32_to_cpu(desc->opts1) & LastFrag)
1163 dev_kfree_skb_any(skb);
1164 cp->dev->stats.tx_dropped++;
1165 }
1166 }
1167 netdev_reset_queue(cp->dev);
1168
1169 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1170 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1171 memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1172
1173 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1174 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1175 }
1176
cp_free_rings(struct cp_private * cp)1177 static void cp_free_rings (struct cp_private *cp)
1178 {
1179 cp_clean_rings(cp);
1180 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1181 cp->ring_dma);
1182 cp->rx_ring = NULL;
1183 cp->tx_ring = NULL;
1184 }
1185
cp_open(struct net_device * dev)1186 static int cp_open (struct net_device *dev)
1187 {
1188 struct cp_private *cp = netdev_priv(dev);
1189 const int irq = cp->pdev->irq;
1190 int rc;
1191
1192 netif_dbg(cp, ifup, dev, "enabling interface\n");
1193
1194 rc = cp_alloc_rings(cp);
1195 if (rc)
1196 return rc;
1197
1198 napi_enable(&cp->napi);
1199
1200 cp_init_hw(cp);
1201
1202 rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1203 if (rc)
1204 goto err_out_hw;
1205
1206 cp_enable_irq(cp);
1207
1208 netif_carrier_off(dev);
1209 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1210 netif_start_queue(dev);
1211
1212 return 0;
1213
1214 err_out_hw:
1215 napi_disable(&cp->napi);
1216 cp_stop_hw(cp);
1217 cp_free_rings(cp);
1218 return rc;
1219 }
1220
cp_close(struct net_device * dev)1221 static int cp_close (struct net_device *dev)
1222 {
1223 struct cp_private *cp = netdev_priv(dev);
1224 unsigned long flags;
1225
1226 napi_disable(&cp->napi);
1227
1228 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1229
1230 spin_lock_irqsave(&cp->lock, flags);
1231
1232 netif_stop_queue(dev);
1233 netif_carrier_off(dev);
1234
1235 cp_stop_hw(cp);
1236
1237 spin_unlock_irqrestore(&cp->lock, flags);
1238
1239 free_irq(cp->pdev->irq, dev);
1240
1241 cp_free_rings(cp);
1242 return 0;
1243 }
1244
cp_tx_timeout(struct net_device * dev)1245 static void cp_tx_timeout(struct net_device *dev)
1246 {
1247 struct cp_private *cp = netdev_priv(dev);
1248 unsigned long flags;
1249 int rc, i;
1250
1251 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1252 cpr8(Cmd), cpr16(CpCmd),
1253 cpr16(IntrStatus), cpr16(IntrMask));
1254
1255 spin_lock_irqsave(&cp->lock, flags);
1256
1257 netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1258 cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1259 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1260 netif_dbg(cp, tx_err, cp->dev,
1261 "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1262 i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1263 cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1264 le64_to_cpu(cp->tx_ring[i].addr),
1265 cp->tx_skb[i]);
1266 }
1267
1268 cp_stop_hw(cp);
1269 cp_clean_rings(cp);
1270 rc = cp_init_rings(cp);
1271 cp_start_hw(cp);
1272 __cp_set_rx_mode(dev);
1273 cpw16_f(IntrMask, cp_norx_intr_mask);
1274
1275 netif_wake_queue(dev);
1276 napi_schedule_irqoff(&cp->napi);
1277
1278 spin_unlock_irqrestore(&cp->lock, flags);
1279 }
1280
cp_change_mtu(struct net_device * dev,int new_mtu)1281 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1282 {
1283 struct cp_private *cp = netdev_priv(dev);
1284
1285 /* check for invalid MTU, according to hardware limits */
1286 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1287 return -EINVAL;
1288
1289 /* if network interface not up, no need for complexity */
1290 if (!netif_running(dev)) {
1291 dev->mtu = new_mtu;
1292 cp_set_rxbufsize(cp); /* set new rx buf size */
1293 return 0;
1294 }
1295
1296 /* network IS up, close it, reset MTU, and come up again. */
1297 cp_close(dev);
1298 dev->mtu = new_mtu;
1299 cp_set_rxbufsize(cp);
1300 return cp_open(dev);
1301 }
1302
1303 static const char mii_2_8139_map[8] = {
1304 BasicModeCtrl,
1305 BasicModeStatus,
1306 0,
1307 0,
1308 NWayAdvert,
1309 NWayLPAR,
1310 NWayExpansion,
1311 0
1312 };
1313
mdio_read(struct net_device * dev,int phy_id,int location)1314 static int mdio_read(struct net_device *dev, int phy_id, int location)
1315 {
1316 struct cp_private *cp = netdev_priv(dev);
1317
1318 return location < 8 && mii_2_8139_map[location] ?
1319 readw(cp->regs + mii_2_8139_map[location]) : 0;
1320 }
1321
1322
mdio_write(struct net_device * dev,int phy_id,int location,int value)1323 static void mdio_write(struct net_device *dev, int phy_id, int location,
1324 int value)
1325 {
1326 struct cp_private *cp = netdev_priv(dev);
1327
1328 if (location == 0) {
1329 cpw8(Cfg9346, Cfg9346_Unlock);
1330 cpw16(BasicModeCtrl, value);
1331 cpw8(Cfg9346, Cfg9346_Lock);
1332 } else if (location < 8 && mii_2_8139_map[location])
1333 cpw16(mii_2_8139_map[location], value);
1334 }
1335
1336 /* Set the ethtool Wake-on-LAN settings */
netdev_set_wol(struct cp_private * cp,const struct ethtool_wolinfo * wol)1337 static int netdev_set_wol (struct cp_private *cp,
1338 const struct ethtool_wolinfo *wol)
1339 {
1340 u8 options;
1341
1342 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1343 /* If WOL is being disabled, no need for complexity */
1344 if (wol->wolopts) {
1345 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1346 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1347 }
1348
1349 cpw8 (Cfg9346, Cfg9346_Unlock);
1350 cpw8 (Config3, options);
1351 cpw8 (Cfg9346, Cfg9346_Lock);
1352
1353 options = 0; /* Paranoia setting */
1354 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1355 /* If WOL is being disabled, no need for complexity */
1356 if (wol->wolopts) {
1357 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1358 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1359 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1360 }
1361
1362 cpw8 (Config5, options);
1363
1364 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1365
1366 return 0;
1367 }
1368
1369 /* Get the ethtool Wake-on-LAN settings */
netdev_get_wol(struct cp_private * cp,struct ethtool_wolinfo * wol)1370 static void netdev_get_wol (struct cp_private *cp,
1371 struct ethtool_wolinfo *wol)
1372 {
1373 u8 options;
1374
1375 wol->wolopts = 0; /* Start from scratch */
1376 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1377 WAKE_MCAST | WAKE_UCAST;
1378 /* We don't need to go on if WOL is disabled */
1379 if (!cp->wol_enabled) return;
1380
1381 options = cpr8 (Config3);
1382 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1383 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1384
1385 options = 0; /* Paranoia setting */
1386 options = cpr8 (Config5);
1387 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1388 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1389 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1390 }
1391
cp_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1392 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1393 {
1394 struct cp_private *cp = netdev_priv(dev);
1395
1396 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1397 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1398 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1399 }
1400
cp_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)1401 static void cp_get_ringparam(struct net_device *dev,
1402 struct ethtool_ringparam *ring)
1403 {
1404 ring->rx_max_pending = CP_RX_RING_SIZE;
1405 ring->tx_max_pending = CP_TX_RING_SIZE;
1406 ring->rx_pending = CP_RX_RING_SIZE;
1407 ring->tx_pending = CP_TX_RING_SIZE;
1408 }
1409
cp_get_regs_len(struct net_device * dev)1410 static int cp_get_regs_len(struct net_device *dev)
1411 {
1412 return CP_REGS_SIZE;
1413 }
1414
cp_get_sset_count(struct net_device * dev,int sset)1415 static int cp_get_sset_count (struct net_device *dev, int sset)
1416 {
1417 switch (sset) {
1418 case ETH_SS_STATS:
1419 return CP_NUM_STATS;
1420 default:
1421 return -EOPNOTSUPP;
1422 }
1423 }
1424
cp_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1425 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1426 {
1427 struct cp_private *cp = netdev_priv(dev);
1428 int rc;
1429 unsigned long flags;
1430
1431 spin_lock_irqsave(&cp->lock, flags);
1432 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1433 spin_unlock_irqrestore(&cp->lock, flags);
1434
1435 return rc;
1436 }
1437
cp_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1438 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1439 {
1440 struct cp_private *cp = netdev_priv(dev);
1441 int rc;
1442 unsigned long flags;
1443
1444 spin_lock_irqsave(&cp->lock, flags);
1445 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1446 spin_unlock_irqrestore(&cp->lock, flags);
1447
1448 return rc;
1449 }
1450
cp_nway_reset(struct net_device * dev)1451 static int cp_nway_reset(struct net_device *dev)
1452 {
1453 struct cp_private *cp = netdev_priv(dev);
1454 return mii_nway_restart(&cp->mii_if);
1455 }
1456
cp_get_msglevel(struct net_device * dev)1457 static u32 cp_get_msglevel(struct net_device *dev)
1458 {
1459 struct cp_private *cp = netdev_priv(dev);
1460 return cp->msg_enable;
1461 }
1462
cp_set_msglevel(struct net_device * dev,u32 value)1463 static void cp_set_msglevel(struct net_device *dev, u32 value)
1464 {
1465 struct cp_private *cp = netdev_priv(dev);
1466 cp->msg_enable = value;
1467 }
1468
cp_set_features(struct net_device * dev,netdev_features_t features)1469 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1470 {
1471 struct cp_private *cp = netdev_priv(dev);
1472 unsigned long flags;
1473
1474 if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1475 return 0;
1476
1477 spin_lock_irqsave(&cp->lock, flags);
1478
1479 if (features & NETIF_F_RXCSUM)
1480 cp->cpcmd |= RxChkSum;
1481 else
1482 cp->cpcmd &= ~RxChkSum;
1483
1484 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1485 cp->cpcmd |= RxVlanOn;
1486 else
1487 cp->cpcmd &= ~RxVlanOn;
1488
1489 cpw16_f(CpCmd, cp->cpcmd);
1490 spin_unlock_irqrestore(&cp->lock, flags);
1491
1492 return 0;
1493 }
1494
cp_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)1495 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1496 void *p)
1497 {
1498 struct cp_private *cp = netdev_priv(dev);
1499 unsigned long flags;
1500
1501 if (regs->len < CP_REGS_SIZE)
1502 return /* -EINVAL */;
1503
1504 regs->version = CP_REGS_VER;
1505
1506 spin_lock_irqsave(&cp->lock, flags);
1507 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1508 spin_unlock_irqrestore(&cp->lock, flags);
1509 }
1510
cp_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1511 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1512 {
1513 struct cp_private *cp = netdev_priv(dev);
1514 unsigned long flags;
1515
1516 spin_lock_irqsave (&cp->lock, flags);
1517 netdev_get_wol (cp, wol);
1518 spin_unlock_irqrestore (&cp->lock, flags);
1519 }
1520
cp_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1521 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1522 {
1523 struct cp_private *cp = netdev_priv(dev);
1524 unsigned long flags;
1525 int rc;
1526
1527 spin_lock_irqsave (&cp->lock, flags);
1528 rc = netdev_set_wol (cp, wol);
1529 spin_unlock_irqrestore (&cp->lock, flags);
1530
1531 return rc;
1532 }
1533
cp_get_strings(struct net_device * dev,u32 stringset,u8 * buf)1534 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1535 {
1536 switch (stringset) {
1537 case ETH_SS_STATS:
1538 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys));
1539 break;
1540 default:
1541 BUG();
1542 break;
1543 }
1544 }
1545
cp_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * tmp_stats)1546 static void cp_get_ethtool_stats (struct net_device *dev,
1547 struct ethtool_stats *estats, u64 *tmp_stats)
1548 {
1549 struct cp_private *cp = netdev_priv(dev);
1550 struct cp_dma_stats *nic_stats;
1551 dma_addr_t dma;
1552 int i;
1553
1554 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1555 &dma, GFP_KERNEL);
1556 if (!nic_stats)
1557 return;
1558
1559 /* begin NIC statistics dump */
1560 cpw32(StatsAddr + 4, (u64)dma >> 32);
1561 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1562 cpr32(StatsAddr);
1563
1564 for (i = 0; i < 1000; i++) {
1565 if ((cpr32(StatsAddr) & DumpStats) == 0)
1566 break;
1567 udelay(10);
1568 }
1569 cpw32(StatsAddr, 0);
1570 cpw32(StatsAddr + 4, 0);
1571 cpr32(StatsAddr);
1572
1573 i = 0;
1574 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1575 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1576 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1577 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1578 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1579 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1580 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1581 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1582 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1583 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1584 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1585 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1586 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1587 tmp_stats[i++] = cp->cp_stats.rx_frags;
1588 BUG_ON(i != CP_NUM_STATS);
1589
1590 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1591 }
1592
1593 static const struct ethtool_ops cp_ethtool_ops = {
1594 .get_drvinfo = cp_get_drvinfo,
1595 .get_regs_len = cp_get_regs_len,
1596 .get_sset_count = cp_get_sset_count,
1597 .get_settings = cp_get_settings,
1598 .set_settings = cp_set_settings,
1599 .nway_reset = cp_nway_reset,
1600 .get_link = ethtool_op_get_link,
1601 .get_msglevel = cp_get_msglevel,
1602 .set_msglevel = cp_set_msglevel,
1603 .get_regs = cp_get_regs,
1604 .get_wol = cp_get_wol,
1605 .set_wol = cp_set_wol,
1606 .get_strings = cp_get_strings,
1607 .get_ethtool_stats = cp_get_ethtool_stats,
1608 .get_eeprom_len = cp_get_eeprom_len,
1609 .get_eeprom = cp_get_eeprom,
1610 .set_eeprom = cp_set_eeprom,
1611 .get_ringparam = cp_get_ringparam,
1612 };
1613
cp_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1614 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1615 {
1616 struct cp_private *cp = netdev_priv(dev);
1617 int rc;
1618 unsigned long flags;
1619
1620 if (!netif_running(dev))
1621 return -EINVAL;
1622
1623 spin_lock_irqsave(&cp->lock, flags);
1624 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1625 spin_unlock_irqrestore(&cp->lock, flags);
1626 return rc;
1627 }
1628
cp_set_mac_address(struct net_device * dev,void * p)1629 static int cp_set_mac_address(struct net_device *dev, void *p)
1630 {
1631 struct cp_private *cp = netdev_priv(dev);
1632 struct sockaddr *addr = p;
1633
1634 if (!is_valid_ether_addr(addr->sa_data))
1635 return -EADDRNOTAVAIL;
1636
1637 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1638
1639 spin_lock_irq(&cp->lock);
1640
1641 cpw8_f(Cfg9346, Cfg9346_Unlock);
1642 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1643 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1644 cpw8_f(Cfg9346, Cfg9346_Lock);
1645
1646 spin_unlock_irq(&cp->lock);
1647
1648 return 0;
1649 }
1650
1651 /* Serial EEPROM section. */
1652
1653 /* EEPROM_Ctrl bits. */
1654 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1655 #define EE_CS 0x08 /* EEPROM chip select. */
1656 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1657 #define EE_WRITE_0 0x00
1658 #define EE_WRITE_1 0x02
1659 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1660 #define EE_ENB (0x80 | EE_CS)
1661
1662 /* Delay between EEPROM clock transitions.
1663 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1664 */
1665
1666 #define eeprom_delay() readb(ee_addr)
1667
1668 /* The EEPROM commands include the alway-set leading bit. */
1669 #define EE_EXTEND_CMD (4)
1670 #define EE_WRITE_CMD (5)
1671 #define EE_READ_CMD (6)
1672 #define EE_ERASE_CMD (7)
1673
1674 #define EE_EWDS_ADDR (0)
1675 #define EE_WRAL_ADDR (1)
1676 #define EE_ERAL_ADDR (2)
1677 #define EE_EWEN_ADDR (3)
1678
1679 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1680
eeprom_cmd_start(void __iomem * ee_addr)1681 static void eeprom_cmd_start(void __iomem *ee_addr)
1682 {
1683 writeb (EE_ENB & ~EE_CS, ee_addr);
1684 writeb (EE_ENB, ee_addr);
1685 eeprom_delay ();
1686 }
1687
eeprom_cmd(void __iomem * ee_addr,int cmd,int cmd_len)1688 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1689 {
1690 int i;
1691
1692 /* Shift the command bits out. */
1693 for (i = cmd_len - 1; i >= 0; i--) {
1694 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1695 writeb (EE_ENB | dataval, ee_addr);
1696 eeprom_delay ();
1697 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1698 eeprom_delay ();
1699 }
1700 writeb (EE_ENB, ee_addr);
1701 eeprom_delay ();
1702 }
1703
eeprom_cmd_end(void __iomem * ee_addr)1704 static void eeprom_cmd_end(void __iomem *ee_addr)
1705 {
1706 writeb(0, ee_addr);
1707 eeprom_delay ();
1708 }
1709
eeprom_extend_cmd(void __iomem * ee_addr,int extend_cmd,int addr_len)1710 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1711 int addr_len)
1712 {
1713 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1714
1715 eeprom_cmd_start(ee_addr);
1716 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1717 eeprom_cmd_end(ee_addr);
1718 }
1719
read_eeprom(void __iomem * ioaddr,int location,int addr_len)1720 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1721 {
1722 int i;
1723 u16 retval = 0;
1724 void __iomem *ee_addr = ioaddr + Cfg9346;
1725 int read_cmd = location | (EE_READ_CMD << addr_len);
1726
1727 eeprom_cmd_start(ee_addr);
1728 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1729
1730 for (i = 16; i > 0; i--) {
1731 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1732 eeprom_delay ();
1733 retval =
1734 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1735 0);
1736 writeb (EE_ENB, ee_addr);
1737 eeprom_delay ();
1738 }
1739
1740 eeprom_cmd_end(ee_addr);
1741
1742 return retval;
1743 }
1744
write_eeprom(void __iomem * ioaddr,int location,u16 val,int addr_len)1745 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1746 int addr_len)
1747 {
1748 int i;
1749 void __iomem *ee_addr = ioaddr + Cfg9346;
1750 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1751
1752 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1753
1754 eeprom_cmd_start(ee_addr);
1755 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1756 eeprom_cmd(ee_addr, val, 16);
1757 eeprom_cmd_end(ee_addr);
1758
1759 eeprom_cmd_start(ee_addr);
1760 for (i = 0; i < 20000; i++)
1761 if (readb(ee_addr) & EE_DATA_READ)
1762 break;
1763 eeprom_cmd_end(ee_addr);
1764
1765 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1766 }
1767
cp_get_eeprom_len(struct net_device * dev)1768 static int cp_get_eeprom_len(struct net_device *dev)
1769 {
1770 struct cp_private *cp = netdev_priv(dev);
1771 int size;
1772
1773 spin_lock_irq(&cp->lock);
1774 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1775 spin_unlock_irq(&cp->lock);
1776
1777 return size;
1778 }
1779
cp_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1780 static int cp_get_eeprom(struct net_device *dev,
1781 struct ethtool_eeprom *eeprom, u8 *data)
1782 {
1783 struct cp_private *cp = netdev_priv(dev);
1784 unsigned int addr_len;
1785 u16 val;
1786 u32 offset = eeprom->offset >> 1;
1787 u32 len = eeprom->len;
1788 u32 i = 0;
1789
1790 eeprom->magic = CP_EEPROM_MAGIC;
1791
1792 spin_lock_irq(&cp->lock);
1793
1794 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1795
1796 if (eeprom->offset & 1) {
1797 val = read_eeprom(cp->regs, offset, addr_len);
1798 data[i++] = (u8)(val >> 8);
1799 offset++;
1800 }
1801
1802 while (i < len - 1) {
1803 val = read_eeprom(cp->regs, offset, addr_len);
1804 data[i++] = (u8)val;
1805 data[i++] = (u8)(val >> 8);
1806 offset++;
1807 }
1808
1809 if (i < len) {
1810 val = read_eeprom(cp->regs, offset, addr_len);
1811 data[i] = (u8)val;
1812 }
1813
1814 spin_unlock_irq(&cp->lock);
1815 return 0;
1816 }
1817
cp_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1818 static int cp_set_eeprom(struct net_device *dev,
1819 struct ethtool_eeprom *eeprom, u8 *data)
1820 {
1821 struct cp_private *cp = netdev_priv(dev);
1822 unsigned int addr_len;
1823 u16 val;
1824 u32 offset = eeprom->offset >> 1;
1825 u32 len = eeprom->len;
1826 u32 i = 0;
1827
1828 if (eeprom->magic != CP_EEPROM_MAGIC)
1829 return -EINVAL;
1830
1831 spin_lock_irq(&cp->lock);
1832
1833 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1834
1835 if (eeprom->offset & 1) {
1836 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1837 val |= (u16)data[i++] << 8;
1838 write_eeprom(cp->regs, offset, val, addr_len);
1839 offset++;
1840 }
1841
1842 while (i < len - 1) {
1843 val = (u16)data[i++];
1844 val |= (u16)data[i++] << 8;
1845 write_eeprom(cp->regs, offset, val, addr_len);
1846 offset++;
1847 }
1848
1849 if (i < len) {
1850 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1851 val |= (u16)data[i];
1852 write_eeprom(cp->regs, offset, val, addr_len);
1853 }
1854
1855 spin_unlock_irq(&cp->lock);
1856 return 0;
1857 }
1858
1859 /* Put the board into D3cold state and wait for WakeUp signal */
cp_set_d3_state(struct cp_private * cp)1860 static void cp_set_d3_state (struct cp_private *cp)
1861 {
1862 pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1863 pci_set_power_state (cp->pdev, PCI_D3hot);
1864 }
1865
cp_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1866 static netdev_features_t cp_features_check(struct sk_buff *skb,
1867 struct net_device *dev,
1868 netdev_features_t features)
1869 {
1870 if (skb_shinfo(skb)->gso_size > MSSMask)
1871 features &= ~NETIF_F_TSO;
1872
1873 return vlan_features_check(skb, features);
1874 }
1875 static const struct net_device_ops cp_netdev_ops = {
1876 .ndo_open = cp_open,
1877 .ndo_stop = cp_close,
1878 .ndo_validate_addr = eth_validate_addr,
1879 .ndo_set_mac_address = cp_set_mac_address,
1880 .ndo_set_rx_mode = cp_set_rx_mode,
1881 .ndo_get_stats = cp_get_stats,
1882 .ndo_do_ioctl = cp_ioctl,
1883 .ndo_start_xmit = cp_start_xmit,
1884 .ndo_tx_timeout = cp_tx_timeout,
1885 .ndo_set_features = cp_set_features,
1886 .ndo_change_mtu = cp_change_mtu,
1887 .ndo_features_check = cp_features_check,
1888
1889 #ifdef CONFIG_NET_POLL_CONTROLLER
1890 .ndo_poll_controller = cp_poll_controller,
1891 #endif
1892 };
1893
cp_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1894 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1895 {
1896 struct net_device *dev;
1897 struct cp_private *cp;
1898 int rc;
1899 void __iomem *regs;
1900 resource_size_t pciaddr;
1901 unsigned int addr_len, i, pci_using_dac;
1902
1903 pr_info_once("%s", version);
1904
1905 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1906 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1907 dev_info(&pdev->dev,
1908 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1909 pdev->vendor, pdev->device, pdev->revision);
1910 return -ENODEV;
1911 }
1912
1913 dev = alloc_etherdev(sizeof(struct cp_private));
1914 if (!dev)
1915 return -ENOMEM;
1916 SET_NETDEV_DEV(dev, &pdev->dev);
1917
1918 cp = netdev_priv(dev);
1919 cp->pdev = pdev;
1920 cp->dev = dev;
1921 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1922 spin_lock_init (&cp->lock);
1923 cp->mii_if.dev = dev;
1924 cp->mii_if.mdio_read = mdio_read;
1925 cp->mii_if.mdio_write = mdio_write;
1926 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1927 cp->mii_if.phy_id_mask = 0x1f;
1928 cp->mii_if.reg_num_mask = 0x1f;
1929 cp_set_rxbufsize(cp);
1930
1931 rc = pci_enable_device(pdev);
1932 if (rc)
1933 goto err_out_free;
1934
1935 rc = pci_set_mwi(pdev);
1936 if (rc)
1937 goto err_out_disable;
1938
1939 rc = pci_request_regions(pdev, DRV_NAME);
1940 if (rc)
1941 goto err_out_mwi;
1942
1943 pciaddr = pci_resource_start(pdev, 1);
1944 if (!pciaddr) {
1945 rc = -EIO;
1946 dev_err(&pdev->dev, "no MMIO resource\n");
1947 goto err_out_res;
1948 }
1949 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1950 rc = -EIO;
1951 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1952 (unsigned long long)pci_resource_len(pdev, 1));
1953 goto err_out_res;
1954 }
1955
1956 /* Configure DMA attributes. */
1957 if ((sizeof(dma_addr_t) > 4) &&
1958 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1959 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1960 pci_using_dac = 1;
1961 } else {
1962 pci_using_dac = 0;
1963
1964 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1965 if (rc) {
1966 dev_err(&pdev->dev,
1967 "No usable DMA configuration, aborting\n");
1968 goto err_out_res;
1969 }
1970 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1971 if (rc) {
1972 dev_err(&pdev->dev,
1973 "No usable consistent DMA configuration, aborting\n");
1974 goto err_out_res;
1975 }
1976 }
1977
1978 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1979 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1980
1981 dev->features |= NETIF_F_RXCSUM;
1982 dev->hw_features |= NETIF_F_RXCSUM;
1983
1984 regs = ioremap(pciaddr, CP_REGS_SIZE);
1985 if (!regs) {
1986 rc = -EIO;
1987 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1988 (unsigned long long)pci_resource_len(pdev, 1),
1989 (unsigned long long)pciaddr);
1990 goto err_out_res;
1991 }
1992 cp->regs = regs;
1993
1994 cp_stop_hw(cp);
1995
1996 /* read MAC address from EEPROM */
1997 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1998 for (i = 0; i < 3; i++)
1999 ((__le16 *) (dev->dev_addr))[i] =
2000 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
2001
2002 dev->netdev_ops = &cp_netdev_ops;
2003 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
2004 dev->ethtool_ops = &cp_ethtool_ops;
2005 dev->watchdog_timeo = TX_TIMEOUT;
2006
2007 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2008 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2009
2010 if (pci_using_dac)
2011 dev->features |= NETIF_F_HIGHDMA;
2012
2013 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2014 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2015 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2016 NETIF_F_HIGHDMA;
2017
2018 rc = register_netdev(dev);
2019 if (rc)
2020 goto err_out_iomap;
2021
2022 netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2023 regs, dev->dev_addr, pdev->irq);
2024
2025 pci_set_drvdata(pdev, dev);
2026
2027 /* enable busmastering and memory-write-invalidate */
2028 pci_set_master(pdev);
2029
2030 if (cp->wol_enabled)
2031 cp_set_d3_state (cp);
2032
2033 return 0;
2034
2035 err_out_iomap:
2036 iounmap(regs);
2037 err_out_res:
2038 pci_release_regions(pdev);
2039 err_out_mwi:
2040 pci_clear_mwi(pdev);
2041 err_out_disable:
2042 pci_disable_device(pdev);
2043 err_out_free:
2044 free_netdev(dev);
2045 return rc;
2046 }
2047
cp_remove_one(struct pci_dev * pdev)2048 static void cp_remove_one (struct pci_dev *pdev)
2049 {
2050 struct net_device *dev = pci_get_drvdata(pdev);
2051 struct cp_private *cp = netdev_priv(dev);
2052
2053 unregister_netdev(dev);
2054 iounmap(cp->regs);
2055 if (cp->wol_enabled)
2056 pci_set_power_state (pdev, PCI_D0);
2057 pci_release_regions(pdev);
2058 pci_clear_mwi(pdev);
2059 pci_disable_device(pdev);
2060 free_netdev(dev);
2061 }
2062
2063 #ifdef CONFIG_PM
cp_suspend(struct pci_dev * pdev,pm_message_t state)2064 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2065 {
2066 struct net_device *dev = pci_get_drvdata(pdev);
2067 struct cp_private *cp = netdev_priv(dev);
2068 unsigned long flags;
2069
2070 if (!netif_running(dev))
2071 return 0;
2072
2073 netif_device_detach (dev);
2074 netif_stop_queue (dev);
2075
2076 spin_lock_irqsave (&cp->lock, flags);
2077
2078 /* Disable Rx and Tx */
2079 cpw16 (IntrMask, 0);
2080 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2081
2082 spin_unlock_irqrestore (&cp->lock, flags);
2083
2084 pci_save_state(pdev);
2085 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2086 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2087
2088 return 0;
2089 }
2090
cp_resume(struct pci_dev * pdev)2091 static int cp_resume (struct pci_dev *pdev)
2092 {
2093 struct net_device *dev = pci_get_drvdata (pdev);
2094 struct cp_private *cp = netdev_priv(dev);
2095 unsigned long flags;
2096
2097 if (!netif_running(dev))
2098 return 0;
2099
2100 netif_device_attach (dev);
2101
2102 pci_set_power_state(pdev, PCI_D0);
2103 pci_restore_state(pdev);
2104 pci_enable_wake(pdev, PCI_D0, 0);
2105
2106 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2107 cp_init_rings_index (cp);
2108 cp_init_hw (cp);
2109 cp_enable_irq(cp);
2110 netif_start_queue (dev);
2111
2112 spin_lock_irqsave (&cp->lock, flags);
2113
2114 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2115
2116 spin_unlock_irqrestore (&cp->lock, flags);
2117
2118 return 0;
2119 }
2120 #endif /* CONFIG_PM */
2121
2122 static const struct pci_device_id cp_pci_tbl[] = {
2123 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
2124 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
2125 { },
2126 };
2127 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2128
2129 static struct pci_driver cp_driver = {
2130 .name = DRV_NAME,
2131 .id_table = cp_pci_tbl,
2132 .probe = cp_init_one,
2133 .remove = cp_remove_one,
2134 #ifdef CONFIG_PM
2135 .resume = cp_resume,
2136 .suspend = cp_suspend,
2137 #endif
2138 };
2139
2140 module_pci_driver(cp_driver);
2141