• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>      /* printk() */
20 #include <linux/slab.h>        /* kmalloc() */
21 #include <linux/errno.h>       /* error codes */
22 #include <linux/types.h>       /* size_t */
23 #include <linux/interrupt.h>
24 #include <linux/in.h>
25 #include <linux/netdevice.h>   /* struct device, and other headers */
26 #include <linux/etherdevice.h> /* eth_type_trans */
27 #include <linux/skbuff.h>
28 #include <linux/ioctl.h>
29 #include <linux/cdev.h>
30 #include <linux/hugetlb.h>
31 #include <linux/in6.h>
32 #include <linux/timer.h>
33 #include <linux/io.h>
34 #include <linux/u64_stats_sync.h>
35 #include <asm/checksum.h>
36 #include <asm/homecache.h>
37 
38 #include <hv/drv_xgbe_intf.h>
39 #include <hv/drv_xgbe_impl.h>
40 #include <hv/hypervisor.h>
41 #include <hv/netio_intf.h>
42 
43 /* For TSO */
44 #include <linux/ip.h>
45 #include <linux/tcp.h>
46 
47 
48 /*
49  * First, "tile_net_init_module()" initializes all four "devices" which
50  * can be used by linux.
51  *
52  * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes
53  * the network cpus, then uses "tile_net_open_aux()" to initialize
54  * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all
55  * the tiles, provide buffers to LIPP, allow ingress to start, and
56  * turn on hypervisor interrupt handling (and NAPI) on all tiles.
57  *
58  * If registration fails due to the link being down, then "retry_work"
59  * is used to keep calling "tile_net_open_inner()" until it succeeds.
60  *
61  * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to
62  * stop egress, drain the LIPP buffers, unregister all the tiles, stop
63  * LIPP/LEPP, and wipe the LEPP queue.
64  *
65  * We start out with the ingress interrupt enabled on each CPU.  When
66  * this interrupt fires, we disable it, and call "napi_schedule()".
67  * This will cause "tile_net_poll()" to be called, which will pull
68  * packets from the netio queue, filtering them out, or passing them
69  * to "netif_receive_skb()".  If our budget is exhausted, we will
70  * return, knowing we will be called again later.  Otherwise, we
71  * reenable the ingress interrupt, and call "napi_complete()".
72  *
73  * HACK: Since disabling the ingress interrupt is not reliable, we
74  * ignore the interrupt if the global "active" flag is false.
75  *
76  *
77  * NOTE: The use of "native_driver" ensures that EPP exists, and that
78  * we are using "LIPP" and "LEPP".
79  *
80  * NOTE: Failing to free completions for an arbitrarily long time
81  * (which is defined to be illegal) does in fact cause bizarre
82  * problems.  The "egress_timer" helps prevent this from happening.
83  */
84 
85 
86 /* HACK: Allow use of "jumbo" packets. */
87 /* This should be 1500 if "jumbo" is not set in LIPP. */
88 /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */
89 /* ISSUE: This has not been thoroughly tested (except at 1500). */
90 #define TILE_NET_MTU 1500
91 
92 /* HACK: Define this to verify incoming packets. */
93 /* #define TILE_NET_VERIFY_INGRESS */
94 
95 /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */
96 #define TILE_NET_TX_QUEUE_LEN 0
97 
98 /* Define to dump packets (prints out the whole packet on tx and rx). */
99 /* #define TILE_NET_DUMP_PACKETS */
100 
101 /* Define to enable debug spew (all PDEBUG's are enabled). */
102 /* #define TILE_NET_DEBUG */
103 
104 
105 /* Define to activate paranoia checks. */
106 /* #define TILE_NET_PARANOIA */
107 
108 /* Default transmit lockup timeout period, in jiffies. */
109 #define TILE_NET_TIMEOUT (5 * HZ)
110 
111 /* Default retry interval for bringing up the NetIO interface, in jiffies. */
112 #define TILE_NET_RETRY_INTERVAL (5 * HZ)
113 
114 /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */
115 #define TILE_NET_DEVS 4
116 
117 
118 
119 /* Paranoia. */
120 #if NET_IP_ALIGN != LIPP_PACKET_PADDING
121 #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING."
122 #endif
123 
124 
125 /* Debug print. */
126 #ifdef TILE_NET_DEBUG
127 #define PDEBUG(fmt, args...) net_printk(fmt, ## args)
128 #else
129 #define PDEBUG(fmt, args...)
130 #endif
131 
132 
133 MODULE_AUTHOR("Tilera");
134 MODULE_LICENSE("GPL");
135 
136 
137 /*
138  * Queue of incoming packets for a specific cpu and device.
139  *
140  * Includes a pointer to the "system" data, and the actual "user" data.
141  */
142 struct tile_netio_queue {
143 	netio_queue_impl_t *__system_part;
144 	netio_queue_user_impl_t __user_part;
145 
146 };
147 
148 
149 /*
150  * Statistics counters for a specific cpu and device.
151  */
152 struct tile_net_stats_t {
153 	struct u64_stats_sync syncp;
154 	u64 rx_packets;		/* total packets received	*/
155 	u64 tx_packets;		/* total packets transmitted	*/
156 	u64 rx_bytes;		/* total bytes received 	*/
157 	u64 tx_bytes;		/* total bytes transmitted	*/
158 	u64 rx_errors;		/* packets truncated or marked bad by hw */
159 	u64 rx_dropped;		/* packets not for us or intf not up */
160 };
161 
162 
163 /*
164  * Info for a specific cpu and device.
165  *
166  * ISSUE: There is a "dev" pointer in "napi" as well.
167  */
168 struct tile_net_cpu {
169 	/* The NAPI struct. */
170 	struct napi_struct napi;
171 	/* Packet queue. */
172 	struct tile_netio_queue queue;
173 	/* Statistics. */
174 	struct tile_net_stats_t stats;
175 	/* True iff NAPI is enabled. */
176 	bool napi_enabled;
177 	/* True if this tile has successfully registered with the IPP. */
178 	bool registered;
179 	/* True if the link was down last time we tried to register. */
180 	bool link_down;
181 	/* True if "egress_timer" is scheduled. */
182 	bool egress_timer_scheduled;
183 	/* Number of small sk_buffs which must still be provided. */
184 	unsigned int num_needed_small_buffers;
185 	/* Number of large sk_buffs which must still be provided. */
186 	unsigned int num_needed_large_buffers;
187 	/* A timer for handling egress completions. */
188 	struct timer_list egress_timer;
189 };
190 
191 
192 /*
193  * Info for a specific device.
194  */
195 struct tile_net_priv {
196 	/* Our network device. */
197 	struct net_device *dev;
198 	/* Pages making up the egress queue. */
199 	struct page *eq_pages;
200 	/* Address of the actual egress queue. */
201 	lepp_queue_t *eq;
202 	/* Protects "eq". */
203 	spinlock_t eq_lock;
204 	/* The hypervisor handle for this interface. */
205 	int hv_devhdl;
206 	/* The intr bit mask that IDs this device. */
207 	u32 intr_id;
208 	/* True iff "tile_net_open_aux()" has succeeded. */
209 	bool partly_opened;
210 	/* True iff the device is "active". */
211 	bool active;
212 	/* Effective network cpus. */
213 	struct cpumask network_cpus_map;
214 	/* Number of network cpus. */
215 	int network_cpus_count;
216 	/* Credits per network cpu. */
217 	int network_cpus_credits;
218 	/* For NetIO bringup retries. */
219 	struct delayed_work retry_work;
220 	/* Quick access to per cpu data. */
221 	struct tile_net_cpu *cpu[NR_CPUS];
222 };
223 
224 /* Log2 of the number of small pages needed for the egress queue. */
225 #define EQ_ORDER  get_order(sizeof(lepp_queue_t))
226 /* Size of the egress queue's pages. */
227 #define EQ_SIZE   (1 << (PAGE_SHIFT + EQ_ORDER))
228 
229 /*
230  * The actual devices (xgbe0, xgbe1, gbe0, gbe1).
231  */
232 static struct net_device *tile_net_devs[TILE_NET_DEVS];
233 
234 /*
235  * The "tile_net_cpu" structures for each device.
236  */
237 static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0);
238 static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1);
239 static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0);
240 static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1);
241 
242 
243 /*
244  * True if "network_cpus" was specified.
245  */
246 static bool network_cpus_used;
247 
248 /*
249  * The actual cpus in "network_cpus".
250  */
251 static struct cpumask network_cpus_map;
252 
253 
254 
255 #ifdef TILE_NET_DEBUG
256 /*
257  * printk with extra stuff.
258  *
259  * We print the CPU we're running in brackets.
260  */
net_printk(char * fmt,...)261 static void net_printk(char *fmt, ...)
262 {
263 	int i;
264 	int len;
265 	va_list args;
266 	static char buf[256];
267 
268 	len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id());
269 	va_start(args, fmt);
270 	i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args);
271 	va_end(args);
272 	buf[255] = '\0';
273 	pr_notice(buf);
274 }
275 #endif
276 
277 
278 #ifdef TILE_NET_DUMP_PACKETS
279 /*
280  * Dump a packet.
281  */
dump_packet(unsigned char * data,unsigned long length,char * s)282 static void dump_packet(unsigned char *data, unsigned long length, char *s)
283 {
284 	int my_cpu = smp_processor_id();
285 
286 	unsigned long i;
287 	char buf[128];
288 
289 	static unsigned int count;
290 
291 	pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n",
292 	       data, length, s, count++);
293 
294 	pr_info("\n");
295 
296 	for (i = 0; i < length; i++) {
297 		if ((i & 0xf) == 0)
298 			sprintf(buf, "[%02d] %8.8lx:", my_cpu, i);
299 		sprintf(buf + strlen(buf), " %2.2x", data[i]);
300 		if ((i & 0xf) == 0xf || i == length - 1) {
301 			strcat(buf, "\n");
302 			pr_info("%s", buf);
303 		}
304 	}
305 }
306 #endif
307 
308 
309 /*
310  * Provide support for the __netio_fastio1() swint
311  * (see <hv/drv_xgbe_intf.h> for how it is used).
312  *
313  * The fastio swint2 call may clobber all the caller-saved registers.
314  * It rarely clobbers memory, but we allow for the possibility in
315  * the signature just to be on the safe side.
316  *
317  * Also, gcc doesn't seem to allow an input operand to be
318  * clobbered, so we fake it with dummy outputs.
319  *
320  * This function can't be static because of the way it is declared
321  * in the netio header.
322  */
__netio_fastio1(u32 fastio_index,u32 arg0)323 inline int __netio_fastio1(u32 fastio_index, u32 arg0)
324 {
325 	long result, clobber_r1, clobber_r10;
326 	asm volatile("swint2"
327 		     : "=R00" (result),
328 		       "=R01" (clobber_r1), "=R10" (clobber_r10)
329 		     : "R10" (fastio_index), "R01" (arg0)
330 		     : "memory", "r2", "r3", "r4",
331 		       "r5", "r6", "r7", "r8", "r9",
332 		       "r11", "r12", "r13", "r14",
333 		       "r15", "r16", "r17", "r18", "r19",
334 		       "r20", "r21", "r22", "r23", "r24",
335 		       "r25", "r26", "r27", "r28", "r29");
336 	return result;
337 }
338 
339 
tile_net_return_credit(struct tile_net_cpu * info)340 static void tile_net_return_credit(struct tile_net_cpu *info)
341 {
342 	struct tile_netio_queue *queue = &info->queue;
343 	netio_queue_user_impl_t *qup = &queue->__user_part;
344 
345 	/* Return four credits after every fourth packet. */
346 	if (--qup->__receive_credit_remaining == 0) {
347 		u32 interval = qup->__receive_credit_interval;
348 		qup->__receive_credit_remaining = interval;
349 		__netio_fastio_return_credits(qup->__fastio_index, interval);
350 	}
351 }
352 
353 
354 
355 /*
356  * Provide a linux buffer to LIPP.
357  */
tile_net_provide_linux_buffer(struct tile_net_cpu * info,void * va,bool small)358 static void tile_net_provide_linux_buffer(struct tile_net_cpu *info,
359 					  void *va, bool small)
360 {
361 	struct tile_netio_queue *queue = &info->queue;
362 
363 	/* Convert "va" and "small" to "linux_buffer_t". */
364 	unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small;
365 
366 	__netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer);
367 }
368 
369 
370 /*
371  * Provide a linux buffer for LIPP.
372  *
373  * Note that the ACTUAL allocation for each buffer is a "struct sk_buff",
374  * plus a chunk of memory that includes not only the requested bytes, but
375  * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info".
376  *
377  * Note that "struct skb_shared_info" is 88 bytes with 64K pages and
378  * 268 bytes with 4K pages (since the frags[] array needs 18 entries).
379  *
380  * Without jumbo packets, the maximum packet size will be 1536 bytes,
381  * and we use 2 bytes (NET_IP_ALIGN) of padding.  ISSUE: If we told
382  * the hardware to clip at 1518 bytes instead of 1536 bytes, then we
383  * could save an entire cache line, but in practice, we don't need it.
384  *
385  * Since CPAs are 38 bits, and we can only encode the high 31 bits in
386  * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must
387  * align the actual "va" mod 128.
388  *
389  * We assume that the underlying "head" will be aligned mod 64.  Note
390  * that in practice, we have seen "head" NOT aligned mod 128 even when
391  * using 2048 byte allocations, which is surprising.
392  *
393  * If "head" WAS always aligned mod 128, we could change LIPP to
394  * assume that the low SIX bits are zero, and the 7th bit is one, that
395  * is, align the actual "va" mod 128 plus 64, which would be "free".
396  *
397  * For now, the actual "head" pointer points at NET_SKB_PAD bytes of
398  * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff
399  * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for
400  * the actual packet, plus 62 bytes of empty padding, plus some
401  * padding and the "struct skb_shared_info".
402  *
403  * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88
404  * bytes, or 1816 bytes, which fits comfortably into 2048 bytes.
405  *
406  * With 64K pages, a small buffer thus needs 32+92+4+2+126+88
407  * bytes, or 344 bytes, which means we are wasting 64+ bytes, and
408  * could presumably increase the size of small buffers.
409  *
410  * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268
411  * bytes, or 1996 bytes, which fits comfortably into 2048 bytes.
412  *
413  * With 4K pages, a small buffer thus needs 32+92+4+2+126+268
414  * bytes, or 524 bytes, which is annoyingly wasteful.
415  *
416  * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192?
417  *
418  * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64?
419  */
tile_net_provide_needed_buffer(struct tile_net_cpu * info,bool small)420 static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info,
421 					   bool small)
422 {
423 #if TILE_NET_MTU <= 1536
424 	/* Without "jumbo", 2 + 1536 should be sufficient. */
425 	unsigned int large_size = NET_IP_ALIGN + 1536;
426 #else
427 	/* ISSUE: This has not been tested. */
428 	unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100;
429 #endif
430 
431 	/* Avoid "false sharing" with last cache line. */
432 	/* ISSUE: This is already done by "netdev_alloc_skb()". */
433 	unsigned int len =
434 		 (((small ? LIPP_SMALL_PACKET_SIZE : large_size) +
435 		   CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE());
436 
437 	unsigned int padding = 128 - NET_SKB_PAD;
438 	unsigned int align;
439 
440 	struct sk_buff *skb;
441 	void *va;
442 
443 	struct sk_buff **skb_ptr;
444 
445 	/* Request 96 extra bytes for alignment purposes. */
446 	skb = netdev_alloc_skb(info->napi.dev, len + padding);
447 	if (skb == NULL)
448 		return false;
449 
450 	/* Skip 32 or 96 bytes to align "data" mod 128. */
451 	align = -(long)skb->data & (128 - 1);
452 	BUG_ON(align > padding);
453 	skb_reserve(skb, align);
454 
455 	/* This address is given to IPP. */
456 	va = skb->data;
457 
458 	/* Buffers must not span a huge page. */
459 	BUG_ON(((((long)va & ~HPAGE_MASK) + len) & HPAGE_MASK) != 0);
460 
461 #ifdef TILE_NET_PARANOIA
462 #if CHIP_HAS_CBOX_HOME_MAP()
463 	if (hash_default) {
464 		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va);
465 		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
466 			panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx",
467 			      va, hv_pte_get_mode(pte), hv_pte_val(pte));
468 	}
469 #endif
470 #endif
471 
472 	/* Invalidate the packet buffer. */
473 	if (!hash_default)
474 		__inv_buffer(va, len);
475 
476 	/* Skip two bytes to satisfy LIPP assumptions. */
477 	/* Note that this aligns IP on a 16 byte boundary. */
478 	/* ISSUE: Do this when the packet arrives? */
479 	skb_reserve(skb, NET_IP_ALIGN);
480 
481 	/* Save a back-pointer to 'skb'. */
482 	skb_ptr = va - sizeof(*skb_ptr);
483 	*skb_ptr = skb;
484 
485 	/* Make sure "skb_ptr" has been flushed. */
486 	__insn_mf();
487 
488 	/* Provide the new buffer. */
489 	tile_net_provide_linux_buffer(info, va, small);
490 
491 	return true;
492 }
493 
494 
495 /*
496  * Provide linux buffers for LIPP.
497  */
tile_net_provide_needed_buffers(struct tile_net_cpu * info)498 static void tile_net_provide_needed_buffers(struct tile_net_cpu *info)
499 {
500 	while (info->num_needed_small_buffers != 0) {
501 		if (!tile_net_provide_needed_buffer(info, true))
502 			goto oops;
503 		info->num_needed_small_buffers--;
504 	}
505 
506 	while (info->num_needed_large_buffers != 0) {
507 		if (!tile_net_provide_needed_buffer(info, false))
508 			goto oops;
509 		info->num_needed_large_buffers--;
510 	}
511 
512 	return;
513 
514 oops:
515 
516 	/* Add a description to the page allocation failure dump. */
517 	pr_notice("Could not provide a linux buffer to LIPP.\n");
518 }
519 
520 
521 /*
522  * Grab some LEPP completions, and store them in "comps", of size
523  * "comps_size", and return the number of completions which were
524  * stored, so the caller can free them.
525  */
tile_net_lepp_grab_comps(lepp_queue_t * eq,struct sk_buff * comps[],unsigned int comps_size,unsigned int min_size)526 static unsigned int tile_net_lepp_grab_comps(lepp_queue_t *eq,
527 					     struct sk_buff *comps[],
528 					     unsigned int comps_size,
529 					     unsigned int min_size)
530 {
531 	unsigned int n = 0;
532 
533 	unsigned int comp_head = eq->comp_head;
534 	unsigned int comp_busy = eq->comp_busy;
535 
536 	while (comp_head != comp_busy && n < comps_size) {
537 		comps[n++] = eq->comps[comp_head];
538 		LEPP_QINC(comp_head);
539 	}
540 
541 	if (n < min_size)
542 		return 0;
543 
544 	eq->comp_head = comp_head;
545 
546 	return n;
547 }
548 
549 
550 /*
551  * Free some comps, and return true iff there are still some pending.
552  */
tile_net_lepp_free_comps(struct net_device * dev,bool all)553 static bool tile_net_lepp_free_comps(struct net_device *dev, bool all)
554 {
555 	struct tile_net_priv *priv = netdev_priv(dev);
556 
557 	lepp_queue_t *eq = priv->eq;
558 
559 	struct sk_buff *olds[64];
560 	unsigned int wanted = 64;
561 	unsigned int i, n;
562 	bool pending;
563 
564 	spin_lock(&priv->eq_lock);
565 
566 	if (all)
567 		eq->comp_busy = eq->comp_tail;
568 
569 	n = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
570 
571 	pending = (eq->comp_head != eq->comp_tail);
572 
573 	spin_unlock(&priv->eq_lock);
574 
575 	for (i = 0; i < n; i++)
576 		kfree_skb(olds[i]);
577 
578 	return pending;
579 }
580 
581 
582 /*
583  * Make sure the egress timer is scheduled.
584  *
585  * Note that we use "schedule if not scheduled" logic instead of the more
586  * obvious "reschedule" logic, because "reschedule" is fairly expensive.
587  */
tile_net_schedule_egress_timer(struct tile_net_cpu * info)588 static void tile_net_schedule_egress_timer(struct tile_net_cpu *info)
589 {
590 	if (!info->egress_timer_scheduled) {
591 		mod_timer_pinned(&info->egress_timer, jiffies + 1);
592 		info->egress_timer_scheduled = true;
593 	}
594 }
595 
596 
597 /*
598  * The "function" for "info->egress_timer".
599  *
600  * This timer will reschedule itself as long as there are any pending
601  * completions expected (on behalf of any tile).
602  *
603  * ISSUE: Realistically, will the timer ever stop scheduling itself?
604  *
605  * ISSUE: This timer is almost never actually needed, so just use a global
606  * timer that can run on any tile.
607  *
608  * ISSUE: Maybe instead track number of expected completions, and free
609  * only that many, resetting to zero if "pending" is ever false.
610  */
tile_net_handle_egress_timer(unsigned long arg)611 static void tile_net_handle_egress_timer(unsigned long arg)
612 {
613 	struct tile_net_cpu *info = (struct tile_net_cpu *)arg;
614 	struct net_device *dev = info->napi.dev;
615 
616 	/* The timer is no longer scheduled. */
617 	info->egress_timer_scheduled = false;
618 
619 	/* Free comps, and reschedule timer if more are pending. */
620 	if (tile_net_lepp_free_comps(dev, false))
621 		tile_net_schedule_egress_timer(info);
622 }
623 
624 
tile_net_discard_aux(struct tile_net_cpu * info,int index)625 static void tile_net_discard_aux(struct tile_net_cpu *info, int index)
626 {
627 	struct tile_netio_queue *queue = &info->queue;
628 	netio_queue_impl_t *qsp = queue->__system_part;
629 	netio_queue_user_impl_t *qup = &queue->__user_part;
630 
631 	int index2_aux = index + sizeof(netio_pkt_t);
632 	int index2 =
633 		((index2_aux ==
634 		  qsp->__packet_receive_queue.__last_packet_plus_one) ?
635 		 0 : index2_aux);
636 
637 	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
638 
639 	/* Extract the "linux_buffer_t". */
640 	unsigned int buffer = pkt->__packet.word;
641 
642 	/* Convert "linux_buffer_t" to "va". */
643 	void *va = __va((phys_addr_t)(buffer >> 1) << 7);
644 
645 	/* Acquire the associated "skb". */
646 	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
647 	struct sk_buff *skb = *skb_ptr;
648 
649 	kfree_skb(skb);
650 
651 	/* Consume this packet. */
652 	qup->__packet_receive_read = index2;
653 }
654 
655 
656 /*
657  * Like "tile_net_poll()", but just discard packets.
658  */
tile_net_discard_packets(struct net_device * dev)659 static void tile_net_discard_packets(struct net_device *dev)
660 {
661 	struct tile_net_priv *priv = netdev_priv(dev);
662 	int my_cpu = smp_processor_id();
663 	struct tile_net_cpu *info = priv->cpu[my_cpu];
664 	struct tile_netio_queue *queue = &info->queue;
665 	netio_queue_impl_t *qsp = queue->__system_part;
666 	netio_queue_user_impl_t *qup = &queue->__user_part;
667 
668 	while (qup->__packet_receive_read !=
669 	       qsp->__packet_receive_queue.__packet_write) {
670 		int index = qup->__packet_receive_read;
671 		tile_net_discard_aux(info, index);
672 	}
673 }
674 
675 
676 /*
677  * Handle the next packet.  Return true if "processed", false if "filtered".
678  */
tile_net_poll_aux(struct tile_net_cpu * info,int index)679 static bool tile_net_poll_aux(struct tile_net_cpu *info, int index)
680 {
681 	struct net_device *dev = info->napi.dev;
682 
683 	struct tile_netio_queue *queue = &info->queue;
684 	netio_queue_impl_t *qsp = queue->__system_part;
685 	netio_queue_user_impl_t *qup = &queue->__user_part;
686 	struct tile_net_stats_t *stats = &info->stats;
687 
688 	int filter;
689 
690 	int index2_aux = index + sizeof(netio_pkt_t);
691 	int index2 =
692 		((index2_aux ==
693 		  qsp->__packet_receive_queue.__last_packet_plus_one) ?
694 		 0 : index2_aux);
695 
696 	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
697 
698 	netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt);
699 	netio_pkt_status_t pkt_status = NETIO_PKT_STATUS_M(metadata, pkt);
700 
701 	/* Extract the packet size.  FIXME: Shouldn't the second line */
702 	/* get subtracted?  Mostly moot, since it should be "zero". */
703 	unsigned long len =
704 		(NETIO_PKT_CUSTOM_LENGTH(pkt) +
705 		 NET_IP_ALIGN - NETIO_PACKET_PADDING);
706 
707 	/* Extract the "linux_buffer_t". */
708 	unsigned int buffer = pkt->__packet.word;
709 
710 	/* Extract "small" (vs "large"). */
711 	bool small = ((buffer & 1) != 0);
712 
713 	/* Convert "linux_buffer_t" to "va". */
714 	void *va = __va((phys_addr_t)(buffer >> 1) << 7);
715 
716 	/* Extract the packet data pointer. */
717 	/* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
718 	unsigned char *buf = va + NET_IP_ALIGN;
719 
720 	/* Invalidate the packet buffer. */
721 	if (!hash_default)
722 		__inv_buffer(buf, len);
723 
724 #ifdef TILE_NET_DUMP_PACKETS
725 	dump_packet(buf, len, "rx");
726 #endif /* TILE_NET_DUMP_PACKETS */
727 
728 #ifdef TILE_NET_VERIFY_INGRESS
729 	if (pkt_status == NETIO_PKT_STATUS_OVERSIZE && len >= 64) {
730 		dump_packet(buf, len, "rx");
731 		panic("Unexpected OVERSIZE.");
732 	}
733 #endif
734 
735 	filter = 0;
736 
737 	if (pkt_status == NETIO_PKT_STATUS_BAD) {
738 		/* Handle CRC error and hardware truncation. */
739 		filter = 2;
740 	} else if (!(dev->flags & IFF_UP)) {
741 		/* Filter packets received before we're up. */
742 		filter = 1;
743 	} else if (NETIO_PKT_ETHERTYPE_RECOGNIZED_M(metadata, pkt) &&
744 		   pkt_status == NETIO_PKT_STATUS_UNDERSIZE) {
745 		/* Filter "truncated" packets. */
746 		filter = 2;
747 	} else if (!(dev->flags & IFF_PROMISC)) {
748 		if (!is_multicast_ether_addr(buf)) {
749 			/* Filter packets not for our address. */
750 			const u8 *mine = dev->dev_addr;
751 			filter = !ether_addr_equal(mine, buf);
752 		}
753 	}
754 
755 	u64_stats_update_begin(&stats->syncp);
756 
757 	if (filter != 0) {
758 
759 		if (filter == 1)
760 			stats->rx_dropped++;
761 		else
762 			stats->rx_errors++;
763 
764 		tile_net_provide_linux_buffer(info, va, small);
765 
766 	} else {
767 
768 		/* Acquire the associated "skb". */
769 		struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
770 		struct sk_buff *skb = *skb_ptr;
771 
772 		/* Paranoia. */
773 		if (skb->data != buf)
774 			panic("Corrupt linux buffer from LIPP! "
775 			      "VA=%p, skb=%p, skb->data=%p\n",
776 			      va, skb, skb->data);
777 
778 		/* Encode the actual packet length. */
779 		skb_put(skb, len);
780 
781 		/* NOTE: This call also sets "skb->dev = dev". */
782 		skb->protocol = eth_type_trans(skb, dev);
783 
784 		/* Avoid recomputing "good" TCP/UDP checksums. */
785 		if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt))
786 			skb->ip_summed = CHECKSUM_UNNECESSARY;
787 
788 		netif_receive_skb(skb);
789 
790 		stats->rx_packets++;
791 		stats->rx_bytes += len;
792 	}
793 
794 	u64_stats_update_end(&stats->syncp);
795 
796 	/* ISSUE: It would be nice to defer this until the packet has */
797 	/* actually been processed. */
798 	tile_net_return_credit(info);
799 
800 	/* Consume this packet. */
801 	qup->__packet_receive_read = index2;
802 
803 	return !filter;
804 }
805 
806 
807 /*
808  * Handle some packets for the given device on the current CPU.
809  *
810  * If "tile_net_stop()" is called on some other tile while this
811  * function is running, we will return, hopefully before that
812  * other tile asks us to call "napi_disable()".
813  *
814  * The "rotting packet" race condition occurs if a packet arrives
815  * during the extremely narrow window between the queue appearing to
816  * be empty, and the ingress interrupt being re-enabled.  This happens
817  * a LOT under heavy network load.
818  */
tile_net_poll(struct napi_struct * napi,int budget)819 static int tile_net_poll(struct napi_struct *napi, int budget)
820 {
821 	struct net_device *dev = napi->dev;
822 	struct tile_net_priv *priv = netdev_priv(dev);
823 	int my_cpu = smp_processor_id();
824 	struct tile_net_cpu *info = priv->cpu[my_cpu];
825 	struct tile_netio_queue *queue = &info->queue;
826 	netio_queue_impl_t *qsp = queue->__system_part;
827 	netio_queue_user_impl_t *qup = &queue->__user_part;
828 
829 	unsigned int work = 0;
830 
831 	if (budget <= 0)
832 		goto done;
833 
834 	while (priv->active) {
835 		int index = qup->__packet_receive_read;
836 		if (index == qsp->__packet_receive_queue.__packet_write)
837 			break;
838 
839 		if (tile_net_poll_aux(info, index)) {
840 			if (++work >= budget)
841 				goto done;
842 		}
843 	}
844 
845 	napi_complete(&info->napi);
846 
847 	if (!priv->active)
848 		goto done;
849 
850 	/* Re-enable the ingress interrupt. */
851 	enable_percpu_irq(priv->intr_id, 0);
852 
853 	/* HACK: Avoid the "rotting packet" problem (see above). */
854 	if (qup->__packet_receive_read !=
855 	    qsp->__packet_receive_queue.__packet_write) {
856 		/* ISSUE: Sometimes this returns zero, presumably */
857 		/* because an interrupt was handled for this tile. */
858 		(void)napi_reschedule(&info->napi);
859 	}
860 
861 done:
862 
863 	if (priv->active)
864 		tile_net_provide_needed_buffers(info);
865 
866 	return work;
867 }
868 
869 
870 /*
871  * Handle an ingress interrupt for the given device on the current cpu.
872  *
873  * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has
874  * been called!  This is probably due to "pending hypervisor downcalls".
875  *
876  * ISSUE: Is there any race condition between the "napi_schedule()" here
877  * and the "napi_complete()" call above?
878  */
tile_net_handle_ingress_interrupt(int irq,void * dev_ptr)879 static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr)
880 {
881 	struct net_device *dev = (struct net_device *)dev_ptr;
882 	struct tile_net_priv *priv = netdev_priv(dev);
883 	int my_cpu = smp_processor_id();
884 	struct tile_net_cpu *info = priv->cpu[my_cpu];
885 
886 	/* Disable the ingress interrupt. */
887 	disable_percpu_irq(priv->intr_id);
888 
889 	/* Ignore unwanted interrupts. */
890 	if (!priv->active)
891 		return IRQ_HANDLED;
892 
893 	/* ISSUE: Sometimes "info->napi_enabled" is false here. */
894 
895 	napi_schedule(&info->napi);
896 
897 	return IRQ_HANDLED;
898 }
899 
900 
901 /*
902  * One time initialization per interface.
903  */
tile_net_open_aux(struct net_device * dev)904 static int tile_net_open_aux(struct net_device *dev)
905 {
906 	struct tile_net_priv *priv = netdev_priv(dev);
907 
908 	int ret;
909 	int dummy;
910 	unsigned int epp_lotar;
911 
912 	/*
913 	 * Find out where EPP memory should be homed.
914 	 */
915 	ret = hv_dev_pread(priv->hv_devhdl, 0,
916 			   (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar),
917 			   NETIO_EPP_SHM_OFF);
918 	if (ret < 0) {
919 		pr_err("could not read epp_shm_queue lotar.\n");
920 		return -EIO;
921 	}
922 
923 	/*
924 	 * Home the page on the EPP.
925 	 */
926 	{
927 		int epp_home = hv_lotar_to_cpu(epp_lotar);
928 		homecache_change_page_home(priv->eq_pages, EQ_ORDER, epp_home);
929 	}
930 
931 	/*
932 	 * Register the EPP shared memory queue.
933 	 */
934 	{
935 		netio_ipp_address_t ea = {
936 			.va = 0,
937 			.pa = __pa(priv->eq),
938 			.pte = hv_pte(0),
939 			.size = EQ_SIZE,
940 		};
941 		ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar);
942 		ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3);
943 		ret = hv_dev_pwrite(priv->hv_devhdl, 0,
944 				    (HV_VirtAddr)&ea,
945 				    sizeof(ea),
946 				    NETIO_EPP_SHM_OFF);
947 		if (ret < 0)
948 			return -EIO;
949 	}
950 
951 	/*
952 	 * Start LIPP/LEPP.
953 	 */
954 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
955 			  sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) {
956 		pr_warn("Failed to start LIPP/LEPP\n");
957 		return -EIO;
958 	}
959 
960 	return 0;
961 }
962 
963 
964 /*
965  * Register with hypervisor on the current CPU.
966  *
967  * Strangely, this function does important things even if it "fails",
968  * which is especially common if the link is not up yet.  Hopefully
969  * these things are all "harmless" if done twice!
970  */
tile_net_register(void * dev_ptr)971 static void tile_net_register(void *dev_ptr)
972 {
973 	struct net_device *dev = (struct net_device *)dev_ptr;
974 	struct tile_net_priv *priv = netdev_priv(dev);
975 	int my_cpu = smp_processor_id();
976 	struct tile_net_cpu *info;
977 
978 	struct tile_netio_queue *queue;
979 
980 	/* Only network cpus can receive packets. */
981 	int queue_id =
982 		cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255;
983 
984 	netio_input_config_t config = {
985 		.flags = 0,
986 		.num_receive_packets = priv->network_cpus_credits,
987 		.queue_id = queue_id
988 	};
989 
990 	int ret = 0;
991 	netio_queue_impl_t *queuep;
992 
993 	PDEBUG("tile_net_register(queue_id %d)\n", queue_id);
994 
995 	if (!strcmp(dev->name, "xgbe0"))
996 		info = this_cpu_ptr(&hv_xgbe0);
997 	else if (!strcmp(dev->name, "xgbe1"))
998 		info = this_cpu_ptr(&hv_xgbe1);
999 	else if (!strcmp(dev->name, "gbe0"))
1000 		info = this_cpu_ptr(&hv_gbe0);
1001 	else if (!strcmp(dev->name, "gbe1"))
1002 		info = this_cpu_ptr(&hv_gbe1);
1003 	else
1004 		BUG();
1005 
1006 	/* Initialize the egress timer. */
1007 	init_timer(&info->egress_timer);
1008 	info->egress_timer.data = (long)info;
1009 	info->egress_timer.function = tile_net_handle_egress_timer;
1010 
1011 	u64_stats_init(&info->stats.syncp);
1012 
1013 	priv->cpu[my_cpu] = info;
1014 
1015 	/*
1016 	 * Register ourselves with LIPP.  This does a lot of stuff,
1017 	 * including invoking the LIPP registration code.
1018 	 */
1019 	ret = hv_dev_pwrite(priv->hv_devhdl, 0,
1020 			    (HV_VirtAddr)&config,
1021 			    sizeof(netio_input_config_t),
1022 			    NETIO_IPP_INPUT_REGISTER_OFF);
1023 	PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1024 	       ret);
1025 	if (ret < 0) {
1026 		if (ret != NETIO_LINK_DOWN) {
1027 			printk(KERN_DEBUG "hv_dev_pwrite "
1028 			       "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n",
1029 			       ret);
1030 		}
1031 		info->link_down = (ret == NETIO_LINK_DOWN);
1032 		return;
1033 	}
1034 
1035 	/*
1036 	 * Get the pointer to our queue's system part.
1037 	 */
1038 
1039 	ret = hv_dev_pread(priv->hv_devhdl, 0,
1040 			   (HV_VirtAddr)&queuep,
1041 			   sizeof(netio_queue_impl_t *),
1042 			   NETIO_IPP_INPUT_REGISTER_OFF);
1043 	PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1044 	       ret);
1045 	PDEBUG("queuep %p\n", queuep);
1046 	if (ret <= 0) {
1047 		/* ISSUE: Shouldn't this be a fatal error? */
1048 		pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n");
1049 		return;
1050 	}
1051 
1052 	queue = &info->queue;
1053 
1054 	queue->__system_part = queuep;
1055 
1056 	memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t));
1057 
1058 	/* This is traditionally "config.num_receive_packets / 2". */
1059 	queue->__user_part.__receive_credit_interval = 4;
1060 	queue->__user_part.__receive_credit_remaining =
1061 		queue->__user_part.__receive_credit_interval;
1062 
1063 	/*
1064 	 * Get a fastio index from the hypervisor.
1065 	 * ISSUE: Shouldn't this check the result?
1066 	 */
1067 	ret = hv_dev_pread(priv->hv_devhdl, 0,
1068 			   (HV_VirtAddr)&queue->__user_part.__fastio_index,
1069 			   sizeof(queue->__user_part.__fastio_index),
1070 			   NETIO_IPP_GET_FASTIO_OFF);
1071 	PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret);
1072 
1073 	/* Now we are registered. */
1074 	info->registered = true;
1075 }
1076 
1077 
1078 /*
1079  * Deregister with hypervisor on the current CPU.
1080  *
1081  * This simply discards all our credits, so no more packets will be
1082  * delivered to this tile.  There may still be packets in our queue.
1083  *
1084  * Also, disable the ingress interrupt.
1085  */
tile_net_deregister(void * dev_ptr)1086 static void tile_net_deregister(void *dev_ptr)
1087 {
1088 	struct net_device *dev = (struct net_device *)dev_ptr;
1089 	struct tile_net_priv *priv = netdev_priv(dev);
1090 	int my_cpu = smp_processor_id();
1091 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1092 
1093 	/* Disable the ingress interrupt. */
1094 	disable_percpu_irq(priv->intr_id);
1095 
1096 	/* Do nothing else if not registered. */
1097 	if (info == NULL || !info->registered)
1098 		return;
1099 
1100 	{
1101 		struct tile_netio_queue *queue = &info->queue;
1102 		netio_queue_user_impl_t *qup = &queue->__user_part;
1103 
1104 		/* Discard all our credits. */
1105 		__netio_fastio_return_credits(qup->__fastio_index, -1);
1106 	}
1107 }
1108 
1109 
1110 /*
1111  * Unregister with hypervisor on the current CPU.
1112  *
1113  * Also, disable the ingress interrupt.
1114  */
tile_net_unregister(void * dev_ptr)1115 static void tile_net_unregister(void *dev_ptr)
1116 {
1117 	struct net_device *dev = (struct net_device *)dev_ptr;
1118 	struct tile_net_priv *priv = netdev_priv(dev);
1119 	int my_cpu = smp_processor_id();
1120 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1121 
1122 	int ret;
1123 	int dummy = 0;
1124 
1125 	/* Disable the ingress interrupt. */
1126 	disable_percpu_irq(priv->intr_id);
1127 
1128 	/* Do nothing else if not registered. */
1129 	if (info == NULL || !info->registered)
1130 		return;
1131 
1132 	/* Unregister ourselves with LIPP/LEPP. */
1133 	ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1134 			    sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF);
1135 	if (ret < 0)
1136 		panic("Failed to unregister with LIPP/LEPP!\n");
1137 
1138 	/* Discard all packets still in our NetIO queue. */
1139 	tile_net_discard_packets(dev);
1140 
1141 	/* Reset state. */
1142 	info->num_needed_small_buffers = 0;
1143 	info->num_needed_large_buffers = 0;
1144 
1145 	/* Cancel egress timer. */
1146 	del_timer(&info->egress_timer);
1147 	info->egress_timer_scheduled = false;
1148 }
1149 
1150 
1151 /*
1152  * Helper function for "tile_net_stop()".
1153  *
1154  * Also used to handle registration failure in "tile_net_open_inner()",
1155  * when the various extra steps in "tile_net_stop()" are not necessary.
1156  */
tile_net_stop_aux(struct net_device * dev)1157 static void tile_net_stop_aux(struct net_device *dev)
1158 {
1159 	struct tile_net_priv *priv = netdev_priv(dev);
1160 	int i;
1161 
1162 	int dummy = 0;
1163 
1164 	/*
1165 	 * Unregister all tiles, so LIPP will stop delivering packets.
1166 	 * Also, delete all the "napi" objects (sequentially, to protect
1167 	 * "dev->napi_list").
1168 	 */
1169 	on_each_cpu(tile_net_unregister, (void *)dev, 1);
1170 	for_each_online_cpu(i) {
1171 		struct tile_net_cpu *info = priv->cpu[i];
1172 		if (info != NULL && info->registered) {
1173 			netif_napi_del(&info->napi);
1174 			info->registered = false;
1175 		}
1176 	}
1177 
1178 	/* Stop LIPP/LEPP. */
1179 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1180 			  sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0)
1181 		panic("Failed to stop LIPP/LEPP!\n");
1182 
1183 	priv->partly_opened = false;
1184 }
1185 
1186 
1187 /*
1188  * Disable NAPI for the given device on the current cpu.
1189  */
tile_net_stop_disable(void * dev_ptr)1190 static void tile_net_stop_disable(void *dev_ptr)
1191 {
1192 	struct net_device *dev = (struct net_device *)dev_ptr;
1193 	struct tile_net_priv *priv = netdev_priv(dev);
1194 	int my_cpu = smp_processor_id();
1195 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1196 
1197 	/* Disable NAPI if needed. */
1198 	if (info != NULL && info->napi_enabled) {
1199 		napi_disable(&info->napi);
1200 		info->napi_enabled = false;
1201 	}
1202 }
1203 
1204 
1205 /*
1206  * Enable NAPI and the ingress interrupt for the given device
1207  * on the current cpu.
1208  *
1209  * ISSUE: Only do this for "network cpus"?
1210  */
tile_net_open_enable(void * dev_ptr)1211 static void tile_net_open_enable(void *dev_ptr)
1212 {
1213 	struct net_device *dev = (struct net_device *)dev_ptr;
1214 	struct tile_net_priv *priv = netdev_priv(dev);
1215 	int my_cpu = smp_processor_id();
1216 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1217 
1218 	/* Enable NAPI. */
1219 	napi_enable(&info->napi);
1220 	info->napi_enabled = true;
1221 
1222 	/* Enable the ingress interrupt. */
1223 	enable_percpu_irq(priv->intr_id, 0);
1224 }
1225 
1226 
1227 /*
1228  * tile_net_open_inner does most of the work of bringing up the interface.
1229  * It's called from tile_net_open(), and also from tile_net_retry_open().
1230  * The return value is 0 if the interface was brought up, < 0 if
1231  * tile_net_open() should return the return value as an error, and > 0 if
1232  * tile_net_open() should return success and schedule a work item to
1233  * periodically retry the bringup.
1234  */
tile_net_open_inner(struct net_device * dev)1235 static int tile_net_open_inner(struct net_device *dev)
1236 {
1237 	struct tile_net_priv *priv = netdev_priv(dev);
1238 	int my_cpu = smp_processor_id();
1239 	struct tile_net_cpu *info;
1240 	struct tile_netio_queue *queue;
1241 	int result = 0;
1242 	int i;
1243 	int dummy = 0;
1244 
1245 	/*
1246 	 * First try to register just on the local CPU, and handle any
1247 	 * semi-expected "link down" failure specially.  Note that we
1248 	 * do NOT call "tile_net_stop_aux()", unlike below.
1249 	 */
1250 	tile_net_register(dev);
1251 	info = priv->cpu[my_cpu];
1252 	if (!info->registered) {
1253 		if (info->link_down)
1254 			return 1;
1255 		return -EAGAIN;
1256 	}
1257 
1258 	/*
1259 	 * Now register everywhere else.  If any registration fails,
1260 	 * even for "link down" (which might not be possible), we
1261 	 * clean up using "tile_net_stop_aux()".  Also, add all the
1262 	 * "napi" objects (sequentially, to protect "dev->napi_list").
1263 	 * ISSUE: Only use "netif_napi_add()" for "network cpus"?
1264 	 */
1265 	smp_call_function(tile_net_register, (void *)dev, 1);
1266 	for_each_online_cpu(i) {
1267 		struct tile_net_cpu *info = priv->cpu[i];
1268 		if (info->registered)
1269 			netif_napi_add(dev, &info->napi, tile_net_poll, 64);
1270 		else
1271 			result = -EAGAIN;
1272 	}
1273 	if (result != 0) {
1274 		tile_net_stop_aux(dev);
1275 		return result;
1276 	}
1277 
1278 	queue = &info->queue;
1279 
1280 	if (priv->intr_id == 0) {
1281 		unsigned int irq;
1282 
1283 		/*
1284 		 * Acquire the irq allocated by the hypervisor.  Every
1285 		 * queue gets the same irq.  The "__intr_id" field is
1286 		 * "1 << irq", so we use "__ffs()" to extract "irq".
1287 		 */
1288 		priv->intr_id = queue->__system_part->__intr_id;
1289 		BUG_ON(priv->intr_id == 0);
1290 		irq = __ffs(priv->intr_id);
1291 
1292 		/*
1293 		 * Register the ingress interrupt handler for this
1294 		 * device, permanently.
1295 		 *
1296 		 * We used to call "free_irq()" in "tile_net_stop()",
1297 		 * and then re-register the handler here every time,
1298 		 * but that caused DNP errors in "handle_IRQ_event()"
1299 		 * because "desc->action" was NULL.  See bug 9143.
1300 		 */
1301 		tile_irq_activate(irq, TILE_IRQ_PERCPU);
1302 		BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt,
1303 				   0, dev->name, (void *)dev) != 0);
1304 	}
1305 
1306 	{
1307 		/* Allocate initial buffers. */
1308 
1309 		int max_buffers =
1310 			priv->network_cpus_count * priv->network_cpus_credits;
1311 
1312 		info->num_needed_small_buffers =
1313 			min(LIPP_SMALL_BUFFERS, max_buffers);
1314 
1315 		info->num_needed_large_buffers =
1316 			min(LIPP_LARGE_BUFFERS, max_buffers);
1317 
1318 		tile_net_provide_needed_buffers(info);
1319 
1320 		if (info->num_needed_small_buffers != 0 ||
1321 		    info->num_needed_large_buffers != 0)
1322 			panic("Insufficient memory for buffer stack!");
1323 	}
1324 
1325 	/* We are about to be active. */
1326 	priv->active = true;
1327 
1328 	/* Make sure "active" is visible to all tiles. */
1329 	mb();
1330 
1331 	/* On each tile, enable NAPI and the ingress interrupt. */
1332 	on_each_cpu(tile_net_open_enable, (void *)dev, 1);
1333 
1334 	/* Start LIPP/LEPP and activate "ingress" at the shim. */
1335 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1336 			  sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0)
1337 		panic("Failed to activate the LIPP Shim!\n");
1338 
1339 	/* Start our transmit queue. */
1340 	netif_start_queue(dev);
1341 
1342 	return 0;
1343 }
1344 
1345 
1346 /*
1347  * Called periodically to retry bringing up the NetIO interface,
1348  * if it doesn't come up cleanly during tile_net_open().
1349  */
tile_net_open_retry(struct work_struct * w)1350 static void tile_net_open_retry(struct work_struct *w)
1351 {
1352 	struct delayed_work *dw =
1353 		container_of(w, struct delayed_work, work);
1354 
1355 	struct tile_net_priv *priv =
1356 		container_of(dw, struct tile_net_priv, retry_work);
1357 
1358 	/*
1359 	 * Try to bring the NetIO interface up.  If it fails, reschedule
1360 	 * ourselves to try again later; otherwise, tell Linux we now have
1361 	 * a working link.  ISSUE: What if the return value is negative?
1362 	 */
1363 	if (tile_net_open_inner(priv->dev) != 0)
1364 		schedule_delayed_work(&priv->retry_work,
1365 				      TILE_NET_RETRY_INTERVAL);
1366 	else
1367 		netif_carrier_on(priv->dev);
1368 }
1369 
1370 
1371 /*
1372  * Called when a network interface is made active.
1373  *
1374  * Returns 0 on success, negative value on failure.
1375  *
1376  * The open entry point is called when a network interface is made
1377  * active by the system (IFF_UP).  At this point all resources needed
1378  * for transmit and receive operations are allocated, the interrupt
1379  * handler is registered with the OS (if needed), the watchdog timer
1380  * is started, and the stack is notified that the interface is ready.
1381  *
1382  * If the actual link is not available yet, then we tell Linux that
1383  * we have no carrier, and we keep checking until the link comes up.
1384  */
tile_net_open(struct net_device * dev)1385 static int tile_net_open(struct net_device *dev)
1386 {
1387 	int ret = 0;
1388 	struct tile_net_priv *priv = netdev_priv(dev);
1389 
1390 	/*
1391 	 * We rely on priv->partly_opened to tell us if this is the
1392 	 * first time this interface is being brought up. If it is
1393 	 * set, the IPP was already initialized and should not be
1394 	 * initialized again.
1395 	 */
1396 	if (!priv->partly_opened) {
1397 
1398 		int count;
1399 		int credits;
1400 
1401 		/* Initialize LIPP/LEPP, and start the Shim. */
1402 		ret = tile_net_open_aux(dev);
1403 		if (ret < 0) {
1404 			pr_err("tile_net_open_aux failed: %d\n", ret);
1405 			return ret;
1406 		}
1407 
1408 		/* Analyze the network cpus. */
1409 
1410 		if (network_cpus_used)
1411 			cpumask_copy(&priv->network_cpus_map,
1412 				     &network_cpus_map);
1413 		else
1414 			cpumask_copy(&priv->network_cpus_map, cpu_online_mask);
1415 
1416 
1417 		count = cpumask_weight(&priv->network_cpus_map);
1418 
1419 		/* Limit credits to available buffers, and apply min. */
1420 		credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1);
1421 
1422 		/* Apply "GBE" max limit. */
1423 		/* ISSUE: Use higher limit for XGBE? */
1424 		credits = min(NETIO_MAX_RECEIVE_PKTS, credits);
1425 
1426 		priv->network_cpus_count = count;
1427 		priv->network_cpus_credits = credits;
1428 
1429 #ifdef TILE_NET_DEBUG
1430 		pr_info("Using %d network cpus, with %d credits each\n",
1431 		       priv->network_cpus_count, priv->network_cpus_credits);
1432 #endif
1433 
1434 		priv->partly_opened = true;
1435 
1436 	} else {
1437 		/* FIXME: Is this possible? */
1438 		/* printk("Already partly opened.\n"); */
1439 	}
1440 
1441 	/*
1442 	 * Attempt to bring up the link.
1443 	 */
1444 	ret = tile_net_open_inner(dev);
1445 	if (ret <= 0) {
1446 		if (ret == 0)
1447 			netif_carrier_on(dev);
1448 		return ret;
1449 	}
1450 
1451 	/*
1452 	 * We were unable to bring up the NetIO interface, but we want to
1453 	 * try again in a little bit.  Tell Linux that we have no carrier
1454 	 * so it doesn't try to use the interface before the link comes up
1455 	 * and then remember to try again later.
1456 	 */
1457 	netif_carrier_off(dev);
1458 	schedule_delayed_work(&priv->retry_work, TILE_NET_RETRY_INTERVAL);
1459 
1460 	return 0;
1461 }
1462 
1463 
tile_net_drain_lipp_buffers(struct tile_net_priv * priv)1464 static int tile_net_drain_lipp_buffers(struct tile_net_priv *priv)
1465 {
1466 	int n = 0;
1467 
1468 	/* Drain all the LIPP buffers. */
1469 	while (true) {
1470 		unsigned int buffer;
1471 
1472 		/* NOTE: This should never fail. */
1473 		if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer,
1474 				 sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0)
1475 			break;
1476 
1477 		/* Stop when done. */
1478 		if (buffer == 0)
1479 			break;
1480 
1481 		{
1482 			/* Convert "linux_buffer_t" to "va". */
1483 			void *va = __va((phys_addr_t)(buffer >> 1) << 7);
1484 
1485 			/* Acquire the associated "skb". */
1486 			struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
1487 			struct sk_buff *skb = *skb_ptr;
1488 
1489 			kfree_skb(skb);
1490 		}
1491 
1492 		n++;
1493 	}
1494 
1495 	return n;
1496 }
1497 
1498 
1499 /*
1500  * Disables a network interface.
1501  *
1502  * Returns 0, this is not allowed to fail.
1503  *
1504  * The close entry point is called when an interface is de-activated
1505  * by the OS.  The hardware is still under the drivers control, but
1506  * needs to be disabled.  A global MAC reset is issued to stop the
1507  * hardware, and all transmit and receive resources are freed.
1508  *
1509  * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"?
1510  *
1511  * Before we are called by "__dev_close()", "netif_running()" will
1512  * have been cleared, so no NEW calls to "tile_net_poll()" will be
1513  * made by "netpoll_poll_dev()".
1514  *
1515  * Often, this can cause some tiles to still have packets in their
1516  * queues, so we must call "tile_net_discard_packets()" later.
1517  *
1518  * Note that some other tile may still be INSIDE "tile_net_poll()",
1519  * and in fact, many will be, if there is heavy network load.
1520  *
1521  * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when
1522  * any tile is still "napi_schedule()"'d will induce a horrible crash
1523  * when "msleep()" is called.  This includes tiles which are inside
1524  * "tile_net_poll()" which have not yet called "napi_complete()".
1525  *
1526  * So, we must first try to wait long enough for other tiles to finish
1527  * with any current "tile_net_poll()" call, and, hopefully, to clear
1528  * the "scheduled" flag.  ISSUE: It is unclear what happens to tiles
1529  * which have called "napi_schedule()" but which had not yet tried to
1530  * call "tile_net_poll()", or which exhausted their budget inside
1531  * "tile_net_poll()" just before this function was called.
1532  */
tile_net_stop(struct net_device * dev)1533 static int tile_net_stop(struct net_device *dev)
1534 {
1535 	struct tile_net_priv *priv = netdev_priv(dev);
1536 
1537 	PDEBUG("tile_net_stop()\n");
1538 
1539 	/* Start discarding packets. */
1540 	priv->active = false;
1541 
1542 	/* Make sure "active" is visible to all tiles. */
1543 	mb();
1544 
1545 	/*
1546 	 * On each tile, make sure no NEW packets get delivered, and
1547 	 * disable the ingress interrupt.
1548 	 *
1549 	 * Note that the ingress interrupt can fire AFTER this,
1550 	 * presumably due to packets which were recently delivered,
1551 	 * but it will have no effect.
1552 	 */
1553 	on_each_cpu(tile_net_deregister, (void *)dev, 1);
1554 
1555 	/* Optimistically drain LIPP buffers. */
1556 	(void)tile_net_drain_lipp_buffers(priv);
1557 
1558 	/* ISSUE: Only needed if not yet fully open. */
1559 	cancel_delayed_work_sync(&priv->retry_work);
1560 
1561 	/* Can't transmit any more. */
1562 	netif_stop_queue(dev);
1563 
1564 	/* Disable NAPI on each tile. */
1565 	on_each_cpu(tile_net_stop_disable, (void *)dev, 1);
1566 
1567 	/*
1568 	 * Drain any remaining LIPP buffers.  NOTE: This "printk()"
1569 	 * has never been observed, but in theory it could happen.
1570 	 */
1571 	if (tile_net_drain_lipp_buffers(priv) != 0)
1572 		printk("Had to drain some extra LIPP buffers!\n");
1573 
1574 	/* Stop LIPP/LEPP. */
1575 	tile_net_stop_aux(dev);
1576 
1577 	/*
1578 	 * ISSUE: It appears that, in practice anyway, by the time we
1579 	 * get here, there are no pending completions, but just in case,
1580 	 * we free (all of) them anyway.
1581 	 */
1582 	while (tile_net_lepp_free_comps(dev, true))
1583 		/* loop */;
1584 
1585 	/* Wipe the EPP queue, and wait till the stores hit the EPP. */
1586 	memset(priv->eq, 0, sizeof(lepp_queue_t));
1587 	mb();
1588 
1589 	return 0;
1590 }
1591 
1592 
1593 /*
1594  * Prepare the "frags" info for the resulting LEPP command.
1595  *
1596  * If needed, flush the memory used by the frags.
1597  */
tile_net_tx_frags(lepp_frag_t * frags,struct sk_buff * skb,void * b_data,unsigned int b_len)1598 static unsigned int tile_net_tx_frags(lepp_frag_t *frags,
1599 				      struct sk_buff *skb,
1600 				      void *b_data, unsigned int b_len)
1601 {
1602 	unsigned int i, n = 0;
1603 
1604 	struct skb_shared_info *sh = skb_shinfo(skb);
1605 
1606 	phys_addr_t cpa;
1607 
1608 	if (b_len != 0) {
1609 
1610 		if (!hash_default)
1611 			finv_buffer_remote(b_data, b_len, 0);
1612 
1613 		cpa = __pa(b_data);
1614 		frags[n].cpa_lo = cpa;
1615 		frags[n].cpa_hi = cpa >> 32;
1616 		frags[n].length = b_len;
1617 		frags[n].hash_for_home = hash_default;
1618 		n++;
1619 	}
1620 
1621 	for (i = 0; i < sh->nr_frags; i++) {
1622 
1623 		skb_frag_t *f = &sh->frags[i];
1624 		unsigned long pfn = page_to_pfn(skb_frag_page(f));
1625 
1626 		/* FIXME: Compute "hash_for_home" properly. */
1627 		/* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */
1628 		int hash_for_home = hash_default;
1629 
1630 		/* FIXME: Hmmm. */
1631 		if (!hash_default) {
1632 			void *va = pfn_to_kaddr(pfn) + f->page_offset;
1633 			BUG_ON(PageHighMem(skb_frag_page(f)));
1634 			finv_buffer_remote(va, skb_frag_size(f), 0);
1635 		}
1636 
1637 		cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset;
1638 		frags[n].cpa_lo = cpa;
1639 		frags[n].cpa_hi = cpa >> 32;
1640 		frags[n].length = skb_frag_size(f);
1641 		frags[n].hash_for_home = hash_for_home;
1642 		n++;
1643 	}
1644 
1645 	return n;
1646 }
1647 
1648 
1649 /*
1650  * This function takes "skb", consisting of a header template and a
1651  * payload, and hands it to LEPP, to emit as one or more segments,
1652  * each consisting of a possibly modified header, plus a piece of the
1653  * payload, via a process known as "tcp segmentation offload".
1654  *
1655  * Usually, "data" will contain the header template, of size "sh_len",
1656  * and "sh->frags" will contain "skb->data_len" bytes of payload, and
1657  * there will be "sh->gso_segs" segments.
1658  *
1659  * Sometimes, if "sendfile()" requires copying, we will be called with
1660  * "data" containing the header and payload, with "frags" being empty.
1661  *
1662  * Sometimes, for example when using NFS over TCP, a single segment can
1663  * span 3 fragments, which must be handled carefully in LEPP.
1664  *
1665  * See "emulate_large_send_offload()" for some reference code, which
1666  * does not handle checksumming.
1667  *
1668  * ISSUE: How do we make sure that high memory DMA does not migrate?
1669  */
tile_net_tx_tso(struct sk_buff * skb,struct net_device * dev)1670 static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1671 {
1672 	struct tile_net_priv *priv = netdev_priv(dev);
1673 	int my_cpu = smp_processor_id();
1674 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1675 	struct tile_net_stats_t *stats = &info->stats;
1676 
1677 	struct skb_shared_info *sh = skb_shinfo(skb);
1678 
1679 	unsigned char *data = skb->data;
1680 
1681 	/* The ip header follows the ethernet header. */
1682 	struct iphdr *ih = ip_hdr(skb);
1683 	unsigned int ih_len = ih->ihl * 4;
1684 
1685 	/* Note that "nh == ih", by definition. */
1686 	unsigned char *nh = skb_network_header(skb);
1687 	unsigned int eh_len = nh - data;
1688 
1689 	/* The tcp header follows the ip header. */
1690 	struct tcphdr *th = (struct tcphdr *)(nh + ih_len);
1691 	unsigned int th_len = th->doff * 4;
1692 
1693 	/* The total number of header bytes. */
1694 	/* NOTE: This may be less than skb_headlen(skb). */
1695 	unsigned int sh_len = eh_len + ih_len + th_len;
1696 
1697 	/* The number of payload bytes at "skb->data + sh_len". */
1698 	/* This is non-zero for sendfile() without HIGHDMA. */
1699 	unsigned int b_len = skb_headlen(skb) - sh_len;
1700 
1701 	/* The total number of payload bytes. */
1702 	unsigned int d_len = b_len + skb->data_len;
1703 
1704 	/* The maximum payload size. */
1705 	unsigned int p_len = sh->gso_size;
1706 
1707 	/* The total number of segments. */
1708 	unsigned int num_segs = sh->gso_segs;
1709 
1710 	/* The temporary copy of the command. */
1711 	u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4];
1712 	lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body;
1713 
1714 	/* Analyze the "frags". */
1715 	unsigned int num_frags =
1716 		tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len);
1717 
1718 	/* The size of the command, including frags and header. */
1719 	size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len);
1720 
1721 	/* The command header. */
1722 	lepp_tso_cmd_t cmd_init = {
1723 		.tso = true,
1724 		.header_size = sh_len,
1725 		.ip_offset = eh_len,
1726 		.tcp_offset = eh_len + ih_len,
1727 		.payload_size = p_len,
1728 		.num_frags = num_frags,
1729 	};
1730 
1731 	unsigned long irqflags;
1732 
1733 	lepp_queue_t *eq = priv->eq;
1734 
1735 	struct sk_buff *olds[8];
1736 	unsigned int wanted = 8;
1737 	unsigned int i, nolds = 0;
1738 
1739 	unsigned int cmd_head, cmd_tail, cmd_next;
1740 	unsigned int comp_tail;
1741 
1742 
1743 	/* Paranoia. */
1744 	BUG_ON(skb->protocol != htons(ETH_P_IP));
1745 	BUG_ON(ih->protocol != IPPROTO_TCP);
1746 	BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL);
1747 	BUG_ON(num_frags > LEPP_MAX_FRAGS);
1748 	/*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */
1749 	BUG_ON(num_segs <= 1);
1750 
1751 
1752 	/* Finish preparing the command. */
1753 
1754 	/* Copy the command header. */
1755 	*cmd = cmd_init;
1756 
1757 	/* Copy the "header". */
1758 	memcpy(&cmd->frags[num_frags], data, sh_len);
1759 
1760 
1761 	/* Prefetch and wait, to minimize time spent holding the spinlock. */
1762 	prefetch_L1(&eq->comp_tail);
1763 	prefetch_L1(&eq->cmd_tail);
1764 	mb();
1765 
1766 
1767 	/* Enqueue the command. */
1768 
1769 	spin_lock_irqsave(&priv->eq_lock, irqflags);
1770 
1771 	/* Handle completions if needed to make room. */
1772 	/* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
1773 	if (lepp_num_free_comp_slots(eq) == 0) {
1774 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
1775 		if (nolds == 0) {
1776 busy:
1777 			spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1778 			return NETDEV_TX_BUSY;
1779 		}
1780 	}
1781 
1782 	cmd_head = eq->cmd_head;
1783 	cmd_tail = eq->cmd_tail;
1784 
1785 	/* Prepare to advance, detecting full queue. */
1786 	/* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
1787 	cmd_next = cmd_tail + cmd_size;
1788 	if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1789 		goto busy;
1790 	if (cmd_next > LEPP_CMD_LIMIT) {
1791 		cmd_next = 0;
1792 		if (cmd_next == cmd_head)
1793 			goto busy;
1794 	}
1795 
1796 	/* Copy the command. */
1797 	memcpy(&eq->cmds[cmd_tail], cmd, cmd_size);
1798 
1799 	/* Advance. */
1800 	cmd_tail = cmd_next;
1801 
1802 	/* Record "skb" for eventual freeing. */
1803 	comp_tail = eq->comp_tail;
1804 	eq->comps[comp_tail] = skb;
1805 	LEPP_QINC(comp_tail);
1806 	eq->comp_tail = comp_tail;
1807 
1808 	/* Flush before allowing LEPP to handle the command. */
1809 	/* ISSUE: Is this the optimal location for the flush? */
1810 	__insn_mf();
1811 
1812 	eq->cmd_tail = cmd_tail;
1813 
1814 	/* NOTE: Using "4" here is more efficient than "0" or "2", */
1815 	/* and, strangely, more efficient than pre-checking the number */
1816 	/* of available completions, and comparing it to 4. */
1817 	if (nolds == 0)
1818 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
1819 
1820 	spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1821 
1822 	/* Handle completions. */
1823 	for (i = 0; i < nolds; i++)
1824 		dev_consume_skb_any(olds[i]);
1825 
1826 	/* Update stats. */
1827 	u64_stats_update_begin(&stats->syncp);
1828 	stats->tx_packets += num_segs;
1829 	stats->tx_bytes += (num_segs * sh_len) + d_len;
1830 	u64_stats_update_end(&stats->syncp);
1831 
1832 	/* Make sure the egress timer is scheduled. */
1833 	tile_net_schedule_egress_timer(info);
1834 
1835 	return NETDEV_TX_OK;
1836 }
1837 
1838 
1839 /*
1840  * Transmit a packet (called by the kernel via "hard_start_xmit" hook).
1841  */
tile_net_tx(struct sk_buff * skb,struct net_device * dev)1842 static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1843 {
1844 	struct tile_net_priv *priv = netdev_priv(dev);
1845 	int my_cpu = smp_processor_id();
1846 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1847 	struct tile_net_stats_t *stats = &info->stats;
1848 
1849 	unsigned long irqflags;
1850 
1851 	struct skb_shared_info *sh = skb_shinfo(skb);
1852 
1853 	unsigned int len = skb->len;
1854 	unsigned char *data = skb->data;
1855 
1856 	unsigned int csum_start = skb_checksum_start_offset(skb);
1857 
1858 	lepp_frag_t frags[1 + MAX_SKB_FRAGS];
1859 
1860 	unsigned int num_frags;
1861 
1862 	lepp_queue_t *eq = priv->eq;
1863 
1864 	struct sk_buff *olds[8];
1865 	unsigned int wanted = 8;
1866 	unsigned int i, nolds = 0;
1867 
1868 	unsigned int cmd_size = sizeof(lepp_cmd_t);
1869 
1870 	unsigned int cmd_head, cmd_tail, cmd_next;
1871 	unsigned int comp_tail;
1872 
1873 	lepp_cmd_t cmds[1 + MAX_SKB_FRAGS];
1874 
1875 
1876 	/*
1877 	 * This is paranoia, since we think that if the link doesn't come
1878 	 * up, telling Linux we have no carrier will keep it from trying
1879 	 * to transmit.  If it does, though, we can't execute this routine,
1880 	 * since data structures we depend on aren't set up yet.
1881 	 */
1882 	if (!info->registered)
1883 		return NETDEV_TX_BUSY;
1884 
1885 
1886 	/* Save the timestamp. */
1887 	dev->trans_start = jiffies;
1888 
1889 
1890 #ifdef TILE_NET_PARANOIA
1891 #if CHIP_HAS_CBOX_HOME_MAP()
1892 	if (hash_default) {
1893 		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data);
1894 		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
1895 			panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx",
1896 			      data, hv_pte_get_mode(pte), hv_pte_val(pte));
1897 	}
1898 #endif
1899 #endif
1900 
1901 
1902 #ifdef TILE_NET_DUMP_PACKETS
1903 	/* ISSUE: Does not dump the "frags". */
1904 	dump_packet(data, skb_headlen(skb), "tx");
1905 #endif /* TILE_NET_DUMP_PACKETS */
1906 
1907 
1908 	if (sh->gso_size != 0)
1909 		return tile_net_tx_tso(skb, dev);
1910 
1911 
1912 	/* Prepare the commands. */
1913 
1914 	num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
1915 
1916 	for (i = 0; i < num_frags; i++) {
1917 
1918 		bool final = (i == num_frags - 1);
1919 
1920 		lepp_cmd_t cmd = {
1921 			.cpa_lo = frags[i].cpa_lo,
1922 			.cpa_hi = frags[i].cpa_hi,
1923 			.length = frags[i].length,
1924 			.hash_for_home = frags[i].hash_for_home,
1925 			.send_completion = final,
1926 			.end_of_packet = final
1927 		};
1928 
1929 		if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) {
1930 			cmd.compute_checksum = 1;
1931 			cmd.checksum_data.bits.start_byte = csum_start;
1932 			cmd.checksum_data.bits.count = len - csum_start;
1933 			cmd.checksum_data.bits.destination_byte =
1934 				csum_start + skb->csum_offset;
1935 		}
1936 
1937 		cmds[i] = cmd;
1938 	}
1939 
1940 
1941 	/* Prefetch and wait, to minimize time spent holding the spinlock. */
1942 	prefetch_L1(&eq->comp_tail);
1943 	prefetch_L1(&eq->cmd_tail);
1944 	mb();
1945 
1946 
1947 	/* Enqueue the commands. */
1948 
1949 	spin_lock_irqsave(&priv->eq_lock, irqflags);
1950 
1951 	/* Handle completions if needed to make room. */
1952 	/* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
1953 	if (lepp_num_free_comp_slots(eq) == 0) {
1954 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
1955 		if (nolds == 0) {
1956 busy:
1957 			spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1958 			return NETDEV_TX_BUSY;
1959 		}
1960 	}
1961 
1962 	cmd_head = eq->cmd_head;
1963 	cmd_tail = eq->cmd_tail;
1964 
1965 	/* Copy the commands, or fail. */
1966 	/* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
1967 	for (i = 0; i < num_frags; i++) {
1968 
1969 		/* Prepare to advance, detecting full queue. */
1970 		cmd_next = cmd_tail + cmd_size;
1971 		if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1972 			goto busy;
1973 		if (cmd_next > LEPP_CMD_LIMIT) {
1974 			cmd_next = 0;
1975 			if (cmd_next == cmd_head)
1976 				goto busy;
1977 		}
1978 
1979 		/* Copy the command. */
1980 		*(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i];
1981 
1982 		/* Advance. */
1983 		cmd_tail = cmd_next;
1984 	}
1985 
1986 	/* Record "skb" for eventual freeing. */
1987 	comp_tail = eq->comp_tail;
1988 	eq->comps[comp_tail] = skb;
1989 	LEPP_QINC(comp_tail);
1990 	eq->comp_tail = comp_tail;
1991 
1992 	/* Flush before allowing LEPP to handle the command. */
1993 	/* ISSUE: Is this the optimal location for the flush? */
1994 	__insn_mf();
1995 
1996 	eq->cmd_tail = cmd_tail;
1997 
1998 	/* NOTE: Using "4" here is more efficient than "0" or "2", */
1999 	/* and, strangely, more efficient than pre-checking the number */
2000 	/* of available completions, and comparing it to 4. */
2001 	if (nolds == 0)
2002 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
2003 
2004 	spin_unlock_irqrestore(&priv->eq_lock, irqflags);
2005 
2006 	/* Handle completions. */
2007 	for (i = 0; i < nolds; i++)
2008 		dev_consume_skb_any(olds[i]);
2009 
2010 	/* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */
2011 	u64_stats_update_begin(&stats->syncp);
2012 	stats->tx_packets++;
2013 	stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN);
2014 	u64_stats_update_end(&stats->syncp);
2015 
2016 	/* Make sure the egress timer is scheduled. */
2017 	tile_net_schedule_egress_timer(info);
2018 
2019 	return NETDEV_TX_OK;
2020 }
2021 
2022 
2023 /*
2024  * Deal with a transmit timeout.
2025  */
tile_net_tx_timeout(struct net_device * dev)2026 static void tile_net_tx_timeout(struct net_device *dev)
2027 {
2028 	PDEBUG("tile_net_tx_timeout()\n");
2029 	PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
2030 	       jiffies - dev->trans_start);
2031 
2032 	/* XXX: ISSUE: This doesn't seem useful for us. */
2033 	netif_wake_queue(dev);
2034 }
2035 
2036 
2037 /*
2038  * Ioctl commands.
2039  */
tile_net_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2040 static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2041 {
2042 	return -EOPNOTSUPP;
2043 }
2044 
2045 
2046 /*
2047  * Get System Network Statistics.
2048  *
2049  * Returns the address of the device statistics structure.
2050  */
tile_net_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)2051 static struct rtnl_link_stats64 *tile_net_get_stats64(struct net_device *dev,
2052 		struct rtnl_link_stats64 *stats)
2053 {
2054 	struct tile_net_priv *priv = netdev_priv(dev);
2055 	u64 rx_packets = 0, tx_packets = 0;
2056 	u64 rx_bytes = 0, tx_bytes = 0;
2057 	u64 rx_errors = 0, rx_dropped = 0;
2058 	int i;
2059 
2060 	for_each_online_cpu(i) {
2061 		struct tile_net_stats_t *cpu_stats;
2062 		u64 trx_packets, ttx_packets, trx_bytes, ttx_bytes;
2063 		u64 trx_errors, trx_dropped;
2064 		unsigned int start;
2065 
2066 		if (priv->cpu[i] == NULL)
2067 			continue;
2068 		cpu_stats = &priv->cpu[i]->stats;
2069 
2070 		do {
2071 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
2072 			trx_packets = cpu_stats->rx_packets;
2073 			ttx_packets = cpu_stats->tx_packets;
2074 			trx_bytes   = cpu_stats->rx_bytes;
2075 			ttx_bytes   = cpu_stats->tx_bytes;
2076 			trx_errors  = cpu_stats->rx_errors;
2077 			trx_dropped = cpu_stats->rx_dropped;
2078 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
2079 
2080 		rx_packets += trx_packets;
2081 		tx_packets += ttx_packets;
2082 		rx_bytes   += trx_bytes;
2083 		tx_bytes   += ttx_bytes;
2084 		rx_errors  += trx_errors;
2085 		rx_dropped += trx_dropped;
2086 	}
2087 
2088 	stats->rx_packets = rx_packets;
2089 	stats->tx_packets = tx_packets;
2090 	stats->rx_bytes   = rx_bytes;
2091 	stats->tx_bytes   = tx_bytes;
2092 	stats->rx_errors  = rx_errors;
2093 	stats->rx_dropped = rx_dropped;
2094 
2095 	return stats;
2096 }
2097 
2098 
2099 /*
2100  * Change the "mtu".
2101  *
2102  * The "change_mtu" method is usually not needed.
2103  * If you need it, it must be like this.
2104  */
tile_net_change_mtu(struct net_device * dev,int new_mtu)2105 static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2106 {
2107 	PDEBUG("tile_net_change_mtu()\n");
2108 
2109 	/* Check ranges. */
2110 	if ((new_mtu < 68) || (new_mtu > 1500))
2111 		return -EINVAL;
2112 
2113 	/* Accept the value. */
2114 	dev->mtu = new_mtu;
2115 
2116 	return 0;
2117 }
2118 
2119 
2120 /*
2121  * Change the Ethernet Address of the NIC.
2122  *
2123  * The hypervisor driver does not support changing MAC address.  However,
2124  * the IPP does not do anything with the MAC address, so the address which
2125  * gets used on outgoing packets, and which is accepted on incoming packets,
2126  * is completely up to the NetIO program or kernel driver which is actually
2127  * handling them.
2128  *
2129  * Returns 0 on success, negative on failure.
2130  */
tile_net_set_mac_address(struct net_device * dev,void * p)2131 static int tile_net_set_mac_address(struct net_device *dev, void *p)
2132 {
2133 	struct sockaddr *addr = p;
2134 
2135 	if (!is_valid_ether_addr(addr->sa_data))
2136 		return -EADDRNOTAVAIL;
2137 
2138 	/* ISSUE: Note that "dev_addr" is now a pointer. */
2139 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2140 
2141 	return 0;
2142 }
2143 
2144 
2145 /*
2146  * Obtain the MAC address from the hypervisor.
2147  * This must be done before opening the device.
2148  */
tile_net_get_mac(struct net_device * dev)2149 static int tile_net_get_mac(struct net_device *dev)
2150 {
2151 	struct tile_net_priv *priv = netdev_priv(dev);
2152 
2153 	char hv_dev_name[32];
2154 	int len;
2155 
2156 	__netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF };
2157 
2158 	int ret;
2159 
2160 	/* For example, "xgbe0". */
2161 	strcpy(hv_dev_name, dev->name);
2162 	len = strlen(hv_dev_name);
2163 
2164 	/* For example, "xgbe/0". */
2165 	hv_dev_name[len] = hv_dev_name[len - 1];
2166 	hv_dev_name[len - 1] = '/';
2167 	len++;
2168 
2169 	/* For example, "xgbe/0/native_hash". */
2170 	strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native");
2171 
2172 	/* Get the hypervisor handle for this device. */
2173 	priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0);
2174 	PDEBUG("hv_dev_open(%s) returned %d %p\n",
2175 	       hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl);
2176 	if (priv->hv_devhdl < 0) {
2177 		if (priv->hv_devhdl == HV_ENODEV)
2178 			printk(KERN_DEBUG "Ignoring unconfigured device %s\n",
2179 				 hv_dev_name);
2180 		else
2181 			printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n",
2182 				 hv_dev_name, priv->hv_devhdl);
2183 		return -1;
2184 	}
2185 
2186 	/*
2187 	 * Read the hardware address from the hypervisor.
2188 	 * ISSUE: Note that "dev_addr" is now a pointer.
2189 	 */
2190 	offset.bits.class = NETIO_PARAM;
2191 	offset.bits.addr = NETIO_PARAM_MAC;
2192 	ret = hv_dev_pread(priv->hv_devhdl, 0,
2193 			   (HV_VirtAddr)dev->dev_addr, dev->addr_len,
2194 			   offset.word);
2195 	PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret);
2196 	if (ret <= 0) {
2197 		printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n",
2198 		       dev->name);
2199 		/*
2200 		 * Since the device is configured by the hypervisor but we
2201 		 * can't get its MAC address, we are most likely running
2202 		 * the simulator, so let's generate a random MAC address.
2203 		 */
2204 		eth_hw_addr_random(dev);
2205 	}
2206 
2207 	return 0;
2208 }
2209 
2210 
2211 #ifdef CONFIG_NET_POLL_CONTROLLER
2212 /*
2213  * Polling 'interrupt' - used by things like netconsole to send skbs
2214  * without having to re-enable interrupts. It's not called while
2215  * the interrupt routine is executing.
2216  */
tile_net_netpoll(struct net_device * dev)2217 static void tile_net_netpoll(struct net_device *dev)
2218 {
2219 	struct tile_net_priv *priv = netdev_priv(dev);
2220 	disable_percpu_irq(priv->intr_id);
2221 	tile_net_handle_ingress_interrupt(priv->intr_id, dev);
2222 	enable_percpu_irq(priv->intr_id, 0);
2223 }
2224 #endif
2225 
2226 
2227 static const struct net_device_ops tile_net_ops = {
2228 	.ndo_open = tile_net_open,
2229 	.ndo_stop = tile_net_stop,
2230 	.ndo_start_xmit = tile_net_tx,
2231 	.ndo_do_ioctl = tile_net_ioctl,
2232 	.ndo_get_stats64 = tile_net_get_stats64,
2233 	.ndo_change_mtu = tile_net_change_mtu,
2234 	.ndo_tx_timeout = tile_net_tx_timeout,
2235 	.ndo_set_mac_address = tile_net_set_mac_address,
2236 #ifdef CONFIG_NET_POLL_CONTROLLER
2237 	.ndo_poll_controller = tile_net_netpoll,
2238 #endif
2239 };
2240 
2241 
2242 /*
2243  * The setup function.
2244  *
2245  * This uses ether_setup() to assign various fields in dev, including
2246  * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2247  */
tile_net_setup(struct net_device * dev)2248 static void tile_net_setup(struct net_device *dev)
2249 {
2250 	netdev_features_t features = 0;
2251 
2252 	ether_setup(dev);
2253 	dev->netdev_ops = &tile_net_ops;
2254 	dev->watchdog_timeo = TILE_NET_TIMEOUT;
2255 	dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN;
2256 	dev->mtu = TILE_NET_MTU;
2257 
2258 	features |= NETIF_F_HW_CSUM;
2259 	features |= NETIF_F_SG;
2260 
2261 	/* We support TSO iff the HV supports sufficient frags. */
2262 	if (LEPP_MAX_FRAGS >= 1 + MAX_SKB_FRAGS)
2263 		features |= NETIF_F_TSO;
2264 
2265 	/* We can't support HIGHDMA without hash_default, since we need
2266 	 * to be able to finv() with a VA if we don't have hash_default.
2267 	 */
2268 	if (hash_default)
2269 		features |= NETIF_F_HIGHDMA;
2270 
2271 	dev->hw_features   |= features;
2272 	dev->vlan_features |= features;
2273 	dev->features      |= features;
2274 }
2275 
2276 
2277 /*
2278  * Allocate the device structure, register the device, and obtain the
2279  * MAC address from the hypervisor.
2280  */
tile_net_dev_init(const char * name)2281 static struct net_device *tile_net_dev_init(const char *name)
2282 {
2283 	int ret;
2284 	struct net_device *dev;
2285 	struct tile_net_priv *priv;
2286 
2287 	/*
2288 	 * Allocate the device structure.  This allocates "priv", calls
2289 	 * tile_net_setup(), and saves "name".  Normally, "name" is a
2290 	 * template, instantiated by register_netdev(), but not for us.
2291 	 */
2292 	dev = alloc_netdev(sizeof(*priv), name, NET_NAME_UNKNOWN,
2293 			   tile_net_setup);
2294 	if (!dev) {
2295 		pr_err("alloc_netdev(%s) failed\n", name);
2296 		return NULL;
2297 	}
2298 
2299 	priv = netdev_priv(dev);
2300 
2301 	/* Initialize "priv". */
2302 
2303 	memset(priv, 0, sizeof(*priv));
2304 
2305 	/* Save "dev" for "tile_net_open_retry()". */
2306 	priv->dev = dev;
2307 
2308 	INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry);
2309 
2310 	spin_lock_init(&priv->eq_lock);
2311 
2312 	/* Allocate "eq". */
2313 	priv->eq_pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, EQ_ORDER);
2314 	if (!priv->eq_pages) {
2315 		free_netdev(dev);
2316 		return NULL;
2317 	}
2318 	priv->eq = page_address(priv->eq_pages);
2319 
2320 	/* Register the network device. */
2321 	ret = register_netdev(dev);
2322 	if (ret) {
2323 		pr_err("register_netdev %s failed %d\n", dev->name, ret);
2324 		__free_pages(priv->eq_pages, EQ_ORDER);
2325 		free_netdev(dev);
2326 		return NULL;
2327 	}
2328 
2329 	/* Get the MAC address. */
2330 	ret = tile_net_get_mac(dev);
2331 	if (ret < 0) {
2332 		unregister_netdev(dev);
2333 		__free_pages(priv->eq_pages, EQ_ORDER);
2334 		free_netdev(dev);
2335 		return NULL;
2336 	}
2337 
2338 	return dev;
2339 }
2340 
2341 
2342 /*
2343  * Module cleanup.
2344  *
2345  * FIXME: If compiled as a module, this module cannot be "unloaded",
2346  * because the "ingress interrupt handler" is registered permanently.
2347  */
tile_net_cleanup(void)2348 static void tile_net_cleanup(void)
2349 {
2350 	int i;
2351 
2352 	for (i = 0; i < TILE_NET_DEVS; i++) {
2353 		if (tile_net_devs[i]) {
2354 			struct net_device *dev = tile_net_devs[i];
2355 			struct tile_net_priv *priv = netdev_priv(dev);
2356 			unregister_netdev(dev);
2357 			finv_buffer_remote(priv->eq, EQ_SIZE, 0);
2358 			__free_pages(priv->eq_pages, EQ_ORDER);
2359 			free_netdev(dev);
2360 		}
2361 	}
2362 }
2363 
2364 
2365 /*
2366  * Module initialization.
2367  */
tile_net_init_module(void)2368 static int tile_net_init_module(void)
2369 {
2370 	pr_info("Tilera Network Driver\n");
2371 
2372 	tile_net_devs[0] = tile_net_dev_init("xgbe0");
2373 	tile_net_devs[1] = tile_net_dev_init("xgbe1");
2374 	tile_net_devs[2] = tile_net_dev_init("gbe0");
2375 	tile_net_devs[3] = tile_net_dev_init("gbe1");
2376 
2377 	return 0;
2378 }
2379 
2380 
2381 module_init(tile_net_init_module);
2382 module_exit(tile_net_cleanup);
2383 
2384 
2385 #ifndef MODULE
2386 
2387 /*
2388  * The "network_cpus" boot argument specifies the cpus that are dedicated
2389  * to handle ingress packets.
2390  *
2391  * The parameter should be in the form "network_cpus=m-n[,x-y]", where
2392  * m, n, x, y are integer numbers that represent the cpus that can be
2393  * neither a dedicated cpu nor a dataplane cpu.
2394  */
network_cpus_setup(char * str)2395 static int __init network_cpus_setup(char *str)
2396 {
2397 	int rc = cpulist_parse_crop(str, &network_cpus_map);
2398 	if (rc != 0) {
2399 		pr_warn("network_cpus=%s: malformed cpu list\n", str);
2400 	} else {
2401 
2402 		/* Remove dedicated cpus. */
2403 		cpumask_and(&network_cpus_map, &network_cpus_map,
2404 			    cpu_possible_mask);
2405 
2406 
2407 		if (cpumask_empty(&network_cpus_map)) {
2408 			pr_warn("Ignoring network_cpus='%s'\n", str);
2409 		} else {
2410 			pr_info("Linux network CPUs: %*pbl\n",
2411 				cpumask_pr_args(&network_cpus_map));
2412 			network_cpus_used = true;
2413 		}
2414 	}
2415 
2416 	return 0;
2417 }
2418 __setup("network_cpus=", network_cpus_setup);
2419 
2420 #endif
2421