• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22 
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27 
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61 
ath10k_ce_dest_ring_write_index_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63 						       u32 ce_ctrl_addr,
64 						       unsigned int n)
65 {
66 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68 
ath10k_ce_dest_ring_write_index_get(struct ath10k * ar,u32 ce_ctrl_addr)69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70 						      u32 ce_ctrl_addr)
71 {
72 	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74 
ath10k_ce_src_ring_write_index_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76 						      u32 ce_ctrl_addr,
77 						      unsigned int n)
78 {
79 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81 
ath10k_ce_src_ring_write_index_get(struct ath10k * ar,u32 ce_ctrl_addr)82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83 						     u32 ce_ctrl_addr)
84 {
85 	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87 
ath10k_ce_src_ring_read_index_get(struct ath10k * ar,u32 ce_ctrl_addr)88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89 						    u32 ce_ctrl_addr)
90 {
91 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93 
ath10k_ce_src_ring_base_addr_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int addr)94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95 						    u32 ce_ctrl_addr,
96 						    unsigned int addr)
97 {
98 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100 
ath10k_ce_src_ring_size_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102 					       u32 ce_ctrl_addr,
103 					       unsigned int n)
104 {
105 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107 
ath10k_ce_src_ring_dmax_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109 					       u32 ce_ctrl_addr,
110 					       unsigned int n)
111 {
112 	u32 ctrl1_addr = ath10k_pci_read32((ar),
113 					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114 
115 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116 			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117 			   CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119 
ath10k_ce_src_ring_byte_swap_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121 						    u32 ce_ctrl_addr,
122 						    unsigned int n)
123 {
124 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125 
126 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127 			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128 			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130 
ath10k_ce_dest_ring_byte_swap_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132 						     u32 ce_ctrl_addr,
133 						     unsigned int n)
134 {
135 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136 
137 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138 			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139 			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141 
ath10k_ce_dest_ring_read_index_get(struct ath10k * ar,u32 ce_ctrl_addr)142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143 						     u32 ce_ctrl_addr)
144 {
145 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147 
ath10k_ce_dest_ring_base_addr_set(struct ath10k * ar,u32 ce_ctrl_addr,u32 addr)148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149 						     u32 ce_ctrl_addr,
150 						     u32 addr)
151 {
152 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154 
ath10k_ce_dest_ring_size_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156 						u32 ce_ctrl_addr,
157 						unsigned int n)
158 {
159 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161 
ath10k_ce_src_ring_highmark_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163 						   u32 ce_ctrl_addr,
164 						   unsigned int n)
165 {
166 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167 
168 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169 			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
170 			   SRC_WATERMARK_HIGH_SET(n));
171 }
172 
ath10k_ce_src_ring_lowmark_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174 						  u32 ce_ctrl_addr,
175 						  unsigned int n)
176 {
177 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178 
179 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180 			   (addr & ~SRC_WATERMARK_LOW_MASK) |
181 			   SRC_WATERMARK_LOW_SET(n));
182 }
183 
ath10k_ce_dest_ring_highmark_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185 						    u32 ce_ctrl_addr,
186 						    unsigned int n)
187 {
188 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189 
190 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191 			   (addr & ~DST_WATERMARK_HIGH_MASK) |
192 			   DST_WATERMARK_HIGH_SET(n));
193 }
194 
ath10k_ce_dest_ring_lowmark_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196 						   u32 ce_ctrl_addr,
197 						   unsigned int n)
198 {
199 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200 
201 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202 			   (addr & ~DST_WATERMARK_LOW_MASK) |
203 			   DST_WATERMARK_LOW_SET(n));
204 }
205 
ath10k_ce_copy_complete_inter_enable(struct ath10k * ar,u32 ce_ctrl_addr)206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207 							u32 ce_ctrl_addr)
208 {
209 	u32 host_ie_addr = ath10k_pci_read32(ar,
210 					     ce_ctrl_addr + HOST_IE_ADDRESS);
211 
212 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213 			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215 
ath10k_ce_copy_complete_intr_disable(struct ath10k * ar,u32 ce_ctrl_addr)216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217 							u32 ce_ctrl_addr)
218 {
219 	u32 host_ie_addr = ath10k_pci_read32(ar,
220 					     ce_ctrl_addr + HOST_IE_ADDRESS);
221 
222 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223 			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225 
ath10k_ce_watermark_intr_disable(struct ath10k * ar,u32 ce_ctrl_addr)226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227 						    u32 ce_ctrl_addr)
228 {
229 	u32 host_ie_addr = ath10k_pci_read32(ar,
230 					     ce_ctrl_addr + HOST_IE_ADDRESS);
231 
232 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233 			   host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235 
ath10k_ce_error_intr_enable(struct ath10k * ar,u32 ce_ctrl_addr)236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237 					       u32 ce_ctrl_addr)
238 {
239 	u32 misc_ie_addr = ath10k_pci_read32(ar,
240 					     ce_ctrl_addr + MISC_IE_ADDRESS);
241 
242 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243 			   misc_ie_addr | CE_ERROR_MASK);
244 }
245 
ath10k_ce_error_intr_disable(struct ath10k * ar,u32 ce_ctrl_addr)246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247 						u32 ce_ctrl_addr)
248 {
249 	u32 misc_ie_addr = ath10k_pci_read32(ar,
250 					     ce_ctrl_addr + MISC_IE_ADDRESS);
251 
252 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253 			   misc_ie_addr & ~CE_ERROR_MASK);
254 }
255 
ath10k_ce_engine_int_status_clear(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int mask)256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257 						     u32 ce_ctrl_addr,
258 						     unsigned int mask)
259 {
260 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262 
263 /*
264  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
265  * ath10k_ce_sendlist_send.
266  * The caller takes responsibility for any needed locking.
267  */
ath10k_ce_send_nolock(struct ath10k_ce_pipe * ce_state,void * per_transfer_context,u32 buffer,unsigned int nbytes,unsigned int transfer_id,unsigned int flags)268 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
269 			  void *per_transfer_context,
270 			  u32 buffer,
271 			  unsigned int nbytes,
272 			  unsigned int transfer_id,
273 			  unsigned int flags)
274 {
275 	struct ath10k *ar = ce_state->ar;
276 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
277 	struct ce_desc *desc, sdesc;
278 	unsigned int nentries_mask = src_ring->nentries_mask;
279 	unsigned int sw_index = src_ring->sw_index;
280 	unsigned int write_index = src_ring->write_index;
281 	u32 ctrl_addr = ce_state->ctrl_addr;
282 	u32 desc_flags = 0;
283 	int ret = 0;
284 
285 	if (nbytes > ce_state->src_sz_max)
286 		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
287 			    __func__, nbytes, ce_state->src_sz_max);
288 
289 	if (unlikely(CE_RING_DELTA(nentries_mask,
290 				   write_index, sw_index - 1) <= 0)) {
291 		ret = -ENOSR;
292 		goto exit;
293 	}
294 
295 	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
296 				   write_index);
297 
298 	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
299 
300 	if (flags & CE_SEND_FLAG_GATHER)
301 		desc_flags |= CE_DESC_FLAGS_GATHER;
302 	if (flags & CE_SEND_FLAG_BYTE_SWAP)
303 		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
304 
305 	sdesc.addr   = __cpu_to_le32(buffer);
306 	sdesc.nbytes = __cpu_to_le16(nbytes);
307 	sdesc.flags  = __cpu_to_le16(desc_flags);
308 
309 	*desc = sdesc;
310 
311 	src_ring->per_transfer_context[write_index] = per_transfer_context;
312 
313 	/* Update Source Ring Write Index */
314 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
315 
316 	/* WORKAROUND */
317 	if (!(flags & CE_SEND_FLAG_GATHER))
318 		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
319 
320 	src_ring->write_index = write_index;
321 exit:
322 	return ret;
323 }
324 
__ath10k_ce_send_revert(struct ath10k_ce_pipe * pipe)325 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
326 {
327 	struct ath10k *ar = pipe->ar;
328 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
329 	struct ath10k_ce_ring *src_ring = pipe->src_ring;
330 	u32 ctrl_addr = pipe->ctrl_addr;
331 
332 	lockdep_assert_held(&ar_pci->ce_lock);
333 
334 	/*
335 	 * This function must be called only if there is an incomplete
336 	 * scatter-gather transfer (before index register is updated)
337 	 * that needs to be cleaned up.
338 	 */
339 	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
340 		return;
341 
342 	if (WARN_ON_ONCE(src_ring->write_index ==
343 			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
344 		return;
345 
346 	src_ring->write_index--;
347 	src_ring->write_index &= src_ring->nentries_mask;
348 
349 	src_ring->per_transfer_context[src_ring->write_index] = NULL;
350 }
351 
ath10k_ce_send(struct ath10k_ce_pipe * ce_state,void * per_transfer_context,u32 buffer,unsigned int nbytes,unsigned int transfer_id,unsigned int flags)352 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
353 		   void *per_transfer_context,
354 		   u32 buffer,
355 		   unsigned int nbytes,
356 		   unsigned int transfer_id,
357 		   unsigned int flags)
358 {
359 	struct ath10k *ar = ce_state->ar;
360 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
361 	int ret;
362 
363 	spin_lock_bh(&ar_pci->ce_lock);
364 	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
365 				    buffer, nbytes, transfer_id, flags);
366 	spin_unlock_bh(&ar_pci->ce_lock);
367 
368 	return ret;
369 }
370 
ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe * pipe)371 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
372 {
373 	struct ath10k *ar = pipe->ar;
374 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
375 	int delta;
376 
377 	spin_lock_bh(&ar_pci->ce_lock);
378 	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
379 			      pipe->src_ring->write_index,
380 			      pipe->src_ring->sw_index - 1);
381 	spin_unlock_bh(&ar_pci->ce_lock);
382 
383 	return delta;
384 }
385 
__ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe * pipe)386 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
387 {
388 	struct ath10k *ar = pipe->ar;
389 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
390 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
391 	unsigned int nentries_mask = dest_ring->nentries_mask;
392 	unsigned int write_index = dest_ring->write_index;
393 	unsigned int sw_index = dest_ring->sw_index;
394 
395 	lockdep_assert_held(&ar_pci->ce_lock);
396 
397 	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
398 }
399 
__ath10k_ce_rx_post_buf(struct ath10k_ce_pipe * pipe,void * ctx,u32 paddr)400 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
401 {
402 	struct ath10k *ar = pipe->ar;
403 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
404 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
405 	unsigned int nentries_mask = dest_ring->nentries_mask;
406 	unsigned int write_index = dest_ring->write_index;
407 	unsigned int sw_index = dest_ring->sw_index;
408 	struct ce_desc *base = dest_ring->base_addr_owner_space;
409 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
410 	u32 ctrl_addr = pipe->ctrl_addr;
411 
412 	lockdep_assert_held(&ar_pci->ce_lock);
413 
414 	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
415 		return -ENOSPC;
416 
417 	desc->addr = __cpu_to_le32(paddr);
418 	desc->nbytes = 0;
419 
420 	dest_ring->per_transfer_context[write_index] = ctx;
421 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
422 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
423 	dest_ring->write_index = write_index;
424 
425 	return 0;
426 }
427 
ath10k_ce_rx_post_buf(struct ath10k_ce_pipe * pipe,void * ctx,u32 paddr)428 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
429 {
430 	struct ath10k *ar = pipe->ar;
431 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
432 	int ret;
433 
434 	spin_lock_bh(&ar_pci->ce_lock);
435 	ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
436 	spin_unlock_bh(&ar_pci->ce_lock);
437 
438 	return ret;
439 }
440 
441 /*
442  * Guts of ath10k_ce_completed_recv_next.
443  * The caller takes responsibility for any necessary locking.
444  */
ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp,unsigned int * nbytesp,unsigned int * transfer_idp,unsigned int * flagsp)445 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
446 					 void **per_transfer_contextp,
447 					 u32 *bufferp,
448 					 unsigned int *nbytesp,
449 					 unsigned int *transfer_idp,
450 					 unsigned int *flagsp)
451 {
452 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
453 	unsigned int nentries_mask = dest_ring->nentries_mask;
454 	struct ath10k *ar = ce_state->ar;
455 	unsigned int sw_index = dest_ring->sw_index;
456 
457 	struct ce_desc *base = dest_ring->base_addr_owner_space;
458 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
459 	struct ce_desc sdesc;
460 	u16 nbytes;
461 
462 	/* Copy in one go for performance reasons */
463 	sdesc = *desc;
464 
465 	nbytes = __le16_to_cpu(sdesc.nbytes);
466 	if (nbytes == 0) {
467 		/*
468 		 * This closes a relatively unusual race where the Host
469 		 * sees the updated DRRI before the update to the
470 		 * corresponding descriptor has completed. We treat this
471 		 * as a descriptor that is not yet done.
472 		 */
473 		return -EIO;
474 	}
475 
476 	desc->nbytes = 0;
477 
478 	/* Return data from completed destination descriptor */
479 	*bufferp = __le32_to_cpu(sdesc.addr);
480 	*nbytesp = nbytes;
481 	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
482 
483 	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
484 		*flagsp = CE_RECV_FLAG_SWAPPED;
485 	else
486 		*flagsp = 0;
487 
488 	if (per_transfer_contextp)
489 		*per_transfer_contextp =
490 			dest_ring->per_transfer_context[sw_index];
491 
492 	/* sanity */
493 	dest_ring->per_transfer_context[sw_index] = NULL;
494 
495 	/* Update sw_index */
496 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
497 	dest_ring->sw_index = sw_index;
498 
499 	return 0;
500 }
501 
ath10k_ce_completed_recv_next(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp,unsigned int * nbytesp,unsigned int * transfer_idp,unsigned int * flagsp)502 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
503 				  void **per_transfer_contextp,
504 				  u32 *bufferp,
505 				  unsigned int *nbytesp,
506 				  unsigned int *transfer_idp,
507 				  unsigned int *flagsp)
508 {
509 	struct ath10k *ar = ce_state->ar;
510 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
511 	int ret;
512 
513 	spin_lock_bh(&ar_pci->ce_lock);
514 	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
515 						   per_transfer_contextp,
516 						   bufferp, nbytesp,
517 						   transfer_idp, flagsp);
518 	spin_unlock_bh(&ar_pci->ce_lock);
519 
520 	return ret;
521 }
522 
ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp)523 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
524 			       void **per_transfer_contextp,
525 			       u32 *bufferp)
526 {
527 	struct ath10k_ce_ring *dest_ring;
528 	unsigned int nentries_mask;
529 	unsigned int sw_index;
530 	unsigned int write_index;
531 	int ret;
532 	struct ath10k *ar;
533 	struct ath10k_pci *ar_pci;
534 
535 	dest_ring = ce_state->dest_ring;
536 
537 	if (!dest_ring)
538 		return -EIO;
539 
540 	ar = ce_state->ar;
541 	ar_pci = ath10k_pci_priv(ar);
542 
543 	spin_lock_bh(&ar_pci->ce_lock);
544 
545 	nentries_mask = dest_ring->nentries_mask;
546 	sw_index = dest_ring->sw_index;
547 	write_index = dest_ring->write_index;
548 	if (write_index != sw_index) {
549 		struct ce_desc *base = dest_ring->base_addr_owner_space;
550 		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
551 
552 		/* Return data from completed destination descriptor */
553 		*bufferp = __le32_to_cpu(desc->addr);
554 
555 		if (per_transfer_contextp)
556 			*per_transfer_contextp =
557 				dest_ring->per_transfer_context[sw_index];
558 
559 		/* sanity */
560 		dest_ring->per_transfer_context[sw_index] = NULL;
561 		desc->nbytes = 0;
562 
563 		/* Update sw_index */
564 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
565 		dest_ring->sw_index = sw_index;
566 		ret = 0;
567 	} else {
568 		ret = -EIO;
569 	}
570 
571 	spin_unlock_bh(&ar_pci->ce_lock);
572 
573 	return ret;
574 }
575 
576 /*
577  * Guts of ath10k_ce_completed_send_next.
578  * The caller takes responsibility for any necessary locking.
579  */
ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp)580 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
581 					 void **per_transfer_contextp)
582 {
583 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
584 	u32 ctrl_addr = ce_state->ctrl_addr;
585 	struct ath10k *ar = ce_state->ar;
586 	unsigned int nentries_mask = src_ring->nentries_mask;
587 	unsigned int sw_index = src_ring->sw_index;
588 	unsigned int read_index;
589 
590 	if (src_ring->hw_index == sw_index) {
591 		/*
592 		 * The SW completion index has caught up with the cached
593 		 * version of the HW completion index.
594 		 * Update the cached HW completion index to see whether
595 		 * the SW has really caught up to the HW, or if the cached
596 		 * value of the HW index has become stale.
597 		 */
598 
599 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
600 		if (read_index == 0xffffffff)
601 			return -ENODEV;
602 
603 		read_index &= nentries_mask;
604 		src_ring->hw_index = read_index;
605 	}
606 
607 	read_index = src_ring->hw_index;
608 
609 	if (read_index == sw_index)
610 		return -EIO;
611 
612 	if (per_transfer_contextp)
613 		*per_transfer_contextp =
614 			src_ring->per_transfer_context[sw_index];
615 
616 	/* sanity */
617 	src_ring->per_transfer_context[sw_index] = NULL;
618 
619 	/* Update sw_index */
620 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
621 	src_ring->sw_index = sw_index;
622 
623 	return 0;
624 }
625 
626 /* NB: Modeled after ath10k_ce_completed_send_next */
ath10k_ce_cancel_send_next(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp,unsigned int * nbytesp,unsigned int * transfer_idp)627 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
628 			       void **per_transfer_contextp,
629 			       u32 *bufferp,
630 			       unsigned int *nbytesp,
631 			       unsigned int *transfer_idp)
632 {
633 	struct ath10k_ce_ring *src_ring;
634 	unsigned int nentries_mask;
635 	unsigned int sw_index;
636 	unsigned int write_index;
637 	int ret;
638 	struct ath10k *ar;
639 	struct ath10k_pci *ar_pci;
640 
641 	src_ring = ce_state->src_ring;
642 
643 	if (!src_ring)
644 		return -EIO;
645 
646 	ar = ce_state->ar;
647 	ar_pci = ath10k_pci_priv(ar);
648 
649 	spin_lock_bh(&ar_pci->ce_lock);
650 
651 	nentries_mask = src_ring->nentries_mask;
652 	sw_index = src_ring->sw_index;
653 	write_index = src_ring->write_index;
654 
655 	if (write_index != sw_index) {
656 		struct ce_desc *base = src_ring->base_addr_owner_space;
657 		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
658 
659 		/* Return data from completed source descriptor */
660 		*bufferp = __le32_to_cpu(desc->addr);
661 		*nbytesp = __le16_to_cpu(desc->nbytes);
662 		*transfer_idp = MS(__le16_to_cpu(desc->flags),
663 						CE_DESC_FLAGS_META_DATA);
664 
665 		if (per_transfer_contextp)
666 			*per_transfer_contextp =
667 				src_ring->per_transfer_context[sw_index];
668 
669 		/* sanity */
670 		src_ring->per_transfer_context[sw_index] = NULL;
671 
672 		/* Update sw_index */
673 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
674 		src_ring->sw_index = sw_index;
675 		ret = 0;
676 	} else {
677 		ret = -EIO;
678 	}
679 
680 	spin_unlock_bh(&ar_pci->ce_lock);
681 
682 	return ret;
683 }
684 
ath10k_ce_completed_send_next(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp)685 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
686 				  void **per_transfer_contextp)
687 {
688 	struct ath10k *ar = ce_state->ar;
689 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
690 	int ret;
691 
692 	spin_lock_bh(&ar_pci->ce_lock);
693 	ret = ath10k_ce_completed_send_next_nolock(ce_state,
694 						   per_transfer_contextp);
695 	spin_unlock_bh(&ar_pci->ce_lock);
696 
697 	return ret;
698 }
699 
700 /*
701  * Guts of interrupt handler for per-engine interrupts on a particular CE.
702  *
703  * Invokes registered callbacks for recv_complete,
704  * send_complete, and watermarks.
705  */
ath10k_ce_per_engine_service(struct ath10k * ar,unsigned int ce_id)706 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
707 {
708 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
709 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
710 	u32 ctrl_addr = ce_state->ctrl_addr;
711 
712 	spin_lock_bh(&ar_pci->ce_lock);
713 
714 	/* Clear the copy-complete interrupts that will be handled here. */
715 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
716 					  HOST_IS_COPY_COMPLETE_MASK);
717 
718 	spin_unlock_bh(&ar_pci->ce_lock);
719 
720 	if (ce_state->recv_cb)
721 		ce_state->recv_cb(ce_state);
722 
723 	if (ce_state->send_cb)
724 		ce_state->send_cb(ce_state);
725 
726 	spin_lock_bh(&ar_pci->ce_lock);
727 
728 	/*
729 	 * Misc CE interrupts are not being handled, but still need
730 	 * to be cleared.
731 	 */
732 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
733 
734 	spin_unlock_bh(&ar_pci->ce_lock);
735 }
736 
737 /*
738  * Handler for per-engine interrupts on ALL active CEs.
739  * This is used in cases where the system is sharing a
740  * single interrput for all CEs
741  */
742 
ath10k_ce_per_engine_service_any(struct ath10k * ar)743 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
744 {
745 	int ce_id;
746 	u32 intr_summary;
747 
748 	intr_summary = CE_INTERRUPT_SUMMARY(ar);
749 
750 	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
751 		if (intr_summary & (1 << ce_id))
752 			intr_summary &= ~(1 << ce_id);
753 		else
754 			/* no intr pending on this CE */
755 			continue;
756 
757 		ath10k_ce_per_engine_service(ar, ce_id);
758 	}
759 }
760 
761 /*
762  * Adjust interrupts for the copy complete handler.
763  * If it's needed for either send or recv, then unmask
764  * this interrupt; otherwise, mask it.
765  *
766  * Called with ce_lock held.
767  */
ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe * ce_state)768 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
769 {
770 	u32 ctrl_addr = ce_state->ctrl_addr;
771 	struct ath10k *ar = ce_state->ar;
772 	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
773 
774 	if ((!disable_copy_compl_intr) &&
775 	    (ce_state->send_cb || ce_state->recv_cb))
776 		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
777 	else
778 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
779 
780 	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
781 }
782 
ath10k_ce_disable_interrupts(struct ath10k * ar)783 int ath10k_ce_disable_interrupts(struct ath10k *ar)
784 {
785 	int ce_id;
786 
787 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
788 		u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
789 
790 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
791 		ath10k_ce_error_intr_disable(ar, ctrl_addr);
792 		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
793 	}
794 
795 	return 0;
796 }
797 
ath10k_ce_enable_interrupts(struct ath10k * ar)798 void ath10k_ce_enable_interrupts(struct ath10k *ar)
799 {
800 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
801 	int ce_id;
802 
803 	/* Skip the last copy engine, CE7 the diagnostic window, as that
804 	 * uses polling and isn't initialized for interrupts.
805 	 */
806 	for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
807 		ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
808 }
809 
ath10k_ce_init_src_ring(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)810 static int ath10k_ce_init_src_ring(struct ath10k *ar,
811 				   unsigned int ce_id,
812 				   const struct ce_attr *attr)
813 {
814 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
815 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
816 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
817 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
818 
819 	nentries = roundup_pow_of_two(attr->src_nentries);
820 
821 	memset(src_ring->base_addr_owner_space, 0,
822 	       nentries * sizeof(struct ce_desc));
823 
824 	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
825 	src_ring->sw_index &= src_ring->nentries_mask;
826 	src_ring->hw_index = src_ring->sw_index;
827 
828 	src_ring->write_index =
829 		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
830 	src_ring->write_index &= src_ring->nentries_mask;
831 
832 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
833 					 src_ring->base_addr_ce_space);
834 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
835 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
836 	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
837 	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
838 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
839 
840 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
841 		   "boot init ce src ring id %d entries %d base_addr %p\n",
842 		   ce_id, nentries, src_ring->base_addr_owner_space);
843 
844 	return 0;
845 }
846 
ath10k_ce_init_dest_ring(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)847 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
848 				    unsigned int ce_id,
849 				    const struct ce_attr *attr)
850 {
851 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
852 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
853 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
854 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
855 
856 	nentries = roundup_pow_of_two(attr->dest_nentries);
857 
858 	memset(dest_ring->base_addr_owner_space, 0,
859 	       nentries * sizeof(struct ce_desc));
860 
861 	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
862 	dest_ring->sw_index &= dest_ring->nentries_mask;
863 	dest_ring->write_index =
864 		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
865 	dest_ring->write_index &= dest_ring->nentries_mask;
866 
867 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
868 					  dest_ring->base_addr_ce_space);
869 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
870 	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
871 	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
872 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
873 
874 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
875 		   "boot ce dest ring id %d entries %d base_addr %p\n",
876 		   ce_id, nentries, dest_ring->base_addr_owner_space);
877 
878 	return 0;
879 }
880 
881 static struct ath10k_ce_ring *
ath10k_ce_alloc_src_ring(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)882 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
883 			 const struct ce_attr *attr)
884 {
885 	struct ath10k_ce_ring *src_ring;
886 	u32 nentries = attr->src_nentries;
887 	dma_addr_t base_addr;
888 
889 	nentries = roundup_pow_of_two(nentries);
890 
891 	src_ring = kzalloc(sizeof(*src_ring) +
892 			   (nentries *
893 			    sizeof(*src_ring->per_transfer_context)),
894 			   GFP_KERNEL);
895 	if (src_ring == NULL)
896 		return ERR_PTR(-ENOMEM);
897 
898 	src_ring->nentries = nentries;
899 	src_ring->nentries_mask = nentries - 1;
900 
901 	/*
902 	 * Legacy platforms that do not support cache
903 	 * coherent DMA are unsupported
904 	 */
905 	src_ring->base_addr_owner_space_unaligned =
906 		dma_alloc_coherent(ar->dev,
907 				   (nentries * sizeof(struct ce_desc) +
908 				    CE_DESC_RING_ALIGN),
909 				   &base_addr, GFP_KERNEL);
910 	if (!src_ring->base_addr_owner_space_unaligned) {
911 		kfree(src_ring);
912 		return ERR_PTR(-ENOMEM);
913 	}
914 
915 	src_ring->base_addr_ce_space_unaligned = base_addr;
916 
917 	src_ring->base_addr_owner_space = PTR_ALIGN(
918 			src_ring->base_addr_owner_space_unaligned,
919 			CE_DESC_RING_ALIGN);
920 	src_ring->base_addr_ce_space = ALIGN(
921 			src_ring->base_addr_ce_space_unaligned,
922 			CE_DESC_RING_ALIGN);
923 
924 	return src_ring;
925 }
926 
927 static struct ath10k_ce_ring *
ath10k_ce_alloc_dest_ring(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)928 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
929 			  const struct ce_attr *attr)
930 {
931 	struct ath10k_ce_ring *dest_ring;
932 	u32 nentries;
933 	dma_addr_t base_addr;
934 
935 	nentries = roundup_pow_of_two(attr->dest_nentries);
936 
937 	dest_ring = kzalloc(sizeof(*dest_ring) +
938 			    (nentries *
939 			     sizeof(*dest_ring->per_transfer_context)),
940 			    GFP_KERNEL);
941 	if (dest_ring == NULL)
942 		return ERR_PTR(-ENOMEM);
943 
944 	dest_ring->nentries = nentries;
945 	dest_ring->nentries_mask = nentries - 1;
946 
947 	/*
948 	 * Legacy platforms that do not support cache
949 	 * coherent DMA are unsupported
950 	 */
951 	dest_ring->base_addr_owner_space_unaligned =
952 		dma_alloc_coherent(ar->dev,
953 				   (nentries * sizeof(struct ce_desc) +
954 				    CE_DESC_RING_ALIGN),
955 				   &base_addr, GFP_KERNEL);
956 	if (!dest_ring->base_addr_owner_space_unaligned) {
957 		kfree(dest_ring);
958 		return ERR_PTR(-ENOMEM);
959 	}
960 
961 	dest_ring->base_addr_ce_space_unaligned = base_addr;
962 
963 	/*
964 	 * Correctly initialize memory to 0 to prevent garbage
965 	 * data crashing system when download firmware
966 	 */
967 	memset(dest_ring->base_addr_owner_space_unaligned, 0,
968 	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
969 
970 	dest_ring->base_addr_owner_space = PTR_ALIGN(
971 			dest_ring->base_addr_owner_space_unaligned,
972 			CE_DESC_RING_ALIGN);
973 	dest_ring->base_addr_ce_space = ALIGN(
974 			dest_ring->base_addr_ce_space_unaligned,
975 			CE_DESC_RING_ALIGN);
976 
977 	return dest_ring;
978 }
979 
980 /*
981  * Initialize a Copy Engine based on caller-supplied attributes.
982  * This may be called once to initialize both source and destination
983  * rings or it may be called twice for separate source and destination
984  * initialization. It may be that only one side or the other is
985  * initialized by software/firmware.
986  */
ath10k_ce_init_pipe(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)987 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
988 			const struct ce_attr *attr)
989 {
990 	int ret;
991 
992 	if (attr->src_nentries) {
993 		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
994 		if (ret) {
995 			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
996 				   ce_id, ret);
997 			return ret;
998 		}
999 	}
1000 
1001 	if (attr->dest_nentries) {
1002 		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1003 		if (ret) {
1004 			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1005 				   ce_id, ret);
1006 			return ret;
1007 		}
1008 	}
1009 
1010 	return 0;
1011 }
1012 
ath10k_ce_deinit_src_ring(struct ath10k * ar,unsigned int ce_id)1013 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1014 {
1015 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1016 
1017 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1018 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1019 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1020 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1021 }
1022 
ath10k_ce_deinit_dest_ring(struct ath10k * ar,unsigned int ce_id)1023 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1024 {
1025 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1026 
1027 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1028 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1029 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1030 }
1031 
ath10k_ce_deinit_pipe(struct ath10k * ar,unsigned int ce_id)1032 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1033 {
1034 	ath10k_ce_deinit_src_ring(ar, ce_id);
1035 	ath10k_ce_deinit_dest_ring(ar, ce_id);
1036 }
1037 
ath10k_ce_alloc_pipe(struct ath10k * ar,int ce_id,const struct ce_attr * attr)1038 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1039 			 const struct ce_attr *attr)
1040 {
1041 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1042 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1043 	int ret;
1044 
1045 	/*
1046 	 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1047 	 * additional TX locking checks.
1048 	 *
1049 	 * For the lack of a better place do the check here.
1050 	 */
1051 	BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1052 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1053 	BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1054 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1055 	BUILD_BUG_ON(2*TARGET_TLV_NUM_MSDU_DESC >
1056 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1057 
1058 	ce_state->ar = ar;
1059 	ce_state->id = ce_id;
1060 	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1061 	ce_state->attr_flags = attr->flags;
1062 	ce_state->src_sz_max = attr->src_sz_max;
1063 
1064 	if (attr->src_nentries)
1065 		ce_state->send_cb = attr->send_cb;
1066 
1067 	if (attr->dest_nentries)
1068 		ce_state->recv_cb = attr->recv_cb;
1069 
1070 	if (attr->src_nentries) {
1071 		ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1072 		if (IS_ERR(ce_state->src_ring)) {
1073 			ret = PTR_ERR(ce_state->src_ring);
1074 			ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1075 				   ce_id, ret);
1076 			ce_state->src_ring = NULL;
1077 			return ret;
1078 		}
1079 	}
1080 
1081 	if (attr->dest_nentries) {
1082 		ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1083 								attr);
1084 		if (IS_ERR(ce_state->dest_ring)) {
1085 			ret = PTR_ERR(ce_state->dest_ring);
1086 			ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1087 				   ce_id, ret);
1088 			ce_state->dest_ring = NULL;
1089 			return ret;
1090 		}
1091 	}
1092 
1093 	return 0;
1094 }
1095 
ath10k_ce_free_pipe(struct ath10k * ar,int ce_id)1096 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1097 {
1098 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1099 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1100 
1101 	if (ce_state->src_ring) {
1102 		dma_free_coherent(ar->dev,
1103 				  (ce_state->src_ring->nentries *
1104 				   sizeof(struct ce_desc) +
1105 				   CE_DESC_RING_ALIGN),
1106 				  ce_state->src_ring->base_addr_owner_space,
1107 				  ce_state->src_ring->base_addr_ce_space);
1108 		kfree(ce_state->src_ring);
1109 	}
1110 
1111 	if (ce_state->dest_ring) {
1112 		dma_free_coherent(ar->dev,
1113 				  (ce_state->dest_ring->nentries *
1114 				   sizeof(struct ce_desc) +
1115 				   CE_DESC_RING_ALIGN),
1116 				  ce_state->dest_ring->base_addr_owner_space,
1117 				  ce_state->dest_ring->base_addr_ce_space);
1118 		kfree(ce_state->dest_ring);
1119 	}
1120 
1121 	ce_state->src_ring = NULL;
1122 	ce_state->dest_ring = NULL;
1123 }
1124