1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22
23 /*
24 * Support for Copy Engine hardware, which is mainly used for
25 * communication between Host and Target over a PCIe interconnect.
26 */
27
28 /*
29 * A single CopyEngine (CE) comprises two "rings":
30 * a source ring
31 * a destination ring
32 *
33 * Each ring consists of a number of descriptors which specify
34 * an address, length, and meta-data.
35 *
36 * Typically, one side of the PCIe interconnect (Host or Target)
37 * controls one ring and the other side controls the other ring.
38 * The source side chooses when to initiate a transfer and it
39 * chooses what to send (buffer address, length). The destination
40 * side keeps a supply of "anonymous receive buffers" available and
41 * it handles incoming data as it arrives (when the destination
42 * recieves an interrupt).
43 *
44 * The sender may send a simple buffer (address/length) or it may
45 * send a small list of buffers. When a small list is sent, hardware
46 * "gathers" these and they end up in a single destination buffer
47 * with a single interrupt.
48 *
49 * There are several "contexts" managed by this layer -- more, it
50 * may seem -- than should be needed. These are provided mainly for
51 * maximum flexibility and especially to facilitate a simpler HIF
52 * implementation. There are per-CopyEngine recv, send, and watermark
53 * contexts. These are supplied by the caller when a recv, send,
54 * or watermark handler is established and they are echoed back to
55 * the caller when the respective callbacks are invoked. There is
56 * also a per-transfer context supplied by the caller when a buffer
57 * (or sendlist) is sent and when a buffer is enqueued for recv.
58 * These per-transfer contexts are echoed back to the caller when
59 * the buffer is sent/received.
60 */
61
ath10k_ce_dest_ring_write_index_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63 u32 ce_ctrl_addr,
64 unsigned int n)
65 {
66 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68
ath10k_ce_dest_ring_write_index_get(struct ath10k * ar,u32 ce_ctrl_addr)69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70 u32 ce_ctrl_addr)
71 {
72 return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74
ath10k_ce_src_ring_write_index_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76 u32 ce_ctrl_addr,
77 unsigned int n)
78 {
79 ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81
ath10k_ce_src_ring_write_index_get(struct ath10k * ar,u32 ce_ctrl_addr)82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83 u32 ce_ctrl_addr)
84 {
85 return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87
ath10k_ce_src_ring_read_index_get(struct ath10k * ar,u32 ce_ctrl_addr)88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89 u32 ce_ctrl_addr)
90 {
91 return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93
ath10k_ce_src_ring_base_addr_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int addr)94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95 u32 ce_ctrl_addr,
96 unsigned int addr)
97 {
98 ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100
ath10k_ce_src_ring_size_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102 u32 ce_ctrl_addr,
103 unsigned int n)
104 {
105 ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107
ath10k_ce_src_ring_dmax_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109 u32 ce_ctrl_addr,
110 unsigned int n)
111 {
112 u32 ctrl1_addr = ath10k_pci_read32((ar),
113 (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116 (ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) |
117 CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119
ath10k_ce_src_ring_byte_swap_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121 u32 ce_ctrl_addr,
122 unsigned int n)
123 {
124 u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127 (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128 CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130
ath10k_ce_dest_ring_byte_swap_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132 u32 ce_ctrl_addr,
133 unsigned int n)
134 {
135 u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138 (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139 CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141
ath10k_ce_dest_ring_read_index_get(struct ath10k * ar,u32 ce_ctrl_addr)142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143 u32 ce_ctrl_addr)
144 {
145 return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147
ath10k_ce_dest_ring_base_addr_set(struct ath10k * ar,u32 ce_ctrl_addr,u32 addr)148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149 u32 ce_ctrl_addr,
150 u32 addr)
151 {
152 ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154
ath10k_ce_dest_ring_size_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156 u32 ce_ctrl_addr,
157 unsigned int n)
158 {
159 ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161
ath10k_ce_src_ring_highmark_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163 u32 ce_ctrl_addr,
164 unsigned int n)
165 {
166 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168 ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169 (addr & ~SRC_WATERMARK_HIGH_MASK) |
170 SRC_WATERMARK_HIGH_SET(n));
171 }
172
ath10k_ce_src_ring_lowmark_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174 u32 ce_ctrl_addr,
175 unsigned int n)
176 {
177 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179 ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180 (addr & ~SRC_WATERMARK_LOW_MASK) |
181 SRC_WATERMARK_LOW_SET(n));
182 }
183
ath10k_ce_dest_ring_highmark_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185 u32 ce_ctrl_addr,
186 unsigned int n)
187 {
188 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191 (addr & ~DST_WATERMARK_HIGH_MASK) |
192 DST_WATERMARK_HIGH_SET(n));
193 }
194
ath10k_ce_dest_ring_lowmark_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196 u32 ce_ctrl_addr,
197 unsigned int n)
198 {
199 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202 (addr & ~DST_WATERMARK_LOW_MASK) |
203 DST_WATERMARK_LOW_SET(n));
204 }
205
ath10k_ce_copy_complete_inter_enable(struct ath10k * ar,u32 ce_ctrl_addr)206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207 u32 ce_ctrl_addr)
208 {
209 u32 host_ie_addr = ath10k_pci_read32(ar,
210 ce_ctrl_addr + HOST_IE_ADDRESS);
211
212 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213 host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215
ath10k_ce_copy_complete_intr_disable(struct ath10k * ar,u32 ce_ctrl_addr)216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217 u32 ce_ctrl_addr)
218 {
219 u32 host_ie_addr = ath10k_pci_read32(ar,
220 ce_ctrl_addr + HOST_IE_ADDRESS);
221
222 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223 host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225
ath10k_ce_watermark_intr_disable(struct ath10k * ar,u32 ce_ctrl_addr)226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227 u32 ce_ctrl_addr)
228 {
229 u32 host_ie_addr = ath10k_pci_read32(ar,
230 ce_ctrl_addr + HOST_IE_ADDRESS);
231
232 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233 host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235
ath10k_ce_error_intr_enable(struct ath10k * ar,u32 ce_ctrl_addr)236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237 u32 ce_ctrl_addr)
238 {
239 u32 misc_ie_addr = ath10k_pci_read32(ar,
240 ce_ctrl_addr + MISC_IE_ADDRESS);
241
242 ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243 misc_ie_addr | CE_ERROR_MASK);
244 }
245
ath10k_ce_error_intr_disable(struct ath10k * ar,u32 ce_ctrl_addr)246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247 u32 ce_ctrl_addr)
248 {
249 u32 misc_ie_addr = ath10k_pci_read32(ar,
250 ce_ctrl_addr + MISC_IE_ADDRESS);
251
252 ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253 misc_ie_addr & ~CE_ERROR_MASK);
254 }
255
ath10k_ce_engine_int_status_clear(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int mask)256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257 u32 ce_ctrl_addr,
258 unsigned int mask)
259 {
260 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262
263 /*
264 * Guts of ath10k_ce_send, used by both ath10k_ce_send and
265 * ath10k_ce_sendlist_send.
266 * The caller takes responsibility for any needed locking.
267 */
ath10k_ce_send_nolock(struct ath10k_ce_pipe * ce_state,void * per_transfer_context,u32 buffer,unsigned int nbytes,unsigned int transfer_id,unsigned int flags)268 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
269 void *per_transfer_context,
270 u32 buffer,
271 unsigned int nbytes,
272 unsigned int transfer_id,
273 unsigned int flags)
274 {
275 struct ath10k *ar = ce_state->ar;
276 struct ath10k_ce_ring *src_ring = ce_state->src_ring;
277 struct ce_desc *desc, sdesc;
278 unsigned int nentries_mask = src_ring->nentries_mask;
279 unsigned int sw_index = src_ring->sw_index;
280 unsigned int write_index = src_ring->write_index;
281 u32 ctrl_addr = ce_state->ctrl_addr;
282 u32 desc_flags = 0;
283 int ret = 0;
284
285 if (nbytes > ce_state->src_sz_max)
286 ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
287 __func__, nbytes, ce_state->src_sz_max);
288
289 if (unlikely(CE_RING_DELTA(nentries_mask,
290 write_index, sw_index - 1) <= 0)) {
291 ret = -ENOSR;
292 goto exit;
293 }
294
295 desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
296 write_index);
297
298 desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
299
300 if (flags & CE_SEND_FLAG_GATHER)
301 desc_flags |= CE_DESC_FLAGS_GATHER;
302 if (flags & CE_SEND_FLAG_BYTE_SWAP)
303 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
304
305 sdesc.addr = __cpu_to_le32(buffer);
306 sdesc.nbytes = __cpu_to_le16(nbytes);
307 sdesc.flags = __cpu_to_le16(desc_flags);
308
309 *desc = sdesc;
310
311 src_ring->per_transfer_context[write_index] = per_transfer_context;
312
313 /* Update Source Ring Write Index */
314 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
315
316 /* WORKAROUND */
317 if (!(flags & CE_SEND_FLAG_GATHER))
318 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
319
320 src_ring->write_index = write_index;
321 exit:
322 return ret;
323 }
324
__ath10k_ce_send_revert(struct ath10k_ce_pipe * pipe)325 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
326 {
327 struct ath10k *ar = pipe->ar;
328 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
329 struct ath10k_ce_ring *src_ring = pipe->src_ring;
330 u32 ctrl_addr = pipe->ctrl_addr;
331
332 lockdep_assert_held(&ar_pci->ce_lock);
333
334 /*
335 * This function must be called only if there is an incomplete
336 * scatter-gather transfer (before index register is updated)
337 * that needs to be cleaned up.
338 */
339 if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
340 return;
341
342 if (WARN_ON_ONCE(src_ring->write_index ==
343 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
344 return;
345
346 src_ring->write_index--;
347 src_ring->write_index &= src_ring->nentries_mask;
348
349 src_ring->per_transfer_context[src_ring->write_index] = NULL;
350 }
351
ath10k_ce_send(struct ath10k_ce_pipe * ce_state,void * per_transfer_context,u32 buffer,unsigned int nbytes,unsigned int transfer_id,unsigned int flags)352 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
353 void *per_transfer_context,
354 u32 buffer,
355 unsigned int nbytes,
356 unsigned int transfer_id,
357 unsigned int flags)
358 {
359 struct ath10k *ar = ce_state->ar;
360 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
361 int ret;
362
363 spin_lock_bh(&ar_pci->ce_lock);
364 ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
365 buffer, nbytes, transfer_id, flags);
366 spin_unlock_bh(&ar_pci->ce_lock);
367
368 return ret;
369 }
370
ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe * pipe)371 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
372 {
373 struct ath10k *ar = pipe->ar;
374 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
375 int delta;
376
377 spin_lock_bh(&ar_pci->ce_lock);
378 delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
379 pipe->src_ring->write_index,
380 pipe->src_ring->sw_index - 1);
381 spin_unlock_bh(&ar_pci->ce_lock);
382
383 return delta;
384 }
385
__ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe * pipe)386 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
387 {
388 struct ath10k *ar = pipe->ar;
389 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
390 struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
391 unsigned int nentries_mask = dest_ring->nentries_mask;
392 unsigned int write_index = dest_ring->write_index;
393 unsigned int sw_index = dest_ring->sw_index;
394
395 lockdep_assert_held(&ar_pci->ce_lock);
396
397 return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
398 }
399
__ath10k_ce_rx_post_buf(struct ath10k_ce_pipe * pipe,void * ctx,u32 paddr)400 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
401 {
402 struct ath10k *ar = pipe->ar;
403 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
404 struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
405 unsigned int nentries_mask = dest_ring->nentries_mask;
406 unsigned int write_index = dest_ring->write_index;
407 unsigned int sw_index = dest_ring->sw_index;
408 struct ce_desc *base = dest_ring->base_addr_owner_space;
409 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
410 u32 ctrl_addr = pipe->ctrl_addr;
411
412 lockdep_assert_held(&ar_pci->ce_lock);
413
414 if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
415 return -ENOSPC;
416
417 desc->addr = __cpu_to_le32(paddr);
418 desc->nbytes = 0;
419
420 dest_ring->per_transfer_context[write_index] = ctx;
421 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
422 ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
423 dest_ring->write_index = write_index;
424
425 return 0;
426 }
427
ath10k_ce_rx_post_buf(struct ath10k_ce_pipe * pipe,void * ctx,u32 paddr)428 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
429 {
430 struct ath10k *ar = pipe->ar;
431 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
432 int ret;
433
434 spin_lock_bh(&ar_pci->ce_lock);
435 ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
436 spin_unlock_bh(&ar_pci->ce_lock);
437
438 return ret;
439 }
440
441 /*
442 * Guts of ath10k_ce_completed_recv_next.
443 * The caller takes responsibility for any necessary locking.
444 */
ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp,unsigned int * nbytesp,unsigned int * transfer_idp,unsigned int * flagsp)445 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
446 void **per_transfer_contextp,
447 u32 *bufferp,
448 unsigned int *nbytesp,
449 unsigned int *transfer_idp,
450 unsigned int *flagsp)
451 {
452 struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
453 unsigned int nentries_mask = dest_ring->nentries_mask;
454 struct ath10k *ar = ce_state->ar;
455 unsigned int sw_index = dest_ring->sw_index;
456
457 struct ce_desc *base = dest_ring->base_addr_owner_space;
458 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
459 struct ce_desc sdesc;
460 u16 nbytes;
461
462 /* Copy in one go for performance reasons */
463 sdesc = *desc;
464
465 nbytes = __le16_to_cpu(sdesc.nbytes);
466 if (nbytes == 0) {
467 /*
468 * This closes a relatively unusual race where the Host
469 * sees the updated DRRI before the update to the
470 * corresponding descriptor has completed. We treat this
471 * as a descriptor that is not yet done.
472 */
473 return -EIO;
474 }
475
476 desc->nbytes = 0;
477
478 /* Return data from completed destination descriptor */
479 *bufferp = __le32_to_cpu(sdesc.addr);
480 *nbytesp = nbytes;
481 *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
482
483 if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
484 *flagsp = CE_RECV_FLAG_SWAPPED;
485 else
486 *flagsp = 0;
487
488 if (per_transfer_contextp)
489 *per_transfer_contextp =
490 dest_ring->per_transfer_context[sw_index];
491
492 /* sanity */
493 dest_ring->per_transfer_context[sw_index] = NULL;
494
495 /* Update sw_index */
496 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
497 dest_ring->sw_index = sw_index;
498
499 return 0;
500 }
501
ath10k_ce_completed_recv_next(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp,unsigned int * nbytesp,unsigned int * transfer_idp,unsigned int * flagsp)502 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
503 void **per_transfer_contextp,
504 u32 *bufferp,
505 unsigned int *nbytesp,
506 unsigned int *transfer_idp,
507 unsigned int *flagsp)
508 {
509 struct ath10k *ar = ce_state->ar;
510 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
511 int ret;
512
513 spin_lock_bh(&ar_pci->ce_lock);
514 ret = ath10k_ce_completed_recv_next_nolock(ce_state,
515 per_transfer_contextp,
516 bufferp, nbytesp,
517 transfer_idp, flagsp);
518 spin_unlock_bh(&ar_pci->ce_lock);
519
520 return ret;
521 }
522
ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp)523 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
524 void **per_transfer_contextp,
525 u32 *bufferp)
526 {
527 struct ath10k_ce_ring *dest_ring;
528 unsigned int nentries_mask;
529 unsigned int sw_index;
530 unsigned int write_index;
531 int ret;
532 struct ath10k *ar;
533 struct ath10k_pci *ar_pci;
534
535 dest_ring = ce_state->dest_ring;
536
537 if (!dest_ring)
538 return -EIO;
539
540 ar = ce_state->ar;
541 ar_pci = ath10k_pci_priv(ar);
542
543 spin_lock_bh(&ar_pci->ce_lock);
544
545 nentries_mask = dest_ring->nentries_mask;
546 sw_index = dest_ring->sw_index;
547 write_index = dest_ring->write_index;
548 if (write_index != sw_index) {
549 struct ce_desc *base = dest_ring->base_addr_owner_space;
550 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
551
552 /* Return data from completed destination descriptor */
553 *bufferp = __le32_to_cpu(desc->addr);
554
555 if (per_transfer_contextp)
556 *per_transfer_contextp =
557 dest_ring->per_transfer_context[sw_index];
558
559 /* sanity */
560 dest_ring->per_transfer_context[sw_index] = NULL;
561 desc->nbytes = 0;
562
563 /* Update sw_index */
564 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
565 dest_ring->sw_index = sw_index;
566 ret = 0;
567 } else {
568 ret = -EIO;
569 }
570
571 spin_unlock_bh(&ar_pci->ce_lock);
572
573 return ret;
574 }
575
576 /*
577 * Guts of ath10k_ce_completed_send_next.
578 * The caller takes responsibility for any necessary locking.
579 */
ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp)580 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
581 void **per_transfer_contextp)
582 {
583 struct ath10k_ce_ring *src_ring = ce_state->src_ring;
584 u32 ctrl_addr = ce_state->ctrl_addr;
585 struct ath10k *ar = ce_state->ar;
586 unsigned int nentries_mask = src_ring->nentries_mask;
587 unsigned int sw_index = src_ring->sw_index;
588 unsigned int read_index;
589
590 if (src_ring->hw_index == sw_index) {
591 /*
592 * The SW completion index has caught up with the cached
593 * version of the HW completion index.
594 * Update the cached HW completion index to see whether
595 * the SW has really caught up to the HW, or if the cached
596 * value of the HW index has become stale.
597 */
598
599 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
600 if (read_index == 0xffffffff)
601 return -ENODEV;
602
603 read_index &= nentries_mask;
604 src_ring->hw_index = read_index;
605 }
606
607 read_index = src_ring->hw_index;
608
609 if (read_index == sw_index)
610 return -EIO;
611
612 if (per_transfer_contextp)
613 *per_transfer_contextp =
614 src_ring->per_transfer_context[sw_index];
615
616 /* sanity */
617 src_ring->per_transfer_context[sw_index] = NULL;
618
619 /* Update sw_index */
620 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
621 src_ring->sw_index = sw_index;
622
623 return 0;
624 }
625
626 /* NB: Modeled after ath10k_ce_completed_send_next */
ath10k_ce_cancel_send_next(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp,unsigned int * nbytesp,unsigned int * transfer_idp)627 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
628 void **per_transfer_contextp,
629 u32 *bufferp,
630 unsigned int *nbytesp,
631 unsigned int *transfer_idp)
632 {
633 struct ath10k_ce_ring *src_ring;
634 unsigned int nentries_mask;
635 unsigned int sw_index;
636 unsigned int write_index;
637 int ret;
638 struct ath10k *ar;
639 struct ath10k_pci *ar_pci;
640
641 src_ring = ce_state->src_ring;
642
643 if (!src_ring)
644 return -EIO;
645
646 ar = ce_state->ar;
647 ar_pci = ath10k_pci_priv(ar);
648
649 spin_lock_bh(&ar_pci->ce_lock);
650
651 nentries_mask = src_ring->nentries_mask;
652 sw_index = src_ring->sw_index;
653 write_index = src_ring->write_index;
654
655 if (write_index != sw_index) {
656 struct ce_desc *base = src_ring->base_addr_owner_space;
657 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
658
659 /* Return data from completed source descriptor */
660 *bufferp = __le32_to_cpu(desc->addr);
661 *nbytesp = __le16_to_cpu(desc->nbytes);
662 *transfer_idp = MS(__le16_to_cpu(desc->flags),
663 CE_DESC_FLAGS_META_DATA);
664
665 if (per_transfer_contextp)
666 *per_transfer_contextp =
667 src_ring->per_transfer_context[sw_index];
668
669 /* sanity */
670 src_ring->per_transfer_context[sw_index] = NULL;
671
672 /* Update sw_index */
673 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
674 src_ring->sw_index = sw_index;
675 ret = 0;
676 } else {
677 ret = -EIO;
678 }
679
680 spin_unlock_bh(&ar_pci->ce_lock);
681
682 return ret;
683 }
684
ath10k_ce_completed_send_next(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp)685 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
686 void **per_transfer_contextp)
687 {
688 struct ath10k *ar = ce_state->ar;
689 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
690 int ret;
691
692 spin_lock_bh(&ar_pci->ce_lock);
693 ret = ath10k_ce_completed_send_next_nolock(ce_state,
694 per_transfer_contextp);
695 spin_unlock_bh(&ar_pci->ce_lock);
696
697 return ret;
698 }
699
700 /*
701 * Guts of interrupt handler for per-engine interrupts on a particular CE.
702 *
703 * Invokes registered callbacks for recv_complete,
704 * send_complete, and watermarks.
705 */
ath10k_ce_per_engine_service(struct ath10k * ar,unsigned int ce_id)706 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
707 {
708 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
709 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
710 u32 ctrl_addr = ce_state->ctrl_addr;
711
712 spin_lock_bh(&ar_pci->ce_lock);
713
714 /* Clear the copy-complete interrupts that will be handled here. */
715 ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
716 HOST_IS_COPY_COMPLETE_MASK);
717
718 spin_unlock_bh(&ar_pci->ce_lock);
719
720 if (ce_state->recv_cb)
721 ce_state->recv_cb(ce_state);
722
723 if (ce_state->send_cb)
724 ce_state->send_cb(ce_state);
725
726 spin_lock_bh(&ar_pci->ce_lock);
727
728 /*
729 * Misc CE interrupts are not being handled, but still need
730 * to be cleared.
731 */
732 ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
733
734 spin_unlock_bh(&ar_pci->ce_lock);
735 }
736
737 /*
738 * Handler for per-engine interrupts on ALL active CEs.
739 * This is used in cases where the system is sharing a
740 * single interrput for all CEs
741 */
742
ath10k_ce_per_engine_service_any(struct ath10k * ar)743 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
744 {
745 int ce_id;
746 u32 intr_summary;
747
748 intr_summary = CE_INTERRUPT_SUMMARY(ar);
749
750 for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
751 if (intr_summary & (1 << ce_id))
752 intr_summary &= ~(1 << ce_id);
753 else
754 /* no intr pending on this CE */
755 continue;
756
757 ath10k_ce_per_engine_service(ar, ce_id);
758 }
759 }
760
761 /*
762 * Adjust interrupts for the copy complete handler.
763 * If it's needed for either send or recv, then unmask
764 * this interrupt; otherwise, mask it.
765 *
766 * Called with ce_lock held.
767 */
ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe * ce_state)768 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
769 {
770 u32 ctrl_addr = ce_state->ctrl_addr;
771 struct ath10k *ar = ce_state->ar;
772 bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
773
774 if ((!disable_copy_compl_intr) &&
775 (ce_state->send_cb || ce_state->recv_cb))
776 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
777 else
778 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
779
780 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
781 }
782
ath10k_ce_disable_interrupts(struct ath10k * ar)783 int ath10k_ce_disable_interrupts(struct ath10k *ar)
784 {
785 int ce_id;
786
787 for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
788 u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
789
790 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
791 ath10k_ce_error_intr_disable(ar, ctrl_addr);
792 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
793 }
794
795 return 0;
796 }
797
ath10k_ce_enable_interrupts(struct ath10k * ar)798 void ath10k_ce_enable_interrupts(struct ath10k *ar)
799 {
800 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
801 int ce_id;
802
803 /* Skip the last copy engine, CE7 the diagnostic window, as that
804 * uses polling and isn't initialized for interrupts.
805 */
806 for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
807 ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
808 }
809
ath10k_ce_init_src_ring(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)810 static int ath10k_ce_init_src_ring(struct ath10k *ar,
811 unsigned int ce_id,
812 const struct ce_attr *attr)
813 {
814 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
815 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
816 struct ath10k_ce_ring *src_ring = ce_state->src_ring;
817 u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
818
819 nentries = roundup_pow_of_two(attr->src_nentries);
820
821 memset(src_ring->base_addr_owner_space, 0,
822 nentries * sizeof(struct ce_desc));
823
824 src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
825 src_ring->sw_index &= src_ring->nentries_mask;
826 src_ring->hw_index = src_ring->sw_index;
827
828 src_ring->write_index =
829 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
830 src_ring->write_index &= src_ring->nentries_mask;
831
832 ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
833 src_ring->base_addr_ce_space);
834 ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
835 ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
836 ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
837 ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
838 ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
839
840 ath10k_dbg(ar, ATH10K_DBG_BOOT,
841 "boot init ce src ring id %d entries %d base_addr %p\n",
842 ce_id, nentries, src_ring->base_addr_owner_space);
843
844 return 0;
845 }
846
ath10k_ce_init_dest_ring(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)847 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
848 unsigned int ce_id,
849 const struct ce_attr *attr)
850 {
851 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
852 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
853 struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
854 u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
855
856 nentries = roundup_pow_of_two(attr->dest_nentries);
857
858 memset(dest_ring->base_addr_owner_space, 0,
859 nentries * sizeof(struct ce_desc));
860
861 dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
862 dest_ring->sw_index &= dest_ring->nentries_mask;
863 dest_ring->write_index =
864 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
865 dest_ring->write_index &= dest_ring->nentries_mask;
866
867 ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
868 dest_ring->base_addr_ce_space);
869 ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
870 ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
871 ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
872 ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
873
874 ath10k_dbg(ar, ATH10K_DBG_BOOT,
875 "boot ce dest ring id %d entries %d base_addr %p\n",
876 ce_id, nentries, dest_ring->base_addr_owner_space);
877
878 return 0;
879 }
880
881 static struct ath10k_ce_ring *
ath10k_ce_alloc_src_ring(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)882 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
883 const struct ce_attr *attr)
884 {
885 struct ath10k_ce_ring *src_ring;
886 u32 nentries = attr->src_nentries;
887 dma_addr_t base_addr;
888
889 nentries = roundup_pow_of_two(nentries);
890
891 src_ring = kzalloc(sizeof(*src_ring) +
892 (nentries *
893 sizeof(*src_ring->per_transfer_context)),
894 GFP_KERNEL);
895 if (src_ring == NULL)
896 return ERR_PTR(-ENOMEM);
897
898 src_ring->nentries = nentries;
899 src_ring->nentries_mask = nentries - 1;
900
901 /*
902 * Legacy platforms that do not support cache
903 * coherent DMA are unsupported
904 */
905 src_ring->base_addr_owner_space_unaligned =
906 dma_alloc_coherent(ar->dev,
907 (nentries * sizeof(struct ce_desc) +
908 CE_DESC_RING_ALIGN),
909 &base_addr, GFP_KERNEL);
910 if (!src_ring->base_addr_owner_space_unaligned) {
911 kfree(src_ring);
912 return ERR_PTR(-ENOMEM);
913 }
914
915 src_ring->base_addr_ce_space_unaligned = base_addr;
916
917 src_ring->base_addr_owner_space = PTR_ALIGN(
918 src_ring->base_addr_owner_space_unaligned,
919 CE_DESC_RING_ALIGN);
920 src_ring->base_addr_ce_space = ALIGN(
921 src_ring->base_addr_ce_space_unaligned,
922 CE_DESC_RING_ALIGN);
923
924 return src_ring;
925 }
926
927 static struct ath10k_ce_ring *
ath10k_ce_alloc_dest_ring(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)928 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
929 const struct ce_attr *attr)
930 {
931 struct ath10k_ce_ring *dest_ring;
932 u32 nentries;
933 dma_addr_t base_addr;
934
935 nentries = roundup_pow_of_two(attr->dest_nentries);
936
937 dest_ring = kzalloc(sizeof(*dest_ring) +
938 (nentries *
939 sizeof(*dest_ring->per_transfer_context)),
940 GFP_KERNEL);
941 if (dest_ring == NULL)
942 return ERR_PTR(-ENOMEM);
943
944 dest_ring->nentries = nentries;
945 dest_ring->nentries_mask = nentries - 1;
946
947 /*
948 * Legacy platforms that do not support cache
949 * coherent DMA are unsupported
950 */
951 dest_ring->base_addr_owner_space_unaligned =
952 dma_alloc_coherent(ar->dev,
953 (nentries * sizeof(struct ce_desc) +
954 CE_DESC_RING_ALIGN),
955 &base_addr, GFP_KERNEL);
956 if (!dest_ring->base_addr_owner_space_unaligned) {
957 kfree(dest_ring);
958 return ERR_PTR(-ENOMEM);
959 }
960
961 dest_ring->base_addr_ce_space_unaligned = base_addr;
962
963 /*
964 * Correctly initialize memory to 0 to prevent garbage
965 * data crashing system when download firmware
966 */
967 memset(dest_ring->base_addr_owner_space_unaligned, 0,
968 nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
969
970 dest_ring->base_addr_owner_space = PTR_ALIGN(
971 dest_ring->base_addr_owner_space_unaligned,
972 CE_DESC_RING_ALIGN);
973 dest_ring->base_addr_ce_space = ALIGN(
974 dest_ring->base_addr_ce_space_unaligned,
975 CE_DESC_RING_ALIGN);
976
977 return dest_ring;
978 }
979
980 /*
981 * Initialize a Copy Engine based on caller-supplied attributes.
982 * This may be called once to initialize both source and destination
983 * rings or it may be called twice for separate source and destination
984 * initialization. It may be that only one side or the other is
985 * initialized by software/firmware.
986 */
ath10k_ce_init_pipe(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)987 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
988 const struct ce_attr *attr)
989 {
990 int ret;
991
992 if (attr->src_nentries) {
993 ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
994 if (ret) {
995 ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
996 ce_id, ret);
997 return ret;
998 }
999 }
1000
1001 if (attr->dest_nentries) {
1002 ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1003 if (ret) {
1004 ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1005 ce_id, ret);
1006 return ret;
1007 }
1008 }
1009
1010 return 0;
1011 }
1012
ath10k_ce_deinit_src_ring(struct ath10k * ar,unsigned int ce_id)1013 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1014 {
1015 u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1016
1017 ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1018 ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1019 ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1020 ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1021 }
1022
ath10k_ce_deinit_dest_ring(struct ath10k * ar,unsigned int ce_id)1023 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1024 {
1025 u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1026
1027 ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1028 ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1029 ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1030 }
1031
ath10k_ce_deinit_pipe(struct ath10k * ar,unsigned int ce_id)1032 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1033 {
1034 ath10k_ce_deinit_src_ring(ar, ce_id);
1035 ath10k_ce_deinit_dest_ring(ar, ce_id);
1036 }
1037
ath10k_ce_alloc_pipe(struct ath10k * ar,int ce_id,const struct ce_attr * attr)1038 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1039 const struct ce_attr *attr)
1040 {
1041 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1042 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1043 int ret;
1044
1045 /*
1046 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1047 * additional TX locking checks.
1048 *
1049 * For the lack of a better place do the check here.
1050 */
1051 BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1052 (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1053 BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1054 (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1055 BUILD_BUG_ON(2*TARGET_TLV_NUM_MSDU_DESC >
1056 (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1057
1058 ce_state->ar = ar;
1059 ce_state->id = ce_id;
1060 ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1061 ce_state->attr_flags = attr->flags;
1062 ce_state->src_sz_max = attr->src_sz_max;
1063
1064 if (attr->src_nentries)
1065 ce_state->send_cb = attr->send_cb;
1066
1067 if (attr->dest_nentries)
1068 ce_state->recv_cb = attr->recv_cb;
1069
1070 if (attr->src_nentries) {
1071 ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1072 if (IS_ERR(ce_state->src_ring)) {
1073 ret = PTR_ERR(ce_state->src_ring);
1074 ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1075 ce_id, ret);
1076 ce_state->src_ring = NULL;
1077 return ret;
1078 }
1079 }
1080
1081 if (attr->dest_nentries) {
1082 ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1083 attr);
1084 if (IS_ERR(ce_state->dest_ring)) {
1085 ret = PTR_ERR(ce_state->dest_ring);
1086 ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1087 ce_id, ret);
1088 ce_state->dest_ring = NULL;
1089 return ret;
1090 }
1091 }
1092
1093 return 0;
1094 }
1095
ath10k_ce_free_pipe(struct ath10k * ar,int ce_id)1096 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1097 {
1098 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1099 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1100
1101 if (ce_state->src_ring) {
1102 dma_free_coherent(ar->dev,
1103 (ce_state->src_ring->nentries *
1104 sizeof(struct ce_desc) +
1105 CE_DESC_RING_ALIGN),
1106 ce_state->src_ring->base_addr_owner_space,
1107 ce_state->src_ring->base_addr_ce_space);
1108 kfree(ce_state->src_ring);
1109 }
1110
1111 if (ce_state->dest_ring) {
1112 dma_free_coherent(ar->dev,
1113 (ce_state->dest_ring->nentries *
1114 sizeof(struct ce_desc) +
1115 CE_DESC_RING_ALIGN),
1116 ce_state->dest_ring->base_addr_owner_space,
1117 ce_state->dest_ring->base_addr_ce_space);
1118 kfree(ce_state->dest_ring);
1119 }
1120
1121 ce_state->src_ring = NULL;
1122 ce_state->dest_ring = NULL;
1123 }
1124