1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
221 } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
307 };
308
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
read_register(struct net_device * dev,u32 reg,u32 * val)345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 struct ipw2100_priv *priv = libipw_priv(dev);
348
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
write_register(struct net_device * dev,u32 reg,u32 val)353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 struct ipw2100_priv *priv = libipw_priv(dev);
356
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
read_register_word(struct net_device * dev,u32 reg,u16 * val)361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
363 {
364 struct ipw2100_priv *priv = libipw_priv(dev);
365
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
read_register_byte(struct net_device * dev,u32 reg,u8 * val)370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 struct ipw2100_priv *priv = libipw_priv(dev);
373
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
write_register_word(struct net_device * dev,u32 reg,u16 val)378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 struct ipw2100_priv *priv = libipw_priv(dev);
381
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
write_register_byte(struct net_device * dev,u32 reg,u8 val)386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 struct ipw2100_priv *priv = libipw_priv(dev);
389
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
read_nic_dword(struct net_device * dev,u32 addr,u32 * val)394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
write_nic_dword(struct net_device * dev,u32 addr,u32 val)401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
read_nic_word(struct net_device * dev,u32 addr,u16 * val)408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
write_nic_word(struct net_device * dev,u32 addr,u16 val)415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
read_nic_byte(struct net_device * dev,u32 addr,u8 * val)422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
write_nic_byte(struct net_device * dev,u32 addr,u8 val)429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
write_nic_auto_inc_address(struct net_device * dev,u32 addr)436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
write_nic_dword_auto_inc(struct net_device * dev,u32 val)442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
write_nic_memory(struct net_device * dev,u32 addr,u32 len,const u8 * buf)447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
449 {
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
454
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
466
467 len -= dif_len;
468 aligned_addr += 4;
469 }
470
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
483 }
484
read_nic_memory(struct net_device * dev,u32 addr,u32 len,u8 * buf)485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
487 {
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
492
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
504
505 len -= dif_len;
506 aligned_addr += 4;
507 }
508
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
ipw2100_hw_is_adapter_in_system(struct net_device * dev)522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 u32 dbg;
525
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
ipw2100_get_ordinal(struct ipw2100_priv * priv,u32 ord,void * val,u32 * len)531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
533 {
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
540
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
545 }
546
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
554
555 return -EINVAL;
556 }
557
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
561
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564 return 0;
565 }
566
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569 ord -= IPW_START_ORD_TAB_2;
570
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
574
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
580
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
583
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
586
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
592 }
593
594 *len = total_length;
595 if (!total_length)
596 return 0;
597
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601 return 0;
602 }
603
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
606
607 return -EINVAL;
608 }
609
ipw2100_set_ordinal(struct ipw2100_priv * priv,u32 ord,u32 * val,u32 * len)610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
612 {
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
615
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
621 }
622
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
625
626 write_nic_dword(priv->net_dev, addr, *val);
627
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630 return 0;
631 }
632
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
636
637 return -EINVAL;
638 }
639
snprint_line(char * buf,size_t count,const u8 * data,u32 len,u32 ofs)640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
642 {
643 int out, i, j, l;
644 char c;
645
646 out = snprintf(buf, count, "%08X", ofs);
647
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
655 }
656
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
664
665 out += snprintf(buf + out, count - out, "%c", c);
666 }
667
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
670 }
671
672 return buf;
673 }
674
printk_buf(int level,const u8 * data,u32 len)675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
681
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
688 }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
schedule_reset(struct ipw2100_priv * priv)693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 unsigned long now = get_seconds();
696
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
703
704 priv->last_reset = get_seconds();
705
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
717
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
720
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
ipw2100_hw_send_command(struct ipw2100_priv * priv,struct host_command * cmd)729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
731 {
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
736
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
742
743 spin_lock_irqsave(&priv->low_lock, flags);
744
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
750 }
751
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
757 }
758
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
764 }
765
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
769 }
770
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
773
774 element = priv->msg_free_list.next;
775
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
778
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
792
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
795
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
798
799 spin_unlock_irqrestore(&priv->low_lock, flags);
800
801 /*
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
805 */
806
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
812
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
820 }
821
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
826 }
827
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
831 *
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835 return 0;
836
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
839
840 return err;
841 }
842
843 /*
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
846 */
ipw2100_verify(struct ipw2100_priv * priv)847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 u32 data1, data2;
850 u32 address;
851
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
854
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
861 }
862
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
876 }
877
878 return -EIO;
879 }
880
881 /*
882 *
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
885 *
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
888 *
889 */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
ipw2100_wait_for_card_state(struct ipw2100_priv * priv,int state)891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
897
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
905 }
906
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
917
918 return 0;
919 }
920
921 udelay(50);
922 }
923
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
927 }
928
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
sw_reset_and_clock(struct ipw2100_priv * priv)934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 int i;
937 u32 r;
938
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
951 }
952
953 if (i == 1000)
954 return -EIO; // TODO: better error value
955
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
969 }
970
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
973
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979 return 0;
980 }
981
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
ipw2100_download_firmware(struct ipw2100_priv * priv)993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 u32 address;
996 int err;
997
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1008 }
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1017 }
1018 }
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1026 }
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1029
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1036 }
1037
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1043 }
1044
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1058 }
1059
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1071 }
1072
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1079 }
1080 #ifndef CONFIG_PM
1081 /*
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1086 */
1087
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1108
1109 return 0;
1110
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1114 }
1115
ipw2100_enable_interrupts(struct ipw2100_priv * priv)1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
ipw2100_disable_interrupts(struct ipw2100_priv * priv)1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
ipw2100_initialize_ordinals(struct ipw2100_priv * priv)1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136 IPW_DEBUG_INFO("enter\n");
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1140
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1143
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147 ord->table2_size &= 0x0000FFFF;
1148
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1152 }
1153
ipw2100_hw_set_gpio(struct ipw2100_priv * priv)1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 u32 reg = 0;
1157 /*
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1160 */
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
rf_kill_active(struct ipw2100_priv * priv)1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1174
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1179 }
1180
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, ®);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 }
1186
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1193 }
1194
1195 return (value == 0);
1196 }
1197
ipw2100_get_hw_features(struct ipw2100_priv * priv)1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 u32 addr, len;
1201 u32 val;
1202
1203 /*
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 */
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1212 }
1213
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216 /*
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223 /*
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 *
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1229 */
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Start firmware execution after power on and intialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1245 */
ipw2100_start_adapter(struct ipw2100_priv * priv)1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 int i;
1249 u32 inta, inta_mask, gpio;
1250
1251 IPW_DEBUG_INFO("enter\n");
1252
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1255
1256 /*
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1260 */
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1266 }
1267
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1271
1272 ipw2100_hw_set_gpio(priv);
1273
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1276
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280 /* wait for f/w intialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1286
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1295 }
1296
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1306 }
1307 } while (--i);
1308
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1320
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1326 }
1327
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1337
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341 IPW_DEBUG_INFO("exit\n");
1342
1343 return 0;
1344 }
1345
ipw2100_reset_fatalerror(struct ipw2100_priv * priv)1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 if (!priv->fatal_error)
1349 return;
1350
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
ipw2100_power_cycle_adapter(struct ipw2100_priv * priv)1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 u32 reg;
1360 int i;
1361
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364 ipw2100_hw_set_gpio(priv);
1365
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1376
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1380
1381 priv->status &= ~STATUS_RESET_PENDING;
1382
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1387 }
1388
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1394
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404 *
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406 *
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1409 */
ipw2100_hw_phy_off(struct ipw2100_priv * priv)1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1419 };
1420 int err, i;
1421 u32 val1, val2;
1422
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1429
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1437
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 }
1440
1441 return -EIO;
1442 }
1443
ipw2100_enable_adapter(struct ipw2100_priv * priv)1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1450 };
1451 int err = 0;
1452
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1457
1458 mutex_lock(&priv->adapter_mutex);
1459
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1463 }
1464
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1469 }
1470
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1476 }
1477
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 }
1482
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1486 }
1487
ipw2100_hw_stop_adapter(struct ipw2100_priv * priv)1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1496 };
1497 int err, i;
1498 u32 reg;
1499
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1502
1503 priv->status |= STATUS_STOPPING;
1504
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1512
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1517
1518 /*
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1522 *
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1526 *
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1530 *
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1533 *
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1537 */
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 }
1548
1549 priv->status &= ~STATUS_ENABLED;
1550
1551 /*
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1554 */
1555 ipw2100_hw_set_gpio(priv);
1556
1557 /*
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 */
1563
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1572
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1575
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1578 }
1579
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1584
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591 return 0;
1592 }
1593
ipw2100_disable_adapter(struct ipw2100_priv * priv)1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1600 };
1601 int err = 0;
1602
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1607
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1614 }
1615
1616 mutex_lock(&priv->adapter_mutex);
1617
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1623 }
1624
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1630 }
1631
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1637 }
1638
ipw2100_set_scan_options(struct ipw2100_priv * priv)1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1645 };
1646 int err;
1647
1648 IPW_DEBUG_INFO("enter\n");
1649
1650 IPW_DEBUG_SCAN("setting scan options\n");
1651
1652 cmd.host_command_parameters[0] = 0;
1653
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663 err = ipw2100_hw_send_command(priv, &cmd);
1664
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1667
1668 return err;
1669 }
1670
ipw2100_start_scan(struct ipw2100_priv * priv)1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1677 };
1678 int err;
1679
1680 IPW_DEBUG_HC("START_SCAN\n");
1681
1682 cmd.host_command_parameters[0] = 0;
1683
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1687
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1691 }
1692
1693 IPW_DEBUG_INFO("enter\n");
1694
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1696 *
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1699 */
1700 IPW_DEBUG_SCAN("starting scan\n");
1701
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1706
1707 IPW_DEBUG_INFO("exit\n");
1708
1709 return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1721 },
1722 };
1723
ipw2100_up(struct ipw2100_priv * priv,int deferred)1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 unsigned long flags;
1727 int rc = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1730
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1735 }
1736
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1742 }
1743
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1746 */
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1752
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 if (ipw2100_power_cycle_adapter(priv)) {
1761 printk(KERN_WARNING DRV_NAME
1762 ": %s: Could not cycle adapter.\n",
1763 priv->net_dev->name);
1764 rc = 1;
1765 goto exit;
1766 }
1767 } else
1768 priv->status |= STATUS_POWERED;
1769
1770 /* Load the firmware, start the clocks, etc. */
1771 if (ipw2100_start_adapter(priv)) {
1772 printk(KERN_ERR DRV_NAME
1773 ": %s: Failed to start the firmware.\n",
1774 priv->net_dev->name);
1775 rc = 1;
1776 goto exit;
1777 }
1778
1779 ipw2100_initialize_ordinals(priv);
1780
1781 /* Determine capabilities of this particular HW configuration */
1782 if (ipw2100_get_hw_features(priv)) {
1783 printk(KERN_ERR DRV_NAME
1784 ": %s: Failed to determine HW features.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1788 }
1789
1790 /* Initialize the geo */
1791 libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794 lock = LOCK_NONE;
1795 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796 printk(KERN_ERR DRV_NAME
1797 ": %s: Failed to clear ordinal lock.\n",
1798 priv->net_dev->name);
1799 rc = 1;
1800 goto exit;
1801 }
1802
1803 priv->status &= ~STATUS_SCANNING;
1804
1805 if (rf_kill_active(priv)) {
1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 priv->net_dev->name);
1808
1809 if (priv->stop_rf_kill) {
1810 priv->stop_rf_kill = 0;
1811 schedule_delayed_work(&priv->rf_kill,
1812 round_jiffies_relative(HZ));
1813 }
1814
1815 deferred = 1;
1816 }
1817
1818 /* Turn on the interrupt so that commands can be processed */
1819 ipw2100_enable_interrupts(priv);
1820
1821 /* Send all of the commands that must be sent prior to
1822 * HOST_COMPLETE */
1823 if (ipw2100_adapter_setup(priv)) {
1824 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825 priv->net_dev->name);
1826 rc = 1;
1827 goto exit;
1828 }
1829
1830 if (!deferred) {
1831 /* Enable the adapter - sends HOST_COMPLETE */
1832 if (ipw2100_enable_adapter(priv)) {
1833 printk(KERN_ERR DRV_NAME ": "
1834 "%s: failed in call to enable adapter.\n",
1835 priv->net_dev->name);
1836 ipw2100_hw_stop_adapter(priv);
1837 rc = 1;
1838 goto exit;
1839 }
1840
1841 /* Start a scan . . . */
1842 ipw2100_set_scan_options(priv);
1843 ipw2100_start_scan(priv);
1844 }
1845
1846 exit:
1847 return rc;
1848 }
1849
ipw2100_down(struct ipw2100_priv * priv)1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 unsigned long flags;
1853 union iwreq_data wrqu = {
1854 .ap_addr = {
1855 .sa_family = ARPHRD_ETHER}
1856 };
1857 int associated = priv->status & STATUS_ASSOCIATED;
1858
1859 /* Kill the RF switch timer */
1860 if (!priv->stop_rf_kill) {
1861 priv->stop_rf_kill = 1;
1862 cancel_delayed_work(&priv->rf_kill);
1863 }
1864
1865 /* Kill the firmware hang check timer */
1866 if (!priv->stop_hang_check) {
1867 priv->stop_hang_check = 1;
1868 cancel_delayed_work(&priv->hang_check);
1869 }
1870
1871 /* Kill any pending resets */
1872 if (priv->status & STATUS_RESET_PENDING)
1873 cancel_delayed_work(&priv->reset_work);
1874
1875 /* Make sure the interrupt is on so that FW commands will be
1876 * processed correctly */
1877 spin_lock_irqsave(&priv->low_lock, flags);
1878 ipw2100_enable_interrupts(priv);
1879 spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881 if (ipw2100_hw_stop_adapter(priv))
1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 priv->net_dev->name);
1884
1885 /* Do not disable the interrupt until _after_ we disable
1886 * the adaptor. Otherwise the CARD_DISABLE command will never
1887 * be ack'd by the firmware */
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 ipw2100_disable_interrupts(priv);
1890 spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894 /* We have to signal any supplicant if we are disassociating */
1895 if (associated)
1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 netif_carrier_off(priv->net_dev);
1900 netif_stop_queue(priv->net_dev);
1901 }
1902
ipw2100_wdev_init(struct net_device * dev)1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905 struct ipw2100_priv *priv = libipw_priv(dev);
1906 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907 struct wireless_dev *wdev = &priv->ieee->wdev;
1908 int i;
1909
1910 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912 /* fill-out priv->ieee->bg_band */
1913 if (geo->bg_channels) {
1914 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916 bg_band->band = IEEE80211_BAND_2GHZ;
1917 bg_band->n_channels = geo->bg_channels;
1918 bg_band->channels = kcalloc(geo->bg_channels,
1919 sizeof(struct ieee80211_channel),
1920 GFP_KERNEL);
1921 if (!bg_band->channels) {
1922 ipw2100_down(priv);
1923 return -ENOMEM;
1924 }
1925 /* translate geo->bg to bg_band.channels */
1926 for (i = 0; i < geo->bg_channels; i++) {
1927 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928 bg_band->channels[i].center_freq = geo->bg[i].freq;
1929 bg_band->channels[i].hw_value = geo->bg[i].channel;
1930 bg_band->channels[i].max_power = geo->bg[i].max_power;
1931 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932 bg_band->channels[i].flags |=
1933 IEEE80211_CHAN_NO_IR;
1934 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935 bg_band->channels[i].flags |=
1936 IEEE80211_CHAN_NO_IR;
1937 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938 bg_band->channels[i].flags |=
1939 IEEE80211_CHAN_RADAR;
1940 /* No equivalent for LIBIPW_CH_80211H_RULES,
1941 LIBIPW_CH_UNIFORM_SPREADING, or
1942 LIBIPW_CH_B_ONLY... */
1943 }
1944 /* point at bitrate info */
1945 bg_band->bitrates = ipw2100_bg_rates;
1946 bg_band->n_bitrates = RATE_COUNT;
1947
1948 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949 }
1950
1951 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955 if (wiphy_register(wdev->wiphy))
1956 return -EIO;
1957 return 0;
1958 }
1959
ipw2100_reset_adapter(struct work_struct * work)1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962 struct ipw2100_priv *priv =
1963 container_of(work, struct ipw2100_priv, reset_work.work);
1964 unsigned long flags;
1965 union iwreq_data wrqu = {
1966 .ap_addr = {
1967 .sa_family = ARPHRD_ETHER}
1968 };
1969 int associated = priv->status & STATUS_ASSOCIATED;
1970
1971 spin_lock_irqsave(&priv->low_lock, flags);
1972 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973 priv->resets++;
1974 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975 priv->status |= STATUS_SECURITY_UPDATED;
1976
1977 /* Force a power cycle even if interface hasn't been opened
1978 * yet */
1979 cancel_delayed_work(&priv->reset_work);
1980 priv->status |= STATUS_RESET_PENDING;
1981 spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983 mutex_lock(&priv->action_mutex);
1984 /* stop timed checks so that they don't interfere with reset */
1985 priv->stop_hang_check = 1;
1986 cancel_delayed_work(&priv->hang_check);
1987
1988 /* We have to signal any supplicant if we are disassociating */
1989 if (associated)
1990 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992 ipw2100_up(priv, 0);
1993 mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
isr_indicate_associated(struct ipw2100_priv * priv,u32 status)1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001 int ret;
2002 unsigned int len, essid_len;
2003 char essid[IW_ESSID_MAX_SIZE];
2004 u32 txrate;
2005 u32 chan;
2006 char *txratename;
2007 u8 bssid[ETH_ALEN];
2008
2009 /*
2010 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011 * an actual MAC of the AP. Seems like FW sets this
2012 * address too late. Read it later and expose through
2013 * /proc or schedule a later task to query and update
2014 */
2015
2016 essid_len = IW_ESSID_MAX_SIZE;
2017 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018 essid, &essid_len);
2019 if (ret) {
2020 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021 __LINE__);
2022 return;
2023 }
2024
2025 len = sizeof(u32);
2026 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027 if (ret) {
2028 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029 __LINE__);
2030 return;
2031 }
2032
2033 len = sizeof(u32);
2034 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035 if (ret) {
2036 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037 __LINE__);
2038 return;
2039 }
2040 len = ETH_ALEN;
2041 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042 &len);
2043 if (ret) {
2044 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045 __LINE__);
2046 return;
2047 }
2048 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049
2050 switch (txrate) {
2051 case TX_RATE_1_MBIT:
2052 txratename = "1Mbps";
2053 break;
2054 case TX_RATE_2_MBIT:
2055 txratename = "2Mbsp";
2056 break;
2057 case TX_RATE_5_5_MBIT:
2058 txratename = "5.5Mbps";
2059 break;
2060 case TX_RATE_11_MBIT:
2061 txratename = "11Mbps";
2062 break;
2063 default:
2064 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065 txratename = "unknown rate";
2066 break;
2067 }
2068
2069 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070 priv->net_dev->name, essid_len, essid,
2071 txratename, chan, bssid);
2072
2073 /* now we copy read ssid into dev */
2074 if (!(priv->config & CFG_STATIC_ESSID)) {
2075 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076 memcpy(priv->essid, essid, priv->essid_len);
2077 }
2078 priv->channel = chan;
2079 memcpy(priv->bssid, bssid, ETH_ALEN);
2080
2081 priv->status |= STATUS_ASSOCIATING;
2082 priv->connect_start = get_seconds();
2083
2084 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086
ipw2100_set_essid(struct ipw2100_priv * priv,char * essid,int length,int batch_mode)2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088 int length, int batch_mode)
2089 {
2090 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091 struct host_command cmd = {
2092 .host_command = SSID,
2093 .host_command_sequence = 0,
2094 .host_command_length = ssid_len
2095 };
2096 int err;
2097
2098 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099
2100 if (ssid_len)
2101 memcpy(cmd.host_command_parameters, essid, ssid_len);
2102
2103 if (!batch_mode) {
2104 err = ipw2100_disable_adapter(priv);
2105 if (err)
2106 return err;
2107 }
2108
2109 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110 * disable auto association -- so we cheat by setting a bogus SSID */
2111 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112 int i;
2113 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115 bogus[i] = 0x18 + i;
2116 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117 }
2118
2119 /* NOTE: We always send the SSID command even if the provided ESSID is
2120 * the same as what we currently think is set. */
2121
2122 err = ipw2100_hw_send_command(priv, &cmd);
2123 if (!err) {
2124 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125 memcpy(priv->essid, essid, ssid_len);
2126 priv->essid_len = ssid_len;
2127 }
2128
2129 if (!batch_mode) {
2130 if (ipw2100_enable_adapter(priv))
2131 err = -EIO;
2132 }
2133
2134 return err;
2135 }
2136
isr_indicate_association_lost(struct ipw2100_priv * priv,u32 status)2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141 priv->bssid);
2142
2143 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144
2145 if (priv->status & STATUS_STOPPING) {
2146 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147 return;
2148 }
2149
2150 eth_zero_addr(priv->bssid);
2151 eth_zero_addr(priv->ieee->bssid);
2152
2153 netif_carrier_off(priv->net_dev);
2154 netif_stop_queue(priv->net_dev);
2155
2156 if (!(priv->status & STATUS_RUNNING))
2157 return;
2158
2159 if (priv->status & STATUS_SECURITY_UPDATED)
2160 schedule_delayed_work(&priv->security_work, 0);
2161
2162 schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164
isr_indicate_rf_kill(struct ipw2100_priv * priv,u32 status)2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168 priv->net_dev->name);
2169
2170 /* RF_KILL is now enabled (else we wouldn't be here) */
2171 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172 priv->status |= STATUS_RF_KILL_HW;
2173
2174 /* Make sure the RF Kill check timer is running */
2175 priv->stop_rf_kill = 0;
2176 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178
ipw2100_scan_event(struct work_struct * work)2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182 scan_event.work);
2183 union iwreq_data wrqu;
2184
2185 wrqu.data.length = 0;
2186 wrqu.data.flags = 0;
2187 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189
isr_scan_complete(struct ipw2100_priv * priv,u32 status)2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192 IPW_DEBUG_SCAN("scan complete\n");
2193 /* Age the scan results... */
2194 priv->ieee->scans++;
2195 priv->status &= ~STATUS_SCANNING;
2196
2197 /* Only userspace-requested scan completion events go out immediately */
2198 if (!priv->user_requested_scan) {
2199 schedule_delayed_work(&priv->scan_event,
2200 round_jiffies_relative(msecs_to_jiffies(4000)));
2201 } else {
2202 priv->user_requested_scan = 0;
2203 mod_delayed_work(system_wq, &priv->scan_event, 0);
2204 }
2205 }
2206
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210 int status;
2211 void (*cb) (struct ipw2100_priv * priv, u32 status);
2212 char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217 int status;
2218 void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif /* CONFIG_IPW2100_DEBUG */
2221
isr_indicate_scanning(struct ipw2100_priv * priv,u32 status)2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224 IPW_DEBUG_SCAN("Scanning...\n");
2225 priv->status |= STATUS_SCANNING;
2226 }
2227
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241 IPW2100_HANDLER(-1, NULL)
2242 };
2243
isr_status_change(struct ipw2100_priv * priv,int status)2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246 int i;
2247
2248 if (status == IPW_STATE_SCANNING &&
2249 priv->status & STATUS_ASSOCIATED &&
2250 !(priv->status & STATUS_SCANNING)) {
2251 IPW_DEBUG_INFO("Scan detected while associated, with "
2252 "no scan request. Restarting firmware.\n");
2253
2254 /* Wake up any sleeping jobs */
2255 schedule_reset(priv);
2256 }
2257
2258 for (i = 0; status_handlers[i].status != -1; i++) {
2259 if (status == status_handlers[i].status) {
2260 IPW_DEBUG_NOTIF("Status change: %s\n",
2261 status_handlers[i].name);
2262 if (status_handlers[i].cb)
2263 status_handlers[i].cb(priv, status);
2264 priv->wstats.status = status;
2265 return;
2266 }
2267 }
2268
2269 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271
isr_rx_complete_command(struct ipw2100_priv * priv,struct ipw2100_cmd_header * cmd)2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273 struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278 command_types[cmd->host_command_reg],
2279 cmd->host_command_reg);
2280 }
2281 #endif
2282 if (cmd->host_command_reg == HOST_COMPLETE)
2283 priv->status |= STATUS_ENABLED;
2284
2285 if (cmd->host_command_reg == CARD_DISABLE)
2286 priv->status &= ~STATUS_ENABLED;
2287
2288 priv->status &= ~STATUS_CMD_ACTIVE;
2289
2290 wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295 "COMMAND_STATUS_VAL",
2296 "STATUS_CHANGE_VAL",
2297 "P80211_DATA_VAL",
2298 "P8023_DATA_VAL",
2299 "HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302
ipw2100_alloc_skb(struct ipw2100_priv * priv,struct ipw2100_rx_packet * packet)2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304 struct ipw2100_rx_packet *packet)
2305 {
2306 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307 if (!packet->skb)
2308 return -ENOMEM;
2309
2310 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312 sizeof(struct ipw2100_rx),
2313 PCI_DMA_FROMDEVICE);
2314 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2315 * dma_addr */
2316
2317 return 0;
2318 }
2319
2320 #define SEARCH_ERROR 0xffffffff
2321 #define SEARCH_FAIL 0xfffffffe
2322 #define SEARCH_SUCCESS 0xfffffff0
2323 #define SEARCH_DISCARD 0
2324 #define SEARCH_SNAPSHOT 1
2325
2326 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
ipw2100_snapshot_free(struct ipw2100_priv * priv)2327 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2328 {
2329 int i;
2330 if (!priv->snapshot[0])
2331 return;
2332 for (i = 0; i < 0x30; i++)
2333 kfree(priv->snapshot[i]);
2334 priv->snapshot[0] = NULL;
2335 }
2336
2337 #ifdef IPW2100_DEBUG_C3
ipw2100_snapshot_alloc(struct ipw2100_priv * priv)2338 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2339 {
2340 int i;
2341 if (priv->snapshot[0])
2342 return 1;
2343 for (i = 0; i < 0x30; i++) {
2344 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2345 if (!priv->snapshot[i]) {
2346 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2347 "buffer %d\n", priv->net_dev->name, i);
2348 while (i > 0)
2349 kfree(priv->snapshot[--i]);
2350 priv->snapshot[0] = NULL;
2351 return 0;
2352 }
2353 }
2354
2355 return 1;
2356 }
2357
ipw2100_match_buf(struct ipw2100_priv * priv,u8 * in_buf,size_t len,int mode)2358 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2359 size_t len, int mode)
2360 {
2361 u32 i, j;
2362 u32 tmp;
2363 u8 *s, *d;
2364 u32 ret;
2365
2366 s = in_buf;
2367 if (mode == SEARCH_SNAPSHOT) {
2368 if (!ipw2100_snapshot_alloc(priv))
2369 mode = SEARCH_DISCARD;
2370 }
2371
2372 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2373 read_nic_dword(priv->net_dev, i, &tmp);
2374 if (mode == SEARCH_SNAPSHOT)
2375 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2376 if (ret == SEARCH_FAIL) {
2377 d = (u8 *) & tmp;
2378 for (j = 0; j < 4; j++) {
2379 if (*s != *d) {
2380 s = in_buf;
2381 continue;
2382 }
2383
2384 s++;
2385 d++;
2386
2387 if ((s - in_buf) == len)
2388 ret = (i + j) - len + 1;
2389 }
2390 } else if (mode == SEARCH_DISCARD)
2391 return ret;
2392 }
2393
2394 return ret;
2395 }
2396 #endif
2397
2398 /*
2399 *
2400 * 0) Disconnect the SKB from the firmware (just unmap)
2401 * 1) Pack the ETH header into the SKB
2402 * 2) Pass the SKB to the network stack
2403 *
2404 * When packet is provided by the firmware, it contains the following:
2405 *
2406 * . libipw_hdr
2407 * . libipw_snap_hdr
2408 *
2409 * The size of the constructed ethernet
2410 *
2411 */
2412 #ifdef IPW2100_RX_DEBUG
2413 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2414 #endif
2415
ipw2100_corruption_detected(struct ipw2100_priv * priv,int i)2416 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2417 {
2418 #ifdef IPW2100_DEBUG_C3
2419 struct ipw2100_status *status = &priv->status_queue.drv[i];
2420 u32 match, reg;
2421 int j;
2422 #endif
2423
2424 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2425 i * sizeof(struct ipw2100_status));
2426
2427 #ifdef IPW2100_DEBUG_C3
2428 /* Halt the firmware so we can get a good image */
2429 write_register(priv->net_dev, IPW_REG_RESET_REG,
2430 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2431 j = 5;
2432 do {
2433 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2434 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
2435
2436 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2437 break;
2438 } while (j--);
2439
2440 match = ipw2100_match_buf(priv, (u8 *) status,
2441 sizeof(struct ipw2100_status),
2442 SEARCH_SNAPSHOT);
2443 if (match < SEARCH_SUCCESS)
2444 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2445 "offset 0x%06X, length %d:\n",
2446 priv->net_dev->name, match,
2447 sizeof(struct ipw2100_status));
2448 else
2449 IPW_DEBUG_INFO("%s: No DMA status match in "
2450 "Firmware.\n", priv->net_dev->name);
2451
2452 printk_buf((u8 *) priv->status_queue.drv,
2453 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2454 #endif
2455
2456 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2457 priv->net_dev->stats.rx_errors++;
2458 schedule_reset(priv);
2459 }
2460
isr_rx(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2461 static void isr_rx(struct ipw2100_priv *priv, int i,
2462 struct libipw_rx_stats *stats)
2463 {
2464 struct net_device *dev = priv->net_dev;
2465 struct ipw2100_status *status = &priv->status_queue.drv[i];
2466 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2467
2468 IPW_DEBUG_RX("Handler...\n");
2469
2470 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2471 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2472 " Dropping.\n",
2473 dev->name,
2474 status->frame_size, skb_tailroom(packet->skb));
2475 dev->stats.rx_errors++;
2476 return;
2477 }
2478
2479 if (unlikely(!netif_running(dev))) {
2480 dev->stats.rx_errors++;
2481 priv->wstats.discard.misc++;
2482 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2483 return;
2484 }
2485
2486 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2487 !(priv->status & STATUS_ASSOCIATED))) {
2488 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2489 priv->wstats.discard.misc++;
2490 return;
2491 }
2492
2493 pci_unmap_single(priv->pci_dev,
2494 packet->dma_addr,
2495 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2496
2497 skb_put(packet->skb, status->frame_size);
2498
2499 #ifdef IPW2100_RX_DEBUG
2500 /* Make a copy of the frame so we can dump it to the logs if
2501 * libipw_rx fails */
2502 skb_copy_from_linear_data(packet->skb, packet_data,
2503 min_t(u32, status->frame_size,
2504 IPW_RX_NIC_BUFFER_LENGTH));
2505 #endif
2506
2507 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2508 #ifdef IPW2100_RX_DEBUG
2509 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2510 dev->name);
2511 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2512 #endif
2513 dev->stats.rx_errors++;
2514
2515 /* libipw_rx failed, so it didn't free the SKB */
2516 dev_kfree_skb_any(packet->skb);
2517 packet->skb = NULL;
2518 }
2519
2520 /* We need to allocate a new SKB and attach it to the RDB. */
2521 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2522 printk(KERN_WARNING DRV_NAME ": "
2523 "%s: Unable to allocate SKB onto RBD ring - disabling "
2524 "adapter.\n", dev->name);
2525 /* TODO: schedule adapter shutdown */
2526 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2527 }
2528
2529 /* Update the RDB entry */
2530 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2531 }
2532
2533 #ifdef CONFIG_IPW2100_MONITOR
2534
isr_rx_monitor(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2535 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2536 struct libipw_rx_stats *stats)
2537 {
2538 struct net_device *dev = priv->net_dev;
2539 struct ipw2100_status *status = &priv->status_queue.drv[i];
2540 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2541
2542 /* Magic struct that slots into the radiotap header -- no reason
2543 * to build this manually element by element, we can write it much
2544 * more efficiently than we can parse it. ORDER MATTERS HERE */
2545 struct ipw_rt_hdr {
2546 struct ieee80211_radiotap_header rt_hdr;
2547 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2548 } *ipw_rt;
2549
2550 IPW_DEBUG_RX("Handler...\n");
2551
2552 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2553 sizeof(struct ipw_rt_hdr))) {
2554 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2555 " Dropping.\n",
2556 dev->name,
2557 status->frame_size,
2558 skb_tailroom(packet->skb));
2559 dev->stats.rx_errors++;
2560 return;
2561 }
2562
2563 if (unlikely(!netif_running(dev))) {
2564 dev->stats.rx_errors++;
2565 priv->wstats.discard.misc++;
2566 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2567 return;
2568 }
2569
2570 if (unlikely(priv->config & CFG_CRC_CHECK &&
2571 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2572 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2573 dev->stats.rx_errors++;
2574 return;
2575 }
2576
2577 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2578 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2579 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2580 packet->skb->data, status->frame_size);
2581
2582 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2583
2584 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2585 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2586 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2587
2588 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2589
2590 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2591
2592 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2593
2594 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2595 dev->stats.rx_errors++;
2596
2597 /* libipw_rx failed, so it didn't free the SKB */
2598 dev_kfree_skb_any(packet->skb);
2599 packet->skb = NULL;
2600 }
2601
2602 /* We need to allocate a new SKB and attach it to the RDB. */
2603 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2604 IPW_DEBUG_WARNING(
2605 "%s: Unable to allocate SKB onto RBD ring - disabling "
2606 "adapter.\n", dev->name);
2607 /* TODO: schedule adapter shutdown */
2608 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2609 }
2610
2611 /* Update the RDB entry */
2612 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2613 }
2614
2615 #endif
2616
ipw2100_corruption_check(struct ipw2100_priv * priv,int i)2617 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2618 {
2619 struct ipw2100_status *status = &priv->status_queue.drv[i];
2620 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2621 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2622
2623 switch (frame_type) {
2624 case COMMAND_STATUS_VAL:
2625 return (status->frame_size != sizeof(u->rx_data.command));
2626 case STATUS_CHANGE_VAL:
2627 return (status->frame_size != sizeof(u->rx_data.status));
2628 case HOST_NOTIFICATION_VAL:
2629 return (status->frame_size < sizeof(u->rx_data.notification));
2630 case P80211_DATA_VAL:
2631 case P8023_DATA_VAL:
2632 #ifdef CONFIG_IPW2100_MONITOR
2633 return 0;
2634 #else
2635 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2636 case IEEE80211_FTYPE_MGMT:
2637 case IEEE80211_FTYPE_CTL:
2638 return 0;
2639 case IEEE80211_FTYPE_DATA:
2640 return (status->frame_size >
2641 IPW_MAX_802_11_PAYLOAD_LENGTH);
2642 }
2643 #endif
2644 }
2645
2646 return 1;
2647 }
2648
2649 /*
2650 * ipw2100 interrupts are disabled at this point, and the ISR
2651 * is the only code that calls this method. So, we do not need
2652 * to play with any locks.
2653 *
2654 * RX Queue works as follows:
2655 *
2656 * Read index - firmware places packet in entry identified by the
2657 * Read index and advances Read index. In this manner,
2658 * Read index will always point to the next packet to
2659 * be filled--but not yet valid.
2660 *
2661 * Write index - driver fills this entry with an unused RBD entry.
2662 * This entry has not filled by the firmware yet.
2663 *
2664 * In between the W and R indexes are the RBDs that have been received
2665 * but not yet processed.
2666 *
2667 * The process of handling packets will start at WRITE + 1 and advance
2668 * until it reaches the READ index.
2669 *
2670 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2671 *
2672 */
__ipw2100_rx_process(struct ipw2100_priv * priv)2673 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2674 {
2675 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2676 struct ipw2100_status_queue *sq = &priv->status_queue;
2677 struct ipw2100_rx_packet *packet;
2678 u16 frame_type;
2679 u32 r, w, i, s;
2680 struct ipw2100_rx *u;
2681 struct libipw_rx_stats stats = {
2682 .mac_time = jiffies,
2683 };
2684
2685 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2686 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2687
2688 if (r >= rxq->entries) {
2689 IPW_DEBUG_RX("exit - bad read index\n");
2690 return;
2691 }
2692
2693 i = (rxq->next + 1) % rxq->entries;
2694 s = i;
2695 while (i != r) {
2696 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2697 r, rxq->next, i); */
2698
2699 packet = &priv->rx_buffers[i];
2700
2701 /* Sync the DMA for the RX buffer so CPU is sure to get
2702 * the correct values */
2703 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2704 sizeof(struct ipw2100_rx),
2705 PCI_DMA_FROMDEVICE);
2706
2707 if (unlikely(ipw2100_corruption_check(priv, i))) {
2708 ipw2100_corruption_detected(priv, i);
2709 goto increment;
2710 }
2711
2712 u = packet->rxp;
2713 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2714 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2715 stats.len = sq->drv[i].frame_size;
2716
2717 stats.mask = 0;
2718 if (stats.rssi != 0)
2719 stats.mask |= LIBIPW_STATMASK_RSSI;
2720 stats.freq = LIBIPW_24GHZ_BAND;
2721
2722 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2723 priv->net_dev->name, frame_types[frame_type],
2724 stats.len);
2725
2726 switch (frame_type) {
2727 case COMMAND_STATUS_VAL:
2728 /* Reset Rx watchdog */
2729 isr_rx_complete_command(priv, &u->rx_data.command);
2730 break;
2731
2732 case STATUS_CHANGE_VAL:
2733 isr_status_change(priv, u->rx_data.status);
2734 break;
2735
2736 case P80211_DATA_VAL:
2737 case P8023_DATA_VAL:
2738 #ifdef CONFIG_IPW2100_MONITOR
2739 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2740 isr_rx_monitor(priv, i, &stats);
2741 break;
2742 }
2743 #endif
2744 if (stats.len < sizeof(struct libipw_hdr_3addr))
2745 break;
2746 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2747 case IEEE80211_FTYPE_MGMT:
2748 libipw_rx_mgt(priv->ieee,
2749 &u->rx_data.header, &stats);
2750 break;
2751
2752 case IEEE80211_FTYPE_CTL:
2753 break;
2754
2755 case IEEE80211_FTYPE_DATA:
2756 isr_rx(priv, i, &stats);
2757 break;
2758
2759 }
2760 break;
2761 }
2762
2763 increment:
2764 /* clear status field associated with this RBD */
2765 rxq->drv[i].status.info.field = 0;
2766
2767 i = (i + 1) % rxq->entries;
2768 }
2769
2770 if (i != s) {
2771 /* backtrack one entry, wrapping to end if at 0 */
2772 rxq->next = (i ? i : rxq->entries) - 1;
2773
2774 write_register(priv->net_dev,
2775 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2776 }
2777 }
2778
2779 /*
2780 * __ipw2100_tx_process
2781 *
2782 * This routine will determine whether the next packet on
2783 * the fw_pend_list has been processed by the firmware yet.
2784 *
2785 * If not, then it does nothing and returns.
2786 *
2787 * If so, then it removes the item from the fw_pend_list, frees
2788 * any associated storage, and places the item back on the
2789 * free list of its source (either msg_free_list or tx_free_list)
2790 *
2791 * TX Queue works as follows:
2792 *
2793 * Read index - points to the next TBD that the firmware will
2794 * process. The firmware will read the data, and once
2795 * done processing, it will advance the Read index.
2796 *
2797 * Write index - driver fills this entry with an constructed TBD
2798 * entry. The Write index is not advanced until the
2799 * packet has been configured.
2800 *
2801 * In between the W and R indexes are the TBDs that have NOT been
2802 * processed. Lagging behind the R index are packets that have
2803 * been processed but have not been freed by the driver.
2804 *
2805 * In order to free old storage, an internal index will be maintained
2806 * that points to the next packet to be freed. When all used
2807 * packets have been freed, the oldest index will be the same as the
2808 * firmware's read index.
2809 *
2810 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2811 *
2812 * Because the TBD structure can not contain arbitrary data, the
2813 * driver must keep an internal queue of cached allocations such that
2814 * it can put that data back into the tx_free_list and msg_free_list
2815 * for use by future command and data packets.
2816 *
2817 */
__ipw2100_tx_process(struct ipw2100_priv * priv)2818 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2819 {
2820 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2821 struct ipw2100_bd *tbd;
2822 struct list_head *element;
2823 struct ipw2100_tx_packet *packet;
2824 int descriptors_used;
2825 int e, i;
2826 u32 r, w, frag_num = 0;
2827
2828 if (list_empty(&priv->fw_pend_list))
2829 return 0;
2830
2831 element = priv->fw_pend_list.next;
2832
2833 packet = list_entry(element, struct ipw2100_tx_packet, list);
2834 tbd = &txq->drv[packet->index];
2835
2836 /* Determine how many TBD entries must be finished... */
2837 switch (packet->type) {
2838 case COMMAND:
2839 /* COMMAND uses only one slot; don't advance */
2840 descriptors_used = 1;
2841 e = txq->oldest;
2842 break;
2843
2844 case DATA:
2845 /* DATA uses two slots; advance and loop position. */
2846 descriptors_used = tbd->num_fragments;
2847 frag_num = tbd->num_fragments - 1;
2848 e = txq->oldest + frag_num;
2849 e %= txq->entries;
2850 break;
2851
2852 default:
2853 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2854 priv->net_dev->name);
2855 return 0;
2856 }
2857
2858 /* if the last TBD is not done by NIC yet, then packet is
2859 * not ready to be released.
2860 *
2861 */
2862 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2863 &r);
2864 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2865 &w);
2866 if (w != txq->next)
2867 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2868 priv->net_dev->name);
2869
2870 /*
2871 * txq->next is the index of the last packet written txq->oldest is
2872 * the index of the r is the index of the next packet to be read by
2873 * firmware
2874 */
2875
2876 /*
2877 * Quick graphic to help you visualize the following
2878 * if / else statement
2879 *
2880 * ===>| s---->|===============
2881 * e>|
2882 * | a | b | c | d | e | f | g | h | i | j | k | l
2883 * r---->|
2884 * w
2885 *
2886 * w - updated by driver
2887 * r - updated by firmware
2888 * s - start of oldest BD entry (txq->oldest)
2889 * e - end of oldest BD entry
2890 *
2891 */
2892 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2893 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2894 return 0;
2895 }
2896
2897 list_del(element);
2898 DEC_STAT(&priv->fw_pend_stat);
2899
2900 #ifdef CONFIG_IPW2100_DEBUG
2901 {
2902 i = txq->oldest;
2903 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2904 &txq->drv[i],
2905 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2906 txq->drv[i].host_addr, txq->drv[i].buf_length);
2907
2908 if (packet->type == DATA) {
2909 i = (i + 1) % txq->entries;
2910
2911 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2912 &txq->drv[i],
2913 (u32) (txq->nic + i *
2914 sizeof(struct ipw2100_bd)),
2915 (u32) txq->drv[i].host_addr,
2916 txq->drv[i].buf_length);
2917 }
2918 }
2919 #endif
2920
2921 switch (packet->type) {
2922 case DATA:
2923 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2924 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2925 "Expecting DATA TBD but pulled "
2926 "something else: ids %d=%d.\n",
2927 priv->net_dev->name, txq->oldest, packet->index);
2928
2929 /* DATA packet; we have to unmap and free the SKB */
2930 for (i = 0; i < frag_num; i++) {
2931 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2932
2933 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2934 (packet->index + 1 + i) % txq->entries,
2935 tbd->host_addr, tbd->buf_length);
2936
2937 pci_unmap_single(priv->pci_dev,
2938 tbd->host_addr,
2939 tbd->buf_length, PCI_DMA_TODEVICE);
2940 }
2941
2942 libipw_txb_free(packet->info.d_struct.txb);
2943 packet->info.d_struct.txb = NULL;
2944
2945 list_add_tail(element, &priv->tx_free_list);
2946 INC_STAT(&priv->tx_free_stat);
2947
2948 /* We have a free slot in the Tx queue, so wake up the
2949 * transmit layer if it is stopped. */
2950 if (priv->status & STATUS_ASSOCIATED)
2951 netif_wake_queue(priv->net_dev);
2952
2953 /* A packet was processed by the hardware, so update the
2954 * watchdog */
2955 priv->net_dev->trans_start = jiffies;
2956
2957 break;
2958
2959 case COMMAND:
2960 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2961 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2962 "Expecting COMMAND TBD but pulled "
2963 "something else: ids %d=%d.\n",
2964 priv->net_dev->name, txq->oldest, packet->index);
2965
2966 #ifdef CONFIG_IPW2100_DEBUG
2967 if (packet->info.c_struct.cmd->host_command_reg <
2968 ARRAY_SIZE(command_types))
2969 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2970 command_types[packet->info.c_struct.cmd->
2971 host_command_reg],
2972 packet->info.c_struct.cmd->
2973 host_command_reg,
2974 packet->info.c_struct.cmd->cmd_status_reg);
2975 #endif
2976
2977 list_add_tail(element, &priv->msg_free_list);
2978 INC_STAT(&priv->msg_free_stat);
2979 break;
2980 }
2981
2982 /* advance oldest used TBD pointer to start of next entry */
2983 txq->oldest = (e + 1) % txq->entries;
2984 /* increase available TBDs number */
2985 txq->available += descriptors_used;
2986 SET_STAT(&priv->txq_stat, txq->available);
2987
2988 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2989 jiffies - packet->jiffy_start);
2990
2991 return (!list_empty(&priv->fw_pend_list));
2992 }
2993
__ipw2100_tx_complete(struct ipw2100_priv * priv)2994 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2995 {
2996 int i = 0;
2997
2998 while (__ipw2100_tx_process(priv) && i < 200)
2999 i++;
3000
3001 if (i == 200) {
3002 printk(KERN_WARNING DRV_NAME ": "
3003 "%s: Driver is running slow (%d iters).\n",
3004 priv->net_dev->name, i);
3005 }
3006 }
3007
ipw2100_tx_send_commands(struct ipw2100_priv * priv)3008 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3009 {
3010 struct list_head *element;
3011 struct ipw2100_tx_packet *packet;
3012 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3013 struct ipw2100_bd *tbd;
3014 int next = txq->next;
3015
3016 while (!list_empty(&priv->msg_pend_list)) {
3017 /* if there isn't enough space in TBD queue, then
3018 * don't stuff a new one in.
3019 * NOTE: 3 are needed as a command will take one,
3020 * and there is a minimum of 2 that must be
3021 * maintained between the r and w indexes
3022 */
3023 if (txq->available <= 3) {
3024 IPW_DEBUG_TX("no room in tx_queue\n");
3025 break;
3026 }
3027
3028 element = priv->msg_pend_list.next;
3029 list_del(element);
3030 DEC_STAT(&priv->msg_pend_stat);
3031
3032 packet = list_entry(element, struct ipw2100_tx_packet, list);
3033
3034 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3035 &txq->drv[txq->next],
3036 (u32) (txq->nic + txq->next *
3037 sizeof(struct ipw2100_bd)));
3038
3039 packet->index = txq->next;
3040
3041 tbd = &txq->drv[txq->next];
3042
3043 /* initialize TBD */
3044 tbd->host_addr = packet->info.c_struct.cmd_phys;
3045 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3046 /* not marking number of fragments causes problems
3047 * with f/w debug version */
3048 tbd->num_fragments = 1;
3049 tbd->status.info.field =
3050 IPW_BD_STATUS_TX_FRAME_COMMAND |
3051 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3052
3053 /* update TBD queue counters */
3054 txq->next++;
3055 txq->next %= txq->entries;
3056 txq->available--;
3057 DEC_STAT(&priv->txq_stat);
3058
3059 list_add_tail(element, &priv->fw_pend_list);
3060 INC_STAT(&priv->fw_pend_stat);
3061 }
3062
3063 if (txq->next != next) {
3064 /* kick off the DMA by notifying firmware the
3065 * write index has moved; make sure TBD stores are sync'd */
3066 wmb();
3067 write_register(priv->net_dev,
3068 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3069 txq->next);
3070 }
3071 }
3072
3073 /*
3074 * ipw2100_tx_send_data
3075 *
3076 */
ipw2100_tx_send_data(struct ipw2100_priv * priv)3077 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3078 {
3079 struct list_head *element;
3080 struct ipw2100_tx_packet *packet;
3081 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3082 struct ipw2100_bd *tbd;
3083 int next = txq->next;
3084 int i = 0;
3085 struct ipw2100_data_header *ipw_hdr;
3086 struct libipw_hdr_3addr *hdr;
3087
3088 while (!list_empty(&priv->tx_pend_list)) {
3089 /* if there isn't enough space in TBD queue, then
3090 * don't stuff a new one in.
3091 * NOTE: 4 are needed as a data will take two,
3092 * and there is a minimum of 2 that must be
3093 * maintained between the r and w indexes
3094 */
3095 element = priv->tx_pend_list.next;
3096 packet = list_entry(element, struct ipw2100_tx_packet, list);
3097
3098 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3099 IPW_MAX_BDS)) {
3100 /* TODO: Support merging buffers if more than
3101 * IPW_MAX_BDS are used */
3102 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3103 "Increase fragmentation level.\n",
3104 priv->net_dev->name);
3105 }
3106
3107 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3108 IPW_DEBUG_TX("no room in tx_queue\n");
3109 break;
3110 }
3111
3112 list_del(element);
3113 DEC_STAT(&priv->tx_pend_stat);
3114
3115 tbd = &txq->drv[txq->next];
3116
3117 packet->index = txq->next;
3118
3119 ipw_hdr = packet->info.d_struct.data;
3120 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3121 fragments[0]->data;
3122
3123 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3124 /* To DS: Addr1 = BSSID, Addr2 = SA,
3125 Addr3 = DA */
3126 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3127 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3128 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3129 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3130 Addr3 = BSSID */
3131 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3133 }
3134
3135 ipw_hdr->host_command_reg = SEND;
3136 ipw_hdr->host_command_reg1 = 0;
3137
3138 /* For now we only support host based encryption */
3139 ipw_hdr->needs_encryption = 0;
3140 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3141 if (packet->info.d_struct.txb->nr_frags > 1)
3142 ipw_hdr->fragment_size =
3143 packet->info.d_struct.txb->frag_size -
3144 LIBIPW_3ADDR_LEN;
3145 else
3146 ipw_hdr->fragment_size = 0;
3147
3148 tbd->host_addr = packet->info.d_struct.data_phys;
3149 tbd->buf_length = sizeof(struct ipw2100_data_header);
3150 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3151 tbd->status.info.field =
3152 IPW_BD_STATUS_TX_FRAME_802_3 |
3153 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3154 txq->next++;
3155 txq->next %= txq->entries;
3156
3157 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3158 packet->index, tbd->host_addr, tbd->buf_length);
3159 #ifdef CONFIG_IPW2100_DEBUG
3160 if (packet->info.d_struct.txb->nr_frags > 1)
3161 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3162 packet->info.d_struct.txb->nr_frags);
3163 #endif
3164
3165 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3166 tbd = &txq->drv[txq->next];
3167 if (i == packet->info.d_struct.txb->nr_frags - 1)
3168 tbd->status.info.field =
3169 IPW_BD_STATUS_TX_FRAME_802_3 |
3170 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3171 else
3172 tbd->status.info.field =
3173 IPW_BD_STATUS_TX_FRAME_802_3 |
3174 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3175
3176 tbd->buf_length = packet->info.d_struct.txb->
3177 fragments[i]->len - LIBIPW_3ADDR_LEN;
3178
3179 tbd->host_addr = pci_map_single(priv->pci_dev,
3180 packet->info.d_struct.
3181 txb->fragments[i]->
3182 data +
3183 LIBIPW_3ADDR_LEN,
3184 tbd->buf_length,
3185 PCI_DMA_TODEVICE);
3186
3187 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3188 txq->next, tbd->host_addr,
3189 tbd->buf_length);
3190
3191 pci_dma_sync_single_for_device(priv->pci_dev,
3192 tbd->host_addr,
3193 tbd->buf_length,
3194 PCI_DMA_TODEVICE);
3195
3196 txq->next++;
3197 txq->next %= txq->entries;
3198 }
3199
3200 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3201 SET_STAT(&priv->txq_stat, txq->available);
3202
3203 list_add_tail(element, &priv->fw_pend_list);
3204 INC_STAT(&priv->fw_pend_stat);
3205 }
3206
3207 if (txq->next != next) {
3208 /* kick off the DMA by notifying firmware the
3209 * write index has moved; make sure TBD stores are sync'd */
3210 write_register(priv->net_dev,
3211 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3212 txq->next);
3213 }
3214 }
3215
ipw2100_irq_tasklet(unsigned long data)3216 static void ipw2100_irq_tasklet(unsigned long data)
3217 {
3218 struct ipw2100_priv *priv = (struct ipw2100_priv *)data;
3219 struct net_device *dev = priv->net_dev;
3220 unsigned long flags;
3221 u32 inta, tmp;
3222
3223 spin_lock_irqsave(&priv->low_lock, flags);
3224 ipw2100_disable_interrupts(priv);
3225
3226 read_register(dev, IPW_REG_INTA, &inta);
3227
3228 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3229 (unsigned long)inta & IPW_INTERRUPT_MASK);
3230
3231 priv->in_isr++;
3232 priv->interrupts++;
3233
3234 /* We do not loop and keep polling for more interrupts as this
3235 * is frowned upon and doesn't play nicely with other potentially
3236 * chained IRQs */
3237 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3238 (unsigned long)inta & IPW_INTERRUPT_MASK);
3239
3240 if (inta & IPW2100_INTA_FATAL_ERROR) {
3241 printk(KERN_WARNING DRV_NAME
3242 ": Fatal interrupt. Scheduling firmware restart.\n");
3243 priv->inta_other++;
3244 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3245
3246 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3247 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3248 priv->net_dev->name, priv->fatal_error);
3249
3250 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3251 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3252 priv->net_dev->name, tmp);
3253
3254 /* Wake up any sleeping jobs */
3255 schedule_reset(priv);
3256 }
3257
3258 if (inta & IPW2100_INTA_PARITY_ERROR) {
3259 printk(KERN_ERR DRV_NAME
3260 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3261 priv->inta_other++;
3262 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3263 }
3264
3265 if (inta & IPW2100_INTA_RX_TRANSFER) {
3266 IPW_DEBUG_ISR("RX interrupt\n");
3267
3268 priv->rx_interrupts++;
3269
3270 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3271
3272 __ipw2100_rx_process(priv);
3273 __ipw2100_tx_complete(priv);
3274 }
3275
3276 if (inta & IPW2100_INTA_TX_TRANSFER) {
3277 IPW_DEBUG_ISR("TX interrupt\n");
3278
3279 priv->tx_interrupts++;
3280
3281 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3282
3283 __ipw2100_tx_complete(priv);
3284 ipw2100_tx_send_commands(priv);
3285 ipw2100_tx_send_data(priv);
3286 }
3287
3288 if (inta & IPW2100_INTA_TX_COMPLETE) {
3289 IPW_DEBUG_ISR("TX complete\n");
3290 priv->inta_other++;
3291 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3292
3293 __ipw2100_tx_complete(priv);
3294 }
3295
3296 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3297 /* ipw2100_handle_event(dev); */
3298 priv->inta_other++;
3299 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3300 }
3301
3302 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3303 IPW_DEBUG_ISR("FW init done interrupt\n");
3304 priv->inta_other++;
3305
3306 read_register(dev, IPW_REG_INTA, &tmp);
3307 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3308 IPW2100_INTA_PARITY_ERROR)) {
3309 write_register(dev, IPW_REG_INTA,
3310 IPW2100_INTA_FATAL_ERROR |
3311 IPW2100_INTA_PARITY_ERROR);
3312 }
3313
3314 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3315 }
3316
3317 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3318 IPW_DEBUG_ISR("Status change interrupt\n");
3319 priv->inta_other++;
3320 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3321 }
3322
3323 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3324 IPW_DEBUG_ISR("slave host mode interrupt\n");
3325 priv->inta_other++;
3326 write_register(dev, IPW_REG_INTA,
3327 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3328 }
3329
3330 priv->in_isr--;
3331 ipw2100_enable_interrupts(priv);
3332
3333 spin_unlock_irqrestore(&priv->low_lock, flags);
3334
3335 IPW_DEBUG_ISR("exit\n");
3336 }
3337
ipw2100_interrupt(int irq,void * data)3338 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3339 {
3340 struct ipw2100_priv *priv = data;
3341 u32 inta, inta_mask;
3342
3343 if (!data)
3344 return IRQ_NONE;
3345
3346 spin_lock(&priv->low_lock);
3347
3348 /* We check to see if we should be ignoring interrupts before
3349 * we touch the hardware. During ucode load if we try and handle
3350 * an interrupt we can cause keyboard problems as well as cause
3351 * the ucode to fail to initialize */
3352 if (!(priv->status & STATUS_INT_ENABLED)) {
3353 /* Shared IRQ */
3354 goto none;
3355 }
3356
3357 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3358 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3359
3360 if (inta == 0xFFFFFFFF) {
3361 /* Hardware disappeared */
3362 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3363 goto none;
3364 }
3365
3366 inta &= IPW_INTERRUPT_MASK;
3367
3368 if (!(inta & inta_mask)) {
3369 /* Shared interrupt */
3370 goto none;
3371 }
3372
3373 /* We disable the hardware interrupt here just to prevent unneeded
3374 * calls to be made. We disable this again within the actual
3375 * work tasklet, so if another part of the code re-enables the
3376 * interrupt, that is fine */
3377 ipw2100_disable_interrupts(priv);
3378
3379 tasklet_schedule(&priv->irq_tasklet);
3380 spin_unlock(&priv->low_lock);
3381
3382 return IRQ_HANDLED;
3383 none:
3384 spin_unlock(&priv->low_lock);
3385 return IRQ_NONE;
3386 }
3387
ipw2100_tx(struct libipw_txb * txb,struct net_device * dev,int pri)3388 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3389 struct net_device *dev, int pri)
3390 {
3391 struct ipw2100_priv *priv = libipw_priv(dev);
3392 struct list_head *element;
3393 struct ipw2100_tx_packet *packet;
3394 unsigned long flags;
3395
3396 spin_lock_irqsave(&priv->low_lock, flags);
3397
3398 if (!(priv->status & STATUS_ASSOCIATED)) {
3399 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3400 priv->net_dev->stats.tx_carrier_errors++;
3401 netif_stop_queue(dev);
3402 goto fail_unlock;
3403 }
3404
3405 if (list_empty(&priv->tx_free_list))
3406 goto fail_unlock;
3407
3408 element = priv->tx_free_list.next;
3409 packet = list_entry(element, struct ipw2100_tx_packet, list);
3410
3411 packet->info.d_struct.txb = txb;
3412
3413 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3414 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3415
3416 packet->jiffy_start = jiffies;
3417
3418 list_del(element);
3419 DEC_STAT(&priv->tx_free_stat);
3420
3421 list_add_tail(element, &priv->tx_pend_list);
3422 INC_STAT(&priv->tx_pend_stat);
3423
3424 ipw2100_tx_send_data(priv);
3425
3426 spin_unlock_irqrestore(&priv->low_lock, flags);
3427 return NETDEV_TX_OK;
3428
3429 fail_unlock:
3430 netif_stop_queue(dev);
3431 spin_unlock_irqrestore(&priv->low_lock, flags);
3432 return NETDEV_TX_BUSY;
3433 }
3434
ipw2100_msg_allocate(struct ipw2100_priv * priv)3435 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3436 {
3437 int i, j, err = -EINVAL;
3438 void *v;
3439 dma_addr_t p;
3440
3441 priv->msg_buffers =
3442 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3443 GFP_KERNEL);
3444 if (!priv->msg_buffers)
3445 return -ENOMEM;
3446
3447 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3448 v = pci_zalloc_consistent(priv->pci_dev,
3449 sizeof(struct ipw2100_cmd_header),
3450 &p);
3451 if (!v) {
3452 printk(KERN_ERR DRV_NAME ": "
3453 "%s: PCI alloc failed for msg "
3454 "buffers.\n", priv->net_dev->name);
3455 err = -ENOMEM;
3456 break;
3457 }
3458
3459 priv->msg_buffers[i].type = COMMAND;
3460 priv->msg_buffers[i].info.c_struct.cmd =
3461 (struct ipw2100_cmd_header *)v;
3462 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3463 }
3464
3465 if (i == IPW_COMMAND_POOL_SIZE)
3466 return 0;
3467
3468 for (j = 0; j < i; j++) {
3469 pci_free_consistent(priv->pci_dev,
3470 sizeof(struct ipw2100_cmd_header),
3471 priv->msg_buffers[j].info.c_struct.cmd,
3472 priv->msg_buffers[j].info.c_struct.
3473 cmd_phys);
3474 }
3475
3476 kfree(priv->msg_buffers);
3477 priv->msg_buffers = NULL;
3478
3479 return err;
3480 }
3481
ipw2100_msg_initialize(struct ipw2100_priv * priv)3482 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3483 {
3484 int i;
3485
3486 INIT_LIST_HEAD(&priv->msg_free_list);
3487 INIT_LIST_HEAD(&priv->msg_pend_list);
3488
3489 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3490 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3491 SET_STAT(&priv->msg_free_stat, i);
3492
3493 return 0;
3494 }
3495
ipw2100_msg_free(struct ipw2100_priv * priv)3496 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3497 {
3498 int i;
3499
3500 if (!priv->msg_buffers)
3501 return;
3502
3503 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3504 pci_free_consistent(priv->pci_dev,
3505 sizeof(struct ipw2100_cmd_header),
3506 priv->msg_buffers[i].info.c_struct.cmd,
3507 priv->msg_buffers[i].info.c_struct.
3508 cmd_phys);
3509 }
3510
3511 kfree(priv->msg_buffers);
3512 priv->msg_buffers = NULL;
3513 }
3514
show_pci(struct device * d,struct device_attribute * attr,char * buf)3515 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3516 char *buf)
3517 {
3518 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3519 char *out = buf;
3520 int i, j;
3521 u32 val;
3522
3523 for (i = 0; i < 16; i++) {
3524 out += sprintf(out, "[%08X] ", i * 16);
3525 for (j = 0; j < 16; j += 4) {
3526 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3527 out += sprintf(out, "%08X ", val);
3528 }
3529 out += sprintf(out, "\n");
3530 }
3531
3532 return out - buf;
3533 }
3534
3535 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3536
show_cfg(struct device * d,struct device_attribute * attr,char * buf)3537 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3538 char *buf)
3539 {
3540 struct ipw2100_priv *p = dev_get_drvdata(d);
3541 return sprintf(buf, "0x%08x\n", (int)p->config);
3542 }
3543
3544 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3545
show_status(struct device * d,struct device_attribute * attr,char * buf)3546 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3547 char *buf)
3548 {
3549 struct ipw2100_priv *p = dev_get_drvdata(d);
3550 return sprintf(buf, "0x%08x\n", (int)p->status);
3551 }
3552
3553 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3554
show_capability(struct device * d,struct device_attribute * attr,char * buf)3555 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3556 char *buf)
3557 {
3558 struct ipw2100_priv *p = dev_get_drvdata(d);
3559 return sprintf(buf, "0x%08x\n", (int)p->capability);
3560 }
3561
3562 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3563
3564 #define IPW2100_REG(x) { IPW_ ##x, #x }
3565 static const struct {
3566 u32 addr;
3567 const char *name;
3568 } hw_data[] = {
3569 IPW2100_REG(REG_GP_CNTRL),
3570 IPW2100_REG(REG_GPIO),
3571 IPW2100_REG(REG_INTA),
3572 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3573 #define IPW2100_NIC(x, s) { x, #x, s }
3574 static const struct {
3575 u32 addr;
3576 const char *name;
3577 size_t size;
3578 } nic_data[] = {
3579 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3580 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3581 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3582 static const struct {
3583 u8 index;
3584 const char *name;
3585 const char *desc;
3586 } ord_data[] = {
3587 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3588 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3589 "successful Host Tx's (MSDU)"),
3590 IPW2100_ORD(STAT_TX_DIR_DATA,
3591 "successful Directed Tx's (MSDU)"),
3592 IPW2100_ORD(STAT_TX_DIR_DATA1,
3593 "successful Directed Tx's (MSDU) @ 1MB"),
3594 IPW2100_ORD(STAT_TX_DIR_DATA2,
3595 "successful Directed Tx's (MSDU) @ 2MB"),
3596 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3597 "successful Directed Tx's (MSDU) @ 5_5MB"),
3598 IPW2100_ORD(STAT_TX_DIR_DATA11,
3599 "successful Directed Tx's (MSDU) @ 11MB"),
3600 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3601 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3602 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3603 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3604 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3605 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3606 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3607 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3608 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3609 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3610 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3611 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3612 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3613 IPW2100_ORD(STAT_TX_ASSN_RESP,
3614 "successful Association response Tx's"),
3615 IPW2100_ORD(STAT_TX_REASSN,
3616 "successful Reassociation Tx's"),
3617 IPW2100_ORD(STAT_TX_REASSN_RESP,
3618 "successful Reassociation response Tx's"),
3619 IPW2100_ORD(STAT_TX_PROBE,
3620 "probes successfully transmitted"),
3621 IPW2100_ORD(STAT_TX_PROBE_RESP,
3622 "probe responses successfully transmitted"),
3623 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3624 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3625 IPW2100_ORD(STAT_TX_DISASSN,
3626 "successful Disassociation TX"),
3627 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3628 IPW2100_ORD(STAT_TX_DEAUTH,
3629 "successful Deauthentication TX"),
3630 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3631 "Total successful Tx data bytes"),
3632 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3633 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3634 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3635 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3636 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3637 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3638 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3639 "times max tries in a hop failed"),
3640 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3641 "times disassociation failed"),
3642 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3643 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3644 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3645 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3646 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3647 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3648 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3649 "directed packets at 5.5MB"),
3650 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3651 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3652 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3653 "nondirected packets at 1MB"),
3654 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3655 "nondirected packets at 2MB"),
3656 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3657 "nondirected packets at 5.5MB"),
3658 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3659 "nondirected packets at 11MB"),
3660 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3661 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3662 "Rx CTS"),
3663 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3664 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3665 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3666 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3667 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3668 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3669 IPW2100_ORD(STAT_RX_REASSN_RESP,
3670 "Reassociation response Rx's"),
3671 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3672 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3673 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3674 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3675 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3676 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3677 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3678 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3679 "Total rx data bytes received"),
3680 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3681 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3682 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3683 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3684 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3685 IPW2100_ORD(STAT_RX_DUPLICATE1,
3686 "duplicate rx packets at 1MB"),
3687 IPW2100_ORD(STAT_RX_DUPLICATE2,
3688 "duplicate rx packets at 2MB"),
3689 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3690 "duplicate rx packets at 5.5MB"),
3691 IPW2100_ORD(STAT_RX_DUPLICATE11,
3692 "duplicate rx packets at 11MB"),
3693 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3694 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3695 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3696 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3697 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3698 "rx frames with invalid protocol"),
3699 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3700 IPW2100_ORD(STAT_RX_NO_BUFFER,
3701 "rx frames rejected due to no buffer"),
3702 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3703 "rx frames dropped due to missing fragment"),
3704 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3705 "rx frames dropped due to non-sequential fragment"),
3706 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3707 "rx frames dropped due to unmatched 1st frame"),
3708 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3709 "rx frames dropped due to uncompleted frame"),
3710 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3711 "ICV errors during decryption"),
3712 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3713 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3714 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3715 "poll response timeouts"),
3716 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3717 "timeouts waiting for last {broad,multi}cast pkt"),
3718 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3719 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3720 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3721 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3722 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3723 "current calculation of % missed beacons"),
3724 IPW2100_ORD(STAT_PERCENT_RETRIES,
3725 "current calculation of % missed tx retries"),
3726 IPW2100_ORD(ASSOCIATED_AP_PTR,
3727 "0 if not associated, else pointer to AP table entry"),
3728 IPW2100_ORD(AVAILABLE_AP_CNT,
3729 "AP's decsribed in the AP table"),
3730 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3731 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3732 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3733 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3734 "failures due to response fail"),
3735 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3736 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3737 IPW2100_ORD(STAT_ROAM_INHIBIT,
3738 "times roaming was inhibited due to activity"),
3739 IPW2100_ORD(RSSI_AT_ASSN,
3740 "RSSI of associated AP at time of association"),
3741 IPW2100_ORD(STAT_ASSN_CAUSE1,
3742 "reassociation: no probe response or TX on hop"),
3743 IPW2100_ORD(STAT_ASSN_CAUSE2,
3744 "reassociation: poor tx/rx quality"),
3745 IPW2100_ORD(STAT_ASSN_CAUSE3,
3746 "reassociation: tx/rx quality (excessive AP load"),
3747 IPW2100_ORD(STAT_ASSN_CAUSE4,
3748 "reassociation: AP RSSI level"),
3749 IPW2100_ORD(STAT_ASSN_CAUSE5,
3750 "reassociations due to load leveling"),
3751 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3752 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3753 "times authentication response failed"),
3754 IPW2100_ORD(STATION_TABLE_CNT,
3755 "entries in association table"),
3756 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3757 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3758 IPW2100_ORD(COUNTRY_CODE,
3759 "IEEE country code as recv'd from beacon"),
3760 IPW2100_ORD(COUNTRY_CHANNELS,
3761 "channels supported by country"),
3762 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3763 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3764 IPW2100_ORD(ANTENNA_DIVERSITY,
3765 "TRUE if antenna diversity is disabled"),
3766 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3767 IPW2100_ORD(OUR_FREQ,
3768 "current radio freq lower digits - channel ID"),
3769 IPW2100_ORD(RTC_TIME, "current RTC time"),
3770 IPW2100_ORD(PORT_TYPE, "operating mode"),
3771 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3772 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3773 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3774 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3775 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3776 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3777 IPW2100_ORD(CAPABILITIES,
3778 "Management frame capability field"),
3779 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3780 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3781 IPW2100_ORD(RTS_THRESHOLD,
3782 "Min packet length for RTS handshaking"),
3783 IPW2100_ORD(INT_MODE, "International mode"),
3784 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3785 "protocol frag threshold"),
3786 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3787 "EEPROM offset in SRAM"),
3788 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3789 "EEPROM size in SRAM"),
3790 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3791 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3792 "EEPROM IBSS 11b channel set"),
3793 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3794 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3795 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3796 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3797 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3798
show_registers(struct device * d,struct device_attribute * attr,char * buf)3799 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3800 char *buf)
3801 {
3802 int i;
3803 struct ipw2100_priv *priv = dev_get_drvdata(d);
3804 struct net_device *dev = priv->net_dev;
3805 char *out = buf;
3806 u32 val = 0;
3807
3808 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3809
3810 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3811 read_register(dev, hw_data[i].addr, &val);
3812 out += sprintf(out, "%30s [%08X] : %08X\n",
3813 hw_data[i].name, hw_data[i].addr, val);
3814 }
3815
3816 return out - buf;
3817 }
3818
3819 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3820
show_hardware(struct device * d,struct device_attribute * attr,char * buf)3821 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3822 char *buf)
3823 {
3824 struct ipw2100_priv *priv = dev_get_drvdata(d);
3825 struct net_device *dev = priv->net_dev;
3826 char *out = buf;
3827 int i;
3828
3829 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3830
3831 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3832 u8 tmp8;
3833 u16 tmp16;
3834 u32 tmp32;
3835
3836 switch (nic_data[i].size) {
3837 case 1:
3838 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3839 out += sprintf(out, "%30s [%08X] : %02X\n",
3840 nic_data[i].name, nic_data[i].addr,
3841 tmp8);
3842 break;
3843 case 2:
3844 read_nic_word(dev, nic_data[i].addr, &tmp16);
3845 out += sprintf(out, "%30s [%08X] : %04X\n",
3846 nic_data[i].name, nic_data[i].addr,
3847 tmp16);
3848 break;
3849 case 4:
3850 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3851 out += sprintf(out, "%30s [%08X] : %08X\n",
3852 nic_data[i].name, nic_data[i].addr,
3853 tmp32);
3854 break;
3855 }
3856 }
3857 return out - buf;
3858 }
3859
3860 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3861
show_memory(struct device * d,struct device_attribute * attr,char * buf)3862 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3863 char *buf)
3864 {
3865 struct ipw2100_priv *priv = dev_get_drvdata(d);
3866 struct net_device *dev = priv->net_dev;
3867 static unsigned long loop = 0;
3868 int len = 0;
3869 u32 buffer[4];
3870 int i;
3871 char line[81];
3872
3873 if (loop >= 0x30000)
3874 loop = 0;
3875
3876 /* sysfs provides us PAGE_SIZE buffer */
3877 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3878
3879 if (priv->snapshot[0])
3880 for (i = 0; i < 4; i++)
3881 buffer[i] =
3882 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3883 else
3884 for (i = 0; i < 4; i++)
3885 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3886
3887 if (priv->dump_raw)
3888 len += sprintf(buf + len,
3889 "%c%c%c%c"
3890 "%c%c%c%c"
3891 "%c%c%c%c"
3892 "%c%c%c%c",
3893 ((u8 *) buffer)[0x0],
3894 ((u8 *) buffer)[0x1],
3895 ((u8 *) buffer)[0x2],
3896 ((u8 *) buffer)[0x3],
3897 ((u8 *) buffer)[0x4],
3898 ((u8 *) buffer)[0x5],
3899 ((u8 *) buffer)[0x6],
3900 ((u8 *) buffer)[0x7],
3901 ((u8 *) buffer)[0x8],
3902 ((u8 *) buffer)[0x9],
3903 ((u8 *) buffer)[0xa],
3904 ((u8 *) buffer)[0xb],
3905 ((u8 *) buffer)[0xc],
3906 ((u8 *) buffer)[0xd],
3907 ((u8 *) buffer)[0xe],
3908 ((u8 *) buffer)[0xf]);
3909 else
3910 len += sprintf(buf + len, "%s\n",
3911 snprint_line(line, sizeof(line),
3912 (u8 *) buffer, 16, loop));
3913 loop += 16;
3914 }
3915
3916 return len;
3917 }
3918
store_memory(struct device * d,struct device_attribute * attr,const char * buf,size_t count)3919 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3920 const char *buf, size_t count)
3921 {
3922 struct ipw2100_priv *priv = dev_get_drvdata(d);
3923 struct net_device *dev = priv->net_dev;
3924 const char *p = buf;
3925
3926 (void)dev; /* kill unused-var warning for debug-only code */
3927
3928 if (count < 1)
3929 return count;
3930
3931 if (p[0] == '1' ||
3932 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3933 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3934 dev->name);
3935 priv->dump_raw = 1;
3936
3937 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3938 tolower(p[1]) == 'f')) {
3939 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3940 dev->name);
3941 priv->dump_raw = 0;
3942
3943 } else if (tolower(p[0]) == 'r') {
3944 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3945 ipw2100_snapshot_free(priv);
3946
3947 } else
3948 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3949 "reset = clear memory snapshot\n", dev->name);
3950
3951 return count;
3952 }
3953
3954 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3955
show_ordinals(struct device * d,struct device_attribute * attr,char * buf)3956 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3957 char *buf)
3958 {
3959 struct ipw2100_priv *priv = dev_get_drvdata(d);
3960 u32 val = 0;
3961 int len = 0;
3962 u32 val_len;
3963 static int loop = 0;
3964
3965 if (priv->status & STATUS_RF_KILL_MASK)
3966 return 0;
3967
3968 if (loop >= ARRAY_SIZE(ord_data))
3969 loop = 0;
3970
3971 /* sysfs provides us PAGE_SIZE buffer */
3972 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3973 val_len = sizeof(u32);
3974
3975 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3976 &val_len))
3977 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3978 ord_data[loop].index,
3979 ord_data[loop].desc);
3980 else
3981 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3982 ord_data[loop].index, val,
3983 ord_data[loop].desc);
3984 loop++;
3985 }
3986
3987 return len;
3988 }
3989
3990 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3991
show_stats(struct device * d,struct device_attribute * attr,char * buf)3992 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3993 char *buf)
3994 {
3995 struct ipw2100_priv *priv = dev_get_drvdata(d);
3996 char *out = buf;
3997
3998 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3999 priv->interrupts, priv->tx_interrupts,
4000 priv->rx_interrupts, priv->inta_other);
4001 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4002 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4003 #ifdef CONFIG_IPW2100_DEBUG
4004 out += sprintf(out, "packet mismatch image: %s\n",
4005 priv->snapshot[0] ? "YES" : "NO");
4006 #endif
4007
4008 return out - buf;
4009 }
4010
4011 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4012
ipw2100_switch_mode(struct ipw2100_priv * priv,u32 mode)4013 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4014 {
4015 int err;
4016
4017 if (mode == priv->ieee->iw_mode)
4018 return 0;
4019
4020 err = ipw2100_disable_adapter(priv);
4021 if (err) {
4022 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4023 priv->net_dev->name, err);
4024 return err;
4025 }
4026
4027 switch (mode) {
4028 case IW_MODE_INFRA:
4029 priv->net_dev->type = ARPHRD_ETHER;
4030 break;
4031 case IW_MODE_ADHOC:
4032 priv->net_dev->type = ARPHRD_ETHER;
4033 break;
4034 #ifdef CONFIG_IPW2100_MONITOR
4035 case IW_MODE_MONITOR:
4036 priv->last_mode = priv->ieee->iw_mode;
4037 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4038 break;
4039 #endif /* CONFIG_IPW2100_MONITOR */
4040 }
4041
4042 priv->ieee->iw_mode = mode;
4043
4044 #ifdef CONFIG_PM
4045 /* Indicate ipw2100_download_firmware download firmware
4046 * from disk instead of memory. */
4047 ipw2100_firmware.version = 0;
4048 #endif
4049
4050 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4051 priv->reset_backoff = 0;
4052 schedule_reset(priv);
4053
4054 return 0;
4055 }
4056
show_internals(struct device * d,struct device_attribute * attr,char * buf)4057 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4058 char *buf)
4059 {
4060 struct ipw2100_priv *priv = dev_get_drvdata(d);
4061 int len = 0;
4062
4063 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4064
4065 if (priv->status & STATUS_ASSOCIATED)
4066 len += sprintf(buf + len, "connected: %lu\n",
4067 get_seconds() - priv->connect_start);
4068 else
4069 len += sprintf(buf + len, "not connected\n");
4070
4071 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4072 DUMP_VAR(status, "08lx");
4073 DUMP_VAR(config, "08lx");
4074 DUMP_VAR(capability, "08lx");
4075
4076 len +=
4077 sprintf(buf + len, "last_rtc: %lu\n",
4078 (unsigned long)priv->last_rtc);
4079
4080 DUMP_VAR(fatal_error, "d");
4081 DUMP_VAR(stop_hang_check, "d");
4082 DUMP_VAR(stop_rf_kill, "d");
4083 DUMP_VAR(messages_sent, "d");
4084
4085 DUMP_VAR(tx_pend_stat.value, "d");
4086 DUMP_VAR(tx_pend_stat.hi, "d");
4087
4088 DUMP_VAR(tx_free_stat.value, "d");
4089 DUMP_VAR(tx_free_stat.lo, "d");
4090
4091 DUMP_VAR(msg_free_stat.value, "d");
4092 DUMP_VAR(msg_free_stat.lo, "d");
4093
4094 DUMP_VAR(msg_pend_stat.value, "d");
4095 DUMP_VAR(msg_pend_stat.hi, "d");
4096
4097 DUMP_VAR(fw_pend_stat.value, "d");
4098 DUMP_VAR(fw_pend_stat.hi, "d");
4099
4100 DUMP_VAR(txq_stat.value, "d");
4101 DUMP_VAR(txq_stat.lo, "d");
4102
4103 DUMP_VAR(ieee->scans, "d");
4104 DUMP_VAR(reset_backoff, "d");
4105
4106 return len;
4107 }
4108
4109 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4110
show_bssinfo(struct device * d,struct device_attribute * attr,char * buf)4111 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4112 char *buf)
4113 {
4114 struct ipw2100_priv *priv = dev_get_drvdata(d);
4115 char essid[IW_ESSID_MAX_SIZE + 1];
4116 u8 bssid[ETH_ALEN];
4117 u32 chan = 0;
4118 char *out = buf;
4119 unsigned int length;
4120 int ret;
4121
4122 if (priv->status & STATUS_RF_KILL_MASK)
4123 return 0;
4124
4125 memset(essid, 0, sizeof(essid));
4126 memset(bssid, 0, sizeof(bssid));
4127
4128 length = IW_ESSID_MAX_SIZE;
4129 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4130 if (ret)
4131 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4132 __LINE__);
4133
4134 length = sizeof(bssid);
4135 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4136 bssid, &length);
4137 if (ret)
4138 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4139 __LINE__);
4140
4141 length = sizeof(u32);
4142 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4143 if (ret)
4144 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4145 __LINE__);
4146
4147 out += sprintf(out, "ESSID: %s\n", essid);
4148 out += sprintf(out, "BSSID: %pM\n", bssid);
4149 out += sprintf(out, "Channel: %d\n", chan);
4150
4151 return out - buf;
4152 }
4153
4154 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4155
4156 #ifdef CONFIG_IPW2100_DEBUG
show_debug_level(struct device_driver * d,char * buf)4157 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4158 {
4159 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4160 }
4161
store_debug_level(struct device_driver * d,const char * buf,size_t count)4162 static ssize_t store_debug_level(struct device_driver *d,
4163 const char *buf, size_t count)
4164 {
4165 u32 val;
4166 int ret;
4167
4168 ret = kstrtou32(buf, 0, &val);
4169 if (ret)
4170 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4171 else
4172 ipw2100_debug_level = val;
4173
4174 return strnlen(buf, count);
4175 }
4176
4177 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4178 store_debug_level);
4179 #endif /* CONFIG_IPW2100_DEBUG */
4180
show_fatal_error(struct device * d,struct device_attribute * attr,char * buf)4181 static ssize_t show_fatal_error(struct device *d,
4182 struct device_attribute *attr, char *buf)
4183 {
4184 struct ipw2100_priv *priv = dev_get_drvdata(d);
4185 char *out = buf;
4186 int i;
4187
4188 if (priv->fatal_error)
4189 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4190 else
4191 out += sprintf(out, "0\n");
4192
4193 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4194 if (!priv->fatal_errors[(priv->fatal_index - i) %
4195 IPW2100_ERROR_QUEUE])
4196 continue;
4197
4198 out += sprintf(out, "%d. 0x%08X\n", i,
4199 priv->fatal_errors[(priv->fatal_index - i) %
4200 IPW2100_ERROR_QUEUE]);
4201 }
4202
4203 return out - buf;
4204 }
4205
store_fatal_error(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4206 static ssize_t store_fatal_error(struct device *d,
4207 struct device_attribute *attr, const char *buf,
4208 size_t count)
4209 {
4210 struct ipw2100_priv *priv = dev_get_drvdata(d);
4211 schedule_reset(priv);
4212 return count;
4213 }
4214
4215 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4216 store_fatal_error);
4217
show_scan_age(struct device * d,struct device_attribute * attr,char * buf)4218 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4219 char *buf)
4220 {
4221 struct ipw2100_priv *priv = dev_get_drvdata(d);
4222 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4223 }
4224
store_scan_age(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4225 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4226 const char *buf, size_t count)
4227 {
4228 struct ipw2100_priv *priv = dev_get_drvdata(d);
4229 struct net_device *dev = priv->net_dev;
4230 unsigned long val;
4231 int ret;
4232
4233 (void)dev; /* kill unused-var warning for debug-only code */
4234
4235 IPW_DEBUG_INFO("enter\n");
4236
4237 ret = kstrtoul(buf, 0, &val);
4238 if (ret) {
4239 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4240 } else {
4241 priv->ieee->scan_age = val;
4242 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4243 }
4244
4245 IPW_DEBUG_INFO("exit\n");
4246 return strnlen(buf, count);
4247 }
4248
4249 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4250
show_rf_kill(struct device * d,struct device_attribute * attr,char * buf)4251 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4252 char *buf)
4253 {
4254 /* 0 - RF kill not enabled
4255 1 - SW based RF kill active (sysfs)
4256 2 - HW based RF kill active
4257 3 - Both HW and SW baed RF kill active */
4258 struct ipw2100_priv *priv = dev_get_drvdata(d);
4259 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4260 (rf_kill_active(priv) ? 0x2 : 0x0);
4261 return sprintf(buf, "%i\n", val);
4262 }
4263
ipw_radio_kill_sw(struct ipw2100_priv * priv,int disable_radio)4264 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4265 {
4266 if ((disable_radio ? 1 : 0) ==
4267 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4268 return 0;
4269
4270 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4271 disable_radio ? "OFF" : "ON");
4272
4273 mutex_lock(&priv->action_mutex);
4274
4275 if (disable_radio) {
4276 priv->status |= STATUS_RF_KILL_SW;
4277 ipw2100_down(priv);
4278 } else {
4279 priv->status &= ~STATUS_RF_KILL_SW;
4280 if (rf_kill_active(priv)) {
4281 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4282 "disabled by HW switch\n");
4283 /* Make sure the RF_KILL check timer is running */
4284 priv->stop_rf_kill = 0;
4285 mod_delayed_work(system_wq, &priv->rf_kill,
4286 round_jiffies_relative(HZ));
4287 } else
4288 schedule_reset(priv);
4289 }
4290
4291 mutex_unlock(&priv->action_mutex);
4292 return 1;
4293 }
4294
store_rf_kill(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4295 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4296 const char *buf, size_t count)
4297 {
4298 struct ipw2100_priv *priv = dev_get_drvdata(d);
4299 ipw_radio_kill_sw(priv, buf[0] == '1');
4300 return count;
4301 }
4302
4303 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4304
4305 static struct attribute *ipw2100_sysfs_entries[] = {
4306 &dev_attr_hardware.attr,
4307 &dev_attr_registers.attr,
4308 &dev_attr_ordinals.attr,
4309 &dev_attr_pci.attr,
4310 &dev_attr_stats.attr,
4311 &dev_attr_internals.attr,
4312 &dev_attr_bssinfo.attr,
4313 &dev_attr_memory.attr,
4314 &dev_attr_scan_age.attr,
4315 &dev_attr_fatal_error.attr,
4316 &dev_attr_rf_kill.attr,
4317 &dev_attr_cfg.attr,
4318 &dev_attr_status.attr,
4319 &dev_attr_capability.attr,
4320 NULL,
4321 };
4322
4323 static struct attribute_group ipw2100_attribute_group = {
4324 .attrs = ipw2100_sysfs_entries,
4325 };
4326
status_queue_allocate(struct ipw2100_priv * priv,int entries)4327 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4328 {
4329 struct ipw2100_status_queue *q = &priv->status_queue;
4330
4331 IPW_DEBUG_INFO("enter\n");
4332
4333 q->size = entries * sizeof(struct ipw2100_status);
4334 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4335 if (!q->drv) {
4336 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4337 return -ENOMEM;
4338 }
4339
4340 IPW_DEBUG_INFO("exit\n");
4341
4342 return 0;
4343 }
4344
status_queue_free(struct ipw2100_priv * priv)4345 static void status_queue_free(struct ipw2100_priv *priv)
4346 {
4347 IPW_DEBUG_INFO("enter\n");
4348
4349 if (priv->status_queue.drv) {
4350 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4351 priv->status_queue.drv,
4352 priv->status_queue.nic);
4353 priv->status_queue.drv = NULL;
4354 }
4355
4356 IPW_DEBUG_INFO("exit\n");
4357 }
4358
bd_queue_allocate(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,int entries)4359 static int bd_queue_allocate(struct ipw2100_priv *priv,
4360 struct ipw2100_bd_queue *q, int entries)
4361 {
4362 IPW_DEBUG_INFO("enter\n");
4363
4364 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4365
4366 q->entries = entries;
4367 q->size = entries * sizeof(struct ipw2100_bd);
4368 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4369 if (!q->drv) {
4370 IPW_DEBUG_INFO
4371 ("can't allocate shared memory for buffer descriptors\n");
4372 return -ENOMEM;
4373 }
4374
4375 IPW_DEBUG_INFO("exit\n");
4376
4377 return 0;
4378 }
4379
bd_queue_free(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q)4380 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4381 {
4382 IPW_DEBUG_INFO("enter\n");
4383
4384 if (!q)
4385 return;
4386
4387 if (q->drv) {
4388 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4389 q->drv = NULL;
4390 }
4391
4392 IPW_DEBUG_INFO("exit\n");
4393 }
4394
bd_queue_initialize(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,u32 base,u32 size,u32 r,u32 w)4395 static void bd_queue_initialize(struct ipw2100_priv *priv,
4396 struct ipw2100_bd_queue *q, u32 base, u32 size,
4397 u32 r, u32 w)
4398 {
4399 IPW_DEBUG_INFO("enter\n");
4400
4401 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4402 (u32) q->nic);
4403
4404 write_register(priv->net_dev, base, q->nic);
4405 write_register(priv->net_dev, size, q->entries);
4406 write_register(priv->net_dev, r, q->oldest);
4407 write_register(priv->net_dev, w, q->next);
4408
4409 IPW_DEBUG_INFO("exit\n");
4410 }
4411
ipw2100_kill_works(struct ipw2100_priv * priv)4412 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4413 {
4414 priv->stop_rf_kill = 1;
4415 priv->stop_hang_check = 1;
4416 cancel_delayed_work_sync(&priv->reset_work);
4417 cancel_delayed_work_sync(&priv->security_work);
4418 cancel_delayed_work_sync(&priv->wx_event_work);
4419 cancel_delayed_work_sync(&priv->hang_check);
4420 cancel_delayed_work_sync(&priv->rf_kill);
4421 cancel_delayed_work_sync(&priv->scan_event);
4422 }
4423
ipw2100_tx_allocate(struct ipw2100_priv * priv)4424 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4425 {
4426 int i, j, err = -EINVAL;
4427 void *v;
4428 dma_addr_t p;
4429
4430 IPW_DEBUG_INFO("enter\n");
4431
4432 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4433 if (err) {
4434 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4435 priv->net_dev->name);
4436 return err;
4437 }
4438
4439 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4440 sizeof(struct ipw2100_tx_packet),
4441 GFP_ATOMIC);
4442 if (!priv->tx_buffers) {
4443 bd_queue_free(priv, &priv->tx_queue);
4444 return -ENOMEM;
4445 }
4446
4447 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4448 v = pci_alloc_consistent(priv->pci_dev,
4449 sizeof(struct ipw2100_data_header),
4450 &p);
4451 if (!v) {
4452 printk(KERN_ERR DRV_NAME
4453 ": %s: PCI alloc failed for tx " "buffers.\n",
4454 priv->net_dev->name);
4455 err = -ENOMEM;
4456 break;
4457 }
4458
4459 priv->tx_buffers[i].type = DATA;
4460 priv->tx_buffers[i].info.d_struct.data =
4461 (struct ipw2100_data_header *)v;
4462 priv->tx_buffers[i].info.d_struct.data_phys = p;
4463 priv->tx_buffers[i].info.d_struct.txb = NULL;
4464 }
4465
4466 if (i == TX_PENDED_QUEUE_LENGTH)
4467 return 0;
4468
4469 for (j = 0; j < i; j++) {
4470 pci_free_consistent(priv->pci_dev,
4471 sizeof(struct ipw2100_data_header),
4472 priv->tx_buffers[j].info.d_struct.data,
4473 priv->tx_buffers[j].info.d_struct.
4474 data_phys);
4475 }
4476
4477 kfree(priv->tx_buffers);
4478 priv->tx_buffers = NULL;
4479
4480 return err;
4481 }
4482
ipw2100_tx_initialize(struct ipw2100_priv * priv)4483 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4484 {
4485 int i;
4486
4487 IPW_DEBUG_INFO("enter\n");
4488
4489 /*
4490 * reinitialize packet info lists
4491 */
4492 INIT_LIST_HEAD(&priv->fw_pend_list);
4493 INIT_STAT(&priv->fw_pend_stat);
4494
4495 /*
4496 * reinitialize lists
4497 */
4498 INIT_LIST_HEAD(&priv->tx_pend_list);
4499 INIT_LIST_HEAD(&priv->tx_free_list);
4500 INIT_STAT(&priv->tx_pend_stat);
4501 INIT_STAT(&priv->tx_free_stat);
4502
4503 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4504 /* We simply drop any SKBs that have been queued for
4505 * transmit */
4506 if (priv->tx_buffers[i].info.d_struct.txb) {
4507 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4508 txb);
4509 priv->tx_buffers[i].info.d_struct.txb = NULL;
4510 }
4511
4512 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4513 }
4514
4515 SET_STAT(&priv->tx_free_stat, i);
4516
4517 priv->tx_queue.oldest = 0;
4518 priv->tx_queue.available = priv->tx_queue.entries;
4519 priv->tx_queue.next = 0;
4520 INIT_STAT(&priv->txq_stat);
4521 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4522
4523 bd_queue_initialize(priv, &priv->tx_queue,
4524 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4525 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4526 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4527 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4528
4529 IPW_DEBUG_INFO("exit\n");
4530
4531 }
4532
ipw2100_tx_free(struct ipw2100_priv * priv)4533 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4534 {
4535 int i;
4536
4537 IPW_DEBUG_INFO("enter\n");
4538
4539 bd_queue_free(priv, &priv->tx_queue);
4540
4541 if (!priv->tx_buffers)
4542 return;
4543
4544 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4545 if (priv->tx_buffers[i].info.d_struct.txb) {
4546 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4547 txb);
4548 priv->tx_buffers[i].info.d_struct.txb = NULL;
4549 }
4550 if (priv->tx_buffers[i].info.d_struct.data)
4551 pci_free_consistent(priv->pci_dev,
4552 sizeof(struct ipw2100_data_header),
4553 priv->tx_buffers[i].info.d_struct.
4554 data,
4555 priv->tx_buffers[i].info.d_struct.
4556 data_phys);
4557 }
4558
4559 kfree(priv->tx_buffers);
4560 priv->tx_buffers = NULL;
4561
4562 IPW_DEBUG_INFO("exit\n");
4563 }
4564
ipw2100_rx_allocate(struct ipw2100_priv * priv)4565 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4566 {
4567 int i, j, err = -EINVAL;
4568
4569 IPW_DEBUG_INFO("enter\n");
4570
4571 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4572 if (err) {
4573 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4574 return err;
4575 }
4576
4577 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4578 if (err) {
4579 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4580 bd_queue_free(priv, &priv->rx_queue);
4581 return err;
4582 }
4583
4584 /*
4585 * allocate packets
4586 */
4587 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4588 sizeof(struct ipw2100_rx_packet),
4589 GFP_KERNEL);
4590 if (!priv->rx_buffers) {
4591 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4592
4593 bd_queue_free(priv, &priv->rx_queue);
4594
4595 status_queue_free(priv);
4596
4597 return -ENOMEM;
4598 }
4599
4600 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4601 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4602
4603 err = ipw2100_alloc_skb(priv, packet);
4604 if (unlikely(err)) {
4605 err = -ENOMEM;
4606 break;
4607 }
4608
4609 /* The BD holds the cache aligned address */
4610 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4611 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4612 priv->status_queue.drv[i].status_fields = 0;
4613 }
4614
4615 if (i == RX_QUEUE_LENGTH)
4616 return 0;
4617
4618 for (j = 0; j < i; j++) {
4619 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4620 sizeof(struct ipw2100_rx_packet),
4621 PCI_DMA_FROMDEVICE);
4622 dev_kfree_skb(priv->rx_buffers[j].skb);
4623 }
4624
4625 kfree(priv->rx_buffers);
4626 priv->rx_buffers = NULL;
4627
4628 bd_queue_free(priv, &priv->rx_queue);
4629
4630 status_queue_free(priv);
4631
4632 return err;
4633 }
4634
ipw2100_rx_initialize(struct ipw2100_priv * priv)4635 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4636 {
4637 IPW_DEBUG_INFO("enter\n");
4638
4639 priv->rx_queue.oldest = 0;
4640 priv->rx_queue.available = priv->rx_queue.entries - 1;
4641 priv->rx_queue.next = priv->rx_queue.entries - 1;
4642
4643 INIT_STAT(&priv->rxq_stat);
4644 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4645
4646 bd_queue_initialize(priv, &priv->rx_queue,
4647 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4648 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4649 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4650 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4651
4652 /* set up the status queue */
4653 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4654 priv->status_queue.nic);
4655
4656 IPW_DEBUG_INFO("exit\n");
4657 }
4658
ipw2100_rx_free(struct ipw2100_priv * priv)4659 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4660 {
4661 int i;
4662
4663 IPW_DEBUG_INFO("enter\n");
4664
4665 bd_queue_free(priv, &priv->rx_queue);
4666 status_queue_free(priv);
4667
4668 if (!priv->rx_buffers)
4669 return;
4670
4671 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4672 if (priv->rx_buffers[i].rxp) {
4673 pci_unmap_single(priv->pci_dev,
4674 priv->rx_buffers[i].dma_addr,
4675 sizeof(struct ipw2100_rx),
4676 PCI_DMA_FROMDEVICE);
4677 dev_kfree_skb(priv->rx_buffers[i].skb);
4678 }
4679 }
4680
4681 kfree(priv->rx_buffers);
4682 priv->rx_buffers = NULL;
4683
4684 IPW_DEBUG_INFO("exit\n");
4685 }
4686
ipw2100_read_mac_address(struct ipw2100_priv * priv)4687 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4688 {
4689 u32 length = ETH_ALEN;
4690 u8 addr[ETH_ALEN];
4691
4692 int err;
4693
4694 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4695 if (err) {
4696 IPW_DEBUG_INFO("MAC address read failed\n");
4697 return -EIO;
4698 }
4699
4700 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4701 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4702
4703 return 0;
4704 }
4705
4706 /********************************************************************
4707 *
4708 * Firmware Commands
4709 *
4710 ********************************************************************/
4711
ipw2100_set_mac_address(struct ipw2100_priv * priv,int batch_mode)4712 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4713 {
4714 struct host_command cmd = {
4715 .host_command = ADAPTER_ADDRESS,
4716 .host_command_sequence = 0,
4717 .host_command_length = ETH_ALEN
4718 };
4719 int err;
4720
4721 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4722
4723 IPW_DEBUG_INFO("enter\n");
4724
4725 if (priv->config & CFG_CUSTOM_MAC) {
4726 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4727 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4728 } else
4729 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4730 ETH_ALEN);
4731
4732 err = ipw2100_hw_send_command(priv, &cmd);
4733
4734 IPW_DEBUG_INFO("exit\n");
4735 return err;
4736 }
4737
ipw2100_set_port_type(struct ipw2100_priv * priv,u32 port_type,int batch_mode)4738 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4739 int batch_mode)
4740 {
4741 struct host_command cmd = {
4742 .host_command = PORT_TYPE,
4743 .host_command_sequence = 0,
4744 .host_command_length = sizeof(u32)
4745 };
4746 int err;
4747
4748 switch (port_type) {
4749 case IW_MODE_INFRA:
4750 cmd.host_command_parameters[0] = IPW_BSS;
4751 break;
4752 case IW_MODE_ADHOC:
4753 cmd.host_command_parameters[0] = IPW_IBSS;
4754 break;
4755 }
4756
4757 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4758 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4759
4760 if (!batch_mode) {
4761 err = ipw2100_disable_adapter(priv);
4762 if (err) {
4763 printk(KERN_ERR DRV_NAME
4764 ": %s: Could not disable adapter %d\n",
4765 priv->net_dev->name, err);
4766 return err;
4767 }
4768 }
4769
4770 /* send cmd to firmware */
4771 err = ipw2100_hw_send_command(priv, &cmd);
4772
4773 if (!batch_mode)
4774 ipw2100_enable_adapter(priv);
4775
4776 return err;
4777 }
4778
ipw2100_set_channel(struct ipw2100_priv * priv,u32 channel,int batch_mode)4779 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4780 int batch_mode)
4781 {
4782 struct host_command cmd = {
4783 .host_command = CHANNEL,
4784 .host_command_sequence = 0,
4785 .host_command_length = sizeof(u32)
4786 };
4787 int err;
4788
4789 cmd.host_command_parameters[0] = channel;
4790
4791 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4792
4793 /* If BSS then we don't support channel selection */
4794 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4795 return 0;
4796
4797 if ((channel != 0) &&
4798 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4799 return -EINVAL;
4800
4801 if (!batch_mode) {
4802 err = ipw2100_disable_adapter(priv);
4803 if (err)
4804 return err;
4805 }
4806
4807 err = ipw2100_hw_send_command(priv, &cmd);
4808 if (err) {
4809 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4810 return err;
4811 }
4812
4813 if (channel)
4814 priv->config |= CFG_STATIC_CHANNEL;
4815 else
4816 priv->config &= ~CFG_STATIC_CHANNEL;
4817
4818 priv->channel = channel;
4819
4820 if (!batch_mode) {
4821 err = ipw2100_enable_adapter(priv);
4822 if (err)
4823 return err;
4824 }
4825
4826 return 0;
4827 }
4828
ipw2100_system_config(struct ipw2100_priv * priv,int batch_mode)4829 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4830 {
4831 struct host_command cmd = {
4832 .host_command = SYSTEM_CONFIG,
4833 .host_command_sequence = 0,
4834 .host_command_length = 12,
4835 };
4836 u32 ibss_mask, len = sizeof(u32);
4837 int err;
4838
4839 /* Set system configuration */
4840
4841 if (!batch_mode) {
4842 err = ipw2100_disable_adapter(priv);
4843 if (err)
4844 return err;
4845 }
4846
4847 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4848 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4849
4850 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4851 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4852
4853 if (!(priv->config & CFG_LONG_PREAMBLE))
4854 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4855
4856 err = ipw2100_get_ordinal(priv,
4857 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4858 &ibss_mask, &len);
4859 if (err)
4860 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4861
4862 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4863 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4864
4865 /* 11b only */
4866 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4867
4868 err = ipw2100_hw_send_command(priv, &cmd);
4869 if (err)
4870 return err;
4871
4872 /* If IPv6 is configured in the kernel then we don't want to filter out all
4873 * of the multicast packets as IPv6 needs some. */
4874 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4875 cmd.host_command = ADD_MULTICAST;
4876 cmd.host_command_sequence = 0;
4877 cmd.host_command_length = 0;
4878
4879 ipw2100_hw_send_command(priv, &cmd);
4880 #endif
4881 if (!batch_mode) {
4882 err = ipw2100_enable_adapter(priv);
4883 if (err)
4884 return err;
4885 }
4886
4887 return 0;
4888 }
4889
ipw2100_set_tx_rates(struct ipw2100_priv * priv,u32 rate,int batch_mode)4890 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4891 int batch_mode)
4892 {
4893 struct host_command cmd = {
4894 .host_command = BASIC_TX_RATES,
4895 .host_command_sequence = 0,
4896 .host_command_length = 4
4897 };
4898 int err;
4899
4900 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4901
4902 if (!batch_mode) {
4903 err = ipw2100_disable_adapter(priv);
4904 if (err)
4905 return err;
4906 }
4907
4908 /* Set BASIC TX Rate first */
4909 ipw2100_hw_send_command(priv, &cmd);
4910
4911 /* Set TX Rate */
4912 cmd.host_command = TX_RATES;
4913 ipw2100_hw_send_command(priv, &cmd);
4914
4915 /* Set MSDU TX Rate */
4916 cmd.host_command = MSDU_TX_RATES;
4917 ipw2100_hw_send_command(priv, &cmd);
4918
4919 if (!batch_mode) {
4920 err = ipw2100_enable_adapter(priv);
4921 if (err)
4922 return err;
4923 }
4924
4925 priv->tx_rates = rate;
4926
4927 return 0;
4928 }
4929
ipw2100_set_power_mode(struct ipw2100_priv * priv,int power_level)4930 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4931 {
4932 struct host_command cmd = {
4933 .host_command = POWER_MODE,
4934 .host_command_sequence = 0,
4935 .host_command_length = 4
4936 };
4937 int err;
4938
4939 cmd.host_command_parameters[0] = power_level;
4940
4941 err = ipw2100_hw_send_command(priv, &cmd);
4942 if (err)
4943 return err;
4944
4945 if (power_level == IPW_POWER_MODE_CAM)
4946 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4947 else
4948 priv->power_mode = IPW_POWER_ENABLED | power_level;
4949
4950 #ifdef IPW2100_TX_POWER
4951 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4952 /* Set beacon interval */
4953 cmd.host_command = TX_POWER_INDEX;
4954 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4955
4956 err = ipw2100_hw_send_command(priv, &cmd);
4957 if (err)
4958 return err;
4959 }
4960 #endif
4961
4962 return 0;
4963 }
4964
ipw2100_set_rts_threshold(struct ipw2100_priv * priv,u32 threshold)4965 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4966 {
4967 struct host_command cmd = {
4968 .host_command = RTS_THRESHOLD,
4969 .host_command_sequence = 0,
4970 .host_command_length = 4
4971 };
4972 int err;
4973
4974 if (threshold & RTS_DISABLED)
4975 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4976 else
4977 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4978
4979 err = ipw2100_hw_send_command(priv, &cmd);
4980 if (err)
4981 return err;
4982
4983 priv->rts_threshold = threshold;
4984
4985 return 0;
4986 }
4987
4988 #if 0
4989 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4990 u32 threshold, int batch_mode)
4991 {
4992 struct host_command cmd = {
4993 .host_command = FRAG_THRESHOLD,
4994 .host_command_sequence = 0,
4995 .host_command_length = 4,
4996 .host_command_parameters[0] = 0,
4997 };
4998 int err;
4999
5000 if (!batch_mode) {
5001 err = ipw2100_disable_adapter(priv);
5002 if (err)
5003 return err;
5004 }
5005
5006 if (threshold == 0)
5007 threshold = DEFAULT_FRAG_THRESHOLD;
5008 else {
5009 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5010 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5011 }
5012
5013 cmd.host_command_parameters[0] = threshold;
5014
5015 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5016
5017 err = ipw2100_hw_send_command(priv, &cmd);
5018
5019 if (!batch_mode)
5020 ipw2100_enable_adapter(priv);
5021
5022 if (!err)
5023 priv->frag_threshold = threshold;
5024
5025 return err;
5026 }
5027 #endif
5028
ipw2100_set_short_retry(struct ipw2100_priv * priv,u32 retry)5029 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5030 {
5031 struct host_command cmd = {
5032 .host_command = SHORT_RETRY_LIMIT,
5033 .host_command_sequence = 0,
5034 .host_command_length = 4
5035 };
5036 int err;
5037
5038 cmd.host_command_parameters[0] = retry;
5039
5040 err = ipw2100_hw_send_command(priv, &cmd);
5041 if (err)
5042 return err;
5043
5044 priv->short_retry_limit = retry;
5045
5046 return 0;
5047 }
5048
ipw2100_set_long_retry(struct ipw2100_priv * priv,u32 retry)5049 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5050 {
5051 struct host_command cmd = {
5052 .host_command = LONG_RETRY_LIMIT,
5053 .host_command_sequence = 0,
5054 .host_command_length = 4
5055 };
5056 int err;
5057
5058 cmd.host_command_parameters[0] = retry;
5059
5060 err = ipw2100_hw_send_command(priv, &cmd);
5061 if (err)
5062 return err;
5063
5064 priv->long_retry_limit = retry;
5065
5066 return 0;
5067 }
5068
ipw2100_set_mandatory_bssid(struct ipw2100_priv * priv,u8 * bssid,int batch_mode)5069 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5070 int batch_mode)
5071 {
5072 struct host_command cmd = {
5073 .host_command = MANDATORY_BSSID,
5074 .host_command_sequence = 0,
5075 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5076 };
5077 int err;
5078
5079 #ifdef CONFIG_IPW2100_DEBUG
5080 if (bssid != NULL)
5081 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5082 else
5083 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5084 #endif
5085 /* if BSSID is empty then we disable mandatory bssid mode */
5086 if (bssid != NULL)
5087 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5088
5089 if (!batch_mode) {
5090 err = ipw2100_disable_adapter(priv);
5091 if (err)
5092 return err;
5093 }
5094
5095 err = ipw2100_hw_send_command(priv, &cmd);
5096
5097 if (!batch_mode)
5098 ipw2100_enable_adapter(priv);
5099
5100 return err;
5101 }
5102
ipw2100_disassociate_bssid(struct ipw2100_priv * priv)5103 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5104 {
5105 struct host_command cmd = {
5106 .host_command = DISASSOCIATION_BSSID,
5107 .host_command_sequence = 0,
5108 .host_command_length = ETH_ALEN
5109 };
5110 int err;
5111 int len;
5112
5113 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5114
5115 len = ETH_ALEN;
5116 /* The Firmware currently ignores the BSSID and just disassociates from
5117 * the currently associated AP -- but in the off chance that a future
5118 * firmware does use the BSSID provided here, we go ahead and try and
5119 * set it to the currently associated AP's BSSID */
5120 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5121
5122 err = ipw2100_hw_send_command(priv, &cmd);
5123
5124 return err;
5125 }
5126
5127 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5128 struct ipw2100_wpa_assoc_frame *, int)
5129 __attribute__ ((unused));
5130
ipw2100_set_wpa_ie(struct ipw2100_priv * priv,struct ipw2100_wpa_assoc_frame * wpa_frame,int batch_mode)5131 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5132 struct ipw2100_wpa_assoc_frame *wpa_frame,
5133 int batch_mode)
5134 {
5135 struct host_command cmd = {
5136 .host_command = SET_WPA_IE,
5137 .host_command_sequence = 0,
5138 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5139 };
5140 int err;
5141
5142 IPW_DEBUG_HC("SET_WPA_IE\n");
5143
5144 if (!batch_mode) {
5145 err = ipw2100_disable_adapter(priv);
5146 if (err)
5147 return err;
5148 }
5149
5150 memcpy(cmd.host_command_parameters, wpa_frame,
5151 sizeof(struct ipw2100_wpa_assoc_frame));
5152
5153 err = ipw2100_hw_send_command(priv, &cmd);
5154
5155 if (!batch_mode) {
5156 if (ipw2100_enable_adapter(priv))
5157 err = -EIO;
5158 }
5159
5160 return err;
5161 }
5162
5163 struct security_info_params {
5164 u32 allowed_ciphers;
5165 u16 version;
5166 u8 auth_mode;
5167 u8 replay_counters_number;
5168 u8 unicast_using_group;
5169 } __packed;
5170
ipw2100_set_security_information(struct ipw2100_priv * priv,int auth_mode,int security_level,int unicast_using_group,int batch_mode)5171 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5172 int auth_mode,
5173 int security_level,
5174 int unicast_using_group,
5175 int batch_mode)
5176 {
5177 struct host_command cmd = {
5178 .host_command = SET_SECURITY_INFORMATION,
5179 .host_command_sequence = 0,
5180 .host_command_length = sizeof(struct security_info_params)
5181 };
5182 struct security_info_params *security =
5183 (struct security_info_params *)&cmd.host_command_parameters;
5184 int err;
5185 memset(security, 0, sizeof(*security));
5186
5187 /* If shared key AP authentication is turned on, then we need to
5188 * configure the firmware to try and use it.
5189 *
5190 * Actual data encryption/decryption is handled by the host. */
5191 security->auth_mode = auth_mode;
5192 security->unicast_using_group = unicast_using_group;
5193
5194 switch (security_level) {
5195 default:
5196 case SEC_LEVEL_0:
5197 security->allowed_ciphers = IPW_NONE_CIPHER;
5198 break;
5199 case SEC_LEVEL_1:
5200 security->allowed_ciphers = IPW_WEP40_CIPHER |
5201 IPW_WEP104_CIPHER;
5202 break;
5203 case SEC_LEVEL_2:
5204 security->allowed_ciphers = IPW_WEP40_CIPHER |
5205 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5206 break;
5207 case SEC_LEVEL_2_CKIP:
5208 security->allowed_ciphers = IPW_WEP40_CIPHER |
5209 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5210 break;
5211 case SEC_LEVEL_3:
5212 security->allowed_ciphers = IPW_WEP40_CIPHER |
5213 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5214 break;
5215 }
5216
5217 IPW_DEBUG_HC
5218 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5219 security->auth_mode, security->allowed_ciphers, security_level);
5220
5221 security->replay_counters_number = 0;
5222
5223 if (!batch_mode) {
5224 err = ipw2100_disable_adapter(priv);
5225 if (err)
5226 return err;
5227 }
5228
5229 err = ipw2100_hw_send_command(priv, &cmd);
5230
5231 if (!batch_mode)
5232 ipw2100_enable_adapter(priv);
5233
5234 return err;
5235 }
5236
ipw2100_set_tx_power(struct ipw2100_priv * priv,u32 tx_power)5237 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5238 {
5239 struct host_command cmd = {
5240 .host_command = TX_POWER_INDEX,
5241 .host_command_sequence = 0,
5242 .host_command_length = 4
5243 };
5244 int err = 0;
5245 u32 tmp = tx_power;
5246
5247 if (tx_power != IPW_TX_POWER_DEFAULT)
5248 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5249 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5250
5251 cmd.host_command_parameters[0] = tmp;
5252
5253 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5254 err = ipw2100_hw_send_command(priv, &cmd);
5255 if (!err)
5256 priv->tx_power = tx_power;
5257
5258 return 0;
5259 }
5260
ipw2100_set_ibss_beacon_interval(struct ipw2100_priv * priv,u32 interval,int batch_mode)5261 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5262 u32 interval, int batch_mode)
5263 {
5264 struct host_command cmd = {
5265 .host_command = BEACON_INTERVAL,
5266 .host_command_sequence = 0,
5267 .host_command_length = 4
5268 };
5269 int err;
5270
5271 cmd.host_command_parameters[0] = interval;
5272
5273 IPW_DEBUG_INFO("enter\n");
5274
5275 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5276 if (!batch_mode) {
5277 err = ipw2100_disable_adapter(priv);
5278 if (err)
5279 return err;
5280 }
5281
5282 ipw2100_hw_send_command(priv, &cmd);
5283
5284 if (!batch_mode) {
5285 err = ipw2100_enable_adapter(priv);
5286 if (err)
5287 return err;
5288 }
5289 }
5290
5291 IPW_DEBUG_INFO("exit\n");
5292
5293 return 0;
5294 }
5295
ipw2100_queues_initialize(struct ipw2100_priv * priv)5296 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5297 {
5298 ipw2100_tx_initialize(priv);
5299 ipw2100_rx_initialize(priv);
5300 ipw2100_msg_initialize(priv);
5301 }
5302
ipw2100_queues_free(struct ipw2100_priv * priv)5303 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5304 {
5305 ipw2100_tx_free(priv);
5306 ipw2100_rx_free(priv);
5307 ipw2100_msg_free(priv);
5308 }
5309
ipw2100_queues_allocate(struct ipw2100_priv * priv)5310 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5311 {
5312 if (ipw2100_tx_allocate(priv) ||
5313 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5314 goto fail;
5315
5316 return 0;
5317
5318 fail:
5319 ipw2100_tx_free(priv);
5320 ipw2100_rx_free(priv);
5321 ipw2100_msg_free(priv);
5322 return -ENOMEM;
5323 }
5324
5325 #define IPW_PRIVACY_CAPABLE 0x0008
5326
ipw2100_set_wep_flags(struct ipw2100_priv * priv,u32 flags,int batch_mode)5327 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5328 int batch_mode)
5329 {
5330 struct host_command cmd = {
5331 .host_command = WEP_FLAGS,
5332 .host_command_sequence = 0,
5333 .host_command_length = 4
5334 };
5335 int err;
5336
5337 cmd.host_command_parameters[0] = flags;
5338
5339 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5340
5341 if (!batch_mode) {
5342 err = ipw2100_disable_adapter(priv);
5343 if (err) {
5344 printk(KERN_ERR DRV_NAME
5345 ": %s: Could not disable adapter %d\n",
5346 priv->net_dev->name, err);
5347 return err;
5348 }
5349 }
5350
5351 /* send cmd to firmware */
5352 err = ipw2100_hw_send_command(priv, &cmd);
5353
5354 if (!batch_mode)
5355 ipw2100_enable_adapter(priv);
5356
5357 return err;
5358 }
5359
5360 struct ipw2100_wep_key {
5361 u8 idx;
5362 u8 len;
5363 u8 key[13];
5364 };
5365
5366 /* Macros to ease up priting WEP keys */
5367 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5368 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5369 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5370 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5371
5372 /**
5373 * Set a the wep key
5374 *
5375 * @priv: struct to work on
5376 * @idx: index of the key we want to set
5377 * @key: ptr to the key data to set
5378 * @len: length of the buffer at @key
5379 * @batch_mode: FIXME perform the operation in batch mode, not
5380 * disabling the device.
5381 *
5382 * @returns 0 if OK, < 0 errno code on error.
5383 *
5384 * Fill out a command structure with the new wep key, length an
5385 * index and send it down the wire.
5386 */
ipw2100_set_key(struct ipw2100_priv * priv,int idx,char * key,int len,int batch_mode)5387 static int ipw2100_set_key(struct ipw2100_priv *priv,
5388 int idx, char *key, int len, int batch_mode)
5389 {
5390 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5391 struct host_command cmd = {
5392 .host_command = WEP_KEY_INFO,
5393 .host_command_sequence = 0,
5394 .host_command_length = sizeof(struct ipw2100_wep_key),
5395 };
5396 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5397 int err;
5398
5399 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5400 idx, keylen, len);
5401
5402 /* NOTE: We don't check cached values in case the firmware was reset
5403 * or some other problem is occurring. If the user is setting the key,
5404 * then we push the change */
5405
5406 wep_key->idx = idx;
5407 wep_key->len = keylen;
5408
5409 if (keylen) {
5410 memcpy(wep_key->key, key, len);
5411 memset(wep_key->key + len, 0, keylen - len);
5412 }
5413
5414 /* Will be optimized out on debug not being configured in */
5415 if (keylen == 0)
5416 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5417 priv->net_dev->name, wep_key->idx);
5418 else if (keylen == 5)
5419 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5420 priv->net_dev->name, wep_key->idx, wep_key->len,
5421 WEP_STR_64(wep_key->key));
5422 else
5423 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5424 "\n",
5425 priv->net_dev->name, wep_key->idx, wep_key->len,
5426 WEP_STR_128(wep_key->key));
5427
5428 if (!batch_mode) {
5429 err = ipw2100_disable_adapter(priv);
5430 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5431 if (err) {
5432 printk(KERN_ERR DRV_NAME
5433 ": %s: Could not disable adapter %d\n",
5434 priv->net_dev->name, err);
5435 return err;
5436 }
5437 }
5438
5439 /* send cmd to firmware */
5440 err = ipw2100_hw_send_command(priv, &cmd);
5441
5442 if (!batch_mode) {
5443 int err2 = ipw2100_enable_adapter(priv);
5444 if (err == 0)
5445 err = err2;
5446 }
5447 return err;
5448 }
5449
ipw2100_set_key_index(struct ipw2100_priv * priv,int idx,int batch_mode)5450 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5451 int idx, int batch_mode)
5452 {
5453 struct host_command cmd = {
5454 .host_command = WEP_KEY_INDEX,
5455 .host_command_sequence = 0,
5456 .host_command_length = 4,
5457 .host_command_parameters = {idx},
5458 };
5459 int err;
5460
5461 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5462
5463 if (idx < 0 || idx > 3)
5464 return -EINVAL;
5465
5466 if (!batch_mode) {
5467 err = ipw2100_disable_adapter(priv);
5468 if (err) {
5469 printk(KERN_ERR DRV_NAME
5470 ": %s: Could not disable adapter %d\n",
5471 priv->net_dev->name, err);
5472 return err;
5473 }
5474 }
5475
5476 /* send cmd to firmware */
5477 err = ipw2100_hw_send_command(priv, &cmd);
5478
5479 if (!batch_mode)
5480 ipw2100_enable_adapter(priv);
5481
5482 return err;
5483 }
5484
ipw2100_configure_security(struct ipw2100_priv * priv,int batch_mode)5485 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5486 {
5487 int i, err, auth_mode, sec_level, use_group;
5488
5489 if (!(priv->status & STATUS_RUNNING))
5490 return 0;
5491
5492 if (!batch_mode) {
5493 err = ipw2100_disable_adapter(priv);
5494 if (err)
5495 return err;
5496 }
5497
5498 if (!priv->ieee->sec.enabled) {
5499 err =
5500 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5501 SEC_LEVEL_0, 0, 1);
5502 } else {
5503 auth_mode = IPW_AUTH_OPEN;
5504 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5505 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5506 auth_mode = IPW_AUTH_SHARED;
5507 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5508 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5509 }
5510
5511 sec_level = SEC_LEVEL_0;
5512 if (priv->ieee->sec.flags & SEC_LEVEL)
5513 sec_level = priv->ieee->sec.level;
5514
5515 use_group = 0;
5516 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5517 use_group = priv->ieee->sec.unicast_uses_group;
5518
5519 err =
5520 ipw2100_set_security_information(priv, auth_mode, sec_level,
5521 use_group, 1);
5522 }
5523
5524 if (err)
5525 goto exit;
5526
5527 if (priv->ieee->sec.enabled) {
5528 for (i = 0; i < 4; i++) {
5529 if (!(priv->ieee->sec.flags & (1 << i))) {
5530 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5531 priv->ieee->sec.key_sizes[i] = 0;
5532 } else {
5533 err = ipw2100_set_key(priv, i,
5534 priv->ieee->sec.keys[i],
5535 priv->ieee->sec.
5536 key_sizes[i], 1);
5537 if (err)
5538 goto exit;
5539 }
5540 }
5541
5542 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5543 }
5544
5545 /* Always enable privacy so the Host can filter WEP packets if
5546 * encrypted data is sent up */
5547 err =
5548 ipw2100_set_wep_flags(priv,
5549 priv->ieee->sec.
5550 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5551 if (err)
5552 goto exit;
5553
5554 priv->status &= ~STATUS_SECURITY_UPDATED;
5555
5556 exit:
5557 if (!batch_mode)
5558 ipw2100_enable_adapter(priv);
5559
5560 return err;
5561 }
5562
ipw2100_security_work(struct work_struct * work)5563 static void ipw2100_security_work(struct work_struct *work)
5564 {
5565 struct ipw2100_priv *priv =
5566 container_of(work, struct ipw2100_priv, security_work.work);
5567
5568 /* If we happen to have reconnected before we get a chance to
5569 * process this, then update the security settings--which causes
5570 * a disassociation to occur */
5571 if (!(priv->status & STATUS_ASSOCIATED) &&
5572 priv->status & STATUS_SECURITY_UPDATED)
5573 ipw2100_configure_security(priv, 0);
5574 }
5575
shim__set_security(struct net_device * dev,struct libipw_security * sec)5576 static void shim__set_security(struct net_device *dev,
5577 struct libipw_security *sec)
5578 {
5579 struct ipw2100_priv *priv = libipw_priv(dev);
5580 int i, force_update = 0;
5581
5582 mutex_lock(&priv->action_mutex);
5583 if (!(priv->status & STATUS_INITIALIZED))
5584 goto done;
5585
5586 for (i = 0; i < 4; i++) {
5587 if (sec->flags & (1 << i)) {
5588 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5589 if (sec->key_sizes[i] == 0)
5590 priv->ieee->sec.flags &= ~(1 << i);
5591 else
5592 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5593 sec->key_sizes[i]);
5594 if (sec->level == SEC_LEVEL_1) {
5595 priv->ieee->sec.flags |= (1 << i);
5596 priv->status |= STATUS_SECURITY_UPDATED;
5597 } else
5598 priv->ieee->sec.flags &= ~(1 << i);
5599 }
5600 }
5601
5602 if ((sec->flags & SEC_ACTIVE_KEY) &&
5603 priv->ieee->sec.active_key != sec->active_key) {
5604 if (sec->active_key <= 3) {
5605 priv->ieee->sec.active_key = sec->active_key;
5606 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5607 } else
5608 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5609
5610 priv->status |= STATUS_SECURITY_UPDATED;
5611 }
5612
5613 if ((sec->flags & SEC_AUTH_MODE) &&
5614 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5615 priv->ieee->sec.auth_mode = sec->auth_mode;
5616 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5617 priv->status |= STATUS_SECURITY_UPDATED;
5618 }
5619
5620 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5621 priv->ieee->sec.flags |= SEC_ENABLED;
5622 priv->ieee->sec.enabled = sec->enabled;
5623 priv->status |= STATUS_SECURITY_UPDATED;
5624 force_update = 1;
5625 }
5626
5627 if (sec->flags & SEC_ENCRYPT)
5628 priv->ieee->sec.encrypt = sec->encrypt;
5629
5630 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5631 priv->ieee->sec.level = sec->level;
5632 priv->ieee->sec.flags |= SEC_LEVEL;
5633 priv->status |= STATUS_SECURITY_UPDATED;
5634 }
5635
5636 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5637 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5638 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5639 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5640 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5641 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5642 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5643 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5644 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5645 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5646
5647 /* As a temporary work around to enable WPA until we figure out why
5648 * wpa_supplicant toggles the security capability of the driver, which
5649 * forces a disassocation with force_update...
5650 *
5651 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5652 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5653 ipw2100_configure_security(priv, 0);
5654 done:
5655 mutex_unlock(&priv->action_mutex);
5656 }
5657
ipw2100_adapter_setup(struct ipw2100_priv * priv)5658 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5659 {
5660 int err;
5661 int batch_mode = 1;
5662 u8 *bssid;
5663
5664 IPW_DEBUG_INFO("enter\n");
5665
5666 err = ipw2100_disable_adapter(priv);
5667 if (err)
5668 return err;
5669 #ifdef CONFIG_IPW2100_MONITOR
5670 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5671 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5672 if (err)
5673 return err;
5674
5675 IPW_DEBUG_INFO("exit\n");
5676
5677 return 0;
5678 }
5679 #endif /* CONFIG_IPW2100_MONITOR */
5680
5681 err = ipw2100_read_mac_address(priv);
5682 if (err)
5683 return -EIO;
5684
5685 err = ipw2100_set_mac_address(priv, batch_mode);
5686 if (err)
5687 return err;
5688
5689 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5690 if (err)
5691 return err;
5692
5693 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5694 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5695 if (err)
5696 return err;
5697 }
5698
5699 err = ipw2100_system_config(priv, batch_mode);
5700 if (err)
5701 return err;
5702
5703 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5704 if (err)
5705 return err;
5706
5707 /* Default to power mode OFF */
5708 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5709 if (err)
5710 return err;
5711
5712 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5713 if (err)
5714 return err;
5715
5716 if (priv->config & CFG_STATIC_BSSID)
5717 bssid = priv->bssid;
5718 else
5719 bssid = NULL;
5720 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5721 if (err)
5722 return err;
5723
5724 if (priv->config & CFG_STATIC_ESSID)
5725 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5726 batch_mode);
5727 else
5728 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5729 if (err)
5730 return err;
5731
5732 err = ipw2100_configure_security(priv, batch_mode);
5733 if (err)
5734 return err;
5735
5736 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5737 err =
5738 ipw2100_set_ibss_beacon_interval(priv,
5739 priv->beacon_interval,
5740 batch_mode);
5741 if (err)
5742 return err;
5743
5744 err = ipw2100_set_tx_power(priv, priv->tx_power);
5745 if (err)
5746 return err;
5747 }
5748
5749 /*
5750 err = ipw2100_set_fragmentation_threshold(
5751 priv, priv->frag_threshold, batch_mode);
5752 if (err)
5753 return err;
5754 */
5755
5756 IPW_DEBUG_INFO("exit\n");
5757
5758 return 0;
5759 }
5760
5761 /*************************************************************************
5762 *
5763 * EXTERNALLY CALLED METHODS
5764 *
5765 *************************************************************************/
5766
5767 /* This method is called by the network layer -- not to be confused with
5768 * ipw2100_set_mac_address() declared above called by this driver (and this
5769 * method as well) to talk to the firmware */
ipw2100_set_address(struct net_device * dev,void * p)5770 static int ipw2100_set_address(struct net_device *dev, void *p)
5771 {
5772 struct ipw2100_priv *priv = libipw_priv(dev);
5773 struct sockaddr *addr = p;
5774 int err = 0;
5775
5776 if (!is_valid_ether_addr(addr->sa_data))
5777 return -EADDRNOTAVAIL;
5778
5779 mutex_lock(&priv->action_mutex);
5780
5781 priv->config |= CFG_CUSTOM_MAC;
5782 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5783
5784 err = ipw2100_set_mac_address(priv, 0);
5785 if (err)
5786 goto done;
5787
5788 priv->reset_backoff = 0;
5789 mutex_unlock(&priv->action_mutex);
5790 ipw2100_reset_adapter(&priv->reset_work.work);
5791 return 0;
5792
5793 done:
5794 mutex_unlock(&priv->action_mutex);
5795 return err;
5796 }
5797
ipw2100_open(struct net_device * dev)5798 static int ipw2100_open(struct net_device *dev)
5799 {
5800 struct ipw2100_priv *priv = libipw_priv(dev);
5801 unsigned long flags;
5802 IPW_DEBUG_INFO("dev->open\n");
5803
5804 spin_lock_irqsave(&priv->low_lock, flags);
5805 if (priv->status & STATUS_ASSOCIATED) {
5806 netif_carrier_on(dev);
5807 netif_start_queue(dev);
5808 }
5809 spin_unlock_irqrestore(&priv->low_lock, flags);
5810
5811 return 0;
5812 }
5813
ipw2100_close(struct net_device * dev)5814 static int ipw2100_close(struct net_device *dev)
5815 {
5816 struct ipw2100_priv *priv = libipw_priv(dev);
5817 unsigned long flags;
5818 struct list_head *element;
5819 struct ipw2100_tx_packet *packet;
5820
5821 IPW_DEBUG_INFO("enter\n");
5822
5823 spin_lock_irqsave(&priv->low_lock, flags);
5824
5825 if (priv->status & STATUS_ASSOCIATED)
5826 netif_carrier_off(dev);
5827 netif_stop_queue(dev);
5828
5829 /* Flush the TX queue ... */
5830 while (!list_empty(&priv->tx_pend_list)) {
5831 element = priv->tx_pend_list.next;
5832 packet = list_entry(element, struct ipw2100_tx_packet, list);
5833
5834 list_del(element);
5835 DEC_STAT(&priv->tx_pend_stat);
5836
5837 libipw_txb_free(packet->info.d_struct.txb);
5838 packet->info.d_struct.txb = NULL;
5839
5840 list_add_tail(element, &priv->tx_free_list);
5841 INC_STAT(&priv->tx_free_stat);
5842 }
5843 spin_unlock_irqrestore(&priv->low_lock, flags);
5844
5845 IPW_DEBUG_INFO("exit\n");
5846
5847 return 0;
5848 }
5849
5850 /*
5851 * TODO: Fix this function... its just wrong
5852 */
ipw2100_tx_timeout(struct net_device * dev)5853 static void ipw2100_tx_timeout(struct net_device *dev)
5854 {
5855 struct ipw2100_priv *priv = libipw_priv(dev);
5856
5857 dev->stats.tx_errors++;
5858
5859 #ifdef CONFIG_IPW2100_MONITOR
5860 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5861 return;
5862 #endif
5863
5864 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5865 dev->name);
5866 schedule_reset(priv);
5867 }
5868
ipw2100_wpa_enable(struct ipw2100_priv * priv,int value)5869 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5870 {
5871 /* This is called when wpa_supplicant loads and closes the driver
5872 * interface. */
5873 priv->ieee->wpa_enabled = value;
5874 return 0;
5875 }
5876
ipw2100_wpa_set_auth_algs(struct ipw2100_priv * priv,int value)5877 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5878 {
5879
5880 struct libipw_device *ieee = priv->ieee;
5881 struct libipw_security sec = {
5882 .flags = SEC_AUTH_MODE,
5883 };
5884 int ret = 0;
5885
5886 if (value & IW_AUTH_ALG_SHARED_KEY) {
5887 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5888 ieee->open_wep = 0;
5889 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5890 sec.auth_mode = WLAN_AUTH_OPEN;
5891 ieee->open_wep = 1;
5892 } else if (value & IW_AUTH_ALG_LEAP) {
5893 sec.auth_mode = WLAN_AUTH_LEAP;
5894 ieee->open_wep = 1;
5895 } else
5896 return -EINVAL;
5897
5898 if (ieee->set_security)
5899 ieee->set_security(ieee->dev, &sec);
5900 else
5901 ret = -EOPNOTSUPP;
5902
5903 return ret;
5904 }
5905
ipw2100_wpa_assoc_frame(struct ipw2100_priv * priv,char * wpa_ie,int wpa_ie_len)5906 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5907 char *wpa_ie, int wpa_ie_len)
5908 {
5909
5910 struct ipw2100_wpa_assoc_frame frame;
5911
5912 frame.fixed_ie_mask = 0;
5913
5914 /* copy WPA IE */
5915 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5916 frame.var_ie_len = wpa_ie_len;
5917
5918 /* make sure WPA is enabled */
5919 ipw2100_wpa_enable(priv, 1);
5920 ipw2100_set_wpa_ie(priv, &frame, 0);
5921 }
5922
ipw_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)5923 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5924 struct ethtool_drvinfo *info)
5925 {
5926 struct ipw2100_priv *priv = libipw_priv(dev);
5927 char fw_ver[64], ucode_ver[64];
5928
5929 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5930 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5931
5932 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5933 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5934
5935 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5936 fw_ver, priv->eeprom_version, ucode_ver);
5937
5938 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5939 sizeof(info->bus_info));
5940 }
5941
ipw2100_ethtool_get_link(struct net_device * dev)5942 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5943 {
5944 struct ipw2100_priv *priv = libipw_priv(dev);
5945 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5946 }
5947
5948 static const struct ethtool_ops ipw2100_ethtool_ops = {
5949 .get_link = ipw2100_ethtool_get_link,
5950 .get_drvinfo = ipw_ethtool_get_drvinfo,
5951 };
5952
ipw2100_hang_check(struct work_struct * work)5953 static void ipw2100_hang_check(struct work_struct *work)
5954 {
5955 struct ipw2100_priv *priv =
5956 container_of(work, struct ipw2100_priv, hang_check.work);
5957 unsigned long flags;
5958 u32 rtc = 0xa5a5a5a5;
5959 u32 len = sizeof(rtc);
5960 int restart = 0;
5961
5962 spin_lock_irqsave(&priv->low_lock, flags);
5963
5964 if (priv->fatal_error != 0) {
5965 /* If fatal_error is set then we need to restart */
5966 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5967 priv->net_dev->name);
5968
5969 restart = 1;
5970 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5971 (rtc == priv->last_rtc)) {
5972 /* Check if firmware is hung */
5973 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5974 priv->net_dev->name);
5975
5976 restart = 1;
5977 }
5978
5979 if (restart) {
5980 /* Kill timer */
5981 priv->stop_hang_check = 1;
5982 priv->hangs++;
5983
5984 /* Restart the NIC */
5985 schedule_reset(priv);
5986 }
5987
5988 priv->last_rtc = rtc;
5989
5990 if (!priv->stop_hang_check)
5991 schedule_delayed_work(&priv->hang_check, HZ / 2);
5992
5993 spin_unlock_irqrestore(&priv->low_lock, flags);
5994 }
5995
ipw2100_rf_kill(struct work_struct * work)5996 static void ipw2100_rf_kill(struct work_struct *work)
5997 {
5998 struct ipw2100_priv *priv =
5999 container_of(work, struct ipw2100_priv, rf_kill.work);
6000 unsigned long flags;
6001
6002 spin_lock_irqsave(&priv->low_lock, flags);
6003
6004 if (rf_kill_active(priv)) {
6005 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6006 if (!priv->stop_rf_kill)
6007 schedule_delayed_work(&priv->rf_kill,
6008 round_jiffies_relative(HZ));
6009 goto exit_unlock;
6010 }
6011
6012 /* RF Kill is now disabled, so bring the device back up */
6013
6014 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6015 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6016 "device\n");
6017 schedule_reset(priv);
6018 } else
6019 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6020 "enabled\n");
6021
6022 exit_unlock:
6023 spin_unlock_irqrestore(&priv->low_lock, flags);
6024 }
6025
6026 static void ipw2100_irq_tasklet(unsigned long data);
6027
6028 static const struct net_device_ops ipw2100_netdev_ops = {
6029 .ndo_open = ipw2100_open,
6030 .ndo_stop = ipw2100_close,
6031 .ndo_start_xmit = libipw_xmit,
6032 .ndo_change_mtu = libipw_change_mtu,
6033 .ndo_tx_timeout = ipw2100_tx_timeout,
6034 .ndo_set_mac_address = ipw2100_set_address,
6035 .ndo_validate_addr = eth_validate_addr,
6036 };
6037
6038 /* Look into using netdev destructor to shutdown libipw? */
6039
ipw2100_alloc_device(struct pci_dev * pci_dev,void __iomem * ioaddr)6040 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6041 void __iomem * ioaddr)
6042 {
6043 struct ipw2100_priv *priv;
6044 struct net_device *dev;
6045
6046 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6047 if (!dev)
6048 return NULL;
6049 priv = libipw_priv(dev);
6050 priv->ieee = netdev_priv(dev);
6051 priv->pci_dev = pci_dev;
6052 priv->net_dev = dev;
6053 priv->ioaddr = ioaddr;
6054
6055 priv->ieee->hard_start_xmit = ipw2100_tx;
6056 priv->ieee->set_security = shim__set_security;
6057
6058 priv->ieee->perfect_rssi = -20;
6059 priv->ieee->worst_rssi = -85;
6060
6061 dev->netdev_ops = &ipw2100_netdev_ops;
6062 dev->ethtool_ops = &ipw2100_ethtool_ops;
6063 dev->wireless_handlers = &ipw2100_wx_handler_def;
6064 priv->wireless_data.libipw = priv->ieee;
6065 dev->wireless_data = &priv->wireless_data;
6066 dev->watchdog_timeo = 3 * HZ;
6067 dev->irq = 0;
6068
6069 /* NOTE: We don't use the wireless_handlers hook
6070 * in dev as the system will start throwing WX requests
6071 * to us before we're actually initialized and it just
6072 * ends up causing problems. So, we just handle
6073 * the WX extensions through the ipw2100_ioctl interface */
6074
6075 /* memset() puts everything to 0, so we only have explicitly set
6076 * those values that need to be something else */
6077
6078 /* If power management is turned on, default to AUTO mode */
6079 priv->power_mode = IPW_POWER_AUTO;
6080
6081 #ifdef CONFIG_IPW2100_MONITOR
6082 priv->config |= CFG_CRC_CHECK;
6083 #endif
6084 priv->ieee->wpa_enabled = 0;
6085 priv->ieee->drop_unencrypted = 0;
6086 priv->ieee->privacy_invoked = 0;
6087 priv->ieee->ieee802_1x = 1;
6088
6089 /* Set module parameters */
6090 switch (network_mode) {
6091 case 1:
6092 priv->ieee->iw_mode = IW_MODE_ADHOC;
6093 break;
6094 #ifdef CONFIG_IPW2100_MONITOR
6095 case 2:
6096 priv->ieee->iw_mode = IW_MODE_MONITOR;
6097 break;
6098 #endif
6099 default:
6100 case 0:
6101 priv->ieee->iw_mode = IW_MODE_INFRA;
6102 break;
6103 }
6104
6105 if (disable == 1)
6106 priv->status |= STATUS_RF_KILL_SW;
6107
6108 if (channel != 0 &&
6109 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6110 priv->config |= CFG_STATIC_CHANNEL;
6111 priv->channel = channel;
6112 }
6113
6114 if (associate)
6115 priv->config |= CFG_ASSOCIATE;
6116
6117 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6118 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6119 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6120 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6121 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6122 priv->tx_power = IPW_TX_POWER_DEFAULT;
6123 priv->tx_rates = DEFAULT_TX_RATES;
6124
6125 strcpy(priv->nick, "ipw2100");
6126
6127 spin_lock_init(&priv->low_lock);
6128 mutex_init(&priv->action_mutex);
6129 mutex_init(&priv->adapter_mutex);
6130
6131 init_waitqueue_head(&priv->wait_command_queue);
6132
6133 netif_carrier_off(dev);
6134
6135 INIT_LIST_HEAD(&priv->msg_free_list);
6136 INIT_LIST_HEAD(&priv->msg_pend_list);
6137 INIT_STAT(&priv->msg_free_stat);
6138 INIT_STAT(&priv->msg_pend_stat);
6139
6140 INIT_LIST_HEAD(&priv->tx_free_list);
6141 INIT_LIST_HEAD(&priv->tx_pend_list);
6142 INIT_STAT(&priv->tx_free_stat);
6143 INIT_STAT(&priv->tx_pend_stat);
6144
6145 INIT_LIST_HEAD(&priv->fw_pend_list);
6146 INIT_STAT(&priv->fw_pend_stat);
6147
6148 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6149 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6150 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6151 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6152 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6153 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6154
6155 tasklet_init(&priv->irq_tasklet,
6156 ipw2100_irq_tasklet, (unsigned long)priv);
6157
6158 /* NOTE: We do not start the deferred work for status checks yet */
6159 priv->stop_rf_kill = 1;
6160 priv->stop_hang_check = 1;
6161
6162 return dev;
6163 }
6164
ipw2100_pci_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)6165 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6166 const struct pci_device_id *ent)
6167 {
6168 void __iomem *ioaddr;
6169 struct net_device *dev = NULL;
6170 struct ipw2100_priv *priv = NULL;
6171 int err = 0;
6172 int registered = 0;
6173 u32 val;
6174
6175 IPW_DEBUG_INFO("enter\n");
6176
6177 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6178 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6179 err = -ENODEV;
6180 goto out;
6181 }
6182
6183 ioaddr = pci_iomap(pci_dev, 0, 0);
6184 if (!ioaddr) {
6185 printk(KERN_WARNING DRV_NAME
6186 "Error calling ioremap_nocache.\n");
6187 err = -EIO;
6188 goto fail;
6189 }
6190
6191 /* allocate and initialize our net_device */
6192 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6193 if (!dev) {
6194 printk(KERN_WARNING DRV_NAME
6195 "Error calling ipw2100_alloc_device.\n");
6196 err = -ENOMEM;
6197 goto fail;
6198 }
6199
6200 /* set up PCI mappings for device */
6201 err = pci_enable_device(pci_dev);
6202 if (err) {
6203 printk(KERN_WARNING DRV_NAME
6204 "Error calling pci_enable_device.\n");
6205 return err;
6206 }
6207
6208 priv = libipw_priv(dev);
6209
6210 pci_set_master(pci_dev);
6211 pci_set_drvdata(pci_dev, priv);
6212
6213 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6214 if (err) {
6215 printk(KERN_WARNING DRV_NAME
6216 "Error calling pci_set_dma_mask.\n");
6217 pci_disable_device(pci_dev);
6218 return err;
6219 }
6220
6221 err = pci_request_regions(pci_dev, DRV_NAME);
6222 if (err) {
6223 printk(KERN_WARNING DRV_NAME
6224 "Error calling pci_request_regions.\n");
6225 pci_disable_device(pci_dev);
6226 return err;
6227 }
6228
6229 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6230 * PCI Tx retries from interfering with C3 CPU state */
6231 pci_read_config_dword(pci_dev, 0x40, &val);
6232 if ((val & 0x0000ff00) != 0)
6233 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6234
6235 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6236 printk(KERN_WARNING DRV_NAME
6237 "Device not found via register read.\n");
6238 err = -ENODEV;
6239 goto fail;
6240 }
6241
6242 SET_NETDEV_DEV(dev, &pci_dev->dev);
6243
6244 /* Force interrupts to be shut off on the device */
6245 priv->status |= STATUS_INT_ENABLED;
6246 ipw2100_disable_interrupts(priv);
6247
6248 /* Allocate and initialize the Tx/Rx queues and lists */
6249 if (ipw2100_queues_allocate(priv)) {
6250 printk(KERN_WARNING DRV_NAME
6251 "Error calling ipw2100_queues_allocate.\n");
6252 err = -ENOMEM;
6253 goto fail;
6254 }
6255 ipw2100_queues_initialize(priv);
6256
6257 err = request_irq(pci_dev->irq,
6258 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6259 if (err) {
6260 printk(KERN_WARNING DRV_NAME
6261 "Error calling request_irq: %d.\n", pci_dev->irq);
6262 goto fail;
6263 }
6264 dev->irq = pci_dev->irq;
6265
6266 IPW_DEBUG_INFO("Attempting to register device...\n");
6267
6268 printk(KERN_INFO DRV_NAME
6269 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6270
6271 err = ipw2100_up(priv, 1);
6272 if (err)
6273 goto fail;
6274
6275 err = ipw2100_wdev_init(dev);
6276 if (err)
6277 goto fail;
6278 registered = 1;
6279
6280 /* Bring up the interface. Pre 0.46, after we registered the
6281 * network device we would call ipw2100_up. This introduced a race
6282 * condition with newer hotplug configurations (network was coming
6283 * up and making calls before the device was initialized).
6284 */
6285 err = register_netdev(dev);
6286 if (err) {
6287 printk(KERN_WARNING DRV_NAME
6288 "Error calling register_netdev.\n");
6289 goto fail;
6290 }
6291 registered = 2;
6292
6293 mutex_lock(&priv->action_mutex);
6294
6295 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6296
6297 /* perform this after register_netdev so that dev->name is set */
6298 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6299 if (err)
6300 goto fail_unlock;
6301
6302 /* If the RF Kill switch is disabled, go ahead and complete the
6303 * startup sequence */
6304 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6305 /* Enable the adapter - sends HOST_COMPLETE */
6306 if (ipw2100_enable_adapter(priv)) {
6307 printk(KERN_WARNING DRV_NAME
6308 ": %s: failed in call to enable adapter.\n",
6309 priv->net_dev->name);
6310 ipw2100_hw_stop_adapter(priv);
6311 err = -EIO;
6312 goto fail_unlock;
6313 }
6314
6315 /* Start a scan . . . */
6316 ipw2100_set_scan_options(priv);
6317 ipw2100_start_scan(priv);
6318 }
6319
6320 IPW_DEBUG_INFO("exit\n");
6321
6322 priv->status |= STATUS_INITIALIZED;
6323
6324 mutex_unlock(&priv->action_mutex);
6325 out:
6326 return err;
6327
6328 fail_unlock:
6329 mutex_unlock(&priv->action_mutex);
6330 fail:
6331 if (dev) {
6332 if (registered >= 2)
6333 unregister_netdev(dev);
6334
6335 if (registered) {
6336 wiphy_unregister(priv->ieee->wdev.wiphy);
6337 kfree(priv->ieee->bg_band.channels);
6338 }
6339
6340 ipw2100_hw_stop_adapter(priv);
6341
6342 ipw2100_disable_interrupts(priv);
6343
6344 if (dev->irq)
6345 free_irq(dev->irq, priv);
6346
6347 ipw2100_kill_works(priv);
6348
6349 /* These are safe to call even if they weren't allocated */
6350 ipw2100_queues_free(priv);
6351 sysfs_remove_group(&pci_dev->dev.kobj,
6352 &ipw2100_attribute_group);
6353
6354 free_libipw(dev, 0);
6355 }
6356
6357 pci_iounmap(pci_dev, ioaddr);
6358
6359 pci_release_regions(pci_dev);
6360 pci_disable_device(pci_dev);
6361 goto out;
6362 }
6363
ipw2100_pci_remove_one(struct pci_dev * pci_dev)6364 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6365 {
6366 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6367 struct net_device *dev = priv->net_dev;
6368
6369 mutex_lock(&priv->action_mutex);
6370
6371 priv->status &= ~STATUS_INITIALIZED;
6372
6373 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6374
6375 #ifdef CONFIG_PM
6376 if (ipw2100_firmware.version)
6377 ipw2100_release_firmware(priv, &ipw2100_firmware);
6378 #endif
6379 /* Take down the hardware */
6380 ipw2100_down(priv);
6381
6382 /* Release the mutex so that the network subsystem can
6383 * complete any needed calls into the driver... */
6384 mutex_unlock(&priv->action_mutex);
6385
6386 /* Unregister the device first - this results in close()
6387 * being called if the device is open. If we free storage
6388 * first, then close() will crash.
6389 * FIXME: remove the comment above. */
6390 unregister_netdev(dev);
6391
6392 ipw2100_kill_works(priv);
6393
6394 ipw2100_queues_free(priv);
6395
6396 /* Free potential debugging firmware snapshot */
6397 ipw2100_snapshot_free(priv);
6398
6399 free_irq(dev->irq, priv);
6400
6401 pci_iounmap(pci_dev, priv->ioaddr);
6402
6403 /* wiphy_unregister needs to be here, before free_libipw */
6404 wiphy_unregister(priv->ieee->wdev.wiphy);
6405 kfree(priv->ieee->bg_band.channels);
6406 free_libipw(dev, 0);
6407
6408 pci_release_regions(pci_dev);
6409 pci_disable_device(pci_dev);
6410
6411 IPW_DEBUG_INFO("exit\n");
6412 }
6413
6414 #ifdef CONFIG_PM
ipw2100_suspend(struct pci_dev * pci_dev,pm_message_t state)6415 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6416 {
6417 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6418 struct net_device *dev = priv->net_dev;
6419
6420 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6421
6422 mutex_lock(&priv->action_mutex);
6423 if (priv->status & STATUS_INITIALIZED) {
6424 /* Take down the device; powers it off, etc. */
6425 ipw2100_down(priv);
6426 }
6427
6428 /* Remove the PRESENT state of the device */
6429 netif_device_detach(dev);
6430
6431 pci_save_state(pci_dev);
6432 pci_disable_device(pci_dev);
6433 pci_set_power_state(pci_dev, PCI_D3hot);
6434
6435 priv->suspend_at = get_seconds();
6436
6437 mutex_unlock(&priv->action_mutex);
6438
6439 return 0;
6440 }
6441
ipw2100_resume(struct pci_dev * pci_dev)6442 static int ipw2100_resume(struct pci_dev *pci_dev)
6443 {
6444 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6445 struct net_device *dev = priv->net_dev;
6446 int err;
6447 u32 val;
6448
6449 if (IPW2100_PM_DISABLED)
6450 return 0;
6451
6452 mutex_lock(&priv->action_mutex);
6453
6454 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6455
6456 pci_set_power_state(pci_dev, PCI_D0);
6457 err = pci_enable_device(pci_dev);
6458 if (err) {
6459 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6460 dev->name);
6461 mutex_unlock(&priv->action_mutex);
6462 return err;
6463 }
6464 pci_restore_state(pci_dev);
6465
6466 /*
6467 * Suspend/Resume resets the PCI configuration space, so we have to
6468 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6469 * from interfering with C3 CPU state. pci_restore_state won't help
6470 * here since it only restores the first 64 bytes pci config header.
6471 */
6472 pci_read_config_dword(pci_dev, 0x40, &val);
6473 if ((val & 0x0000ff00) != 0)
6474 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6475
6476 /* Set the device back into the PRESENT state; this will also wake
6477 * the queue of needed */
6478 netif_device_attach(dev);
6479
6480 priv->suspend_time = get_seconds() - priv->suspend_at;
6481
6482 /* Bring the device back up */
6483 if (!(priv->status & STATUS_RF_KILL_SW))
6484 ipw2100_up(priv, 0);
6485
6486 mutex_unlock(&priv->action_mutex);
6487
6488 return 0;
6489 }
6490 #endif
6491
ipw2100_shutdown(struct pci_dev * pci_dev)6492 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6493 {
6494 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6495
6496 /* Take down the device; powers it off, etc. */
6497 ipw2100_down(priv);
6498
6499 pci_disable_device(pci_dev);
6500 }
6501
6502 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6503
6504 static const struct pci_device_id ipw2100_pci_id_table[] = {
6505 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6506 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6507 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6508 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6509 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6510 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6511 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6512 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6513 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6514 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6515 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6516 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6517 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6518
6519 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6520 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6521 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6522 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6523 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6524
6525 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6526 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6527 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6528 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6529 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6530 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6531 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6532
6533 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6534
6535 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6536 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6537 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6538 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6539 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6540 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6541 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6542
6543 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6544 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6545 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6546 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6547 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6548 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6549
6550 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6551 {0,},
6552 };
6553
6554 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6555
6556 static struct pci_driver ipw2100_pci_driver = {
6557 .name = DRV_NAME,
6558 .id_table = ipw2100_pci_id_table,
6559 .probe = ipw2100_pci_init_one,
6560 .remove = ipw2100_pci_remove_one,
6561 #ifdef CONFIG_PM
6562 .suspend = ipw2100_suspend,
6563 .resume = ipw2100_resume,
6564 #endif
6565 .shutdown = ipw2100_shutdown,
6566 };
6567
6568 /**
6569 * Initialize the ipw2100 driver/module
6570 *
6571 * @returns 0 if ok, < 0 errno node con error.
6572 *
6573 * Note: we cannot init the /proc stuff until the PCI driver is there,
6574 * or we risk an unlikely race condition on someone accessing
6575 * uninitialized data in the PCI dev struct through /proc.
6576 */
ipw2100_init(void)6577 static int __init ipw2100_init(void)
6578 {
6579 int ret;
6580
6581 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6582 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6583
6584 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6585 PM_QOS_DEFAULT_VALUE);
6586
6587 ret = pci_register_driver(&ipw2100_pci_driver);
6588 if (ret)
6589 goto out;
6590
6591 #ifdef CONFIG_IPW2100_DEBUG
6592 ipw2100_debug_level = debug;
6593 ret = driver_create_file(&ipw2100_pci_driver.driver,
6594 &driver_attr_debug_level);
6595 #endif
6596
6597 out:
6598 return ret;
6599 }
6600
6601 /**
6602 * Cleanup ipw2100 driver registration
6603 */
ipw2100_exit(void)6604 static void __exit ipw2100_exit(void)
6605 {
6606 /* FIXME: IPG: check that we have no instances of the devices open */
6607 #ifdef CONFIG_IPW2100_DEBUG
6608 driver_remove_file(&ipw2100_pci_driver.driver,
6609 &driver_attr_debug_level);
6610 #endif
6611 pci_unregister_driver(&ipw2100_pci_driver);
6612 pm_qos_remove_request(&ipw2100_pm_qos_req);
6613 }
6614
6615 module_init(ipw2100_init);
6616 module_exit(ipw2100_exit);
6617
ipw2100_wx_get_name(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6618 static int ipw2100_wx_get_name(struct net_device *dev,
6619 struct iw_request_info *info,
6620 union iwreq_data *wrqu, char *extra)
6621 {
6622 /*
6623 * This can be called at any time. No action lock required
6624 */
6625
6626 struct ipw2100_priv *priv = libipw_priv(dev);
6627 if (!(priv->status & STATUS_ASSOCIATED))
6628 strcpy(wrqu->name, "unassociated");
6629 else
6630 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6631
6632 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6633 return 0;
6634 }
6635
ipw2100_wx_set_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6636 static int ipw2100_wx_set_freq(struct net_device *dev,
6637 struct iw_request_info *info,
6638 union iwreq_data *wrqu, char *extra)
6639 {
6640 struct ipw2100_priv *priv = libipw_priv(dev);
6641 struct iw_freq *fwrq = &wrqu->freq;
6642 int err = 0;
6643
6644 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6645 return -EOPNOTSUPP;
6646
6647 mutex_lock(&priv->action_mutex);
6648 if (!(priv->status & STATUS_INITIALIZED)) {
6649 err = -EIO;
6650 goto done;
6651 }
6652
6653 /* if setting by freq convert to channel */
6654 if (fwrq->e == 1) {
6655 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6656 int f = fwrq->m / 100000;
6657 int c = 0;
6658
6659 while ((c < REG_MAX_CHANNEL) &&
6660 (f != ipw2100_frequencies[c]))
6661 c++;
6662
6663 /* hack to fall through */
6664 fwrq->e = 0;
6665 fwrq->m = c + 1;
6666 }
6667 }
6668
6669 if (fwrq->e > 0 || fwrq->m > 1000) {
6670 err = -EOPNOTSUPP;
6671 goto done;
6672 } else { /* Set the channel */
6673 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6674 err = ipw2100_set_channel(priv, fwrq->m, 0);
6675 }
6676
6677 done:
6678 mutex_unlock(&priv->action_mutex);
6679 return err;
6680 }
6681
ipw2100_wx_get_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6682 static int ipw2100_wx_get_freq(struct net_device *dev,
6683 struct iw_request_info *info,
6684 union iwreq_data *wrqu, char *extra)
6685 {
6686 /*
6687 * This can be called at any time. No action lock required
6688 */
6689
6690 struct ipw2100_priv *priv = libipw_priv(dev);
6691
6692 wrqu->freq.e = 0;
6693
6694 /* If we are associated, trying to associate, or have a statically
6695 * configured CHANNEL then return that; otherwise return ANY */
6696 if (priv->config & CFG_STATIC_CHANNEL ||
6697 priv->status & STATUS_ASSOCIATED)
6698 wrqu->freq.m = priv->channel;
6699 else
6700 wrqu->freq.m = 0;
6701
6702 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6703 return 0;
6704
6705 }
6706
ipw2100_wx_set_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6707 static int ipw2100_wx_set_mode(struct net_device *dev,
6708 struct iw_request_info *info,
6709 union iwreq_data *wrqu, char *extra)
6710 {
6711 struct ipw2100_priv *priv = libipw_priv(dev);
6712 int err = 0;
6713
6714 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6715
6716 if (wrqu->mode == priv->ieee->iw_mode)
6717 return 0;
6718
6719 mutex_lock(&priv->action_mutex);
6720 if (!(priv->status & STATUS_INITIALIZED)) {
6721 err = -EIO;
6722 goto done;
6723 }
6724
6725 switch (wrqu->mode) {
6726 #ifdef CONFIG_IPW2100_MONITOR
6727 case IW_MODE_MONITOR:
6728 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6729 break;
6730 #endif /* CONFIG_IPW2100_MONITOR */
6731 case IW_MODE_ADHOC:
6732 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6733 break;
6734 case IW_MODE_INFRA:
6735 case IW_MODE_AUTO:
6736 default:
6737 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6738 break;
6739 }
6740
6741 done:
6742 mutex_unlock(&priv->action_mutex);
6743 return err;
6744 }
6745
ipw2100_wx_get_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6746 static int ipw2100_wx_get_mode(struct net_device *dev,
6747 struct iw_request_info *info,
6748 union iwreq_data *wrqu, char *extra)
6749 {
6750 /*
6751 * This can be called at any time. No action lock required
6752 */
6753
6754 struct ipw2100_priv *priv = libipw_priv(dev);
6755
6756 wrqu->mode = priv->ieee->iw_mode;
6757 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6758
6759 return 0;
6760 }
6761
6762 #define POWER_MODES 5
6763
6764 /* Values are in microsecond */
6765 static const s32 timeout_duration[POWER_MODES] = {
6766 350000,
6767 250000,
6768 75000,
6769 37000,
6770 25000,
6771 };
6772
6773 static const s32 period_duration[POWER_MODES] = {
6774 400000,
6775 700000,
6776 1000000,
6777 1000000,
6778 1000000
6779 };
6780
ipw2100_wx_get_range(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6781 static int ipw2100_wx_get_range(struct net_device *dev,
6782 struct iw_request_info *info,
6783 union iwreq_data *wrqu, char *extra)
6784 {
6785 /*
6786 * This can be called at any time. No action lock required
6787 */
6788
6789 struct ipw2100_priv *priv = libipw_priv(dev);
6790 struct iw_range *range = (struct iw_range *)extra;
6791 u16 val;
6792 int i, level;
6793
6794 wrqu->data.length = sizeof(*range);
6795 memset(range, 0, sizeof(*range));
6796
6797 /* Let's try to keep this struct in the same order as in
6798 * linux/include/wireless.h
6799 */
6800
6801 /* TODO: See what values we can set, and remove the ones we can't
6802 * set, or fill them with some default data.
6803 */
6804
6805 /* ~5 Mb/s real (802.11b) */
6806 range->throughput = 5 * 1000 * 1000;
6807
6808 // range->sensitivity; /* signal level threshold range */
6809
6810 range->max_qual.qual = 100;
6811 /* TODO: Find real max RSSI and stick here */
6812 range->max_qual.level = 0;
6813 range->max_qual.noise = 0;
6814 range->max_qual.updated = 7; /* Updated all three */
6815
6816 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6817 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6818 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6819 range->avg_qual.noise = 0;
6820 range->avg_qual.updated = 7; /* Updated all three */
6821
6822 range->num_bitrates = RATE_COUNT;
6823
6824 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6825 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6826 }
6827
6828 range->min_rts = MIN_RTS_THRESHOLD;
6829 range->max_rts = MAX_RTS_THRESHOLD;
6830 range->min_frag = MIN_FRAG_THRESHOLD;
6831 range->max_frag = MAX_FRAG_THRESHOLD;
6832
6833 range->min_pmp = period_duration[0]; /* Minimal PM period */
6834 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6835 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6836 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6837
6838 /* How to decode max/min PM period */
6839 range->pmp_flags = IW_POWER_PERIOD;
6840 /* How to decode max/min PM period */
6841 range->pmt_flags = IW_POWER_TIMEOUT;
6842 /* What PM options are supported */
6843 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6844
6845 range->encoding_size[0] = 5;
6846 range->encoding_size[1] = 13; /* Different token sizes */
6847 range->num_encoding_sizes = 2; /* Number of entry in the list */
6848 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6849 // range->encoding_login_index; /* token index for login token */
6850
6851 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6852 range->txpower_capa = IW_TXPOW_DBM;
6853 range->num_txpower = IW_MAX_TXPOWER;
6854 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6855 i < IW_MAX_TXPOWER;
6856 i++, level -=
6857 ((IPW_TX_POWER_MAX_DBM -
6858 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6859 range->txpower[i] = level / 16;
6860 } else {
6861 range->txpower_capa = 0;
6862 range->num_txpower = 0;
6863 }
6864
6865 /* Set the Wireless Extension versions */
6866 range->we_version_compiled = WIRELESS_EXT;
6867 range->we_version_source = 18;
6868
6869 // range->retry_capa; /* What retry options are supported */
6870 // range->retry_flags; /* How to decode max/min retry limit */
6871 // range->r_time_flags; /* How to decode max/min retry life */
6872 // range->min_retry; /* Minimal number of retries */
6873 // range->max_retry; /* Maximal number of retries */
6874 // range->min_r_time; /* Minimal retry lifetime */
6875 // range->max_r_time; /* Maximal retry lifetime */
6876
6877 range->num_channels = FREQ_COUNT;
6878
6879 val = 0;
6880 for (i = 0; i < FREQ_COUNT; i++) {
6881 // TODO: Include only legal frequencies for some countries
6882 // if (local->channel_mask & (1 << i)) {
6883 range->freq[val].i = i + 1;
6884 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6885 range->freq[val].e = 1;
6886 val++;
6887 // }
6888 if (val == IW_MAX_FREQUENCIES)
6889 break;
6890 }
6891 range->num_frequency = val;
6892
6893 /* Event capability (kernel + driver) */
6894 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6895 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6896 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6897
6898 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6899 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6900
6901 IPW_DEBUG_WX("GET Range\n");
6902
6903 return 0;
6904 }
6905
ipw2100_wx_set_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6906 static int ipw2100_wx_set_wap(struct net_device *dev,
6907 struct iw_request_info *info,
6908 union iwreq_data *wrqu, char *extra)
6909 {
6910 struct ipw2100_priv *priv = libipw_priv(dev);
6911 int err = 0;
6912
6913 // sanity checks
6914 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6915 return -EINVAL;
6916
6917 mutex_lock(&priv->action_mutex);
6918 if (!(priv->status & STATUS_INITIALIZED)) {
6919 err = -EIO;
6920 goto done;
6921 }
6922
6923 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6924 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6925 /* we disable mandatory BSSID association */
6926 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6927 priv->config &= ~CFG_STATIC_BSSID;
6928 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6929 goto done;
6930 }
6931
6932 priv->config |= CFG_STATIC_BSSID;
6933 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6934
6935 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6936
6937 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6938
6939 done:
6940 mutex_unlock(&priv->action_mutex);
6941 return err;
6942 }
6943
ipw2100_wx_get_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6944 static int ipw2100_wx_get_wap(struct net_device *dev,
6945 struct iw_request_info *info,
6946 union iwreq_data *wrqu, char *extra)
6947 {
6948 /*
6949 * This can be called at any time. No action lock required
6950 */
6951
6952 struct ipw2100_priv *priv = libipw_priv(dev);
6953
6954 /* If we are associated, trying to associate, or have a statically
6955 * configured BSSID then return that; otherwise return ANY */
6956 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6957 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6958 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6959 } else
6960 eth_zero_addr(wrqu->ap_addr.sa_data);
6961
6962 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6963 return 0;
6964 }
6965
ipw2100_wx_set_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6966 static int ipw2100_wx_set_essid(struct net_device *dev,
6967 struct iw_request_info *info,
6968 union iwreq_data *wrqu, char *extra)
6969 {
6970 struct ipw2100_priv *priv = libipw_priv(dev);
6971 char *essid = ""; /* ANY */
6972 int length = 0;
6973 int err = 0;
6974
6975 mutex_lock(&priv->action_mutex);
6976 if (!(priv->status & STATUS_INITIALIZED)) {
6977 err = -EIO;
6978 goto done;
6979 }
6980
6981 if (wrqu->essid.flags && wrqu->essid.length) {
6982 length = wrqu->essid.length;
6983 essid = extra;
6984 }
6985
6986 if (length == 0) {
6987 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6988 priv->config &= ~CFG_STATIC_ESSID;
6989 err = ipw2100_set_essid(priv, NULL, 0, 0);
6990 goto done;
6991 }
6992
6993 length = min(length, IW_ESSID_MAX_SIZE);
6994
6995 priv->config |= CFG_STATIC_ESSID;
6996
6997 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6998 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6999 err = 0;
7000 goto done;
7001 }
7002
7003 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7004
7005 priv->essid_len = length;
7006 memcpy(priv->essid, essid, priv->essid_len);
7007
7008 err = ipw2100_set_essid(priv, essid, length, 0);
7009
7010 done:
7011 mutex_unlock(&priv->action_mutex);
7012 return err;
7013 }
7014
ipw2100_wx_get_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7015 static int ipw2100_wx_get_essid(struct net_device *dev,
7016 struct iw_request_info *info,
7017 union iwreq_data *wrqu, char *extra)
7018 {
7019 /*
7020 * This can be called at any time. No action lock required
7021 */
7022
7023 struct ipw2100_priv *priv = libipw_priv(dev);
7024
7025 /* If we are associated, trying to associate, or have a statically
7026 * configured ESSID then return that; otherwise return ANY */
7027 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7028 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7029 priv->essid_len, priv->essid);
7030 memcpy(extra, priv->essid, priv->essid_len);
7031 wrqu->essid.length = priv->essid_len;
7032 wrqu->essid.flags = 1; /* active */
7033 } else {
7034 IPW_DEBUG_WX("Getting essid: ANY\n");
7035 wrqu->essid.length = 0;
7036 wrqu->essid.flags = 0; /* active */
7037 }
7038
7039 return 0;
7040 }
7041
ipw2100_wx_set_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7042 static int ipw2100_wx_set_nick(struct net_device *dev,
7043 struct iw_request_info *info,
7044 union iwreq_data *wrqu, char *extra)
7045 {
7046 /*
7047 * This can be called at any time. No action lock required
7048 */
7049
7050 struct ipw2100_priv *priv = libipw_priv(dev);
7051
7052 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7053 return -E2BIG;
7054
7055 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7056 memset(priv->nick, 0, sizeof(priv->nick));
7057 memcpy(priv->nick, extra, wrqu->data.length);
7058
7059 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7060
7061 return 0;
7062 }
7063
ipw2100_wx_get_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7064 static int ipw2100_wx_get_nick(struct net_device *dev,
7065 struct iw_request_info *info,
7066 union iwreq_data *wrqu, char *extra)
7067 {
7068 /*
7069 * This can be called at any time. No action lock required
7070 */
7071
7072 struct ipw2100_priv *priv = libipw_priv(dev);
7073
7074 wrqu->data.length = strlen(priv->nick);
7075 memcpy(extra, priv->nick, wrqu->data.length);
7076 wrqu->data.flags = 1; /* active */
7077
7078 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7079
7080 return 0;
7081 }
7082
ipw2100_wx_set_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7083 static int ipw2100_wx_set_rate(struct net_device *dev,
7084 struct iw_request_info *info,
7085 union iwreq_data *wrqu, char *extra)
7086 {
7087 struct ipw2100_priv *priv = libipw_priv(dev);
7088 u32 target_rate = wrqu->bitrate.value;
7089 u32 rate;
7090 int err = 0;
7091
7092 mutex_lock(&priv->action_mutex);
7093 if (!(priv->status & STATUS_INITIALIZED)) {
7094 err = -EIO;
7095 goto done;
7096 }
7097
7098 rate = 0;
7099
7100 if (target_rate == 1000000 ||
7101 (!wrqu->bitrate.fixed && target_rate > 1000000))
7102 rate |= TX_RATE_1_MBIT;
7103 if (target_rate == 2000000 ||
7104 (!wrqu->bitrate.fixed && target_rate > 2000000))
7105 rate |= TX_RATE_2_MBIT;
7106 if (target_rate == 5500000 ||
7107 (!wrqu->bitrate.fixed && target_rate > 5500000))
7108 rate |= TX_RATE_5_5_MBIT;
7109 if (target_rate == 11000000 ||
7110 (!wrqu->bitrate.fixed && target_rate > 11000000))
7111 rate |= TX_RATE_11_MBIT;
7112 if (rate == 0)
7113 rate = DEFAULT_TX_RATES;
7114
7115 err = ipw2100_set_tx_rates(priv, rate, 0);
7116
7117 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7118 done:
7119 mutex_unlock(&priv->action_mutex);
7120 return err;
7121 }
7122
ipw2100_wx_get_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7123 static int ipw2100_wx_get_rate(struct net_device *dev,
7124 struct iw_request_info *info,
7125 union iwreq_data *wrqu, char *extra)
7126 {
7127 struct ipw2100_priv *priv = libipw_priv(dev);
7128 int val;
7129 unsigned int len = sizeof(val);
7130 int err = 0;
7131
7132 if (!(priv->status & STATUS_ENABLED) ||
7133 priv->status & STATUS_RF_KILL_MASK ||
7134 !(priv->status & STATUS_ASSOCIATED)) {
7135 wrqu->bitrate.value = 0;
7136 return 0;
7137 }
7138
7139 mutex_lock(&priv->action_mutex);
7140 if (!(priv->status & STATUS_INITIALIZED)) {
7141 err = -EIO;
7142 goto done;
7143 }
7144
7145 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7146 if (err) {
7147 IPW_DEBUG_WX("failed querying ordinals.\n");
7148 goto done;
7149 }
7150
7151 switch (val & TX_RATE_MASK) {
7152 case TX_RATE_1_MBIT:
7153 wrqu->bitrate.value = 1000000;
7154 break;
7155 case TX_RATE_2_MBIT:
7156 wrqu->bitrate.value = 2000000;
7157 break;
7158 case TX_RATE_5_5_MBIT:
7159 wrqu->bitrate.value = 5500000;
7160 break;
7161 case TX_RATE_11_MBIT:
7162 wrqu->bitrate.value = 11000000;
7163 break;
7164 default:
7165 wrqu->bitrate.value = 0;
7166 }
7167
7168 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7169
7170 done:
7171 mutex_unlock(&priv->action_mutex);
7172 return err;
7173 }
7174
ipw2100_wx_set_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7175 static int ipw2100_wx_set_rts(struct net_device *dev,
7176 struct iw_request_info *info,
7177 union iwreq_data *wrqu, char *extra)
7178 {
7179 struct ipw2100_priv *priv = libipw_priv(dev);
7180 int value, err;
7181
7182 /* Auto RTS not yet supported */
7183 if (wrqu->rts.fixed == 0)
7184 return -EINVAL;
7185
7186 mutex_lock(&priv->action_mutex);
7187 if (!(priv->status & STATUS_INITIALIZED)) {
7188 err = -EIO;
7189 goto done;
7190 }
7191
7192 if (wrqu->rts.disabled)
7193 value = priv->rts_threshold | RTS_DISABLED;
7194 else {
7195 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7196 err = -EINVAL;
7197 goto done;
7198 }
7199 value = wrqu->rts.value;
7200 }
7201
7202 err = ipw2100_set_rts_threshold(priv, value);
7203
7204 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7205 done:
7206 mutex_unlock(&priv->action_mutex);
7207 return err;
7208 }
7209
ipw2100_wx_get_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7210 static int ipw2100_wx_get_rts(struct net_device *dev,
7211 struct iw_request_info *info,
7212 union iwreq_data *wrqu, char *extra)
7213 {
7214 /*
7215 * This can be called at any time. No action lock required
7216 */
7217
7218 struct ipw2100_priv *priv = libipw_priv(dev);
7219
7220 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7221 wrqu->rts.fixed = 1; /* no auto select */
7222
7223 /* If RTS is set to the default value, then it is disabled */
7224 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7225
7226 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7227
7228 return 0;
7229 }
7230
ipw2100_wx_set_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7231 static int ipw2100_wx_set_txpow(struct net_device *dev,
7232 struct iw_request_info *info,
7233 union iwreq_data *wrqu, char *extra)
7234 {
7235 struct ipw2100_priv *priv = libipw_priv(dev);
7236 int err = 0, value;
7237
7238 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7239 return -EINPROGRESS;
7240
7241 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7242 return 0;
7243
7244 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7245 return -EINVAL;
7246
7247 if (wrqu->txpower.fixed == 0)
7248 value = IPW_TX_POWER_DEFAULT;
7249 else {
7250 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7251 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7252 return -EINVAL;
7253
7254 value = wrqu->txpower.value;
7255 }
7256
7257 mutex_lock(&priv->action_mutex);
7258 if (!(priv->status & STATUS_INITIALIZED)) {
7259 err = -EIO;
7260 goto done;
7261 }
7262
7263 err = ipw2100_set_tx_power(priv, value);
7264
7265 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7266
7267 done:
7268 mutex_unlock(&priv->action_mutex);
7269 return err;
7270 }
7271
ipw2100_wx_get_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7272 static int ipw2100_wx_get_txpow(struct net_device *dev,
7273 struct iw_request_info *info,
7274 union iwreq_data *wrqu, char *extra)
7275 {
7276 /*
7277 * This can be called at any time. No action lock required
7278 */
7279
7280 struct ipw2100_priv *priv = libipw_priv(dev);
7281
7282 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7283
7284 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7285 wrqu->txpower.fixed = 0;
7286 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7287 } else {
7288 wrqu->txpower.fixed = 1;
7289 wrqu->txpower.value = priv->tx_power;
7290 }
7291
7292 wrqu->txpower.flags = IW_TXPOW_DBM;
7293
7294 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7295
7296 return 0;
7297 }
7298
ipw2100_wx_set_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7299 static int ipw2100_wx_set_frag(struct net_device *dev,
7300 struct iw_request_info *info,
7301 union iwreq_data *wrqu, char *extra)
7302 {
7303 /*
7304 * This can be called at any time. No action lock required
7305 */
7306
7307 struct ipw2100_priv *priv = libipw_priv(dev);
7308
7309 if (!wrqu->frag.fixed)
7310 return -EINVAL;
7311
7312 if (wrqu->frag.disabled) {
7313 priv->frag_threshold |= FRAG_DISABLED;
7314 priv->ieee->fts = DEFAULT_FTS;
7315 } else {
7316 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7317 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7318 return -EINVAL;
7319
7320 priv->ieee->fts = wrqu->frag.value & ~0x1;
7321 priv->frag_threshold = priv->ieee->fts;
7322 }
7323
7324 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7325
7326 return 0;
7327 }
7328
ipw2100_wx_get_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7329 static int ipw2100_wx_get_frag(struct net_device *dev,
7330 struct iw_request_info *info,
7331 union iwreq_data *wrqu, char *extra)
7332 {
7333 /*
7334 * This can be called at any time. No action lock required
7335 */
7336
7337 struct ipw2100_priv *priv = libipw_priv(dev);
7338 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7339 wrqu->frag.fixed = 0; /* no auto select */
7340 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7341
7342 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7343
7344 return 0;
7345 }
7346
ipw2100_wx_set_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7347 static int ipw2100_wx_set_retry(struct net_device *dev,
7348 struct iw_request_info *info,
7349 union iwreq_data *wrqu, char *extra)
7350 {
7351 struct ipw2100_priv *priv = libipw_priv(dev);
7352 int err = 0;
7353
7354 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7355 return -EINVAL;
7356
7357 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7358 return 0;
7359
7360 mutex_lock(&priv->action_mutex);
7361 if (!(priv->status & STATUS_INITIALIZED)) {
7362 err = -EIO;
7363 goto done;
7364 }
7365
7366 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7367 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7368 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7369 wrqu->retry.value);
7370 goto done;
7371 }
7372
7373 if (wrqu->retry.flags & IW_RETRY_LONG) {
7374 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7375 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7376 wrqu->retry.value);
7377 goto done;
7378 }
7379
7380 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7381 if (!err)
7382 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7383
7384 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7385
7386 done:
7387 mutex_unlock(&priv->action_mutex);
7388 return err;
7389 }
7390
ipw2100_wx_get_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7391 static int ipw2100_wx_get_retry(struct net_device *dev,
7392 struct iw_request_info *info,
7393 union iwreq_data *wrqu, char *extra)
7394 {
7395 /*
7396 * This can be called at any time. No action lock required
7397 */
7398
7399 struct ipw2100_priv *priv = libipw_priv(dev);
7400
7401 wrqu->retry.disabled = 0; /* can't be disabled */
7402
7403 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7404 return -EINVAL;
7405
7406 if (wrqu->retry.flags & IW_RETRY_LONG) {
7407 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7408 wrqu->retry.value = priv->long_retry_limit;
7409 } else {
7410 wrqu->retry.flags =
7411 (priv->short_retry_limit !=
7412 priv->long_retry_limit) ?
7413 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7414
7415 wrqu->retry.value = priv->short_retry_limit;
7416 }
7417
7418 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7419
7420 return 0;
7421 }
7422
ipw2100_wx_set_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7423 static int ipw2100_wx_set_scan(struct net_device *dev,
7424 struct iw_request_info *info,
7425 union iwreq_data *wrqu, char *extra)
7426 {
7427 struct ipw2100_priv *priv = libipw_priv(dev);
7428 int err = 0;
7429
7430 mutex_lock(&priv->action_mutex);
7431 if (!(priv->status & STATUS_INITIALIZED)) {
7432 err = -EIO;
7433 goto done;
7434 }
7435
7436 IPW_DEBUG_WX("Initiating scan...\n");
7437
7438 priv->user_requested_scan = 1;
7439 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7440 IPW_DEBUG_WX("Start scan failed.\n");
7441
7442 /* TODO: Mark a scan as pending so when hardware initialized
7443 * a scan starts */
7444 }
7445
7446 done:
7447 mutex_unlock(&priv->action_mutex);
7448 return err;
7449 }
7450
ipw2100_wx_get_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7451 static int ipw2100_wx_get_scan(struct net_device *dev,
7452 struct iw_request_info *info,
7453 union iwreq_data *wrqu, char *extra)
7454 {
7455 /*
7456 * This can be called at any time. No action lock required
7457 */
7458
7459 struct ipw2100_priv *priv = libipw_priv(dev);
7460 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7461 }
7462
7463 /*
7464 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7465 */
ipw2100_wx_set_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7466 static int ipw2100_wx_set_encode(struct net_device *dev,
7467 struct iw_request_info *info,
7468 union iwreq_data *wrqu, char *key)
7469 {
7470 /*
7471 * No check of STATUS_INITIALIZED required
7472 */
7473
7474 struct ipw2100_priv *priv = libipw_priv(dev);
7475 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7476 }
7477
ipw2100_wx_get_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7478 static int ipw2100_wx_get_encode(struct net_device *dev,
7479 struct iw_request_info *info,
7480 union iwreq_data *wrqu, char *key)
7481 {
7482 /*
7483 * This can be called at any time. No action lock required
7484 */
7485
7486 struct ipw2100_priv *priv = libipw_priv(dev);
7487 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7488 }
7489
ipw2100_wx_set_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7490 static int ipw2100_wx_set_power(struct net_device *dev,
7491 struct iw_request_info *info,
7492 union iwreq_data *wrqu, char *extra)
7493 {
7494 struct ipw2100_priv *priv = libipw_priv(dev);
7495 int err = 0;
7496
7497 mutex_lock(&priv->action_mutex);
7498 if (!(priv->status & STATUS_INITIALIZED)) {
7499 err = -EIO;
7500 goto done;
7501 }
7502
7503 if (wrqu->power.disabled) {
7504 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7505 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7506 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7507 goto done;
7508 }
7509
7510 switch (wrqu->power.flags & IW_POWER_MODE) {
7511 case IW_POWER_ON: /* If not specified */
7512 case IW_POWER_MODE: /* If set all mask */
7513 case IW_POWER_ALL_R: /* If explicitly state all */
7514 break;
7515 default: /* Otherwise we don't support it */
7516 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7517 wrqu->power.flags);
7518 err = -EOPNOTSUPP;
7519 goto done;
7520 }
7521
7522 /* If the user hasn't specified a power management mode yet, default
7523 * to BATTERY */
7524 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7525 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7526
7527 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7528
7529 done:
7530 mutex_unlock(&priv->action_mutex);
7531 return err;
7532
7533 }
7534
ipw2100_wx_get_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7535 static int ipw2100_wx_get_power(struct net_device *dev,
7536 struct iw_request_info *info,
7537 union iwreq_data *wrqu, char *extra)
7538 {
7539 /*
7540 * This can be called at any time. No action lock required
7541 */
7542
7543 struct ipw2100_priv *priv = libipw_priv(dev);
7544
7545 if (!(priv->power_mode & IPW_POWER_ENABLED))
7546 wrqu->power.disabled = 1;
7547 else {
7548 wrqu->power.disabled = 0;
7549 wrqu->power.flags = 0;
7550 }
7551
7552 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7553
7554 return 0;
7555 }
7556
7557 /*
7558 * WE-18 WPA support
7559 */
7560
7561 /* SIOCSIWGENIE */
ipw2100_wx_set_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7562 static int ipw2100_wx_set_genie(struct net_device *dev,
7563 struct iw_request_info *info,
7564 union iwreq_data *wrqu, char *extra)
7565 {
7566
7567 struct ipw2100_priv *priv = libipw_priv(dev);
7568 struct libipw_device *ieee = priv->ieee;
7569 u8 *buf;
7570
7571 if (!ieee->wpa_enabled)
7572 return -EOPNOTSUPP;
7573
7574 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7575 (wrqu->data.length && extra == NULL))
7576 return -EINVAL;
7577
7578 if (wrqu->data.length) {
7579 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7580 if (buf == NULL)
7581 return -ENOMEM;
7582
7583 kfree(ieee->wpa_ie);
7584 ieee->wpa_ie = buf;
7585 ieee->wpa_ie_len = wrqu->data.length;
7586 } else {
7587 kfree(ieee->wpa_ie);
7588 ieee->wpa_ie = NULL;
7589 ieee->wpa_ie_len = 0;
7590 }
7591
7592 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7593
7594 return 0;
7595 }
7596
7597 /* SIOCGIWGENIE */
ipw2100_wx_get_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7598 static int ipw2100_wx_get_genie(struct net_device *dev,
7599 struct iw_request_info *info,
7600 union iwreq_data *wrqu, char *extra)
7601 {
7602 struct ipw2100_priv *priv = libipw_priv(dev);
7603 struct libipw_device *ieee = priv->ieee;
7604
7605 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7606 wrqu->data.length = 0;
7607 return 0;
7608 }
7609
7610 if (wrqu->data.length < ieee->wpa_ie_len)
7611 return -E2BIG;
7612
7613 wrqu->data.length = ieee->wpa_ie_len;
7614 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7615
7616 return 0;
7617 }
7618
7619 /* SIOCSIWAUTH */
ipw2100_wx_set_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7620 static int ipw2100_wx_set_auth(struct net_device *dev,
7621 struct iw_request_info *info,
7622 union iwreq_data *wrqu, char *extra)
7623 {
7624 struct ipw2100_priv *priv = libipw_priv(dev);
7625 struct libipw_device *ieee = priv->ieee;
7626 struct iw_param *param = &wrqu->param;
7627 struct lib80211_crypt_data *crypt;
7628 unsigned long flags;
7629 int ret = 0;
7630
7631 switch (param->flags & IW_AUTH_INDEX) {
7632 case IW_AUTH_WPA_VERSION:
7633 case IW_AUTH_CIPHER_PAIRWISE:
7634 case IW_AUTH_CIPHER_GROUP:
7635 case IW_AUTH_KEY_MGMT:
7636 /*
7637 * ipw2200 does not use these parameters
7638 */
7639 break;
7640
7641 case IW_AUTH_TKIP_COUNTERMEASURES:
7642 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7643 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7644 break;
7645
7646 flags = crypt->ops->get_flags(crypt->priv);
7647
7648 if (param->value)
7649 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7650 else
7651 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7652
7653 crypt->ops->set_flags(flags, crypt->priv);
7654
7655 break;
7656
7657 case IW_AUTH_DROP_UNENCRYPTED:{
7658 /* HACK:
7659 *
7660 * wpa_supplicant calls set_wpa_enabled when the driver
7661 * is loaded and unloaded, regardless of if WPA is being
7662 * used. No other calls are made which can be used to
7663 * determine if encryption will be used or not prior to
7664 * association being expected. If encryption is not being
7665 * used, drop_unencrypted is set to false, else true -- we
7666 * can use this to determine if the CAP_PRIVACY_ON bit should
7667 * be set.
7668 */
7669 struct libipw_security sec = {
7670 .flags = SEC_ENABLED,
7671 .enabled = param->value,
7672 };
7673 priv->ieee->drop_unencrypted = param->value;
7674 /* We only change SEC_LEVEL for open mode. Others
7675 * are set by ipw_wpa_set_encryption.
7676 */
7677 if (!param->value) {
7678 sec.flags |= SEC_LEVEL;
7679 sec.level = SEC_LEVEL_0;
7680 } else {
7681 sec.flags |= SEC_LEVEL;
7682 sec.level = SEC_LEVEL_1;
7683 }
7684 if (priv->ieee->set_security)
7685 priv->ieee->set_security(priv->ieee->dev, &sec);
7686 break;
7687 }
7688
7689 case IW_AUTH_80211_AUTH_ALG:
7690 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7691 break;
7692
7693 case IW_AUTH_WPA_ENABLED:
7694 ret = ipw2100_wpa_enable(priv, param->value);
7695 break;
7696
7697 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7698 ieee->ieee802_1x = param->value;
7699 break;
7700
7701 //case IW_AUTH_ROAMING_CONTROL:
7702 case IW_AUTH_PRIVACY_INVOKED:
7703 ieee->privacy_invoked = param->value;
7704 break;
7705
7706 default:
7707 return -EOPNOTSUPP;
7708 }
7709 return ret;
7710 }
7711
7712 /* SIOCGIWAUTH */
ipw2100_wx_get_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7713 static int ipw2100_wx_get_auth(struct net_device *dev,
7714 struct iw_request_info *info,
7715 union iwreq_data *wrqu, char *extra)
7716 {
7717 struct ipw2100_priv *priv = libipw_priv(dev);
7718 struct libipw_device *ieee = priv->ieee;
7719 struct lib80211_crypt_data *crypt;
7720 struct iw_param *param = &wrqu->param;
7721 int ret = 0;
7722
7723 switch (param->flags & IW_AUTH_INDEX) {
7724 case IW_AUTH_WPA_VERSION:
7725 case IW_AUTH_CIPHER_PAIRWISE:
7726 case IW_AUTH_CIPHER_GROUP:
7727 case IW_AUTH_KEY_MGMT:
7728 /*
7729 * wpa_supplicant will control these internally
7730 */
7731 ret = -EOPNOTSUPP;
7732 break;
7733
7734 case IW_AUTH_TKIP_COUNTERMEASURES:
7735 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7736 if (!crypt || !crypt->ops->get_flags) {
7737 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7738 "crypt not set!\n");
7739 break;
7740 }
7741
7742 param->value = (crypt->ops->get_flags(crypt->priv) &
7743 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7744
7745 break;
7746
7747 case IW_AUTH_DROP_UNENCRYPTED:
7748 param->value = ieee->drop_unencrypted;
7749 break;
7750
7751 case IW_AUTH_80211_AUTH_ALG:
7752 param->value = priv->ieee->sec.auth_mode;
7753 break;
7754
7755 case IW_AUTH_WPA_ENABLED:
7756 param->value = ieee->wpa_enabled;
7757 break;
7758
7759 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7760 param->value = ieee->ieee802_1x;
7761 break;
7762
7763 case IW_AUTH_ROAMING_CONTROL:
7764 case IW_AUTH_PRIVACY_INVOKED:
7765 param->value = ieee->privacy_invoked;
7766 break;
7767
7768 default:
7769 return -EOPNOTSUPP;
7770 }
7771 return 0;
7772 }
7773
7774 /* SIOCSIWENCODEEXT */
ipw2100_wx_set_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7775 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7776 struct iw_request_info *info,
7777 union iwreq_data *wrqu, char *extra)
7778 {
7779 struct ipw2100_priv *priv = libipw_priv(dev);
7780 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7781 }
7782
7783 /* SIOCGIWENCODEEXT */
ipw2100_wx_get_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7784 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7785 struct iw_request_info *info,
7786 union iwreq_data *wrqu, char *extra)
7787 {
7788 struct ipw2100_priv *priv = libipw_priv(dev);
7789 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7790 }
7791
7792 /* SIOCSIWMLME */
ipw2100_wx_set_mlme(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7793 static int ipw2100_wx_set_mlme(struct net_device *dev,
7794 struct iw_request_info *info,
7795 union iwreq_data *wrqu, char *extra)
7796 {
7797 struct ipw2100_priv *priv = libipw_priv(dev);
7798 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7799 __le16 reason;
7800
7801 reason = cpu_to_le16(mlme->reason_code);
7802
7803 switch (mlme->cmd) {
7804 case IW_MLME_DEAUTH:
7805 // silently ignore
7806 break;
7807
7808 case IW_MLME_DISASSOC:
7809 ipw2100_disassociate_bssid(priv);
7810 break;
7811
7812 default:
7813 return -EOPNOTSUPP;
7814 }
7815 return 0;
7816 }
7817
7818 /*
7819 *
7820 * IWPRIV handlers
7821 *
7822 */
7823 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_promisc(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7824 static int ipw2100_wx_set_promisc(struct net_device *dev,
7825 struct iw_request_info *info,
7826 union iwreq_data *wrqu, char *extra)
7827 {
7828 struct ipw2100_priv *priv = libipw_priv(dev);
7829 int *parms = (int *)extra;
7830 int enable = (parms[0] > 0);
7831 int err = 0;
7832
7833 mutex_lock(&priv->action_mutex);
7834 if (!(priv->status & STATUS_INITIALIZED)) {
7835 err = -EIO;
7836 goto done;
7837 }
7838
7839 if (enable) {
7840 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7841 err = ipw2100_set_channel(priv, parms[1], 0);
7842 goto done;
7843 }
7844 priv->channel = parms[1];
7845 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7846 } else {
7847 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7848 err = ipw2100_switch_mode(priv, priv->last_mode);
7849 }
7850 done:
7851 mutex_unlock(&priv->action_mutex);
7852 return err;
7853 }
7854
ipw2100_wx_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7855 static int ipw2100_wx_reset(struct net_device *dev,
7856 struct iw_request_info *info,
7857 union iwreq_data *wrqu, char *extra)
7858 {
7859 struct ipw2100_priv *priv = libipw_priv(dev);
7860 if (priv->status & STATUS_INITIALIZED)
7861 schedule_reset(priv);
7862 return 0;
7863 }
7864
7865 #endif
7866
ipw2100_wx_set_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7867 static int ipw2100_wx_set_powermode(struct net_device *dev,
7868 struct iw_request_info *info,
7869 union iwreq_data *wrqu, char *extra)
7870 {
7871 struct ipw2100_priv *priv = libipw_priv(dev);
7872 int err = 0, mode = *(int *)extra;
7873
7874 mutex_lock(&priv->action_mutex);
7875 if (!(priv->status & STATUS_INITIALIZED)) {
7876 err = -EIO;
7877 goto done;
7878 }
7879
7880 if ((mode < 0) || (mode > POWER_MODES))
7881 mode = IPW_POWER_AUTO;
7882
7883 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7884 err = ipw2100_set_power_mode(priv, mode);
7885 done:
7886 mutex_unlock(&priv->action_mutex);
7887 return err;
7888 }
7889
7890 #define MAX_POWER_STRING 80
ipw2100_wx_get_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7891 static int ipw2100_wx_get_powermode(struct net_device *dev,
7892 struct iw_request_info *info,
7893 union iwreq_data *wrqu, char *extra)
7894 {
7895 /*
7896 * This can be called at any time. No action lock required
7897 */
7898
7899 struct ipw2100_priv *priv = libipw_priv(dev);
7900 int level = IPW_POWER_LEVEL(priv->power_mode);
7901 s32 timeout, period;
7902
7903 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7904 snprintf(extra, MAX_POWER_STRING,
7905 "Power save level: %d (Off)", level);
7906 } else {
7907 switch (level) {
7908 case IPW_POWER_MODE_CAM:
7909 snprintf(extra, MAX_POWER_STRING,
7910 "Power save level: %d (None)", level);
7911 break;
7912 case IPW_POWER_AUTO:
7913 snprintf(extra, MAX_POWER_STRING,
7914 "Power save level: %d (Auto)", level);
7915 break;
7916 default:
7917 timeout = timeout_duration[level - 1] / 1000;
7918 period = period_duration[level - 1] / 1000;
7919 snprintf(extra, MAX_POWER_STRING,
7920 "Power save level: %d "
7921 "(Timeout %dms, Period %dms)",
7922 level, timeout, period);
7923 }
7924 }
7925
7926 wrqu->data.length = strlen(extra) + 1;
7927
7928 return 0;
7929 }
7930
ipw2100_wx_set_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7931 static int ipw2100_wx_set_preamble(struct net_device *dev,
7932 struct iw_request_info *info,
7933 union iwreq_data *wrqu, char *extra)
7934 {
7935 struct ipw2100_priv *priv = libipw_priv(dev);
7936 int err, mode = *(int *)extra;
7937
7938 mutex_lock(&priv->action_mutex);
7939 if (!(priv->status & STATUS_INITIALIZED)) {
7940 err = -EIO;
7941 goto done;
7942 }
7943
7944 if (mode == 1)
7945 priv->config |= CFG_LONG_PREAMBLE;
7946 else if (mode == 0)
7947 priv->config &= ~CFG_LONG_PREAMBLE;
7948 else {
7949 err = -EINVAL;
7950 goto done;
7951 }
7952
7953 err = ipw2100_system_config(priv, 0);
7954
7955 done:
7956 mutex_unlock(&priv->action_mutex);
7957 return err;
7958 }
7959
ipw2100_wx_get_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7960 static int ipw2100_wx_get_preamble(struct net_device *dev,
7961 struct iw_request_info *info,
7962 union iwreq_data *wrqu, char *extra)
7963 {
7964 /*
7965 * This can be called at any time. No action lock required
7966 */
7967
7968 struct ipw2100_priv *priv = libipw_priv(dev);
7969
7970 if (priv->config & CFG_LONG_PREAMBLE)
7971 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7972 else
7973 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7974
7975 return 0;
7976 }
7977
7978 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7979 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7980 struct iw_request_info *info,
7981 union iwreq_data *wrqu, char *extra)
7982 {
7983 struct ipw2100_priv *priv = libipw_priv(dev);
7984 int err, mode = *(int *)extra;
7985
7986 mutex_lock(&priv->action_mutex);
7987 if (!(priv->status & STATUS_INITIALIZED)) {
7988 err = -EIO;
7989 goto done;
7990 }
7991
7992 if (mode == 1)
7993 priv->config |= CFG_CRC_CHECK;
7994 else if (mode == 0)
7995 priv->config &= ~CFG_CRC_CHECK;
7996 else {
7997 err = -EINVAL;
7998 goto done;
7999 }
8000 err = 0;
8001
8002 done:
8003 mutex_unlock(&priv->action_mutex);
8004 return err;
8005 }
8006
ipw2100_wx_get_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8007 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8008 struct iw_request_info *info,
8009 union iwreq_data *wrqu, char *extra)
8010 {
8011 /*
8012 * This can be called at any time. No action lock required
8013 */
8014
8015 struct ipw2100_priv *priv = libipw_priv(dev);
8016
8017 if (priv->config & CFG_CRC_CHECK)
8018 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8019 else
8020 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8021
8022 return 0;
8023 }
8024 #endif /* CONFIG_IPW2100_MONITOR */
8025
8026 static iw_handler ipw2100_wx_handlers[] = {
8027 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8028 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8029 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8030 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8031 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8032 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8033 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8034 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8035 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8036 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8037 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8038 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8039 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8040 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8041 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8042 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8043 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8044 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8045 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8046 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8047 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8048 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8049 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8050 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8051 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8052 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8053 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8054 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8055 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8056 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8057 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8058 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8059 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8060 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8061 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8062 };
8063
8064 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8065 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8066 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8067 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8068 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8069 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8070 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8071 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8072
8073 static const struct iw_priv_args ipw2100_private_args[] = {
8074
8075 #ifdef CONFIG_IPW2100_MONITOR
8076 {
8077 IPW2100_PRIV_SET_MONITOR,
8078 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8079 {
8080 IPW2100_PRIV_RESET,
8081 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8082 #endif /* CONFIG_IPW2100_MONITOR */
8083
8084 {
8085 IPW2100_PRIV_SET_POWER,
8086 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8087 {
8088 IPW2100_PRIV_GET_POWER,
8089 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8090 "get_power"},
8091 {
8092 IPW2100_PRIV_SET_LONGPREAMBLE,
8093 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8094 {
8095 IPW2100_PRIV_GET_LONGPREAMBLE,
8096 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8097 #ifdef CONFIG_IPW2100_MONITOR
8098 {
8099 IPW2100_PRIV_SET_CRC_CHECK,
8100 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8101 {
8102 IPW2100_PRIV_GET_CRC_CHECK,
8103 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8104 #endif /* CONFIG_IPW2100_MONITOR */
8105 };
8106
8107 static iw_handler ipw2100_private_handler[] = {
8108 #ifdef CONFIG_IPW2100_MONITOR
8109 ipw2100_wx_set_promisc,
8110 ipw2100_wx_reset,
8111 #else /* CONFIG_IPW2100_MONITOR */
8112 NULL,
8113 NULL,
8114 #endif /* CONFIG_IPW2100_MONITOR */
8115 ipw2100_wx_set_powermode,
8116 ipw2100_wx_get_powermode,
8117 ipw2100_wx_set_preamble,
8118 ipw2100_wx_get_preamble,
8119 #ifdef CONFIG_IPW2100_MONITOR
8120 ipw2100_wx_set_crc_check,
8121 ipw2100_wx_get_crc_check,
8122 #else /* CONFIG_IPW2100_MONITOR */
8123 NULL,
8124 NULL,
8125 #endif /* CONFIG_IPW2100_MONITOR */
8126 };
8127
8128 /*
8129 * Get wireless statistics.
8130 * Called by /proc/net/wireless
8131 * Also called by SIOCGIWSTATS
8132 */
ipw2100_wx_wireless_stats(struct net_device * dev)8133 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8134 {
8135 enum {
8136 POOR = 30,
8137 FAIR = 60,
8138 GOOD = 80,
8139 VERY_GOOD = 90,
8140 EXCELLENT = 95,
8141 PERFECT = 100
8142 };
8143 int rssi_qual;
8144 int tx_qual;
8145 int beacon_qual;
8146 int quality;
8147
8148 struct ipw2100_priv *priv = libipw_priv(dev);
8149 struct iw_statistics *wstats;
8150 u32 rssi, tx_retries, missed_beacons, tx_failures;
8151 u32 ord_len = sizeof(u32);
8152
8153 if (!priv)
8154 return (struct iw_statistics *)NULL;
8155
8156 wstats = &priv->wstats;
8157
8158 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8159 * ipw2100_wx_wireless_stats seems to be called before fw is
8160 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8161 * and associated; if not associcated, the values are all meaningless
8162 * anyway, so set them all to NULL and INVALID */
8163 if (!(priv->status & STATUS_ASSOCIATED)) {
8164 wstats->miss.beacon = 0;
8165 wstats->discard.retries = 0;
8166 wstats->qual.qual = 0;
8167 wstats->qual.level = 0;
8168 wstats->qual.noise = 0;
8169 wstats->qual.updated = 7;
8170 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8171 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8172 return wstats;
8173 }
8174
8175 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8176 &missed_beacons, &ord_len))
8177 goto fail_get_ordinal;
8178
8179 /* If we don't have a connection the quality and level is 0 */
8180 if (!(priv->status & STATUS_ASSOCIATED)) {
8181 wstats->qual.qual = 0;
8182 wstats->qual.level = 0;
8183 } else {
8184 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8185 &rssi, &ord_len))
8186 goto fail_get_ordinal;
8187 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8188 if (rssi < 10)
8189 rssi_qual = rssi * POOR / 10;
8190 else if (rssi < 15)
8191 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8192 else if (rssi < 20)
8193 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8194 else if (rssi < 30)
8195 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8196 10 + GOOD;
8197 else
8198 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8199 10 + VERY_GOOD;
8200
8201 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8202 &tx_retries, &ord_len))
8203 goto fail_get_ordinal;
8204
8205 if (tx_retries > 75)
8206 tx_qual = (90 - tx_retries) * POOR / 15;
8207 else if (tx_retries > 70)
8208 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8209 else if (tx_retries > 65)
8210 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8211 else if (tx_retries > 50)
8212 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8213 15 + GOOD;
8214 else
8215 tx_qual = (50 - tx_retries) *
8216 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8217
8218 if (missed_beacons > 50)
8219 beacon_qual = (60 - missed_beacons) * POOR / 10;
8220 else if (missed_beacons > 40)
8221 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8222 10 + POOR;
8223 else if (missed_beacons > 32)
8224 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8225 18 + FAIR;
8226 else if (missed_beacons > 20)
8227 beacon_qual = (32 - missed_beacons) *
8228 (VERY_GOOD - GOOD) / 20 + GOOD;
8229 else
8230 beacon_qual = (20 - missed_beacons) *
8231 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8232
8233 quality = min(tx_qual, rssi_qual);
8234 quality = min(beacon_qual, quality);
8235
8236 #ifdef CONFIG_IPW2100_DEBUG
8237 if (beacon_qual == quality)
8238 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8239 else if (tx_qual == quality)
8240 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8241 else if (quality != 100)
8242 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8243 else
8244 IPW_DEBUG_WX("Quality not clamped.\n");
8245 #endif
8246
8247 wstats->qual.qual = quality;
8248 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8249 }
8250
8251 wstats->qual.noise = 0;
8252 wstats->qual.updated = 7;
8253 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8254
8255 /* FIXME: this is percent and not a # */
8256 wstats->miss.beacon = missed_beacons;
8257
8258 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8259 &tx_failures, &ord_len))
8260 goto fail_get_ordinal;
8261 wstats->discard.retries = tx_failures;
8262
8263 return wstats;
8264
8265 fail_get_ordinal:
8266 IPW_DEBUG_WX("failed querying ordinals.\n");
8267
8268 return (struct iw_statistics *)NULL;
8269 }
8270
8271 static struct iw_handler_def ipw2100_wx_handler_def = {
8272 .standard = ipw2100_wx_handlers,
8273 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8274 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8275 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8276 .private = (iw_handler *) ipw2100_private_handler,
8277 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8278 .get_wireless_stats = ipw2100_wx_wireless_stats,
8279 };
8280
ipw2100_wx_event_work(struct work_struct * work)8281 static void ipw2100_wx_event_work(struct work_struct *work)
8282 {
8283 struct ipw2100_priv *priv =
8284 container_of(work, struct ipw2100_priv, wx_event_work.work);
8285 union iwreq_data wrqu;
8286 unsigned int len = ETH_ALEN;
8287
8288 if (priv->status & STATUS_STOPPING)
8289 return;
8290
8291 mutex_lock(&priv->action_mutex);
8292
8293 IPW_DEBUG_WX("enter\n");
8294
8295 mutex_unlock(&priv->action_mutex);
8296
8297 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8298
8299 /* Fetch BSSID from the hardware */
8300 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8301 priv->status & STATUS_RF_KILL_MASK ||
8302 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8303 &priv->bssid, &len)) {
8304 eth_zero_addr(wrqu.ap_addr.sa_data);
8305 } else {
8306 /* We now have the BSSID, so can finish setting to the full
8307 * associated state */
8308 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8309 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8310 priv->status &= ~STATUS_ASSOCIATING;
8311 priv->status |= STATUS_ASSOCIATED;
8312 netif_carrier_on(priv->net_dev);
8313 netif_wake_queue(priv->net_dev);
8314 }
8315
8316 if (!(priv->status & STATUS_ASSOCIATED)) {
8317 IPW_DEBUG_WX("Configuring ESSID\n");
8318 mutex_lock(&priv->action_mutex);
8319 /* This is a disassociation event, so kick the firmware to
8320 * look for another AP */
8321 if (priv->config & CFG_STATIC_ESSID)
8322 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8323 0);
8324 else
8325 ipw2100_set_essid(priv, NULL, 0, 0);
8326 mutex_unlock(&priv->action_mutex);
8327 }
8328
8329 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8330 }
8331
8332 #define IPW2100_FW_MAJOR_VERSION 1
8333 #define IPW2100_FW_MINOR_VERSION 3
8334
8335 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8336 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8337
8338 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8339 IPW2100_FW_MAJOR_VERSION)
8340
8341 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8342 "." __stringify(IPW2100_FW_MINOR_VERSION)
8343
8344 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8345
8346 /*
8347
8348 BINARY FIRMWARE HEADER FORMAT
8349
8350 offset length desc
8351 0 2 version
8352 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8353 4 4 fw_len
8354 8 4 uc_len
8355 C fw_len firmware data
8356 12 + fw_len uc_len microcode data
8357
8358 */
8359
8360 struct ipw2100_fw_header {
8361 short version;
8362 short mode;
8363 unsigned int fw_size;
8364 unsigned int uc_size;
8365 } __packed;
8366
ipw2100_mod_firmware_load(struct ipw2100_fw * fw)8367 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8368 {
8369 struct ipw2100_fw_header *h =
8370 (struct ipw2100_fw_header *)fw->fw_entry->data;
8371
8372 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8373 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8374 "(detected version id of %u). "
8375 "See Documentation/networking/README.ipw2100\n",
8376 h->version);
8377 return 1;
8378 }
8379
8380 fw->version = h->version;
8381 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8382 fw->fw.size = h->fw_size;
8383 fw->uc.data = fw->fw.data + h->fw_size;
8384 fw->uc.size = h->uc_size;
8385
8386 return 0;
8387 }
8388
ipw2100_get_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8389 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8390 struct ipw2100_fw *fw)
8391 {
8392 char *fw_name;
8393 int rc;
8394
8395 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8396 priv->net_dev->name);
8397
8398 switch (priv->ieee->iw_mode) {
8399 case IW_MODE_ADHOC:
8400 fw_name = IPW2100_FW_NAME("-i");
8401 break;
8402 #ifdef CONFIG_IPW2100_MONITOR
8403 case IW_MODE_MONITOR:
8404 fw_name = IPW2100_FW_NAME("-p");
8405 break;
8406 #endif
8407 case IW_MODE_INFRA:
8408 default:
8409 fw_name = IPW2100_FW_NAME("");
8410 break;
8411 }
8412
8413 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8414
8415 if (rc < 0) {
8416 printk(KERN_ERR DRV_NAME ": "
8417 "%s: Firmware '%s' not available or load failed.\n",
8418 priv->net_dev->name, fw_name);
8419 return rc;
8420 }
8421 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8422 fw->fw_entry->size);
8423
8424 ipw2100_mod_firmware_load(fw);
8425
8426 return 0;
8427 }
8428
8429 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8430 #ifdef CONFIG_IPW2100_MONITOR
8431 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8432 #endif
8433 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8434
ipw2100_release_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8435 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8436 struct ipw2100_fw *fw)
8437 {
8438 fw->version = 0;
8439 release_firmware(fw->fw_entry);
8440 fw->fw_entry = NULL;
8441 }
8442
ipw2100_get_fwversion(struct ipw2100_priv * priv,char * buf,size_t max)8443 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8444 size_t max)
8445 {
8446 char ver[MAX_FW_VERSION_LEN];
8447 u32 len = MAX_FW_VERSION_LEN;
8448 u32 tmp;
8449 int i;
8450 /* firmware version is an ascii string (max len of 14) */
8451 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8452 return -EIO;
8453 tmp = max;
8454 if (len >= max)
8455 len = max - 1;
8456 for (i = 0; i < len; i++)
8457 buf[i] = ver[i];
8458 buf[i] = '\0';
8459 return tmp;
8460 }
8461
ipw2100_get_ucodeversion(struct ipw2100_priv * priv,char * buf,size_t max)8462 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8463 size_t max)
8464 {
8465 u32 ver;
8466 u32 len = sizeof(ver);
8467 /* microcode version is a 32 bit integer */
8468 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8469 return -EIO;
8470 return snprintf(buf, max, "%08X", ver);
8471 }
8472
8473 /*
8474 * On exit, the firmware will have been freed from the fw list
8475 */
ipw2100_fw_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8476 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8477 {
8478 /* firmware is constructed of N contiguous entries, each entry is
8479 * structured as:
8480 *
8481 * offset sie desc
8482 * 0 4 address to write to
8483 * 4 2 length of data run
8484 * 6 length data
8485 */
8486 unsigned int addr;
8487 unsigned short len;
8488
8489 const unsigned char *firmware_data = fw->fw.data;
8490 unsigned int firmware_data_left = fw->fw.size;
8491
8492 while (firmware_data_left > 0) {
8493 addr = *(u32 *) (firmware_data);
8494 firmware_data += 4;
8495 firmware_data_left -= 4;
8496
8497 len = *(u16 *) (firmware_data);
8498 firmware_data += 2;
8499 firmware_data_left -= 2;
8500
8501 if (len > 32) {
8502 printk(KERN_ERR DRV_NAME ": "
8503 "Invalid firmware run-length of %d bytes\n",
8504 len);
8505 return -EINVAL;
8506 }
8507
8508 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8509 firmware_data += len;
8510 firmware_data_left -= len;
8511 }
8512
8513 return 0;
8514 }
8515
8516 struct symbol_alive_response {
8517 u8 cmd_id;
8518 u8 seq_num;
8519 u8 ucode_rev;
8520 u8 eeprom_valid;
8521 u16 valid_flags;
8522 u8 IEEE_addr[6];
8523 u16 flags;
8524 u16 pcb_rev;
8525 u16 clock_settle_time; // 1us LSB
8526 u16 powerup_settle_time; // 1us LSB
8527 u16 hop_settle_time; // 1us LSB
8528 u8 date[3]; // month, day, year
8529 u8 time[2]; // hours, minutes
8530 u8 ucode_valid;
8531 };
8532
ipw2100_ucode_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8533 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8534 struct ipw2100_fw *fw)
8535 {
8536 struct net_device *dev = priv->net_dev;
8537 const unsigned char *microcode_data = fw->uc.data;
8538 unsigned int microcode_data_left = fw->uc.size;
8539 void __iomem *reg = priv->ioaddr;
8540
8541 struct symbol_alive_response response;
8542 int i, j;
8543 u8 data;
8544
8545 /* Symbol control */
8546 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8547 readl(reg);
8548 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8549 readl(reg);
8550
8551 /* HW config */
8552 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8553 readl(reg);
8554 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8555 readl(reg);
8556
8557 /* EN_CS_ACCESS bit to reset control store pointer */
8558 write_nic_byte(dev, 0x210000, 0x40);
8559 readl(reg);
8560 write_nic_byte(dev, 0x210000, 0x0);
8561 readl(reg);
8562 write_nic_byte(dev, 0x210000, 0x40);
8563 readl(reg);
8564
8565 /* copy microcode from buffer into Symbol */
8566
8567 while (microcode_data_left > 0) {
8568 write_nic_byte(dev, 0x210010, *microcode_data++);
8569 write_nic_byte(dev, 0x210010, *microcode_data++);
8570 microcode_data_left -= 2;
8571 }
8572
8573 /* EN_CS_ACCESS bit to reset the control store pointer */
8574 write_nic_byte(dev, 0x210000, 0x0);
8575 readl(reg);
8576
8577 /* Enable System (Reg 0)
8578 * first enable causes garbage in RX FIFO */
8579 write_nic_byte(dev, 0x210000, 0x0);
8580 readl(reg);
8581 write_nic_byte(dev, 0x210000, 0x80);
8582 readl(reg);
8583
8584 /* Reset External Baseband Reg */
8585 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8586 readl(reg);
8587 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8588 readl(reg);
8589
8590 /* HW Config (Reg 5) */
8591 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8592 readl(reg);
8593 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8594 readl(reg);
8595
8596 /* Enable System (Reg 0)
8597 * second enable should be OK */
8598 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8599 readl(reg);
8600 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8601
8602 /* check Symbol is enabled - upped this from 5 as it wasn't always
8603 * catching the update */
8604 for (i = 0; i < 10; i++) {
8605 udelay(10);
8606
8607 /* check Dino is enabled bit */
8608 read_nic_byte(dev, 0x210000, &data);
8609 if (data & 0x1)
8610 break;
8611 }
8612
8613 if (i == 10) {
8614 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8615 dev->name);
8616 return -EIO;
8617 }
8618
8619 /* Get Symbol alive response */
8620 for (i = 0; i < 30; i++) {
8621 /* Read alive response structure */
8622 for (j = 0;
8623 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8624 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8625
8626 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8627 break;
8628 udelay(10);
8629 }
8630
8631 if (i == 30) {
8632 printk(KERN_ERR DRV_NAME
8633 ": %s: No response from Symbol - hw not alive\n",
8634 dev->name);
8635 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8636 return -EIO;
8637 }
8638
8639 return 0;
8640 }
8641