• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2 
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4 
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8 
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13 
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17 
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20 
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28 
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33 
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37 
38 ******************************************************************************/
39 /*
40 
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43 
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45 
46 Theory of Operation
47 
48 Tx - Commands and Data
49 
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53 
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57 
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61 
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67 
68 The Tx flow cycle is as follows:
69 
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90 
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93 
94 ...
95 
96 Critical Sections / Locking :
97 
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100 
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102 
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106 
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110 
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114 
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118 
119   The flow of data on the TX side is as follows:
120 
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123 
124   The methods that work on the TBD ring are protected via priv->low_lock.
125 
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129 
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132 
133 
134 */
135 
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165 
166 #include <net/lib80211.h>
167 
168 #include "ipw2100.h"
169 #include "ipw.h"
170 
171 #define IPW2100_VERSION "git-1.2.2"
172 
173 #define DRV_NAME	"ipw2100"
174 #define DRV_VERSION	IPW2100_VERSION
175 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
177 
178 static struct pm_qos_request ipw2100_pm_qos_req;
179 
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG	/* Reception debugging */
183 #endif
184 
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189 
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198 
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205 
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211 
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213 
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 	if (ipw2100_debug_level & (level)) { \
218 		printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220 		printk(message); \
221 	} \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif				/* CONFIG_IPW2100_DEBUG */
226 
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 	"undefined",
230 	"unused",		/* HOST_ATTENTION */
231 	"HOST_COMPLETE",
232 	"unused",		/* SLEEP */
233 	"unused",		/* HOST_POWER_DOWN */
234 	"unused",
235 	"SYSTEM_CONFIG",
236 	"unused",		/* SET_IMR */
237 	"SSID",
238 	"MANDATORY_BSSID",
239 	"AUTHENTICATION_TYPE",
240 	"ADAPTER_ADDRESS",
241 	"PORT_TYPE",
242 	"INTERNATIONAL_MODE",
243 	"CHANNEL",
244 	"RTS_THRESHOLD",
245 	"FRAG_THRESHOLD",
246 	"POWER_MODE",
247 	"TX_RATES",
248 	"BASIC_TX_RATES",
249 	"WEP_KEY_INFO",
250 	"unused",
251 	"unused",
252 	"unused",
253 	"unused",
254 	"WEP_KEY_INDEX",
255 	"WEP_FLAGS",
256 	"ADD_MULTICAST",
257 	"CLEAR_ALL_MULTICAST",
258 	"BEACON_INTERVAL",
259 	"ATIM_WINDOW",
260 	"CLEAR_STATISTICS",
261 	"undefined",
262 	"undefined",
263 	"undefined",
264 	"undefined",
265 	"TX_POWER_INDEX",
266 	"undefined",
267 	"undefined",
268 	"undefined",
269 	"undefined",
270 	"undefined",
271 	"undefined",
272 	"BROADCAST_SCAN",
273 	"CARD_DISABLE",
274 	"PREFERRED_BSSID",
275 	"SET_SCAN_OPTIONS",
276 	"SCAN_DWELL_TIME",
277 	"SWEEP_TABLE",
278 	"AP_OR_STATION_TABLE",
279 	"GROUP_ORDINALS",
280 	"SHORT_RETRY_LIMIT",
281 	"LONG_RETRY_LIMIT",
282 	"unused",		/* SAVE_CALIBRATION */
283 	"unused",		/* RESTORE_CALIBRATION */
284 	"undefined",
285 	"undefined",
286 	"undefined",
287 	"HOST_PRE_POWER_DOWN",
288 	"unused",		/* HOST_INTERRUPT_COALESCING */
289 	"undefined",
290 	"CARD_DISABLE_PHY_OFF",
291 	"MSDU_TX_RATES",
292 	"undefined",
293 	"SET_STATION_STAT_BITS",
294 	"CLEAR_STATIONS_STAT_BITS",
295 	"LEAP_ROGUE_MODE",
296 	"SET_SECURITY_INFORMATION",
297 	"DISASSOCIATION_BSSID",
298 	"SET_WPA_ASS_IE"
299 };
300 #endif
301 
302 static const long ipw2100_frequencies[] = {
303 	2412, 2417, 2422, 2427,
304 	2432, 2437, 2442, 2447,
305 	2452, 2457, 2462, 2467,
306 	2472, 2484
307 };
308 
309 #define FREQ_COUNT	ARRAY_SIZE(ipw2100_frequencies)
310 
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 	{ .bitrate = 10 },
313 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317 
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319 
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324 
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328 
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 			       struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 				struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 				 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 				    size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 				     struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 				  struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344 
read_register(struct net_device * dev,u32 reg,u32 * val)345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 	struct ipw2100_priv *priv = libipw_priv(dev);
348 
349 	*val = ioread32(priv->ioaddr + reg);
350 	IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352 
write_register(struct net_device * dev,u32 reg,u32 val)353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 	struct ipw2100_priv *priv = libipw_priv(dev);
356 
357 	iowrite32(val, priv->ioaddr + reg);
358 	IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360 
read_register_word(struct net_device * dev,u32 reg,u16 * val)361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 				      u16 * val)
363 {
364 	struct ipw2100_priv *priv = libipw_priv(dev);
365 
366 	*val = ioread16(priv->ioaddr + reg);
367 	IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369 
read_register_byte(struct net_device * dev,u32 reg,u8 * val)370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 	struct ipw2100_priv *priv = libipw_priv(dev);
373 
374 	*val = ioread8(priv->ioaddr + reg);
375 	IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377 
write_register_word(struct net_device * dev,u32 reg,u16 val)378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 	struct ipw2100_priv *priv = libipw_priv(dev);
381 
382 	iowrite16(val, priv->ioaddr + reg);
383 	IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385 
write_register_byte(struct net_device * dev,u32 reg,u8 val)386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 	struct ipw2100_priv *priv = libipw_priv(dev);
389 
390 	iowrite8(val, priv->ioaddr + reg);
391 	IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393 
read_nic_dword(struct net_device * dev,u32 addr,u32 * val)394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
398 	read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400 
write_nic_dword(struct net_device * dev,u32 addr,u32 val)401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
405 	write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407 
read_nic_word(struct net_device * dev,u32 addr,u16 * val)408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
412 	read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414 
write_nic_word(struct net_device * dev,u32 addr,u16 val)415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
419 	write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421 
read_nic_byte(struct net_device * dev,u32 addr,u8 * val)422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
426 	read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428 
write_nic_byte(struct net_device * dev,u32 addr,u8 val)429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
433 	write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435 
write_nic_auto_inc_address(struct net_device * dev,u32 addr)436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441 
write_nic_dword_auto_inc(struct net_device * dev,u32 val)442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 	write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446 
write_nic_memory(struct net_device * dev,u32 addr,u32 len,const u8 * buf)447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 				    const u8 * buf)
449 {
450 	u32 aligned_addr;
451 	u32 aligned_len;
452 	u32 dif_len;
453 	u32 i;
454 
455 	/* read first nibble byte by byte */
456 	aligned_addr = addr & (~0x3);
457 	dif_len = addr - aligned_addr;
458 	if (dif_len) {
459 		/* Start reading at aligned_addr + dif_len */
460 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 			       aligned_addr);
462 		for (i = dif_len; i < 4; i++, buf++)
463 			write_register_byte(dev,
464 					    IPW_REG_INDIRECT_ACCESS_DATA + i,
465 					    *buf);
466 
467 		len -= dif_len;
468 		aligned_addr += 4;
469 	}
470 
471 	/* read DWs through autoincrement registers */
472 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 	aligned_len = len & (~0x3);
474 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 		write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476 
477 	/* copy the last nibble */
478 	dif_len = len - aligned_len;
479 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 	for (i = 0; i < dif_len; i++, buf++)
481 		write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 				    *buf);
483 }
484 
read_nic_memory(struct net_device * dev,u32 addr,u32 len,u8 * buf)485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 				   u8 * buf)
487 {
488 	u32 aligned_addr;
489 	u32 aligned_len;
490 	u32 dif_len;
491 	u32 i;
492 
493 	/* read first nibble byte by byte */
494 	aligned_addr = addr & (~0x3);
495 	dif_len = addr - aligned_addr;
496 	if (dif_len) {
497 		/* Start reading at aligned_addr + dif_len */
498 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 			       aligned_addr);
500 		for (i = dif_len; i < 4; i++, buf++)
501 			read_register_byte(dev,
502 					   IPW_REG_INDIRECT_ACCESS_DATA + i,
503 					   buf);
504 
505 		len -= dif_len;
506 		aligned_addr += 4;
507 	}
508 
509 	/* read DWs through autoincrement registers */
510 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 	aligned_len = len & (~0x3);
512 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 		read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514 
515 	/* copy the last nibble */
516 	dif_len = len - aligned_len;
517 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 	for (i = 0; i < dif_len; i++, buf++)
519 		read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521 
ipw2100_hw_is_adapter_in_system(struct net_device * dev)522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 	u32 dbg;
525 
526 	read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527 
528 	return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530 
ipw2100_get_ordinal(struct ipw2100_priv * priv,u32 ord,void * val,u32 * len)531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 			       void *val, u32 * len)
533 {
534 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 	u32 addr;
536 	u32 field_info;
537 	u16 field_len;
538 	u16 field_count;
539 	u32 total_length;
540 
541 	if (ordinals->table1_addr == 0) {
542 		printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 		       "before they have been loaded.\n");
544 		return -EINVAL;
545 	}
546 
547 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 		if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
550 
551 			printk(KERN_WARNING DRV_NAME
552 			       ": ordinal buffer length too small, need %zd\n",
553 			       IPW_ORD_TAB_1_ENTRY_SIZE);
554 
555 			return -EINVAL;
556 		}
557 
558 		read_nic_dword(priv->net_dev,
559 			       ordinals->table1_addr + (ord << 2), &addr);
560 		read_nic_dword(priv->net_dev, addr, val);
561 
562 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
563 
564 		return 0;
565 	}
566 
567 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568 
569 		ord -= IPW_START_ORD_TAB_2;
570 
571 		/* get the address of statistic */
572 		read_nic_dword(priv->net_dev,
573 			       ordinals->table2_addr + (ord << 3), &addr);
574 
575 		/* get the second DW of statistics ;
576 		 * two 16-bit words - first is length, second is count */
577 		read_nic_dword(priv->net_dev,
578 			       ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 			       &field_info);
580 
581 		/* get each entry length */
582 		field_len = *((u16 *) & field_info);
583 
584 		/* get number of entries */
585 		field_count = *(((u16 *) & field_info) + 1);
586 
587 		/* abort if no enough memory */
588 		total_length = field_len * field_count;
589 		if (total_length > *len) {
590 			*len = total_length;
591 			return -EINVAL;
592 		}
593 
594 		*len = total_length;
595 		if (!total_length)
596 			return 0;
597 
598 		/* read the ordinal data from the SRAM */
599 		read_nic_memory(priv->net_dev, addr, total_length, val);
600 
601 		return 0;
602 	}
603 
604 	printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 	       "in table 2\n", ord);
606 
607 	return -EINVAL;
608 }
609 
ipw2100_set_ordinal(struct ipw2100_priv * priv,u32 ord,u32 * val,u32 * len)610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 			       u32 * len)
612 {
613 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 	u32 addr;
615 
616 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 		if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 			IPW_DEBUG_INFO("wrong size\n");
620 			return -EINVAL;
621 		}
622 
623 		read_nic_dword(priv->net_dev,
624 			       ordinals->table1_addr + (ord << 2), &addr);
625 
626 		write_nic_dword(priv->net_dev, addr, *val);
627 
628 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
629 
630 		return 0;
631 	}
632 
633 	IPW_DEBUG_INFO("wrong table\n");
634 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 		return -EINVAL;
636 
637 	return -EINVAL;
638 }
639 
snprint_line(char * buf,size_t count,const u8 * data,u32 len,u32 ofs)640 static char *snprint_line(char *buf, size_t count,
641 			  const u8 * data, u32 len, u32 ofs)
642 {
643 	int out, i, j, l;
644 	char c;
645 
646 	out = snprintf(buf, count, "%08X", ofs);
647 
648 	for (l = 0, i = 0; i < 2; i++) {
649 		out += snprintf(buf + out, count - out, " ");
650 		for (j = 0; j < 8 && l < len; j++, l++)
651 			out += snprintf(buf + out, count - out, "%02X ",
652 					data[(i * 8 + j)]);
653 		for (; j < 8; j++)
654 			out += snprintf(buf + out, count - out, "   ");
655 	}
656 
657 	out += snprintf(buf + out, count - out, " ");
658 	for (l = 0, i = 0; i < 2; i++) {
659 		out += snprintf(buf + out, count - out, " ");
660 		for (j = 0; j < 8 && l < len; j++, l++) {
661 			c = data[(i * 8 + j)];
662 			if (!isascii(c) || !isprint(c))
663 				c = '.';
664 
665 			out += snprintf(buf + out, count - out, "%c", c);
666 		}
667 
668 		for (; j < 8; j++)
669 			out += snprintf(buf + out, count - out, " ");
670 	}
671 
672 	return buf;
673 }
674 
printk_buf(int level,const u8 * data,u32 len)675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 	char line[81];
678 	u32 ofs = 0;
679 	if (!(ipw2100_debug_level & level))
680 		return;
681 
682 	while (len) {
683 		printk(KERN_DEBUG "%s\n",
684 		       snprint_line(line, sizeof(line), &data[ofs],
685 				    min(len, 16U), ofs));
686 		ofs += 16;
687 		len -= min(len, 16U);
688 	}
689 }
690 
691 #define MAX_RESET_BACKOFF 10
692 
schedule_reset(struct ipw2100_priv * priv)693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 	unsigned long now = get_seconds();
696 
697 	/* If we haven't received a reset request within the backoff period,
698 	 * then we can reset the backoff interval so this reset occurs
699 	 * immediately */
700 	if (priv->reset_backoff &&
701 	    (now - priv->last_reset > priv->reset_backoff))
702 		priv->reset_backoff = 0;
703 
704 	priv->last_reset = get_seconds();
705 
706 	if (!(priv->status & STATUS_RESET_PENDING)) {
707 		IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 			       priv->net_dev->name, priv->reset_backoff);
709 		netif_carrier_off(priv->net_dev);
710 		netif_stop_queue(priv->net_dev);
711 		priv->status |= STATUS_RESET_PENDING;
712 		if (priv->reset_backoff)
713 			schedule_delayed_work(&priv->reset_work,
714 					      priv->reset_backoff * HZ);
715 		else
716 			schedule_delayed_work(&priv->reset_work, 0);
717 
718 		if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 			priv->reset_backoff++;
720 
721 		wake_up_interruptible(&priv->wait_command_queue);
722 	} else
723 		IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 			       priv->net_dev->name);
725 
726 }
727 
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
ipw2100_hw_send_command(struct ipw2100_priv * priv,struct host_command * cmd)729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 				   struct host_command *cmd)
731 {
732 	struct list_head *element;
733 	struct ipw2100_tx_packet *packet;
734 	unsigned long flags;
735 	int err = 0;
736 
737 	IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 		     command_types[cmd->host_command], cmd->host_command,
739 		     cmd->host_command_length);
740 	printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 		   cmd->host_command_length);
742 
743 	spin_lock_irqsave(&priv->low_lock, flags);
744 
745 	if (priv->fatal_error) {
746 		IPW_DEBUG_INFO
747 		    ("Attempt to send command while hardware in fatal error condition.\n");
748 		err = -EIO;
749 		goto fail_unlock;
750 	}
751 
752 	if (!(priv->status & STATUS_RUNNING)) {
753 		IPW_DEBUG_INFO
754 		    ("Attempt to send command while hardware is not running.\n");
755 		err = -EIO;
756 		goto fail_unlock;
757 	}
758 
759 	if (priv->status & STATUS_CMD_ACTIVE) {
760 		IPW_DEBUG_INFO
761 		    ("Attempt to send command while another command is pending.\n");
762 		err = -EBUSY;
763 		goto fail_unlock;
764 	}
765 
766 	if (list_empty(&priv->msg_free_list)) {
767 		IPW_DEBUG_INFO("no available msg buffers\n");
768 		goto fail_unlock;
769 	}
770 
771 	priv->status |= STATUS_CMD_ACTIVE;
772 	priv->messages_sent++;
773 
774 	element = priv->msg_free_list.next;
775 
776 	packet = list_entry(element, struct ipw2100_tx_packet, list);
777 	packet->jiffy_start = jiffies;
778 
779 	/* initialize the firmware command packet */
780 	packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 	packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 	packet->info.c_struct.cmd->host_command_len_reg =
783 	    cmd->host_command_length;
784 	packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785 
786 	memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 	       cmd->host_command_parameters,
788 	       sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789 
790 	list_del(element);
791 	DEC_STAT(&priv->msg_free_stat);
792 
793 	list_add_tail(element, &priv->msg_pend_list);
794 	INC_STAT(&priv->msg_pend_stat);
795 
796 	ipw2100_tx_send_commands(priv);
797 	ipw2100_tx_send_data(priv);
798 
799 	spin_unlock_irqrestore(&priv->low_lock, flags);
800 
801 	/*
802 	 * We must wait for this command to complete before another
803 	 * command can be sent...  but if we wait more than 3 seconds
804 	 * then there is a problem.
805 	 */
806 
807 	err =
808 	    wait_event_interruptible_timeout(priv->wait_command_queue,
809 					     !(priv->
810 					       status & STATUS_CMD_ACTIVE),
811 					     HOST_COMPLETE_TIMEOUT);
812 
813 	if (err == 0) {
814 		IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 			       1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 		priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 		priv->status &= ~STATUS_CMD_ACTIVE;
818 		schedule_reset(priv);
819 		return -EIO;
820 	}
821 
822 	if (priv->fatal_error) {
823 		printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 		       priv->net_dev->name);
825 		return -EIO;
826 	}
827 
828 	/* !!!!! HACK TEST !!!!!
829 	 * When lots of debug trace statements are enabled, the driver
830 	 * doesn't seem to have as many firmware restart cycles...
831 	 *
832 	 * As a test, we're sticking in a 1/100s delay here */
833 	schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834 
835 	return 0;
836 
837       fail_unlock:
838 	spin_unlock_irqrestore(&priv->low_lock, flags);
839 
840 	return err;
841 }
842 
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
ipw2100_verify(struct ipw2100_priv * priv)847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 	u32 data1, data2;
850 	u32 address;
851 
852 	u32 val1 = 0x76543210;
853 	u32 val2 = 0xFEDCBA98;
854 
855 	/* Domain 0 check - all values should be DOA_DEBUG */
856 	for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 	     address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 		read_register(priv->net_dev, address, &data1);
859 		if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 			return -EIO;
861 	}
862 
863 	/* Domain 1 check - use arbitrary read/write compare  */
864 	for (address = 0; address < 5; address++) {
865 		/* The memory area is not used now */
866 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 			       val1);
868 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 			       val2);
870 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 			      &data1);
872 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 			      &data2);
874 		if (val1 == data1 && val2 == data2)
875 			return 0;
876 	}
877 
878 	return -EIO;
879 }
880 
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT		    100	// 100 milli
ipw2100_wait_for_card_state(struct ipw2100_priv * priv,int state)891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 	int i;
894 	u32 card_state;
895 	u32 len = sizeof(card_state);
896 	int err;
897 
898 	for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 		err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 					  &card_state, &len);
901 		if (err) {
902 			IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 				       "failed.\n");
904 			return 0;
905 		}
906 
907 		/* We'll break out if either the HW state says it is
908 		 * in the state we want, or if HOST_COMPLETE command
909 		 * finishes */
910 		if ((card_state == state) ||
911 		    ((priv->status & STATUS_ENABLED) ?
912 		     IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 			if (state == IPW_HW_STATE_ENABLED)
914 				priv->status |= STATUS_ENABLED;
915 			else
916 				priv->status &= ~STATUS_ENABLED;
917 
918 			return 0;
919 		}
920 
921 		udelay(50);
922 	}
923 
924 	IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 		       state ? "DISABLED" : "ENABLED");
926 	return -EIO;
927 }
928 
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
sw_reset_and_clock(struct ipw2100_priv * priv)934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 	int i;
937 	u32 r;
938 
939 	// assert s/w reset
940 	write_register(priv->net_dev, IPW_REG_RESET_REG,
941 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
942 
943 	// wait for clock stabilization
944 	for (i = 0; i < 1000; i++) {
945 		udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946 
947 		// check clock ready bit
948 		read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 		if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 			break;
951 	}
952 
953 	if (i == 1000)
954 		return -EIO;	// TODO: better error value
955 
956 	/* set "initialization complete" bit to move adapter to
957 	 * D0 state */
958 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 		       IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960 
961 	/* wait for clock stabilization */
962 	for (i = 0; i < 10000; i++) {
963 		udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964 
965 		/* check clock ready bit */
966 		read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 		if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 			break;
969 	}
970 
971 	if (i == 10000)
972 		return -EIO;	/* TODO: better error value */
973 
974 	/* set D0 standby bit */
975 	read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 		       r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978 
979 	return 0;
980 }
981 
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
ipw2100_download_firmware(struct ipw2100_priv * priv)993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 	u32 address;
996 	int err;
997 
998 #ifndef CONFIG_PM
999 	/* Fetch the firmware and microcode */
1000 	struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002 
1003 	if (priv->fatal_error) {
1004 		IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 				"fatal error %d.  Interface must be brought down.\n",
1006 				priv->net_dev->name, priv->fatal_error);
1007 		return -EINVAL;
1008 	}
1009 #ifdef CONFIG_PM
1010 	if (!ipw2100_firmware.version) {
1011 		err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 		if (err) {
1013 			IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 					priv->net_dev->name, err);
1015 			priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 			goto fail;
1017 		}
1018 	}
1019 #else
1020 	err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 	if (err) {
1022 		IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 				priv->net_dev->name, err);
1024 		priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 		goto fail;
1026 	}
1027 #endif
1028 	priv->firmware_version = ipw2100_firmware.version;
1029 
1030 	/* s/w reset and clock stabilization */
1031 	err = sw_reset_and_clock(priv);
1032 	if (err) {
1033 		IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 				priv->net_dev->name, err);
1035 		goto fail;
1036 	}
1037 
1038 	err = ipw2100_verify(priv);
1039 	if (err) {
1040 		IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 				priv->net_dev->name, err);
1042 		goto fail;
1043 	}
1044 
1045 	/* Hold ARC */
1046 	write_nic_dword(priv->net_dev,
1047 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048 
1049 	/* allow ARC to run */
1050 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051 
1052 	/* load microcode */
1053 	err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 	if (err) {
1055 		printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 		       priv->net_dev->name, err);
1057 		goto fail;
1058 	}
1059 
1060 	/* release ARC */
1061 	write_nic_dword(priv->net_dev,
1062 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063 
1064 	/* s/w reset and clock stabilization (again!!!) */
1065 	err = sw_reset_and_clock(priv);
1066 	if (err) {
1067 		printk(KERN_ERR DRV_NAME
1068 		       ": %s: sw_reset_and_clock failed: %d\n",
1069 		       priv->net_dev->name, err);
1070 		goto fail;
1071 	}
1072 
1073 	/* load f/w */
1074 	err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 	if (err) {
1076 		IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 				priv->net_dev->name, err);
1078 		goto fail;
1079 	}
1080 #ifndef CONFIG_PM
1081 	/*
1082 	 * When the .resume method of the driver is called, the other
1083 	 * part of the system, i.e. the ide driver could still stay in
1084 	 * the suspend stage. This prevents us from loading the firmware
1085 	 * from the disk.  --YZ
1086 	 */
1087 
1088 	/* free any storage allocated for firmware image */
1089 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091 
1092 	/* zero out Domain 1 area indirectly (Si requirement) */
1093 	for (address = IPW_HOST_FW_SHARED_AREA0;
1094 	     address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 		write_nic_dword(priv->net_dev, address, 0);
1096 	for (address = IPW_HOST_FW_SHARED_AREA1;
1097 	     address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 		write_nic_dword(priv->net_dev, address, 0);
1099 	for (address = IPW_HOST_FW_SHARED_AREA2;
1100 	     address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 		write_nic_dword(priv->net_dev, address, 0);
1102 	for (address = IPW_HOST_FW_SHARED_AREA3;
1103 	     address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 		write_nic_dword(priv->net_dev, address, 0);
1105 	for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 	     address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 		write_nic_dword(priv->net_dev, address, 0);
1108 
1109 	return 0;
1110 
1111       fail:
1112 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 	return err;
1114 }
1115 
ipw2100_enable_interrupts(struct ipw2100_priv * priv)1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 	if (priv->status & STATUS_INT_ENABLED)
1119 		return;
1120 	priv->status |= STATUS_INT_ENABLED;
1121 	write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123 
ipw2100_disable_interrupts(struct ipw2100_priv * priv)1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 	if (!(priv->status & STATUS_INT_ENABLED))
1127 		return;
1128 	priv->status &= ~STATUS_INT_ENABLED;
1129 	write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131 
ipw2100_initialize_ordinals(struct ipw2100_priv * priv)1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 	struct ipw2100_ordinals *ord = &priv->ordinals;
1135 
1136 	IPW_DEBUG_INFO("enter\n");
1137 
1138 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 		      &ord->table1_addr);
1140 
1141 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 		      &ord->table2_addr);
1143 
1144 	read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 	read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146 
1147 	ord->table2_size &= 0x0000FFFF;
1148 
1149 	IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 	IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 	IPW_DEBUG_INFO("exit\n");
1152 }
1153 
ipw2100_hw_set_gpio(struct ipw2100_priv * priv)1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 	u32 reg = 0;
1157 	/*
1158 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 	 * by driver and enable clock
1160 	 */
1161 	reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 	       IPW_BIT_GPIO_LED_OFF);
1163 	write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165 
rf_kill_active(struct ipw2100_priv * priv)1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170 
1171 	unsigned short value = 0;
1172 	u32 reg = 0;
1173 	int i;
1174 
1175 	if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 		priv->status &= ~STATUS_RF_KILL_HW;
1178 		return 0;
1179 	}
1180 
1181 	for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 		udelay(RF_KILL_CHECK_DELAY);
1183 		read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 		value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 	}
1186 
1187 	if (value == 0) {
1188 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 		priv->status |= STATUS_RF_KILL_HW;
1190 	} else {
1191 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 		priv->status &= ~STATUS_RF_KILL_HW;
1193 	}
1194 
1195 	return (value == 0);
1196 }
1197 
ipw2100_get_hw_features(struct ipw2100_priv * priv)1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 	u32 addr, len;
1201 	u32 val;
1202 
1203 	/*
1204 	 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 	 */
1206 	len = sizeof(addr);
1207 	if (ipw2100_get_ordinal
1208 	    (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 			       __LINE__);
1211 		return -EIO;
1212 	}
1213 
1214 	IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215 
1216 	/*
1217 	 * EEPROM version is the byte at offset 0xfd in firmware
1218 	 * We read 4 bytes, then shift out the byte we actually want */
1219 	read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 	priv->eeprom_version = (val >> 24) & 0xFF;
1221 	IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222 
1223 	/*
1224 	 *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 	 *
1226 	 *  notice that the EEPROM bit is reverse polarity, i.e.
1227 	 *     bit = 0  signifies HW RF kill switch is supported
1228 	 *     bit = 1  signifies HW RF kill switch is NOT supported
1229 	 */
1230 	read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 	if (!((val >> 24) & 0x01))
1232 		priv->hw_features |= HW_FEATURE_RFKILL;
1233 
1234 	IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 		       (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236 
1237 	return 0;
1238 }
1239 
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
ipw2100_start_adapter(struct ipw2100_priv * priv)1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 	int i;
1249 	u32 inta, inta_mask, gpio;
1250 
1251 	IPW_DEBUG_INFO("enter\n");
1252 
1253 	if (priv->status & STATUS_RUNNING)
1254 		return 0;
1255 
1256 	/*
1257 	 * Initialize the hw - drive adapter to DO state by setting
1258 	 * init_done bit. Wait for clk_ready bit and Download
1259 	 * fw & dino ucode
1260 	 */
1261 	if (ipw2100_download_firmware(priv)) {
1262 		printk(KERN_ERR DRV_NAME
1263 		       ": %s: Failed to power on the adapter.\n",
1264 		       priv->net_dev->name);
1265 		return -EIO;
1266 	}
1267 
1268 	/* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 	 * in the firmware RBD and TBD ring queue */
1270 	ipw2100_queues_initialize(priv);
1271 
1272 	ipw2100_hw_set_gpio(priv);
1273 
1274 	/* TODO -- Look at disabling interrupts here to make sure none
1275 	 * get fired during FW initialization */
1276 
1277 	/* Release ARC - clear reset bit */
1278 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279 
1280 	/* wait for f/w intialization complete */
1281 	IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 	i = 5000;
1283 	do {
1284 		schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 		/* Todo... wait for sync command ... */
1286 
1287 		read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288 
1289 		/* check "init done" bit */
1290 		if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 			/* reset "init done" bit */
1292 			write_register(priv->net_dev, IPW_REG_INTA,
1293 				       IPW2100_INTA_FW_INIT_DONE);
1294 			break;
1295 		}
1296 
1297 		/* check error conditions : we check these after the firmware
1298 		 * check so that if there is an error, the interrupt handler
1299 		 * will see it and the adapter will be reset */
1300 		if (inta &
1301 		    (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 			/* clear error conditions */
1303 			write_register(priv->net_dev, IPW_REG_INTA,
1304 				       IPW2100_INTA_FATAL_ERROR |
1305 				       IPW2100_INTA_PARITY_ERROR);
1306 		}
1307 	} while (--i);
1308 
1309 	/* Clear out any pending INTAs since we aren't supposed to have
1310 	 * interrupts enabled at this point... */
1311 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 	inta &= IPW_INTERRUPT_MASK;
1314 	/* Clear out any pending interrupts */
1315 	if (inta & inta_mask)
1316 		write_register(priv->net_dev, IPW_REG_INTA, inta);
1317 
1318 	IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 		     i ? "SUCCESS" : "FAILED");
1320 
1321 	if (!i) {
1322 		printk(KERN_WARNING DRV_NAME
1323 		       ": %s: Firmware did not initialize.\n",
1324 		       priv->net_dev->name);
1325 		return -EIO;
1326 	}
1327 
1328 	/* allow firmware to write to GPIO1 & GPIO3 */
1329 	read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330 
1331 	gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332 
1333 	write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334 
1335 	/* Ready to receive commands */
1336 	priv->status |= STATUS_RUNNING;
1337 
1338 	/* The adapter has been reset; we are not associated */
1339 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340 
1341 	IPW_DEBUG_INFO("exit\n");
1342 
1343 	return 0;
1344 }
1345 
ipw2100_reset_fatalerror(struct ipw2100_priv * priv)1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 	if (!priv->fatal_error)
1349 		return;
1350 
1351 	priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 	priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 	priv->fatal_error = 0;
1354 }
1355 
1356 /* NOTE: Our interrupt is disabled when this method is called */
ipw2100_power_cycle_adapter(struct ipw2100_priv * priv)1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 	u32 reg;
1360 	int i;
1361 
1362 	IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363 
1364 	ipw2100_hw_set_gpio(priv);
1365 
1366 	/* Step 1. Stop Master Assert */
1367 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369 
1370 	/* Step 2. Wait for stop Master Assert
1371 	 *         (not more than 50us, otherwise ret error */
1372 	i = 5;
1373 	do {
1374 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376 
1377 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 			break;
1379 	} while (--i);
1380 
1381 	priv->status &= ~STATUS_RESET_PENDING;
1382 
1383 	if (!i) {
1384 		IPW_DEBUG_INFO
1385 		    ("exit - waited too long for master assert stop\n");
1386 		return -EIO;
1387 	}
1388 
1389 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1391 
1392 	/* Reset any fatal_error conditions */
1393 	ipw2100_reset_fatalerror(priv);
1394 
1395 	/* At this point, the adapter is now stopped and disabled */
1396 	priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 			  STATUS_ASSOCIATED | STATUS_ENABLED);
1398 
1399 	return 0;
1400 }
1401 
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
ipw2100_hw_phy_off(struct ipw2100_priv * priv)1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412 
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414 
1415 	struct host_command cmd = {
1416 		.host_command = CARD_DISABLE_PHY_OFF,
1417 		.host_command_sequence = 0,
1418 		.host_command_length = 0,
1419 	};
1420 	int err, i;
1421 	u32 val1, val2;
1422 
1423 	IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424 
1425 	/* Turn off the radio */
1426 	err = ipw2100_hw_send_command(priv, &cmd);
1427 	if (err)
1428 		return err;
1429 
1430 	for (i = 0; i < 2500; i++) {
1431 		read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 		read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433 
1434 		if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 		    (val2 & IPW2100_COMMAND_PHY_OFF))
1436 			return 0;
1437 
1438 		schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 	}
1440 
1441 	return -EIO;
1442 }
1443 
ipw2100_enable_adapter(struct ipw2100_priv * priv)1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 	struct host_command cmd = {
1447 		.host_command = HOST_COMPLETE,
1448 		.host_command_sequence = 0,
1449 		.host_command_length = 0
1450 	};
1451 	int err = 0;
1452 
1453 	IPW_DEBUG_HC("HOST_COMPLETE\n");
1454 
1455 	if (priv->status & STATUS_ENABLED)
1456 		return 0;
1457 
1458 	mutex_lock(&priv->adapter_mutex);
1459 
1460 	if (rf_kill_active(priv)) {
1461 		IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 		goto fail_up;
1463 	}
1464 
1465 	err = ipw2100_hw_send_command(priv, &cmd);
1466 	if (err) {
1467 		IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 		goto fail_up;
1469 	}
1470 
1471 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 	if (err) {
1473 		IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 			       priv->net_dev->name);
1475 		goto fail_up;
1476 	}
1477 
1478 	if (priv->stop_hang_check) {
1479 		priv->stop_hang_check = 0;
1480 		schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 	}
1482 
1483       fail_up:
1484 	mutex_unlock(&priv->adapter_mutex);
1485 	return err;
1486 }
1487 
ipw2100_hw_stop_adapter(struct ipw2100_priv * priv)1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491 
1492 	struct host_command cmd = {
1493 		.host_command = HOST_PRE_POWER_DOWN,
1494 		.host_command_sequence = 0,
1495 		.host_command_length = 0,
1496 	};
1497 	int err, i;
1498 	u32 reg;
1499 
1500 	if (!(priv->status & STATUS_RUNNING))
1501 		return 0;
1502 
1503 	priv->status |= STATUS_STOPPING;
1504 
1505 	/* We can only shut down the card if the firmware is operational.  So,
1506 	 * if we haven't reset since a fatal_error, then we can not send the
1507 	 * shutdown commands. */
1508 	if (!priv->fatal_error) {
1509 		/* First, make sure the adapter is enabled so that the PHY_OFF
1510 		 * command can shut it down */
1511 		ipw2100_enable_adapter(priv);
1512 
1513 		err = ipw2100_hw_phy_off(priv);
1514 		if (err)
1515 			printk(KERN_WARNING DRV_NAME
1516 			       ": Error disabling radio %d\n", err);
1517 
1518 		/*
1519 		 * If in D0-standby mode going directly to D3 may cause a
1520 		 * PCI bus violation.  Therefore we must change out of the D0
1521 		 * state.
1522 		 *
1523 		 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 		 * hardware from going into standby mode and will transition
1525 		 * out of D0-standby if it is already in that state.
1526 		 *
1527 		 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 		 * driver upon completion.  Once received, the driver can
1529 		 * proceed to the D3 state.
1530 		 *
1531 		 * Prepare for power down command to fw.  This command would
1532 		 * take HW out of D0-standby and prepare it for D3 state.
1533 		 *
1534 		 * Currently FW does not support event notification for this
1535 		 * event. Therefore, skip waiting for it.  Just wait a fixed
1536 		 * 100ms
1537 		 */
1538 		IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539 
1540 		err = ipw2100_hw_send_command(priv, &cmd);
1541 		if (err)
1542 			printk(KERN_WARNING DRV_NAME ": "
1543 			       "%s: Power down command failed: Error %d\n",
1544 			       priv->net_dev->name, err);
1545 		else
1546 			schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 	}
1548 
1549 	priv->status &= ~STATUS_ENABLED;
1550 
1551 	/*
1552 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 	 * by driver and enable clock
1554 	 */
1555 	ipw2100_hw_set_gpio(priv);
1556 
1557 	/*
1558 	 * Power down adapter.  Sequence:
1559 	 * 1. Stop master assert (RESET_REG[9]=1)
1560 	 * 2. Wait for stop master (RESET_REG[8]==1)
1561 	 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 	 */
1563 
1564 	/* Stop master assert */
1565 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567 
1568 	/* wait stop master not more than 50 usec.
1569 	 * Otherwise return error. */
1570 	for (i = 5; i > 0; i--) {
1571 		udelay(10);
1572 
1573 		/* Check master stop bit */
1574 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575 
1576 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 			break;
1578 	}
1579 
1580 	if (i == 0)
1581 		printk(KERN_WARNING DRV_NAME
1582 		       ": %s: Could now power down adapter.\n",
1583 		       priv->net_dev->name);
1584 
1585 	/* assert s/w reset */
1586 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1588 
1589 	priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590 
1591 	return 0;
1592 }
1593 
ipw2100_disable_adapter(struct ipw2100_priv * priv)1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 	struct host_command cmd = {
1597 		.host_command = CARD_DISABLE,
1598 		.host_command_sequence = 0,
1599 		.host_command_length = 0
1600 	};
1601 	int err = 0;
1602 
1603 	IPW_DEBUG_HC("CARD_DISABLE\n");
1604 
1605 	if (!(priv->status & STATUS_ENABLED))
1606 		return 0;
1607 
1608 	/* Make sure we clear the associated state */
1609 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610 
1611 	if (!priv->stop_hang_check) {
1612 		priv->stop_hang_check = 1;
1613 		cancel_delayed_work(&priv->hang_check);
1614 	}
1615 
1616 	mutex_lock(&priv->adapter_mutex);
1617 
1618 	err = ipw2100_hw_send_command(priv, &cmd);
1619 	if (err) {
1620 		printk(KERN_WARNING DRV_NAME
1621 		       ": exit - failed to send CARD_DISABLE command\n");
1622 		goto fail_up;
1623 	}
1624 
1625 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 	if (err) {
1627 		printk(KERN_WARNING DRV_NAME
1628 		       ": exit - card failed to change to DISABLED\n");
1629 		goto fail_up;
1630 	}
1631 
1632 	IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633 
1634       fail_up:
1635 	mutex_unlock(&priv->adapter_mutex);
1636 	return err;
1637 }
1638 
ipw2100_set_scan_options(struct ipw2100_priv * priv)1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 	struct host_command cmd = {
1642 		.host_command = SET_SCAN_OPTIONS,
1643 		.host_command_sequence = 0,
1644 		.host_command_length = 8
1645 	};
1646 	int err;
1647 
1648 	IPW_DEBUG_INFO("enter\n");
1649 
1650 	IPW_DEBUG_SCAN("setting scan options\n");
1651 
1652 	cmd.host_command_parameters[0] = 0;
1653 
1654 	if (!(priv->config & CFG_ASSOCIATE))
1655 		cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 	if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 		cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 	if (priv->config & CFG_PASSIVE_SCAN)
1659 		cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660 
1661 	cmd.host_command_parameters[1] = priv->channel_mask;
1662 
1663 	err = ipw2100_hw_send_command(priv, &cmd);
1664 
1665 	IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 		     cmd.host_command_parameters[0]);
1667 
1668 	return err;
1669 }
1670 
ipw2100_start_scan(struct ipw2100_priv * priv)1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 	struct host_command cmd = {
1674 		.host_command = BROADCAST_SCAN,
1675 		.host_command_sequence = 0,
1676 		.host_command_length = 4
1677 	};
1678 	int err;
1679 
1680 	IPW_DEBUG_HC("START_SCAN\n");
1681 
1682 	cmd.host_command_parameters[0] = 0;
1683 
1684 	/* No scanning if in monitor mode */
1685 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 		return 1;
1687 
1688 	if (priv->status & STATUS_SCANNING) {
1689 		IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 		return 0;
1691 	}
1692 
1693 	IPW_DEBUG_INFO("enter\n");
1694 
1695 	/* Not clearing here; doing so makes iwlist always return nothing...
1696 	 *
1697 	 * We should modify the table logic to use aging tables vs. clearing
1698 	 * the table on each scan start.
1699 	 */
1700 	IPW_DEBUG_SCAN("starting scan\n");
1701 
1702 	priv->status |= STATUS_SCANNING;
1703 	err = ipw2100_hw_send_command(priv, &cmd);
1704 	if (err)
1705 		priv->status &= ~STATUS_SCANNING;
1706 
1707 	IPW_DEBUG_INFO("exit\n");
1708 
1709 	return err;
1710 }
1711 
1712 static const struct libipw_geo ipw_geos[] = {
1713 	{			/* Restricted */
1714 	 "---",
1715 	 .bg_channels = 14,
1716 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 		{2427, 4}, {2432, 5}, {2437, 6},
1718 		{2442, 7}, {2447, 8}, {2452, 9},
1719 		{2457, 10}, {2462, 11}, {2467, 12},
1720 		{2472, 13}, {2484, 14}},
1721 	 },
1722 };
1723 
ipw2100_up(struct ipw2100_priv * priv,int deferred)1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 	unsigned long flags;
1727 	int rc = 0;
1728 	u32 lock;
1729 	u32 ord_len = sizeof(lock);
1730 
1731 	/* Age scan list entries found before suspend */
1732 	if (priv->suspend_time) {
1733 		libipw_networks_age(priv->ieee, priv->suspend_time);
1734 		priv->suspend_time = 0;
1735 	}
1736 
1737 	/* Quiet if manually disabled. */
1738 	if (priv->status & STATUS_RF_KILL_SW) {
1739 		IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 			       "switch\n", priv->net_dev->name);
1741 		return 0;
1742 	}
1743 
1744 	/* the ipw2100 hardware really doesn't want power management delays
1745 	 * longer than 175usec
1746 	 */
1747 	pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748 
1749 	/* If the interrupt is enabled, turn it off... */
1750 	spin_lock_irqsave(&priv->low_lock, flags);
1751 	ipw2100_disable_interrupts(priv);
1752 
1753 	/* Reset any fatal_error conditions */
1754 	ipw2100_reset_fatalerror(priv);
1755 	spin_unlock_irqrestore(&priv->low_lock, flags);
1756 
1757 	if (priv->status & STATUS_POWERED ||
1758 	    (priv->status & STATUS_RESET_PENDING)) {
1759 		/* Power cycle the card ... */
1760 		if (ipw2100_power_cycle_adapter(priv)) {
1761 			printk(KERN_WARNING DRV_NAME
1762 			       ": %s: Could not cycle adapter.\n",
1763 			       priv->net_dev->name);
1764 			rc = 1;
1765 			goto exit;
1766 		}
1767 	} else
1768 		priv->status |= STATUS_POWERED;
1769 
1770 	/* Load the firmware, start the clocks, etc. */
1771 	if (ipw2100_start_adapter(priv)) {
1772 		printk(KERN_ERR DRV_NAME
1773 		       ": %s: Failed to start the firmware.\n",
1774 		       priv->net_dev->name);
1775 		rc = 1;
1776 		goto exit;
1777 	}
1778 
1779 	ipw2100_initialize_ordinals(priv);
1780 
1781 	/* Determine capabilities of this particular HW configuration */
1782 	if (ipw2100_get_hw_features(priv)) {
1783 		printk(KERN_ERR DRV_NAME
1784 		       ": %s: Failed to determine HW features.\n",
1785 		       priv->net_dev->name);
1786 		rc = 1;
1787 		goto exit;
1788 	}
1789 
1790 	/* Initialize the geo */
1791 	libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792 	priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793 
1794 	lock = LOCK_NONE;
1795 	if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796 		printk(KERN_ERR DRV_NAME
1797 		       ": %s: Failed to clear ordinal lock.\n",
1798 		       priv->net_dev->name);
1799 		rc = 1;
1800 		goto exit;
1801 	}
1802 
1803 	priv->status &= ~STATUS_SCANNING;
1804 
1805 	if (rf_kill_active(priv)) {
1806 		printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 		       priv->net_dev->name);
1808 
1809 		if (priv->stop_rf_kill) {
1810 			priv->stop_rf_kill = 0;
1811 			schedule_delayed_work(&priv->rf_kill,
1812 					      round_jiffies_relative(HZ));
1813 		}
1814 
1815 		deferred = 1;
1816 	}
1817 
1818 	/* Turn on the interrupt so that commands can be processed */
1819 	ipw2100_enable_interrupts(priv);
1820 
1821 	/* Send all of the commands that must be sent prior to
1822 	 * HOST_COMPLETE */
1823 	if (ipw2100_adapter_setup(priv)) {
1824 		printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825 		       priv->net_dev->name);
1826 		rc = 1;
1827 		goto exit;
1828 	}
1829 
1830 	if (!deferred) {
1831 		/* Enable the adapter - sends HOST_COMPLETE */
1832 		if (ipw2100_enable_adapter(priv)) {
1833 			printk(KERN_ERR DRV_NAME ": "
1834 			       "%s: failed in call to enable adapter.\n",
1835 			       priv->net_dev->name);
1836 			ipw2100_hw_stop_adapter(priv);
1837 			rc = 1;
1838 			goto exit;
1839 		}
1840 
1841 		/* Start a scan . . . */
1842 		ipw2100_set_scan_options(priv);
1843 		ipw2100_start_scan(priv);
1844 	}
1845 
1846       exit:
1847 	return rc;
1848 }
1849 
ipw2100_down(struct ipw2100_priv * priv)1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 	unsigned long flags;
1853 	union iwreq_data wrqu = {
1854 		.ap_addr = {
1855 			    .sa_family = ARPHRD_ETHER}
1856 	};
1857 	int associated = priv->status & STATUS_ASSOCIATED;
1858 
1859 	/* Kill the RF switch timer */
1860 	if (!priv->stop_rf_kill) {
1861 		priv->stop_rf_kill = 1;
1862 		cancel_delayed_work(&priv->rf_kill);
1863 	}
1864 
1865 	/* Kill the firmware hang check timer */
1866 	if (!priv->stop_hang_check) {
1867 		priv->stop_hang_check = 1;
1868 		cancel_delayed_work(&priv->hang_check);
1869 	}
1870 
1871 	/* Kill any pending resets */
1872 	if (priv->status & STATUS_RESET_PENDING)
1873 		cancel_delayed_work(&priv->reset_work);
1874 
1875 	/* Make sure the interrupt is on so that FW commands will be
1876 	 * processed correctly */
1877 	spin_lock_irqsave(&priv->low_lock, flags);
1878 	ipw2100_enable_interrupts(priv);
1879 	spin_unlock_irqrestore(&priv->low_lock, flags);
1880 
1881 	if (ipw2100_hw_stop_adapter(priv))
1882 		printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 		       priv->net_dev->name);
1884 
1885 	/* Do not disable the interrupt until _after_ we disable
1886 	 * the adaptor.  Otherwise the CARD_DISABLE command will never
1887 	 * be ack'd by the firmware */
1888 	spin_lock_irqsave(&priv->low_lock, flags);
1889 	ipw2100_disable_interrupts(priv);
1890 	spin_unlock_irqrestore(&priv->low_lock, flags);
1891 
1892 	pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893 
1894 	/* We have to signal any supplicant if we are disassociating */
1895 	if (associated)
1896 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897 
1898 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 	netif_carrier_off(priv->net_dev);
1900 	netif_stop_queue(priv->net_dev);
1901 }
1902 
ipw2100_wdev_init(struct net_device * dev)1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905 	struct ipw2100_priv *priv = libipw_priv(dev);
1906 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907 	struct wireless_dev *wdev = &priv->ieee->wdev;
1908 	int i;
1909 
1910 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911 
1912 	/* fill-out priv->ieee->bg_band */
1913 	if (geo->bg_channels) {
1914 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915 
1916 		bg_band->band = IEEE80211_BAND_2GHZ;
1917 		bg_band->n_channels = geo->bg_channels;
1918 		bg_band->channels = kcalloc(geo->bg_channels,
1919 					    sizeof(struct ieee80211_channel),
1920 					    GFP_KERNEL);
1921 		if (!bg_band->channels) {
1922 			ipw2100_down(priv);
1923 			return -ENOMEM;
1924 		}
1925 		/* translate geo->bg to bg_band.channels */
1926 		for (i = 0; i < geo->bg_channels; i++) {
1927 			bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928 			bg_band->channels[i].center_freq = geo->bg[i].freq;
1929 			bg_band->channels[i].hw_value = geo->bg[i].channel;
1930 			bg_band->channels[i].max_power = geo->bg[i].max_power;
1931 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932 				bg_band->channels[i].flags |=
1933 					IEEE80211_CHAN_NO_IR;
1934 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935 				bg_band->channels[i].flags |=
1936 					IEEE80211_CHAN_NO_IR;
1937 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938 				bg_band->channels[i].flags |=
1939 					IEEE80211_CHAN_RADAR;
1940 			/* No equivalent for LIBIPW_CH_80211H_RULES,
1941 			   LIBIPW_CH_UNIFORM_SPREADING, or
1942 			   LIBIPW_CH_B_ONLY... */
1943 		}
1944 		/* point at bitrate info */
1945 		bg_band->bitrates = ipw2100_bg_rates;
1946 		bg_band->n_bitrates = RATE_COUNT;
1947 
1948 		wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949 	}
1950 
1951 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953 
1954 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955 	if (wiphy_register(wdev->wiphy))
1956 		return -EIO;
1957 	return 0;
1958 }
1959 
ipw2100_reset_adapter(struct work_struct * work)1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962 	struct ipw2100_priv *priv =
1963 		container_of(work, struct ipw2100_priv, reset_work.work);
1964 	unsigned long flags;
1965 	union iwreq_data wrqu = {
1966 		.ap_addr = {
1967 			    .sa_family = ARPHRD_ETHER}
1968 	};
1969 	int associated = priv->status & STATUS_ASSOCIATED;
1970 
1971 	spin_lock_irqsave(&priv->low_lock, flags);
1972 	IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973 	priv->resets++;
1974 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975 	priv->status |= STATUS_SECURITY_UPDATED;
1976 
1977 	/* Force a power cycle even if interface hasn't been opened
1978 	 * yet */
1979 	cancel_delayed_work(&priv->reset_work);
1980 	priv->status |= STATUS_RESET_PENDING;
1981 	spin_unlock_irqrestore(&priv->low_lock, flags);
1982 
1983 	mutex_lock(&priv->action_mutex);
1984 	/* stop timed checks so that they don't interfere with reset */
1985 	priv->stop_hang_check = 1;
1986 	cancel_delayed_work(&priv->hang_check);
1987 
1988 	/* We have to signal any supplicant if we are disassociating */
1989 	if (associated)
1990 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991 
1992 	ipw2100_up(priv, 0);
1993 	mutex_unlock(&priv->action_mutex);
1994 
1995 }
1996 
isr_indicate_associated(struct ipw2100_priv * priv,u32 status)1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999 
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001 	int ret;
2002 	unsigned int len, essid_len;
2003 	char essid[IW_ESSID_MAX_SIZE];
2004 	u32 txrate;
2005 	u32 chan;
2006 	char *txratename;
2007 	u8 bssid[ETH_ALEN];
2008 
2009 	/*
2010 	 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011 	 *      an actual MAC of the AP. Seems like FW sets this
2012 	 *      address too late. Read it later and expose through
2013 	 *      /proc or schedule a later task to query and update
2014 	 */
2015 
2016 	essid_len = IW_ESSID_MAX_SIZE;
2017 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018 				  essid, &essid_len);
2019 	if (ret) {
2020 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021 			       __LINE__);
2022 		return;
2023 	}
2024 
2025 	len = sizeof(u32);
2026 	ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027 	if (ret) {
2028 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029 			       __LINE__);
2030 		return;
2031 	}
2032 
2033 	len = sizeof(u32);
2034 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035 	if (ret) {
2036 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037 			       __LINE__);
2038 		return;
2039 	}
2040 	len = ETH_ALEN;
2041 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042 				  &len);
2043 	if (ret) {
2044 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045 			       __LINE__);
2046 		return;
2047 	}
2048 	memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049 
2050 	switch (txrate) {
2051 	case TX_RATE_1_MBIT:
2052 		txratename = "1Mbps";
2053 		break;
2054 	case TX_RATE_2_MBIT:
2055 		txratename = "2Mbsp";
2056 		break;
2057 	case TX_RATE_5_5_MBIT:
2058 		txratename = "5.5Mbps";
2059 		break;
2060 	case TX_RATE_11_MBIT:
2061 		txratename = "11Mbps";
2062 		break;
2063 	default:
2064 		IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065 		txratename = "unknown rate";
2066 		break;
2067 	}
2068 
2069 	IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070 		       priv->net_dev->name, essid_len, essid,
2071 		       txratename, chan, bssid);
2072 
2073 	/* now we copy read ssid into dev */
2074 	if (!(priv->config & CFG_STATIC_ESSID)) {
2075 		priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076 		memcpy(priv->essid, essid, priv->essid_len);
2077 	}
2078 	priv->channel = chan;
2079 	memcpy(priv->bssid, bssid, ETH_ALEN);
2080 
2081 	priv->status |= STATUS_ASSOCIATING;
2082 	priv->connect_start = get_seconds();
2083 
2084 	schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086 
ipw2100_set_essid(struct ipw2100_priv * priv,char * essid,int length,int batch_mode)2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088 			     int length, int batch_mode)
2089 {
2090 	int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091 	struct host_command cmd = {
2092 		.host_command = SSID,
2093 		.host_command_sequence = 0,
2094 		.host_command_length = ssid_len
2095 	};
2096 	int err;
2097 
2098 	IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099 
2100 	if (ssid_len)
2101 		memcpy(cmd.host_command_parameters, essid, ssid_len);
2102 
2103 	if (!batch_mode) {
2104 		err = ipw2100_disable_adapter(priv);
2105 		if (err)
2106 			return err;
2107 	}
2108 
2109 	/* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110 	 * disable auto association -- so we cheat by setting a bogus SSID */
2111 	if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112 		int i;
2113 		u8 *bogus = (u8 *) cmd.host_command_parameters;
2114 		for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115 			bogus[i] = 0x18 + i;
2116 		cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117 	}
2118 
2119 	/* NOTE:  We always send the SSID command even if the provided ESSID is
2120 	 * the same as what we currently think is set. */
2121 
2122 	err = ipw2100_hw_send_command(priv, &cmd);
2123 	if (!err) {
2124 		memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125 		memcpy(priv->essid, essid, ssid_len);
2126 		priv->essid_len = ssid_len;
2127 	}
2128 
2129 	if (!batch_mode) {
2130 		if (ipw2100_enable_adapter(priv))
2131 			err = -EIO;
2132 	}
2133 
2134 	return err;
2135 }
2136 
isr_indicate_association_lost(struct ipw2100_priv * priv,u32 status)2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139 	IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140 		  "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141 		  priv->bssid);
2142 
2143 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144 
2145 	if (priv->status & STATUS_STOPPING) {
2146 		IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147 		return;
2148 	}
2149 
2150 	eth_zero_addr(priv->bssid);
2151 	eth_zero_addr(priv->ieee->bssid);
2152 
2153 	netif_carrier_off(priv->net_dev);
2154 	netif_stop_queue(priv->net_dev);
2155 
2156 	if (!(priv->status & STATUS_RUNNING))
2157 		return;
2158 
2159 	if (priv->status & STATUS_SECURITY_UPDATED)
2160 		schedule_delayed_work(&priv->security_work, 0);
2161 
2162 	schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164 
isr_indicate_rf_kill(struct ipw2100_priv * priv,u32 status)2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167 	IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168 		       priv->net_dev->name);
2169 
2170 	/* RF_KILL is now enabled (else we wouldn't be here) */
2171 	wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172 	priv->status |= STATUS_RF_KILL_HW;
2173 
2174 	/* Make sure the RF Kill check timer is running */
2175 	priv->stop_rf_kill = 0;
2176 	mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178 
ipw2100_scan_event(struct work_struct * work)2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181 	struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182 						 scan_event.work);
2183 	union iwreq_data wrqu;
2184 
2185 	wrqu.data.length = 0;
2186 	wrqu.data.flags = 0;
2187 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189 
isr_scan_complete(struct ipw2100_priv * priv,u32 status)2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192 	IPW_DEBUG_SCAN("scan complete\n");
2193 	/* Age the scan results... */
2194 	priv->ieee->scans++;
2195 	priv->status &= ~STATUS_SCANNING;
2196 
2197 	/* Only userspace-requested scan completion events go out immediately */
2198 	if (!priv->user_requested_scan) {
2199 		schedule_delayed_work(&priv->scan_event,
2200 				      round_jiffies_relative(msecs_to_jiffies(4000)));
2201 	} else {
2202 		priv->user_requested_scan = 0;
2203 		mod_delayed_work(system_wq, &priv->scan_event, 0);
2204 	}
2205 }
2206 
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210 	int status;
2211 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2212 	char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217 	int status;
2218 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif				/* CONFIG_IPW2100_DEBUG */
2221 
isr_indicate_scanning(struct ipw2100_priv * priv,u32 status)2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224 	IPW_DEBUG_SCAN("Scanning...\n");
2225 	priv->status |= STATUS_SCANNING;
2226 }
2227 
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229 	IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230 	IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231 	IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232 	IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233 	IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234 	IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235 	IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236 	IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237 	IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238 	IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239 	IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240 	IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241 	IPW2100_HANDLER(-1, NULL)
2242 };
2243 
isr_status_change(struct ipw2100_priv * priv,int status)2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246 	int i;
2247 
2248 	if (status == IPW_STATE_SCANNING &&
2249 	    priv->status & STATUS_ASSOCIATED &&
2250 	    !(priv->status & STATUS_SCANNING)) {
2251 		IPW_DEBUG_INFO("Scan detected while associated, with "
2252 			       "no scan request.  Restarting firmware.\n");
2253 
2254 		/* Wake up any sleeping jobs */
2255 		schedule_reset(priv);
2256 	}
2257 
2258 	for (i = 0; status_handlers[i].status != -1; i++) {
2259 		if (status == status_handlers[i].status) {
2260 			IPW_DEBUG_NOTIF("Status change: %s\n",
2261 					status_handlers[i].name);
2262 			if (status_handlers[i].cb)
2263 				status_handlers[i].cb(priv, status);
2264 			priv->wstats.status = status;
2265 			return;
2266 		}
2267 	}
2268 
2269 	IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271 
isr_rx_complete_command(struct ipw2100_priv * priv,struct ipw2100_cmd_header * cmd)2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273 				    struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276 	if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277 		IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278 			     command_types[cmd->host_command_reg],
2279 			     cmd->host_command_reg);
2280 	}
2281 #endif
2282 	if (cmd->host_command_reg == HOST_COMPLETE)
2283 		priv->status |= STATUS_ENABLED;
2284 
2285 	if (cmd->host_command_reg == CARD_DISABLE)
2286 		priv->status &= ~STATUS_ENABLED;
2287 
2288 	priv->status &= ~STATUS_CMD_ACTIVE;
2289 
2290 	wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292 
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295 	"COMMAND_STATUS_VAL",
2296 	"STATUS_CHANGE_VAL",
2297 	"P80211_DATA_VAL",
2298 	"P8023_DATA_VAL",
2299 	"HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302 
ipw2100_alloc_skb(struct ipw2100_priv * priv,struct ipw2100_rx_packet * packet)2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304 				    struct ipw2100_rx_packet *packet)
2305 {
2306 	packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307 	if (!packet->skb)
2308 		return -ENOMEM;
2309 
2310 	packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311 	packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312 					  sizeof(struct ipw2100_rx),
2313 					  PCI_DMA_FROMDEVICE);
2314 	/* NOTE: pci_map_single does not return an error code, and 0 is a valid
2315 	 *       dma_addr */
2316 
2317 	return 0;
2318 }
2319 
2320 #define SEARCH_ERROR   0xffffffff
2321 #define SEARCH_FAIL    0xfffffffe
2322 #define SEARCH_SUCCESS 0xfffffff0
2323 #define SEARCH_DISCARD 0
2324 #define SEARCH_SNAPSHOT 1
2325 
2326 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
ipw2100_snapshot_free(struct ipw2100_priv * priv)2327 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2328 {
2329 	int i;
2330 	if (!priv->snapshot[0])
2331 		return;
2332 	for (i = 0; i < 0x30; i++)
2333 		kfree(priv->snapshot[i]);
2334 	priv->snapshot[0] = NULL;
2335 }
2336 
2337 #ifdef IPW2100_DEBUG_C3
ipw2100_snapshot_alloc(struct ipw2100_priv * priv)2338 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2339 {
2340 	int i;
2341 	if (priv->snapshot[0])
2342 		return 1;
2343 	for (i = 0; i < 0x30; i++) {
2344 		priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2345 		if (!priv->snapshot[i]) {
2346 			IPW_DEBUG_INFO("%s: Error allocating snapshot "
2347 				       "buffer %d\n", priv->net_dev->name, i);
2348 			while (i > 0)
2349 				kfree(priv->snapshot[--i]);
2350 			priv->snapshot[0] = NULL;
2351 			return 0;
2352 		}
2353 	}
2354 
2355 	return 1;
2356 }
2357 
ipw2100_match_buf(struct ipw2100_priv * priv,u8 * in_buf,size_t len,int mode)2358 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2359 				    size_t len, int mode)
2360 {
2361 	u32 i, j;
2362 	u32 tmp;
2363 	u8 *s, *d;
2364 	u32 ret;
2365 
2366 	s = in_buf;
2367 	if (mode == SEARCH_SNAPSHOT) {
2368 		if (!ipw2100_snapshot_alloc(priv))
2369 			mode = SEARCH_DISCARD;
2370 	}
2371 
2372 	for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2373 		read_nic_dword(priv->net_dev, i, &tmp);
2374 		if (mode == SEARCH_SNAPSHOT)
2375 			*(u32 *) SNAPSHOT_ADDR(i) = tmp;
2376 		if (ret == SEARCH_FAIL) {
2377 			d = (u8 *) & tmp;
2378 			for (j = 0; j < 4; j++) {
2379 				if (*s != *d) {
2380 					s = in_buf;
2381 					continue;
2382 				}
2383 
2384 				s++;
2385 				d++;
2386 
2387 				if ((s - in_buf) == len)
2388 					ret = (i + j) - len + 1;
2389 			}
2390 		} else if (mode == SEARCH_DISCARD)
2391 			return ret;
2392 	}
2393 
2394 	return ret;
2395 }
2396 #endif
2397 
2398 /*
2399  *
2400  * 0) Disconnect the SKB from the firmware (just unmap)
2401  * 1) Pack the ETH header into the SKB
2402  * 2) Pass the SKB to the network stack
2403  *
2404  * When packet is provided by the firmware, it contains the following:
2405  *
2406  * .  libipw_hdr
2407  * .  libipw_snap_hdr
2408  *
2409  * The size of the constructed ethernet
2410  *
2411  */
2412 #ifdef IPW2100_RX_DEBUG
2413 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2414 #endif
2415 
ipw2100_corruption_detected(struct ipw2100_priv * priv,int i)2416 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2417 {
2418 #ifdef IPW2100_DEBUG_C3
2419 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2420 	u32 match, reg;
2421 	int j;
2422 #endif
2423 
2424 	IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2425 		       i * sizeof(struct ipw2100_status));
2426 
2427 #ifdef IPW2100_DEBUG_C3
2428 	/* Halt the firmware so we can get a good image */
2429 	write_register(priv->net_dev, IPW_REG_RESET_REG,
2430 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2431 	j = 5;
2432 	do {
2433 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2434 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2435 
2436 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2437 			break;
2438 	} while (j--);
2439 
2440 	match = ipw2100_match_buf(priv, (u8 *) status,
2441 				  sizeof(struct ipw2100_status),
2442 				  SEARCH_SNAPSHOT);
2443 	if (match < SEARCH_SUCCESS)
2444 		IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2445 			       "offset 0x%06X, length %d:\n",
2446 			       priv->net_dev->name, match,
2447 			       sizeof(struct ipw2100_status));
2448 	else
2449 		IPW_DEBUG_INFO("%s: No DMA status match in "
2450 			       "Firmware.\n", priv->net_dev->name);
2451 
2452 	printk_buf((u8 *) priv->status_queue.drv,
2453 		   sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2454 #endif
2455 
2456 	priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2457 	priv->net_dev->stats.rx_errors++;
2458 	schedule_reset(priv);
2459 }
2460 
isr_rx(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2461 static void isr_rx(struct ipw2100_priv *priv, int i,
2462 			  struct libipw_rx_stats *stats)
2463 {
2464 	struct net_device *dev = priv->net_dev;
2465 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2466 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2467 
2468 	IPW_DEBUG_RX("Handler...\n");
2469 
2470 	if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2471 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2472 			       "  Dropping.\n",
2473 			       dev->name,
2474 			       status->frame_size, skb_tailroom(packet->skb));
2475 		dev->stats.rx_errors++;
2476 		return;
2477 	}
2478 
2479 	if (unlikely(!netif_running(dev))) {
2480 		dev->stats.rx_errors++;
2481 		priv->wstats.discard.misc++;
2482 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2483 		return;
2484 	}
2485 
2486 	if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2487 		     !(priv->status & STATUS_ASSOCIATED))) {
2488 		IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2489 		priv->wstats.discard.misc++;
2490 		return;
2491 	}
2492 
2493 	pci_unmap_single(priv->pci_dev,
2494 			 packet->dma_addr,
2495 			 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2496 
2497 	skb_put(packet->skb, status->frame_size);
2498 
2499 #ifdef IPW2100_RX_DEBUG
2500 	/* Make a copy of the frame so we can dump it to the logs if
2501 	 * libipw_rx fails */
2502 	skb_copy_from_linear_data(packet->skb, packet_data,
2503 				  min_t(u32, status->frame_size,
2504 					     IPW_RX_NIC_BUFFER_LENGTH));
2505 #endif
2506 
2507 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2508 #ifdef IPW2100_RX_DEBUG
2509 		IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2510 			       dev->name);
2511 		printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2512 #endif
2513 		dev->stats.rx_errors++;
2514 
2515 		/* libipw_rx failed, so it didn't free the SKB */
2516 		dev_kfree_skb_any(packet->skb);
2517 		packet->skb = NULL;
2518 	}
2519 
2520 	/* We need to allocate a new SKB and attach it to the RDB. */
2521 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2522 		printk(KERN_WARNING DRV_NAME ": "
2523 		       "%s: Unable to allocate SKB onto RBD ring - disabling "
2524 		       "adapter.\n", dev->name);
2525 		/* TODO: schedule adapter shutdown */
2526 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2527 	}
2528 
2529 	/* Update the RDB entry */
2530 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2531 }
2532 
2533 #ifdef CONFIG_IPW2100_MONITOR
2534 
isr_rx_monitor(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2535 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2536 		   struct libipw_rx_stats *stats)
2537 {
2538 	struct net_device *dev = priv->net_dev;
2539 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2540 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2541 
2542 	/* Magic struct that slots into the radiotap header -- no reason
2543 	 * to build this manually element by element, we can write it much
2544 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
2545 	struct ipw_rt_hdr {
2546 		struct ieee80211_radiotap_header rt_hdr;
2547 		s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2548 	} *ipw_rt;
2549 
2550 	IPW_DEBUG_RX("Handler...\n");
2551 
2552 	if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2553 				sizeof(struct ipw_rt_hdr))) {
2554 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2555 			       "  Dropping.\n",
2556 			       dev->name,
2557 			       status->frame_size,
2558 			       skb_tailroom(packet->skb));
2559 		dev->stats.rx_errors++;
2560 		return;
2561 	}
2562 
2563 	if (unlikely(!netif_running(dev))) {
2564 		dev->stats.rx_errors++;
2565 		priv->wstats.discard.misc++;
2566 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2567 		return;
2568 	}
2569 
2570 	if (unlikely(priv->config & CFG_CRC_CHECK &&
2571 		     status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2572 		IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2573 		dev->stats.rx_errors++;
2574 		return;
2575 	}
2576 
2577 	pci_unmap_single(priv->pci_dev, packet->dma_addr,
2578 			 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2579 	memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2580 		packet->skb->data, status->frame_size);
2581 
2582 	ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2583 
2584 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2585 	ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2586 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2587 
2588 	ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2589 
2590 	ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2591 
2592 	skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2593 
2594 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2595 		dev->stats.rx_errors++;
2596 
2597 		/* libipw_rx failed, so it didn't free the SKB */
2598 		dev_kfree_skb_any(packet->skb);
2599 		packet->skb = NULL;
2600 	}
2601 
2602 	/* We need to allocate a new SKB and attach it to the RDB. */
2603 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2604 		IPW_DEBUG_WARNING(
2605 			"%s: Unable to allocate SKB onto RBD ring - disabling "
2606 			"adapter.\n", dev->name);
2607 		/* TODO: schedule adapter shutdown */
2608 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2609 	}
2610 
2611 	/* Update the RDB entry */
2612 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2613 }
2614 
2615 #endif
2616 
ipw2100_corruption_check(struct ipw2100_priv * priv,int i)2617 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2618 {
2619 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2620 	struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2621 	u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2622 
2623 	switch (frame_type) {
2624 	case COMMAND_STATUS_VAL:
2625 		return (status->frame_size != sizeof(u->rx_data.command));
2626 	case STATUS_CHANGE_VAL:
2627 		return (status->frame_size != sizeof(u->rx_data.status));
2628 	case HOST_NOTIFICATION_VAL:
2629 		return (status->frame_size < sizeof(u->rx_data.notification));
2630 	case P80211_DATA_VAL:
2631 	case P8023_DATA_VAL:
2632 #ifdef CONFIG_IPW2100_MONITOR
2633 		return 0;
2634 #else
2635 		switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2636 		case IEEE80211_FTYPE_MGMT:
2637 		case IEEE80211_FTYPE_CTL:
2638 			return 0;
2639 		case IEEE80211_FTYPE_DATA:
2640 			return (status->frame_size >
2641 				IPW_MAX_802_11_PAYLOAD_LENGTH);
2642 		}
2643 #endif
2644 	}
2645 
2646 	return 1;
2647 }
2648 
2649 /*
2650  * ipw2100 interrupts are disabled at this point, and the ISR
2651  * is the only code that calls this method.  So, we do not need
2652  * to play with any locks.
2653  *
2654  * RX Queue works as follows:
2655  *
2656  * Read index - firmware places packet in entry identified by the
2657  *              Read index and advances Read index.  In this manner,
2658  *              Read index will always point to the next packet to
2659  *              be filled--but not yet valid.
2660  *
2661  * Write index - driver fills this entry with an unused RBD entry.
2662  *               This entry has not filled by the firmware yet.
2663  *
2664  * In between the W and R indexes are the RBDs that have been received
2665  * but not yet processed.
2666  *
2667  * The process of handling packets will start at WRITE + 1 and advance
2668  * until it reaches the READ index.
2669  *
2670  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2671  *
2672  */
__ipw2100_rx_process(struct ipw2100_priv * priv)2673 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2674 {
2675 	struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2676 	struct ipw2100_status_queue *sq = &priv->status_queue;
2677 	struct ipw2100_rx_packet *packet;
2678 	u16 frame_type;
2679 	u32 r, w, i, s;
2680 	struct ipw2100_rx *u;
2681 	struct libipw_rx_stats stats = {
2682 		.mac_time = jiffies,
2683 	};
2684 
2685 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2686 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2687 
2688 	if (r >= rxq->entries) {
2689 		IPW_DEBUG_RX("exit - bad read index\n");
2690 		return;
2691 	}
2692 
2693 	i = (rxq->next + 1) % rxq->entries;
2694 	s = i;
2695 	while (i != r) {
2696 		/* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2697 		   r, rxq->next, i); */
2698 
2699 		packet = &priv->rx_buffers[i];
2700 
2701 		/* Sync the DMA for the RX buffer so CPU is sure to get
2702 		 * the correct values */
2703 		pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2704 					    sizeof(struct ipw2100_rx),
2705 					    PCI_DMA_FROMDEVICE);
2706 
2707 		if (unlikely(ipw2100_corruption_check(priv, i))) {
2708 			ipw2100_corruption_detected(priv, i);
2709 			goto increment;
2710 		}
2711 
2712 		u = packet->rxp;
2713 		frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2714 		stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2715 		stats.len = sq->drv[i].frame_size;
2716 
2717 		stats.mask = 0;
2718 		if (stats.rssi != 0)
2719 			stats.mask |= LIBIPW_STATMASK_RSSI;
2720 		stats.freq = LIBIPW_24GHZ_BAND;
2721 
2722 		IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2723 			     priv->net_dev->name, frame_types[frame_type],
2724 			     stats.len);
2725 
2726 		switch (frame_type) {
2727 		case COMMAND_STATUS_VAL:
2728 			/* Reset Rx watchdog */
2729 			isr_rx_complete_command(priv, &u->rx_data.command);
2730 			break;
2731 
2732 		case STATUS_CHANGE_VAL:
2733 			isr_status_change(priv, u->rx_data.status);
2734 			break;
2735 
2736 		case P80211_DATA_VAL:
2737 		case P8023_DATA_VAL:
2738 #ifdef CONFIG_IPW2100_MONITOR
2739 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2740 				isr_rx_monitor(priv, i, &stats);
2741 				break;
2742 			}
2743 #endif
2744 			if (stats.len < sizeof(struct libipw_hdr_3addr))
2745 				break;
2746 			switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2747 			case IEEE80211_FTYPE_MGMT:
2748 				libipw_rx_mgt(priv->ieee,
2749 						 &u->rx_data.header, &stats);
2750 				break;
2751 
2752 			case IEEE80211_FTYPE_CTL:
2753 				break;
2754 
2755 			case IEEE80211_FTYPE_DATA:
2756 				isr_rx(priv, i, &stats);
2757 				break;
2758 
2759 			}
2760 			break;
2761 		}
2762 
2763 	      increment:
2764 		/* clear status field associated with this RBD */
2765 		rxq->drv[i].status.info.field = 0;
2766 
2767 		i = (i + 1) % rxq->entries;
2768 	}
2769 
2770 	if (i != s) {
2771 		/* backtrack one entry, wrapping to end if at 0 */
2772 		rxq->next = (i ? i : rxq->entries) - 1;
2773 
2774 		write_register(priv->net_dev,
2775 			       IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2776 	}
2777 }
2778 
2779 /*
2780  * __ipw2100_tx_process
2781  *
2782  * This routine will determine whether the next packet on
2783  * the fw_pend_list has been processed by the firmware yet.
2784  *
2785  * If not, then it does nothing and returns.
2786  *
2787  * If so, then it removes the item from the fw_pend_list, frees
2788  * any associated storage, and places the item back on the
2789  * free list of its source (either msg_free_list or tx_free_list)
2790  *
2791  * TX Queue works as follows:
2792  *
2793  * Read index - points to the next TBD that the firmware will
2794  *              process.  The firmware will read the data, and once
2795  *              done processing, it will advance the Read index.
2796  *
2797  * Write index - driver fills this entry with an constructed TBD
2798  *               entry.  The Write index is not advanced until the
2799  *               packet has been configured.
2800  *
2801  * In between the W and R indexes are the TBDs that have NOT been
2802  * processed.  Lagging behind the R index are packets that have
2803  * been processed but have not been freed by the driver.
2804  *
2805  * In order to free old storage, an internal index will be maintained
2806  * that points to the next packet to be freed.  When all used
2807  * packets have been freed, the oldest index will be the same as the
2808  * firmware's read index.
2809  *
2810  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2811  *
2812  * Because the TBD structure can not contain arbitrary data, the
2813  * driver must keep an internal queue of cached allocations such that
2814  * it can put that data back into the tx_free_list and msg_free_list
2815  * for use by future command and data packets.
2816  *
2817  */
__ipw2100_tx_process(struct ipw2100_priv * priv)2818 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2819 {
2820 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
2821 	struct ipw2100_bd *tbd;
2822 	struct list_head *element;
2823 	struct ipw2100_tx_packet *packet;
2824 	int descriptors_used;
2825 	int e, i;
2826 	u32 r, w, frag_num = 0;
2827 
2828 	if (list_empty(&priv->fw_pend_list))
2829 		return 0;
2830 
2831 	element = priv->fw_pend_list.next;
2832 
2833 	packet = list_entry(element, struct ipw2100_tx_packet, list);
2834 	tbd = &txq->drv[packet->index];
2835 
2836 	/* Determine how many TBD entries must be finished... */
2837 	switch (packet->type) {
2838 	case COMMAND:
2839 		/* COMMAND uses only one slot; don't advance */
2840 		descriptors_used = 1;
2841 		e = txq->oldest;
2842 		break;
2843 
2844 	case DATA:
2845 		/* DATA uses two slots; advance and loop position. */
2846 		descriptors_used = tbd->num_fragments;
2847 		frag_num = tbd->num_fragments - 1;
2848 		e = txq->oldest + frag_num;
2849 		e %= txq->entries;
2850 		break;
2851 
2852 	default:
2853 		printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2854 		       priv->net_dev->name);
2855 		return 0;
2856 	}
2857 
2858 	/* if the last TBD is not done by NIC yet, then packet is
2859 	 * not ready to be released.
2860 	 *
2861 	 */
2862 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2863 		      &r);
2864 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2865 		      &w);
2866 	if (w != txq->next)
2867 		printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2868 		       priv->net_dev->name);
2869 
2870 	/*
2871 	 * txq->next is the index of the last packet written txq->oldest is
2872 	 * the index of the r is the index of the next packet to be read by
2873 	 * firmware
2874 	 */
2875 
2876 	/*
2877 	 * Quick graphic to help you visualize the following
2878 	 * if / else statement
2879 	 *
2880 	 * ===>|                     s---->|===============
2881 	 *                               e>|
2882 	 * | a | b | c | d | e | f | g | h | i | j | k | l
2883 	 *       r---->|
2884 	 *               w
2885 	 *
2886 	 * w - updated by driver
2887 	 * r - updated by firmware
2888 	 * s - start of oldest BD entry (txq->oldest)
2889 	 * e - end of oldest BD entry
2890 	 *
2891 	 */
2892 	if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2893 		IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2894 		return 0;
2895 	}
2896 
2897 	list_del(element);
2898 	DEC_STAT(&priv->fw_pend_stat);
2899 
2900 #ifdef CONFIG_IPW2100_DEBUG
2901 	{
2902 		i = txq->oldest;
2903 		IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2904 			     &txq->drv[i],
2905 			     (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2906 			     txq->drv[i].host_addr, txq->drv[i].buf_length);
2907 
2908 		if (packet->type == DATA) {
2909 			i = (i + 1) % txq->entries;
2910 
2911 			IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2912 				     &txq->drv[i],
2913 				     (u32) (txq->nic + i *
2914 					    sizeof(struct ipw2100_bd)),
2915 				     (u32) txq->drv[i].host_addr,
2916 				     txq->drv[i].buf_length);
2917 		}
2918 	}
2919 #endif
2920 
2921 	switch (packet->type) {
2922 	case DATA:
2923 		if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2924 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2925 			       "Expecting DATA TBD but pulled "
2926 			       "something else: ids %d=%d.\n",
2927 			       priv->net_dev->name, txq->oldest, packet->index);
2928 
2929 		/* DATA packet; we have to unmap and free the SKB */
2930 		for (i = 0; i < frag_num; i++) {
2931 			tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2932 
2933 			IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2934 				     (packet->index + 1 + i) % txq->entries,
2935 				     tbd->host_addr, tbd->buf_length);
2936 
2937 			pci_unmap_single(priv->pci_dev,
2938 					 tbd->host_addr,
2939 					 tbd->buf_length, PCI_DMA_TODEVICE);
2940 		}
2941 
2942 		libipw_txb_free(packet->info.d_struct.txb);
2943 		packet->info.d_struct.txb = NULL;
2944 
2945 		list_add_tail(element, &priv->tx_free_list);
2946 		INC_STAT(&priv->tx_free_stat);
2947 
2948 		/* We have a free slot in the Tx queue, so wake up the
2949 		 * transmit layer if it is stopped. */
2950 		if (priv->status & STATUS_ASSOCIATED)
2951 			netif_wake_queue(priv->net_dev);
2952 
2953 		/* A packet was processed by the hardware, so update the
2954 		 * watchdog */
2955 		priv->net_dev->trans_start = jiffies;
2956 
2957 		break;
2958 
2959 	case COMMAND:
2960 		if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2961 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2962 			       "Expecting COMMAND TBD but pulled "
2963 			       "something else: ids %d=%d.\n",
2964 			       priv->net_dev->name, txq->oldest, packet->index);
2965 
2966 #ifdef CONFIG_IPW2100_DEBUG
2967 		if (packet->info.c_struct.cmd->host_command_reg <
2968 		    ARRAY_SIZE(command_types))
2969 			IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2970 				     command_types[packet->info.c_struct.cmd->
2971 						   host_command_reg],
2972 				     packet->info.c_struct.cmd->
2973 				     host_command_reg,
2974 				     packet->info.c_struct.cmd->cmd_status_reg);
2975 #endif
2976 
2977 		list_add_tail(element, &priv->msg_free_list);
2978 		INC_STAT(&priv->msg_free_stat);
2979 		break;
2980 	}
2981 
2982 	/* advance oldest used TBD pointer to start of next entry */
2983 	txq->oldest = (e + 1) % txq->entries;
2984 	/* increase available TBDs number */
2985 	txq->available += descriptors_used;
2986 	SET_STAT(&priv->txq_stat, txq->available);
2987 
2988 	IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2989 		     jiffies - packet->jiffy_start);
2990 
2991 	return (!list_empty(&priv->fw_pend_list));
2992 }
2993 
__ipw2100_tx_complete(struct ipw2100_priv * priv)2994 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2995 {
2996 	int i = 0;
2997 
2998 	while (__ipw2100_tx_process(priv) && i < 200)
2999 		i++;
3000 
3001 	if (i == 200) {
3002 		printk(KERN_WARNING DRV_NAME ": "
3003 		       "%s: Driver is running slow (%d iters).\n",
3004 		       priv->net_dev->name, i);
3005 	}
3006 }
3007 
ipw2100_tx_send_commands(struct ipw2100_priv * priv)3008 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3009 {
3010 	struct list_head *element;
3011 	struct ipw2100_tx_packet *packet;
3012 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3013 	struct ipw2100_bd *tbd;
3014 	int next = txq->next;
3015 
3016 	while (!list_empty(&priv->msg_pend_list)) {
3017 		/* if there isn't enough space in TBD queue, then
3018 		 * don't stuff a new one in.
3019 		 * NOTE: 3 are needed as a command will take one,
3020 		 *       and there is a minimum of 2 that must be
3021 		 *       maintained between the r and w indexes
3022 		 */
3023 		if (txq->available <= 3) {
3024 			IPW_DEBUG_TX("no room in tx_queue\n");
3025 			break;
3026 		}
3027 
3028 		element = priv->msg_pend_list.next;
3029 		list_del(element);
3030 		DEC_STAT(&priv->msg_pend_stat);
3031 
3032 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3033 
3034 		IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3035 			     &txq->drv[txq->next],
3036 			     (u32) (txq->nic + txq->next *
3037 				      sizeof(struct ipw2100_bd)));
3038 
3039 		packet->index = txq->next;
3040 
3041 		tbd = &txq->drv[txq->next];
3042 
3043 		/* initialize TBD */
3044 		tbd->host_addr = packet->info.c_struct.cmd_phys;
3045 		tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3046 		/* not marking number of fragments causes problems
3047 		 * with f/w debug version */
3048 		tbd->num_fragments = 1;
3049 		tbd->status.info.field =
3050 		    IPW_BD_STATUS_TX_FRAME_COMMAND |
3051 		    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3052 
3053 		/* update TBD queue counters */
3054 		txq->next++;
3055 		txq->next %= txq->entries;
3056 		txq->available--;
3057 		DEC_STAT(&priv->txq_stat);
3058 
3059 		list_add_tail(element, &priv->fw_pend_list);
3060 		INC_STAT(&priv->fw_pend_stat);
3061 	}
3062 
3063 	if (txq->next != next) {
3064 		/* kick off the DMA by notifying firmware the
3065 		 * write index has moved; make sure TBD stores are sync'd */
3066 		wmb();
3067 		write_register(priv->net_dev,
3068 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3069 			       txq->next);
3070 	}
3071 }
3072 
3073 /*
3074  * ipw2100_tx_send_data
3075  *
3076  */
ipw2100_tx_send_data(struct ipw2100_priv * priv)3077 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3078 {
3079 	struct list_head *element;
3080 	struct ipw2100_tx_packet *packet;
3081 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3082 	struct ipw2100_bd *tbd;
3083 	int next = txq->next;
3084 	int i = 0;
3085 	struct ipw2100_data_header *ipw_hdr;
3086 	struct libipw_hdr_3addr *hdr;
3087 
3088 	while (!list_empty(&priv->tx_pend_list)) {
3089 		/* if there isn't enough space in TBD queue, then
3090 		 * don't stuff a new one in.
3091 		 * NOTE: 4 are needed as a data will take two,
3092 		 *       and there is a minimum of 2 that must be
3093 		 *       maintained between the r and w indexes
3094 		 */
3095 		element = priv->tx_pend_list.next;
3096 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3097 
3098 		if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3099 			     IPW_MAX_BDS)) {
3100 			/* TODO: Support merging buffers if more than
3101 			 * IPW_MAX_BDS are used */
3102 			IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3103 				       "Increase fragmentation level.\n",
3104 				       priv->net_dev->name);
3105 		}
3106 
3107 		if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3108 			IPW_DEBUG_TX("no room in tx_queue\n");
3109 			break;
3110 		}
3111 
3112 		list_del(element);
3113 		DEC_STAT(&priv->tx_pend_stat);
3114 
3115 		tbd = &txq->drv[txq->next];
3116 
3117 		packet->index = txq->next;
3118 
3119 		ipw_hdr = packet->info.d_struct.data;
3120 		hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3121 		    fragments[0]->data;
3122 
3123 		if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3124 			/* To DS: Addr1 = BSSID, Addr2 = SA,
3125 			   Addr3 = DA */
3126 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3127 			memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3128 		} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3129 			/* not From/To DS: Addr1 = DA, Addr2 = SA,
3130 			   Addr3 = BSSID */
3131 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132 			memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3133 		}
3134 
3135 		ipw_hdr->host_command_reg = SEND;
3136 		ipw_hdr->host_command_reg1 = 0;
3137 
3138 		/* For now we only support host based encryption */
3139 		ipw_hdr->needs_encryption = 0;
3140 		ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3141 		if (packet->info.d_struct.txb->nr_frags > 1)
3142 			ipw_hdr->fragment_size =
3143 			    packet->info.d_struct.txb->frag_size -
3144 			    LIBIPW_3ADDR_LEN;
3145 		else
3146 			ipw_hdr->fragment_size = 0;
3147 
3148 		tbd->host_addr = packet->info.d_struct.data_phys;
3149 		tbd->buf_length = sizeof(struct ipw2100_data_header);
3150 		tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3151 		tbd->status.info.field =
3152 		    IPW_BD_STATUS_TX_FRAME_802_3 |
3153 		    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3154 		txq->next++;
3155 		txq->next %= txq->entries;
3156 
3157 		IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3158 			     packet->index, tbd->host_addr, tbd->buf_length);
3159 #ifdef CONFIG_IPW2100_DEBUG
3160 		if (packet->info.d_struct.txb->nr_frags > 1)
3161 			IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3162 				       packet->info.d_struct.txb->nr_frags);
3163 #endif
3164 
3165 		for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3166 			tbd = &txq->drv[txq->next];
3167 			if (i == packet->info.d_struct.txb->nr_frags - 1)
3168 				tbd->status.info.field =
3169 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3170 				    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3171 			else
3172 				tbd->status.info.field =
3173 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3174 				    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3175 
3176 			tbd->buf_length = packet->info.d_struct.txb->
3177 			    fragments[i]->len - LIBIPW_3ADDR_LEN;
3178 
3179 			tbd->host_addr = pci_map_single(priv->pci_dev,
3180 							packet->info.d_struct.
3181 							txb->fragments[i]->
3182 							data +
3183 							LIBIPW_3ADDR_LEN,
3184 							tbd->buf_length,
3185 							PCI_DMA_TODEVICE);
3186 
3187 			IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3188 				     txq->next, tbd->host_addr,
3189 				     tbd->buf_length);
3190 
3191 			pci_dma_sync_single_for_device(priv->pci_dev,
3192 						       tbd->host_addr,
3193 						       tbd->buf_length,
3194 						       PCI_DMA_TODEVICE);
3195 
3196 			txq->next++;
3197 			txq->next %= txq->entries;
3198 		}
3199 
3200 		txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3201 		SET_STAT(&priv->txq_stat, txq->available);
3202 
3203 		list_add_tail(element, &priv->fw_pend_list);
3204 		INC_STAT(&priv->fw_pend_stat);
3205 	}
3206 
3207 	if (txq->next != next) {
3208 		/* kick off the DMA by notifying firmware the
3209 		 * write index has moved; make sure TBD stores are sync'd */
3210 		write_register(priv->net_dev,
3211 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3212 			       txq->next);
3213 	}
3214 }
3215 
ipw2100_irq_tasklet(unsigned long data)3216 static void ipw2100_irq_tasklet(unsigned long data)
3217 {
3218 	struct ipw2100_priv *priv = (struct ipw2100_priv *)data;
3219 	struct net_device *dev = priv->net_dev;
3220 	unsigned long flags;
3221 	u32 inta, tmp;
3222 
3223 	spin_lock_irqsave(&priv->low_lock, flags);
3224 	ipw2100_disable_interrupts(priv);
3225 
3226 	read_register(dev, IPW_REG_INTA, &inta);
3227 
3228 	IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3229 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3230 
3231 	priv->in_isr++;
3232 	priv->interrupts++;
3233 
3234 	/* We do not loop and keep polling for more interrupts as this
3235 	 * is frowned upon and doesn't play nicely with other potentially
3236 	 * chained IRQs */
3237 	IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3238 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3239 
3240 	if (inta & IPW2100_INTA_FATAL_ERROR) {
3241 		printk(KERN_WARNING DRV_NAME
3242 		       ": Fatal interrupt. Scheduling firmware restart.\n");
3243 		priv->inta_other++;
3244 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3245 
3246 		read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3247 		IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3248 			       priv->net_dev->name, priv->fatal_error);
3249 
3250 		read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3251 		IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3252 			       priv->net_dev->name, tmp);
3253 
3254 		/* Wake up any sleeping jobs */
3255 		schedule_reset(priv);
3256 	}
3257 
3258 	if (inta & IPW2100_INTA_PARITY_ERROR) {
3259 		printk(KERN_ERR DRV_NAME
3260 		       ": ***** PARITY ERROR INTERRUPT !!!!\n");
3261 		priv->inta_other++;
3262 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3263 	}
3264 
3265 	if (inta & IPW2100_INTA_RX_TRANSFER) {
3266 		IPW_DEBUG_ISR("RX interrupt\n");
3267 
3268 		priv->rx_interrupts++;
3269 
3270 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3271 
3272 		__ipw2100_rx_process(priv);
3273 		__ipw2100_tx_complete(priv);
3274 	}
3275 
3276 	if (inta & IPW2100_INTA_TX_TRANSFER) {
3277 		IPW_DEBUG_ISR("TX interrupt\n");
3278 
3279 		priv->tx_interrupts++;
3280 
3281 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3282 
3283 		__ipw2100_tx_complete(priv);
3284 		ipw2100_tx_send_commands(priv);
3285 		ipw2100_tx_send_data(priv);
3286 	}
3287 
3288 	if (inta & IPW2100_INTA_TX_COMPLETE) {
3289 		IPW_DEBUG_ISR("TX complete\n");
3290 		priv->inta_other++;
3291 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3292 
3293 		__ipw2100_tx_complete(priv);
3294 	}
3295 
3296 	if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3297 		/* ipw2100_handle_event(dev); */
3298 		priv->inta_other++;
3299 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3300 	}
3301 
3302 	if (inta & IPW2100_INTA_FW_INIT_DONE) {
3303 		IPW_DEBUG_ISR("FW init done interrupt\n");
3304 		priv->inta_other++;
3305 
3306 		read_register(dev, IPW_REG_INTA, &tmp);
3307 		if (tmp & (IPW2100_INTA_FATAL_ERROR |
3308 			   IPW2100_INTA_PARITY_ERROR)) {
3309 			write_register(dev, IPW_REG_INTA,
3310 				       IPW2100_INTA_FATAL_ERROR |
3311 				       IPW2100_INTA_PARITY_ERROR);
3312 		}
3313 
3314 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3315 	}
3316 
3317 	if (inta & IPW2100_INTA_STATUS_CHANGE) {
3318 		IPW_DEBUG_ISR("Status change interrupt\n");
3319 		priv->inta_other++;
3320 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3321 	}
3322 
3323 	if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3324 		IPW_DEBUG_ISR("slave host mode interrupt\n");
3325 		priv->inta_other++;
3326 		write_register(dev, IPW_REG_INTA,
3327 			       IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3328 	}
3329 
3330 	priv->in_isr--;
3331 	ipw2100_enable_interrupts(priv);
3332 
3333 	spin_unlock_irqrestore(&priv->low_lock, flags);
3334 
3335 	IPW_DEBUG_ISR("exit\n");
3336 }
3337 
ipw2100_interrupt(int irq,void * data)3338 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3339 {
3340 	struct ipw2100_priv *priv = data;
3341 	u32 inta, inta_mask;
3342 
3343 	if (!data)
3344 		return IRQ_NONE;
3345 
3346 	spin_lock(&priv->low_lock);
3347 
3348 	/* We check to see if we should be ignoring interrupts before
3349 	 * we touch the hardware.  During ucode load if we try and handle
3350 	 * an interrupt we can cause keyboard problems as well as cause
3351 	 * the ucode to fail to initialize */
3352 	if (!(priv->status & STATUS_INT_ENABLED)) {
3353 		/* Shared IRQ */
3354 		goto none;
3355 	}
3356 
3357 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3358 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
3359 
3360 	if (inta == 0xFFFFFFFF) {
3361 		/* Hardware disappeared */
3362 		printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3363 		goto none;
3364 	}
3365 
3366 	inta &= IPW_INTERRUPT_MASK;
3367 
3368 	if (!(inta & inta_mask)) {
3369 		/* Shared interrupt */
3370 		goto none;
3371 	}
3372 
3373 	/* We disable the hardware interrupt here just to prevent unneeded
3374 	 * calls to be made.  We disable this again within the actual
3375 	 * work tasklet, so if another part of the code re-enables the
3376 	 * interrupt, that is fine */
3377 	ipw2100_disable_interrupts(priv);
3378 
3379 	tasklet_schedule(&priv->irq_tasklet);
3380 	spin_unlock(&priv->low_lock);
3381 
3382 	return IRQ_HANDLED;
3383       none:
3384 	spin_unlock(&priv->low_lock);
3385 	return IRQ_NONE;
3386 }
3387 
ipw2100_tx(struct libipw_txb * txb,struct net_device * dev,int pri)3388 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3389 			      struct net_device *dev, int pri)
3390 {
3391 	struct ipw2100_priv *priv = libipw_priv(dev);
3392 	struct list_head *element;
3393 	struct ipw2100_tx_packet *packet;
3394 	unsigned long flags;
3395 
3396 	spin_lock_irqsave(&priv->low_lock, flags);
3397 
3398 	if (!(priv->status & STATUS_ASSOCIATED)) {
3399 		IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3400 		priv->net_dev->stats.tx_carrier_errors++;
3401 		netif_stop_queue(dev);
3402 		goto fail_unlock;
3403 	}
3404 
3405 	if (list_empty(&priv->tx_free_list))
3406 		goto fail_unlock;
3407 
3408 	element = priv->tx_free_list.next;
3409 	packet = list_entry(element, struct ipw2100_tx_packet, list);
3410 
3411 	packet->info.d_struct.txb = txb;
3412 
3413 	IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3414 	printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3415 
3416 	packet->jiffy_start = jiffies;
3417 
3418 	list_del(element);
3419 	DEC_STAT(&priv->tx_free_stat);
3420 
3421 	list_add_tail(element, &priv->tx_pend_list);
3422 	INC_STAT(&priv->tx_pend_stat);
3423 
3424 	ipw2100_tx_send_data(priv);
3425 
3426 	spin_unlock_irqrestore(&priv->low_lock, flags);
3427 	return NETDEV_TX_OK;
3428 
3429 fail_unlock:
3430 	netif_stop_queue(dev);
3431 	spin_unlock_irqrestore(&priv->low_lock, flags);
3432 	return NETDEV_TX_BUSY;
3433 }
3434 
ipw2100_msg_allocate(struct ipw2100_priv * priv)3435 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3436 {
3437 	int i, j, err = -EINVAL;
3438 	void *v;
3439 	dma_addr_t p;
3440 
3441 	priv->msg_buffers =
3442 	    kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3443 		    GFP_KERNEL);
3444 	if (!priv->msg_buffers)
3445 		return -ENOMEM;
3446 
3447 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3448 		v = pci_zalloc_consistent(priv->pci_dev,
3449 					  sizeof(struct ipw2100_cmd_header),
3450 					  &p);
3451 		if (!v) {
3452 			printk(KERN_ERR DRV_NAME ": "
3453 			       "%s: PCI alloc failed for msg "
3454 			       "buffers.\n", priv->net_dev->name);
3455 			err = -ENOMEM;
3456 			break;
3457 		}
3458 
3459 		priv->msg_buffers[i].type = COMMAND;
3460 		priv->msg_buffers[i].info.c_struct.cmd =
3461 		    (struct ipw2100_cmd_header *)v;
3462 		priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3463 	}
3464 
3465 	if (i == IPW_COMMAND_POOL_SIZE)
3466 		return 0;
3467 
3468 	for (j = 0; j < i; j++) {
3469 		pci_free_consistent(priv->pci_dev,
3470 				    sizeof(struct ipw2100_cmd_header),
3471 				    priv->msg_buffers[j].info.c_struct.cmd,
3472 				    priv->msg_buffers[j].info.c_struct.
3473 				    cmd_phys);
3474 	}
3475 
3476 	kfree(priv->msg_buffers);
3477 	priv->msg_buffers = NULL;
3478 
3479 	return err;
3480 }
3481 
ipw2100_msg_initialize(struct ipw2100_priv * priv)3482 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3483 {
3484 	int i;
3485 
3486 	INIT_LIST_HEAD(&priv->msg_free_list);
3487 	INIT_LIST_HEAD(&priv->msg_pend_list);
3488 
3489 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3490 		list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3491 	SET_STAT(&priv->msg_free_stat, i);
3492 
3493 	return 0;
3494 }
3495 
ipw2100_msg_free(struct ipw2100_priv * priv)3496 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3497 {
3498 	int i;
3499 
3500 	if (!priv->msg_buffers)
3501 		return;
3502 
3503 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3504 		pci_free_consistent(priv->pci_dev,
3505 				    sizeof(struct ipw2100_cmd_header),
3506 				    priv->msg_buffers[i].info.c_struct.cmd,
3507 				    priv->msg_buffers[i].info.c_struct.
3508 				    cmd_phys);
3509 	}
3510 
3511 	kfree(priv->msg_buffers);
3512 	priv->msg_buffers = NULL;
3513 }
3514 
show_pci(struct device * d,struct device_attribute * attr,char * buf)3515 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3516 			char *buf)
3517 {
3518 	struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3519 	char *out = buf;
3520 	int i, j;
3521 	u32 val;
3522 
3523 	for (i = 0; i < 16; i++) {
3524 		out += sprintf(out, "[%08X] ", i * 16);
3525 		for (j = 0; j < 16; j += 4) {
3526 			pci_read_config_dword(pci_dev, i * 16 + j, &val);
3527 			out += sprintf(out, "%08X ", val);
3528 		}
3529 		out += sprintf(out, "\n");
3530 	}
3531 
3532 	return out - buf;
3533 }
3534 
3535 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3536 
show_cfg(struct device * d,struct device_attribute * attr,char * buf)3537 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3538 			char *buf)
3539 {
3540 	struct ipw2100_priv *p = dev_get_drvdata(d);
3541 	return sprintf(buf, "0x%08x\n", (int)p->config);
3542 }
3543 
3544 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3545 
show_status(struct device * d,struct device_attribute * attr,char * buf)3546 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3547 			   char *buf)
3548 {
3549 	struct ipw2100_priv *p = dev_get_drvdata(d);
3550 	return sprintf(buf, "0x%08x\n", (int)p->status);
3551 }
3552 
3553 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3554 
show_capability(struct device * d,struct device_attribute * attr,char * buf)3555 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3556 			       char *buf)
3557 {
3558 	struct ipw2100_priv *p = dev_get_drvdata(d);
3559 	return sprintf(buf, "0x%08x\n", (int)p->capability);
3560 }
3561 
3562 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3563 
3564 #define IPW2100_REG(x) { IPW_ ##x, #x }
3565 static const struct {
3566 	u32 addr;
3567 	const char *name;
3568 } hw_data[] = {
3569 IPW2100_REG(REG_GP_CNTRL),
3570 	    IPW2100_REG(REG_GPIO),
3571 	    IPW2100_REG(REG_INTA),
3572 	    IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3573 #define IPW2100_NIC(x, s) { x, #x, s }
3574 static const struct {
3575 	u32 addr;
3576 	const char *name;
3577 	size_t size;
3578 } nic_data[] = {
3579 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3580 	    IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3581 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3582 static const struct {
3583 	u8 index;
3584 	const char *name;
3585 	const char *desc;
3586 } ord_data[] = {
3587 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3588 	    IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3589 				"successful Host Tx's (MSDU)"),
3590 	    IPW2100_ORD(STAT_TX_DIR_DATA,
3591 				"successful Directed Tx's (MSDU)"),
3592 	    IPW2100_ORD(STAT_TX_DIR_DATA1,
3593 				"successful Directed Tx's (MSDU) @ 1MB"),
3594 	    IPW2100_ORD(STAT_TX_DIR_DATA2,
3595 				"successful Directed Tx's (MSDU) @ 2MB"),
3596 	    IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3597 				"successful Directed Tx's (MSDU) @ 5_5MB"),
3598 	    IPW2100_ORD(STAT_TX_DIR_DATA11,
3599 				"successful Directed Tx's (MSDU) @ 11MB"),
3600 	    IPW2100_ORD(STAT_TX_NODIR_DATA1,
3601 				"successful Non_Directed Tx's (MSDU) @ 1MB"),
3602 	    IPW2100_ORD(STAT_TX_NODIR_DATA2,
3603 				"successful Non_Directed Tx's (MSDU) @ 2MB"),
3604 	    IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3605 				"successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3606 	    IPW2100_ORD(STAT_TX_NODIR_DATA11,
3607 				"successful Non_Directed Tx's (MSDU) @ 11MB"),
3608 	    IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3609 	    IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3610 	    IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3611 	    IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3612 	    IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3613 	    IPW2100_ORD(STAT_TX_ASSN_RESP,
3614 				"successful Association response Tx's"),
3615 	    IPW2100_ORD(STAT_TX_REASSN,
3616 				"successful Reassociation Tx's"),
3617 	    IPW2100_ORD(STAT_TX_REASSN_RESP,
3618 				"successful Reassociation response Tx's"),
3619 	    IPW2100_ORD(STAT_TX_PROBE,
3620 				"probes successfully transmitted"),
3621 	    IPW2100_ORD(STAT_TX_PROBE_RESP,
3622 				"probe responses successfully transmitted"),
3623 	    IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3624 	    IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3625 	    IPW2100_ORD(STAT_TX_DISASSN,
3626 				"successful Disassociation TX"),
3627 	    IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3628 	    IPW2100_ORD(STAT_TX_DEAUTH,
3629 				"successful Deauthentication TX"),
3630 	    IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3631 				"Total successful Tx data bytes"),
3632 	    IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3633 	    IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3634 	    IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3635 	    IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3636 	    IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3637 	    IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3638 	    IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3639 				"times max tries in a hop failed"),
3640 	    IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3641 				"times disassociation failed"),
3642 	    IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3643 	    IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3644 	    IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3645 	    IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3646 	    IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3647 	    IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3648 	    IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3649 				"directed packets at 5.5MB"),
3650 	    IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3651 	    IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3652 	    IPW2100_ORD(STAT_RX_NODIR_DATA1,
3653 				"nondirected packets at 1MB"),
3654 	    IPW2100_ORD(STAT_RX_NODIR_DATA2,
3655 				"nondirected packets at 2MB"),
3656 	    IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3657 				"nondirected packets at 5.5MB"),
3658 	    IPW2100_ORD(STAT_RX_NODIR_DATA11,
3659 				"nondirected packets at 11MB"),
3660 	    IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3661 	    IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3662 								    "Rx CTS"),
3663 	    IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3664 	    IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3665 	    IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3666 	    IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3667 	    IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3668 	    IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3669 	    IPW2100_ORD(STAT_RX_REASSN_RESP,
3670 				"Reassociation response Rx's"),
3671 	    IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3672 	    IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3673 	    IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3674 	    IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3675 	    IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3676 	    IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3677 	    IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3678 	    IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3679 				"Total rx data bytes received"),
3680 	    IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3681 	    IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3682 	    IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3683 	    IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3684 	    IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3685 	    IPW2100_ORD(STAT_RX_DUPLICATE1,
3686 				"duplicate rx packets at 1MB"),
3687 	    IPW2100_ORD(STAT_RX_DUPLICATE2,
3688 				"duplicate rx packets at 2MB"),
3689 	    IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3690 				"duplicate rx packets at 5.5MB"),
3691 	    IPW2100_ORD(STAT_RX_DUPLICATE11,
3692 				"duplicate rx packets at 11MB"),
3693 	    IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3694 	    IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3695 	    IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3696 	    IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3697 	    IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3698 				"rx frames with invalid protocol"),
3699 	    IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3700 	    IPW2100_ORD(STAT_RX_NO_BUFFER,
3701 				"rx frames rejected due to no buffer"),
3702 	    IPW2100_ORD(STAT_RX_MISSING_FRAG,
3703 				"rx frames dropped due to missing fragment"),
3704 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3705 				"rx frames dropped due to non-sequential fragment"),
3706 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3707 				"rx frames dropped due to unmatched 1st frame"),
3708 	    IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3709 				"rx frames dropped due to uncompleted frame"),
3710 	    IPW2100_ORD(STAT_RX_ICV_ERRORS,
3711 				"ICV errors during decryption"),
3712 	    IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3713 	    IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3714 	    IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3715 				"poll response timeouts"),
3716 	    IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3717 				"timeouts waiting for last {broad,multi}cast pkt"),
3718 	    IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3719 	    IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3720 	    IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3721 	    IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3722 	    IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3723 				"current calculation of % missed beacons"),
3724 	    IPW2100_ORD(STAT_PERCENT_RETRIES,
3725 				"current calculation of % missed tx retries"),
3726 	    IPW2100_ORD(ASSOCIATED_AP_PTR,
3727 				"0 if not associated, else pointer to AP table entry"),
3728 	    IPW2100_ORD(AVAILABLE_AP_CNT,
3729 				"AP's decsribed in the AP table"),
3730 	    IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3731 	    IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3732 	    IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3733 	    IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3734 				"failures due to response fail"),
3735 	    IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3736 	    IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3737 	    IPW2100_ORD(STAT_ROAM_INHIBIT,
3738 				"times roaming was inhibited due to activity"),
3739 	    IPW2100_ORD(RSSI_AT_ASSN,
3740 				"RSSI of associated AP at time of association"),
3741 	    IPW2100_ORD(STAT_ASSN_CAUSE1,
3742 				"reassociation: no probe response or TX on hop"),
3743 	    IPW2100_ORD(STAT_ASSN_CAUSE2,
3744 				"reassociation: poor tx/rx quality"),
3745 	    IPW2100_ORD(STAT_ASSN_CAUSE3,
3746 				"reassociation: tx/rx quality (excessive AP load"),
3747 	    IPW2100_ORD(STAT_ASSN_CAUSE4,
3748 				"reassociation: AP RSSI level"),
3749 	    IPW2100_ORD(STAT_ASSN_CAUSE5,
3750 				"reassociations due to load leveling"),
3751 	    IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3752 	    IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3753 				"times authentication response failed"),
3754 	    IPW2100_ORD(STATION_TABLE_CNT,
3755 				"entries in association table"),
3756 	    IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3757 	    IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3758 	    IPW2100_ORD(COUNTRY_CODE,
3759 				"IEEE country code as recv'd from beacon"),
3760 	    IPW2100_ORD(COUNTRY_CHANNELS,
3761 				"channels supported by country"),
3762 	    IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3763 	    IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3764 	    IPW2100_ORD(ANTENNA_DIVERSITY,
3765 				"TRUE if antenna diversity is disabled"),
3766 	    IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3767 	    IPW2100_ORD(OUR_FREQ,
3768 				"current radio freq lower digits - channel ID"),
3769 	    IPW2100_ORD(RTC_TIME, "current RTC time"),
3770 	    IPW2100_ORD(PORT_TYPE, "operating mode"),
3771 	    IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3772 	    IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3773 	    IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3774 	    IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3775 	    IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3776 	    IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3777 	    IPW2100_ORD(CAPABILITIES,
3778 				"Management frame capability field"),
3779 	    IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3780 	    IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3781 	    IPW2100_ORD(RTS_THRESHOLD,
3782 				"Min packet length for RTS handshaking"),
3783 	    IPW2100_ORD(INT_MODE, "International mode"),
3784 	    IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3785 				"protocol frag threshold"),
3786 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3787 				"EEPROM offset in SRAM"),
3788 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3789 				"EEPROM size in SRAM"),
3790 	    IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3791 	    IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3792 				"EEPROM IBSS 11b channel set"),
3793 	    IPW2100_ORD(MAC_VERSION, "MAC Version"),
3794 	    IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3795 	    IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3796 	    IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3797 	    IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3798 
show_registers(struct device * d,struct device_attribute * attr,char * buf)3799 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3800 			      char *buf)
3801 {
3802 	int i;
3803 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3804 	struct net_device *dev = priv->net_dev;
3805 	char *out = buf;
3806 	u32 val = 0;
3807 
3808 	out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3809 
3810 	for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3811 		read_register(dev, hw_data[i].addr, &val);
3812 		out += sprintf(out, "%30s [%08X] : %08X\n",
3813 			       hw_data[i].name, hw_data[i].addr, val);
3814 	}
3815 
3816 	return out - buf;
3817 }
3818 
3819 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3820 
show_hardware(struct device * d,struct device_attribute * attr,char * buf)3821 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3822 			     char *buf)
3823 {
3824 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3825 	struct net_device *dev = priv->net_dev;
3826 	char *out = buf;
3827 	int i;
3828 
3829 	out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3830 
3831 	for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3832 		u8 tmp8;
3833 		u16 tmp16;
3834 		u32 tmp32;
3835 
3836 		switch (nic_data[i].size) {
3837 		case 1:
3838 			read_nic_byte(dev, nic_data[i].addr, &tmp8);
3839 			out += sprintf(out, "%30s [%08X] : %02X\n",
3840 				       nic_data[i].name, nic_data[i].addr,
3841 				       tmp8);
3842 			break;
3843 		case 2:
3844 			read_nic_word(dev, nic_data[i].addr, &tmp16);
3845 			out += sprintf(out, "%30s [%08X] : %04X\n",
3846 				       nic_data[i].name, nic_data[i].addr,
3847 				       tmp16);
3848 			break;
3849 		case 4:
3850 			read_nic_dword(dev, nic_data[i].addr, &tmp32);
3851 			out += sprintf(out, "%30s [%08X] : %08X\n",
3852 				       nic_data[i].name, nic_data[i].addr,
3853 				       tmp32);
3854 			break;
3855 		}
3856 	}
3857 	return out - buf;
3858 }
3859 
3860 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3861 
show_memory(struct device * d,struct device_attribute * attr,char * buf)3862 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3863 			   char *buf)
3864 {
3865 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3866 	struct net_device *dev = priv->net_dev;
3867 	static unsigned long loop = 0;
3868 	int len = 0;
3869 	u32 buffer[4];
3870 	int i;
3871 	char line[81];
3872 
3873 	if (loop >= 0x30000)
3874 		loop = 0;
3875 
3876 	/* sysfs provides us PAGE_SIZE buffer */
3877 	while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3878 
3879 		if (priv->snapshot[0])
3880 			for (i = 0; i < 4; i++)
3881 				buffer[i] =
3882 				    *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3883 		else
3884 			for (i = 0; i < 4; i++)
3885 				read_nic_dword(dev, loop + i * 4, &buffer[i]);
3886 
3887 		if (priv->dump_raw)
3888 			len += sprintf(buf + len,
3889 				       "%c%c%c%c"
3890 				       "%c%c%c%c"
3891 				       "%c%c%c%c"
3892 				       "%c%c%c%c",
3893 				       ((u8 *) buffer)[0x0],
3894 				       ((u8 *) buffer)[0x1],
3895 				       ((u8 *) buffer)[0x2],
3896 				       ((u8 *) buffer)[0x3],
3897 				       ((u8 *) buffer)[0x4],
3898 				       ((u8 *) buffer)[0x5],
3899 				       ((u8 *) buffer)[0x6],
3900 				       ((u8 *) buffer)[0x7],
3901 				       ((u8 *) buffer)[0x8],
3902 				       ((u8 *) buffer)[0x9],
3903 				       ((u8 *) buffer)[0xa],
3904 				       ((u8 *) buffer)[0xb],
3905 				       ((u8 *) buffer)[0xc],
3906 				       ((u8 *) buffer)[0xd],
3907 				       ((u8 *) buffer)[0xe],
3908 				       ((u8 *) buffer)[0xf]);
3909 		else
3910 			len += sprintf(buf + len, "%s\n",
3911 				       snprint_line(line, sizeof(line),
3912 						    (u8 *) buffer, 16, loop));
3913 		loop += 16;
3914 	}
3915 
3916 	return len;
3917 }
3918 
store_memory(struct device * d,struct device_attribute * attr,const char * buf,size_t count)3919 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3920 			    const char *buf, size_t count)
3921 {
3922 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3923 	struct net_device *dev = priv->net_dev;
3924 	const char *p = buf;
3925 
3926 	(void)dev;		/* kill unused-var warning for debug-only code */
3927 
3928 	if (count < 1)
3929 		return count;
3930 
3931 	if (p[0] == '1' ||
3932 	    (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3933 		IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3934 			       dev->name);
3935 		priv->dump_raw = 1;
3936 
3937 	} else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3938 				   tolower(p[1]) == 'f')) {
3939 		IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3940 			       dev->name);
3941 		priv->dump_raw = 0;
3942 
3943 	} else if (tolower(p[0]) == 'r') {
3944 		IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3945 		ipw2100_snapshot_free(priv);
3946 
3947 	} else
3948 		IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3949 			       "reset = clear memory snapshot\n", dev->name);
3950 
3951 	return count;
3952 }
3953 
3954 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3955 
show_ordinals(struct device * d,struct device_attribute * attr,char * buf)3956 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3957 			     char *buf)
3958 {
3959 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3960 	u32 val = 0;
3961 	int len = 0;
3962 	u32 val_len;
3963 	static int loop = 0;
3964 
3965 	if (priv->status & STATUS_RF_KILL_MASK)
3966 		return 0;
3967 
3968 	if (loop >= ARRAY_SIZE(ord_data))
3969 		loop = 0;
3970 
3971 	/* sysfs provides us PAGE_SIZE buffer */
3972 	while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3973 		val_len = sizeof(u32);
3974 
3975 		if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3976 					&val_len))
3977 			len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3978 				       ord_data[loop].index,
3979 				       ord_data[loop].desc);
3980 		else
3981 			len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3982 				       ord_data[loop].index, val,
3983 				       ord_data[loop].desc);
3984 		loop++;
3985 	}
3986 
3987 	return len;
3988 }
3989 
3990 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3991 
show_stats(struct device * d,struct device_attribute * attr,char * buf)3992 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3993 			  char *buf)
3994 {
3995 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3996 	char *out = buf;
3997 
3998 	out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3999 		       priv->interrupts, priv->tx_interrupts,
4000 		       priv->rx_interrupts, priv->inta_other);
4001 	out += sprintf(out, "firmware resets: %d\n", priv->resets);
4002 	out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4003 #ifdef CONFIG_IPW2100_DEBUG
4004 	out += sprintf(out, "packet mismatch image: %s\n",
4005 		       priv->snapshot[0] ? "YES" : "NO");
4006 #endif
4007 
4008 	return out - buf;
4009 }
4010 
4011 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4012 
ipw2100_switch_mode(struct ipw2100_priv * priv,u32 mode)4013 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4014 {
4015 	int err;
4016 
4017 	if (mode == priv->ieee->iw_mode)
4018 		return 0;
4019 
4020 	err = ipw2100_disable_adapter(priv);
4021 	if (err) {
4022 		printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4023 		       priv->net_dev->name, err);
4024 		return err;
4025 	}
4026 
4027 	switch (mode) {
4028 	case IW_MODE_INFRA:
4029 		priv->net_dev->type = ARPHRD_ETHER;
4030 		break;
4031 	case IW_MODE_ADHOC:
4032 		priv->net_dev->type = ARPHRD_ETHER;
4033 		break;
4034 #ifdef CONFIG_IPW2100_MONITOR
4035 	case IW_MODE_MONITOR:
4036 		priv->last_mode = priv->ieee->iw_mode;
4037 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4038 		break;
4039 #endif				/* CONFIG_IPW2100_MONITOR */
4040 	}
4041 
4042 	priv->ieee->iw_mode = mode;
4043 
4044 #ifdef CONFIG_PM
4045 	/* Indicate ipw2100_download_firmware download firmware
4046 	 * from disk instead of memory. */
4047 	ipw2100_firmware.version = 0;
4048 #endif
4049 
4050 	printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4051 	priv->reset_backoff = 0;
4052 	schedule_reset(priv);
4053 
4054 	return 0;
4055 }
4056 
show_internals(struct device * d,struct device_attribute * attr,char * buf)4057 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4058 			      char *buf)
4059 {
4060 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4061 	int len = 0;
4062 
4063 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4064 
4065 	if (priv->status & STATUS_ASSOCIATED)
4066 		len += sprintf(buf + len, "connected: %lu\n",
4067 			       get_seconds() - priv->connect_start);
4068 	else
4069 		len += sprintf(buf + len, "not connected\n");
4070 
4071 	DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4072 	DUMP_VAR(status, "08lx");
4073 	DUMP_VAR(config, "08lx");
4074 	DUMP_VAR(capability, "08lx");
4075 
4076 	len +=
4077 	    sprintf(buf + len, "last_rtc: %lu\n",
4078 		    (unsigned long)priv->last_rtc);
4079 
4080 	DUMP_VAR(fatal_error, "d");
4081 	DUMP_VAR(stop_hang_check, "d");
4082 	DUMP_VAR(stop_rf_kill, "d");
4083 	DUMP_VAR(messages_sent, "d");
4084 
4085 	DUMP_VAR(tx_pend_stat.value, "d");
4086 	DUMP_VAR(tx_pend_stat.hi, "d");
4087 
4088 	DUMP_VAR(tx_free_stat.value, "d");
4089 	DUMP_VAR(tx_free_stat.lo, "d");
4090 
4091 	DUMP_VAR(msg_free_stat.value, "d");
4092 	DUMP_VAR(msg_free_stat.lo, "d");
4093 
4094 	DUMP_VAR(msg_pend_stat.value, "d");
4095 	DUMP_VAR(msg_pend_stat.hi, "d");
4096 
4097 	DUMP_VAR(fw_pend_stat.value, "d");
4098 	DUMP_VAR(fw_pend_stat.hi, "d");
4099 
4100 	DUMP_VAR(txq_stat.value, "d");
4101 	DUMP_VAR(txq_stat.lo, "d");
4102 
4103 	DUMP_VAR(ieee->scans, "d");
4104 	DUMP_VAR(reset_backoff, "d");
4105 
4106 	return len;
4107 }
4108 
4109 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4110 
show_bssinfo(struct device * d,struct device_attribute * attr,char * buf)4111 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4112 			    char *buf)
4113 {
4114 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4115 	char essid[IW_ESSID_MAX_SIZE + 1];
4116 	u8 bssid[ETH_ALEN];
4117 	u32 chan = 0;
4118 	char *out = buf;
4119 	unsigned int length;
4120 	int ret;
4121 
4122 	if (priv->status & STATUS_RF_KILL_MASK)
4123 		return 0;
4124 
4125 	memset(essid, 0, sizeof(essid));
4126 	memset(bssid, 0, sizeof(bssid));
4127 
4128 	length = IW_ESSID_MAX_SIZE;
4129 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4130 	if (ret)
4131 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4132 			       __LINE__);
4133 
4134 	length = sizeof(bssid);
4135 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4136 				  bssid, &length);
4137 	if (ret)
4138 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4139 			       __LINE__);
4140 
4141 	length = sizeof(u32);
4142 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4143 	if (ret)
4144 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4145 			       __LINE__);
4146 
4147 	out += sprintf(out, "ESSID: %s\n", essid);
4148 	out += sprintf(out, "BSSID:   %pM\n", bssid);
4149 	out += sprintf(out, "Channel: %d\n", chan);
4150 
4151 	return out - buf;
4152 }
4153 
4154 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4155 
4156 #ifdef CONFIG_IPW2100_DEBUG
show_debug_level(struct device_driver * d,char * buf)4157 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4158 {
4159 	return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4160 }
4161 
store_debug_level(struct device_driver * d,const char * buf,size_t count)4162 static ssize_t store_debug_level(struct device_driver *d,
4163 				 const char *buf, size_t count)
4164 {
4165 	u32 val;
4166 	int ret;
4167 
4168 	ret = kstrtou32(buf, 0, &val);
4169 	if (ret)
4170 		IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4171 	else
4172 		ipw2100_debug_level = val;
4173 
4174 	return strnlen(buf, count);
4175 }
4176 
4177 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4178 		   store_debug_level);
4179 #endif				/* CONFIG_IPW2100_DEBUG */
4180 
show_fatal_error(struct device * d,struct device_attribute * attr,char * buf)4181 static ssize_t show_fatal_error(struct device *d,
4182 				struct device_attribute *attr, char *buf)
4183 {
4184 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4185 	char *out = buf;
4186 	int i;
4187 
4188 	if (priv->fatal_error)
4189 		out += sprintf(out, "0x%08X\n", priv->fatal_error);
4190 	else
4191 		out += sprintf(out, "0\n");
4192 
4193 	for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4194 		if (!priv->fatal_errors[(priv->fatal_index - i) %
4195 					IPW2100_ERROR_QUEUE])
4196 			continue;
4197 
4198 		out += sprintf(out, "%d. 0x%08X\n", i,
4199 			       priv->fatal_errors[(priv->fatal_index - i) %
4200 						  IPW2100_ERROR_QUEUE]);
4201 	}
4202 
4203 	return out - buf;
4204 }
4205 
store_fatal_error(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4206 static ssize_t store_fatal_error(struct device *d,
4207 				 struct device_attribute *attr, const char *buf,
4208 				 size_t count)
4209 {
4210 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4211 	schedule_reset(priv);
4212 	return count;
4213 }
4214 
4215 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4216 		   store_fatal_error);
4217 
show_scan_age(struct device * d,struct device_attribute * attr,char * buf)4218 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4219 			     char *buf)
4220 {
4221 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4222 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
4223 }
4224 
store_scan_age(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4225 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4226 			      const char *buf, size_t count)
4227 {
4228 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4229 	struct net_device *dev = priv->net_dev;
4230 	unsigned long val;
4231 	int ret;
4232 
4233 	(void)dev;		/* kill unused-var warning for debug-only code */
4234 
4235 	IPW_DEBUG_INFO("enter\n");
4236 
4237 	ret = kstrtoul(buf, 0, &val);
4238 	if (ret) {
4239 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4240 	} else {
4241 		priv->ieee->scan_age = val;
4242 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4243 	}
4244 
4245 	IPW_DEBUG_INFO("exit\n");
4246 	return strnlen(buf, count);
4247 }
4248 
4249 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4250 
show_rf_kill(struct device * d,struct device_attribute * attr,char * buf)4251 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4252 			    char *buf)
4253 {
4254 	/* 0 - RF kill not enabled
4255 	   1 - SW based RF kill active (sysfs)
4256 	   2 - HW based RF kill active
4257 	   3 - Both HW and SW baed RF kill active */
4258 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4259 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4260 	    (rf_kill_active(priv) ? 0x2 : 0x0);
4261 	return sprintf(buf, "%i\n", val);
4262 }
4263 
ipw_radio_kill_sw(struct ipw2100_priv * priv,int disable_radio)4264 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4265 {
4266 	if ((disable_radio ? 1 : 0) ==
4267 	    (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4268 		return 0;
4269 
4270 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4271 			  disable_radio ? "OFF" : "ON");
4272 
4273 	mutex_lock(&priv->action_mutex);
4274 
4275 	if (disable_radio) {
4276 		priv->status |= STATUS_RF_KILL_SW;
4277 		ipw2100_down(priv);
4278 	} else {
4279 		priv->status &= ~STATUS_RF_KILL_SW;
4280 		if (rf_kill_active(priv)) {
4281 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4282 					  "disabled by HW switch\n");
4283 			/* Make sure the RF_KILL check timer is running */
4284 			priv->stop_rf_kill = 0;
4285 			mod_delayed_work(system_wq, &priv->rf_kill,
4286 					 round_jiffies_relative(HZ));
4287 		} else
4288 			schedule_reset(priv);
4289 	}
4290 
4291 	mutex_unlock(&priv->action_mutex);
4292 	return 1;
4293 }
4294 
store_rf_kill(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4295 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4296 			     const char *buf, size_t count)
4297 {
4298 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4299 	ipw_radio_kill_sw(priv, buf[0] == '1');
4300 	return count;
4301 }
4302 
4303 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4304 
4305 static struct attribute *ipw2100_sysfs_entries[] = {
4306 	&dev_attr_hardware.attr,
4307 	&dev_attr_registers.attr,
4308 	&dev_attr_ordinals.attr,
4309 	&dev_attr_pci.attr,
4310 	&dev_attr_stats.attr,
4311 	&dev_attr_internals.attr,
4312 	&dev_attr_bssinfo.attr,
4313 	&dev_attr_memory.attr,
4314 	&dev_attr_scan_age.attr,
4315 	&dev_attr_fatal_error.attr,
4316 	&dev_attr_rf_kill.attr,
4317 	&dev_attr_cfg.attr,
4318 	&dev_attr_status.attr,
4319 	&dev_attr_capability.attr,
4320 	NULL,
4321 };
4322 
4323 static struct attribute_group ipw2100_attribute_group = {
4324 	.attrs = ipw2100_sysfs_entries,
4325 };
4326 
status_queue_allocate(struct ipw2100_priv * priv,int entries)4327 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4328 {
4329 	struct ipw2100_status_queue *q = &priv->status_queue;
4330 
4331 	IPW_DEBUG_INFO("enter\n");
4332 
4333 	q->size = entries * sizeof(struct ipw2100_status);
4334 	q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4335 	if (!q->drv) {
4336 		IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4337 		return -ENOMEM;
4338 	}
4339 
4340 	IPW_DEBUG_INFO("exit\n");
4341 
4342 	return 0;
4343 }
4344 
status_queue_free(struct ipw2100_priv * priv)4345 static void status_queue_free(struct ipw2100_priv *priv)
4346 {
4347 	IPW_DEBUG_INFO("enter\n");
4348 
4349 	if (priv->status_queue.drv) {
4350 		pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4351 				    priv->status_queue.drv,
4352 				    priv->status_queue.nic);
4353 		priv->status_queue.drv = NULL;
4354 	}
4355 
4356 	IPW_DEBUG_INFO("exit\n");
4357 }
4358 
bd_queue_allocate(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,int entries)4359 static int bd_queue_allocate(struct ipw2100_priv *priv,
4360 			     struct ipw2100_bd_queue *q, int entries)
4361 {
4362 	IPW_DEBUG_INFO("enter\n");
4363 
4364 	memset(q, 0, sizeof(struct ipw2100_bd_queue));
4365 
4366 	q->entries = entries;
4367 	q->size = entries * sizeof(struct ipw2100_bd);
4368 	q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4369 	if (!q->drv) {
4370 		IPW_DEBUG_INFO
4371 		    ("can't allocate shared memory for buffer descriptors\n");
4372 		return -ENOMEM;
4373 	}
4374 
4375 	IPW_DEBUG_INFO("exit\n");
4376 
4377 	return 0;
4378 }
4379 
bd_queue_free(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q)4380 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4381 {
4382 	IPW_DEBUG_INFO("enter\n");
4383 
4384 	if (!q)
4385 		return;
4386 
4387 	if (q->drv) {
4388 		pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4389 		q->drv = NULL;
4390 	}
4391 
4392 	IPW_DEBUG_INFO("exit\n");
4393 }
4394 
bd_queue_initialize(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,u32 base,u32 size,u32 r,u32 w)4395 static void bd_queue_initialize(struct ipw2100_priv *priv,
4396 				struct ipw2100_bd_queue *q, u32 base, u32 size,
4397 				u32 r, u32 w)
4398 {
4399 	IPW_DEBUG_INFO("enter\n");
4400 
4401 	IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4402 		       (u32) q->nic);
4403 
4404 	write_register(priv->net_dev, base, q->nic);
4405 	write_register(priv->net_dev, size, q->entries);
4406 	write_register(priv->net_dev, r, q->oldest);
4407 	write_register(priv->net_dev, w, q->next);
4408 
4409 	IPW_DEBUG_INFO("exit\n");
4410 }
4411 
ipw2100_kill_works(struct ipw2100_priv * priv)4412 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4413 {
4414 	priv->stop_rf_kill = 1;
4415 	priv->stop_hang_check = 1;
4416 	cancel_delayed_work_sync(&priv->reset_work);
4417 	cancel_delayed_work_sync(&priv->security_work);
4418 	cancel_delayed_work_sync(&priv->wx_event_work);
4419 	cancel_delayed_work_sync(&priv->hang_check);
4420 	cancel_delayed_work_sync(&priv->rf_kill);
4421 	cancel_delayed_work_sync(&priv->scan_event);
4422 }
4423 
ipw2100_tx_allocate(struct ipw2100_priv * priv)4424 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4425 {
4426 	int i, j, err = -EINVAL;
4427 	void *v;
4428 	dma_addr_t p;
4429 
4430 	IPW_DEBUG_INFO("enter\n");
4431 
4432 	err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4433 	if (err) {
4434 		IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4435 				priv->net_dev->name);
4436 		return err;
4437 	}
4438 
4439 	priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4440 					 sizeof(struct ipw2100_tx_packet),
4441 					 GFP_ATOMIC);
4442 	if (!priv->tx_buffers) {
4443 		bd_queue_free(priv, &priv->tx_queue);
4444 		return -ENOMEM;
4445 	}
4446 
4447 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4448 		v = pci_alloc_consistent(priv->pci_dev,
4449 					 sizeof(struct ipw2100_data_header),
4450 					 &p);
4451 		if (!v) {
4452 			printk(KERN_ERR DRV_NAME
4453 			       ": %s: PCI alloc failed for tx " "buffers.\n",
4454 			       priv->net_dev->name);
4455 			err = -ENOMEM;
4456 			break;
4457 		}
4458 
4459 		priv->tx_buffers[i].type = DATA;
4460 		priv->tx_buffers[i].info.d_struct.data =
4461 		    (struct ipw2100_data_header *)v;
4462 		priv->tx_buffers[i].info.d_struct.data_phys = p;
4463 		priv->tx_buffers[i].info.d_struct.txb = NULL;
4464 	}
4465 
4466 	if (i == TX_PENDED_QUEUE_LENGTH)
4467 		return 0;
4468 
4469 	for (j = 0; j < i; j++) {
4470 		pci_free_consistent(priv->pci_dev,
4471 				    sizeof(struct ipw2100_data_header),
4472 				    priv->tx_buffers[j].info.d_struct.data,
4473 				    priv->tx_buffers[j].info.d_struct.
4474 				    data_phys);
4475 	}
4476 
4477 	kfree(priv->tx_buffers);
4478 	priv->tx_buffers = NULL;
4479 
4480 	return err;
4481 }
4482 
ipw2100_tx_initialize(struct ipw2100_priv * priv)4483 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4484 {
4485 	int i;
4486 
4487 	IPW_DEBUG_INFO("enter\n");
4488 
4489 	/*
4490 	 * reinitialize packet info lists
4491 	 */
4492 	INIT_LIST_HEAD(&priv->fw_pend_list);
4493 	INIT_STAT(&priv->fw_pend_stat);
4494 
4495 	/*
4496 	 * reinitialize lists
4497 	 */
4498 	INIT_LIST_HEAD(&priv->tx_pend_list);
4499 	INIT_LIST_HEAD(&priv->tx_free_list);
4500 	INIT_STAT(&priv->tx_pend_stat);
4501 	INIT_STAT(&priv->tx_free_stat);
4502 
4503 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4504 		/* We simply drop any SKBs that have been queued for
4505 		 * transmit */
4506 		if (priv->tx_buffers[i].info.d_struct.txb) {
4507 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4508 					   txb);
4509 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4510 		}
4511 
4512 		list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4513 	}
4514 
4515 	SET_STAT(&priv->tx_free_stat, i);
4516 
4517 	priv->tx_queue.oldest = 0;
4518 	priv->tx_queue.available = priv->tx_queue.entries;
4519 	priv->tx_queue.next = 0;
4520 	INIT_STAT(&priv->txq_stat);
4521 	SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4522 
4523 	bd_queue_initialize(priv, &priv->tx_queue,
4524 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4525 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4526 			    IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4527 			    IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4528 
4529 	IPW_DEBUG_INFO("exit\n");
4530 
4531 }
4532 
ipw2100_tx_free(struct ipw2100_priv * priv)4533 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4534 {
4535 	int i;
4536 
4537 	IPW_DEBUG_INFO("enter\n");
4538 
4539 	bd_queue_free(priv, &priv->tx_queue);
4540 
4541 	if (!priv->tx_buffers)
4542 		return;
4543 
4544 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4545 		if (priv->tx_buffers[i].info.d_struct.txb) {
4546 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4547 					   txb);
4548 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4549 		}
4550 		if (priv->tx_buffers[i].info.d_struct.data)
4551 			pci_free_consistent(priv->pci_dev,
4552 					    sizeof(struct ipw2100_data_header),
4553 					    priv->tx_buffers[i].info.d_struct.
4554 					    data,
4555 					    priv->tx_buffers[i].info.d_struct.
4556 					    data_phys);
4557 	}
4558 
4559 	kfree(priv->tx_buffers);
4560 	priv->tx_buffers = NULL;
4561 
4562 	IPW_DEBUG_INFO("exit\n");
4563 }
4564 
ipw2100_rx_allocate(struct ipw2100_priv * priv)4565 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4566 {
4567 	int i, j, err = -EINVAL;
4568 
4569 	IPW_DEBUG_INFO("enter\n");
4570 
4571 	err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4572 	if (err) {
4573 		IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4574 		return err;
4575 	}
4576 
4577 	err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4578 	if (err) {
4579 		IPW_DEBUG_INFO("failed status_queue_allocate\n");
4580 		bd_queue_free(priv, &priv->rx_queue);
4581 		return err;
4582 	}
4583 
4584 	/*
4585 	 * allocate packets
4586 	 */
4587 	priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4588 				   sizeof(struct ipw2100_rx_packet),
4589 				   GFP_KERNEL);
4590 	if (!priv->rx_buffers) {
4591 		IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4592 
4593 		bd_queue_free(priv, &priv->rx_queue);
4594 
4595 		status_queue_free(priv);
4596 
4597 		return -ENOMEM;
4598 	}
4599 
4600 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4601 		struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4602 
4603 		err = ipw2100_alloc_skb(priv, packet);
4604 		if (unlikely(err)) {
4605 			err = -ENOMEM;
4606 			break;
4607 		}
4608 
4609 		/* The BD holds the cache aligned address */
4610 		priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4611 		priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4612 		priv->status_queue.drv[i].status_fields = 0;
4613 	}
4614 
4615 	if (i == RX_QUEUE_LENGTH)
4616 		return 0;
4617 
4618 	for (j = 0; j < i; j++) {
4619 		pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4620 				 sizeof(struct ipw2100_rx_packet),
4621 				 PCI_DMA_FROMDEVICE);
4622 		dev_kfree_skb(priv->rx_buffers[j].skb);
4623 	}
4624 
4625 	kfree(priv->rx_buffers);
4626 	priv->rx_buffers = NULL;
4627 
4628 	bd_queue_free(priv, &priv->rx_queue);
4629 
4630 	status_queue_free(priv);
4631 
4632 	return err;
4633 }
4634 
ipw2100_rx_initialize(struct ipw2100_priv * priv)4635 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4636 {
4637 	IPW_DEBUG_INFO("enter\n");
4638 
4639 	priv->rx_queue.oldest = 0;
4640 	priv->rx_queue.available = priv->rx_queue.entries - 1;
4641 	priv->rx_queue.next = priv->rx_queue.entries - 1;
4642 
4643 	INIT_STAT(&priv->rxq_stat);
4644 	SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4645 
4646 	bd_queue_initialize(priv, &priv->rx_queue,
4647 			    IPW_MEM_HOST_SHARED_RX_BD_BASE,
4648 			    IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4649 			    IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4650 			    IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4651 
4652 	/* set up the status queue */
4653 	write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4654 		       priv->status_queue.nic);
4655 
4656 	IPW_DEBUG_INFO("exit\n");
4657 }
4658 
ipw2100_rx_free(struct ipw2100_priv * priv)4659 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4660 {
4661 	int i;
4662 
4663 	IPW_DEBUG_INFO("enter\n");
4664 
4665 	bd_queue_free(priv, &priv->rx_queue);
4666 	status_queue_free(priv);
4667 
4668 	if (!priv->rx_buffers)
4669 		return;
4670 
4671 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4672 		if (priv->rx_buffers[i].rxp) {
4673 			pci_unmap_single(priv->pci_dev,
4674 					 priv->rx_buffers[i].dma_addr,
4675 					 sizeof(struct ipw2100_rx),
4676 					 PCI_DMA_FROMDEVICE);
4677 			dev_kfree_skb(priv->rx_buffers[i].skb);
4678 		}
4679 	}
4680 
4681 	kfree(priv->rx_buffers);
4682 	priv->rx_buffers = NULL;
4683 
4684 	IPW_DEBUG_INFO("exit\n");
4685 }
4686 
ipw2100_read_mac_address(struct ipw2100_priv * priv)4687 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4688 {
4689 	u32 length = ETH_ALEN;
4690 	u8 addr[ETH_ALEN];
4691 
4692 	int err;
4693 
4694 	err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4695 	if (err) {
4696 		IPW_DEBUG_INFO("MAC address read failed\n");
4697 		return -EIO;
4698 	}
4699 
4700 	memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4701 	IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4702 
4703 	return 0;
4704 }
4705 
4706 /********************************************************************
4707  *
4708  * Firmware Commands
4709  *
4710  ********************************************************************/
4711 
ipw2100_set_mac_address(struct ipw2100_priv * priv,int batch_mode)4712 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4713 {
4714 	struct host_command cmd = {
4715 		.host_command = ADAPTER_ADDRESS,
4716 		.host_command_sequence = 0,
4717 		.host_command_length = ETH_ALEN
4718 	};
4719 	int err;
4720 
4721 	IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4722 
4723 	IPW_DEBUG_INFO("enter\n");
4724 
4725 	if (priv->config & CFG_CUSTOM_MAC) {
4726 		memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4727 		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4728 	} else
4729 		memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4730 		       ETH_ALEN);
4731 
4732 	err = ipw2100_hw_send_command(priv, &cmd);
4733 
4734 	IPW_DEBUG_INFO("exit\n");
4735 	return err;
4736 }
4737 
ipw2100_set_port_type(struct ipw2100_priv * priv,u32 port_type,int batch_mode)4738 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4739 				 int batch_mode)
4740 {
4741 	struct host_command cmd = {
4742 		.host_command = PORT_TYPE,
4743 		.host_command_sequence = 0,
4744 		.host_command_length = sizeof(u32)
4745 	};
4746 	int err;
4747 
4748 	switch (port_type) {
4749 	case IW_MODE_INFRA:
4750 		cmd.host_command_parameters[0] = IPW_BSS;
4751 		break;
4752 	case IW_MODE_ADHOC:
4753 		cmd.host_command_parameters[0] = IPW_IBSS;
4754 		break;
4755 	}
4756 
4757 	IPW_DEBUG_HC("PORT_TYPE: %s\n",
4758 		     port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4759 
4760 	if (!batch_mode) {
4761 		err = ipw2100_disable_adapter(priv);
4762 		if (err) {
4763 			printk(KERN_ERR DRV_NAME
4764 			       ": %s: Could not disable adapter %d\n",
4765 			       priv->net_dev->name, err);
4766 			return err;
4767 		}
4768 	}
4769 
4770 	/* send cmd to firmware */
4771 	err = ipw2100_hw_send_command(priv, &cmd);
4772 
4773 	if (!batch_mode)
4774 		ipw2100_enable_adapter(priv);
4775 
4776 	return err;
4777 }
4778 
ipw2100_set_channel(struct ipw2100_priv * priv,u32 channel,int batch_mode)4779 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4780 			       int batch_mode)
4781 {
4782 	struct host_command cmd = {
4783 		.host_command = CHANNEL,
4784 		.host_command_sequence = 0,
4785 		.host_command_length = sizeof(u32)
4786 	};
4787 	int err;
4788 
4789 	cmd.host_command_parameters[0] = channel;
4790 
4791 	IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4792 
4793 	/* If BSS then we don't support channel selection */
4794 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
4795 		return 0;
4796 
4797 	if ((channel != 0) &&
4798 	    ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4799 		return -EINVAL;
4800 
4801 	if (!batch_mode) {
4802 		err = ipw2100_disable_adapter(priv);
4803 		if (err)
4804 			return err;
4805 	}
4806 
4807 	err = ipw2100_hw_send_command(priv, &cmd);
4808 	if (err) {
4809 		IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4810 		return err;
4811 	}
4812 
4813 	if (channel)
4814 		priv->config |= CFG_STATIC_CHANNEL;
4815 	else
4816 		priv->config &= ~CFG_STATIC_CHANNEL;
4817 
4818 	priv->channel = channel;
4819 
4820 	if (!batch_mode) {
4821 		err = ipw2100_enable_adapter(priv);
4822 		if (err)
4823 			return err;
4824 	}
4825 
4826 	return 0;
4827 }
4828 
ipw2100_system_config(struct ipw2100_priv * priv,int batch_mode)4829 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4830 {
4831 	struct host_command cmd = {
4832 		.host_command = SYSTEM_CONFIG,
4833 		.host_command_sequence = 0,
4834 		.host_command_length = 12,
4835 	};
4836 	u32 ibss_mask, len = sizeof(u32);
4837 	int err;
4838 
4839 	/* Set system configuration */
4840 
4841 	if (!batch_mode) {
4842 		err = ipw2100_disable_adapter(priv);
4843 		if (err)
4844 			return err;
4845 	}
4846 
4847 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4848 		cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4849 
4850 	cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4851 	    IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4852 
4853 	if (!(priv->config & CFG_LONG_PREAMBLE))
4854 		cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4855 
4856 	err = ipw2100_get_ordinal(priv,
4857 				  IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4858 				  &ibss_mask, &len);
4859 	if (err)
4860 		ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4861 
4862 	cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4863 	cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4864 
4865 	/* 11b only */
4866 	/*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4867 
4868 	err = ipw2100_hw_send_command(priv, &cmd);
4869 	if (err)
4870 		return err;
4871 
4872 /* If IPv6 is configured in the kernel then we don't want to filter out all
4873  * of the multicast packets as IPv6 needs some. */
4874 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4875 	cmd.host_command = ADD_MULTICAST;
4876 	cmd.host_command_sequence = 0;
4877 	cmd.host_command_length = 0;
4878 
4879 	ipw2100_hw_send_command(priv, &cmd);
4880 #endif
4881 	if (!batch_mode) {
4882 		err = ipw2100_enable_adapter(priv);
4883 		if (err)
4884 			return err;
4885 	}
4886 
4887 	return 0;
4888 }
4889 
ipw2100_set_tx_rates(struct ipw2100_priv * priv,u32 rate,int batch_mode)4890 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4891 				int batch_mode)
4892 {
4893 	struct host_command cmd = {
4894 		.host_command = BASIC_TX_RATES,
4895 		.host_command_sequence = 0,
4896 		.host_command_length = 4
4897 	};
4898 	int err;
4899 
4900 	cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4901 
4902 	if (!batch_mode) {
4903 		err = ipw2100_disable_adapter(priv);
4904 		if (err)
4905 			return err;
4906 	}
4907 
4908 	/* Set BASIC TX Rate first */
4909 	ipw2100_hw_send_command(priv, &cmd);
4910 
4911 	/* Set TX Rate */
4912 	cmd.host_command = TX_RATES;
4913 	ipw2100_hw_send_command(priv, &cmd);
4914 
4915 	/* Set MSDU TX Rate */
4916 	cmd.host_command = MSDU_TX_RATES;
4917 	ipw2100_hw_send_command(priv, &cmd);
4918 
4919 	if (!batch_mode) {
4920 		err = ipw2100_enable_adapter(priv);
4921 		if (err)
4922 			return err;
4923 	}
4924 
4925 	priv->tx_rates = rate;
4926 
4927 	return 0;
4928 }
4929 
ipw2100_set_power_mode(struct ipw2100_priv * priv,int power_level)4930 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4931 {
4932 	struct host_command cmd = {
4933 		.host_command = POWER_MODE,
4934 		.host_command_sequence = 0,
4935 		.host_command_length = 4
4936 	};
4937 	int err;
4938 
4939 	cmd.host_command_parameters[0] = power_level;
4940 
4941 	err = ipw2100_hw_send_command(priv, &cmd);
4942 	if (err)
4943 		return err;
4944 
4945 	if (power_level == IPW_POWER_MODE_CAM)
4946 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4947 	else
4948 		priv->power_mode = IPW_POWER_ENABLED | power_level;
4949 
4950 #ifdef IPW2100_TX_POWER
4951 	if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4952 		/* Set beacon interval */
4953 		cmd.host_command = TX_POWER_INDEX;
4954 		cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4955 
4956 		err = ipw2100_hw_send_command(priv, &cmd);
4957 		if (err)
4958 			return err;
4959 	}
4960 #endif
4961 
4962 	return 0;
4963 }
4964 
ipw2100_set_rts_threshold(struct ipw2100_priv * priv,u32 threshold)4965 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4966 {
4967 	struct host_command cmd = {
4968 		.host_command = RTS_THRESHOLD,
4969 		.host_command_sequence = 0,
4970 		.host_command_length = 4
4971 	};
4972 	int err;
4973 
4974 	if (threshold & RTS_DISABLED)
4975 		cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4976 	else
4977 		cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4978 
4979 	err = ipw2100_hw_send_command(priv, &cmd);
4980 	if (err)
4981 		return err;
4982 
4983 	priv->rts_threshold = threshold;
4984 
4985 	return 0;
4986 }
4987 
4988 #if 0
4989 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4990 					u32 threshold, int batch_mode)
4991 {
4992 	struct host_command cmd = {
4993 		.host_command = FRAG_THRESHOLD,
4994 		.host_command_sequence = 0,
4995 		.host_command_length = 4,
4996 		.host_command_parameters[0] = 0,
4997 	};
4998 	int err;
4999 
5000 	if (!batch_mode) {
5001 		err = ipw2100_disable_adapter(priv);
5002 		if (err)
5003 			return err;
5004 	}
5005 
5006 	if (threshold == 0)
5007 		threshold = DEFAULT_FRAG_THRESHOLD;
5008 	else {
5009 		threshold = max(threshold, MIN_FRAG_THRESHOLD);
5010 		threshold = min(threshold, MAX_FRAG_THRESHOLD);
5011 	}
5012 
5013 	cmd.host_command_parameters[0] = threshold;
5014 
5015 	IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5016 
5017 	err = ipw2100_hw_send_command(priv, &cmd);
5018 
5019 	if (!batch_mode)
5020 		ipw2100_enable_adapter(priv);
5021 
5022 	if (!err)
5023 		priv->frag_threshold = threshold;
5024 
5025 	return err;
5026 }
5027 #endif
5028 
ipw2100_set_short_retry(struct ipw2100_priv * priv,u32 retry)5029 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5030 {
5031 	struct host_command cmd = {
5032 		.host_command = SHORT_RETRY_LIMIT,
5033 		.host_command_sequence = 0,
5034 		.host_command_length = 4
5035 	};
5036 	int err;
5037 
5038 	cmd.host_command_parameters[0] = retry;
5039 
5040 	err = ipw2100_hw_send_command(priv, &cmd);
5041 	if (err)
5042 		return err;
5043 
5044 	priv->short_retry_limit = retry;
5045 
5046 	return 0;
5047 }
5048 
ipw2100_set_long_retry(struct ipw2100_priv * priv,u32 retry)5049 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5050 {
5051 	struct host_command cmd = {
5052 		.host_command = LONG_RETRY_LIMIT,
5053 		.host_command_sequence = 0,
5054 		.host_command_length = 4
5055 	};
5056 	int err;
5057 
5058 	cmd.host_command_parameters[0] = retry;
5059 
5060 	err = ipw2100_hw_send_command(priv, &cmd);
5061 	if (err)
5062 		return err;
5063 
5064 	priv->long_retry_limit = retry;
5065 
5066 	return 0;
5067 }
5068 
ipw2100_set_mandatory_bssid(struct ipw2100_priv * priv,u8 * bssid,int batch_mode)5069 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5070 				       int batch_mode)
5071 {
5072 	struct host_command cmd = {
5073 		.host_command = MANDATORY_BSSID,
5074 		.host_command_sequence = 0,
5075 		.host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5076 	};
5077 	int err;
5078 
5079 #ifdef CONFIG_IPW2100_DEBUG
5080 	if (bssid != NULL)
5081 		IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5082 	else
5083 		IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5084 #endif
5085 	/* if BSSID is empty then we disable mandatory bssid mode */
5086 	if (bssid != NULL)
5087 		memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5088 
5089 	if (!batch_mode) {
5090 		err = ipw2100_disable_adapter(priv);
5091 		if (err)
5092 			return err;
5093 	}
5094 
5095 	err = ipw2100_hw_send_command(priv, &cmd);
5096 
5097 	if (!batch_mode)
5098 		ipw2100_enable_adapter(priv);
5099 
5100 	return err;
5101 }
5102 
ipw2100_disassociate_bssid(struct ipw2100_priv * priv)5103 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5104 {
5105 	struct host_command cmd = {
5106 		.host_command = DISASSOCIATION_BSSID,
5107 		.host_command_sequence = 0,
5108 		.host_command_length = ETH_ALEN
5109 	};
5110 	int err;
5111 	int len;
5112 
5113 	IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5114 
5115 	len = ETH_ALEN;
5116 	/* The Firmware currently ignores the BSSID and just disassociates from
5117 	 * the currently associated AP -- but in the off chance that a future
5118 	 * firmware does use the BSSID provided here, we go ahead and try and
5119 	 * set it to the currently associated AP's BSSID */
5120 	memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5121 
5122 	err = ipw2100_hw_send_command(priv, &cmd);
5123 
5124 	return err;
5125 }
5126 
5127 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5128 			      struct ipw2100_wpa_assoc_frame *, int)
5129     __attribute__ ((unused));
5130 
ipw2100_set_wpa_ie(struct ipw2100_priv * priv,struct ipw2100_wpa_assoc_frame * wpa_frame,int batch_mode)5131 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5132 			      struct ipw2100_wpa_assoc_frame *wpa_frame,
5133 			      int batch_mode)
5134 {
5135 	struct host_command cmd = {
5136 		.host_command = SET_WPA_IE,
5137 		.host_command_sequence = 0,
5138 		.host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5139 	};
5140 	int err;
5141 
5142 	IPW_DEBUG_HC("SET_WPA_IE\n");
5143 
5144 	if (!batch_mode) {
5145 		err = ipw2100_disable_adapter(priv);
5146 		if (err)
5147 			return err;
5148 	}
5149 
5150 	memcpy(cmd.host_command_parameters, wpa_frame,
5151 	       sizeof(struct ipw2100_wpa_assoc_frame));
5152 
5153 	err = ipw2100_hw_send_command(priv, &cmd);
5154 
5155 	if (!batch_mode) {
5156 		if (ipw2100_enable_adapter(priv))
5157 			err = -EIO;
5158 	}
5159 
5160 	return err;
5161 }
5162 
5163 struct security_info_params {
5164 	u32 allowed_ciphers;
5165 	u16 version;
5166 	u8 auth_mode;
5167 	u8 replay_counters_number;
5168 	u8 unicast_using_group;
5169 } __packed;
5170 
ipw2100_set_security_information(struct ipw2100_priv * priv,int auth_mode,int security_level,int unicast_using_group,int batch_mode)5171 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5172 					    int auth_mode,
5173 					    int security_level,
5174 					    int unicast_using_group,
5175 					    int batch_mode)
5176 {
5177 	struct host_command cmd = {
5178 		.host_command = SET_SECURITY_INFORMATION,
5179 		.host_command_sequence = 0,
5180 		.host_command_length = sizeof(struct security_info_params)
5181 	};
5182 	struct security_info_params *security =
5183 	    (struct security_info_params *)&cmd.host_command_parameters;
5184 	int err;
5185 	memset(security, 0, sizeof(*security));
5186 
5187 	/* If shared key AP authentication is turned on, then we need to
5188 	 * configure the firmware to try and use it.
5189 	 *
5190 	 * Actual data encryption/decryption is handled by the host. */
5191 	security->auth_mode = auth_mode;
5192 	security->unicast_using_group = unicast_using_group;
5193 
5194 	switch (security_level) {
5195 	default:
5196 	case SEC_LEVEL_0:
5197 		security->allowed_ciphers = IPW_NONE_CIPHER;
5198 		break;
5199 	case SEC_LEVEL_1:
5200 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5201 		    IPW_WEP104_CIPHER;
5202 		break;
5203 	case SEC_LEVEL_2:
5204 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5205 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5206 		break;
5207 	case SEC_LEVEL_2_CKIP:
5208 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5209 		    IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5210 		break;
5211 	case SEC_LEVEL_3:
5212 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5213 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5214 		break;
5215 	}
5216 
5217 	IPW_DEBUG_HC
5218 	    ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5219 	     security->auth_mode, security->allowed_ciphers, security_level);
5220 
5221 	security->replay_counters_number = 0;
5222 
5223 	if (!batch_mode) {
5224 		err = ipw2100_disable_adapter(priv);
5225 		if (err)
5226 			return err;
5227 	}
5228 
5229 	err = ipw2100_hw_send_command(priv, &cmd);
5230 
5231 	if (!batch_mode)
5232 		ipw2100_enable_adapter(priv);
5233 
5234 	return err;
5235 }
5236 
ipw2100_set_tx_power(struct ipw2100_priv * priv,u32 tx_power)5237 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5238 {
5239 	struct host_command cmd = {
5240 		.host_command = TX_POWER_INDEX,
5241 		.host_command_sequence = 0,
5242 		.host_command_length = 4
5243 	};
5244 	int err = 0;
5245 	u32 tmp = tx_power;
5246 
5247 	if (tx_power != IPW_TX_POWER_DEFAULT)
5248 		tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5249 		      (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5250 
5251 	cmd.host_command_parameters[0] = tmp;
5252 
5253 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5254 		err = ipw2100_hw_send_command(priv, &cmd);
5255 	if (!err)
5256 		priv->tx_power = tx_power;
5257 
5258 	return 0;
5259 }
5260 
ipw2100_set_ibss_beacon_interval(struct ipw2100_priv * priv,u32 interval,int batch_mode)5261 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5262 					    u32 interval, int batch_mode)
5263 {
5264 	struct host_command cmd = {
5265 		.host_command = BEACON_INTERVAL,
5266 		.host_command_sequence = 0,
5267 		.host_command_length = 4
5268 	};
5269 	int err;
5270 
5271 	cmd.host_command_parameters[0] = interval;
5272 
5273 	IPW_DEBUG_INFO("enter\n");
5274 
5275 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5276 		if (!batch_mode) {
5277 			err = ipw2100_disable_adapter(priv);
5278 			if (err)
5279 				return err;
5280 		}
5281 
5282 		ipw2100_hw_send_command(priv, &cmd);
5283 
5284 		if (!batch_mode) {
5285 			err = ipw2100_enable_adapter(priv);
5286 			if (err)
5287 				return err;
5288 		}
5289 	}
5290 
5291 	IPW_DEBUG_INFO("exit\n");
5292 
5293 	return 0;
5294 }
5295 
ipw2100_queues_initialize(struct ipw2100_priv * priv)5296 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5297 {
5298 	ipw2100_tx_initialize(priv);
5299 	ipw2100_rx_initialize(priv);
5300 	ipw2100_msg_initialize(priv);
5301 }
5302 
ipw2100_queues_free(struct ipw2100_priv * priv)5303 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5304 {
5305 	ipw2100_tx_free(priv);
5306 	ipw2100_rx_free(priv);
5307 	ipw2100_msg_free(priv);
5308 }
5309 
ipw2100_queues_allocate(struct ipw2100_priv * priv)5310 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5311 {
5312 	if (ipw2100_tx_allocate(priv) ||
5313 	    ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5314 		goto fail;
5315 
5316 	return 0;
5317 
5318       fail:
5319 	ipw2100_tx_free(priv);
5320 	ipw2100_rx_free(priv);
5321 	ipw2100_msg_free(priv);
5322 	return -ENOMEM;
5323 }
5324 
5325 #define IPW_PRIVACY_CAPABLE 0x0008
5326 
ipw2100_set_wep_flags(struct ipw2100_priv * priv,u32 flags,int batch_mode)5327 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5328 				 int batch_mode)
5329 {
5330 	struct host_command cmd = {
5331 		.host_command = WEP_FLAGS,
5332 		.host_command_sequence = 0,
5333 		.host_command_length = 4
5334 	};
5335 	int err;
5336 
5337 	cmd.host_command_parameters[0] = flags;
5338 
5339 	IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5340 
5341 	if (!batch_mode) {
5342 		err = ipw2100_disable_adapter(priv);
5343 		if (err) {
5344 			printk(KERN_ERR DRV_NAME
5345 			       ": %s: Could not disable adapter %d\n",
5346 			       priv->net_dev->name, err);
5347 			return err;
5348 		}
5349 	}
5350 
5351 	/* send cmd to firmware */
5352 	err = ipw2100_hw_send_command(priv, &cmd);
5353 
5354 	if (!batch_mode)
5355 		ipw2100_enable_adapter(priv);
5356 
5357 	return err;
5358 }
5359 
5360 struct ipw2100_wep_key {
5361 	u8 idx;
5362 	u8 len;
5363 	u8 key[13];
5364 };
5365 
5366 /* Macros to ease up priting WEP keys */
5367 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5368 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5369 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5370 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5371 
5372 /**
5373  * Set a the wep key
5374  *
5375  * @priv: struct to work on
5376  * @idx: index of the key we want to set
5377  * @key: ptr to the key data to set
5378  * @len: length of the buffer at @key
5379  * @batch_mode: FIXME perform the operation in batch mode, not
5380  *              disabling the device.
5381  *
5382  * @returns 0 if OK, < 0 errno code on error.
5383  *
5384  * Fill out a command structure with the new wep key, length an
5385  * index and send it down the wire.
5386  */
ipw2100_set_key(struct ipw2100_priv * priv,int idx,char * key,int len,int batch_mode)5387 static int ipw2100_set_key(struct ipw2100_priv *priv,
5388 			   int idx, char *key, int len, int batch_mode)
5389 {
5390 	int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5391 	struct host_command cmd = {
5392 		.host_command = WEP_KEY_INFO,
5393 		.host_command_sequence = 0,
5394 		.host_command_length = sizeof(struct ipw2100_wep_key),
5395 	};
5396 	struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5397 	int err;
5398 
5399 	IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5400 		     idx, keylen, len);
5401 
5402 	/* NOTE: We don't check cached values in case the firmware was reset
5403 	 * or some other problem is occurring.  If the user is setting the key,
5404 	 * then we push the change */
5405 
5406 	wep_key->idx = idx;
5407 	wep_key->len = keylen;
5408 
5409 	if (keylen) {
5410 		memcpy(wep_key->key, key, len);
5411 		memset(wep_key->key + len, 0, keylen - len);
5412 	}
5413 
5414 	/* Will be optimized out on debug not being configured in */
5415 	if (keylen == 0)
5416 		IPW_DEBUG_WEP("%s: Clearing key %d\n",
5417 			      priv->net_dev->name, wep_key->idx);
5418 	else if (keylen == 5)
5419 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5420 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5421 			      WEP_STR_64(wep_key->key));
5422 	else
5423 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5424 			      "\n",
5425 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5426 			      WEP_STR_128(wep_key->key));
5427 
5428 	if (!batch_mode) {
5429 		err = ipw2100_disable_adapter(priv);
5430 		/* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5431 		if (err) {
5432 			printk(KERN_ERR DRV_NAME
5433 			       ": %s: Could not disable adapter %d\n",
5434 			       priv->net_dev->name, err);
5435 			return err;
5436 		}
5437 	}
5438 
5439 	/* send cmd to firmware */
5440 	err = ipw2100_hw_send_command(priv, &cmd);
5441 
5442 	if (!batch_mode) {
5443 		int err2 = ipw2100_enable_adapter(priv);
5444 		if (err == 0)
5445 			err = err2;
5446 	}
5447 	return err;
5448 }
5449 
ipw2100_set_key_index(struct ipw2100_priv * priv,int idx,int batch_mode)5450 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5451 				 int idx, int batch_mode)
5452 {
5453 	struct host_command cmd = {
5454 		.host_command = WEP_KEY_INDEX,
5455 		.host_command_sequence = 0,
5456 		.host_command_length = 4,
5457 		.host_command_parameters = {idx},
5458 	};
5459 	int err;
5460 
5461 	IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5462 
5463 	if (idx < 0 || idx > 3)
5464 		return -EINVAL;
5465 
5466 	if (!batch_mode) {
5467 		err = ipw2100_disable_adapter(priv);
5468 		if (err) {
5469 			printk(KERN_ERR DRV_NAME
5470 			       ": %s: Could not disable adapter %d\n",
5471 			       priv->net_dev->name, err);
5472 			return err;
5473 		}
5474 	}
5475 
5476 	/* send cmd to firmware */
5477 	err = ipw2100_hw_send_command(priv, &cmd);
5478 
5479 	if (!batch_mode)
5480 		ipw2100_enable_adapter(priv);
5481 
5482 	return err;
5483 }
5484 
ipw2100_configure_security(struct ipw2100_priv * priv,int batch_mode)5485 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5486 {
5487 	int i, err, auth_mode, sec_level, use_group;
5488 
5489 	if (!(priv->status & STATUS_RUNNING))
5490 		return 0;
5491 
5492 	if (!batch_mode) {
5493 		err = ipw2100_disable_adapter(priv);
5494 		if (err)
5495 			return err;
5496 	}
5497 
5498 	if (!priv->ieee->sec.enabled) {
5499 		err =
5500 		    ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5501 						     SEC_LEVEL_0, 0, 1);
5502 	} else {
5503 		auth_mode = IPW_AUTH_OPEN;
5504 		if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5505 			if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5506 				auth_mode = IPW_AUTH_SHARED;
5507 			else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5508 				auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5509 		}
5510 
5511 		sec_level = SEC_LEVEL_0;
5512 		if (priv->ieee->sec.flags & SEC_LEVEL)
5513 			sec_level = priv->ieee->sec.level;
5514 
5515 		use_group = 0;
5516 		if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5517 			use_group = priv->ieee->sec.unicast_uses_group;
5518 
5519 		err =
5520 		    ipw2100_set_security_information(priv, auth_mode, sec_level,
5521 						     use_group, 1);
5522 	}
5523 
5524 	if (err)
5525 		goto exit;
5526 
5527 	if (priv->ieee->sec.enabled) {
5528 		for (i = 0; i < 4; i++) {
5529 			if (!(priv->ieee->sec.flags & (1 << i))) {
5530 				memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5531 				priv->ieee->sec.key_sizes[i] = 0;
5532 			} else {
5533 				err = ipw2100_set_key(priv, i,
5534 						      priv->ieee->sec.keys[i],
5535 						      priv->ieee->sec.
5536 						      key_sizes[i], 1);
5537 				if (err)
5538 					goto exit;
5539 			}
5540 		}
5541 
5542 		ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5543 	}
5544 
5545 	/* Always enable privacy so the Host can filter WEP packets if
5546 	 * encrypted data is sent up */
5547 	err =
5548 	    ipw2100_set_wep_flags(priv,
5549 				  priv->ieee->sec.
5550 				  enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5551 	if (err)
5552 		goto exit;
5553 
5554 	priv->status &= ~STATUS_SECURITY_UPDATED;
5555 
5556       exit:
5557 	if (!batch_mode)
5558 		ipw2100_enable_adapter(priv);
5559 
5560 	return err;
5561 }
5562 
ipw2100_security_work(struct work_struct * work)5563 static void ipw2100_security_work(struct work_struct *work)
5564 {
5565 	struct ipw2100_priv *priv =
5566 		container_of(work, struct ipw2100_priv, security_work.work);
5567 
5568 	/* If we happen to have reconnected before we get a chance to
5569 	 * process this, then update the security settings--which causes
5570 	 * a disassociation to occur */
5571 	if (!(priv->status & STATUS_ASSOCIATED) &&
5572 	    priv->status & STATUS_SECURITY_UPDATED)
5573 		ipw2100_configure_security(priv, 0);
5574 }
5575 
shim__set_security(struct net_device * dev,struct libipw_security * sec)5576 static void shim__set_security(struct net_device *dev,
5577 			       struct libipw_security *sec)
5578 {
5579 	struct ipw2100_priv *priv = libipw_priv(dev);
5580 	int i, force_update = 0;
5581 
5582 	mutex_lock(&priv->action_mutex);
5583 	if (!(priv->status & STATUS_INITIALIZED))
5584 		goto done;
5585 
5586 	for (i = 0; i < 4; i++) {
5587 		if (sec->flags & (1 << i)) {
5588 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5589 			if (sec->key_sizes[i] == 0)
5590 				priv->ieee->sec.flags &= ~(1 << i);
5591 			else
5592 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5593 				       sec->key_sizes[i]);
5594 			if (sec->level == SEC_LEVEL_1) {
5595 				priv->ieee->sec.flags |= (1 << i);
5596 				priv->status |= STATUS_SECURITY_UPDATED;
5597 			} else
5598 				priv->ieee->sec.flags &= ~(1 << i);
5599 		}
5600 	}
5601 
5602 	if ((sec->flags & SEC_ACTIVE_KEY) &&
5603 	    priv->ieee->sec.active_key != sec->active_key) {
5604 		if (sec->active_key <= 3) {
5605 			priv->ieee->sec.active_key = sec->active_key;
5606 			priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5607 		} else
5608 			priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5609 
5610 		priv->status |= STATUS_SECURITY_UPDATED;
5611 	}
5612 
5613 	if ((sec->flags & SEC_AUTH_MODE) &&
5614 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5615 		priv->ieee->sec.auth_mode = sec->auth_mode;
5616 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
5617 		priv->status |= STATUS_SECURITY_UPDATED;
5618 	}
5619 
5620 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5621 		priv->ieee->sec.flags |= SEC_ENABLED;
5622 		priv->ieee->sec.enabled = sec->enabled;
5623 		priv->status |= STATUS_SECURITY_UPDATED;
5624 		force_update = 1;
5625 	}
5626 
5627 	if (sec->flags & SEC_ENCRYPT)
5628 		priv->ieee->sec.encrypt = sec->encrypt;
5629 
5630 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5631 		priv->ieee->sec.level = sec->level;
5632 		priv->ieee->sec.flags |= SEC_LEVEL;
5633 		priv->status |= STATUS_SECURITY_UPDATED;
5634 	}
5635 
5636 	IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5637 		      priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5638 		      priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5639 		      priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5640 		      priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5641 		      priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5642 		      priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5643 		      priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5644 		      priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5645 		      priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5646 
5647 /* As a temporary work around to enable WPA until we figure out why
5648  * wpa_supplicant toggles the security capability of the driver, which
5649  * forces a disassocation with force_update...
5650  *
5651  *	if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5652 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5653 		ipw2100_configure_security(priv, 0);
5654       done:
5655 	mutex_unlock(&priv->action_mutex);
5656 }
5657 
ipw2100_adapter_setup(struct ipw2100_priv * priv)5658 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5659 {
5660 	int err;
5661 	int batch_mode = 1;
5662 	u8 *bssid;
5663 
5664 	IPW_DEBUG_INFO("enter\n");
5665 
5666 	err = ipw2100_disable_adapter(priv);
5667 	if (err)
5668 		return err;
5669 #ifdef CONFIG_IPW2100_MONITOR
5670 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5671 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5672 		if (err)
5673 			return err;
5674 
5675 		IPW_DEBUG_INFO("exit\n");
5676 
5677 		return 0;
5678 	}
5679 #endif				/* CONFIG_IPW2100_MONITOR */
5680 
5681 	err = ipw2100_read_mac_address(priv);
5682 	if (err)
5683 		return -EIO;
5684 
5685 	err = ipw2100_set_mac_address(priv, batch_mode);
5686 	if (err)
5687 		return err;
5688 
5689 	err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5690 	if (err)
5691 		return err;
5692 
5693 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5694 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5695 		if (err)
5696 			return err;
5697 	}
5698 
5699 	err = ipw2100_system_config(priv, batch_mode);
5700 	if (err)
5701 		return err;
5702 
5703 	err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5704 	if (err)
5705 		return err;
5706 
5707 	/* Default to power mode OFF */
5708 	err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5709 	if (err)
5710 		return err;
5711 
5712 	err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5713 	if (err)
5714 		return err;
5715 
5716 	if (priv->config & CFG_STATIC_BSSID)
5717 		bssid = priv->bssid;
5718 	else
5719 		bssid = NULL;
5720 	err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5721 	if (err)
5722 		return err;
5723 
5724 	if (priv->config & CFG_STATIC_ESSID)
5725 		err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5726 					batch_mode);
5727 	else
5728 		err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5729 	if (err)
5730 		return err;
5731 
5732 	err = ipw2100_configure_security(priv, batch_mode);
5733 	if (err)
5734 		return err;
5735 
5736 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5737 		err =
5738 		    ipw2100_set_ibss_beacon_interval(priv,
5739 						     priv->beacon_interval,
5740 						     batch_mode);
5741 		if (err)
5742 			return err;
5743 
5744 		err = ipw2100_set_tx_power(priv, priv->tx_power);
5745 		if (err)
5746 			return err;
5747 	}
5748 
5749 	/*
5750 	   err = ipw2100_set_fragmentation_threshold(
5751 	   priv, priv->frag_threshold, batch_mode);
5752 	   if (err)
5753 	   return err;
5754 	 */
5755 
5756 	IPW_DEBUG_INFO("exit\n");
5757 
5758 	return 0;
5759 }
5760 
5761 /*************************************************************************
5762  *
5763  * EXTERNALLY CALLED METHODS
5764  *
5765  *************************************************************************/
5766 
5767 /* This method is called by the network layer -- not to be confused with
5768  * ipw2100_set_mac_address() declared above called by this driver (and this
5769  * method as well) to talk to the firmware */
ipw2100_set_address(struct net_device * dev,void * p)5770 static int ipw2100_set_address(struct net_device *dev, void *p)
5771 {
5772 	struct ipw2100_priv *priv = libipw_priv(dev);
5773 	struct sockaddr *addr = p;
5774 	int err = 0;
5775 
5776 	if (!is_valid_ether_addr(addr->sa_data))
5777 		return -EADDRNOTAVAIL;
5778 
5779 	mutex_lock(&priv->action_mutex);
5780 
5781 	priv->config |= CFG_CUSTOM_MAC;
5782 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5783 
5784 	err = ipw2100_set_mac_address(priv, 0);
5785 	if (err)
5786 		goto done;
5787 
5788 	priv->reset_backoff = 0;
5789 	mutex_unlock(&priv->action_mutex);
5790 	ipw2100_reset_adapter(&priv->reset_work.work);
5791 	return 0;
5792 
5793       done:
5794 	mutex_unlock(&priv->action_mutex);
5795 	return err;
5796 }
5797 
ipw2100_open(struct net_device * dev)5798 static int ipw2100_open(struct net_device *dev)
5799 {
5800 	struct ipw2100_priv *priv = libipw_priv(dev);
5801 	unsigned long flags;
5802 	IPW_DEBUG_INFO("dev->open\n");
5803 
5804 	spin_lock_irqsave(&priv->low_lock, flags);
5805 	if (priv->status & STATUS_ASSOCIATED) {
5806 		netif_carrier_on(dev);
5807 		netif_start_queue(dev);
5808 	}
5809 	spin_unlock_irqrestore(&priv->low_lock, flags);
5810 
5811 	return 0;
5812 }
5813 
ipw2100_close(struct net_device * dev)5814 static int ipw2100_close(struct net_device *dev)
5815 {
5816 	struct ipw2100_priv *priv = libipw_priv(dev);
5817 	unsigned long flags;
5818 	struct list_head *element;
5819 	struct ipw2100_tx_packet *packet;
5820 
5821 	IPW_DEBUG_INFO("enter\n");
5822 
5823 	spin_lock_irqsave(&priv->low_lock, flags);
5824 
5825 	if (priv->status & STATUS_ASSOCIATED)
5826 		netif_carrier_off(dev);
5827 	netif_stop_queue(dev);
5828 
5829 	/* Flush the TX queue ... */
5830 	while (!list_empty(&priv->tx_pend_list)) {
5831 		element = priv->tx_pend_list.next;
5832 		packet = list_entry(element, struct ipw2100_tx_packet, list);
5833 
5834 		list_del(element);
5835 		DEC_STAT(&priv->tx_pend_stat);
5836 
5837 		libipw_txb_free(packet->info.d_struct.txb);
5838 		packet->info.d_struct.txb = NULL;
5839 
5840 		list_add_tail(element, &priv->tx_free_list);
5841 		INC_STAT(&priv->tx_free_stat);
5842 	}
5843 	spin_unlock_irqrestore(&priv->low_lock, flags);
5844 
5845 	IPW_DEBUG_INFO("exit\n");
5846 
5847 	return 0;
5848 }
5849 
5850 /*
5851  * TODO:  Fix this function... its just wrong
5852  */
ipw2100_tx_timeout(struct net_device * dev)5853 static void ipw2100_tx_timeout(struct net_device *dev)
5854 {
5855 	struct ipw2100_priv *priv = libipw_priv(dev);
5856 
5857 	dev->stats.tx_errors++;
5858 
5859 #ifdef CONFIG_IPW2100_MONITOR
5860 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5861 		return;
5862 #endif
5863 
5864 	IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5865 		       dev->name);
5866 	schedule_reset(priv);
5867 }
5868 
ipw2100_wpa_enable(struct ipw2100_priv * priv,int value)5869 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5870 {
5871 	/* This is called when wpa_supplicant loads and closes the driver
5872 	 * interface. */
5873 	priv->ieee->wpa_enabled = value;
5874 	return 0;
5875 }
5876 
ipw2100_wpa_set_auth_algs(struct ipw2100_priv * priv,int value)5877 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5878 {
5879 
5880 	struct libipw_device *ieee = priv->ieee;
5881 	struct libipw_security sec = {
5882 		.flags = SEC_AUTH_MODE,
5883 	};
5884 	int ret = 0;
5885 
5886 	if (value & IW_AUTH_ALG_SHARED_KEY) {
5887 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5888 		ieee->open_wep = 0;
5889 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5890 		sec.auth_mode = WLAN_AUTH_OPEN;
5891 		ieee->open_wep = 1;
5892 	} else if (value & IW_AUTH_ALG_LEAP) {
5893 		sec.auth_mode = WLAN_AUTH_LEAP;
5894 		ieee->open_wep = 1;
5895 	} else
5896 		return -EINVAL;
5897 
5898 	if (ieee->set_security)
5899 		ieee->set_security(ieee->dev, &sec);
5900 	else
5901 		ret = -EOPNOTSUPP;
5902 
5903 	return ret;
5904 }
5905 
ipw2100_wpa_assoc_frame(struct ipw2100_priv * priv,char * wpa_ie,int wpa_ie_len)5906 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5907 				    char *wpa_ie, int wpa_ie_len)
5908 {
5909 
5910 	struct ipw2100_wpa_assoc_frame frame;
5911 
5912 	frame.fixed_ie_mask = 0;
5913 
5914 	/* copy WPA IE */
5915 	memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5916 	frame.var_ie_len = wpa_ie_len;
5917 
5918 	/* make sure WPA is enabled */
5919 	ipw2100_wpa_enable(priv, 1);
5920 	ipw2100_set_wpa_ie(priv, &frame, 0);
5921 }
5922 
ipw_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)5923 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5924 				    struct ethtool_drvinfo *info)
5925 {
5926 	struct ipw2100_priv *priv = libipw_priv(dev);
5927 	char fw_ver[64], ucode_ver[64];
5928 
5929 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5930 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5931 
5932 	ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5933 	ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5934 
5935 	snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5936 		 fw_ver, priv->eeprom_version, ucode_ver);
5937 
5938 	strlcpy(info->bus_info, pci_name(priv->pci_dev),
5939 		sizeof(info->bus_info));
5940 }
5941 
ipw2100_ethtool_get_link(struct net_device * dev)5942 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5943 {
5944 	struct ipw2100_priv *priv = libipw_priv(dev);
5945 	return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5946 }
5947 
5948 static const struct ethtool_ops ipw2100_ethtool_ops = {
5949 	.get_link = ipw2100_ethtool_get_link,
5950 	.get_drvinfo = ipw_ethtool_get_drvinfo,
5951 };
5952 
ipw2100_hang_check(struct work_struct * work)5953 static void ipw2100_hang_check(struct work_struct *work)
5954 {
5955 	struct ipw2100_priv *priv =
5956 		container_of(work, struct ipw2100_priv, hang_check.work);
5957 	unsigned long flags;
5958 	u32 rtc = 0xa5a5a5a5;
5959 	u32 len = sizeof(rtc);
5960 	int restart = 0;
5961 
5962 	spin_lock_irqsave(&priv->low_lock, flags);
5963 
5964 	if (priv->fatal_error != 0) {
5965 		/* If fatal_error is set then we need to restart */
5966 		IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5967 			       priv->net_dev->name);
5968 
5969 		restart = 1;
5970 	} else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5971 		   (rtc == priv->last_rtc)) {
5972 		/* Check if firmware is hung */
5973 		IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5974 			       priv->net_dev->name);
5975 
5976 		restart = 1;
5977 	}
5978 
5979 	if (restart) {
5980 		/* Kill timer */
5981 		priv->stop_hang_check = 1;
5982 		priv->hangs++;
5983 
5984 		/* Restart the NIC */
5985 		schedule_reset(priv);
5986 	}
5987 
5988 	priv->last_rtc = rtc;
5989 
5990 	if (!priv->stop_hang_check)
5991 		schedule_delayed_work(&priv->hang_check, HZ / 2);
5992 
5993 	spin_unlock_irqrestore(&priv->low_lock, flags);
5994 }
5995 
ipw2100_rf_kill(struct work_struct * work)5996 static void ipw2100_rf_kill(struct work_struct *work)
5997 {
5998 	struct ipw2100_priv *priv =
5999 		container_of(work, struct ipw2100_priv, rf_kill.work);
6000 	unsigned long flags;
6001 
6002 	spin_lock_irqsave(&priv->low_lock, flags);
6003 
6004 	if (rf_kill_active(priv)) {
6005 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6006 		if (!priv->stop_rf_kill)
6007 			schedule_delayed_work(&priv->rf_kill,
6008 					      round_jiffies_relative(HZ));
6009 		goto exit_unlock;
6010 	}
6011 
6012 	/* RF Kill is now disabled, so bring the device back up */
6013 
6014 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6015 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6016 				  "device\n");
6017 		schedule_reset(priv);
6018 	} else
6019 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6020 				  "enabled\n");
6021 
6022       exit_unlock:
6023 	spin_unlock_irqrestore(&priv->low_lock, flags);
6024 }
6025 
6026 static void ipw2100_irq_tasklet(unsigned long data);
6027 
6028 static const struct net_device_ops ipw2100_netdev_ops = {
6029 	.ndo_open		= ipw2100_open,
6030 	.ndo_stop		= ipw2100_close,
6031 	.ndo_start_xmit		= libipw_xmit,
6032 	.ndo_change_mtu		= libipw_change_mtu,
6033 	.ndo_tx_timeout		= ipw2100_tx_timeout,
6034 	.ndo_set_mac_address	= ipw2100_set_address,
6035 	.ndo_validate_addr	= eth_validate_addr,
6036 };
6037 
6038 /* Look into using netdev destructor to shutdown libipw? */
6039 
ipw2100_alloc_device(struct pci_dev * pci_dev,void __iomem * ioaddr)6040 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6041 					       void __iomem * ioaddr)
6042 {
6043 	struct ipw2100_priv *priv;
6044 	struct net_device *dev;
6045 
6046 	dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6047 	if (!dev)
6048 		return NULL;
6049 	priv = libipw_priv(dev);
6050 	priv->ieee = netdev_priv(dev);
6051 	priv->pci_dev = pci_dev;
6052 	priv->net_dev = dev;
6053 	priv->ioaddr = ioaddr;
6054 
6055 	priv->ieee->hard_start_xmit = ipw2100_tx;
6056 	priv->ieee->set_security = shim__set_security;
6057 
6058 	priv->ieee->perfect_rssi = -20;
6059 	priv->ieee->worst_rssi = -85;
6060 
6061 	dev->netdev_ops = &ipw2100_netdev_ops;
6062 	dev->ethtool_ops = &ipw2100_ethtool_ops;
6063 	dev->wireless_handlers = &ipw2100_wx_handler_def;
6064 	priv->wireless_data.libipw = priv->ieee;
6065 	dev->wireless_data = &priv->wireless_data;
6066 	dev->watchdog_timeo = 3 * HZ;
6067 	dev->irq = 0;
6068 
6069 	/* NOTE: We don't use the wireless_handlers hook
6070 	 * in dev as the system will start throwing WX requests
6071 	 * to us before we're actually initialized and it just
6072 	 * ends up causing problems.  So, we just handle
6073 	 * the WX extensions through the ipw2100_ioctl interface */
6074 
6075 	/* memset() puts everything to 0, so we only have explicitly set
6076 	 * those values that need to be something else */
6077 
6078 	/* If power management is turned on, default to AUTO mode */
6079 	priv->power_mode = IPW_POWER_AUTO;
6080 
6081 #ifdef CONFIG_IPW2100_MONITOR
6082 	priv->config |= CFG_CRC_CHECK;
6083 #endif
6084 	priv->ieee->wpa_enabled = 0;
6085 	priv->ieee->drop_unencrypted = 0;
6086 	priv->ieee->privacy_invoked = 0;
6087 	priv->ieee->ieee802_1x = 1;
6088 
6089 	/* Set module parameters */
6090 	switch (network_mode) {
6091 	case 1:
6092 		priv->ieee->iw_mode = IW_MODE_ADHOC;
6093 		break;
6094 #ifdef CONFIG_IPW2100_MONITOR
6095 	case 2:
6096 		priv->ieee->iw_mode = IW_MODE_MONITOR;
6097 		break;
6098 #endif
6099 	default:
6100 	case 0:
6101 		priv->ieee->iw_mode = IW_MODE_INFRA;
6102 		break;
6103 	}
6104 
6105 	if (disable == 1)
6106 		priv->status |= STATUS_RF_KILL_SW;
6107 
6108 	if (channel != 0 &&
6109 	    ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6110 		priv->config |= CFG_STATIC_CHANNEL;
6111 		priv->channel = channel;
6112 	}
6113 
6114 	if (associate)
6115 		priv->config |= CFG_ASSOCIATE;
6116 
6117 	priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6118 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6119 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6120 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6121 	priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6122 	priv->tx_power = IPW_TX_POWER_DEFAULT;
6123 	priv->tx_rates = DEFAULT_TX_RATES;
6124 
6125 	strcpy(priv->nick, "ipw2100");
6126 
6127 	spin_lock_init(&priv->low_lock);
6128 	mutex_init(&priv->action_mutex);
6129 	mutex_init(&priv->adapter_mutex);
6130 
6131 	init_waitqueue_head(&priv->wait_command_queue);
6132 
6133 	netif_carrier_off(dev);
6134 
6135 	INIT_LIST_HEAD(&priv->msg_free_list);
6136 	INIT_LIST_HEAD(&priv->msg_pend_list);
6137 	INIT_STAT(&priv->msg_free_stat);
6138 	INIT_STAT(&priv->msg_pend_stat);
6139 
6140 	INIT_LIST_HEAD(&priv->tx_free_list);
6141 	INIT_LIST_HEAD(&priv->tx_pend_list);
6142 	INIT_STAT(&priv->tx_free_stat);
6143 	INIT_STAT(&priv->tx_pend_stat);
6144 
6145 	INIT_LIST_HEAD(&priv->fw_pend_list);
6146 	INIT_STAT(&priv->fw_pend_stat);
6147 
6148 	INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6149 	INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6150 	INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6151 	INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6152 	INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6153 	INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6154 
6155 	tasklet_init(&priv->irq_tasklet,
6156 		     ipw2100_irq_tasklet, (unsigned long)priv);
6157 
6158 	/* NOTE:  We do not start the deferred work for status checks yet */
6159 	priv->stop_rf_kill = 1;
6160 	priv->stop_hang_check = 1;
6161 
6162 	return dev;
6163 }
6164 
ipw2100_pci_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)6165 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6166 				const struct pci_device_id *ent)
6167 {
6168 	void __iomem *ioaddr;
6169 	struct net_device *dev = NULL;
6170 	struct ipw2100_priv *priv = NULL;
6171 	int err = 0;
6172 	int registered = 0;
6173 	u32 val;
6174 
6175 	IPW_DEBUG_INFO("enter\n");
6176 
6177 	if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6178 		IPW_DEBUG_INFO("weird - resource type is not memory\n");
6179 		err = -ENODEV;
6180 		goto out;
6181 	}
6182 
6183 	ioaddr = pci_iomap(pci_dev, 0, 0);
6184 	if (!ioaddr) {
6185 		printk(KERN_WARNING DRV_NAME
6186 		       "Error calling ioremap_nocache.\n");
6187 		err = -EIO;
6188 		goto fail;
6189 	}
6190 
6191 	/* allocate and initialize our net_device */
6192 	dev = ipw2100_alloc_device(pci_dev, ioaddr);
6193 	if (!dev) {
6194 		printk(KERN_WARNING DRV_NAME
6195 		       "Error calling ipw2100_alloc_device.\n");
6196 		err = -ENOMEM;
6197 		goto fail;
6198 	}
6199 
6200 	/* set up PCI mappings for device */
6201 	err = pci_enable_device(pci_dev);
6202 	if (err) {
6203 		printk(KERN_WARNING DRV_NAME
6204 		       "Error calling pci_enable_device.\n");
6205 		return err;
6206 	}
6207 
6208 	priv = libipw_priv(dev);
6209 
6210 	pci_set_master(pci_dev);
6211 	pci_set_drvdata(pci_dev, priv);
6212 
6213 	err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6214 	if (err) {
6215 		printk(KERN_WARNING DRV_NAME
6216 		       "Error calling pci_set_dma_mask.\n");
6217 		pci_disable_device(pci_dev);
6218 		return err;
6219 	}
6220 
6221 	err = pci_request_regions(pci_dev, DRV_NAME);
6222 	if (err) {
6223 		printk(KERN_WARNING DRV_NAME
6224 		       "Error calling pci_request_regions.\n");
6225 		pci_disable_device(pci_dev);
6226 		return err;
6227 	}
6228 
6229 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
6230 	 * PCI Tx retries from interfering with C3 CPU state */
6231 	pci_read_config_dword(pci_dev, 0x40, &val);
6232 	if ((val & 0x0000ff00) != 0)
6233 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6234 
6235 	if (!ipw2100_hw_is_adapter_in_system(dev)) {
6236 		printk(KERN_WARNING DRV_NAME
6237 		       "Device not found via register read.\n");
6238 		err = -ENODEV;
6239 		goto fail;
6240 	}
6241 
6242 	SET_NETDEV_DEV(dev, &pci_dev->dev);
6243 
6244 	/* Force interrupts to be shut off on the device */
6245 	priv->status |= STATUS_INT_ENABLED;
6246 	ipw2100_disable_interrupts(priv);
6247 
6248 	/* Allocate and initialize the Tx/Rx queues and lists */
6249 	if (ipw2100_queues_allocate(priv)) {
6250 		printk(KERN_WARNING DRV_NAME
6251 		       "Error calling ipw2100_queues_allocate.\n");
6252 		err = -ENOMEM;
6253 		goto fail;
6254 	}
6255 	ipw2100_queues_initialize(priv);
6256 
6257 	err = request_irq(pci_dev->irq,
6258 			  ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6259 	if (err) {
6260 		printk(KERN_WARNING DRV_NAME
6261 		       "Error calling request_irq: %d.\n", pci_dev->irq);
6262 		goto fail;
6263 	}
6264 	dev->irq = pci_dev->irq;
6265 
6266 	IPW_DEBUG_INFO("Attempting to register device...\n");
6267 
6268 	printk(KERN_INFO DRV_NAME
6269 	       ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6270 
6271 	err = ipw2100_up(priv, 1);
6272 	if (err)
6273 		goto fail;
6274 
6275 	err = ipw2100_wdev_init(dev);
6276 	if (err)
6277 		goto fail;
6278 	registered = 1;
6279 
6280 	/* Bring up the interface.  Pre 0.46, after we registered the
6281 	 * network device we would call ipw2100_up.  This introduced a race
6282 	 * condition with newer hotplug configurations (network was coming
6283 	 * up and making calls before the device was initialized).
6284 	 */
6285 	err = register_netdev(dev);
6286 	if (err) {
6287 		printk(KERN_WARNING DRV_NAME
6288 		       "Error calling register_netdev.\n");
6289 		goto fail;
6290 	}
6291 	registered = 2;
6292 
6293 	mutex_lock(&priv->action_mutex);
6294 
6295 	IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6296 
6297 	/* perform this after register_netdev so that dev->name is set */
6298 	err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6299 	if (err)
6300 		goto fail_unlock;
6301 
6302 	/* If the RF Kill switch is disabled, go ahead and complete the
6303 	 * startup sequence */
6304 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6305 		/* Enable the adapter - sends HOST_COMPLETE */
6306 		if (ipw2100_enable_adapter(priv)) {
6307 			printk(KERN_WARNING DRV_NAME
6308 			       ": %s: failed in call to enable adapter.\n",
6309 			       priv->net_dev->name);
6310 			ipw2100_hw_stop_adapter(priv);
6311 			err = -EIO;
6312 			goto fail_unlock;
6313 		}
6314 
6315 		/* Start a scan . . . */
6316 		ipw2100_set_scan_options(priv);
6317 		ipw2100_start_scan(priv);
6318 	}
6319 
6320 	IPW_DEBUG_INFO("exit\n");
6321 
6322 	priv->status |= STATUS_INITIALIZED;
6323 
6324 	mutex_unlock(&priv->action_mutex);
6325 out:
6326 	return err;
6327 
6328       fail_unlock:
6329 	mutex_unlock(&priv->action_mutex);
6330       fail:
6331 	if (dev) {
6332 		if (registered >= 2)
6333 			unregister_netdev(dev);
6334 
6335 		if (registered) {
6336 			wiphy_unregister(priv->ieee->wdev.wiphy);
6337 			kfree(priv->ieee->bg_band.channels);
6338 		}
6339 
6340 		ipw2100_hw_stop_adapter(priv);
6341 
6342 		ipw2100_disable_interrupts(priv);
6343 
6344 		if (dev->irq)
6345 			free_irq(dev->irq, priv);
6346 
6347 		ipw2100_kill_works(priv);
6348 
6349 		/* These are safe to call even if they weren't allocated */
6350 		ipw2100_queues_free(priv);
6351 		sysfs_remove_group(&pci_dev->dev.kobj,
6352 				   &ipw2100_attribute_group);
6353 
6354 		free_libipw(dev, 0);
6355 	}
6356 
6357 	pci_iounmap(pci_dev, ioaddr);
6358 
6359 	pci_release_regions(pci_dev);
6360 	pci_disable_device(pci_dev);
6361 	goto out;
6362 }
6363 
ipw2100_pci_remove_one(struct pci_dev * pci_dev)6364 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6365 {
6366 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6367 	struct net_device *dev = priv->net_dev;
6368 
6369 	mutex_lock(&priv->action_mutex);
6370 
6371 	priv->status &= ~STATUS_INITIALIZED;
6372 
6373 	sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6374 
6375 #ifdef CONFIG_PM
6376 	if (ipw2100_firmware.version)
6377 		ipw2100_release_firmware(priv, &ipw2100_firmware);
6378 #endif
6379 	/* Take down the hardware */
6380 	ipw2100_down(priv);
6381 
6382 	/* Release the mutex so that the network subsystem can
6383 	 * complete any needed calls into the driver... */
6384 	mutex_unlock(&priv->action_mutex);
6385 
6386 	/* Unregister the device first - this results in close()
6387 	 * being called if the device is open.  If we free storage
6388 	 * first, then close() will crash.
6389 	 * FIXME: remove the comment above. */
6390 	unregister_netdev(dev);
6391 
6392 	ipw2100_kill_works(priv);
6393 
6394 	ipw2100_queues_free(priv);
6395 
6396 	/* Free potential debugging firmware snapshot */
6397 	ipw2100_snapshot_free(priv);
6398 
6399 	free_irq(dev->irq, priv);
6400 
6401 	pci_iounmap(pci_dev, priv->ioaddr);
6402 
6403 	/* wiphy_unregister needs to be here, before free_libipw */
6404 	wiphy_unregister(priv->ieee->wdev.wiphy);
6405 	kfree(priv->ieee->bg_band.channels);
6406 	free_libipw(dev, 0);
6407 
6408 	pci_release_regions(pci_dev);
6409 	pci_disable_device(pci_dev);
6410 
6411 	IPW_DEBUG_INFO("exit\n");
6412 }
6413 
6414 #ifdef CONFIG_PM
ipw2100_suspend(struct pci_dev * pci_dev,pm_message_t state)6415 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6416 {
6417 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6418 	struct net_device *dev = priv->net_dev;
6419 
6420 	IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6421 
6422 	mutex_lock(&priv->action_mutex);
6423 	if (priv->status & STATUS_INITIALIZED) {
6424 		/* Take down the device; powers it off, etc. */
6425 		ipw2100_down(priv);
6426 	}
6427 
6428 	/* Remove the PRESENT state of the device */
6429 	netif_device_detach(dev);
6430 
6431 	pci_save_state(pci_dev);
6432 	pci_disable_device(pci_dev);
6433 	pci_set_power_state(pci_dev, PCI_D3hot);
6434 
6435 	priv->suspend_at = get_seconds();
6436 
6437 	mutex_unlock(&priv->action_mutex);
6438 
6439 	return 0;
6440 }
6441 
ipw2100_resume(struct pci_dev * pci_dev)6442 static int ipw2100_resume(struct pci_dev *pci_dev)
6443 {
6444 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6445 	struct net_device *dev = priv->net_dev;
6446 	int err;
6447 	u32 val;
6448 
6449 	if (IPW2100_PM_DISABLED)
6450 		return 0;
6451 
6452 	mutex_lock(&priv->action_mutex);
6453 
6454 	IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6455 
6456 	pci_set_power_state(pci_dev, PCI_D0);
6457 	err = pci_enable_device(pci_dev);
6458 	if (err) {
6459 		printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6460 		       dev->name);
6461 		mutex_unlock(&priv->action_mutex);
6462 		return err;
6463 	}
6464 	pci_restore_state(pci_dev);
6465 
6466 	/*
6467 	 * Suspend/Resume resets the PCI configuration space, so we have to
6468 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6469 	 * from interfering with C3 CPU state. pci_restore_state won't help
6470 	 * here since it only restores the first 64 bytes pci config header.
6471 	 */
6472 	pci_read_config_dword(pci_dev, 0x40, &val);
6473 	if ((val & 0x0000ff00) != 0)
6474 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6475 
6476 	/* Set the device back into the PRESENT state; this will also wake
6477 	 * the queue of needed */
6478 	netif_device_attach(dev);
6479 
6480 	priv->suspend_time = get_seconds() - priv->suspend_at;
6481 
6482 	/* Bring the device back up */
6483 	if (!(priv->status & STATUS_RF_KILL_SW))
6484 		ipw2100_up(priv, 0);
6485 
6486 	mutex_unlock(&priv->action_mutex);
6487 
6488 	return 0;
6489 }
6490 #endif
6491 
ipw2100_shutdown(struct pci_dev * pci_dev)6492 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6493 {
6494 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6495 
6496 	/* Take down the device; powers it off, etc. */
6497 	ipw2100_down(priv);
6498 
6499 	pci_disable_device(pci_dev);
6500 }
6501 
6502 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6503 
6504 static const struct pci_device_id ipw2100_pci_id_table[] = {
6505 	IPW2100_DEV_ID(0x2520),	/* IN 2100A mPCI 3A */
6506 	IPW2100_DEV_ID(0x2521),	/* IN 2100A mPCI 3B */
6507 	IPW2100_DEV_ID(0x2524),	/* IN 2100A mPCI 3B */
6508 	IPW2100_DEV_ID(0x2525),	/* IN 2100A mPCI 3B */
6509 	IPW2100_DEV_ID(0x2526),	/* IN 2100A mPCI Gen A3 */
6510 	IPW2100_DEV_ID(0x2522),	/* IN 2100 mPCI 3B */
6511 	IPW2100_DEV_ID(0x2523),	/* IN 2100 mPCI 3A */
6512 	IPW2100_DEV_ID(0x2527),	/* IN 2100 mPCI 3B */
6513 	IPW2100_DEV_ID(0x2528),	/* IN 2100 mPCI 3B */
6514 	IPW2100_DEV_ID(0x2529),	/* IN 2100 mPCI 3B */
6515 	IPW2100_DEV_ID(0x252B),	/* IN 2100 mPCI 3A */
6516 	IPW2100_DEV_ID(0x252C),	/* IN 2100 mPCI 3A */
6517 	IPW2100_DEV_ID(0x252D),	/* IN 2100 mPCI 3A */
6518 
6519 	IPW2100_DEV_ID(0x2550),	/* IB 2100A mPCI 3B */
6520 	IPW2100_DEV_ID(0x2551),	/* IB 2100 mPCI 3B */
6521 	IPW2100_DEV_ID(0x2553),	/* IB 2100 mPCI 3B */
6522 	IPW2100_DEV_ID(0x2554),	/* IB 2100 mPCI 3B */
6523 	IPW2100_DEV_ID(0x2555),	/* IB 2100 mPCI 3B */
6524 
6525 	IPW2100_DEV_ID(0x2560),	/* DE 2100A mPCI 3A */
6526 	IPW2100_DEV_ID(0x2562),	/* DE 2100A mPCI 3A */
6527 	IPW2100_DEV_ID(0x2563),	/* DE 2100A mPCI 3A */
6528 	IPW2100_DEV_ID(0x2561),	/* DE 2100 mPCI 3A */
6529 	IPW2100_DEV_ID(0x2565),	/* DE 2100 mPCI 3A */
6530 	IPW2100_DEV_ID(0x2566),	/* DE 2100 mPCI 3A */
6531 	IPW2100_DEV_ID(0x2567),	/* DE 2100 mPCI 3A */
6532 
6533 	IPW2100_DEV_ID(0x2570),	/* GA 2100 mPCI 3B */
6534 
6535 	IPW2100_DEV_ID(0x2580),	/* TO 2100A mPCI 3B */
6536 	IPW2100_DEV_ID(0x2582),	/* TO 2100A mPCI 3B */
6537 	IPW2100_DEV_ID(0x2583),	/* TO 2100A mPCI 3B */
6538 	IPW2100_DEV_ID(0x2581),	/* TO 2100 mPCI 3B */
6539 	IPW2100_DEV_ID(0x2585),	/* TO 2100 mPCI 3B */
6540 	IPW2100_DEV_ID(0x2586),	/* TO 2100 mPCI 3B */
6541 	IPW2100_DEV_ID(0x2587),	/* TO 2100 mPCI 3B */
6542 
6543 	IPW2100_DEV_ID(0x2590),	/* SO 2100A mPCI 3B */
6544 	IPW2100_DEV_ID(0x2592),	/* SO 2100A mPCI 3B */
6545 	IPW2100_DEV_ID(0x2591),	/* SO 2100 mPCI 3B */
6546 	IPW2100_DEV_ID(0x2593),	/* SO 2100 mPCI 3B */
6547 	IPW2100_DEV_ID(0x2596),	/* SO 2100 mPCI 3B */
6548 	IPW2100_DEV_ID(0x2598),	/* SO 2100 mPCI 3B */
6549 
6550 	IPW2100_DEV_ID(0x25A0),	/* HP 2100 mPCI 3B */
6551 	{0,},
6552 };
6553 
6554 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6555 
6556 static struct pci_driver ipw2100_pci_driver = {
6557 	.name = DRV_NAME,
6558 	.id_table = ipw2100_pci_id_table,
6559 	.probe = ipw2100_pci_init_one,
6560 	.remove = ipw2100_pci_remove_one,
6561 #ifdef CONFIG_PM
6562 	.suspend = ipw2100_suspend,
6563 	.resume = ipw2100_resume,
6564 #endif
6565 	.shutdown = ipw2100_shutdown,
6566 };
6567 
6568 /**
6569  * Initialize the ipw2100 driver/module
6570  *
6571  * @returns 0 if ok, < 0 errno node con error.
6572  *
6573  * Note: we cannot init the /proc stuff until the PCI driver is there,
6574  * or we risk an unlikely race condition on someone accessing
6575  * uninitialized data in the PCI dev struct through /proc.
6576  */
ipw2100_init(void)6577 static int __init ipw2100_init(void)
6578 {
6579 	int ret;
6580 
6581 	printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6582 	printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6583 
6584 	pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6585 			   PM_QOS_DEFAULT_VALUE);
6586 
6587 	ret = pci_register_driver(&ipw2100_pci_driver);
6588 	if (ret)
6589 		goto out;
6590 
6591 #ifdef CONFIG_IPW2100_DEBUG
6592 	ipw2100_debug_level = debug;
6593 	ret = driver_create_file(&ipw2100_pci_driver.driver,
6594 				 &driver_attr_debug_level);
6595 #endif
6596 
6597 out:
6598 	return ret;
6599 }
6600 
6601 /**
6602  * Cleanup ipw2100 driver registration
6603  */
ipw2100_exit(void)6604 static void __exit ipw2100_exit(void)
6605 {
6606 	/* FIXME: IPG: check that we have no instances of the devices open */
6607 #ifdef CONFIG_IPW2100_DEBUG
6608 	driver_remove_file(&ipw2100_pci_driver.driver,
6609 			   &driver_attr_debug_level);
6610 #endif
6611 	pci_unregister_driver(&ipw2100_pci_driver);
6612 	pm_qos_remove_request(&ipw2100_pm_qos_req);
6613 }
6614 
6615 module_init(ipw2100_init);
6616 module_exit(ipw2100_exit);
6617 
ipw2100_wx_get_name(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6618 static int ipw2100_wx_get_name(struct net_device *dev,
6619 			       struct iw_request_info *info,
6620 			       union iwreq_data *wrqu, char *extra)
6621 {
6622 	/*
6623 	 * This can be called at any time.  No action lock required
6624 	 */
6625 
6626 	struct ipw2100_priv *priv = libipw_priv(dev);
6627 	if (!(priv->status & STATUS_ASSOCIATED))
6628 		strcpy(wrqu->name, "unassociated");
6629 	else
6630 		snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6631 
6632 	IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6633 	return 0;
6634 }
6635 
ipw2100_wx_set_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6636 static int ipw2100_wx_set_freq(struct net_device *dev,
6637 			       struct iw_request_info *info,
6638 			       union iwreq_data *wrqu, char *extra)
6639 {
6640 	struct ipw2100_priv *priv = libipw_priv(dev);
6641 	struct iw_freq *fwrq = &wrqu->freq;
6642 	int err = 0;
6643 
6644 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
6645 		return -EOPNOTSUPP;
6646 
6647 	mutex_lock(&priv->action_mutex);
6648 	if (!(priv->status & STATUS_INITIALIZED)) {
6649 		err = -EIO;
6650 		goto done;
6651 	}
6652 
6653 	/* if setting by freq convert to channel */
6654 	if (fwrq->e == 1) {
6655 		if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6656 			int f = fwrq->m / 100000;
6657 			int c = 0;
6658 
6659 			while ((c < REG_MAX_CHANNEL) &&
6660 			       (f != ipw2100_frequencies[c]))
6661 				c++;
6662 
6663 			/* hack to fall through */
6664 			fwrq->e = 0;
6665 			fwrq->m = c + 1;
6666 		}
6667 	}
6668 
6669 	if (fwrq->e > 0 || fwrq->m > 1000) {
6670 		err = -EOPNOTSUPP;
6671 		goto done;
6672 	} else {		/* Set the channel */
6673 		IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6674 		err = ipw2100_set_channel(priv, fwrq->m, 0);
6675 	}
6676 
6677       done:
6678 	mutex_unlock(&priv->action_mutex);
6679 	return err;
6680 }
6681 
ipw2100_wx_get_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6682 static int ipw2100_wx_get_freq(struct net_device *dev,
6683 			       struct iw_request_info *info,
6684 			       union iwreq_data *wrqu, char *extra)
6685 {
6686 	/*
6687 	 * This can be called at any time.  No action lock required
6688 	 */
6689 
6690 	struct ipw2100_priv *priv = libipw_priv(dev);
6691 
6692 	wrqu->freq.e = 0;
6693 
6694 	/* If we are associated, trying to associate, or have a statically
6695 	 * configured CHANNEL then return that; otherwise return ANY */
6696 	if (priv->config & CFG_STATIC_CHANNEL ||
6697 	    priv->status & STATUS_ASSOCIATED)
6698 		wrqu->freq.m = priv->channel;
6699 	else
6700 		wrqu->freq.m = 0;
6701 
6702 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6703 	return 0;
6704 
6705 }
6706 
ipw2100_wx_set_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6707 static int ipw2100_wx_set_mode(struct net_device *dev,
6708 			       struct iw_request_info *info,
6709 			       union iwreq_data *wrqu, char *extra)
6710 {
6711 	struct ipw2100_priv *priv = libipw_priv(dev);
6712 	int err = 0;
6713 
6714 	IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6715 
6716 	if (wrqu->mode == priv->ieee->iw_mode)
6717 		return 0;
6718 
6719 	mutex_lock(&priv->action_mutex);
6720 	if (!(priv->status & STATUS_INITIALIZED)) {
6721 		err = -EIO;
6722 		goto done;
6723 	}
6724 
6725 	switch (wrqu->mode) {
6726 #ifdef CONFIG_IPW2100_MONITOR
6727 	case IW_MODE_MONITOR:
6728 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6729 		break;
6730 #endif				/* CONFIG_IPW2100_MONITOR */
6731 	case IW_MODE_ADHOC:
6732 		err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6733 		break;
6734 	case IW_MODE_INFRA:
6735 	case IW_MODE_AUTO:
6736 	default:
6737 		err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6738 		break;
6739 	}
6740 
6741       done:
6742 	mutex_unlock(&priv->action_mutex);
6743 	return err;
6744 }
6745 
ipw2100_wx_get_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6746 static int ipw2100_wx_get_mode(struct net_device *dev,
6747 			       struct iw_request_info *info,
6748 			       union iwreq_data *wrqu, char *extra)
6749 {
6750 	/*
6751 	 * This can be called at any time.  No action lock required
6752 	 */
6753 
6754 	struct ipw2100_priv *priv = libipw_priv(dev);
6755 
6756 	wrqu->mode = priv->ieee->iw_mode;
6757 	IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6758 
6759 	return 0;
6760 }
6761 
6762 #define POWER_MODES 5
6763 
6764 /* Values are in microsecond */
6765 static const s32 timeout_duration[POWER_MODES] = {
6766 	350000,
6767 	250000,
6768 	75000,
6769 	37000,
6770 	25000,
6771 };
6772 
6773 static const s32 period_duration[POWER_MODES] = {
6774 	400000,
6775 	700000,
6776 	1000000,
6777 	1000000,
6778 	1000000
6779 };
6780 
ipw2100_wx_get_range(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6781 static int ipw2100_wx_get_range(struct net_device *dev,
6782 				struct iw_request_info *info,
6783 				union iwreq_data *wrqu, char *extra)
6784 {
6785 	/*
6786 	 * This can be called at any time.  No action lock required
6787 	 */
6788 
6789 	struct ipw2100_priv *priv = libipw_priv(dev);
6790 	struct iw_range *range = (struct iw_range *)extra;
6791 	u16 val;
6792 	int i, level;
6793 
6794 	wrqu->data.length = sizeof(*range);
6795 	memset(range, 0, sizeof(*range));
6796 
6797 	/* Let's try to keep this struct in the same order as in
6798 	 * linux/include/wireless.h
6799 	 */
6800 
6801 	/* TODO: See what values we can set, and remove the ones we can't
6802 	 * set, or fill them with some default data.
6803 	 */
6804 
6805 	/* ~5 Mb/s real (802.11b) */
6806 	range->throughput = 5 * 1000 * 1000;
6807 
6808 //      range->sensitivity;     /* signal level threshold range */
6809 
6810 	range->max_qual.qual = 100;
6811 	/* TODO: Find real max RSSI and stick here */
6812 	range->max_qual.level = 0;
6813 	range->max_qual.noise = 0;
6814 	range->max_qual.updated = 7;	/* Updated all three */
6815 
6816 	range->avg_qual.qual = 70;	/* > 8% missed beacons is 'bad' */
6817 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6818 	range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6819 	range->avg_qual.noise = 0;
6820 	range->avg_qual.updated = 7;	/* Updated all three */
6821 
6822 	range->num_bitrates = RATE_COUNT;
6823 
6824 	for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6825 		range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6826 	}
6827 
6828 	range->min_rts = MIN_RTS_THRESHOLD;
6829 	range->max_rts = MAX_RTS_THRESHOLD;
6830 	range->min_frag = MIN_FRAG_THRESHOLD;
6831 	range->max_frag = MAX_FRAG_THRESHOLD;
6832 
6833 	range->min_pmp = period_duration[0];	/* Minimal PM period */
6834 	range->max_pmp = period_duration[POWER_MODES - 1];	/* Maximal PM period */
6835 	range->min_pmt = timeout_duration[POWER_MODES - 1];	/* Minimal PM timeout */
6836 	range->max_pmt = timeout_duration[0];	/* Maximal PM timeout */
6837 
6838 	/* How to decode max/min PM period */
6839 	range->pmp_flags = IW_POWER_PERIOD;
6840 	/* How to decode max/min PM period */
6841 	range->pmt_flags = IW_POWER_TIMEOUT;
6842 	/* What PM options are supported */
6843 	range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6844 
6845 	range->encoding_size[0] = 5;
6846 	range->encoding_size[1] = 13;	/* Different token sizes */
6847 	range->num_encoding_sizes = 2;	/* Number of entry in the list */
6848 	range->max_encoding_tokens = WEP_KEYS;	/* Max number of tokens */
6849 //      range->encoding_login_index;            /* token index for login token */
6850 
6851 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6852 		range->txpower_capa = IW_TXPOW_DBM;
6853 		range->num_txpower = IW_MAX_TXPOWER;
6854 		for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6855 		     i < IW_MAX_TXPOWER;
6856 		     i++, level -=
6857 		     ((IPW_TX_POWER_MAX_DBM -
6858 		       IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6859 			range->txpower[i] = level / 16;
6860 	} else {
6861 		range->txpower_capa = 0;
6862 		range->num_txpower = 0;
6863 	}
6864 
6865 	/* Set the Wireless Extension versions */
6866 	range->we_version_compiled = WIRELESS_EXT;
6867 	range->we_version_source = 18;
6868 
6869 //      range->retry_capa;      /* What retry options are supported */
6870 //      range->retry_flags;     /* How to decode max/min retry limit */
6871 //      range->r_time_flags;    /* How to decode max/min retry life */
6872 //      range->min_retry;       /* Minimal number of retries */
6873 //      range->max_retry;       /* Maximal number of retries */
6874 //      range->min_r_time;      /* Minimal retry lifetime */
6875 //      range->max_r_time;      /* Maximal retry lifetime */
6876 
6877 	range->num_channels = FREQ_COUNT;
6878 
6879 	val = 0;
6880 	for (i = 0; i < FREQ_COUNT; i++) {
6881 		// TODO: Include only legal frequencies for some countries
6882 //              if (local->channel_mask & (1 << i)) {
6883 		range->freq[val].i = i + 1;
6884 		range->freq[val].m = ipw2100_frequencies[i] * 100000;
6885 		range->freq[val].e = 1;
6886 		val++;
6887 //              }
6888 		if (val == IW_MAX_FREQUENCIES)
6889 			break;
6890 	}
6891 	range->num_frequency = val;
6892 
6893 	/* Event capability (kernel + driver) */
6894 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6895 				IW_EVENT_CAPA_MASK(SIOCGIWAP));
6896 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
6897 
6898 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6899 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6900 
6901 	IPW_DEBUG_WX("GET Range\n");
6902 
6903 	return 0;
6904 }
6905 
ipw2100_wx_set_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6906 static int ipw2100_wx_set_wap(struct net_device *dev,
6907 			      struct iw_request_info *info,
6908 			      union iwreq_data *wrqu, char *extra)
6909 {
6910 	struct ipw2100_priv *priv = libipw_priv(dev);
6911 	int err = 0;
6912 
6913 	// sanity checks
6914 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6915 		return -EINVAL;
6916 
6917 	mutex_lock(&priv->action_mutex);
6918 	if (!(priv->status & STATUS_INITIALIZED)) {
6919 		err = -EIO;
6920 		goto done;
6921 	}
6922 
6923 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6924 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6925 		/* we disable mandatory BSSID association */
6926 		IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6927 		priv->config &= ~CFG_STATIC_BSSID;
6928 		err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6929 		goto done;
6930 	}
6931 
6932 	priv->config |= CFG_STATIC_BSSID;
6933 	memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6934 
6935 	err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6936 
6937 	IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6938 
6939       done:
6940 	mutex_unlock(&priv->action_mutex);
6941 	return err;
6942 }
6943 
ipw2100_wx_get_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6944 static int ipw2100_wx_get_wap(struct net_device *dev,
6945 			      struct iw_request_info *info,
6946 			      union iwreq_data *wrqu, char *extra)
6947 {
6948 	/*
6949 	 * This can be called at any time.  No action lock required
6950 	 */
6951 
6952 	struct ipw2100_priv *priv = libipw_priv(dev);
6953 
6954 	/* If we are associated, trying to associate, or have a statically
6955 	 * configured BSSID then return that; otherwise return ANY */
6956 	if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6957 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6958 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6959 	} else
6960 		eth_zero_addr(wrqu->ap_addr.sa_data);
6961 
6962 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6963 	return 0;
6964 }
6965 
ipw2100_wx_set_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6966 static int ipw2100_wx_set_essid(struct net_device *dev,
6967 				struct iw_request_info *info,
6968 				union iwreq_data *wrqu, char *extra)
6969 {
6970 	struct ipw2100_priv *priv = libipw_priv(dev);
6971 	char *essid = "";	/* ANY */
6972 	int length = 0;
6973 	int err = 0;
6974 
6975 	mutex_lock(&priv->action_mutex);
6976 	if (!(priv->status & STATUS_INITIALIZED)) {
6977 		err = -EIO;
6978 		goto done;
6979 	}
6980 
6981 	if (wrqu->essid.flags && wrqu->essid.length) {
6982 		length = wrqu->essid.length;
6983 		essid = extra;
6984 	}
6985 
6986 	if (length == 0) {
6987 		IPW_DEBUG_WX("Setting ESSID to ANY\n");
6988 		priv->config &= ~CFG_STATIC_ESSID;
6989 		err = ipw2100_set_essid(priv, NULL, 0, 0);
6990 		goto done;
6991 	}
6992 
6993 	length = min(length, IW_ESSID_MAX_SIZE);
6994 
6995 	priv->config |= CFG_STATIC_ESSID;
6996 
6997 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6998 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6999 		err = 0;
7000 		goto done;
7001 	}
7002 
7003 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7004 
7005 	priv->essid_len = length;
7006 	memcpy(priv->essid, essid, priv->essid_len);
7007 
7008 	err = ipw2100_set_essid(priv, essid, length, 0);
7009 
7010       done:
7011 	mutex_unlock(&priv->action_mutex);
7012 	return err;
7013 }
7014 
ipw2100_wx_get_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7015 static int ipw2100_wx_get_essid(struct net_device *dev,
7016 				struct iw_request_info *info,
7017 				union iwreq_data *wrqu, char *extra)
7018 {
7019 	/*
7020 	 * This can be called at any time.  No action lock required
7021 	 */
7022 
7023 	struct ipw2100_priv *priv = libipw_priv(dev);
7024 
7025 	/* If we are associated, trying to associate, or have a statically
7026 	 * configured ESSID then return that; otherwise return ANY */
7027 	if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7028 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7029 			     priv->essid_len, priv->essid);
7030 		memcpy(extra, priv->essid, priv->essid_len);
7031 		wrqu->essid.length = priv->essid_len;
7032 		wrqu->essid.flags = 1;	/* active */
7033 	} else {
7034 		IPW_DEBUG_WX("Getting essid: ANY\n");
7035 		wrqu->essid.length = 0;
7036 		wrqu->essid.flags = 0;	/* active */
7037 	}
7038 
7039 	return 0;
7040 }
7041 
ipw2100_wx_set_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7042 static int ipw2100_wx_set_nick(struct net_device *dev,
7043 			       struct iw_request_info *info,
7044 			       union iwreq_data *wrqu, char *extra)
7045 {
7046 	/*
7047 	 * This can be called at any time.  No action lock required
7048 	 */
7049 
7050 	struct ipw2100_priv *priv = libipw_priv(dev);
7051 
7052 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7053 		return -E2BIG;
7054 
7055 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7056 	memset(priv->nick, 0, sizeof(priv->nick));
7057 	memcpy(priv->nick, extra, wrqu->data.length);
7058 
7059 	IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7060 
7061 	return 0;
7062 }
7063 
ipw2100_wx_get_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7064 static int ipw2100_wx_get_nick(struct net_device *dev,
7065 			       struct iw_request_info *info,
7066 			       union iwreq_data *wrqu, char *extra)
7067 {
7068 	/*
7069 	 * This can be called at any time.  No action lock required
7070 	 */
7071 
7072 	struct ipw2100_priv *priv = libipw_priv(dev);
7073 
7074 	wrqu->data.length = strlen(priv->nick);
7075 	memcpy(extra, priv->nick, wrqu->data.length);
7076 	wrqu->data.flags = 1;	/* active */
7077 
7078 	IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7079 
7080 	return 0;
7081 }
7082 
ipw2100_wx_set_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7083 static int ipw2100_wx_set_rate(struct net_device *dev,
7084 			       struct iw_request_info *info,
7085 			       union iwreq_data *wrqu, char *extra)
7086 {
7087 	struct ipw2100_priv *priv = libipw_priv(dev);
7088 	u32 target_rate = wrqu->bitrate.value;
7089 	u32 rate;
7090 	int err = 0;
7091 
7092 	mutex_lock(&priv->action_mutex);
7093 	if (!(priv->status & STATUS_INITIALIZED)) {
7094 		err = -EIO;
7095 		goto done;
7096 	}
7097 
7098 	rate = 0;
7099 
7100 	if (target_rate == 1000000 ||
7101 	    (!wrqu->bitrate.fixed && target_rate > 1000000))
7102 		rate |= TX_RATE_1_MBIT;
7103 	if (target_rate == 2000000 ||
7104 	    (!wrqu->bitrate.fixed && target_rate > 2000000))
7105 		rate |= TX_RATE_2_MBIT;
7106 	if (target_rate == 5500000 ||
7107 	    (!wrqu->bitrate.fixed && target_rate > 5500000))
7108 		rate |= TX_RATE_5_5_MBIT;
7109 	if (target_rate == 11000000 ||
7110 	    (!wrqu->bitrate.fixed && target_rate > 11000000))
7111 		rate |= TX_RATE_11_MBIT;
7112 	if (rate == 0)
7113 		rate = DEFAULT_TX_RATES;
7114 
7115 	err = ipw2100_set_tx_rates(priv, rate, 0);
7116 
7117 	IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7118       done:
7119 	mutex_unlock(&priv->action_mutex);
7120 	return err;
7121 }
7122 
ipw2100_wx_get_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7123 static int ipw2100_wx_get_rate(struct net_device *dev,
7124 			       struct iw_request_info *info,
7125 			       union iwreq_data *wrqu, char *extra)
7126 {
7127 	struct ipw2100_priv *priv = libipw_priv(dev);
7128 	int val;
7129 	unsigned int len = sizeof(val);
7130 	int err = 0;
7131 
7132 	if (!(priv->status & STATUS_ENABLED) ||
7133 	    priv->status & STATUS_RF_KILL_MASK ||
7134 	    !(priv->status & STATUS_ASSOCIATED)) {
7135 		wrqu->bitrate.value = 0;
7136 		return 0;
7137 	}
7138 
7139 	mutex_lock(&priv->action_mutex);
7140 	if (!(priv->status & STATUS_INITIALIZED)) {
7141 		err = -EIO;
7142 		goto done;
7143 	}
7144 
7145 	err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7146 	if (err) {
7147 		IPW_DEBUG_WX("failed querying ordinals.\n");
7148 		goto done;
7149 	}
7150 
7151 	switch (val & TX_RATE_MASK) {
7152 	case TX_RATE_1_MBIT:
7153 		wrqu->bitrate.value = 1000000;
7154 		break;
7155 	case TX_RATE_2_MBIT:
7156 		wrqu->bitrate.value = 2000000;
7157 		break;
7158 	case TX_RATE_5_5_MBIT:
7159 		wrqu->bitrate.value = 5500000;
7160 		break;
7161 	case TX_RATE_11_MBIT:
7162 		wrqu->bitrate.value = 11000000;
7163 		break;
7164 	default:
7165 		wrqu->bitrate.value = 0;
7166 	}
7167 
7168 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7169 
7170       done:
7171 	mutex_unlock(&priv->action_mutex);
7172 	return err;
7173 }
7174 
ipw2100_wx_set_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7175 static int ipw2100_wx_set_rts(struct net_device *dev,
7176 			      struct iw_request_info *info,
7177 			      union iwreq_data *wrqu, char *extra)
7178 {
7179 	struct ipw2100_priv *priv = libipw_priv(dev);
7180 	int value, err;
7181 
7182 	/* Auto RTS not yet supported */
7183 	if (wrqu->rts.fixed == 0)
7184 		return -EINVAL;
7185 
7186 	mutex_lock(&priv->action_mutex);
7187 	if (!(priv->status & STATUS_INITIALIZED)) {
7188 		err = -EIO;
7189 		goto done;
7190 	}
7191 
7192 	if (wrqu->rts.disabled)
7193 		value = priv->rts_threshold | RTS_DISABLED;
7194 	else {
7195 		if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7196 			err = -EINVAL;
7197 			goto done;
7198 		}
7199 		value = wrqu->rts.value;
7200 	}
7201 
7202 	err = ipw2100_set_rts_threshold(priv, value);
7203 
7204 	IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7205       done:
7206 	mutex_unlock(&priv->action_mutex);
7207 	return err;
7208 }
7209 
ipw2100_wx_get_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7210 static int ipw2100_wx_get_rts(struct net_device *dev,
7211 			      struct iw_request_info *info,
7212 			      union iwreq_data *wrqu, char *extra)
7213 {
7214 	/*
7215 	 * This can be called at any time.  No action lock required
7216 	 */
7217 
7218 	struct ipw2100_priv *priv = libipw_priv(dev);
7219 
7220 	wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7221 	wrqu->rts.fixed = 1;	/* no auto select */
7222 
7223 	/* If RTS is set to the default value, then it is disabled */
7224 	wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7225 
7226 	IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7227 
7228 	return 0;
7229 }
7230 
ipw2100_wx_set_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7231 static int ipw2100_wx_set_txpow(struct net_device *dev,
7232 				struct iw_request_info *info,
7233 				union iwreq_data *wrqu, char *extra)
7234 {
7235 	struct ipw2100_priv *priv = libipw_priv(dev);
7236 	int err = 0, value;
7237 
7238 	if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7239 		return -EINPROGRESS;
7240 
7241 	if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7242 		return 0;
7243 
7244 	if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7245 		return -EINVAL;
7246 
7247 	if (wrqu->txpower.fixed == 0)
7248 		value = IPW_TX_POWER_DEFAULT;
7249 	else {
7250 		if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7251 		    wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7252 			return -EINVAL;
7253 
7254 		value = wrqu->txpower.value;
7255 	}
7256 
7257 	mutex_lock(&priv->action_mutex);
7258 	if (!(priv->status & STATUS_INITIALIZED)) {
7259 		err = -EIO;
7260 		goto done;
7261 	}
7262 
7263 	err = ipw2100_set_tx_power(priv, value);
7264 
7265 	IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7266 
7267       done:
7268 	mutex_unlock(&priv->action_mutex);
7269 	return err;
7270 }
7271 
ipw2100_wx_get_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7272 static int ipw2100_wx_get_txpow(struct net_device *dev,
7273 				struct iw_request_info *info,
7274 				union iwreq_data *wrqu, char *extra)
7275 {
7276 	/*
7277 	 * This can be called at any time.  No action lock required
7278 	 */
7279 
7280 	struct ipw2100_priv *priv = libipw_priv(dev);
7281 
7282 	wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7283 
7284 	if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7285 		wrqu->txpower.fixed = 0;
7286 		wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7287 	} else {
7288 		wrqu->txpower.fixed = 1;
7289 		wrqu->txpower.value = priv->tx_power;
7290 	}
7291 
7292 	wrqu->txpower.flags = IW_TXPOW_DBM;
7293 
7294 	IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7295 
7296 	return 0;
7297 }
7298 
ipw2100_wx_set_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7299 static int ipw2100_wx_set_frag(struct net_device *dev,
7300 			       struct iw_request_info *info,
7301 			       union iwreq_data *wrqu, char *extra)
7302 {
7303 	/*
7304 	 * This can be called at any time.  No action lock required
7305 	 */
7306 
7307 	struct ipw2100_priv *priv = libipw_priv(dev);
7308 
7309 	if (!wrqu->frag.fixed)
7310 		return -EINVAL;
7311 
7312 	if (wrqu->frag.disabled) {
7313 		priv->frag_threshold |= FRAG_DISABLED;
7314 		priv->ieee->fts = DEFAULT_FTS;
7315 	} else {
7316 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7317 		    wrqu->frag.value > MAX_FRAG_THRESHOLD)
7318 			return -EINVAL;
7319 
7320 		priv->ieee->fts = wrqu->frag.value & ~0x1;
7321 		priv->frag_threshold = priv->ieee->fts;
7322 	}
7323 
7324 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7325 
7326 	return 0;
7327 }
7328 
ipw2100_wx_get_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7329 static int ipw2100_wx_get_frag(struct net_device *dev,
7330 			       struct iw_request_info *info,
7331 			       union iwreq_data *wrqu, char *extra)
7332 {
7333 	/*
7334 	 * This can be called at any time.  No action lock required
7335 	 */
7336 
7337 	struct ipw2100_priv *priv = libipw_priv(dev);
7338 	wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7339 	wrqu->frag.fixed = 0;	/* no auto select */
7340 	wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7341 
7342 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7343 
7344 	return 0;
7345 }
7346 
ipw2100_wx_set_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7347 static int ipw2100_wx_set_retry(struct net_device *dev,
7348 				struct iw_request_info *info,
7349 				union iwreq_data *wrqu, char *extra)
7350 {
7351 	struct ipw2100_priv *priv = libipw_priv(dev);
7352 	int err = 0;
7353 
7354 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7355 		return -EINVAL;
7356 
7357 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7358 		return 0;
7359 
7360 	mutex_lock(&priv->action_mutex);
7361 	if (!(priv->status & STATUS_INITIALIZED)) {
7362 		err = -EIO;
7363 		goto done;
7364 	}
7365 
7366 	if (wrqu->retry.flags & IW_RETRY_SHORT) {
7367 		err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7368 		IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7369 			     wrqu->retry.value);
7370 		goto done;
7371 	}
7372 
7373 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7374 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7375 		IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7376 			     wrqu->retry.value);
7377 		goto done;
7378 	}
7379 
7380 	err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7381 	if (!err)
7382 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7383 
7384 	IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7385 
7386       done:
7387 	mutex_unlock(&priv->action_mutex);
7388 	return err;
7389 }
7390 
ipw2100_wx_get_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7391 static int ipw2100_wx_get_retry(struct net_device *dev,
7392 				struct iw_request_info *info,
7393 				union iwreq_data *wrqu, char *extra)
7394 {
7395 	/*
7396 	 * This can be called at any time.  No action lock required
7397 	 */
7398 
7399 	struct ipw2100_priv *priv = libipw_priv(dev);
7400 
7401 	wrqu->retry.disabled = 0;	/* can't be disabled */
7402 
7403 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7404 		return -EINVAL;
7405 
7406 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7407 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7408 		wrqu->retry.value = priv->long_retry_limit;
7409 	} else {
7410 		wrqu->retry.flags =
7411 		    (priv->short_retry_limit !=
7412 		     priv->long_retry_limit) ?
7413 		    IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7414 
7415 		wrqu->retry.value = priv->short_retry_limit;
7416 	}
7417 
7418 	IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7419 
7420 	return 0;
7421 }
7422 
ipw2100_wx_set_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7423 static int ipw2100_wx_set_scan(struct net_device *dev,
7424 			       struct iw_request_info *info,
7425 			       union iwreq_data *wrqu, char *extra)
7426 {
7427 	struct ipw2100_priv *priv = libipw_priv(dev);
7428 	int err = 0;
7429 
7430 	mutex_lock(&priv->action_mutex);
7431 	if (!(priv->status & STATUS_INITIALIZED)) {
7432 		err = -EIO;
7433 		goto done;
7434 	}
7435 
7436 	IPW_DEBUG_WX("Initiating scan...\n");
7437 
7438 	priv->user_requested_scan = 1;
7439 	if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7440 		IPW_DEBUG_WX("Start scan failed.\n");
7441 
7442 		/* TODO: Mark a scan as pending so when hardware initialized
7443 		 *       a scan starts */
7444 	}
7445 
7446       done:
7447 	mutex_unlock(&priv->action_mutex);
7448 	return err;
7449 }
7450 
ipw2100_wx_get_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7451 static int ipw2100_wx_get_scan(struct net_device *dev,
7452 			       struct iw_request_info *info,
7453 			       union iwreq_data *wrqu, char *extra)
7454 {
7455 	/*
7456 	 * This can be called at any time.  No action lock required
7457 	 */
7458 
7459 	struct ipw2100_priv *priv = libipw_priv(dev);
7460 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7461 }
7462 
7463 /*
7464  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7465  */
ipw2100_wx_set_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7466 static int ipw2100_wx_set_encode(struct net_device *dev,
7467 				 struct iw_request_info *info,
7468 				 union iwreq_data *wrqu, char *key)
7469 {
7470 	/*
7471 	 * No check of STATUS_INITIALIZED required
7472 	 */
7473 
7474 	struct ipw2100_priv *priv = libipw_priv(dev);
7475 	return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7476 }
7477 
ipw2100_wx_get_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7478 static int ipw2100_wx_get_encode(struct net_device *dev,
7479 				 struct iw_request_info *info,
7480 				 union iwreq_data *wrqu, char *key)
7481 {
7482 	/*
7483 	 * This can be called at any time.  No action lock required
7484 	 */
7485 
7486 	struct ipw2100_priv *priv = libipw_priv(dev);
7487 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7488 }
7489 
ipw2100_wx_set_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7490 static int ipw2100_wx_set_power(struct net_device *dev,
7491 				struct iw_request_info *info,
7492 				union iwreq_data *wrqu, char *extra)
7493 {
7494 	struct ipw2100_priv *priv = libipw_priv(dev);
7495 	int err = 0;
7496 
7497 	mutex_lock(&priv->action_mutex);
7498 	if (!(priv->status & STATUS_INITIALIZED)) {
7499 		err = -EIO;
7500 		goto done;
7501 	}
7502 
7503 	if (wrqu->power.disabled) {
7504 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7505 		err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7506 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7507 		goto done;
7508 	}
7509 
7510 	switch (wrqu->power.flags & IW_POWER_MODE) {
7511 	case IW_POWER_ON:	/* If not specified */
7512 	case IW_POWER_MODE:	/* If set all mask */
7513 	case IW_POWER_ALL_R:	/* If explicitly state all */
7514 		break;
7515 	default:		/* Otherwise we don't support it */
7516 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7517 			     wrqu->power.flags);
7518 		err = -EOPNOTSUPP;
7519 		goto done;
7520 	}
7521 
7522 	/* If the user hasn't specified a power management mode yet, default
7523 	 * to BATTERY */
7524 	priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7525 	err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7526 
7527 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7528 
7529       done:
7530 	mutex_unlock(&priv->action_mutex);
7531 	return err;
7532 
7533 }
7534 
ipw2100_wx_get_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7535 static int ipw2100_wx_get_power(struct net_device *dev,
7536 				struct iw_request_info *info,
7537 				union iwreq_data *wrqu, char *extra)
7538 {
7539 	/*
7540 	 * This can be called at any time.  No action lock required
7541 	 */
7542 
7543 	struct ipw2100_priv *priv = libipw_priv(dev);
7544 
7545 	if (!(priv->power_mode & IPW_POWER_ENABLED))
7546 		wrqu->power.disabled = 1;
7547 	else {
7548 		wrqu->power.disabled = 0;
7549 		wrqu->power.flags = 0;
7550 	}
7551 
7552 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7553 
7554 	return 0;
7555 }
7556 
7557 /*
7558  * WE-18 WPA support
7559  */
7560 
7561 /* SIOCSIWGENIE */
ipw2100_wx_set_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7562 static int ipw2100_wx_set_genie(struct net_device *dev,
7563 				struct iw_request_info *info,
7564 				union iwreq_data *wrqu, char *extra)
7565 {
7566 
7567 	struct ipw2100_priv *priv = libipw_priv(dev);
7568 	struct libipw_device *ieee = priv->ieee;
7569 	u8 *buf;
7570 
7571 	if (!ieee->wpa_enabled)
7572 		return -EOPNOTSUPP;
7573 
7574 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
7575 	    (wrqu->data.length && extra == NULL))
7576 		return -EINVAL;
7577 
7578 	if (wrqu->data.length) {
7579 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7580 		if (buf == NULL)
7581 			return -ENOMEM;
7582 
7583 		kfree(ieee->wpa_ie);
7584 		ieee->wpa_ie = buf;
7585 		ieee->wpa_ie_len = wrqu->data.length;
7586 	} else {
7587 		kfree(ieee->wpa_ie);
7588 		ieee->wpa_ie = NULL;
7589 		ieee->wpa_ie_len = 0;
7590 	}
7591 
7592 	ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7593 
7594 	return 0;
7595 }
7596 
7597 /* SIOCGIWGENIE */
ipw2100_wx_get_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7598 static int ipw2100_wx_get_genie(struct net_device *dev,
7599 				struct iw_request_info *info,
7600 				union iwreq_data *wrqu, char *extra)
7601 {
7602 	struct ipw2100_priv *priv = libipw_priv(dev);
7603 	struct libipw_device *ieee = priv->ieee;
7604 
7605 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7606 		wrqu->data.length = 0;
7607 		return 0;
7608 	}
7609 
7610 	if (wrqu->data.length < ieee->wpa_ie_len)
7611 		return -E2BIG;
7612 
7613 	wrqu->data.length = ieee->wpa_ie_len;
7614 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7615 
7616 	return 0;
7617 }
7618 
7619 /* SIOCSIWAUTH */
ipw2100_wx_set_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7620 static int ipw2100_wx_set_auth(struct net_device *dev,
7621 			       struct iw_request_info *info,
7622 			       union iwreq_data *wrqu, char *extra)
7623 {
7624 	struct ipw2100_priv *priv = libipw_priv(dev);
7625 	struct libipw_device *ieee = priv->ieee;
7626 	struct iw_param *param = &wrqu->param;
7627 	struct lib80211_crypt_data *crypt;
7628 	unsigned long flags;
7629 	int ret = 0;
7630 
7631 	switch (param->flags & IW_AUTH_INDEX) {
7632 	case IW_AUTH_WPA_VERSION:
7633 	case IW_AUTH_CIPHER_PAIRWISE:
7634 	case IW_AUTH_CIPHER_GROUP:
7635 	case IW_AUTH_KEY_MGMT:
7636 		/*
7637 		 * ipw2200 does not use these parameters
7638 		 */
7639 		break;
7640 
7641 	case IW_AUTH_TKIP_COUNTERMEASURES:
7642 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7643 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7644 			break;
7645 
7646 		flags = crypt->ops->get_flags(crypt->priv);
7647 
7648 		if (param->value)
7649 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7650 		else
7651 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7652 
7653 		crypt->ops->set_flags(flags, crypt->priv);
7654 
7655 		break;
7656 
7657 	case IW_AUTH_DROP_UNENCRYPTED:{
7658 			/* HACK:
7659 			 *
7660 			 * wpa_supplicant calls set_wpa_enabled when the driver
7661 			 * is loaded and unloaded, regardless of if WPA is being
7662 			 * used.  No other calls are made which can be used to
7663 			 * determine if encryption will be used or not prior to
7664 			 * association being expected.  If encryption is not being
7665 			 * used, drop_unencrypted is set to false, else true -- we
7666 			 * can use this to determine if the CAP_PRIVACY_ON bit should
7667 			 * be set.
7668 			 */
7669 			struct libipw_security sec = {
7670 				.flags = SEC_ENABLED,
7671 				.enabled = param->value,
7672 			};
7673 			priv->ieee->drop_unencrypted = param->value;
7674 			/* We only change SEC_LEVEL for open mode. Others
7675 			 * are set by ipw_wpa_set_encryption.
7676 			 */
7677 			if (!param->value) {
7678 				sec.flags |= SEC_LEVEL;
7679 				sec.level = SEC_LEVEL_0;
7680 			} else {
7681 				sec.flags |= SEC_LEVEL;
7682 				sec.level = SEC_LEVEL_1;
7683 			}
7684 			if (priv->ieee->set_security)
7685 				priv->ieee->set_security(priv->ieee->dev, &sec);
7686 			break;
7687 		}
7688 
7689 	case IW_AUTH_80211_AUTH_ALG:
7690 		ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7691 		break;
7692 
7693 	case IW_AUTH_WPA_ENABLED:
7694 		ret = ipw2100_wpa_enable(priv, param->value);
7695 		break;
7696 
7697 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7698 		ieee->ieee802_1x = param->value;
7699 		break;
7700 
7701 		//case IW_AUTH_ROAMING_CONTROL:
7702 	case IW_AUTH_PRIVACY_INVOKED:
7703 		ieee->privacy_invoked = param->value;
7704 		break;
7705 
7706 	default:
7707 		return -EOPNOTSUPP;
7708 	}
7709 	return ret;
7710 }
7711 
7712 /* SIOCGIWAUTH */
ipw2100_wx_get_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7713 static int ipw2100_wx_get_auth(struct net_device *dev,
7714 			       struct iw_request_info *info,
7715 			       union iwreq_data *wrqu, char *extra)
7716 {
7717 	struct ipw2100_priv *priv = libipw_priv(dev);
7718 	struct libipw_device *ieee = priv->ieee;
7719 	struct lib80211_crypt_data *crypt;
7720 	struct iw_param *param = &wrqu->param;
7721 	int ret = 0;
7722 
7723 	switch (param->flags & IW_AUTH_INDEX) {
7724 	case IW_AUTH_WPA_VERSION:
7725 	case IW_AUTH_CIPHER_PAIRWISE:
7726 	case IW_AUTH_CIPHER_GROUP:
7727 	case IW_AUTH_KEY_MGMT:
7728 		/*
7729 		 * wpa_supplicant will control these internally
7730 		 */
7731 		ret = -EOPNOTSUPP;
7732 		break;
7733 
7734 	case IW_AUTH_TKIP_COUNTERMEASURES:
7735 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7736 		if (!crypt || !crypt->ops->get_flags) {
7737 			IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7738 					  "crypt not set!\n");
7739 			break;
7740 		}
7741 
7742 		param->value = (crypt->ops->get_flags(crypt->priv) &
7743 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7744 
7745 		break;
7746 
7747 	case IW_AUTH_DROP_UNENCRYPTED:
7748 		param->value = ieee->drop_unencrypted;
7749 		break;
7750 
7751 	case IW_AUTH_80211_AUTH_ALG:
7752 		param->value = priv->ieee->sec.auth_mode;
7753 		break;
7754 
7755 	case IW_AUTH_WPA_ENABLED:
7756 		param->value = ieee->wpa_enabled;
7757 		break;
7758 
7759 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7760 		param->value = ieee->ieee802_1x;
7761 		break;
7762 
7763 	case IW_AUTH_ROAMING_CONTROL:
7764 	case IW_AUTH_PRIVACY_INVOKED:
7765 		param->value = ieee->privacy_invoked;
7766 		break;
7767 
7768 	default:
7769 		return -EOPNOTSUPP;
7770 	}
7771 	return 0;
7772 }
7773 
7774 /* SIOCSIWENCODEEXT */
ipw2100_wx_set_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7775 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7776 				    struct iw_request_info *info,
7777 				    union iwreq_data *wrqu, char *extra)
7778 {
7779 	struct ipw2100_priv *priv = libipw_priv(dev);
7780 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7781 }
7782 
7783 /* SIOCGIWENCODEEXT */
ipw2100_wx_get_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7784 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7785 				    struct iw_request_info *info,
7786 				    union iwreq_data *wrqu, char *extra)
7787 {
7788 	struct ipw2100_priv *priv = libipw_priv(dev);
7789 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7790 }
7791 
7792 /* SIOCSIWMLME */
ipw2100_wx_set_mlme(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7793 static int ipw2100_wx_set_mlme(struct net_device *dev,
7794 			       struct iw_request_info *info,
7795 			       union iwreq_data *wrqu, char *extra)
7796 {
7797 	struct ipw2100_priv *priv = libipw_priv(dev);
7798 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
7799 	__le16 reason;
7800 
7801 	reason = cpu_to_le16(mlme->reason_code);
7802 
7803 	switch (mlme->cmd) {
7804 	case IW_MLME_DEAUTH:
7805 		// silently ignore
7806 		break;
7807 
7808 	case IW_MLME_DISASSOC:
7809 		ipw2100_disassociate_bssid(priv);
7810 		break;
7811 
7812 	default:
7813 		return -EOPNOTSUPP;
7814 	}
7815 	return 0;
7816 }
7817 
7818 /*
7819  *
7820  * IWPRIV handlers
7821  *
7822  */
7823 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_promisc(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7824 static int ipw2100_wx_set_promisc(struct net_device *dev,
7825 				  struct iw_request_info *info,
7826 				  union iwreq_data *wrqu, char *extra)
7827 {
7828 	struct ipw2100_priv *priv = libipw_priv(dev);
7829 	int *parms = (int *)extra;
7830 	int enable = (parms[0] > 0);
7831 	int err = 0;
7832 
7833 	mutex_lock(&priv->action_mutex);
7834 	if (!(priv->status & STATUS_INITIALIZED)) {
7835 		err = -EIO;
7836 		goto done;
7837 	}
7838 
7839 	if (enable) {
7840 		if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7841 			err = ipw2100_set_channel(priv, parms[1], 0);
7842 			goto done;
7843 		}
7844 		priv->channel = parms[1];
7845 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7846 	} else {
7847 		if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7848 			err = ipw2100_switch_mode(priv, priv->last_mode);
7849 	}
7850       done:
7851 	mutex_unlock(&priv->action_mutex);
7852 	return err;
7853 }
7854 
ipw2100_wx_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7855 static int ipw2100_wx_reset(struct net_device *dev,
7856 			    struct iw_request_info *info,
7857 			    union iwreq_data *wrqu, char *extra)
7858 {
7859 	struct ipw2100_priv *priv = libipw_priv(dev);
7860 	if (priv->status & STATUS_INITIALIZED)
7861 		schedule_reset(priv);
7862 	return 0;
7863 }
7864 
7865 #endif
7866 
ipw2100_wx_set_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7867 static int ipw2100_wx_set_powermode(struct net_device *dev,
7868 				    struct iw_request_info *info,
7869 				    union iwreq_data *wrqu, char *extra)
7870 {
7871 	struct ipw2100_priv *priv = libipw_priv(dev);
7872 	int err = 0, mode = *(int *)extra;
7873 
7874 	mutex_lock(&priv->action_mutex);
7875 	if (!(priv->status & STATUS_INITIALIZED)) {
7876 		err = -EIO;
7877 		goto done;
7878 	}
7879 
7880 	if ((mode < 0) || (mode > POWER_MODES))
7881 		mode = IPW_POWER_AUTO;
7882 
7883 	if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7884 		err = ipw2100_set_power_mode(priv, mode);
7885       done:
7886 	mutex_unlock(&priv->action_mutex);
7887 	return err;
7888 }
7889 
7890 #define MAX_POWER_STRING 80
ipw2100_wx_get_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7891 static int ipw2100_wx_get_powermode(struct net_device *dev,
7892 				    struct iw_request_info *info,
7893 				    union iwreq_data *wrqu, char *extra)
7894 {
7895 	/*
7896 	 * This can be called at any time.  No action lock required
7897 	 */
7898 
7899 	struct ipw2100_priv *priv = libipw_priv(dev);
7900 	int level = IPW_POWER_LEVEL(priv->power_mode);
7901 	s32 timeout, period;
7902 
7903 	if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7904 		snprintf(extra, MAX_POWER_STRING,
7905 			 "Power save level: %d (Off)", level);
7906 	} else {
7907 		switch (level) {
7908 		case IPW_POWER_MODE_CAM:
7909 			snprintf(extra, MAX_POWER_STRING,
7910 				 "Power save level: %d (None)", level);
7911 			break;
7912 		case IPW_POWER_AUTO:
7913 			snprintf(extra, MAX_POWER_STRING,
7914 				 "Power save level: %d (Auto)", level);
7915 			break;
7916 		default:
7917 			timeout = timeout_duration[level - 1] / 1000;
7918 			period = period_duration[level - 1] / 1000;
7919 			snprintf(extra, MAX_POWER_STRING,
7920 				 "Power save level: %d "
7921 				 "(Timeout %dms, Period %dms)",
7922 				 level, timeout, period);
7923 		}
7924 	}
7925 
7926 	wrqu->data.length = strlen(extra) + 1;
7927 
7928 	return 0;
7929 }
7930 
ipw2100_wx_set_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7931 static int ipw2100_wx_set_preamble(struct net_device *dev,
7932 				   struct iw_request_info *info,
7933 				   union iwreq_data *wrqu, char *extra)
7934 {
7935 	struct ipw2100_priv *priv = libipw_priv(dev);
7936 	int err, mode = *(int *)extra;
7937 
7938 	mutex_lock(&priv->action_mutex);
7939 	if (!(priv->status & STATUS_INITIALIZED)) {
7940 		err = -EIO;
7941 		goto done;
7942 	}
7943 
7944 	if (mode == 1)
7945 		priv->config |= CFG_LONG_PREAMBLE;
7946 	else if (mode == 0)
7947 		priv->config &= ~CFG_LONG_PREAMBLE;
7948 	else {
7949 		err = -EINVAL;
7950 		goto done;
7951 	}
7952 
7953 	err = ipw2100_system_config(priv, 0);
7954 
7955       done:
7956 	mutex_unlock(&priv->action_mutex);
7957 	return err;
7958 }
7959 
ipw2100_wx_get_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7960 static int ipw2100_wx_get_preamble(struct net_device *dev,
7961 				   struct iw_request_info *info,
7962 				   union iwreq_data *wrqu, char *extra)
7963 {
7964 	/*
7965 	 * This can be called at any time.  No action lock required
7966 	 */
7967 
7968 	struct ipw2100_priv *priv = libipw_priv(dev);
7969 
7970 	if (priv->config & CFG_LONG_PREAMBLE)
7971 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7972 	else
7973 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7974 
7975 	return 0;
7976 }
7977 
7978 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7979 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7980 				    struct iw_request_info *info,
7981 				    union iwreq_data *wrqu, char *extra)
7982 {
7983 	struct ipw2100_priv *priv = libipw_priv(dev);
7984 	int err, mode = *(int *)extra;
7985 
7986 	mutex_lock(&priv->action_mutex);
7987 	if (!(priv->status & STATUS_INITIALIZED)) {
7988 		err = -EIO;
7989 		goto done;
7990 	}
7991 
7992 	if (mode == 1)
7993 		priv->config |= CFG_CRC_CHECK;
7994 	else if (mode == 0)
7995 		priv->config &= ~CFG_CRC_CHECK;
7996 	else {
7997 		err = -EINVAL;
7998 		goto done;
7999 	}
8000 	err = 0;
8001 
8002       done:
8003 	mutex_unlock(&priv->action_mutex);
8004 	return err;
8005 }
8006 
ipw2100_wx_get_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8007 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8008 				    struct iw_request_info *info,
8009 				    union iwreq_data *wrqu, char *extra)
8010 {
8011 	/*
8012 	 * This can be called at any time.  No action lock required
8013 	 */
8014 
8015 	struct ipw2100_priv *priv = libipw_priv(dev);
8016 
8017 	if (priv->config & CFG_CRC_CHECK)
8018 		snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8019 	else
8020 		snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8021 
8022 	return 0;
8023 }
8024 #endif				/* CONFIG_IPW2100_MONITOR */
8025 
8026 static iw_handler ipw2100_wx_handlers[] = {
8027 	IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8028 	IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8029 	IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8030 	IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8031 	IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8032 	IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8033 	IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8034 	IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8035 	IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8036 	IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8037 	IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8038 	IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8039 	IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8040 	IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8041 	IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8042 	IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8043 	IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8044 	IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8045 	IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8046 	IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8047 	IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8048 	IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8049 	IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8050 	IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8051 	IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8052 	IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8053 	IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8054 	IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8055 	IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8056 	IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8057 	IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8058 	IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8059 	IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8060 	IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8061 	IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8062 };
8063 
8064 #define IPW2100_PRIV_SET_MONITOR	SIOCIWFIRSTPRIV
8065 #define IPW2100_PRIV_RESET		SIOCIWFIRSTPRIV+1
8066 #define IPW2100_PRIV_SET_POWER		SIOCIWFIRSTPRIV+2
8067 #define IPW2100_PRIV_GET_POWER		SIOCIWFIRSTPRIV+3
8068 #define IPW2100_PRIV_SET_LONGPREAMBLE	SIOCIWFIRSTPRIV+4
8069 #define IPW2100_PRIV_GET_LONGPREAMBLE	SIOCIWFIRSTPRIV+5
8070 #define IPW2100_PRIV_SET_CRC_CHECK	SIOCIWFIRSTPRIV+6
8071 #define IPW2100_PRIV_GET_CRC_CHECK	SIOCIWFIRSTPRIV+7
8072 
8073 static const struct iw_priv_args ipw2100_private_args[] = {
8074 
8075 #ifdef CONFIG_IPW2100_MONITOR
8076 	{
8077 	 IPW2100_PRIV_SET_MONITOR,
8078 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8079 	{
8080 	 IPW2100_PRIV_RESET,
8081 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8082 #endif				/* CONFIG_IPW2100_MONITOR */
8083 
8084 	{
8085 	 IPW2100_PRIV_SET_POWER,
8086 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8087 	{
8088 	 IPW2100_PRIV_GET_POWER,
8089 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8090 	 "get_power"},
8091 	{
8092 	 IPW2100_PRIV_SET_LONGPREAMBLE,
8093 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8094 	{
8095 	 IPW2100_PRIV_GET_LONGPREAMBLE,
8096 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8097 #ifdef CONFIG_IPW2100_MONITOR
8098 	{
8099 	 IPW2100_PRIV_SET_CRC_CHECK,
8100 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8101 	{
8102 	 IPW2100_PRIV_GET_CRC_CHECK,
8103 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8104 #endif				/* CONFIG_IPW2100_MONITOR */
8105 };
8106 
8107 static iw_handler ipw2100_private_handler[] = {
8108 #ifdef CONFIG_IPW2100_MONITOR
8109 	ipw2100_wx_set_promisc,
8110 	ipw2100_wx_reset,
8111 #else				/* CONFIG_IPW2100_MONITOR */
8112 	NULL,
8113 	NULL,
8114 #endif				/* CONFIG_IPW2100_MONITOR */
8115 	ipw2100_wx_set_powermode,
8116 	ipw2100_wx_get_powermode,
8117 	ipw2100_wx_set_preamble,
8118 	ipw2100_wx_get_preamble,
8119 #ifdef CONFIG_IPW2100_MONITOR
8120 	ipw2100_wx_set_crc_check,
8121 	ipw2100_wx_get_crc_check,
8122 #else				/* CONFIG_IPW2100_MONITOR */
8123 	NULL,
8124 	NULL,
8125 #endif				/* CONFIG_IPW2100_MONITOR */
8126 };
8127 
8128 /*
8129  * Get wireless statistics.
8130  * Called by /proc/net/wireless
8131  * Also called by SIOCGIWSTATS
8132  */
ipw2100_wx_wireless_stats(struct net_device * dev)8133 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8134 {
8135 	enum {
8136 		POOR = 30,
8137 		FAIR = 60,
8138 		GOOD = 80,
8139 		VERY_GOOD = 90,
8140 		EXCELLENT = 95,
8141 		PERFECT = 100
8142 	};
8143 	int rssi_qual;
8144 	int tx_qual;
8145 	int beacon_qual;
8146 	int quality;
8147 
8148 	struct ipw2100_priv *priv = libipw_priv(dev);
8149 	struct iw_statistics *wstats;
8150 	u32 rssi, tx_retries, missed_beacons, tx_failures;
8151 	u32 ord_len = sizeof(u32);
8152 
8153 	if (!priv)
8154 		return (struct iw_statistics *)NULL;
8155 
8156 	wstats = &priv->wstats;
8157 
8158 	/* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8159 	 * ipw2100_wx_wireless_stats seems to be called before fw is
8160 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8161 	 * and associated; if not associcated, the values are all meaningless
8162 	 * anyway, so set them all to NULL and INVALID */
8163 	if (!(priv->status & STATUS_ASSOCIATED)) {
8164 		wstats->miss.beacon = 0;
8165 		wstats->discard.retries = 0;
8166 		wstats->qual.qual = 0;
8167 		wstats->qual.level = 0;
8168 		wstats->qual.noise = 0;
8169 		wstats->qual.updated = 7;
8170 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8171 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8172 		return wstats;
8173 	}
8174 
8175 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8176 				&missed_beacons, &ord_len))
8177 		goto fail_get_ordinal;
8178 
8179 	/* If we don't have a connection the quality and level is 0 */
8180 	if (!(priv->status & STATUS_ASSOCIATED)) {
8181 		wstats->qual.qual = 0;
8182 		wstats->qual.level = 0;
8183 	} else {
8184 		if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8185 					&rssi, &ord_len))
8186 			goto fail_get_ordinal;
8187 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8188 		if (rssi < 10)
8189 			rssi_qual = rssi * POOR / 10;
8190 		else if (rssi < 15)
8191 			rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8192 		else if (rssi < 20)
8193 			rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8194 		else if (rssi < 30)
8195 			rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8196 			    10 + GOOD;
8197 		else
8198 			rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8199 			    10 + VERY_GOOD;
8200 
8201 		if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8202 					&tx_retries, &ord_len))
8203 			goto fail_get_ordinal;
8204 
8205 		if (tx_retries > 75)
8206 			tx_qual = (90 - tx_retries) * POOR / 15;
8207 		else if (tx_retries > 70)
8208 			tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8209 		else if (tx_retries > 65)
8210 			tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8211 		else if (tx_retries > 50)
8212 			tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8213 			    15 + GOOD;
8214 		else
8215 			tx_qual = (50 - tx_retries) *
8216 			    (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8217 
8218 		if (missed_beacons > 50)
8219 			beacon_qual = (60 - missed_beacons) * POOR / 10;
8220 		else if (missed_beacons > 40)
8221 			beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8222 			    10 + POOR;
8223 		else if (missed_beacons > 32)
8224 			beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8225 			    18 + FAIR;
8226 		else if (missed_beacons > 20)
8227 			beacon_qual = (32 - missed_beacons) *
8228 			    (VERY_GOOD - GOOD) / 20 + GOOD;
8229 		else
8230 			beacon_qual = (20 - missed_beacons) *
8231 			    (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8232 
8233 		quality = min(tx_qual, rssi_qual);
8234 		quality = min(beacon_qual, quality);
8235 
8236 #ifdef CONFIG_IPW2100_DEBUG
8237 		if (beacon_qual == quality)
8238 			IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8239 		else if (tx_qual == quality)
8240 			IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8241 		else if (quality != 100)
8242 			IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8243 		else
8244 			IPW_DEBUG_WX("Quality not clamped.\n");
8245 #endif
8246 
8247 		wstats->qual.qual = quality;
8248 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8249 	}
8250 
8251 	wstats->qual.noise = 0;
8252 	wstats->qual.updated = 7;
8253 	wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8254 
8255 	/* FIXME: this is percent and not a # */
8256 	wstats->miss.beacon = missed_beacons;
8257 
8258 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8259 				&tx_failures, &ord_len))
8260 		goto fail_get_ordinal;
8261 	wstats->discard.retries = tx_failures;
8262 
8263 	return wstats;
8264 
8265       fail_get_ordinal:
8266 	IPW_DEBUG_WX("failed querying ordinals.\n");
8267 
8268 	return (struct iw_statistics *)NULL;
8269 }
8270 
8271 static struct iw_handler_def ipw2100_wx_handler_def = {
8272 	.standard = ipw2100_wx_handlers,
8273 	.num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8274 	.num_private = ARRAY_SIZE(ipw2100_private_handler),
8275 	.num_private_args = ARRAY_SIZE(ipw2100_private_args),
8276 	.private = (iw_handler *) ipw2100_private_handler,
8277 	.private_args = (struct iw_priv_args *)ipw2100_private_args,
8278 	.get_wireless_stats = ipw2100_wx_wireless_stats,
8279 };
8280 
ipw2100_wx_event_work(struct work_struct * work)8281 static void ipw2100_wx_event_work(struct work_struct *work)
8282 {
8283 	struct ipw2100_priv *priv =
8284 		container_of(work, struct ipw2100_priv, wx_event_work.work);
8285 	union iwreq_data wrqu;
8286 	unsigned int len = ETH_ALEN;
8287 
8288 	if (priv->status & STATUS_STOPPING)
8289 		return;
8290 
8291 	mutex_lock(&priv->action_mutex);
8292 
8293 	IPW_DEBUG_WX("enter\n");
8294 
8295 	mutex_unlock(&priv->action_mutex);
8296 
8297 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8298 
8299 	/* Fetch BSSID from the hardware */
8300 	if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8301 	    priv->status & STATUS_RF_KILL_MASK ||
8302 	    ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8303 				&priv->bssid, &len)) {
8304 		eth_zero_addr(wrqu.ap_addr.sa_data);
8305 	} else {
8306 		/* We now have the BSSID, so can finish setting to the full
8307 		 * associated state */
8308 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8309 		memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8310 		priv->status &= ~STATUS_ASSOCIATING;
8311 		priv->status |= STATUS_ASSOCIATED;
8312 		netif_carrier_on(priv->net_dev);
8313 		netif_wake_queue(priv->net_dev);
8314 	}
8315 
8316 	if (!(priv->status & STATUS_ASSOCIATED)) {
8317 		IPW_DEBUG_WX("Configuring ESSID\n");
8318 		mutex_lock(&priv->action_mutex);
8319 		/* This is a disassociation event, so kick the firmware to
8320 		 * look for another AP */
8321 		if (priv->config & CFG_STATIC_ESSID)
8322 			ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8323 					  0);
8324 		else
8325 			ipw2100_set_essid(priv, NULL, 0, 0);
8326 		mutex_unlock(&priv->action_mutex);
8327 	}
8328 
8329 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8330 }
8331 
8332 #define IPW2100_FW_MAJOR_VERSION 1
8333 #define IPW2100_FW_MINOR_VERSION 3
8334 
8335 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8336 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8337 
8338 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8339                              IPW2100_FW_MAJOR_VERSION)
8340 
8341 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8342 "." __stringify(IPW2100_FW_MINOR_VERSION)
8343 
8344 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8345 
8346 /*
8347 
8348 BINARY FIRMWARE HEADER FORMAT
8349 
8350 offset      length   desc
8351 0           2        version
8352 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8353 4           4        fw_len
8354 8           4        uc_len
8355 C           fw_len   firmware data
8356 12 + fw_len uc_len   microcode data
8357 
8358 */
8359 
8360 struct ipw2100_fw_header {
8361 	short version;
8362 	short mode;
8363 	unsigned int fw_size;
8364 	unsigned int uc_size;
8365 } __packed;
8366 
ipw2100_mod_firmware_load(struct ipw2100_fw * fw)8367 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8368 {
8369 	struct ipw2100_fw_header *h =
8370 	    (struct ipw2100_fw_header *)fw->fw_entry->data;
8371 
8372 	if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8373 		printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8374 		       "(detected version id of %u). "
8375 		       "See Documentation/networking/README.ipw2100\n",
8376 		       h->version);
8377 		return 1;
8378 	}
8379 
8380 	fw->version = h->version;
8381 	fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8382 	fw->fw.size = h->fw_size;
8383 	fw->uc.data = fw->fw.data + h->fw_size;
8384 	fw->uc.size = h->uc_size;
8385 
8386 	return 0;
8387 }
8388 
ipw2100_get_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8389 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8390 				struct ipw2100_fw *fw)
8391 {
8392 	char *fw_name;
8393 	int rc;
8394 
8395 	IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8396 		       priv->net_dev->name);
8397 
8398 	switch (priv->ieee->iw_mode) {
8399 	case IW_MODE_ADHOC:
8400 		fw_name = IPW2100_FW_NAME("-i");
8401 		break;
8402 #ifdef CONFIG_IPW2100_MONITOR
8403 	case IW_MODE_MONITOR:
8404 		fw_name = IPW2100_FW_NAME("-p");
8405 		break;
8406 #endif
8407 	case IW_MODE_INFRA:
8408 	default:
8409 		fw_name = IPW2100_FW_NAME("");
8410 		break;
8411 	}
8412 
8413 	rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8414 
8415 	if (rc < 0) {
8416 		printk(KERN_ERR DRV_NAME ": "
8417 		       "%s: Firmware '%s' not available or load failed.\n",
8418 		       priv->net_dev->name, fw_name);
8419 		return rc;
8420 	}
8421 	IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8422 		       fw->fw_entry->size);
8423 
8424 	ipw2100_mod_firmware_load(fw);
8425 
8426 	return 0;
8427 }
8428 
8429 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8430 #ifdef CONFIG_IPW2100_MONITOR
8431 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8432 #endif
8433 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8434 
ipw2100_release_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8435 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8436 				     struct ipw2100_fw *fw)
8437 {
8438 	fw->version = 0;
8439 	release_firmware(fw->fw_entry);
8440 	fw->fw_entry = NULL;
8441 }
8442 
ipw2100_get_fwversion(struct ipw2100_priv * priv,char * buf,size_t max)8443 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8444 				 size_t max)
8445 {
8446 	char ver[MAX_FW_VERSION_LEN];
8447 	u32 len = MAX_FW_VERSION_LEN;
8448 	u32 tmp;
8449 	int i;
8450 	/* firmware version is an ascii string (max len of 14) */
8451 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8452 		return -EIO;
8453 	tmp = max;
8454 	if (len >= max)
8455 		len = max - 1;
8456 	for (i = 0; i < len; i++)
8457 		buf[i] = ver[i];
8458 	buf[i] = '\0';
8459 	return tmp;
8460 }
8461 
ipw2100_get_ucodeversion(struct ipw2100_priv * priv,char * buf,size_t max)8462 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8463 				    size_t max)
8464 {
8465 	u32 ver;
8466 	u32 len = sizeof(ver);
8467 	/* microcode version is a 32 bit integer */
8468 	if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8469 		return -EIO;
8470 	return snprintf(buf, max, "%08X", ver);
8471 }
8472 
8473 /*
8474  * On exit, the firmware will have been freed from the fw list
8475  */
ipw2100_fw_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8476 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8477 {
8478 	/* firmware is constructed of N contiguous entries, each entry is
8479 	 * structured as:
8480 	 *
8481 	 * offset    sie         desc
8482 	 * 0         4           address to write to
8483 	 * 4         2           length of data run
8484 	 * 6         length      data
8485 	 */
8486 	unsigned int addr;
8487 	unsigned short len;
8488 
8489 	const unsigned char *firmware_data = fw->fw.data;
8490 	unsigned int firmware_data_left = fw->fw.size;
8491 
8492 	while (firmware_data_left > 0) {
8493 		addr = *(u32 *) (firmware_data);
8494 		firmware_data += 4;
8495 		firmware_data_left -= 4;
8496 
8497 		len = *(u16 *) (firmware_data);
8498 		firmware_data += 2;
8499 		firmware_data_left -= 2;
8500 
8501 		if (len > 32) {
8502 			printk(KERN_ERR DRV_NAME ": "
8503 			       "Invalid firmware run-length of %d bytes\n",
8504 			       len);
8505 			return -EINVAL;
8506 		}
8507 
8508 		write_nic_memory(priv->net_dev, addr, len, firmware_data);
8509 		firmware_data += len;
8510 		firmware_data_left -= len;
8511 	}
8512 
8513 	return 0;
8514 }
8515 
8516 struct symbol_alive_response {
8517 	u8 cmd_id;
8518 	u8 seq_num;
8519 	u8 ucode_rev;
8520 	u8 eeprom_valid;
8521 	u16 valid_flags;
8522 	u8 IEEE_addr[6];
8523 	u16 flags;
8524 	u16 pcb_rev;
8525 	u16 clock_settle_time;	// 1us LSB
8526 	u16 powerup_settle_time;	// 1us LSB
8527 	u16 hop_settle_time;	// 1us LSB
8528 	u8 date[3];		// month, day, year
8529 	u8 time[2];		// hours, minutes
8530 	u8 ucode_valid;
8531 };
8532 
ipw2100_ucode_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8533 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8534 				  struct ipw2100_fw *fw)
8535 {
8536 	struct net_device *dev = priv->net_dev;
8537 	const unsigned char *microcode_data = fw->uc.data;
8538 	unsigned int microcode_data_left = fw->uc.size;
8539 	void __iomem *reg = priv->ioaddr;
8540 
8541 	struct symbol_alive_response response;
8542 	int i, j;
8543 	u8 data;
8544 
8545 	/* Symbol control */
8546 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8547 	readl(reg);
8548 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8549 	readl(reg);
8550 
8551 	/* HW config */
8552 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8553 	readl(reg);
8554 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8555 	readl(reg);
8556 
8557 	/* EN_CS_ACCESS bit to reset control store pointer */
8558 	write_nic_byte(dev, 0x210000, 0x40);
8559 	readl(reg);
8560 	write_nic_byte(dev, 0x210000, 0x0);
8561 	readl(reg);
8562 	write_nic_byte(dev, 0x210000, 0x40);
8563 	readl(reg);
8564 
8565 	/* copy microcode from buffer into Symbol */
8566 
8567 	while (microcode_data_left > 0) {
8568 		write_nic_byte(dev, 0x210010, *microcode_data++);
8569 		write_nic_byte(dev, 0x210010, *microcode_data++);
8570 		microcode_data_left -= 2;
8571 	}
8572 
8573 	/* EN_CS_ACCESS bit to reset the control store pointer */
8574 	write_nic_byte(dev, 0x210000, 0x0);
8575 	readl(reg);
8576 
8577 	/* Enable System (Reg 0)
8578 	 * first enable causes garbage in RX FIFO */
8579 	write_nic_byte(dev, 0x210000, 0x0);
8580 	readl(reg);
8581 	write_nic_byte(dev, 0x210000, 0x80);
8582 	readl(reg);
8583 
8584 	/* Reset External Baseband Reg */
8585 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8586 	readl(reg);
8587 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8588 	readl(reg);
8589 
8590 	/* HW Config (Reg 5) */
8591 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8592 	readl(reg);
8593 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8594 	readl(reg);
8595 
8596 	/* Enable System (Reg 0)
8597 	 * second enable should be OK */
8598 	write_nic_byte(dev, 0x210000, 0x00);	// clear enable system
8599 	readl(reg);
8600 	write_nic_byte(dev, 0x210000, 0x80);	// set enable system
8601 
8602 	/* check Symbol is enabled - upped this from 5 as it wasn't always
8603 	 * catching the update */
8604 	for (i = 0; i < 10; i++) {
8605 		udelay(10);
8606 
8607 		/* check Dino is enabled bit */
8608 		read_nic_byte(dev, 0x210000, &data);
8609 		if (data & 0x1)
8610 			break;
8611 	}
8612 
8613 	if (i == 10) {
8614 		printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8615 		       dev->name);
8616 		return -EIO;
8617 	}
8618 
8619 	/* Get Symbol alive response */
8620 	for (i = 0; i < 30; i++) {
8621 		/* Read alive response structure */
8622 		for (j = 0;
8623 		     j < (sizeof(struct symbol_alive_response) >> 1); j++)
8624 			read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8625 
8626 		if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8627 			break;
8628 		udelay(10);
8629 	}
8630 
8631 	if (i == 30) {
8632 		printk(KERN_ERR DRV_NAME
8633 		       ": %s: No response from Symbol - hw not alive\n",
8634 		       dev->name);
8635 		printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8636 		return -EIO;
8637 	}
8638 
8639 	return 0;
8640 }
8641