1 /*
2 * Marvell Wireless LAN device driver: Channel, Frequence and Power
3 *
4 * Copyright (C) 2011-2014, Marvell International Ltd.
5 *
6 * This software file (the "File") is distributed by Marvell International
7 * Ltd. under the terms of the GNU General Public License Version 2, June 1991
8 * (the "License"). You may use, redistribute and/or modify this File in
9 * accordance with the terms and conditions of the License, a copy of which
10 * is available by writing to the Free Software Foundation, Inc.,
11 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the
12 * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
13 *
14 * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
16 * ARE EXPRESSLY DISCLAIMED. The License provides additional details about
17 * this warranty disclaimer.
18 */
19
20 #include "decl.h"
21 #include "ioctl.h"
22 #include "util.h"
23 #include "fw.h"
24 #include "main.h"
25 #include "cfg80211.h"
26
27 /* 100mW */
28 #define MWIFIEX_TX_PWR_DEFAULT 20
29 /* 100mW */
30 #define MWIFIEX_TX_PWR_US_DEFAULT 20
31 /* 50mW */
32 #define MWIFIEX_TX_PWR_JP_DEFAULT 16
33 /* 100mW */
34 #define MWIFIEX_TX_PWR_FR_100MW 20
35 /* 10mW */
36 #define MWIFIEX_TX_PWR_FR_10MW 10
37 /* 100mW */
38 #define MWIFIEX_TX_PWR_EMEA_DEFAULT 20
39
40 static u8 adhoc_rates_b[B_SUPPORTED_RATES] = { 0x82, 0x84, 0x8b, 0x96, 0 };
41
42 static u8 adhoc_rates_g[G_SUPPORTED_RATES] = { 0x8c, 0x12, 0x98, 0x24,
43 0xb0, 0x48, 0x60, 0x6c, 0 };
44
45 static u8 adhoc_rates_bg[BG_SUPPORTED_RATES] = { 0x82, 0x84, 0x8b, 0x96,
46 0x0c, 0x12, 0x18, 0x24,
47 0x30, 0x48, 0x60, 0x6c, 0 };
48
49 static u8 adhoc_rates_a[A_SUPPORTED_RATES] = { 0x8c, 0x12, 0x98, 0x24,
50 0xb0, 0x48, 0x60, 0x6c, 0 };
51 static u8 supported_rates_a[A_SUPPORTED_RATES] = { 0x0c, 0x12, 0x18, 0x24,
52 0xb0, 0x48, 0x60, 0x6c, 0 };
53 static u16 mwifiex_data_rates[MWIFIEX_SUPPORTED_RATES_EXT] = { 0x02, 0x04,
54 0x0B, 0x16, 0x00, 0x0C, 0x12, 0x18,
55 0x24, 0x30, 0x48, 0x60, 0x6C, 0x90,
56 0x0D, 0x1A, 0x27, 0x34, 0x4E, 0x68,
57 0x75, 0x82, 0x0C, 0x1B, 0x36, 0x51,
58 0x6C, 0xA2, 0xD8, 0xF3, 0x10E, 0x00 };
59
60 static u8 supported_rates_b[B_SUPPORTED_RATES] = { 0x02, 0x04, 0x0b, 0x16, 0 };
61
62 static u8 supported_rates_g[G_SUPPORTED_RATES] = { 0x0c, 0x12, 0x18, 0x24,
63 0x30, 0x48, 0x60, 0x6c, 0 };
64
65 static u8 supported_rates_bg[BG_SUPPORTED_RATES] = { 0x02, 0x04, 0x0b, 0x0c,
66 0x12, 0x16, 0x18, 0x24, 0x30, 0x48,
67 0x60, 0x6c, 0 };
68
69 u16 region_code_index[MWIFIEX_MAX_REGION_CODE] = { 0x10, 0x20, 0x30,
70 0x32, 0x40, 0x41, 0xff };
71
72 static u8 supported_rates_n[N_SUPPORTED_RATES] = { 0x02, 0x04, 0 };
73
74 /* For every mcs_rate line, the first 8 bytes are for stream 1x1,
75 * and all 16 bytes are for stream 2x2.
76 */
77 static const u16 mcs_rate[4][16] = {
78 /* LGI 40M */
79 { 0x1b, 0x36, 0x51, 0x6c, 0xa2, 0xd8, 0xf3, 0x10e,
80 0x36, 0x6c, 0xa2, 0xd8, 0x144, 0x1b0, 0x1e6, 0x21c },
81
82 /* SGI 40M */
83 { 0x1e, 0x3c, 0x5a, 0x78, 0xb4, 0xf0, 0x10e, 0x12c,
84 0x3c, 0x78, 0xb4, 0xf0, 0x168, 0x1e0, 0x21c, 0x258 },
85
86 /* LGI 20M */
87 { 0x0d, 0x1a, 0x27, 0x34, 0x4e, 0x68, 0x75, 0x82,
88 0x1a, 0x34, 0x4e, 0x68, 0x9c, 0xd0, 0xea, 0x104 },
89
90 /* SGI 20M */
91 { 0x0e, 0x1c, 0x2b, 0x39, 0x56, 0x73, 0x82, 0x90,
92 0x1c, 0x39, 0x56, 0x73, 0xad, 0xe7, 0x104, 0x120 }
93 };
94
95 /* AC rates */
96 static const u16 ac_mcs_rate_nss1[8][10] = {
97 /* LG 160M */
98 { 0x75, 0xEA, 0x15F, 0x1D4, 0x2BE, 0x3A8, 0x41D,
99 0x492, 0x57C, 0x618 },
100
101 /* SG 160M */
102 { 0x82, 0x104, 0x186, 0x208, 0x30C, 0x410, 0x492,
103 0x514, 0x618, 0x6C6 },
104
105 /* LG 80M */
106 { 0x3B, 0x75, 0xB0, 0xEA, 0x15F, 0x1D4, 0x20F,
107 0x249, 0x2BE, 0x30C },
108
109 /* SG 80M */
110 { 0x41, 0x82, 0xC3, 0x104, 0x186, 0x208, 0x249,
111 0x28A, 0x30C, 0x363 },
112
113 /* LG 40M */
114 { 0x1B, 0x36, 0x51, 0x6C, 0xA2, 0xD8, 0xF3,
115 0x10E, 0x144, 0x168 },
116
117 /* SG 40M */
118 { 0x1E, 0x3C, 0x5A, 0x78, 0xB4, 0xF0, 0x10E,
119 0x12C, 0x168, 0x190 },
120
121 /* LG 20M */
122 { 0xD, 0x1A, 0x27, 0x34, 0x4E, 0x68, 0x75, 0x82, 0x9C, 0x00 },
123
124 /* SG 20M */
125 { 0xF, 0x1D, 0x2C, 0x3A, 0x57, 0x74, 0x82, 0x91, 0xAE, 0x00 },
126 };
127
128 /* NSS2 note: the value in the table is 2 multiplier of the actual rate */
129 static const u16 ac_mcs_rate_nss2[8][10] = {
130 /* LG 160M */
131 { 0xEA, 0x1D4, 0x2BE, 0x3A8, 0x57C, 0x750, 0x83A,
132 0x924, 0xAF8, 0xC30 },
133
134 /* SG 160M */
135 { 0x104, 0x208, 0x30C, 0x410, 0x618, 0x820, 0x924,
136 0xA28, 0xC30, 0xD8B },
137
138 /* LG 80M */
139 { 0x75, 0xEA, 0x15F, 0x1D4, 0x2BE, 0x3A8, 0x41D,
140 0x492, 0x57C, 0x618 },
141
142 /* SG 80M */
143 { 0x82, 0x104, 0x186, 0x208, 0x30C, 0x410, 0x492,
144 0x514, 0x618, 0x6C6 },
145
146 /* LG 40M */
147 { 0x36, 0x6C, 0xA2, 0xD8, 0x144, 0x1B0, 0x1E6,
148 0x21C, 0x288, 0x2D0 },
149
150 /* SG 40M */
151 { 0x3C, 0x78, 0xB4, 0xF0, 0x168, 0x1E0, 0x21C,
152 0x258, 0x2D0, 0x320 },
153
154 /* LG 20M */
155 { 0x1A, 0x34, 0x4A, 0x68, 0x9C, 0xD0, 0xEA, 0x104,
156 0x138, 0x00 },
157
158 /* SG 20M */
159 { 0x1D, 0x3A, 0x57, 0x74, 0xAE, 0xE6, 0x104, 0x121,
160 0x15B, 0x00 },
161 };
162
163 struct region_code_mapping {
164 u8 code;
165 u8 region[IEEE80211_COUNTRY_STRING_LEN];
166 };
167
168 static struct region_code_mapping region_code_mapping_t[] = {
169 { 0x10, "US " }, /* US FCC */
170 { 0x20, "CA " }, /* IC Canada */
171 { 0x30, "EU " }, /* ETSI */
172 { 0x31, "ES " }, /* Spain */
173 { 0x32, "FR " }, /* France */
174 { 0x40, "JP " }, /* Japan */
175 { 0x41, "JP " }, /* Japan */
176 { 0x50, "CN " }, /* China */
177 };
178
179 /* This function converts integer code to region string */
mwifiex_11d_code_2_region(u8 code)180 u8 *mwifiex_11d_code_2_region(u8 code)
181 {
182 u8 i;
183 u8 size = sizeof(region_code_mapping_t)/
184 sizeof(struct region_code_mapping);
185
186 /* Look for code in mapping table */
187 for (i = 0; i < size; i++)
188 if (region_code_mapping_t[i].code == code)
189 return region_code_mapping_t[i].region;
190
191 return NULL;
192 }
193
194 /*
195 * This function maps an index in supported rates table into
196 * the corresponding data rate.
197 */
mwifiex_index_to_acs_data_rate(struct mwifiex_private * priv,u8 index,u8 ht_info)198 u32 mwifiex_index_to_acs_data_rate(struct mwifiex_private *priv,
199 u8 index, u8 ht_info)
200 {
201 u32 rate = 0;
202 u8 mcs_index = 0;
203 u8 bw = 0;
204 u8 gi = 0;
205
206 if ((ht_info & 0x3) == MWIFIEX_RATE_FORMAT_VHT) {
207 mcs_index = min(index & 0xF, 9);
208
209 /* 20M: bw=0, 40M: bw=1, 80M: bw=2, 160M: bw=3 */
210 bw = (ht_info & 0xC) >> 2;
211
212 /* LGI: gi =0, SGI: gi = 1 */
213 gi = (ht_info & 0x10) >> 4;
214
215 if ((index >> 4) == 1) /* NSS = 2 */
216 rate = ac_mcs_rate_nss2[2 * (3 - bw) + gi][mcs_index];
217 else /* NSS = 1 */
218 rate = ac_mcs_rate_nss1[2 * (3 - bw) + gi][mcs_index];
219 } else if ((ht_info & 0x3) == MWIFIEX_RATE_FORMAT_HT) {
220 /* 20M: bw=0, 40M: bw=1 */
221 bw = (ht_info & 0xC) >> 2;
222
223 /* LGI: gi =0, SGI: gi = 1 */
224 gi = (ht_info & 0x10) >> 4;
225
226 if (index == MWIFIEX_RATE_BITMAP_MCS0) {
227 if (gi == 1)
228 rate = 0x0D; /* MCS 32 SGI rate */
229 else
230 rate = 0x0C; /* MCS 32 LGI rate */
231 } else if (index < 16) {
232 if ((bw == 1) || (bw == 0))
233 rate = mcs_rate[2 * (1 - bw) + gi][index];
234 else
235 rate = mwifiex_data_rates[0];
236 } else {
237 rate = mwifiex_data_rates[0];
238 }
239 } else {
240 /* 11n non-HT rates */
241 if (index >= MWIFIEX_SUPPORTED_RATES_EXT)
242 index = 0;
243 rate = mwifiex_data_rates[index];
244 }
245
246 return rate;
247 }
248
249 /* This function maps an index in supported rates table into
250 * the corresponding data rate.
251 */
mwifiex_index_to_data_rate(struct mwifiex_private * priv,u8 index,u8 ht_info)252 u32 mwifiex_index_to_data_rate(struct mwifiex_private *priv,
253 u8 index, u8 ht_info)
254 {
255 u32 mcs_num_supp =
256 (priv->adapter->user_dev_mcs_support == HT_STREAM_2X2) ? 16 : 8;
257 u32 rate;
258
259 if (priv->adapter->is_hw_11ac_capable)
260 return mwifiex_index_to_acs_data_rate(priv, index, ht_info);
261
262 if (ht_info & BIT(0)) {
263 if (index == MWIFIEX_RATE_BITMAP_MCS0) {
264 if (ht_info & BIT(2))
265 rate = 0x0D; /* MCS 32 SGI rate */
266 else
267 rate = 0x0C; /* MCS 32 LGI rate */
268 } else if (index < mcs_num_supp) {
269 if (ht_info & BIT(1)) {
270 if (ht_info & BIT(2))
271 /* SGI, 40M */
272 rate = mcs_rate[1][index];
273 else
274 /* LGI, 40M */
275 rate = mcs_rate[0][index];
276 } else {
277 if (ht_info & BIT(2))
278 /* SGI, 20M */
279 rate = mcs_rate[3][index];
280 else
281 /* LGI, 20M */
282 rate = mcs_rate[2][index];
283 }
284 } else
285 rate = mwifiex_data_rates[0];
286 } else {
287 if (index >= MWIFIEX_SUPPORTED_RATES_EXT)
288 index = 0;
289 rate = mwifiex_data_rates[index];
290 }
291 return rate;
292 }
293
294 /*
295 * This function returns the current active data rates.
296 *
297 * The result may vary depending upon connection status.
298 */
mwifiex_get_active_data_rates(struct mwifiex_private * priv,u8 * rates)299 u32 mwifiex_get_active_data_rates(struct mwifiex_private *priv, u8 *rates)
300 {
301 if (!priv->media_connected)
302 return mwifiex_get_supported_rates(priv, rates);
303 else
304 return mwifiex_copy_rates(rates, 0,
305 priv->curr_bss_params.data_rates,
306 priv->curr_bss_params.num_of_rates);
307 }
308
309 /*
310 * This function locates the Channel-Frequency-Power triplet based upon
311 * band and channel/frequency parameters.
312 */
313 struct mwifiex_chan_freq_power *
mwifiex_get_cfp(struct mwifiex_private * priv,u8 band,u16 channel,u32 freq)314 mwifiex_get_cfp(struct mwifiex_private *priv, u8 band, u16 channel, u32 freq)
315 {
316 struct mwifiex_chan_freq_power *cfp = NULL;
317 struct ieee80211_supported_band *sband;
318 struct ieee80211_channel *ch = NULL;
319 int i;
320
321 if (!channel && !freq)
322 return cfp;
323
324 if (mwifiex_band_to_radio_type(band) == HostCmd_SCAN_RADIO_TYPE_BG)
325 sband = priv->wdev.wiphy->bands[IEEE80211_BAND_2GHZ];
326 else
327 sband = priv->wdev.wiphy->bands[IEEE80211_BAND_5GHZ];
328
329 if (!sband) {
330 mwifiex_dbg(priv->adapter, ERROR,
331 "%s: cannot find cfp by band %d\n",
332 __func__, band);
333 return cfp;
334 }
335
336 for (i = 0; i < sband->n_channels; i++) {
337 ch = &sband->channels[i];
338
339 if (ch->flags & IEEE80211_CHAN_DISABLED)
340 continue;
341
342 if (freq) {
343 if (ch->center_freq == freq)
344 break;
345 } else {
346 /* find by valid channel*/
347 if (ch->hw_value == channel ||
348 channel == FIRST_VALID_CHANNEL)
349 break;
350 }
351 }
352 if (i == sband->n_channels) {
353 mwifiex_dbg(priv->adapter, ERROR,
354 "%s: cannot find cfp by band %d\t"
355 "& channel=%d freq=%d\n",
356 __func__, band, channel, freq);
357 } else {
358 if (!ch)
359 return cfp;
360
361 priv->cfp.channel = ch->hw_value;
362 priv->cfp.freq = ch->center_freq;
363 priv->cfp.max_tx_power = ch->max_power;
364 cfp = &priv->cfp;
365 }
366
367 return cfp;
368 }
369
370 /*
371 * This function checks if the data rate is set to auto.
372 */
373 u8
mwifiex_is_rate_auto(struct mwifiex_private * priv)374 mwifiex_is_rate_auto(struct mwifiex_private *priv)
375 {
376 u32 i;
377 int rate_num = 0;
378
379 for (i = 0; i < ARRAY_SIZE(priv->bitmap_rates); i++)
380 if (priv->bitmap_rates[i])
381 rate_num++;
382
383 if (rate_num > 1)
384 return true;
385 else
386 return false;
387 }
388
389 /* This function gets the supported data rates from bitmask inside
390 * cfg80211_scan_request.
391 */
mwifiex_get_rates_from_cfg80211(struct mwifiex_private * priv,u8 * rates,u8 radio_type)392 u32 mwifiex_get_rates_from_cfg80211(struct mwifiex_private *priv,
393 u8 *rates, u8 radio_type)
394 {
395 struct wiphy *wiphy = priv->adapter->wiphy;
396 struct cfg80211_scan_request *request = priv->scan_request;
397 u32 num_rates, rate_mask;
398 struct ieee80211_supported_band *sband;
399 int i;
400
401 if (radio_type) {
402 sband = wiphy->bands[IEEE80211_BAND_5GHZ];
403 if (WARN_ON_ONCE(!sband))
404 return 0;
405 rate_mask = request->rates[IEEE80211_BAND_5GHZ];
406 } else {
407 sband = wiphy->bands[IEEE80211_BAND_2GHZ];
408 if (WARN_ON_ONCE(!sband))
409 return 0;
410 rate_mask = request->rates[IEEE80211_BAND_2GHZ];
411 }
412
413 num_rates = 0;
414 for (i = 0; i < sband->n_bitrates; i++) {
415 if ((BIT(i) & rate_mask) == 0)
416 continue; /* skip rate */
417 rates[num_rates++] = (u8)(sband->bitrates[i].bitrate / 5);
418 }
419
420 return num_rates;
421 }
422
423 /* This function gets the supported data rates. The function works in
424 * both Ad-Hoc and infra mode by printing the band and returning the
425 * data rates.
426 */
mwifiex_get_supported_rates(struct mwifiex_private * priv,u8 * rates)427 u32 mwifiex_get_supported_rates(struct mwifiex_private *priv, u8 *rates)
428 {
429 u32 k = 0;
430 struct mwifiex_adapter *adapter = priv->adapter;
431
432 if (priv->bss_mode == NL80211_IFTYPE_STATION ||
433 priv->bss_mode == NL80211_IFTYPE_P2P_CLIENT) {
434 switch (adapter->config_bands) {
435 case BAND_B:
436 mwifiex_dbg(adapter, INFO, "info: infra band=%d\t"
437 "supported_rates_b\n",
438 adapter->config_bands);
439 k = mwifiex_copy_rates(rates, k, supported_rates_b,
440 sizeof(supported_rates_b));
441 break;
442 case BAND_G:
443 case BAND_G | BAND_GN:
444 mwifiex_dbg(adapter, INFO, "info: infra band=%d\t"
445 "supported_rates_g\n",
446 adapter->config_bands);
447 k = mwifiex_copy_rates(rates, k, supported_rates_g,
448 sizeof(supported_rates_g));
449 break;
450 case BAND_B | BAND_G:
451 case BAND_A | BAND_B | BAND_G:
452 case BAND_A | BAND_B:
453 case BAND_A | BAND_B | BAND_G | BAND_GN | BAND_AN:
454 case BAND_A | BAND_B | BAND_G | BAND_GN | BAND_AN | BAND_AAC:
455 case BAND_B | BAND_G | BAND_GN:
456 mwifiex_dbg(adapter, INFO, "info: infra band=%d\t"
457 "supported_rates_bg\n",
458 adapter->config_bands);
459 k = mwifiex_copy_rates(rates, k, supported_rates_bg,
460 sizeof(supported_rates_bg));
461 break;
462 case BAND_A:
463 case BAND_A | BAND_G:
464 mwifiex_dbg(adapter, INFO, "info: infra band=%d\t"
465 "supported_rates_a\n",
466 adapter->config_bands);
467 k = mwifiex_copy_rates(rates, k, supported_rates_a,
468 sizeof(supported_rates_a));
469 break;
470 case BAND_AN:
471 case BAND_A | BAND_AN:
472 case BAND_A | BAND_AN | BAND_AAC:
473 case BAND_A | BAND_G | BAND_AN | BAND_GN:
474 case BAND_A | BAND_G | BAND_AN | BAND_GN | BAND_AAC:
475 mwifiex_dbg(adapter, INFO, "info: infra band=%d\t"
476 "supported_rates_a\n",
477 adapter->config_bands);
478 k = mwifiex_copy_rates(rates, k, supported_rates_a,
479 sizeof(supported_rates_a));
480 break;
481 case BAND_GN:
482 mwifiex_dbg(adapter, INFO, "info: infra band=%d\t"
483 "supported_rates_n\n",
484 adapter->config_bands);
485 k = mwifiex_copy_rates(rates, k, supported_rates_n,
486 sizeof(supported_rates_n));
487 break;
488 }
489 } else {
490 /* Ad-hoc mode */
491 switch (adapter->adhoc_start_band) {
492 case BAND_B:
493 mwifiex_dbg(adapter, INFO, "info: adhoc B\n");
494 k = mwifiex_copy_rates(rates, k, adhoc_rates_b,
495 sizeof(adhoc_rates_b));
496 break;
497 case BAND_G:
498 case BAND_G | BAND_GN:
499 mwifiex_dbg(adapter, INFO, "info: adhoc G only\n");
500 k = mwifiex_copy_rates(rates, k, adhoc_rates_g,
501 sizeof(adhoc_rates_g));
502 break;
503 case BAND_B | BAND_G:
504 case BAND_B | BAND_G | BAND_GN:
505 mwifiex_dbg(adapter, INFO, "info: adhoc BG\n");
506 k = mwifiex_copy_rates(rates, k, adhoc_rates_bg,
507 sizeof(adhoc_rates_bg));
508 break;
509 case BAND_A:
510 case BAND_A | BAND_AN:
511 mwifiex_dbg(adapter, INFO, "info: adhoc A\n");
512 k = mwifiex_copy_rates(rates, k, adhoc_rates_a,
513 sizeof(adhoc_rates_a));
514 break;
515 }
516 }
517
518 return k;
519 }
520
mwifiex_adjust_data_rate(struct mwifiex_private * priv,u8 rx_rate,u8 rate_info)521 u8 mwifiex_adjust_data_rate(struct mwifiex_private *priv,
522 u8 rx_rate, u8 rate_info)
523 {
524 u8 rate_index = 0;
525
526 /* HT40 */
527 if ((rate_info & BIT(0)) && (rate_info & BIT(1)))
528 rate_index = MWIFIEX_RATE_INDEX_MCS0 +
529 MWIFIEX_BW20_MCS_NUM + rx_rate;
530 else if (rate_info & BIT(0)) /* HT20 */
531 rate_index = MWIFIEX_RATE_INDEX_MCS0 + rx_rate;
532 else
533 rate_index = (rx_rate > MWIFIEX_RATE_INDEX_OFDM0) ?
534 rx_rate - 1 : rx_rate;
535
536 if (rate_index >= MWIFIEX_MAX_AC_RX_RATES)
537 rate_index = MWIFIEX_MAX_AC_RX_RATES - 1;
538
539 return rate_index;
540 }
541