1 /* Low-level parallel port routines for built-in port on SGI IP32
2 *
3 * Author: Arnaud Giersch <arnaud.giersch@free.fr>
4 *
5 * Based on parport_pc.c by
6 * Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
7 * Andrea Arcangeli, et al.
8 *
9 * Thanks to Ilya A. Volynets-Evenbakh for his help.
10 *
11 * Copyright (C) 2005, 2006 Arnaud Giersch.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 2 of the License, or (at your option)
16 * any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but WITHOUT
19 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
20 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
21 * more details.
22 *
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc., 59
25 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 */
27
28 /* Current status:
29 *
30 * Basic SPP and PS2 modes are supported.
31 * Support for parallel port IRQ is present.
32 * Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
33 * supported.
34 * SPP/ECP FIFO can be driven in PIO or DMA mode. PIO mode can work with
35 * or without interrupt support.
36 *
37 * Hardware ECP mode is not fully implemented (ecp_read_data and
38 * ecp_write_addr are actually missing).
39 *
40 * To do:
41 *
42 * Fully implement ECP mode.
43 * EPP and ECP mode need to be tested. I currently do not own any
44 * peripheral supporting these extended mode, and cannot test them.
45 * If DMA mode works well, decide if support for PIO FIFO modes should be
46 * dropped.
47 * Use the io{read,write} family functions when they become available in
48 * the linux-mips.org tree. Note: the MIPS specific functions readsb()
49 * and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
50 * respectively.
51 */
52
53 /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
54 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
55 * This chip supports SPP, bidirectional, EPP and ECP modes. It has a 16 byte
56 * FIFO buffer and supports DMA transfers.
57 *
58 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
59 *
60 * Theoretically, we could simply use the parport_pc module. It is however
61 * not so simple. The parport_pc code assumes that the parallel port
62 * registers are port-mapped. On the O2, they are memory-mapped.
63 * Furthermore, each register is replicated on 256 consecutive addresses (as
64 * it is for the built-in serial ports on the same chip).
65 */
66
67 /*--- Some configuration defines ---------------------------------------*/
68
69 /* DEBUG_PARPORT_IP32
70 * 0 disable debug
71 * 1 standard level: pr_debug1 is enabled
72 * 2 parport_ip32_dump_state is enabled
73 * >=3 verbose level: pr_debug is enabled
74 */
75 #if !defined(DEBUG_PARPORT_IP32)
76 # define DEBUG_PARPORT_IP32 0 /* 0 (disabled) for production */
77 #endif
78
79 /*----------------------------------------------------------------------*/
80
81 /* Setup DEBUG macros. This is done before any includes, just in case we
82 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
83 */
84 #if DEBUG_PARPORT_IP32 == 1
85 # warning DEBUG_PARPORT_IP32 == 1
86 #elif DEBUG_PARPORT_IP32 == 2
87 # warning DEBUG_PARPORT_IP32 == 2
88 #elif DEBUG_PARPORT_IP32 >= 3
89 # warning DEBUG_PARPORT_IP32 >= 3
90 # if !defined(DEBUG)
91 # define DEBUG /* enable pr_debug() in kernel.h */
92 # endif
93 #endif
94
95 #include <linux/completion.h>
96 #include <linux/delay.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/err.h>
99 #include <linux/init.h>
100 #include <linux/interrupt.h>
101 #include <linux/jiffies.h>
102 #include <linux/kernel.h>
103 #include <linux/module.h>
104 #include <linux/parport.h>
105 #include <linux/sched.h>
106 #include <linux/slab.h>
107 #include <linux/spinlock.h>
108 #include <linux/stddef.h>
109 #include <linux/types.h>
110 #include <asm/io.h>
111 #include <asm/ip32/ip32_ints.h>
112 #include <asm/ip32/mace.h>
113
114 /*--- Global variables -------------------------------------------------*/
115
116 /* Verbose probing on by default for debugging. */
117 #if DEBUG_PARPORT_IP32 >= 1
118 # define DEFAULT_VERBOSE_PROBING 1
119 #else
120 # define DEFAULT_VERBOSE_PROBING 0
121 #endif
122
123 /* Default prefix for printk */
124 #define PPIP32 "parport_ip32: "
125
126 /*
127 * These are the module parameters:
128 * @features: bit mask of features to enable/disable
129 * (all enabled by default)
130 * @verbose_probing: log chit-chat during initialization
131 */
132 #define PARPORT_IP32_ENABLE_IRQ (1U << 0)
133 #define PARPORT_IP32_ENABLE_DMA (1U << 1)
134 #define PARPORT_IP32_ENABLE_SPP (1U << 2)
135 #define PARPORT_IP32_ENABLE_EPP (1U << 3)
136 #define PARPORT_IP32_ENABLE_ECP (1U << 4)
137 static unsigned int features = ~0U;
138 static bool verbose_probing = DEFAULT_VERBOSE_PROBING;
139
140 /* We do not support more than one port. */
141 static struct parport *this_port = NULL;
142
143 /* Timing constants for FIFO modes. */
144 #define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */
145 #define FIFO_POLLING_INTERVAL 50 /* microseconds */
146
147 /*--- I/O register definitions -----------------------------------------*/
148
149 /**
150 * struct parport_ip32_regs - virtual addresses of parallel port registers
151 * @data: Data Register
152 * @dsr: Device Status Register
153 * @dcr: Device Control Register
154 * @eppAddr: EPP Address Register
155 * @eppData0: EPP Data Register 0
156 * @eppData1: EPP Data Register 1
157 * @eppData2: EPP Data Register 2
158 * @eppData3: EPP Data Register 3
159 * @ecpAFifo: ECP Address FIFO
160 * @fifo: General FIFO register. The same address is used for:
161 * - cFifo, the Parallel Port DATA FIFO
162 * - ecpDFifo, the ECP Data FIFO
163 * - tFifo, the ECP Test FIFO
164 * @cnfgA: Configuration Register A
165 * @cnfgB: Configuration Register B
166 * @ecr: Extended Control Register
167 */
168 struct parport_ip32_regs {
169 void __iomem *data;
170 void __iomem *dsr;
171 void __iomem *dcr;
172 void __iomem *eppAddr;
173 void __iomem *eppData0;
174 void __iomem *eppData1;
175 void __iomem *eppData2;
176 void __iomem *eppData3;
177 void __iomem *ecpAFifo;
178 void __iomem *fifo;
179 void __iomem *cnfgA;
180 void __iomem *cnfgB;
181 void __iomem *ecr;
182 };
183
184 /* Device Status Register */
185 #define DSR_nBUSY (1U << 7) /* PARPORT_STATUS_BUSY */
186 #define DSR_nACK (1U << 6) /* PARPORT_STATUS_ACK */
187 #define DSR_PERROR (1U << 5) /* PARPORT_STATUS_PAPEROUT */
188 #define DSR_SELECT (1U << 4) /* PARPORT_STATUS_SELECT */
189 #define DSR_nFAULT (1U << 3) /* PARPORT_STATUS_ERROR */
190 #define DSR_nPRINT (1U << 2) /* specific to TL16PIR552 */
191 /* #define DSR_reserved (1U << 1) */
192 #define DSR_TIMEOUT (1U << 0) /* EPP timeout */
193
194 /* Device Control Register */
195 /* #define DCR_reserved (1U << 7) | (1U << 6) */
196 #define DCR_DIR (1U << 5) /* direction */
197 #define DCR_IRQ (1U << 4) /* interrupt on nAck */
198 #define DCR_SELECT (1U << 3) /* PARPORT_CONTROL_SELECT */
199 #define DCR_nINIT (1U << 2) /* PARPORT_CONTROL_INIT */
200 #define DCR_AUTOFD (1U << 1) /* PARPORT_CONTROL_AUTOFD */
201 #define DCR_STROBE (1U << 0) /* PARPORT_CONTROL_STROBE */
202
203 /* ECP Configuration Register A */
204 #define CNFGA_IRQ (1U << 7)
205 #define CNFGA_ID_MASK ((1U << 6) | (1U << 5) | (1U << 4))
206 #define CNFGA_ID_SHIFT 4
207 #define CNFGA_ID_16 (00U << CNFGA_ID_SHIFT)
208 #define CNFGA_ID_8 (01U << CNFGA_ID_SHIFT)
209 #define CNFGA_ID_32 (02U << CNFGA_ID_SHIFT)
210 /* #define CNFGA_reserved (1U << 3) */
211 #define CNFGA_nBYTEINTRANS (1U << 2)
212 #define CNFGA_PWORDLEFT ((1U << 1) | (1U << 0))
213
214 /* ECP Configuration Register B */
215 #define CNFGB_COMPRESS (1U << 7)
216 #define CNFGB_INTRVAL (1U << 6)
217 #define CNFGB_IRQ_MASK ((1U << 5) | (1U << 4) | (1U << 3))
218 #define CNFGB_IRQ_SHIFT 3
219 #define CNFGB_DMA_MASK ((1U << 2) | (1U << 1) | (1U << 0))
220 #define CNFGB_DMA_SHIFT 0
221
222 /* Extended Control Register */
223 #define ECR_MODE_MASK ((1U << 7) | (1U << 6) | (1U << 5))
224 #define ECR_MODE_SHIFT 5
225 #define ECR_MODE_SPP (00U << ECR_MODE_SHIFT)
226 #define ECR_MODE_PS2 (01U << ECR_MODE_SHIFT)
227 #define ECR_MODE_PPF (02U << ECR_MODE_SHIFT)
228 #define ECR_MODE_ECP (03U << ECR_MODE_SHIFT)
229 #define ECR_MODE_EPP (04U << ECR_MODE_SHIFT)
230 /* #define ECR_MODE_reserved (05U << ECR_MODE_SHIFT) */
231 #define ECR_MODE_TST (06U << ECR_MODE_SHIFT)
232 #define ECR_MODE_CFG (07U << ECR_MODE_SHIFT)
233 #define ECR_nERRINTR (1U << 4)
234 #define ECR_DMAEN (1U << 3)
235 #define ECR_SERVINTR (1U << 2)
236 #define ECR_F_FULL (1U << 1)
237 #define ECR_F_EMPTY (1U << 0)
238
239 /*--- Private data -----------------------------------------------------*/
240
241 /**
242 * enum parport_ip32_irq_mode - operation mode of interrupt handler
243 * @PARPORT_IP32_IRQ_FWD: forward interrupt to the upper parport layer
244 * @PARPORT_IP32_IRQ_HERE: interrupt is handled locally
245 */
246 enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
247
248 /**
249 * struct parport_ip32_private - private stuff for &struct parport
250 * @regs: register addresses
251 * @dcr_cache: cached contents of DCR
252 * @dcr_writable: bit mask of writable DCR bits
253 * @pword: number of bytes per PWord
254 * @fifo_depth: number of PWords that FIFO will hold
255 * @readIntrThreshold: minimum number of PWords we can read
256 * if we get an interrupt
257 * @writeIntrThreshold: minimum number of PWords we can write
258 * if we get an interrupt
259 * @irq_mode: operation mode of interrupt handler for this port
260 * @irq_complete: mutex used to wait for an interrupt to occur
261 */
262 struct parport_ip32_private {
263 struct parport_ip32_regs regs;
264 unsigned int dcr_cache;
265 unsigned int dcr_writable;
266 unsigned int pword;
267 unsigned int fifo_depth;
268 unsigned int readIntrThreshold;
269 unsigned int writeIntrThreshold;
270 enum parport_ip32_irq_mode irq_mode;
271 struct completion irq_complete;
272 };
273
274 /*--- Debug code -------------------------------------------------------*/
275
276 /*
277 * pr_debug1 - print debug messages
278 *
279 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
280 */
281 #if DEBUG_PARPORT_IP32 >= 1
282 # define pr_debug1(...) printk(KERN_DEBUG __VA_ARGS__)
283 #else /* DEBUG_PARPORT_IP32 < 1 */
284 # define pr_debug1(...) do { } while (0)
285 #endif
286
287 /*
288 * pr_trace, pr_trace1 - trace function calls
289 * @p: pointer to &struct parport
290 * @fmt: printk format string
291 * @...: parameters for format string
292 *
293 * Macros used to trace function calls. The given string is formatted after
294 * function name. pr_trace() uses pr_debug(), and pr_trace1() uses
295 * pr_debug1(). __pr_trace() is the low-level macro and is not to be used
296 * directly.
297 */
298 #define __pr_trace(pr, p, fmt, ...) \
299 pr("%s: %s" fmt "\n", \
300 ({ const struct parport *__p = (p); \
301 __p ? __p->name : "parport_ip32"; }), \
302 __func__ , ##__VA_ARGS__)
303 #define pr_trace(p, fmt, ...) __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
304 #define pr_trace1(p, fmt, ...) __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
305
306 /*
307 * __pr_probe, pr_probe - print message if @verbose_probing is true
308 * @p: pointer to &struct parport
309 * @fmt: printk format string
310 * @...: parameters for format string
311 *
312 * For new lines, use pr_probe(). Use __pr_probe() for continued lines.
313 */
314 #define __pr_probe(...) \
315 do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
316 #define pr_probe(p, fmt, ...) \
317 __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
318
319 /*
320 * parport_ip32_dump_state - print register status of parport
321 * @p: pointer to &struct parport
322 * @str: string to add in message
323 * @show_ecp_config: shall we dump ECP configuration registers too?
324 *
325 * This function is only here for debugging purpose, and should be used with
326 * care. Reading the parallel port registers may have undesired side effects.
327 * Especially if @show_ecp_config is true, the parallel port is resetted.
328 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
329 */
330 #if DEBUG_PARPORT_IP32 >= 2
parport_ip32_dump_state(struct parport * p,char * str,unsigned int show_ecp_config)331 static void parport_ip32_dump_state(struct parport *p, char *str,
332 unsigned int show_ecp_config)
333 {
334 struct parport_ip32_private * const priv = p->physport->private_data;
335 unsigned int i;
336
337 printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
338 {
339 static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
340 "ECP", "EPP", "???",
341 "TST", "CFG"};
342 unsigned int ecr = readb(priv->regs.ecr);
343 printk(KERN_DEBUG PPIP32 " ecr=0x%02x", ecr);
344 printk(" %s",
345 ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
346 if (ecr & ECR_nERRINTR)
347 printk(",nErrIntrEn");
348 if (ecr & ECR_DMAEN)
349 printk(",dmaEn");
350 if (ecr & ECR_SERVINTR)
351 printk(",serviceIntr");
352 if (ecr & ECR_F_FULL)
353 printk(",f_full");
354 if (ecr & ECR_F_EMPTY)
355 printk(",f_empty");
356 printk("\n");
357 }
358 if (show_ecp_config) {
359 unsigned int oecr, cnfgA, cnfgB;
360 oecr = readb(priv->regs.ecr);
361 writeb(ECR_MODE_PS2, priv->regs.ecr);
362 writeb(ECR_MODE_CFG, priv->regs.ecr);
363 cnfgA = readb(priv->regs.cnfgA);
364 cnfgB = readb(priv->regs.cnfgB);
365 writeb(ECR_MODE_PS2, priv->regs.ecr);
366 writeb(oecr, priv->regs.ecr);
367 printk(KERN_DEBUG PPIP32 " cnfgA=0x%02x", cnfgA);
368 printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
369 switch (cnfgA & CNFGA_ID_MASK) {
370 case CNFGA_ID_8:
371 printk(",8 bits");
372 break;
373 case CNFGA_ID_16:
374 printk(",16 bits");
375 break;
376 case CNFGA_ID_32:
377 printk(",32 bits");
378 break;
379 default:
380 printk(",unknown ID");
381 break;
382 }
383 if (!(cnfgA & CNFGA_nBYTEINTRANS))
384 printk(",ByteInTrans");
385 if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
386 printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT,
387 ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
388 printk("\n");
389 printk(KERN_DEBUG PPIP32 " cnfgB=0x%02x", cnfgB);
390 printk(" irq=%u,dma=%u",
391 (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
392 (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
393 printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
394 if (cnfgB & CNFGB_COMPRESS)
395 printk(",compress");
396 printk("\n");
397 }
398 for (i = 0; i < 2; i++) {
399 unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
400 printk(KERN_DEBUG PPIP32 " dcr(%s)=0x%02x",
401 i ? "soft" : "hard", dcr);
402 printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
403 if (dcr & DCR_IRQ)
404 printk(",ackIntEn");
405 if (!(dcr & DCR_SELECT))
406 printk(",nSelectIn");
407 if (dcr & DCR_nINIT)
408 printk(",nInit");
409 if (!(dcr & DCR_AUTOFD))
410 printk(",nAutoFD");
411 if (!(dcr & DCR_STROBE))
412 printk(",nStrobe");
413 printk("\n");
414 }
415 #define sep (f++ ? ',' : ' ')
416 {
417 unsigned int f = 0;
418 unsigned int dsr = readb(priv->regs.dsr);
419 printk(KERN_DEBUG PPIP32 " dsr=0x%02x", dsr);
420 if (!(dsr & DSR_nBUSY))
421 printk("%cBusy", sep);
422 if (dsr & DSR_nACK)
423 printk("%cnAck", sep);
424 if (dsr & DSR_PERROR)
425 printk("%cPError", sep);
426 if (dsr & DSR_SELECT)
427 printk("%cSelect", sep);
428 if (dsr & DSR_nFAULT)
429 printk("%cnFault", sep);
430 if (!(dsr & DSR_nPRINT))
431 printk("%c(Print)", sep);
432 if (dsr & DSR_TIMEOUT)
433 printk("%cTimeout", sep);
434 printk("\n");
435 }
436 #undef sep
437 }
438 #else /* DEBUG_PARPORT_IP32 < 2 */
439 #define parport_ip32_dump_state(...) do { } while (0)
440 #endif
441
442 /*
443 * CHECK_EXTRA_BITS - track and log extra bits
444 * @p: pointer to &struct parport
445 * @b: byte to inspect
446 * @m: bit mask of authorized bits
447 *
448 * This is used to track and log extra bits that should not be there in
449 * parport_ip32_write_control() and parport_ip32_frob_control(). It is only
450 * defined if %DEBUG_PARPORT_IP32 >= 1.
451 */
452 #if DEBUG_PARPORT_IP32 >= 1
453 #define CHECK_EXTRA_BITS(p, b, m) \
454 do { \
455 unsigned int __b = (b), __m = (m); \
456 if (__b & ~__m) \
457 pr_debug1(PPIP32 "%s: extra bits in %s(%s): " \
458 "0x%02x/0x%02x\n", \
459 (p)->name, __func__, #b, __b, __m); \
460 } while (0)
461 #else /* DEBUG_PARPORT_IP32 < 1 */
462 #define CHECK_EXTRA_BITS(...) do { } while (0)
463 #endif
464
465 /*--- IP32 parallel port DMA operations --------------------------------*/
466
467 /**
468 * struct parport_ip32_dma_data - private data needed for DMA operation
469 * @dir: DMA direction (from or to device)
470 * @buf: buffer physical address
471 * @len: buffer length
472 * @next: address of next bytes to DMA transfer
473 * @left: number of bytes remaining
474 * @ctx: next context to write (0: context_a; 1: context_b)
475 * @irq_on: are the DMA IRQs currently enabled?
476 * @lock: spinlock to protect access to the structure
477 */
478 struct parport_ip32_dma_data {
479 enum dma_data_direction dir;
480 dma_addr_t buf;
481 dma_addr_t next;
482 size_t len;
483 size_t left;
484 unsigned int ctx;
485 unsigned int irq_on;
486 spinlock_t lock;
487 };
488 static struct parport_ip32_dma_data parport_ip32_dma;
489
490 /**
491 * parport_ip32_dma_setup_context - setup next DMA context
492 * @limit: maximum data size for the context
493 *
494 * The alignment constraints must be verified in caller function, and the
495 * parameter @limit must be set accordingly.
496 */
parport_ip32_dma_setup_context(unsigned int limit)497 static void parport_ip32_dma_setup_context(unsigned int limit)
498 {
499 unsigned long flags;
500
501 spin_lock_irqsave(&parport_ip32_dma.lock, flags);
502 if (parport_ip32_dma.left > 0) {
503 /* Note: ctxreg is "volatile" here only because
504 * mace->perif.ctrl.parport.context_a and context_b are
505 * "volatile". */
506 volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
507 &mace->perif.ctrl.parport.context_a :
508 &mace->perif.ctrl.parport.context_b;
509 u64 count;
510 u64 ctxval;
511 if (parport_ip32_dma.left <= limit) {
512 count = parport_ip32_dma.left;
513 ctxval = MACEPAR_CONTEXT_LASTFLAG;
514 } else {
515 count = limit;
516 ctxval = 0;
517 }
518
519 pr_trace(NULL,
520 "(%u): 0x%04x:0x%04x, %u -> %u%s",
521 limit,
522 (unsigned int)parport_ip32_dma.buf,
523 (unsigned int)parport_ip32_dma.next,
524 (unsigned int)count,
525 parport_ip32_dma.ctx, ctxval ? "*" : "");
526
527 ctxval |= parport_ip32_dma.next &
528 MACEPAR_CONTEXT_BASEADDR_MASK;
529 ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
530 MACEPAR_CONTEXT_DATALEN_MASK;
531 writeq(ctxval, ctxreg);
532 parport_ip32_dma.next += count;
533 parport_ip32_dma.left -= count;
534 parport_ip32_dma.ctx ^= 1U;
535 }
536 /* If there is nothing more to send, disable IRQs to avoid to
537 * face an IRQ storm which can lock the machine. Disable them
538 * only once. */
539 if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
540 pr_debug(PPIP32 "IRQ off (ctx)\n");
541 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
542 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
543 parport_ip32_dma.irq_on = 0;
544 }
545 spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
546 }
547
548 /**
549 * parport_ip32_dma_interrupt - DMA interrupt handler
550 * @irq: interrupt number
551 * @dev_id: unused
552 */
parport_ip32_dma_interrupt(int irq,void * dev_id)553 static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
554 {
555 if (parport_ip32_dma.left)
556 pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
557 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
558 return IRQ_HANDLED;
559 }
560
561 #if DEBUG_PARPORT_IP32
parport_ip32_merr_interrupt(int irq,void * dev_id)562 static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
563 {
564 pr_trace1(NULL, "(%d)", irq);
565 return IRQ_HANDLED;
566 }
567 #endif
568
569 /**
570 * parport_ip32_dma_start - begins a DMA transfer
571 * @dir: DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
572 * @addr: pointer to data buffer
573 * @count: buffer size
574 *
575 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
576 * correctly balanced.
577 */
parport_ip32_dma_start(enum dma_data_direction dir,void * addr,size_t count)578 static int parport_ip32_dma_start(enum dma_data_direction dir,
579 void *addr, size_t count)
580 {
581 unsigned int limit;
582 u64 ctrl;
583
584 pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
585
586 /* FIXME - add support for DMA_FROM_DEVICE. In this case, buffer must
587 * be 64 bytes aligned. */
588 BUG_ON(dir != DMA_TO_DEVICE);
589
590 /* Reset DMA controller */
591 ctrl = MACEPAR_CTLSTAT_RESET;
592 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
593
594 /* DMA IRQs should normally be enabled */
595 if (!parport_ip32_dma.irq_on) {
596 WARN_ON(1);
597 enable_irq(MACEISA_PAR_CTXA_IRQ);
598 enable_irq(MACEISA_PAR_CTXB_IRQ);
599 parport_ip32_dma.irq_on = 1;
600 }
601
602 /* Prepare DMA pointers */
603 parport_ip32_dma.dir = dir;
604 parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir);
605 parport_ip32_dma.len = count;
606 parport_ip32_dma.next = parport_ip32_dma.buf;
607 parport_ip32_dma.left = parport_ip32_dma.len;
608 parport_ip32_dma.ctx = 0;
609
610 /* Setup DMA direction and first two contexts */
611 ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
612 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
613 /* Single transfer should not cross a 4K page boundary */
614 limit = MACEPAR_CONTEXT_DATA_BOUND -
615 (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
616 parport_ip32_dma_setup_context(limit);
617 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
618
619 /* Real start of DMA transfer */
620 ctrl |= MACEPAR_CTLSTAT_ENABLE;
621 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
622
623 return 0;
624 }
625
626 /**
627 * parport_ip32_dma_stop - ends a running DMA transfer
628 *
629 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
630 * correctly balanced.
631 */
parport_ip32_dma_stop(void)632 static void parport_ip32_dma_stop(void)
633 {
634 u64 ctx_a;
635 u64 ctx_b;
636 u64 ctrl;
637 u64 diag;
638 size_t res[2]; /* {[0] = res_a, [1] = res_b} */
639
640 pr_trace(NULL, "()");
641
642 /* Disable IRQs */
643 spin_lock_irq(&parport_ip32_dma.lock);
644 if (parport_ip32_dma.irq_on) {
645 pr_debug(PPIP32 "IRQ off (stop)\n");
646 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
647 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
648 parport_ip32_dma.irq_on = 0;
649 }
650 spin_unlock_irq(&parport_ip32_dma.lock);
651 /* Force IRQ synchronization, even if the IRQs were disabled
652 * elsewhere. */
653 synchronize_irq(MACEISA_PAR_CTXA_IRQ);
654 synchronize_irq(MACEISA_PAR_CTXB_IRQ);
655
656 /* Stop DMA transfer */
657 ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
658 ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
659 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
660
661 /* Adjust residue (parport_ip32_dma.left) */
662 ctx_a = readq(&mace->perif.ctrl.parport.context_a);
663 ctx_b = readq(&mace->perif.ctrl.parport.context_b);
664 ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
665 diag = readq(&mace->perif.ctrl.parport.diagnostic);
666 res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
667 1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
668 MACEPAR_CONTEXT_DATALEN_SHIFT) :
669 0;
670 res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
671 1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
672 MACEPAR_CONTEXT_DATALEN_SHIFT) :
673 0;
674 if (diag & MACEPAR_DIAG_DMACTIVE)
675 res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
676 1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
677 MACEPAR_DIAG_CTRSHIFT);
678 parport_ip32_dma.left += res[0] + res[1];
679
680 /* Reset DMA controller, and re-enable IRQs */
681 ctrl = MACEPAR_CTLSTAT_RESET;
682 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
683 pr_debug(PPIP32 "IRQ on (stop)\n");
684 enable_irq(MACEISA_PAR_CTXA_IRQ);
685 enable_irq(MACEISA_PAR_CTXB_IRQ);
686 parport_ip32_dma.irq_on = 1;
687
688 dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len,
689 parport_ip32_dma.dir);
690 }
691
692 /**
693 * parport_ip32_dma_get_residue - get residue from last DMA transfer
694 *
695 * Returns the number of bytes remaining from last DMA transfer.
696 */
parport_ip32_dma_get_residue(void)697 static inline size_t parport_ip32_dma_get_residue(void)
698 {
699 return parport_ip32_dma.left;
700 }
701
702 /**
703 * parport_ip32_dma_register - initialize DMA engine
704 *
705 * Returns zero for success.
706 */
parport_ip32_dma_register(void)707 static int parport_ip32_dma_register(void)
708 {
709 int err;
710
711 spin_lock_init(&parport_ip32_dma.lock);
712 parport_ip32_dma.irq_on = 1;
713
714 /* Reset DMA controller */
715 writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
716
717 /* Request IRQs */
718 err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
719 0, "parport_ip32", NULL);
720 if (err)
721 goto fail_a;
722 err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
723 0, "parport_ip32", NULL);
724 if (err)
725 goto fail_b;
726 #if DEBUG_PARPORT_IP32
727 /* FIXME - what is this IRQ for? */
728 err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
729 0, "parport_ip32", NULL);
730 if (err)
731 goto fail_merr;
732 #endif
733 return 0;
734
735 #if DEBUG_PARPORT_IP32
736 fail_merr:
737 free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
738 #endif
739 fail_b:
740 free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
741 fail_a:
742 return err;
743 }
744
745 /**
746 * parport_ip32_dma_unregister - release and free resources for DMA engine
747 */
parport_ip32_dma_unregister(void)748 static void parport_ip32_dma_unregister(void)
749 {
750 #if DEBUG_PARPORT_IP32
751 free_irq(MACEISA_PAR_MERR_IRQ, NULL);
752 #endif
753 free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
754 free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
755 }
756
757 /*--- Interrupt handlers and associates --------------------------------*/
758
759 /**
760 * parport_ip32_wakeup - wakes up code waiting for an interrupt
761 * @p: pointer to &struct parport
762 */
parport_ip32_wakeup(struct parport * p)763 static inline void parport_ip32_wakeup(struct parport *p)
764 {
765 struct parport_ip32_private * const priv = p->physport->private_data;
766 complete(&priv->irq_complete);
767 }
768
769 /**
770 * parport_ip32_interrupt - interrupt handler
771 * @irq: interrupt number
772 * @dev_id: pointer to &struct parport
773 *
774 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
775 * %PARPORT_IP32_IRQ_FWD.
776 */
parport_ip32_interrupt(int irq,void * dev_id)777 static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
778 {
779 struct parport * const p = dev_id;
780 struct parport_ip32_private * const priv = p->physport->private_data;
781 enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
782
783 switch (irq_mode) {
784 case PARPORT_IP32_IRQ_FWD:
785 return parport_irq_handler(irq, dev_id);
786
787 case PARPORT_IP32_IRQ_HERE:
788 parport_ip32_wakeup(p);
789 break;
790 }
791
792 return IRQ_HANDLED;
793 }
794
795 /*--- Some utility function to manipulate ECR register -----------------*/
796
797 /**
798 * parport_ip32_read_econtrol - read contents of the ECR register
799 * @p: pointer to &struct parport
800 */
parport_ip32_read_econtrol(struct parport * p)801 static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
802 {
803 struct parport_ip32_private * const priv = p->physport->private_data;
804 return readb(priv->regs.ecr);
805 }
806
807 /**
808 * parport_ip32_write_econtrol - write new contents to the ECR register
809 * @p: pointer to &struct parport
810 * @c: new value to write
811 */
parport_ip32_write_econtrol(struct parport * p,unsigned int c)812 static inline void parport_ip32_write_econtrol(struct parport *p,
813 unsigned int c)
814 {
815 struct parport_ip32_private * const priv = p->physport->private_data;
816 writeb(c, priv->regs.ecr);
817 }
818
819 /**
820 * parport_ip32_frob_econtrol - change bits from the ECR register
821 * @p: pointer to &struct parport
822 * @mask: bit mask of bits to change
823 * @val: new value for changed bits
824 *
825 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
826 * in @val, and write the result to the ECR.
827 */
parport_ip32_frob_econtrol(struct parport * p,unsigned int mask,unsigned int val)828 static inline void parport_ip32_frob_econtrol(struct parport *p,
829 unsigned int mask,
830 unsigned int val)
831 {
832 unsigned int c;
833 c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
834 parport_ip32_write_econtrol(p, c);
835 }
836
837 /**
838 * parport_ip32_set_mode - change mode of ECP port
839 * @p: pointer to &struct parport
840 * @mode: new mode to write in ECR
841 *
842 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
843 * mode @mode. Go through PS2 mode if needed.
844 */
parport_ip32_set_mode(struct parport * p,unsigned int mode)845 static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
846 {
847 unsigned int omode;
848
849 mode &= ECR_MODE_MASK;
850 omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
851
852 if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
853 || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
854 /* We have to go through PS2 mode */
855 unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
856 parport_ip32_write_econtrol(p, ecr);
857 }
858 parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
859 }
860
861 /*--- Basic functions needed for parport -------------------------------*/
862
863 /**
864 * parport_ip32_read_data - return current contents of the DATA register
865 * @p: pointer to &struct parport
866 */
parport_ip32_read_data(struct parport * p)867 static inline unsigned char parport_ip32_read_data(struct parport *p)
868 {
869 struct parport_ip32_private * const priv = p->physport->private_data;
870 return readb(priv->regs.data);
871 }
872
873 /**
874 * parport_ip32_write_data - set new contents for the DATA register
875 * @p: pointer to &struct parport
876 * @d: new value to write
877 */
parport_ip32_write_data(struct parport * p,unsigned char d)878 static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
879 {
880 struct parport_ip32_private * const priv = p->physport->private_data;
881 writeb(d, priv->regs.data);
882 }
883
884 /**
885 * parport_ip32_read_status - return current contents of the DSR register
886 * @p: pointer to &struct parport
887 */
parport_ip32_read_status(struct parport * p)888 static inline unsigned char parport_ip32_read_status(struct parport *p)
889 {
890 struct parport_ip32_private * const priv = p->physport->private_data;
891 return readb(priv->regs.dsr);
892 }
893
894 /**
895 * __parport_ip32_read_control - return cached contents of the DCR register
896 * @p: pointer to &struct parport
897 */
__parport_ip32_read_control(struct parport * p)898 static inline unsigned int __parport_ip32_read_control(struct parport *p)
899 {
900 struct parport_ip32_private * const priv = p->physport->private_data;
901 return priv->dcr_cache; /* use soft copy */
902 }
903
904 /**
905 * __parport_ip32_write_control - set new contents for the DCR register
906 * @p: pointer to &struct parport
907 * @c: new value to write
908 */
__parport_ip32_write_control(struct parport * p,unsigned int c)909 static inline void __parport_ip32_write_control(struct parport *p,
910 unsigned int c)
911 {
912 struct parport_ip32_private * const priv = p->physport->private_data;
913 CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
914 c &= priv->dcr_writable; /* only writable bits */
915 writeb(c, priv->regs.dcr);
916 priv->dcr_cache = c; /* update soft copy */
917 }
918
919 /**
920 * __parport_ip32_frob_control - change bits from the DCR register
921 * @p: pointer to &struct parport
922 * @mask: bit mask of bits to change
923 * @val: new value for changed bits
924 *
925 * This is equivalent to read from the DCR, mask out the bits in @mask,
926 * exclusive-or with the bits in @val, and write the result to the DCR.
927 * Actually, the cached contents of the DCR is used.
928 */
__parport_ip32_frob_control(struct parport * p,unsigned int mask,unsigned int val)929 static inline void __parport_ip32_frob_control(struct parport *p,
930 unsigned int mask,
931 unsigned int val)
932 {
933 unsigned int c;
934 c = (__parport_ip32_read_control(p) & ~mask) ^ val;
935 __parport_ip32_write_control(p, c);
936 }
937
938 /**
939 * parport_ip32_read_control - return cached contents of the DCR register
940 * @p: pointer to &struct parport
941 *
942 * The return value is masked so as to only return the value of %DCR_STROBE,
943 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
944 */
parport_ip32_read_control(struct parport * p)945 static inline unsigned char parport_ip32_read_control(struct parport *p)
946 {
947 const unsigned int rm =
948 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
949 return __parport_ip32_read_control(p) & rm;
950 }
951
952 /**
953 * parport_ip32_write_control - set new contents for the DCR register
954 * @p: pointer to &struct parport
955 * @c: new value to write
956 *
957 * The value is masked so as to only change the value of %DCR_STROBE,
958 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
959 */
parport_ip32_write_control(struct parport * p,unsigned char c)960 static inline void parport_ip32_write_control(struct parport *p,
961 unsigned char c)
962 {
963 const unsigned int wm =
964 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
965 CHECK_EXTRA_BITS(p, c, wm);
966 __parport_ip32_frob_control(p, wm, c & wm);
967 }
968
969 /**
970 * parport_ip32_frob_control - change bits from the DCR register
971 * @p: pointer to &struct parport
972 * @mask: bit mask of bits to change
973 * @val: new value for changed bits
974 *
975 * This differs from __parport_ip32_frob_control() in that it only allows to
976 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
977 */
parport_ip32_frob_control(struct parport * p,unsigned char mask,unsigned char val)978 static inline unsigned char parport_ip32_frob_control(struct parport *p,
979 unsigned char mask,
980 unsigned char val)
981 {
982 const unsigned int wm =
983 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
984 CHECK_EXTRA_BITS(p, mask, wm);
985 CHECK_EXTRA_BITS(p, val, wm);
986 __parport_ip32_frob_control(p, mask & wm, val & wm);
987 return parport_ip32_read_control(p);
988 }
989
990 /**
991 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
992 * @p: pointer to &struct parport
993 */
parport_ip32_disable_irq(struct parport * p)994 static inline void parport_ip32_disable_irq(struct parport *p)
995 {
996 __parport_ip32_frob_control(p, DCR_IRQ, 0);
997 }
998
999 /**
1000 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
1001 * @p: pointer to &struct parport
1002 */
parport_ip32_enable_irq(struct parport * p)1003 static inline void parport_ip32_enable_irq(struct parport *p)
1004 {
1005 __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
1006 }
1007
1008 /**
1009 * parport_ip32_data_forward - enable host-to-peripheral communications
1010 * @p: pointer to &struct parport
1011 *
1012 * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1013 */
parport_ip32_data_forward(struct parport * p)1014 static inline void parport_ip32_data_forward(struct parport *p)
1015 {
1016 __parport_ip32_frob_control(p, DCR_DIR, 0);
1017 }
1018
1019 /**
1020 * parport_ip32_data_reverse - enable peripheral-to-host communications
1021 * @p: pointer to &struct parport
1022 *
1023 * Place the data bus in a high impedance state, if @p->modes has the
1024 * PARPORT_MODE_TRISTATE bit set.
1025 */
parport_ip32_data_reverse(struct parport * p)1026 static inline void parport_ip32_data_reverse(struct parport *p)
1027 {
1028 __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1029 }
1030
1031 /**
1032 * parport_ip32_init_state - for core parport code
1033 * @dev: pointer to &struct pardevice
1034 * @s: pointer to &struct parport_state to initialize
1035 */
parport_ip32_init_state(struct pardevice * dev,struct parport_state * s)1036 static void parport_ip32_init_state(struct pardevice *dev,
1037 struct parport_state *s)
1038 {
1039 s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1040 s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1041 }
1042
1043 /**
1044 * parport_ip32_save_state - for core parport code
1045 * @p: pointer to &struct parport
1046 * @s: pointer to &struct parport_state to save state to
1047 */
parport_ip32_save_state(struct parport * p,struct parport_state * s)1048 static void parport_ip32_save_state(struct parport *p,
1049 struct parport_state *s)
1050 {
1051 s->u.ip32.dcr = __parport_ip32_read_control(p);
1052 s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1053 }
1054
1055 /**
1056 * parport_ip32_restore_state - for core parport code
1057 * @p: pointer to &struct parport
1058 * @s: pointer to &struct parport_state to restore state from
1059 */
parport_ip32_restore_state(struct parport * p,struct parport_state * s)1060 static void parport_ip32_restore_state(struct parport *p,
1061 struct parport_state *s)
1062 {
1063 parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1064 parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1065 __parport_ip32_write_control(p, s->u.ip32.dcr);
1066 }
1067
1068 /*--- EPP mode functions -----------------------------------------------*/
1069
1070 /**
1071 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1072 * @p: pointer to &struct parport
1073 *
1074 * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1075 */
parport_ip32_clear_epp_timeout(struct parport * p)1076 static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1077 {
1078 struct parport_ip32_private * const priv = p->physport->private_data;
1079 unsigned int cleared;
1080
1081 if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1082 cleared = 1;
1083 else {
1084 unsigned int r;
1085 /* To clear timeout some chips require double read */
1086 parport_ip32_read_status(p);
1087 r = parport_ip32_read_status(p);
1088 /* Some reset by writing 1 */
1089 writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1090 /* Others by writing 0 */
1091 writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1092
1093 r = parport_ip32_read_status(p);
1094 cleared = !(r & DSR_TIMEOUT);
1095 }
1096
1097 pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1098 return cleared;
1099 }
1100
1101 /**
1102 * parport_ip32_epp_read - generic EPP read function
1103 * @eppreg: I/O register to read from
1104 * @p: pointer to &struct parport
1105 * @buf: buffer to store read data
1106 * @len: length of buffer @buf
1107 * @flags: may be PARPORT_EPP_FAST
1108 */
parport_ip32_epp_read(void __iomem * eppreg,struct parport * p,void * buf,size_t len,int flags)1109 static size_t parport_ip32_epp_read(void __iomem *eppreg,
1110 struct parport *p, void *buf,
1111 size_t len, int flags)
1112 {
1113 struct parport_ip32_private * const priv = p->physport->private_data;
1114 size_t got;
1115 parport_ip32_set_mode(p, ECR_MODE_EPP);
1116 parport_ip32_data_reverse(p);
1117 parport_ip32_write_control(p, DCR_nINIT);
1118 if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1119 readsb(eppreg, buf, len);
1120 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1121 parport_ip32_clear_epp_timeout(p);
1122 return -EIO;
1123 }
1124 got = len;
1125 } else {
1126 u8 *bufp = buf;
1127 for (got = 0; got < len; got++) {
1128 *bufp++ = readb(eppreg);
1129 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1130 parport_ip32_clear_epp_timeout(p);
1131 break;
1132 }
1133 }
1134 }
1135 parport_ip32_data_forward(p);
1136 parport_ip32_set_mode(p, ECR_MODE_PS2);
1137 return got;
1138 }
1139
1140 /**
1141 * parport_ip32_epp_write - generic EPP write function
1142 * @eppreg: I/O register to write to
1143 * @p: pointer to &struct parport
1144 * @buf: buffer of data to write
1145 * @len: length of buffer @buf
1146 * @flags: may be PARPORT_EPP_FAST
1147 */
parport_ip32_epp_write(void __iomem * eppreg,struct parport * p,const void * buf,size_t len,int flags)1148 static size_t parport_ip32_epp_write(void __iomem *eppreg,
1149 struct parport *p, const void *buf,
1150 size_t len, int flags)
1151 {
1152 struct parport_ip32_private * const priv = p->physport->private_data;
1153 size_t written;
1154 parport_ip32_set_mode(p, ECR_MODE_EPP);
1155 parport_ip32_data_forward(p);
1156 parport_ip32_write_control(p, DCR_nINIT);
1157 if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1158 writesb(eppreg, buf, len);
1159 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1160 parport_ip32_clear_epp_timeout(p);
1161 return -EIO;
1162 }
1163 written = len;
1164 } else {
1165 const u8 *bufp = buf;
1166 for (written = 0; written < len; written++) {
1167 writeb(*bufp++, eppreg);
1168 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1169 parport_ip32_clear_epp_timeout(p);
1170 break;
1171 }
1172 }
1173 }
1174 parport_ip32_set_mode(p, ECR_MODE_PS2);
1175 return written;
1176 }
1177
1178 /**
1179 * parport_ip32_epp_read_data - read a block of data in EPP mode
1180 * @p: pointer to &struct parport
1181 * @buf: buffer to store read data
1182 * @len: length of buffer @buf
1183 * @flags: may be PARPORT_EPP_FAST
1184 */
parport_ip32_epp_read_data(struct parport * p,void * buf,size_t len,int flags)1185 static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1186 size_t len, int flags)
1187 {
1188 struct parport_ip32_private * const priv = p->physport->private_data;
1189 return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1190 }
1191
1192 /**
1193 * parport_ip32_epp_write_data - write a block of data in EPP mode
1194 * @p: pointer to &struct parport
1195 * @buf: buffer of data to write
1196 * @len: length of buffer @buf
1197 * @flags: may be PARPORT_EPP_FAST
1198 */
parport_ip32_epp_write_data(struct parport * p,const void * buf,size_t len,int flags)1199 static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1200 size_t len, int flags)
1201 {
1202 struct parport_ip32_private * const priv = p->physport->private_data;
1203 return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1204 }
1205
1206 /**
1207 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1208 * @p: pointer to &struct parport
1209 * @buf: buffer to store read data
1210 * @len: length of buffer @buf
1211 * @flags: may be PARPORT_EPP_FAST
1212 */
parport_ip32_epp_read_addr(struct parport * p,void * buf,size_t len,int flags)1213 static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1214 size_t len, int flags)
1215 {
1216 struct parport_ip32_private * const priv = p->physport->private_data;
1217 return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1218 }
1219
1220 /**
1221 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1222 * @p: pointer to &struct parport
1223 * @buf: buffer of data to write
1224 * @len: length of buffer @buf
1225 * @flags: may be PARPORT_EPP_FAST
1226 */
parport_ip32_epp_write_addr(struct parport * p,const void * buf,size_t len,int flags)1227 static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1228 size_t len, int flags)
1229 {
1230 struct parport_ip32_private * const priv = p->physport->private_data;
1231 return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1232 }
1233
1234 /*--- ECP mode functions (FIFO) ----------------------------------------*/
1235
1236 /**
1237 * parport_ip32_fifo_wait_break - check if the waiting function should return
1238 * @p: pointer to &struct parport
1239 * @expire: timeout expiring date, in jiffies
1240 *
1241 * parport_ip32_fifo_wait_break() checks if the waiting function should return
1242 * immediately or not. The break conditions are:
1243 * - expired timeout;
1244 * - a pending signal;
1245 * - nFault asserted low.
1246 * This function also calls cond_resched().
1247 */
parport_ip32_fifo_wait_break(struct parport * p,unsigned long expire)1248 static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1249 unsigned long expire)
1250 {
1251 cond_resched();
1252 if (time_after(jiffies, expire)) {
1253 pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1254 return 1;
1255 }
1256 if (signal_pending(current)) {
1257 pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1258 return 1;
1259 }
1260 if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1261 pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1262 return 1;
1263 }
1264 return 0;
1265 }
1266
1267 /**
1268 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1269 * @p: pointer to &struct parport
1270 *
1271 * Returns the number of bytes that can safely be written in the FIFO. A
1272 * return value of zero means that the calling function should terminate as
1273 * fast as possible.
1274 */
parport_ip32_fwp_wait_polling(struct parport * p)1275 static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1276 {
1277 struct parport_ip32_private * const priv = p->physport->private_data;
1278 struct parport * const physport = p->physport;
1279 unsigned long expire;
1280 unsigned int count;
1281 unsigned int ecr;
1282
1283 expire = jiffies + physport->cad->timeout;
1284 count = 0;
1285 while (1) {
1286 if (parport_ip32_fifo_wait_break(p, expire))
1287 break;
1288
1289 /* Check FIFO state. We do nothing when the FIFO is nor full,
1290 * nor empty. It appears that the FIFO full bit is not always
1291 * reliable, the FIFO state is sometimes wrongly reported, and
1292 * the chip gets confused if we give it another byte. */
1293 ecr = parport_ip32_read_econtrol(p);
1294 if (ecr & ECR_F_EMPTY) {
1295 /* FIFO is empty, fill it up */
1296 count = priv->fifo_depth;
1297 break;
1298 }
1299
1300 /* Wait a moment... */
1301 udelay(FIFO_POLLING_INTERVAL);
1302 } /* while (1) */
1303
1304 return count;
1305 }
1306
1307 /**
1308 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1309 * @p: pointer to &struct parport
1310 *
1311 * Returns the number of bytes that can safely be written in the FIFO. A
1312 * return value of zero means that the calling function should terminate as
1313 * fast as possible.
1314 */
parport_ip32_fwp_wait_interrupt(struct parport * p)1315 static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1316 {
1317 static unsigned int lost_interrupt = 0;
1318 struct parport_ip32_private * const priv = p->physport->private_data;
1319 struct parport * const physport = p->physport;
1320 unsigned long nfault_timeout;
1321 unsigned long expire;
1322 unsigned int count;
1323 unsigned int ecr;
1324
1325 nfault_timeout = min((unsigned long)physport->cad->timeout,
1326 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1327 expire = jiffies + physport->cad->timeout;
1328 count = 0;
1329 while (1) {
1330 if (parport_ip32_fifo_wait_break(p, expire))
1331 break;
1332
1333 /* Initialize mutex used to take interrupts into account */
1334 reinit_completion(&priv->irq_complete);
1335
1336 /* Enable serviceIntr */
1337 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1338
1339 /* Enabling serviceIntr while the FIFO is empty does not
1340 * always generate an interrupt, so check for emptiness
1341 * now. */
1342 ecr = parport_ip32_read_econtrol(p);
1343 if (!(ecr & ECR_F_EMPTY)) {
1344 /* FIFO is not empty: wait for an interrupt or a
1345 * timeout to occur */
1346 wait_for_completion_interruptible_timeout(
1347 &priv->irq_complete, nfault_timeout);
1348 ecr = parport_ip32_read_econtrol(p);
1349 if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1350 && !lost_interrupt) {
1351 printk(KERN_WARNING PPIP32
1352 "%s: lost interrupt in %s\n",
1353 p->name, __func__);
1354 lost_interrupt = 1;
1355 }
1356 }
1357
1358 /* Disable serviceIntr */
1359 parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1360
1361 /* Check FIFO state */
1362 if (ecr & ECR_F_EMPTY) {
1363 /* FIFO is empty, fill it up */
1364 count = priv->fifo_depth;
1365 break;
1366 } else if (ecr & ECR_SERVINTR) {
1367 /* FIFO is not empty, but we know that can safely push
1368 * writeIntrThreshold bytes into it */
1369 count = priv->writeIntrThreshold;
1370 break;
1371 }
1372 /* FIFO is not empty, and we did not get any interrupt.
1373 * Either it's time to check for nFault, or a signal is
1374 * pending. This is verified in
1375 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1376 } /* while (1) */
1377
1378 return count;
1379 }
1380
1381 /**
1382 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1383 * @p: pointer to &struct parport
1384 * @buf: buffer of data to write
1385 * @len: length of buffer @buf
1386 *
1387 * Uses PIO to write the contents of the buffer @buf into the parallel port
1388 * FIFO. Returns the number of bytes that were actually written. It can work
1389 * with or without the help of interrupts. The parallel port must be
1390 * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1391 */
parport_ip32_fifo_write_block_pio(struct parport * p,const void * buf,size_t len)1392 static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1393 const void *buf, size_t len)
1394 {
1395 struct parport_ip32_private * const priv = p->physport->private_data;
1396 const u8 *bufp = buf;
1397 size_t left = len;
1398
1399 priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1400
1401 while (left > 0) {
1402 unsigned int count;
1403
1404 count = (p->irq == PARPORT_IRQ_NONE) ?
1405 parport_ip32_fwp_wait_polling(p) :
1406 parport_ip32_fwp_wait_interrupt(p);
1407 if (count == 0)
1408 break; /* Transmission should be stopped */
1409 if (count > left)
1410 count = left;
1411 if (count == 1) {
1412 writeb(*bufp, priv->regs.fifo);
1413 bufp++, left--;
1414 } else {
1415 writesb(priv->regs.fifo, bufp, count);
1416 bufp += count, left -= count;
1417 }
1418 }
1419
1420 priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1421
1422 return len - left;
1423 }
1424
1425 /**
1426 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1427 * @p: pointer to &struct parport
1428 * @buf: buffer of data to write
1429 * @len: length of buffer @buf
1430 *
1431 * Uses DMA to write the contents of the buffer @buf into the parallel port
1432 * FIFO. Returns the number of bytes that were actually written. The
1433 * parallel port must be correctly initialized before calling
1434 * parport_ip32_fifo_write_block_dma().
1435 */
parport_ip32_fifo_write_block_dma(struct parport * p,const void * buf,size_t len)1436 static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1437 const void *buf, size_t len)
1438 {
1439 struct parport_ip32_private * const priv = p->physport->private_data;
1440 struct parport * const physport = p->physport;
1441 unsigned long nfault_timeout;
1442 unsigned long expire;
1443 size_t written;
1444 unsigned int ecr;
1445
1446 priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1447
1448 parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len);
1449 reinit_completion(&priv->irq_complete);
1450 parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1451
1452 nfault_timeout = min((unsigned long)physport->cad->timeout,
1453 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1454 expire = jiffies + physport->cad->timeout;
1455 while (1) {
1456 if (parport_ip32_fifo_wait_break(p, expire))
1457 break;
1458 wait_for_completion_interruptible_timeout(&priv->irq_complete,
1459 nfault_timeout);
1460 ecr = parport_ip32_read_econtrol(p);
1461 if (ecr & ECR_SERVINTR)
1462 break; /* DMA transfer just finished */
1463 }
1464 parport_ip32_dma_stop();
1465 written = len - parport_ip32_dma_get_residue();
1466
1467 priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1468
1469 return written;
1470 }
1471
1472 /**
1473 * parport_ip32_fifo_write_block - write a block of data
1474 * @p: pointer to &struct parport
1475 * @buf: buffer of data to write
1476 * @len: length of buffer @buf
1477 *
1478 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1479 * p FIFO. Returns the number of bytes that were actually written.
1480 */
parport_ip32_fifo_write_block(struct parport * p,const void * buf,size_t len)1481 static size_t parport_ip32_fifo_write_block(struct parport *p,
1482 const void *buf, size_t len)
1483 {
1484 size_t written = 0;
1485 if (len)
1486 /* FIXME - Maybe some threshold value should be set for @len
1487 * under which we revert to PIO mode? */
1488 written = (p->modes & PARPORT_MODE_DMA) ?
1489 parport_ip32_fifo_write_block_dma(p, buf, len) :
1490 parport_ip32_fifo_write_block_pio(p, buf, len);
1491 return written;
1492 }
1493
1494 /**
1495 * parport_ip32_drain_fifo - wait for FIFO to empty
1496 * @p: pointer to &struct parport
1497 * @timeout: timeout, in jiffies
1498 *
1499 * This function waits for FIFO to empty. It returns 1 when FIFO is empty, or
1500 * 0 if the timeout @timeout is reached before, or if a signal is pending.
1501 */
parport_ip32_drain_fifo(struct parport * p,unsigned long timeout)1502 static unsigned int parport_ip32_drain_fifo(struct parport *p,
1503 unsigned long timeout)
1504 {
1505 unsigned long expire = jiffies + timeout;
1506 unsigned int polling_interval;
1507 unsigned int counter;
1508
1509 /* Busy wait for approx. 200us */
1510 for (counter = 0; counter < 40; counter++) {
1511 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1512 break;
1513 if (time_after(jiffies, expire))
1514 break;
1515 if (signal_pending(current))
1516 break;
1517 udelay(5);
1518 }
1519 /* Poll slowly. Polling interval starts with 1 millisecond, and is
1520 * increased exponentially until 128. */
1521 polling_interval = 1; /* msecs */
1522 while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1523 if (time_after_eq(jiffies, expire))
1524 break;
1525 msleep_interruptible(polling_interval);
1526 if (signal_pending(current))
1527 break;
1528 if (polling_interval < 128)
1529 polling_interval *= 2;
1530 }
1531
1532 return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1533 }
1534
1535 /**
1536 * parport_ip32_get_fifo_residue - reset FIFO
1537 * @p: pointer to &struct parport
1538 * @mode: current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1539 *
1540 * This function resets FIFO, and returns the number of bytes remaining in it.
1541 */
parport_ip32_get_fifo_residue(struct parport * p,unsigned int mode)1542 static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1543 unsigned int mode)
1544 {
1545 struct parport_ip32_private * const priv = p->physport->private_data;
1546 unsigned int residue;
1547 unsigned int cnfga;
1548
1549 /* FIXME - We are missing one byte if the printer is off-line. I
1550 * don't know how to detect this. It looks that the full bit is not
1551 * always reliable. For the moment, the problem is avoided in most
1552 * cases by testing for BUSY in parport_ip32_compat_write_data().
1553 */
1554 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1555 residue = 0;
1556 else {
1557 pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1558
1559 /* Stop all transfers.
1560 *
1561 * Microsoft's document instructs to drive DCR_STROBE to 0,
1562 * but it doesn't work (at least in Compatibility mode, not
1563 * tested in ECP mode). Switching directly to Test mode (as
1564 * in parport_pc) is not an option: it does confuse the port,
1565 * ECP service interrupts are no more working after that. A
1566 * hard reset is then needed to revert to a sane state.
1567 *
1568 * Let's hope that the FIFO is really stuck and that the
1569 * peripheral doesn't wake up now.
1570 */
1571 parport_ip32_frob_control(p, DCR_STROBE, 0);
1572
1573 /* Fill up FIFO */
1574 for (residue = priv->fifo_depth; residue > 0; residue--) {
1575 if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1576 break;
1577 writeb(0x00, priv->regs.fifo);
1578 }
1579 }
1580 if (residue)
1581 pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1582 p->name, residue,
1583 (residue == 1) ? " was" : "s were");
1584
1585 /* Now reset the FIFO */
1586 parport_ip32_set_mode(p, ECR_MODE_PS2);
1587
1588 /* Host recovery for ECP mode */
1589 if (mode == ECR_MODE_ECP) {
1590 parport_ip32_data_reverse(p);
1591 parport_ip32_frob_control(p, DCR_nINIT, 0);
1592 if (parport_wait_peripheral(p, DSR_PERROR, 0))
1593 pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1594 p->name, __func__);
1595 parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1596 parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1597 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1598 pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1599 p->name, __func__);
1600 }
1601
1602 /* Adjust residue if needed */
1603 parport_ip32_set_mode(p, ECR_MODE_CFG);
1604 cnfga = readb(priv->regs.cnfgA);
1605 if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1606 pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1607 p->name, cnfga);
1608 pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1609 p->name);
1610 residue++;
1611 }
1612
1613 /* Don't care about partial PWords since we do not support
1614 * PWord != 1 byte. */
1615
1616 /* Back to forward PS2 mode. */
1617 parport_ip32_set_mode(p, ECR_MODE_PS2);
1618 parport_ip32_data_forward(p);
1619
1620 return residue;
1621 }
1622
1623 /**
1624 * parport_ip32_compat_write_data - write a block of data in SPP mode
1625 * @p: pointer to &struct parport
1626 * @buf: buffer of data to write
1627 * @len: length of buffer @buf
1628 * @flags: ignored
1629 */
parport_ip32_compat_write_data(struct parport * p,const void * buf,size_t len,int flags)1630 static size_t parport_ip32_compat_write_data(struct parport *p,
1631 const void *buf, size_t len,
1632 int flags)
1633 {
1634 static unsigned int ready_before = 1;
1635 struct parport_ip32_private * const priv = p->physport->private_data;
1636 struct parport * const physport = p->physport;
1637 size_t written = 0;
1638
1639 /* Special case: a timeout of zero means we cannot call schedule().
1640 * Also if O_NONBLOCK is set then use the default implementation. */
1641 if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1642 return parport_ieee1284_write_compat(p, buf, len, flags);
1643
1644 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1645 parport_ip32_set_mode(p, ECR_MODE_PS2);
1646 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1647 parport_ip32_data_forward(p);
1648 parport_ip32_disable_irq(p);
1649 parport_ip32_set_mode(p, ECR_MODE_PPF);
1650 physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1651
1652 /* Wait for peripheral to become ready */
1653 if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1654 DSR_nBUSY | DSR_nFAULT)) {
1655 /* Avoid to flood the logs */
1656 if (ready_before)
1657 printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1658 p->name, __func__);
1659 ready_before = 0;
1660 goto stop;
1661 }
1662 ready_before = 1;
1663
1664 written = parport_ip32_fifo_write_block(p, buf, len);
1665
1666 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1667 parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1668
1669 /* Check for a potential residue */
1670 written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1671
1672 /* Then, wait for BUSY to get low. */
1673 if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1674 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1675 p->name, __func__);
1676
1677 stop:
1678 /* Reset FIFO */
1679 parport_ip32_set_mode(p, ECR_MODE_PS2);
1680 physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1681
1682 return written;
1683 }
1684
1685 /*
1686 * FIXME - Insert here parport_ip32_ecp_read_data().
1687 */
1688
1689 /**
1690 * parport_ip32_ecp_write_data - write a block of data in ECP mode
1691 * @p: pointer to &struct parport
1692 * @buf: buffer of data to write
1693 * @len: length of buffer @buf
1694 * @flags: ignored
1695 */
parport_ip32_ecp_write_data(struct parport * p,const void * buf,size_t len,int flags)1696 static size_t parport_ip32_ecp_write_data(struct parport *p,
1697 const void *buf, size_t len,
1698 int flags)
1699 {
1700 static unsigned int ready_before = 1;
1701 struct parport_ip32_private * const priv = p->physport->private_data;
1702 struct parport * const physport = p->physport;
1703 size_t written = 0;
1704
1705 /* Special case: a timeout of zero means we cannot call schedule().
1706 * Also if O_NONBLOCK is set then use the default implementation. */
1707 if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1708 return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1709
1710 /* Negotiate to forward mode if necessary. */
1711 if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1712 /* Event 47: Set nInit high. */
1713 parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1714 DCR_nINIT | DCR_AUTOFD);
1715
1716 /* Event 49: PError goes high. */
1717 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1718 printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s",
1719 p->name, __func__);
1720 physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1721 return 0;
1722 }
1723 }
1724
1725 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1726 parport_ip32_set_mode(p, ECR_MODE_PS2);
1727 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1728 parport_ip32_data_forward(p);
1729 parport_ip32_disable_irq(p);
1730 parport_ip32_set_mode(p, ECR_MODE_ECP);
1731 physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1732
1733 /* Wait for peripheral to become ready */
1734 if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1735 DSR_nBUSY | DSR_nFAULT)) {
1736 /* Avoid to flood the logs */
1737 if (ready_before)
1738 printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1739 p->name, __func__);
1740 ready_before = 0;
1741 goto stop;
1742 }
1743 ready_before = 1;
1744
1745 written = parport_ip32_fifo_write_block(p, buf, len);
1746
1747 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1748 parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1749
1750 /* Check for a potential residue */
1751 written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1752
1753 /* Then, wait for BUSY to get low. */
1754 if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1755 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1756 p->name, __func__);
1757
1758 stop:
1759 /* Reset FIFO */
1760 parport_ip32_set_mode(p, ECR_MODE_PS2);
1761 physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1762
1763 return written;
1764 }
1765
1766 /*
1767 * FIXME - Insert here parport_ip32_ecp_write_addr().
1768 */
1769
1770 /*--- Default parport operations ---------------------------------------*/
1771
1772 static __initdata struct parport_operations parport_ip32_ops = {
1773 .write_data = parport_ip32_write_data,
1774 .read_data = parport_ip32_read_data,
1775
1776 .write_control = parport_ip32_write_control,
1777 .read_control = parport_ip32_read_control,
1778 .frob_control = parport_ip32_frob_control,
1779
1780 .read_status = parport_ip32_read_status,
1781
1782 .enable_irq = parport_ip32_enable_irq,
1783 .disable_irq = parport_ip32_disable_irq,
1784
1785 .data_forward = parport_ip32_data_forward,
1786 .data_reverse = parport_ip32_data_reverse,
1787
1788 .init_state = parport_ip32_init_state,
1789 .save_state = parport_ip32_save_state,
1790 .restore_state = parport_ip32_restore_state,
1791
1792 .epp_write_data = parport_ieee1284_epp_write_data,
1793 .epp_read_data = parport_ieee1284_epp_read_data,
1794 .epp_write_addr = parport_ieee1284_epp_write_addr,
1795 .epp_read_addr = parport_ieee1284_epp_read_addr,
1796
1797 .ecp_write_data = parport_ieee1284_ecp_write_data,
1798 .ecp_read_data = parport_ieee1284_ecp_read_data,
1799 .ecp_write_addr = parport_ieee1284_ecp_write_addr,
1800
1801 .compat_write_data = parport_ieee1284_write_compat,
1802 .nibble_read_data = parport_ieee1284_read_nibble,
1803 .byte_read_data = parport_ieee1284_read_byte,
1804
1805 .owner = THIS_MODULE,
1806 };
1807
1808 /*--- Device detection -------------------------------------------------*/
1809
1810 /**
1811 * parport_ip32_ecp_supported - check for an ECP port
1812 * @p: pointer to the &parport structure
1813 *
1814 * Returns 1 if an ECP port is found, and 0 otherwise. This function actually
1815 * checks if an Extended Control Register seems to be present. On successful
1816 * return, the port is placed in SPP mode.
1817 */
parport_ip32_ecp_supported(struct parport * p)1818 static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1819 {
1820 struct parport_ip32_private * const priv = p->physport->private_data;
1821 unsigned int ecr;
1822
1823 ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1824 writeb(ecr, priv->regs.ecr);
1825 if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1826 goto fail;
1827
1828 pr_probe(p, "Found working ECR register\n");
1829 parport_ip32_set_mode(p, ECR_MODE_SPP);
1830 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1831 return 1;
1832
1833 fail:
1834 pr_probe(p, "ECR register not found\n");
1835 return 0;
1836 }
1837
1838 /**
1839 * parport_ip32_fifo_supported - check for FIFO parameters
1840 * @p: pointer to the &parport structure
1841 *
1842 * Check for FIFO parameters of an Extended Capabilities Port. Returns 1 on
1843 * success, and 0 otherwise. Adjust FIFO parameters in the parport structure.
1844 * On return, the port is placed in SPP mode.
1845 */
parport_ip32_fifo_supported(struct parport * p)1846 static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1847 {
1848 struct parport_ip32_private * const priv = p->physport->private_data;
1849 unsigned int configa, configb;
1850 unsigned int pword;
1851 unsigned int i;
1852
1853 /* Configuration mode */
1854 parport_ip32_set_mode(p, ECR_MODE_CFG);
1855 configa = readb(priv->regs.cnfgA);
1856 configb = readb(priv->regs.cnfgB);
1857
1858 /* Find out PWord size */
1859 switch (configa & CNFGA_ID_MASK) {
1860 case CNFGA_ID_8:
1861 pword = 1;
1862 break;
1863 case CNFGA_ID_16:
1864 pword = 2;
1865 break;
1866 case CNFGA_ID_32:
1867 pword = 4;
1868 break;
1869 default:
1870 pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1871 (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1872 goto fail;
1873 break;
1874 }
1875 if (pword != 1) {
1876 pr_probe(p, "Unsupported PWord size: %u\n", pword);
1877 goto fail;
1878 }
1879 priv->pword = pword;
1880 pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1881
1882 /* Check for compression support */
1883 writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1884 if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1885 pr_probe(p, "Hardware compression detected (unsupported)\n");
1886 writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1887
1888 /* Reset FIFO and go in test mode (no interrupt, no DMA) */
1889 parport_ip32_set_mode(p, ECR_MODE_TST);
1890
1891 /* FIFO must be empty now */
1892 if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1893 pr_probe(p, "FIFO not reset\n");
1894 goto fail;
1895 }
1896
1897 /* Find out FIFO depth. */
1898 priv->fifo_depth = 0;
1899 for (i = 0; i < 1024; i++) {
1900 if (readb(priv->regs.ecr) & ECR_F_FULL) {
1901 /* FIFO full */
1902 priv->fifo_depth = i;
1903 break;
1904 }
1905 writeb((u8)i, priv->regs.fifo);
1906 }
1907 if (i >= 1024) {
1908 pr_probe(p, "Can't fill FIFO\n");
1909 goto fail;
1910 }
1911 if (!priv->fifo_depth) {
1912 pr_probe(p, "Can't get FIFO depth\n");
1913 goto fail;
1914 }
1915 pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1916
1917 /* Enable interrupts */
1918 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1919
1920 /* Find out writeIntrThreshold: number of PWords we know we can write
1921 * if we get an interrupt. */
1922 priv->writeIntrThreshold = 0;
1923 for (i = 0; i < priv->fifo_depth; i++) {
1924 if (readb(priv->regs.fifo) != (u8)i) {
1925 pr_probe(p, "Invalid data in FIFO\n");
1926 goto fail;
1927 }
1928 if (!priv->writeIntrThreshold
1929 && readb(priv->regs.ecr) & ECR_SERVINTR)
1930 /* writeIntrThreshold reached */
1931 priv->writeIntrThreshold = i + 1;
1932 if (i + 1 < priv->fifo_depth
1933 && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1934 /* FIFO empty before the last byte? */
1935 pr_probe(p, "Data lost in FIFO\n");
1936 goto fail;
1937 }
1938 }
1939 if (!priv->writeIntrThreshold) {
1940 pr_probe(p, "Can't get writeIntrThreshold\n");
1941 goto fail;
1942 }
1943 pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1944
1945 /* FIFO must be empty now */
1946 if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1947 pr_probe(p, "Can't empty FIFO\n");
1948 goto fail;
1949 }
1950
1951 /* Reset FIFO */
1952 parport_ip32_set_mode(p, ECR_MODE_PS2);
1953 /* Set reverse direction (must be in PS2 mode) */
1954 parport_ip32_data_reverse(p);
1955 /* Test FIFO, no interrupt, no DMA */
1956 parport_ip32_set_mode(p, ECR_MODE_TST);
1957 /* Enable interrupts */
1958 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1959
1960 /* Find out readIntrThreshold: number of PWords we can read if we get
1961 * an interrupt. */
1962 priv->readIntrThreshold = 0;
1963 for (i = 0; i < priv->fifo_depth; i++) {
1964 writeb(0xaa, priv->regs.fifo);
1965 if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1966 /* readIntrThreshold reached */
1967 priv->readIntrThreshold = i + 1;
1968 break;
1969 }
1970 }
1971 if (!priv->readIntrThreshold) {
1972 pr_probe(p, "Can't get readIntrThreshold\n");
1973 goto fail;
1974 }
1975 pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1976
1977 /* Reset ECR */
1978 parport_ip32_set_mode(p, ECR_MODE_PS2);
1979 parport_ip32_data_forward(p);
1980 parport_ip32_set_mode(p, ECR_MODE_SPP);
1981 return 1;
1982
1983 fail:
1984 priv->fifo_depth = 0;
1985 parport_ip32_set_mode(p, ECR_MODE_SPP);
1986 return 0;
1987 }
1988
1989 /*--- Initialization code ----------------------------------------------*/
1990
1991 /**
1992 * parport_ip32_make_isa_registers - compute (ISA) register addresses
1993 * @regs: pointer to &struct parport_ip32_regs to fill
1994 * @base: base address of standard and EPP registers
1995 * @base_hi: base address of ECP registers
1996 * @regshift: how much to shift register offset by
1997 *
1998 * Compute register addresses, according to the ISA standard. The addresses
1999 * of the standard and EPP registers are computed from address @base. The
2000 * addresses of the ECP registers are computed from address @base_hi.
2001 */
2002 static void __init
parport_ip32_make_isa_registers(struct parport_ip32_regs * regs,void __iomem * base,void __iomem * base_hi,unsigned int regshift)2003 parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
2004 void __iomem *base, void __iomem *base_hi,
2005 unsigned int regshift)
2006 {
2007 #define r_base(offset) ((u8 __iomem *)base + ((offset) << regshift))
2008 #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
2009 *regs = (struct parport_ip32_regs){
2010 .data = r_base(0),
2011 .dsr = r_base(1),
2012 .dcr = r_base(2),
2013 .eppAddr = r_base(3),
2014 .eppData0 = r_base(4),
2015 .eppData1 = r_base(5),
2016 .eppData2 = r_base(6),
2017 .eppData3 = r_base(7),
2018 .ecpAFifo = r_base(0),
2019 .fifo = r_base_hi(0),
2020 .cnfgA = r_base_hi(0),
2021 .cnfgB = r_base_hi(1),
2022 .ecr = r_base_hi(2)
2023 };
2024 #undef r_base_hi
2025 #undef r_base
2026 }
2027
2028 /**
2029 * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2030 *
2031 * Returns the new allocated &parport structure. On error, an error code is
2032 * encoded in return value with the ERR_PTR function.
2033 */
parport_ip32_probe_port(void)2034 static __init struct parport *parport_ip32_probe_port(void)
2035 {
2036 struct parport_ip32_regs regs;
2037 struct parport_ip32_private *priv = NULL;
2038 struct parport_operations *ops = NULL;
2039 struct parport *p = NULL;
2040 int err;
2041
2042 parport_ip32_make_isa_registers(®s, &mace->isa.parallel,
2043 &mace->isa.ecp1284, 8 /* regshift */);
2044
2045 ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2046 priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2047 p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2048 if (ops == NULL || priv == NULL || p == NULL) {
2049 err = -ENOMEM;
2050 goto fail;
2051 }
2052 p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2053 p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2054 p->private_data = priv;
2055
2056 *ops = parport_ip32_ops;
2057 *priv = (struct parport_ip32_private){
2058 .regs = regs,
2059 .dcr_writable = DCR_DIR | DCR_SELECT | DCR_nINIT |
2060 DCR_AUTOFD | DCR_STROBE,
2061 .irq_mode = PARPORT_IP32_IRQ_FWD,
2062 };
2063 init_completion(&priv->irq_complete);
2064
2065 /* Probe port. */
2066 if (!parport_ip32_ecp_supported(p)) {
2067 err = -ENODEV;
2068 goto fail;
2069 }
2070 parport_ip32_dump_state(p, "begin init", 0);
2071
2072 /* We found what looks like a working ECR register. Simply assume
2073 * that all modes are correctly supported. Enable basic modes. */
2074 p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2075 p->modes |= PARPORT_MODE_TRISTATE;
2076
2077 if (!parport_ip32_fifo_supported(p)) {
2078 printk(KERN_WARNING PPIP32
2079 "%s: error: FIFO disabled\n", p->name);
2080 /* Disable hardware modes depending on a working FIFO. */
2081 features &= ~PARPORT_IP32_ENABLE_SPP;
2082 features &= ~PARPORT_IP32_ENABLE_ECP;
2083 /* DMA is not needed if FIFO is not supported. */
2084 features &= ~PARPORT_IP32_ENABLE_DMA;
2085 }
2086
2087 /* Request IRQ */
2088 if (features & PARPORT_IP32_ENABLE_IRQ) {
2089 int irq = MACEISA_PARALLEL_IRQ;
2090 if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2091 printk(KERN_WARNING PPIP32
2092 "%s: error: IRQ disabled\n", p->name);
2093 /* DMA cannot work without interrupts. */
2094 features &= ~PARPORT_IP32_ENABLE_DMA;
2095 } else {
2096 pr_probe(p, "Interrupt support enabled\n");
2097 p->irq = irq;
2098 priv->dcr_writable |= DCR_IRQ;
2099 }
2100 }
2101
2102 /* Allocate DMA resources */
2103 if (features & PARPORT_IP32_ENABLE_DMA) {
2104 if (parport_ip32_dma_register())
2105 printk(KERN_WARNING PPIP32
2106 "%s: error: DMA disabled\n", p->name);
2107 else {
2108 pr_probe(p, "DMA support enabled\n");
2109 p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2110 p->modes |= PARPORT_MODE_DMA;
2111 }
2112 }
2113
2114 if (features & PARPORT_IP32_ENABLE_SPP) {
2115 /* Enable compatibility FIFO mode */
2116 p->ops->compat_write_data = parport_ip32_compat_write_data;
2117 p->modes |= PARPORT_MODE_COMPAT;
2118 pr_probe(p, "Hardware support for SPP mode enabled\n");
2119 }
2120 if (features & PARPORT_IP32_ENABLE_EPP) {
2121 /* Set up access functions to use EPP hardware. */
2122 p->ops->epp_read_data = parport_ip32_epp_read_data;
2123 p->ops->epp_write_data = parport_ip32_epp_write_data;
2124 p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2125 p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2126 p->modes |= PARPORT_MODE_EPP;
2127 pr_probe(p, "Hardware support for EPP mode enabled\n");
2128 }
2129 if (features & PARPORT_IP32_ENABLE_ECP) {
2130 /* Enable ECP FIFO mode */
2131 p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2132 /* FIXME - not implemented */
2133 /* p->ops->ecp_read_data = parport_ip32_ecp_read_data; */
2134 /* p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2135 p->modes |= PARPORT_MODE_ECP;
2136 pr_probe(p, "Hardware support for ECP mode enabled\n");
2137 }
2138
2139 /* Initialize the port with sensible values */
2140 parport_ip32_set_mode(p, ECR_MODE_PS2);
2141 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2142 parport_ip32_data_forward(p);
2143 parport_ip32_disable_irq(p);
2144 parport_ip32_write_data(p, 0x00);
2145 parport_ip32_dump_state(p, "end init", 0);
2146
2147 /* Print out what we found */
2148 printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)",
2149 p->name, p->base, p->base_hi);
2150 if (p->irq != PARPORT_IRQ_NONE)
2151 printk(", irq %d", p->irq);
2152 printk(" [");
2153 #define printmode(x) if (p->modes & PARPORT_MODE_##x) \
2154 printk("%s%s", f++ ? "," : "", #x)
2155 {
2156 unsigned int f = 0;
2157 printmode(PCSPP);
2158 printmode(TRISTATE);
2159 printmode(COMPAT);
2160 printmode(EPP);
2161 printmode(ECP);
2162 printmode(DMA);
2163 }
2164 #undef printmode
2165 printk("]\n");
2166
2167 parport_announce_port(p);
2168 return p;
2169
2170 fail:
2171 if (p)
2172 parport_put_port(p);
2173 kfree(priv);
2174 kfree(ops);
2175 return ERR_PTR(err);
2176 }
2177
2178 /**
2179 * parport_ip32_unregister_port - unregister a parallel port
2180 * @p: pointer to the &struct parport
2181 *
2182 * Unregisters a parallel port and free previously allocated resources
2183 * (memory, IRQ, ...).
2184 */
parport_ip32_unregister_port(struct parport * p)2185 static __exit void parport_ip32_unregister_port(struct parport *p)
2186 {
2187 struct parport_ip32_private * const priv = p->physport->private_data;
2188 struct parport_operations *ops = p->ops;
2189
2190 parport_remove_port(p);
2191 if (p->modes & PARPORT_MODE_DMA)
2192 parport_ip32_dma_unregister();
2193 if (p->irq != PARPORT_IRQ_NONE)
2194 free_irq(p->irq, p);
2195 parport_put_port(p);
2196 kfree(priv);
2197 kfree(ops);
2198 }
2199
2200 /**
2201 * parport_ip32_init - module initialization function
2202 */
parport_ip32_init(void)2203 static int __init parport_ip32_init(void)
2204 {
2205 pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2206 this_port = parport_ip32_probe_port();
2207 return PTR_ERR_OR_ZERO(this_port);
2208 }
2209
2210 /**
2211 * parport_ip32_exit - module termination function
2212 */
parport_ip32_exit(void)2213 static void __exit parport_ip32_exit(void)
2214 {
2215 parport_ip32_unregister_port(this_port);
2216 }
2217
2218 /*--- Module stuff -----------------------------------------------------*/
2219
2220 MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2221 MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2222 MODULE_LICENSE("GPL");
2223 MODULE_VERSION("0.6"); /* update in parport_ip32_init() too */
2224
2225 module_init(parport_ip32_init);
2226 module_exit(parport_ip32_exit);
2227
2228 module_param(verbose_probing, bool, S_IRUGO);
2229 MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2230
2231 module_param(features, uint, S_IRUGO);
2232 MODULE_PARM_DESC(features,
2233 "Bit mask of features to enable"
2234 ", bit 0: IRQ support"
2235 ", bit 1: DMA support"
2236 ", bit 2: hardware SPP mode"
2237 ", bit 3: hardware EPP mode"
2238 ", bit 4: hardware ECP mode");
2239
2240 /*--- Inform (X)Emacs about preferred coding style ---------------------*/
2241 /*
2242 * Local Variables:
2243 * mode: c
2244 * c-file-style: "linux"
2245 * indent-tabs-mode: t
2246 * tab-width: 8
2247 * fill-column: 78
2248 * ispell-local-dictionary: "american"
2249 * End:
2250 */
2251