1 /*
2 * APM X-Gene MSI Driver
3 *
4 * Copyright (c) 2014, Applied Micro Circuits Corporation
5 * Author: Tanmay Inamdar <tinamdar@apm.com>
6 * Duc Dang <dhdang@apm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 */
18 #include <linux/cpu.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/msi.h>
22 #include <linux/of_irq.h>
23 #include <linux/irqchip/chained_irq.h>
24 #include <linux/pci.h>
25 #include <linux/platform_device.h>
26 #include <linux/of_pci.h>
27
28 #define MSI_IR0 0x000000
29 #define MSI_INT0 0x800000
30 #define IDX_PER_GROUP 8
31 #define IRQS_PER_IDX 16
32 #define NR_HW_IRQS 16
33 #define NR_MSI_VEC (IDX_PER_GROUP * IRQS_PER_IDX * NR_HW_IRQS)
34
35 struct xgene_msi_group {
36 struct xgene_msi *msi;
37 int gic_irq;
38 u32 msi_grp;
39 };
40
41 struct xgene_msi {
42 struct device_node *node;
43 struct irq_domain *inner_domain;
44 struct irq_domain *msi_domain;
45 u64 msi_addr;
46 void __iomem *msi_regs;
47 unsigned long *bitmap;
48 struct mutex bitmap_lock;
49 struct xgene_msi_group *msi_groups;
50 int num_cpus;
51 };
52
53 /* Global data */
54 static struct xgene_msi xgene_msi_ctrl;
55
56 static struct irq_chip xgene_msi_top_irq_chip = {
57 .name = "X-Gene1 MSI",
58 .irq_enable = pci_msi_unmask_irq,
59 .irq_disable = pci_msi_mask_irq,
60 .irq_mask = pci_msi_mask_irq,
61 .irq_unmask = pci_msi_unmask_irq,
62 };
63
64 static struct msi_domain_info xgene_msi_domain_info = {
65 .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
66 MSI_FLAG_PCI_MSIX),
67 .chip = &xgene_msi_top_irq_chip,
68 };
69
70 /*
71 * X-Gene v1 has 16 groups of MSI termination registers MSInIRx, where
72 * n is group number (0..F), x is index of registers in each group (0..7)
73 * The register layout is as follows:
74 * MSI0IR0 base_addr
75 * MSI0IR1 base_addr + 0x10000
76 * ... ...
77 * MSI0IR6 base_addr + 0x60000
78 * MSI0IR7 base_addr + 0x70000
79 * MSI1IR0 base_addr + 0x80000
80 * MSI1IR1 base_addr + 0x90000
81 * ... ...
82 * MSI1IR7 base_addr + 0xF0000
83 * MSI2IR0 base_addr + 0x100000
84 * ... ...
85 * MSIFIR0 base_addr + 0x780000
86 * MSIFIR1 base_addr + 0x790000
87 * ... ...
88 * MSIFIR7 base_addr + 0x7F0000
89 * MSIINT0 base_addr + 0x800000
90 * MSIINT1 base_addr + 0x810000
91 * ... ...
92 * MSIINTF base_addr + 0x8F0000
93 *
94 * Each index register supports 16 MSI vectors (0..15) to generate interrupt.
95 * There are total 16 GIC IRQs assigned for these 16 groups of MSI termination
96 * registers.
97 *
98 * Each MSI termination group has 1 MSIINTn register (n is 0..15) to indicate
99 * the MSI pending status caused by 1 of its 8 index registers.
100 */
101
102 /* MSInIRx read helper */
xgene_msi_ir_read(struct xgene_msi * msi,u32 msi_grp,u32 msir_idx)103 static u32 xgene_msi_ir_read(struct xgene_msi *msi,
104 u32 msi_grp, u32 msir_idx)
105 {
106 return readl_relaxed(msi->msi_regs + MSI_IR0 +
107 (msi_grp << 19) + (msir_idx << 16));
108 }
109
110 /* MSIINTn read helper */
xgene_msi_int_read(struct xgene_msi * msi,u32 msi_grp)111 static u32 xgene_msi_int_read(struct xgene_msi *msi, u32 msi_grp)
112 {
113 return readl_relaxed(msi->msi_regs + MSI_INT0 + (msi_grp << 16));
114 }
115
116 /*
117 * With 2048 MSI vectors supported, the MSI message can be constructed using
118 * following scheme:
119 * - Divide into 8 256-vector groups
120 * Group 0: 0-255
121 * Group 1: 256-511
122 * Group 2: 512-767
123 * ...
124 * Group 7: 1792-2047
125 * - Each 256-vector group is divided into 16 16-vector groups
126 * As an example: 16 16-vector groups for 256-vector group 0-255 is
127 * Group 0: 0-15
128 * Group 1: 16-32
129 * ...
130 * Group 15: 240-255
131 * - The termination address of MSI vector in 256-vector group n and 16-vector
132 * group x is the address of MSIxIRn
133 * - The data for MSI vector in 16-vector group x is x
134 */
hwirq_to_reg_set(unsigned long hwirq)135 static u32 hwirq_to_reg_set(unsigned long hwirq)
136 {
137 return (hwirq / (NR_HW_IRQS * IRQS_PER_IDX));
138 }
139
hwirq_to_group(unsigned long hwirq)140 static u32 hwirq_to_group(unsigned long hwirq)
141 {
142 return (hwirq % NR_HW_IRQS);
143 }
144
hwirq_to_msi_data(unsigned long hwirq)145 static u32 hwirq_to_msi_data(unsigned long hwirq)
146 {
147 return ((hwirq / NR_HW_IRQS) % IRQS_PER_IDX);
148 }
149
xgene_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)150 static void xgene_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
151 {
152 struct xgene_msi *msi = irq_data_get_irq_chip_data(data);
153 u32 reg_set = hwirq_to_reg_set(data->hwirq);
154 u32 group = hwirq_to_group(data->hwirq);
155 u64 target_addr = msi->msi_addr + (((8 * group) + reg_set) << 16);
156
157 msg->address_hi = upper_32_bits(target_addr);
158 msg->address_lo = lower_32_bits(target_addr);
159 msg->data = hwirq_to_msi_data(data->hwirq);
160 }
161
162 /*
163 * X-Gene v1 only has 16 MSI GIC IRQs for 2048 MSI vectors. To maintain
164 * the expected behaviour of .set_affinity for each MSI interrupt, the 16
165 * MSI GIC IRQs are statically allocated to 8 X-Gene v1 cores (2 GIC IRQs
166 * for each core). The MSI vector is moved fom 1 MSI GIC IRQ to another
167 * MSI GIC IRQ to steer its MSI interrupt to correct X-Gene v1 core. As a
168 * consequence, the total MSI vectors that X-Gene v1 supports will be
169 * reduced to 256 (2048/8) vectors.
170 */
hwirq_to_cpu(unsigned long hwirq)171 static int hwirq_to_cpu(unsigned long hwirq)
172 {
173 return (hwirq % xgene_msi_ctrl.num_cpus);
174 }
175
hwirq_to_canonical_hwirq(unsigned long hwirq)176 static unsigned long hwirq_to_canonical_hwirq(unsigned long hwirq)
177 {
178 return (hwirq - hwirq_to_cpu(hwirq));
179 }
180
xgene_msi_set_affinity(struct irq_data * irqdata,const struct cpumask * mask,bool force)181 static int xgene_msi_set_affinity(struct irq_data *irqdata,
182 const struct cpumask *mask, bool force)
183 {
184 int target_cpu = cpumask_first(mask);
185 int curr_cpu;
186
187 curr_cpu = hwirq_to_cpu(irqdata->hwirq);
188 if (curr_cpu == target_cpu)
189 return IRQ_SET_MASK_OK_DONE;
190
191 /* Update MSI number to target the new CPU */
192 irqdata->hwirq = hwirq_to_canonical_hwirq(irqdata->hwirq) + target_cpu;
193
194 return IRQ_SET_MASK_OK;
195 }
196
197 static struct irq_chip xgene_msi_bottom_irq_chip = {
198 .name = "MSI",
199 .irq_set_affinity = xgene_msi_set_affinity,
200 .irq_compose_msi_msg = xgene_compose_msi_msg,
201 };
202
xgene_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)203 static int xgene_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
204 unsigned int nr_irqs, void *args)
205 {
206 struct xgene_msi *msi = domain->host_data;
207 int msi_irq;
208
209 mutex_lock(&msi->bitmap_lock);
210
211 msi_irq = bitmap_find_next_zero_area(msi->bitmap, NR_MSI_VEC, 0,
212 msi->num_cpus, 0);
213 if (msi_irq < NR_MSI_VEC)
214 bitmap_set(msi->bitmap, msi_irq, msi->num_cpus);
215 else
216 msi_irq = -ENOSPC;
217
218 mutex_unlock(&msi->bitmap_lock);
219
220 if (msi_irq < 0)
221 return msi_irq;
222
223 irq_domain_set_info(domain, virq, msi_irq,
224 &xgene_msi_bottom_irq_chip, domain->host_data,
225 handle_simple_irq, NULL, NULL);
226
227 return 0;
228 }
229
xgene_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)230 static void xgene_irq_domain_free(struct irq_domain *domain,
231 unsigned int virq, unsigned int nr_irqs)
232 {
233 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
234 struct xgene_msi *msi = irq_data_get_irq_chip_data(d);
235 u32 hwirq;
236
237 mutex_lock(&msi->bitmap_lock);
238
239 hwirq = hwirq_to_canonical_hwirq(d->hwirq);
240 bitmap_clear(msi->bitmap, hwirq, msi->num_cpus);
241
242 mutex_unlock(&msi->bitmap_lock);
243
244 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
245 }
246
247 static const struct irq_domain_ops msi_domain_ops = {
248 .alloc = xgene_irq_domain_alloc,
249 .free = xgene_irq_domain_free,
250 };
251
xgene_allocate_domains(struct xgene_msi * msi)252 static int xgene_allocate_domains(struct xgene_msi *msi)
253 {
254 msi->inner_domain = irq_domain_add_linear(NULL, NR_MSI_VEC,
255 &msi_domain_ops, msi);
256 if (!msi->inner_domain)
257 return -ENOMEM;
258
259 msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(msi->node),
260 &xgene_msi_domain_info,
261 msi->inner_domain);
262
263 if (!msi->msi_domain) {
264 irq_domain_remove(msi->inner_domain);
265 return -ENOMEM;
266 }
267
268 return 0;
269 }
270
xgene_free_domains(struct xgene_msi * msi)271 static void xgene_free_domains(struct xgene_msi *msi)
272 {
273 if (msi->msi_domain)
274 irq_domain_remove(msi->msi_domain);
275 if (msi->inner_domain)
276 irq_domain_remove(msi->inner_domain);
277 }
278
xgene_msi_init_allocator(struct xgene_msi * xgene_msi)279 static int xgene_msi_init_allocator(struct xgene_msi *xgene_msi)
280 {
281 int size = BITS_TO_LONGS(NR_MSI_VEC) * sizeof(long);
282
283 xgene_msi->bitmap = kzalloc(size, GFP_KERNEL);
284 if (!xgene_msi->bitmap)
285 return -ENOMEM;
286
287 mutex_init(&xgene_msi->bitmap_lock);
288
289 xgene_msi->msi_groups = kcalloc(NR_HW_IRQS,
290 sizeof(struct xgene_msi_group),
291 GFP_KERNEL);
292 if (!xgene_msi->msi_groups)
293 return -ENOMEM;
294
295 return 0;
296 }
297
xgene_msi_isr(struct irq_desc * desc)298 static void xgene_msi_isr(struct irq_desc *desc)
299 {
300 struct irq_chip *chip = irq_desc_get_chip(desc);
301 struct xgene_msi_group *msi_groups;
302 struct xgene_msi *xgene_msi;
303 unsigned int virq;
304 int msir_index, msir_val, hw_irq;
305 u32 intr_index, grp_select, msi_grp;
306
307 chained_irq_enter(chip, desc);
308
309 msi_groups = irq_desc_get_handler_data(desc);
310 xgene_msi = msi_groups->msi;
311 msi_grp = msi_groups->msi_grp;
312
313 /*
314 * MSIINTn (n is 0..F) indicates if there is a pending MSI interrupt
315 * If bit x of this register is set (x is 0..7), one or more interupts
316 * corresponding to MSInIRx is set.
317 */
318 grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
319 while (grp_select) {
320 msir_index = ffs(grp_select) - 1;
321 /*
322 * Calculate MSInIRx address to read to check for interrupts
323 * (refer to termination address and data assignment
324 * described in xgene_compose_msi_msg() )
325 */
326 msir_val = xgene_msi_ir_read(xgene_msi, msi_grp, msir_index);
327 while (msir_val) {
328 intr_index = ffs(msir_val) - 1;
329 /*
330 * Calculate MSI vector number (refer to the termination
331 * address and data assignment described in
332 * xgene_compose_msi_msg function)
333 */
334 hw_irq = (((msir_index * IRQS_PER_IDX) + intr_index) *
335 NR_HW_IRQS) + msi_grp;
336 /*
337 * As we have multiple hw_irq that maps to single MSI,
338 * always look up the virq using the hw_irq as seen from
339 * CPU0
340 */
341 hw_irq = hwirq_to_canonical_hwirq(hw_irq);
342 virq = irq_find_mapping(xgene_msi->inner_domain, hw_irq);
343 WARN_ON(!virq);
344 if (virq != 0)
345 generic_handle_irq(virq);
346 msir_val &= ~(1 << intr_index);
347 }
348 grp_select &= ~(1 << msir_index);
349
350 if (!grp_select) {
351 /*
352 * We handled all interrupts happened in this group,
353 * resample this group MSI_INTx register in case
354 * something else has been made pending in the meantime
355 */
356 grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
357 }
358 }
359
360 chained_irq_exit(chip, desc);
361 }
362
xgene_msi_remove(struct platform_device * pdev)363 static int xgene_msi_remove(struct platform_device *pdev)
364 {
365 int virq, i;
366 struct xgene_msi *msi = platform_get_drvdata(pdev);
367
368 for (i = 0; i < NR_HW_IRQS; i++) {
369 virq = msi->msi_groups[i].gic_irq;
370 if (virq != 0)
371 irq_set_chained_handler_and_data(virq, NULL, NULL);
372 }
373 kfree(msi->msi_groups);
374
375 kfree(msi->bitmap);
376 msi->bitmap = NULL;
377
378 xgene_free_domains(msi);
379
380 return 0;
381 }
382
xgene_msi_hwirq_alloc(unsigned int cpu)383 static int xgene_msi_hwirq_alloc(unsigned int cpu)
384 {
385 struct xgene_msi *msi = &xgene_msi_ctrl;
386 struct xgene_msi_group *msi_group;
387 cpumask_var_t mask;
388 int i;
389 int err;
390
391 for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
392 msi_group = &msi->msi_groups[i];
393 if (!msi_group->gic_irq)
394 continue;
395
396 irq_set_chained_handler_and_data(msi_group->gic_irq,
397 xgene_msi_isr, msi_group);
398
399 /*
400 * Statically allocate MSI GIC IRQs to each CPU core.
401 * With 8-core X-Gene v1, 2 MSI GIC IRQs are allocated
402 * to each core.
403 */
404 if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
405 cpumask_clear(mask);
406 cpumask_set_cpu(cpu, mask);
407 err = irq_set_affinity(msi_group->gic_irq, mask);
408 if (err)
409 pr_err("failed to set affinity for GIC IRQ");
410 free_cpumask_var(mask);
411 } else {
412 pr_err("failed to alloc CPU mask for affinity\n");
413 err = -EINVAL;
414 }
415
416 if (err) {
417 irq_set_chained_handler_and_data(msi_group->gic_irq,
418 NULL, NULL);
419 return err;
420 }
421 }
422
423 return 0;
424 }
425
xgene_msi_hwirq_free(unsigned int cpu)426 static void xgene_msi_hwirq_free(unsigned int cpu)
427 {
428 struct xgene_msi *msi = &xgene_msi_ctrl;
429 struct xgene_msi_group *msi_group;
430 int i;
431
432 for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
433 msi_group = &msi->msi_groups[i];
434 if (!msi_group->gic_irq)
435 continue;
436
437 irq_set_chained_handler_and_data(msi_group->gic_irq, NULL,
438 NULL);
439 }
440 }
441
xgene_msi_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)442 static int xgene_msi_cpu_callback(struct notifier_block *nfb,
443 unsigned long action, void *hcpu)
444 {
445 unsigned cpu = (unsigned long)hcpu;
446
447 switch (action) {
448 case CPU_ONLINE:
449 case CPU_ONLINE_FROZEN:
450 xgene_msi_hwirq_alloc(cpu);
451 break;
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
454 xgene_msi_hwirq_free(cpu);
455 break;
456 default:
457 break;
458 }
459
460 return NOTIFY_OK;
461 }
462
463 static struct notifier_block xgene_msi_cpu_notifier = {
464 .notifier_call = xgene_msi_cpu_callback,
465 };
466
467 static const struct of_device_id xgene_msi_match_table[] = {
468 {.compatible = "apm,xgene1-msi"},
469 {},
470 };
471
xgene_msi_probe(struct platform_device * pdev)472 static int xgene_msi_probe(struct platform_device *pdev)
473 {
474 struct resource *res;
475 int rc, irq_index;
476 struct xgene_msi *xgene_msi;
477 unsigned int cpu;
478 int virt_msir;
479 u32 msi_val, msi_idx;
480
481 xgene_msi = &xgene_msi_ctrl;
482
483 platform_set_drvdata(pdev, xgene_msi);
484
485 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
486 xgene_msi->msi_regs = devm_ioremap_resource(&pdev->dev, res);
487 if (IS_ERR(xgene_msi->msi_regs)) {
488 dev_err(&pdev->dev, "no reg space\n");
489 rc = -EINVAL;
490 goto error;
491 }
492 xgene_msi->msi_addr = res->start;
493 xgene_msi->node = pdev->dev.of_node;
494 xgene_msi->num_cpus = num_possible_cpus();
495
496 rc = xgene_msi_init_allocator(xgene_msi);
497 if (rc) {
498 dev_err(&pdev->dev, "Error allocating MSI bitmap\n");
499 goto error;
500 }
501
502 rc = xgene_allocate_domains(xgene_msi);
503 if (rc) {
504 dev_err(&pdev->dev, "Failed to allocate MSI domain\n");
505 goto error;
506 }
507
508 for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
509 virt_msir = platform_get_irq(pdev, irq_index);
510 if (virt_msir < 0) {
511 dev_err(&pdev->dev, "Cannot translate IRQ index %d\n",
512 irq_index);
513 rc = -EINVAL;
514 goto error;
515 }
516 xgene_msi->msi_groups[irq_index].gic_irq = virt_msir;
517 xgene_msi->msi_groups[irq_index].msi_grp = irq_index;
518 xgene_msi->msi_groups[irq_index].msi = xgene_msi;
519 }
520
521 /*
522 * MSInIRx registers are read-to-clear; before registering
523 * interrupt handlers, read all of them to clear spurious
524 * interrupts that may occur before the driver is probed.
525 */
526 for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
527 for (msi_idx = 0; msi_idx < IDX_PER_GROUP; msi_idx++)
528 msi_val = xgene_msi_ir_read(xgene_msi, irq_index,
529 msi_idx);
530 /* Read MSIINTn to confirm */
531 msi_val = xgene_msi_int_read(xgene_msi, irq_index);
532 if (msi_val) {
533 dev_err(&pdev->dev, "Failed to clear spurious IRQ\n");
534 rc = -EINVAL;
535 goto error;
536 }
537 }
538
539 cpu_notifier_register_begin();
540
541 for_each_online_cpu(cpu)
542 if (xgene_msi_hwirq_alloc(cpu)) {
543 dev_err(&pdev->dev, "failed to register MSI handlers\n");
544 cpu_notifier_register_done();
545 goto error;
546 }
547
548 rc = __register_hotcpu_notifier(&xgene_msi_cpu_notifier);
549 if (rc) {
550 dev_err(&pdev->dev, "failed to add CPU MSI notifier\n");
551 cpu_notifier_register_done();
552 goto error;
553 }
554
555 cpu_notifier_register_done();
556
557 dev_info(&pdev->dev, "APM X-Gene PCIe MSI driver loaded\n");
558
559 return 0;
560
561 error:
562 xgene_msi_remove(pdev);
563 return rc;
564 }
565
566 static struct platform_driver xgene_msi_driver = {
567 .driver = {
568 .name = "xgene-msi",
569 .of_match_table = xgene_msi_match_table,
570 },
571 .probe = xgene_msi_probe,
572 .remove = xgene_msi_remove,
573 };
574
xgene_pcie_msi_init(void)575 static int __init xgene_pcie_msi_init(void)
576 {
577 return platform_driver_register(&xgene_msi_driver);
578 }
579 subsys_initcall(xgene_pcie_msi_init);
580