• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
__rtc_read_time(struct rtc_device * rtc,struct rtc_time * tm)23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	int err;
26 	if (!rtc->ops)
27 		err = -ENODEV;
28 	else if (!rtc->ops->read_time)
29 		err = -EINVAL;
30 	else {
31 		memset(tm, 0, sizeof(struct rtc_time));
32 		err = rtc->ops->read_time(rtc->dev.parent, tm);
33 		if (err < 0) {
34 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
35 				err);
36 			return err;
37 		}
38 
39 		err = rtc_valid_tm(tm);
40 		if (err < 0)
41 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
42 	}
43 	return err;
44 }
45 
rtc_read_time(struct rtc_device * rtc,struct rtc_time * tm)46 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 	int err;
49 
50 	err = mutex_lock_interruptible(&rtc->ops_lock);
51 	if (err)
52 		return err;
53 
54 	err = __rtc_read_time(rtc, tm);
55 	mutex_unlock(&rtc->ops_lock);
56 	return err;
57 }
58 EXPORT_SYMBOL_GPL(rtc_read_time);
59 
rtc_set_time(struct rtc_device * rtc,struct rtc_time * tm)60 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
61 {
62 	int err;
63 
64 	err = rtc_valid_tm(tm);
65 	if (err != 0)
66 		return err;
67 
68 	err = mutex_lock_interruptible(&rtc->ops_lock);
69 	if (err)
70 		return err;
71 
72 	if (!rtc->ops)
73 		err = -ENODEV;
74 	else if (rtc->ops->set_time)
75 		err = rtc->ops->set_time(rtc->dev.parent, tm);
76 	else if (rtc->ops->set_mmss64) {
77 		time64_t secs64 = rtc_tm_to_time64(tm);
78 
79 		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
80 	} else if (rtc->ops->set_mmss) {
81 		time64_t secs64 = rtc_tm_to_time64(tm);
82 		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
83 	} else
84 		err = -EINVAL;
85 
86 	pm_stay_awake(rtc->dev.parent);
87 	mutex_unlock(&rtc->ops_lock);
88 	/* A timer might have just expired */
89 	schedule_work(&rtc->irqwork);
90 	return err;
91 }
92 EXPORT_SYMBOL_GPL(rtc_set_time);
93 
rtc_read_alarm_internal(struct rtc_device * rtc,struct rtc_wkalrm * alarm)94 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
95 {
96 	int err;
97 
98 	err = mutex_lock_interruptible(&rtc->ops_lock);
99 	if (err)
100 		return err;
101 
102 	if (rtc->ops == NULL)
103 		err = -ENODEV;
104 	else if (!rtc->ops->read_alarm)
105 		err = -EINVAL;
106 	else {
107 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
108 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
109 	}
110 
111 	mutex_unlock(&rtc->ops_lock);
112 	return err;
113 }
114 
__rtc_read_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)115 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
116 {
117 	int err;
118 	struct rtc_time before, now;
119 	int first_time = 1;
120 	time64_t t_now, t_alm;
121 	enum { none, day, month, year } missing = none;
122 	unsigned days;
123 
124 	/* The lower level RTC driver may return -1 in some fields,
125 	 * creating invalid alarm->time values, for reasons like:
126 	 *
127 	 *   - The hardware may not be capable of filling them in;
128 	 *     many alarms match only on time-of-day fields, not
129 	 *     day/month/year calendar data.
130 	 *
131 	 *   - Some hardware uses illegal values as "wildcard" match
132 	 *     values, which non-Linux firmware (like a BIOS) may try
133 	 *     to set up as e.g. "alarm 15 minutes after each hour".
134 	 *     Linux uses only oneshot alarms.
135 	 *
136 	 * When we see that here, we deal with it by using values from
137 	 * a current RTC timestamp for any missing (-1) values.  The
138 	 * RTC driver prevents "periodic alarm" modes.
139 	 *
140 	 * But this can be racey, because some fields of the RTC timestamp
141 	 * may have wrapped in the interval since we read the RTC alarm,
142 	 * which would lead to us inserting inconsistent values in place
143 	 * of the -1 fields.
144 	 *
145 	 * Reading the alarm and timestamp in the reverse sequence
146 	 * would have the same race condition, and not solve the issue.
147 	 *
148 	 * So, we must first read the RTC timestamp,
149 	 * then read the RTC alarm value,
150 	 * and then read a second RTC timestamp.
151 	 *
152 	 * If any fields of the second timestamp have changed
153 	 * when compared with the first timestamp, then we know
154 	 * our timestamp may be inconsistent with that used by
155 	 * the low-level rtc_read_alarm_internal() function.
156 	 *
157 	 * So, when the two timestamps disagree, we just loop and do
158 	 * the process again to get a fully consistent set of values.
159 	 *
160 	 * This could all instead be done in the lower level driver,
161 	 * but since more than one lower level RTC implementation needs it,
162 	 * then it's probably best best to do it here instead of there..
163 	 */
164 
165 	/* Get the "before" timestamp */
166 	err = rtc_read_time(rtc, &before);
167 	if (err < 0)
168 		return err;
169 	do {
170 		if (!first_time)
171 			memcpy(&before, &now, sizeof(struct rtc_time));
172 		first_time = 0;
173 
174 		/* get the RTC alarm values, which may be incomplete */
175 		err = rtc_read_alarm_internal(rtc, alarm);
176 		if (err)
177 			return err;
178 
179 		/* full-function RTCs won't have such missing fields */
180 		if (rtc_valid_tm(&alarm->time) == 0)
181 			return 0;
182 
183 		/* get the "after" timestamp, to detect wrapped fields */
184 		err = rtc_read_time(rtc, &now);
185 		if (err < 0)
186 			return err;
187 
188 		/* note that tm_sec is a "don't care" value here: */
189 	} while (   before.tm_min   != now.tm_min
190 		 || before.tm_hour  != now.tm_hour
191 		 || before.tm_mon   != now.tm_mon
192 		 || before.tm_year  != now.tm_year);
193 
194 	/* Fill in the missing alarm fields using the timestamp; we
195 	 * know there's at least one since alarm->time is invalid.
196 	 */
197 	if (alarm->time.tm_sec == -1)
198 		alarm->time.tm_sec = now.tm_sec;
199 	if (alarm->time.tm_min == -1)
200 		alarm->time.tm_min = now.tm_min;
201 	if (alarm->time.tm_hour == -1)
202 		alarm->time.tm_hour = now.tm_hour;
203 
204 	/* For simplicity, only support date rollover for now */
205 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
206 		alarm->time.tm_mday = now.tm_mday;
207 		missing = day;
208 	}
209 	if ((unsigned)alarm->time.tm_mon >= 12) {
210 		alarm->time.tm_mon = now.tm_mon;
211 		if (missing == none)
212 			missing = month;
213 	}
214 	if (alarm->time.tm_year == -1) {
215 		alarm->time.tm_year = now.tm_year;
216 		if (missing == none)
217 			missing = year;
218 	}
219 
220 	/* Can't proceed if alarm is still invalid after replacing
221 	 * missing fields.
222 	 */
223 	err = rtc_valid_tm(&alarm->time);
224 	if (err)
225 		goto done;
226 
227 	/* with luck, no rollover is needed */
228 	t_now = rtc_tm_to_time64(&now);
229 	t_alm = rtc_tm_to_time64(&alarm->time);
230 	if (t_now < t_alm)
231 		goto done;
232 
233 	switch (missing) {
234 
235 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
236 	 * that will trigger at 5am will do so at 5am Tuesday, which
237 	 * could also be in the next month or year.  This is a common
238 	 * case, especially for PCs.
239 	 */
240 	case day:
241 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
242 		t_alm += 24 * 60 * 60;
243 		rtc_time64_to_tm(t_alm, &alarm->time);
244 		break;
245 
246 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
247 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
248 	 * may end up in the month after that!  Many newer PCs support
249 	 * this type of alarm.
250 	 */
251 	case month:
252 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
253 		do {
254 			if (alarm->time.tm_mon < 11)
255 				alarm->time.tm_mon++;
256 			else {
257 				alarm->time.tm_mon = 0;
258 				alarm->time.tm_year++;
259 			}
260 			days = rtc_month_days(alarm->time.tm_mon,
261 					alarm->time.tm_year);
262 		} while (days < alarm->time.tm_mday);
263 		break;
264 
265 	/* Year rollover ... easy except for leap years! */
266 	case year:
267 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
268 		do {
269 			alarm->time.tm_year++;
270 		} while (!is_leap_year(alarm->time.tm_year + 1900)
271 			&& rtc_valid_tm(&alarm->time) != 0);
272 		break;
273 
274 	default:
275 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
276 	}
277 
278 	err = rtc_valid_tm(&alarm->time);
279 
280 done:
281 	if (err) {
282 		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
283 			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
284 			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
285 			alarm->time.tm_sec);
286 	}
287 
288 	return err;
289 }
290 
rtc_read_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)291 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
292 {
293 	int err;
294 
295 	err = mutex_lock_interruptible(&rtc->ops_lock);
296 	if (err)
297 		return err;
298 	if (rtc->ops == NULL)
299 		err = -ENODEV;
300 	else if (!rtc->ops->read_alarm)
301 		err = -EINVAL;
302 	else {
303 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
304 		alarm->enabled = rtc->aie_timer.enabled;
305 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
306 	}
307 	mutex_unlock(&rtc->ops_lock);
308 
309 	return err;
310 }
311 EXPORT_SYMBOL_GPL(rtc_read_alarm);
312 
__rtc_set_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)313 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
314 {
315 	struct rtc_time tm;
316 	time64_t now, scheduled;
317 	int err;
318 
319 	err = rtc_valid_tm(&alarm->time);
320 	if (err)
321 		return err;
322 	scheduled = rtc_tm_to_time64(&alarm->time);
323 
324 	/* Make sure we're not setting alarms in the past */
325 	err = __rtc_read_time(rtc, &tm);
326 	if (err)
327 		return err;
328 	now = rtc_tm_to_time64(&tm);
329 	if (scheduled <= now)
330 		return -ETIME;
331 	/*
332 	 * XXX - We just checked to make sure the alarm time is not
333 	 * in the past, but there is still a race window where if
334 	 * the is alarm set for the next second and the second ticks
335 	 * over right here, before we set the alarm.
336 	 */
337 
338 	if (!rtc->ops)
339 		err = -ENODEV;
340 	else if (!rtc->ops->set_alarm)
341 		err = -EINVAL;
342 	else
343 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
344 
345 	return err;
346 }
347 
rtc_set_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)348 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
349 {
350 	int err;
351 
352 	if (!rtc->ops)
353 		return -ENODEV;
354 	else if (!rtc->ops->set_alarm)
355 		return -EINVAL;
356 
357 	err = rtc_valid_tm(&alarm->time);
358 	if (err != 0)
359 		return err;
360 
361 	err = mutex_lock_interruptible(&rtc->ops_lock);
362 	if (err)
363 		return err;
364 	if (rtc->aie_timer.enabled)
365 		rtc_timer_remove(rtc, &rtc->aie_timer);
366 
367 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
368 	rtc->aie_timer.period = ktime_set(0, 0);
369 	if (alarm->enabled)
370 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
371 
372 	mutex_unlock(&rtc->ops_lock);
373 	return err;
374 }
375 EXPORT_SYMBOL_GPL(rtc_set_alarm);
376 
377 /* Called once per device from rtc_device_register */
rtc_initialize_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)378 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
379 {
380 	int err;
381 	struct rtc_time now;
382 
383 	err = rtc_valid_tm(&alarm->time);
384 	if (err != 0)
385 		return err;
386 
387 	err = rtc_read_time(rtc, &now);
388 	if (err)
389 		return err;
390 
391 	err = mutex_lock_interruptible(&rtc->ops_lock);
392 	if (err)
393 		return err;
394 
395 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
396 	rtc->aie_timer.period = ktime_set(0, 0);
397 
398 	/* Alarm has to be enabled & in the futrure for us to enqueue it */
399 	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
400 			 rtc->aie_timer.node.expires.tv64)) {
401 
402 		rtc->aie_timer.enabled = 1;
403 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
404 	}
405 	mutex_unlock(&rtc->ops_lock);
406 	return err;
407 }
408 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
409 
410 
411 
rtc_alarm_irq_enable(struct rtc_device * rtc,unsigned int enabled)412 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
413 {
414 	int err = mutex_lock_interruptible(&rtc->ops_lock);
415 	if (err)
416 		return err;
417 
418 	if (rtc->aie_timer.enabled != enabled) {
419 		if (enabled)
420 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
421 		else
422 			rtc_timer_remove(rtc, &rtc->aie_timer);
423 	}
424 
425 	if (err)
426 		/* nothing */;
427 	else if (!rtc->ops)
428 		err = -ENODEV;
429 	else if (!rtc->ops->alarm_irq_enable)
430 		err = -EINVAL;
431 	else
432 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
433 
434 	mutex_unlock(&rtc->ops_lock);
435 	return err;
436 }
437 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
438 
rtc_update_irq_enable(struct rtc_device * rtc,unsigned int enabled)439 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
440 {
441 	int err = mutex_lock_interruptible(&rtc->ops_lock);
442 	if (err)
443 		return err;
444 
445 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
446 	if (enabled == 0 && rtc->uie_irq_active) {
447 		mutex_unlock(&rtc->ops_lock);
448 		return rtc_dev_update_irq_enable_emul(rtc, 0);
449 	}
450 #endif
451 	/* make sure we're changing state */
452 	if (rtc->uie_rtctimer.enabled == enabled)
453 		goto out;
454 
455 	if (rtc->uie_unsupported) {
456 		err = -EINVAL;
457 		goto out;
458 	}
459 
460 	if (enabled) {
461 		struct rtc_time tm;
462 		ktime_t now, onesec;
463 
464 		__rtc_read_time(rtc, &tm);
465 		onesec = ktime_set(1, 0);
466 		now = rtc_tm_to_ktime(tm);
467 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
468 		rtc->uie_rtctimer.period = ktime_set(1, 0);
469 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
470 	} else
471 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
472 
473 out:
474 	mutex_unlock(&rtc->ops_lock);
475 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
476 	/*
477 	 * Enable emulation if the driver did not provide
478 	 * the update_irq_enable function pointer or if returned
479 	 * -EINVAL to signal that it has been configured without
480 	 * interrupts or that are not available at the moment.
481 	 */
482 	if (err == -EINVAL)
483 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
484 #endif
485 	return err;
486 
487 }
488 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
489 
490 
491 /**
492  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
493  * @rtc: pointer to the rtc device
494  *
495  * This function is called when an AIE, UIE or PIE mode interrupt
496  * has occurred (or been emulated).
497  *
498  * Triggers the registered irq_task function callback.
499  */
rtc_handle_legacy_irq(struct rtc_device * rtc,int num,int mode)500 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
501 {
502 	unsigned long flags;
503 
504 	/* mark one irq of the appropriate mode */
505 	spin_lock_irqsave(&rtc->irq_lock, flags);
506 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
507 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
508 
509 	/* call the task func */
510 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
511 	if (rtc->irq_task)
512 		rtc->irq_task->func(rtc->irq_task->private_data);
513 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
514 
515 	wake_up_interruptible(&rtc->irq_queue);
516 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
517 }
518 
519 
520 /**
521  * rtc_aie_update_irq - AIE mode rtctimer hook
522  * @private: pointer to the rtc_device
523  *
524  * This functions is called when the aie_timer expires.
525  */
rtc_aie_update_irq(void * private)526 void rtc_aie_update_irq(void *private)
527 {
528 	struct rtc_device *rtc = (struct rtc_device *)private;
529 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
530 }
531 
532 
533 /**
534  * rtc_uie_update_irq - UIE mode rtctimer hook
535  * @private: pointer to the rtc_device
536  *
537  * This functions is called when the uie_timer expires.
538  */
rtc_uie_update_irq(void * private)539 void rtc_uie_update_irq(void *private)
540 {
541 	struct rtc_device *rtc = (struct rtc_device *)private;
542 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
543 }
544 
545 
546 /**
547  * rtc_pie_update_irq - PIE mode hrtimer hook
548  * @timer: pointer to the pie mode hrtimer
549  *
550  * This function is used to emulate PIE mode interrupts
551  * using an hrtimer. This function is called when the periodic
552  * hrtimer expires.
553  */
rtc_pie_update_irq(struct hrtimer * timer)554 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
555 {
556 	struct rtc_device *rtc;
557 	ktime_t period;
558 	int count;
559 	rtc = container_of(timer, struct rtc_device, pie_timer);
560 
561 	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
562 	count = hrtimer_forward_now(timer, period);
563 
564 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
565 
566 	return HRTIMER_RESTART;
567 }
568 
569 /**
570  * rtc_update_irq - Triggered when a RTC interrupt occurs.
571  * @rtc: the rtc device
572  * @num: how many irqs are being reported (usually one)
573  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
574  * Context: any
575  */
rtc_update_irq(struct rtc_device * rtc,unsigned long num,unsigned long events)576 void rtc_update_irq(struct rtc_device *rtc,
577 		unsigned long num, unsigned long events)
578 {
579 	if (IS_ERR_OR_NULL(rtc))
580 		return;
581 
582 	pm_stay_awake(rtc->dev.parent);
583 	schedule_work(&rtc->irqwork);
584 }
585 EXPORT_SYMBOL_GPL(rtc_update_irq);
586 
__rtc_match(struct device * dev,const void * data)587 static int __rtc_match(struct device *dev, const void *data)
588 {
589 	const char *name = data;
590 
591 	if (strcmp(dev_name(dev), name) == 0)
592 		return 1;
593 	return 0;
594 }
595 
rtc_class_open(const char * name)596 struct rtc_device *rtc_class_open(const char *name)
597 {
598 	struct device *dev;
599 	struct rtc_device *rtc = NULL;
600 
601 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
602 	if (dev)
603 		rtc = to_rtc_device(dev);
604 
605 	if (rtc) {
606 		if (!try_module_get(rtc->owner)) {
607 			put_device(dev);
608 			rtc = NULL;
609 		}
610 	}
611 
612 	return rtc;
613 }
614 EXPORT_SYMBOL_GPL(rtc_class_open);
615 
rtc_class_close(struct rtc_device * rtc)616 void rtc_class_close(struct rtc_device *rtc)
617 {
618 	module_put(rtc->owner);
619 	put_device(&rtc->dev);
620 }
621 EXPORT_SYMBOL_GPL(rtc_class_close);
622 
rtc_irq_register(struct rtc_device * rtc,struct rtc_task * task)623 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
624 {
625 	int retval = -EBUSY;
626 
627 	if (task == NULL || task->func == NULL)
628 		return -EINVAL;
629 
630 	/* Cannot register while the char dev is in use */
631 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
632 		return -EBUSY;
633 
634 	spin_lock_irq(&rtc->irq_task_lock);
635 	if (rtc->irq_task == NULL) {
636 		rtc->irq_task = task;
637 		retval = 0;
638 	}
639 	spin_unlock_irq(&rtc->irq_task_lock);
640 
641 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
642 
643 	return retval;
644 }
645 EXPORT_SYMBOL_GPL(rtc_irq_register);
646 
rtc_irq_unregister(struct rtc_device * rtc,struct rtc_task * task)647 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
648 {
649 	spin_lock_irq(&rtc->irq_task_lock);
650 	if (rtc->irq_task == task)
651 		rtc->irq_task = NULL;
652 	spin_unlock_irq(&rtc->irq_task_lock);
653 }
654 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
655 
rtc_update_hrtimer(struct rtc_device * rtc,int enabled)656 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
657 {
658 	/*
659 	 * We always cancel the timer here first, because otherwise
660 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
661 	 * when we manage to start the timer before the callback
662 	 * returns HRTIMER_RESTART.
663 	 *
664 	 * We cannot use hrtimer_cancel() here as a running callback
665 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
666 	 * would spin forever.
667 	 */
668 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
669 		return -1;
670 
671 	if (enabled) {
672 		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
673 
674 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
675 	}
676 	return 0;
677 }
678 
679 /**
680  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
681  * @rtc: the rtc device
682  * @task: currently registered with rtc_irq_register()
683  * @enabled: true to enable periodic IRQs
684  * Context: any
685  *
686  * Note that rtc_irq_set_freq() should previously have been used to
687  * specify the desired frequency of periodic IRQ task->func() callbacks.
688  */
rtc_irq_set_state(struct rtc_device * rtc,struct rtc_task * task,int enabled)689 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
690 {
691 	int err = 0;
692 	unsigned long flags;
693 
694 retry:
695 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
696 	if (rtc->irq_task != NULL && task == NULL)
697 		err = -EBUSY;
698 	else if (rtc->irq_task != task)
699 		err = -EACCES;
700 	else {
701 		if (rtc_update_hrtimer(rtc, enabled) < 0) {
702 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
703 			cpu_relax();
704 			goto retry;
705 		}
706 		rtc->pie_enabled = enabled;
707 	}
708 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
709 	return err;
710 }
711 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
712 
713 /**
714  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
715  * @rtc: the rtc device
716  * @task: currently registered with rtc_irq_register()
717  * @freq: positive frequency with which task->func() will be called
718  * Context: any
719  *
720  * Note that rtc_irq_set_state() is used to enable or disable the
721  * periodic IRQs.
722  */
rtc_irq_set_freq(struct rtc_device * rtc,struct rtc_task * task,int freq)723 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
724 {
725 	int err = 0;
726 	unsigned long flags;
727 
728 	if (freq <= 0 || freq > RTC_MAX_FREQ)
729 		return -EINVAL;
730 retry:
731 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
732 	if (rtc->irq_task != NULL && task == NULL)
733 		err = -EBUSY;
734 	else if (rtc->irq_task != task)
735 		err = -EACCES;
736 	else {
737 		rtc->irq_freq = freq;
738 		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
739 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
740 			cpu_relax();
741 			goto retry;
742 		}
743 	}
744 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
745 	return err;
746 }
747 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
748 
749 /**
750  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
751  * @rtc rtc device
752  * @timer timer being added.
753  *
754  * Enqueues a timer onto the rtc devices timerqueue and sets
755  * the next alarm event appropriately.
756  *
757  * Sets the enabled bit on the added timer.
758  *
759  * Must hold ops_lock for proper serialization of timerqueue
760  */
rtc_timer_enqueue(struct rtc_device * rtc,struct rtc_timer * timer)761 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
762 {
763 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
764 	struct rtc_time tm;
765 	ktime_t now;
766 
767 	timer->enabled = 1;
768 	__rtc_read_time(rtc, &tm);
769 	now = rtc_tm_to_ktime(tm);
770 
771 	/* Skip over expired timers */
772 	while (next) {
773 		if (next->expires.tv64 >= now.tv64)
774 			break;
775 		next = timerqueue_iterate_next(next);
776 	}
777 
778 	timerqueue_add(&rtc->timerqueue, &timer->node);
779 	if (!next || ktime_before(timer->node.expires, next->expires)) {
780 		struct rtc_wkalrm alarm;
781 		int err;
782 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
783 		alarm.enabled = 1;
784 		err = __rtc_set_alarm(rtc, &alarm);
785 		if (err == -ETIME) {
786 			pm_stay_awake(rtc->dev.parent);
787 			schedule_work(&rtc->irqwork);
788 		} else if (err) {
789 			timerqueue_del(&rtc->timerqueue, &timer->node);
790 			timer->enabled = 0;
791 			return err;
792 		}
793 	}
794 	return 0;
795 }
796 
rtc_alarm_disable(struct rtc_device * rtc)797 static void rtc_alarm_disable(struct rtc_device *rtc)
798 {
799 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
800 		return;
801 
802 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
803 }
804 
805 /**
806  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
807  * @rtc rtc device
808  * @timer timer being removed.
809  *
810  * Removes a timer onto the rtc devices timerqueue and sets
811  * the next alarm event appropriately.
812  *
813  * Clears the enabled bit on the removed timer.
814  *
815  * Must hold ops_lock for proper serialization of timerqueue
816  */
rtc_timer_remove(struct rtc_device * rtc,struct rtc_timer * timer)817 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
818 {
819 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
820 	timerqueue_del(&rtc->timerqueue, &timer->node);
821 	timer->enabled = 0;
822 	if (next == &timer->node) {
823 		struct rtc_wkalrm alarm;
824 		int err;
825 		next = timerqueue_getnext(&rtc->timerqueue);
826 		if (!next) {
827 			rtc_alarm_disable(rtc);
828 			return;
829 		}
830 		alarm.time = rtc_ktime_to_tm(next->expires);
831 		alarm.enabled = 1;
832 		err = __rtc_set_alarm(rtc, &alarm);
833 		if (err == -ETIME) {
834 			pm_stay_awake(rtc->dev.parent);
835 			schedule_work(&rtc->irqwork);
836 		}
837 	}
838 }
839 
840 /**
841  * rtc_timer_do_work - Expires rtc timers
842  * @rtc rtc device
843  * @timer timer being removed.
844  *
845  * Expires rtc timers. Reprograms next alarm event if needed.
846  * Called via worktask.
847  *
848  * Serializes access to timerqueue via ops_lock mutex
849  */
rtc_timer_do_work(struct work_struct * work)850 void rtc_timer_do_work(struct work_struct *work)
851 {
852 	struct rtc_timer *timer;
853 	struct timerqueue_node *next;
854 	ktime_t now;
855 	struct rtc_time tm;
856 
857 	struct rtc_device *rtc =
858 		container_of(work, struct rtc_device, irqwork);
859 
860 	mutex_lock(&rtc->ops_lock);
861 again:
862 	__rtc_read_time(rtc, &tm);
863 	now = rtc_tm_to_ktime(tm);
864 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
865 		if (next->expires.tv64 > now.tv64)
866 			break;
867 
868 		/* expire timer */
869 		timer = container_of(next, struct rtc_timer, node);
870 		timerqueue_del(&rtc->timerqueue, &timer->node);
871 		timer->enabled = 0;
872 		if (timer->task.func)
873 			timer->task.func(timer->task.private_data);
874 
875 		/* Re-add/fwd periodic timers */
876 		if (ktime_to_ns(timer->period)) {
877 			timer->node.expires = ktime_add(timer->node.expires,
878 							timer->period);
879 			timer->enabled = 1;
880 			timerqueue_add(&rtc->timerqueue, &timer->node);
881 		}
882 	}
883 
884 	/* Set next alarm */
885 	if (next) {
886 		struct rtc_wkalrm alarm;
887 		int err;
888 		int retry = 3;
889 
890 		alarm.time = rtc_ktime_to_tm(next->expires);
891 		alarm.enabled = 1;
892 reprogram:
893 		err = __rtc_set_alarm(rtc, &alarm);
894 		if (err == -ETIME)
895 			goto again;
896 		else if (err) {
897 			if (retry-- > 0)
898 				goto reprogram;
899 
900 			timer = container_of(next, struct rtc_timer, node);
901 			timerqueue_del(&rtc->timerqueue, &timer->node);
902 			timer->enabled = 0;
903 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
904 			goto again;
905 		}
906 	} else
907 		rtc_alarm_disable(rtc);
908 
909 	pm_relax(rtc->dev.parent);
910 	mutex_unlock(&rtc->ops_lock);
911 }
912 
913 
914 /* rtc_timer_init - Initializes an rtc_timer
915  * @timer: timer to be intiialized
916  * @f: function pointer to be called when timer fires
917  * @data: private data passed to function pointer
918  *
919  * Kernel interface to initializing an rtc_timer.
920  */
rtc_timer_init(struct rtc_timer * timer,void (* f)(void * p),void * data)921 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
922 {
923 	timerqueue_init(&timer->node);
924 	timer->enabled = 0;
925 	timer->task.func = f;
926 	timer->task.private_data = data;
927 }
928 
929 /* rtc_timer_start - Sets an rtc_timer to fire in the future
930  * @ rtc: rtc device to be used
931  * @ timer: timer being set
932  * @ expires: time at which to expire the timer
933  * @ period: period that the timer will recur
934  *
935  * Kernel interface to set an rtc_timer
936  */
rtc_timer_start(struct rtc_device * rtc,struct rtc_timer * timer,ktime_t expires,ktime_t period)937 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
938 			ktime_t expires, ktime_t period)
939 {
940 	int ret = 0;
941 	mutex_lock(&rtc->ops_lock);
942 	if (timer->enabled)
943 		rtc_timer_remove(rtc, timer);
944 
945 	timer->node.expires = expires;
946 	timer->period = period;
947 
948 	ret = rtc_timer_enqueue(rtc, timer);
949 
950 	mutex_unlock(&rtc->ops_lock);
951 	return ret;
952 }
953 
954 /* rtc_timer_cancel - Stops an rtc_timer
955  * @ rtc: rtc device to be used
956  * @ timer: timer being set
957  *
958  * Kernel interface to cancel an rtc_timer
959  */
rtc_timer_cancel(struct rtc_device * rtc,struct rtc_timer * timer)960 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
961 {
962 	mutex_lock(&rtc->ops_lock);
963 	if (timer->enabled)
964 		rtc_timer_remove(rtc, timer);
965 	mutex_unlock(&rtc->ops_lock);
966 }
967 
968 
969