• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #endif
47 
48 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
49 #include <asm-generic/rtc.h>
50 
51 struct cmos_rtc {
52 	struct rtc_device	*rtc;
53 	struct device		*dev;
54 	int			irq;
55 	struct resource		*iomem;
56 	time64_t		alarm_expires;
57 
58 	void			(*wake_on)(struct device *);
59 	void			(*wake_off)(struct device *);
60 
61 	u8			enabled_wake;
62 	u8			suspend_ctrl;
63 
64 	/* newer hardware extends the original register set */
65 	u8			day_alrm;
66 	u8			mon_alrm;
67 	u8			century;
68 };
69 
70 /* both platform and pnp busses use negative numbers for invalid irqs */
71 #define is_valid_irq(n)		((n) > 0)
72 
73 static const char driver_name[] = "rtc_cmos";
74 
75 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
76  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
77  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
78  */
79 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
80 
is_intr(u8 rtc_intr)81 static inline int is_intr(u8 rtc_intr)
82 {
83 	if (!(rtc_intr & RTC_IRQF))
84 		return 0;
85 	return rtc_intr & RTC_IRQMASK;
86 }
87 
88 /*----------------------------------------------------------------*/
89 
90 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
91  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
92  * used in a broken "legacy replacement" mode.  The breakage includes
93  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
94  * other (better) use.
95  *
96  * When that broken mode is in use, platform glue provides a partial
97  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
98  * want to use HPET for anything except those IRQs though...
99  */
100 #ifdef CONFIG_HPET_EMULATE_RTC
101 #include <asm/hpet.h>
102 #else
103 
is_hpet_enabled(void)104 static inline int is_hpet_enabled(void)
105 {
106 	return 0;
107 }
108 
hpet_mask_rtc_irq_bit(unsigned long mask)109 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
110 {
111 	return 0;
112 }
113 
hpet_set_rtc_irq_bit(unsigned long mask)114 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
115 {
116 	return 0;
117 }
118 
119 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)120 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
121 {
122 	return 0;
123 }
124 
hpet_set_periodic_freq(unsigned long freq)125 static inline int hpet_set_periodic_freq(unsigned long freq)
126 {
127 	return 0;
128 }
129 
hpet_rtc_dropped_irq(void)130 static inline int hpet_rtc_dropped_irq(void)
131 {
132 	return 0;
133 }
134 
hpet_rtc_timer_init(void)135 static inline int hpet_rtc_timer_init(void)
136 {
137 	return 0;
138 }
139 
140 extern irq_handler_t hpet_rtc_interrupt;
141 
hpet_register_irq_handler(irq_handler_t handler)142 static inline int hpet_register_irq_handler(irq_handler_t handler)
143 {
144 	return 0;
145 }
146 
hpet_unregister_irq_handler(irq_handler_t handler)147 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
148 {
149 	return 0;
150 }
151 
152 #endif
153 
154 /*----------------------------------------------------------------*/
155 
156 #ifdef RTC_PORT
157 
158 /* Most newer x86 systems have two register banks, the first used
159  * for RTC and NVRAM and the second only for NVRAM.  Caller must
160  * own rtc_lock ... and we won't worry about access during NMI.
161  */
162 #define can_bank2	true
163 
cmos_read_bank2(unsigned char addr)164 static inline unsigned char cmos_read_bank2(unsigned char addr)
165 {
166 	outb(addr, RTC_PORT(2));
167 	return inb(RTC_PORT(3));
168 }
169 
cmos_write_bank2(unsigned char val,unsigned char addr)170 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
171 {
172 	outb(addr, RTC_PORT(2));
173 	outb(val, RTC_PORT(3));
174 }
175 
176 #else
177 
178 #define can_bank2	false
179 
cmos_read_bank2(unsigned char addr)180 static inline unsigned char cmos_read_bank2(unsigned char addr)
181 {
182 	return 0;
183 }
184 
cmos_write_bank2(unsigned char val,unsigned char addr)185 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
186 {
187 }
188 
189 #endif
190 
191 /*----------------------------------------------------------------*/
192 
cmos_read_time(struct device * dev,struct rtc_time * t)193 static int cmos_read_time(struct device *dev, struct rtc_time *t)
194 {
195 	/* REVISIT:  if the clock has a "century" register, use
196 	 * that instead of the heuristic in get_rtc_time().
197 	 * That'll make Y3K compatility (year > 2070) easy!
198 	 */
199 	get_rtc_time(t);
200 	return 0;
201 }
202 
cmos_set_time(struct device * dev,struct rtc_time * t)203 static int cmos_set_time(struct device *dev, struct rtc_time *t)
204 {
205 	/* REVISIT:  set the "century" register if available
206 	 *
207 	 * NOTE: this ignores the issue whereby updating the seconds
208 	 * takes effect exactly 500ms after we write the register.
209 	 * (Also queueing and other delays before we get this far.)
210 	 */
211 	return set_rtc_time(t);
212 }
213 
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)214 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
215 {
216 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
217 	unsigned char	rtc_control;
218 
219 	if (!is_valid_irq(cmos->irq))
220 		return -EIO;
221 
222 	/* Basic alarms only support hour, minute, and seconds fields.
223 	 * Some also support day and month, for alarms up to a year in
224 	 * the future.
225 	 */
226 	t->time.tm_mday = -1;
227 	t->time.tm_mon = -1;
228 
229 	spin_lock_irq(&rtc_lock);
230 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
231 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
232 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
233 
234 	if (cmos->day_alrm) {
235 		/* ignore upper bits on readback per ACPI spec */
236 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
237 		if (!t->time.tm_mday)
238 			t->time.tm_mday = -1;
239 
240 		if (cmos->mon_alrm) {
241 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
242 			if (!t->time.tm_mon)
243 				t->time.tm_mon = -1;
244 		}
245 	}
246 
247 	rtc_control = CMOS_READ(RTC_CONTROL);
248 	spin_unlock_irq(&rtc_lock);
249 
250 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
251 		if (((unsigned)t->time.tm_sec) < 0x60)
252 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
253 		else
254 			t->time.tm_sec = -1;
255 		if (((unsigned)t->time.tm_min) < 0x60)
256 			t->time.tm_min = bcd2bin(t->time.tm_min);
257 		else
258 			t->time.tm_min = -1;
259 		if (((unsigned)t->time.tm_hour) < 0x24)
260 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
261 		else
262 			t->time.tm_hour = -1;
263 
264 		if (cmos->day_alrm) {
265 			if (((unsigned)t->time.tm_mday) <= 0x31)
266 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
267 			else
268 				t->time.tm_mday = -1;
269 
270 			if (cmos->mon_alrm) {
271 				if (((unsigned)t->time.tm_mon) <= 0x12)
272 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
273 				else
274 					t->time.tm_mon = -1;
275 			}
276 		}
277 	}
278 	t->time.tm_year = -1;
279 
280 	t->enabled = !!(rtc_control & RTC_AIE);
281 	t->pending = 0;
282 
283 	return 0;
284 }
285 
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)286 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
287 {
288 	unsigned char	rtc_intr;
289 
290 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
291 	 * allegedly some older rtcs need that to handle irqs properly
292 	 */
293 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
294 
295 	if (is_hpet_enabled())
296 		return;
297 
298 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
299 	if (is_intr(rtc_intr))
300 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
301 }
302 
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)303 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
304 {
305 	unsigned char	rtc_control;
306 
307 	/* flush any pending IRQ status, notably for update irqs,
308 	 * before we enable new IRQs
309 	 */
310 	rtc_control = CMOS_READ(RTC_CONTROL);
311 	cmos_checkintr(cmos, rtc_control);
312 
313 	rtc_control |= mask;
314 	CMOS_WRITE(rtc_control, RTC_CONTROL);
315 	hpet_set_rtc_irq_bit(mask);
316 
317 	cmos_checkintr(cmos, rtc_control);
318 }
319 
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)320 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
321 {
322 	unsigned char	rtc_control;
323 
324 	rtc_control = CMOS_READ(RTC_CONTROL);
325 	rtc_control &= ~mask;
326 	CMOS_WRITE(rtc_control, RTC_CONTROL);
327 	hpet_mask_rtc_irq_bit(mask);
328 
329 	cmos_checkintr(cmos, rtc_control);
330 }
331 
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)332 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
333 {
334 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
335 	unsigned char mon, mday, hrs, min, sec, rtc_control;
336 
337 	if (!is_valid_irq(cmos->irq))
338 		return -EIO;
339 
340 	mon = t->time.tm_mon + 1;
341 	mday = t->time.tm_mday;
342 	hrs = t->time.tm_hour;
343 	min = t->time.tm_min;
344 	sec = t->time.tm_sec;
345 
346 	spin_lock_irq(&rtc_lock);
347 	rtc_control = CMOS_READ(RTC_CONTROL);
348 	spin_unlock_irq(&rtc_lock);
349 
350 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
351 		/* Writing 0xff means "don't care" or "match all".  */
352 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
353 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
354 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
355 		min = (min < 60) ? bin2bcd(min) : 0xff;
356 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
357 	}
358 
359 	spin_lock_irq(&rtc_lock);
360 
361 	/* next rtc irq must not be from previous alarm setting */
362 	cmos_irq_disable(cmos, RTC_AIE);
363 
364 	/* update alarm */
365 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
366 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
367 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
368 
369 	/* the system may support an "enhanced" alarm */
370 	if (cmos->day_alrm) {
371 		CMOS_WRITE(mday, cmos->day_alrm);
372 		if (cmos->mon_alrm)
373 			CMOS_WRITE(mon, cmos->mon_alrm);
374 	}
375 
376 	/* FIXME the HPET alarm glue currently ignores day_alrm
377 	 * and mon_alrm ...
378 	 */
379 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
380 
381 	if (t->enabled)
382 		cmos_irq_enable(cmos, RTC_AIE);
383 
384 	spin_unlock_irq(&rtc_lock);
385 
386 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
387 
388 	return 0;
389 }
390 
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)391 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
392 {
393 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
394 	unsigned long	flags;
395 
396 	if (!is_valid_irq(cmos->irq))
397 		return -EINVAL;
398 
399 	spin_lock_irqsave(&rtc_lock, flags);
400 
401 	if (enabled)
402 		cmos_irq_enable(cmos, RTC_AIE);
403 	else
404 		cmos_irq_disable(cmos, RTC_AIE);
405 
406 	spin_unlock_irqrestore(&rtc_lock, flags);
407 	return 0;
408 }
409 
410 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
411 
cmos_procfs(struct device * dev,struct seq_file * seq)412 static int cmos_procfs(struct device *dev, struct seq_file *seq)
413 {
414 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
415 	unsigned char	rtc_control, valid;
416 
417 	spin_lock_irq(&rtc_lock);
418 	rtc_control = CMOS_READ(RTC_CONTROL);
419 	valid = CMOS_READ(RTC_VALID);
420 	spin_unlock_irq(&rtc_lock);
421 
422 	/* NOTE:  at least ICH6 reports battery status using a different
423 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
424 	 */
425 	seq_printf(seq,
426 		   "periodic_IRQ\t: %s\n"
427 		   "update_IRQ\t: %s\n"
428 		   "HPET_emulated\t: %s\n"
429 		   // "square_wave\t: %s\n"
430 		   "BCD\t\t: %s\n"
431 		   "DST_enable\t: %s\n"
432 		   "periodic_freq\t: %d\n"
433 		   "batt_status\t: %s\n",
434 		   (rtc_control & RTC_PIE) ? "yes" : "no",
435 		   (rtc_control & RTC_UIE) ? "yes" : "no",
436 		   is_hpet_enabled() ? "yes" : "no",
437 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
438 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
439 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
440 		   cmos->rtc->irq_freq,
441 		   (valid & RTC_VRT) ? "okay" : "dead");
442 
443 	return 0;
444 }
445 
446 #else
447 #define	cmos_procfs	NULL
448 #endif
449 
450 static const struct rtc_class_ops cmos_rtc_ops = {
451 	.read_time		= cmos_read_time,
452 	.set_time		= cmos_set_time,
453 	.read_alarm		= cmos_read_alarm,
454 	.set_alarm		= cmos_set_alarm,
455 	.proc			= cmos_procfs,
456 	.alarm_irq_enable	= cmos_alarm_irq_enable,
457 };
458 
459 /*----------------------------------------------------------------*/
460 
461 /*
462  * All these chips have at least 64 bytes of address space, shared by
463  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
464  * by boot firmware.  Modern chips have 128 or 256 bytes.
465  */
466 
467 #define NVRAM_OFFSET	(RTC_REG_D + 1)
468 
469 static ssize_t
cmos_nvram_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)470 cmos_nvram_read(struct file *filp, struct kobject *kobj,
471 		struct bin_attribute *attr,
472 		char *buf, loff_t off, size_t count)
473 {
474 	int	retval;
475 
476 	off += NVRAM_OFFSET;
477 	spin_lock_irq(&rtc_lock);
478 	for (retval = 0; count; count--, off++, retval++) {
479 		if (off < 128)
480 			*buf++ = CMOS_READ(off);
481 		else if (can_bank2)
482 			*buf++ = cmos_read_bank2(off);
483 		else
484 			break;
485 	}
486 	spin_unlock_irq(&rtc_lock);
487 
488 	return retval;
489 }
490 
491 static ssize_t
cmos_nvram_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)492 cmos_nvram_write(struct file *filp, struct kobject *kobj,
493 		struct bin_attribute *attr,
494 		char *buf, loff_t off, size_t count)
495 {
496 	struct cmos_rtc	*cmos;
497 	int		retval;
498 
499 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
500 
501 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
502 	 * checksum on part of the NVRAM data.  That's currently ignored
503 	 * here.  If userspace is smart enough to know what fields of
504 	 * NVRAM to update, updating checksums is also part of its job.
505 	 */
506 	off += NVRAM_OFFSET;
507 	spin_lock_irq(&rtc_lock);
508 	for (retval = 0; count; count--, off++, retval++) {
509 		/* don't trash RTC registers */
510 		if (off == cmos->day_alrm
511 				|| off == cmos->mon_alrm
512 				|| off == cmos->century)
513 			buf++;
514 		else if (off < 128)
515 			CMOS_WRITE(*buf++, off);
516 		else if (can_bank2)
517 			cmos_write_bank2(*buf++, off);
518 		else
519 			break;
520 	}
521 	spin_unlock_irq(&rtc_lock);
522 
523 	return retval;
524 }
525 
526 static struct bin_attribute nvram = {
527 	.attr = {
528 		.name	= "nvram",
529 		.mode	= S_IRUGO | S_IWUSR,
530 	},
531 
532 	.read	= cmos_nvram_read,
533 	.write	= cmos_nvram_write,
534 	/* size gets set up later */
535 };
536 
537 /*----------------------------------------------------------------*/
538 
539 static struct cmos_rtc	cmos_rtc;
540 
cmos_interrupt(int irq,void * p)541 static irqreturn_t cmos_interrupt(int irq, void *p)
542 {
543 	u8		irqstat;
544 	u8		rtc_control;
545 
546 	spin_lock(&rtc_lock);
547 
548 	/* When the HPET interrupt handler calls us, the interrupt
549 	 * status is passed as arg1 instead of the irq number.  But
550 	 * always clear irq status, even when HPET is in the way.
551 	 *
552 	 * Note that HPET and RTC are almost certainly out of phase,
553 	 * giving different IRQ status ...
554 	 */
555 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
556 	rtc_control = CMOS_READ(RTC_CONTROL);
557 	if (is_hpet_enabled())
558 		irqstat = (unsigned long)irq & 0xF0;
559 
560 	/* If we were suspended, RTC_CONTROL may not be accurate since the
561 	 * bios may have cleared it.
562 	 */
563 	if (!cmos_rtc.suspend_ctrl)
564 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
565 	else
566 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
567 
568 	/* All Linux RTC alarms should be treated as if they were oneshot.
569 	 * Similar code may be needed in system wakeup paths, in case the
570 	 * alarm woke the system.
571 	 */
572 	if (irqstat & RTC_AIE) {
573 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
574 		rtc_control &= ~RTC_AIE;
575 		CMOS_WRITE(rtc_control, RTC_CONTROL);
576 		hpet_mask_rtc_irq_bit(RTC_AIE);
577 		CMOS_READ(RTC_INTR_FLAGS);
578 	}
579 	spin_unlock(&rtc_lock);
580 
581 	if (is_intr(irqstat)) {
582 		rtc_update_irq(p, 1, irqstat);
583 		return IRQ_HANDLED;
584 	} else
585 		return IRQ_NONE;
586 }
587 
588 #ifdef	CONFIG_PNP
589 #define	INITSECTION
590 
591 #else
592 #define	INITSECTION	__init
593 #endif
594 
595 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)596 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
597 {
598 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
599 	int				retval = 0;
600 	unsigned char			rtc_control;
601 	unsigned			address_space;
602 	u32				flags = 0;
603 
604 	/* there can be only one ... */
605 	if (cmos_rtc.dev)
606 		return -EBUSY;
607 
608 	if (!ports)
609 		return -ENODEV;
610 
611 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
612 	 *
613 	 * REVISIT non-x86 systems may instead use memory space resources
614 	 * (needing ioremap etc), not i/o space resources like this ...
615 	 */
616 	if (RTC_IOMAPPED)
617 		ports = request_region(ports->start, resource_size(ports),
618 				       driver_name);
619 	else
620 		ports = request_mem_region(ports->start, resource_size(ports),
621 					   driver_name);
622 	if (!ports) {
623 		dev_dbg(dev, "i/o registers already in use\n");
624 		return -EBUSY;
625 	}
626 
627 	cmos_rtc.irq = rtc_irq;
628 	cmos_rtc.iomem = ports;
629 
630 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
631 	 * driver did, but don't reject unknown configs.   Old hardware
632 	 * won't address 128 bytes.  Newer chips have multiple banks,
633 	 * though they may not be listed in one I/O resource.
634 	 */
635 #if	defined(CONFIG_ATARI)
636 	address_space = 64;
637 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
638 			|| defined(__sparc__) || defined(__mips__) \
639 			|| defined(__powerpc__)
640 	address_space = 128;
641 #else
642 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
643 	address_space = 128;
644 #endif
645 	if (can_bank2 && ports->end > (ports->start + 1))
646 		address_space = 256;
647 
648 	/* For ACPI systems extension info comes from the FADT.  On others,
649 	 * board specific setup provides it as appropriate.  Systems where
650 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
651 	 * some almost-clones) can provide hooks to make that behave.
652 	 *
653 	 * Note that ACPI doesn't preclude putting these registers into
654 	 * "extended" areas of the chip, including some that we won't yet
655 	 * expect CMOS_READ and friends to handle.
656 	 */
657 	if (info) {
658 		if (info->flags)
659 			flags = info->flags;
660 		if (info->address_space)
661 			address_space = info->address_space;
662 
663 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
664 			cmos_rtc.day_alrm = info->rtc_day_alarm;
665 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
666 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
667 		if (info->rtc_century && info->rtc_century < 128)
668 			cmos_rtc.century = info->rtc_century;
669 
670 		if (info->wake_on && info->wake_off) {
671 			cmos_rtc.wake_on = info->wake_on;
672 			cmos_rtc.wake_off = info->wake_off;
673 		}
674 	}
675 
676 	cmos_rtc.dev = dev;
677 	dev_set_drvdata(dev, &cmos_rtc);
678 
679 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
680 				&cmos_rtc_ops, THIS_MODULE);
681 	if (IS_ERR(cmos_rtc.rtc)) {
682 		retval = PTR_ERR(cmos_rtc.rtc);
683 		goto cleanup0;
684 	}
685 
686 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
687 
688 	spin_lock_irq(&rtc_lock);
689 
690 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
691 		/* force periodic irq to CMOS reset default of 1024Hz;
692 		 *
693 		 * REVISIT it's been reported that at least one x86_64 ALI
694 		 * mobo doesn't use 32KHz here ... for portability we might
695 		 * need to do something about other clock frequencies.
696 		 */
697 		cmos_rtc.rtc->irq_freq = 1024;
698 		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
699 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
700 	}
701 
702 	/* disable irqs */
703 	if (is_valid_irq(rtc_irq))
704 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
705 
706 	rtc_control = CMOS_READ(RTC_CONTROL);
707 
708 	spin_unlock_irq(&rtc_lock);
709 
710 	/* FIXME:
711 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
712 	 */
713 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
714 		dev_warn(dev, "only 24-hr supported\n");
715 		retval = -ENXIO;
716 		goto cleanup1;
717 	}
718 
719 	if (is_valid_irq(rtc_irq)) {
720 		irq_handler_t rtc_cmos_int_handler;
721 
722 		if (is_hpet_enabled()) {
723 			rtc_cmos_int_handler = hpet_rtc_interrupt;
724 			retval = hpet_register_irq_handler(cmos_interrupt);
725 			if (retval) {
726 				dev_warn(dev, "hpet_register_irq_handler "
727 						" failed in rtc_init().");
728 				goto cleanup1;
729 			}
730 		} else
731 			rtc_cmos_int_handler = cmos_interrupt;
732 
733 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
734 				0, dev_name(&cmos_rtc.rtc->dev),
735 				cmos_rtc.rtc);
736 		if (retval < 0) {
737 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
738 			goto cleanup1;
739 		}
740 	}
741 	hpet_rtc_timer_init();
742 
743 	/* export at least the first block of NVRAM */
744 	nvram.size = address_space - NVRAM_OFFSET;
745 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
746 	if (retval < 0) {
747 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
748 		goto cleanup2;
749 	}
750 
751 	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
752 		!is_valid_irq(rtc_irq) ? "no alarms" :
753 			cmos_rtc.mon_alrm ? "alarms up to one year" :
754 			cmos_rtc.day_alrm ? "alarms up to one month" :
755 			"alarms up to one day",
756 		cmos_rtc.century ? ", y3k" : "",
757 		nvram.size,
758 		is_hpet_enabled() ? ", hpet irqs" : "");
759 
760 	return 0;
761 
762 cleanup2:
763 	if (is_valid_irq(rtc_irq))
764 		free_irq(rtc_irq, cmos_rtc.rtc);
765 cleanup1:
766 	cmos_rtc.dev = NULL;
767 	rtc_device_unregister(cmos_rtc.rtc);
768 cleanup0:
769 	if (RTC_IOMAPPED)
770 		release_region(ports->start, resource_size(ports));
771 	else
772 		release_mem_region(ports->start, resource_size(ports));
773 	return retval;
774 }
775 
cmos_do_shutdown(int rtc_irq)776 static void cmos_do_shutdown(int rtc_irq)
777 {
778 	spin_lock_irq(&rtc_lock);
779 	if (is_valid_irq(rtc_irq))
780 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
781 	spin_unlock_irq(&rtc_lock);
782 }
783 
cmos_do_remove(struct device * dev)784 static void __exit cmos_do_remove(struct device *dev)
785 {
786 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
787 	struct resource *ports;
788 
789 	cmos_do_shutdown(cmos->irq);
790 
791 	sysfs_remove_bin_file(&dev->kobj, &nvram);
792 
793 	if (is_valid_irq(cmos->irq)) {
794 		free_irq(cmos->irq, cmos->rtc);
795 		hpet_unregister_irq_handler(cmos_interrupt);
796 	}
797 
798 	rtc_device_unregister(cmos->rtc);
799 	cmos->rtc = NULL;
800 
801 	ports = cmos->iomem;
802 	if (RTC_IOMAPPED)
803 		release_region(ports->start, resource_size(ports));
804 	else
805 		release_mem_region(ports->start, resource_size(ports));
806 	cmos->iomem = NULL;
807 
808 	cmos->dev = NULL;
809 }
810 
cmos_aie_poweroff(struct device * dev)811 static int cmos_aie_poweroff(struct device *dev)
812 {
813 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
814 	struct rtc_time now;
815 	time64_t t_now;
816 	int retval = 0;
817 	unsigned char rtc_control;
818 
819 	if (!cmos->alarm_expires)
820 		return -EINVAL;
821 
822 	spin_lock_irq(&rtc_lock);
823 	rtc_control = CMOS_READ(RTC_CONTROL);
824 	spin_unlock_irq(&rtc_lock);
825 
826 	/* We only care about the situation where AIE is disabled. */
827 	if (rtc_control & RTC_AIE)
828 		return -EBUSY;
829 
830 	cmos_read_time(dev, &now);
831 	t_now = rtc_tm_to_time64(&now);
832 
833 	/*
834 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
835 	 * automatically right after shutdown on some buggy boxes.
836 	 * This automatic rebooting issue won't happen when the alarm
837 	 * time is larger than now+1 seconds.
838 	 *
839 	 * If the alarm time is equal to now+1 seconds, the issue can be
840 	 * prevented by cancelling the alarm.
841 	 */
842 	if (cmos->alarm_expires == t_now + 1) {
843 		struct rtc_wkalrm alarm;
844 
845 		/* Cancel the AIE timer by configuring the past time. */
846 		rtc_time64_to_tm(t_now - 1, &alarm.time);
847 		alarm.enabled = 0;
848 		retval = cmos_set_alarm(dev, &alarm);
849 	} else if (cmos->alarm_expires > t_now + 1) {
850 		retval = -EBUSY;
851 	}
852 
853 	return retval;
854 }
855 
856 #ifdef CONFIG_PM
857 
cmos_suspend(struct device * dev)858 static int cmos_suspend(struct device *dev)
859 {
860 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
861 	unsigned char	tmp;
862 
863 	/* only the alarm might be a wakeup event source */
864 	spin_lock_irq(&rtc_lock);
865 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
866 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
867 		unsigned char	mask;
868 
869 		if (device_may_wakeup(dev))
870 			mask = RTC_IRQMASK & ~RTC_AIE;
871 		else
872 			mask = RTC_IRQMASK;
873 		tmp &= ~mask;
874 		CMOS_WRITE(tmp, RTC_CONTROL);
875 		hpet_mask_rtc_irq_bit(mask);
876 
877 		cmos_checkintr(cmos, tmp);
878 	}
879 	spin_unlock_irq(&rtc_lock);
880 
881 	if (tmp & RTC_AIE) {
882 		cmos->enabled_wake = 1;
883 		if (cmos->wake_on)
884 			cmos->wake_on(dev);
885 		else
886 			enable_irq_wake(cmos->irq);
887 	}
888 
889 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
890 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
891 			tmp);
892 
893 	return 0;
894 }
895 
896 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
897  * after a detour through G3 "mechanical off", although the ACPI spec
898  * says wakeup should only work from G1/S4 "hibernate".  To most users,
899  * distinctions between S4 and S5 are pointless.  So when the hardware
900  * allows, don't draw that distinction.
901  */
cmos_poweroff(struct device * dev)902 static inline int cmos_poweroff(struct device *dev)
903 {
904 	return cmos_suspend(dev);
905 }
906 
907 #ifdef	CONFIG_PM_SLEEP
908 
cmos_resume(struct device * dev)909 static int cmos_resume(struct device *dev)
910 {
911 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
912 	unsigned char tmp;
913 
914 	if (cmos->enabled_wake) {
915 		if (cmos->wake_off)
916 			cmos->wake_off(dev);
917 		else
918 			disable_irq_wake(cmos->irq);
919 		cmos->enabled_wake = 0;
920 	}
921 
922 	spin_lock_irq(&rtc_lock);
923 	tmp = cmos->suspend_ctrl;
924 	cmos->suspend_ctrl = 0;
925 	/* re-enable any irqs previously active */
926 	if (tmp & RTC_IRQMASK) {
927 		unsigned char	mask;
928 
929 		if (device_may_wakeup(dev))
930 			hpet_rtc_timer_init();
931 
932 		do {
933 			CMOS_WRITE(tmp, RTC_CONTROL);
934 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
935 
936 			mask = CMOS_READ(RTC_INTR_FLAGS);
937 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
938 			if (!is_hpet_enabled() || !is_intr(mask))
939 				break;
940 
941 			/* force one-shot behavior if HPET blocked
942 			 * the wake alarm's irq
943 			 */
944 			rtc_update_irq(cmos->rtc, 1, mask);
945 			tmp &= ~RTC_AIE;
946 			hpet_mask_rtc_irq_bit(RTC_AIE);
947 		} while (mask & RTC_AIE);
948 	}
949 	spin_unlock_irq(&rtc_lock);
950 
951 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
952 
953 	return 0;
954 }
955 
956 #endif
957 #else
958 
cmos_poweroff(struct device * dev)959 static inline int cmos_poweroff(struct device *dev)
960 {
961 	return -ENOSYS;
962 }
963 
964 #endif
965 
966 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
967 
968 /*----------------------------------------------------------------*/
969 
970 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
971  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
972  * probably list them in similar PNPBIOS tables; so PNP is more common.
973  *
974  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
975  * predate even PNPBIOS should set up platform_bus devices.
976  */
977 
978 #ifdef	CONFIG_ACPI
979 
980 #include <linux/acpi.h>
981 
rtc_handler(void * context)982 static u32 rtc_handler(void *context)
983 {
984 	struct device *dev = context;
985 
986 	pm_wakeup_event(dev, 0);
987 	acpi_clear_event(ACPI_EVENT_RTC);
988 	acpi_disable_event(ACPI_EVENT_RTC, 0);
989 	return ACPI_INTERRUPT_HANDLED;
990 }
991 
rtc_wake_setup(struct device * dev)992 static inline void rtc_wake_setup(struct device *dev)
993 {
994 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
995 	/*
996 	 * After the RTC handler is installed, the Fixed_RTC event should
997 	 * be disabled. Only when the RTC alarm is set will it be enabled.
998 	 */
999 	acpi_clear_event(ACPI_EVENT_RTC);
1000 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1001 }
1002 
rtc_wake_on(struct device * dev)1003 static void rtc_wake_on(struct device *dev)
1004 {
1005 	acpi_clear_event(ACPI_EVENT_RTC);
1006 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1007 }
1008 
rtc_wake_off(struct device * dev)1009 static void rtc_wake_off(struct device *dev)
1010 {
1011 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1012 }
1013 
1014 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1015  * its device node and pass extra config data.  This helps its driver use
1016  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1017  * that this board's RTC is wakeup-capable (per ACPI spec).
1018  */
1019 static struct cmos_rtc_board_info acpi_rtc_info;
1020 
cmos_wake_setup(struct device * dev)1021 static void cmos_wake_setup(struct device *dev)
1022 {
1023 	if (acpi_disabled)
1024 		return;
1025 
1026 	rtc_wake_setup(dev);
1027 	acpi_rtc_info.wake_on = rtc_wake_on;
1028 	acpi_rtc_info.wake_off = rtc_wake_off;
1029 
1030 	/* workaround bug in some ACPI tables */
1031 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1032 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1033 			acpi_gbl_FADT.month_alarm);
1034 		acpi_gbl_FADT.month_alarm = 0;
1035 	}
1036 
1037 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1038 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1039 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1040 
1041 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1042 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1043 		dev_info(dev, "RTC can wake from S4\n");
1044 
1045 	dev->platform_data = &acpi_rtc_info;
1046 
1047 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1048 	device_init_wakeup(dev, 1);
1049 }
1050 
1051 #else
1052 
cmos_wake_setup(struct device * dev)1053 static void cmos_wake_setup(struct device *dev)
1054 {
1055 }
1056 
1057 #endif
1058 
1059 #ifdef	CONFIG_PNP
1060 
1061 #include <linux/pnp.h>
1062 
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1063 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1064 {
1065 	cmos_wake_setup(&pnp->dev);
1066 
1067 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1068 		unsigned int irq = 0;
1069 #ifdef CONFIG_X86
1070 		/* Some machines contain a PNP entry for the RTC, but
1071 		 * don't define the IRQ. It should always be safe to
1072 		 * hardcode it on systems with a legacy PIC.
1073 		 */
1074 		if (nr_legacy_irqs())
1075 			irq = 8;
1076 #endif
1077 		return cmos_do_probe(&pnp->dev,
1078 				pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1079 	} else {
1080 		return cmos_do_probe(&pnp->dev,
1081 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1082 				pnp_irq(pnp, 0));
1083 	}
1084 }
1085 
cmos_pnp_remove(struct pnp_dev * pnp)1086 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1087 {
1088 	cmos_do_remove(&pnp->dev);
1089 }
1090 
cmos_pnp_shutdown(struct pnp_dev * pnp)1091 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1092 {
1093 	struct device *dev = &pnp->dev;
1094 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1095 
1096 	if (system_state == SYSTEM_POWER_OFF) {
1097 		int retval = cmos_poweroff(dev);
1098 
1099 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1100 			return;
1101 	}
1102 
1103 	cmos_do_shutdown(cmos->irq);
1104 }
1105 
1106 static const struct pnp_device_id rtc_ids[] = {
1107 	{ .id = "PNP0b00", },
1108 	{ .id = "PNP0b01", },
1109 	{ .id = "PNP0b02", },
1110 	{ },
1111 };
1112 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1113 
1114 static struct pnp_driver cmos_pnp_driver = {
1115 	.name		= (char *) driver_name,
1116 	.id_table	= rtc_ids,
1117 	.probe		= cmos_pnp_probe,
1118 	.remove		= __exit_p(cmos_pnp_remove),
1119 	.shutdown	= cmos_pnp_shutdown,
1120 
1121 	/* flag ensures resume() gets called, and stops syslog spam */
1122 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1123 	.driver		= {
1124 			.pm = &cmos_pm_ops,
1125 	},
1126 };
1127 
1128 #endif	/* CONFIG_PNP */
1129 
1130 #ifdef CONFIG_OF
1131 static const struct of_device_id of_cmos_match[] = {
1132 	{
1133 		.compatible = "motorola,mc146818",
1134 	},
1135 	{ },
1136 };
1137 MODULE_DEVICE_TABLE(of, of_cmos_match);
1138 
cmos_of_init(struct platform_device * pdev)1139 static __init void cmos_of_init(struct platform_device *pdev)
1140 {
1141 	struct device_node *node = pdev->dev.of_node;
1142 	struct rtc_time time;
1143 	int ret;
1144 	const __be32 *val;
1145 
1146 	if (!node)
1147 		return;
1148 
1149 	val = of_get_property(node, "ctrl-reg", NULL);
1150 	if (val)
1151 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1152 
1153 	val = of_get_property(node, "freq-reg", NULL);
1154 	if (val)
1155 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1156 
1157 	get_rtc_time(&time);
1158 	ret = rtc_valid_tm(&time);
1159 	if (ret) {
1160 		struct rtc_time def_time = {
1161 			.tm_year = 1,
1162 			.tm_mday = 1,
1163 		};
1164 		set_rtc_time(&def_time);
1165 	}
1166 }
1167 #else
cmos_of_init(struct platform_device * pdev)1168 static inline void cmos_of_init(struct platform_device *pdev) {}
1169 #endif
1170 /*----------------------------------------------------------------*/
1171 
1172 /* Platform setup should have set up an RTC device, when PNP is
1173  * unavailable ... this could happen even on (older) PCs.
1174  */
1175 
cmos_platform_probe(struct platform_device * pdev)1176 static int __init cmos_platform_probe(struct platform_device *pdev)
1177 {
1178 	struct resource *resource;
1179 	int irq;
1180 
1181 	cmos_of_init(pdev);
1182 	cmos_wake_setup(&pdev->dev);
1183 
1184 	if (RTC_IOMAPPED)
1185 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1186 	else
1187 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1188 	irq = platform_get_irq(pdev, 0);
1189 	if (irq < 0)
1190 		irq = -1;
1191 
1192 	return cmos_do_probe(&pdev->dev, resource, irq);
1193 }
1194 
cmos_platform_remove(struct platform_device * pdev)1195 static int __exit cmos_platform_remove(struct platform_device *pdev)
1196 {
1197 	cmos_do_remove(&pdev->dev);
1198 	return 0;
1199 }
1200 
cmos_platform_shutdown(struct platform_device * pdev)1201 static void cmos_platform_shutdown(struct platform_device *pdev)
1202 {
1203 	struct device *dev = &pdev->dev;
1204 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1205 
1206 	if (system_state == SYSTEM_POWER_OFF) {
1207 		int retval = cmos_poweroff(dev);
1208 
1209 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1210 			return;
1211 	}
1212 
1213 	cmos_do_shutdown(cmos->irq);
1214 }
1215 
1216 /* work with hotplug and coldplug */
1217 MODULE_ALIAS("platform:rtc_cmos");
1218 
1219 static struct platform_driver cmos_platform_driver = {
1220 	.remove		= __exit_p(cmos_platform_remove),
1221 	.shutdown	= cmos_platform_shutdown,
1222 	.driver = {
1223 		.name		= driver_name,
1224 #ifdef CONFIG_PM
1225 		.pm		= &cmos_pm_ops,
1226 #endif
1227 		.of_match_table = of_match_ptr(of_cmos_match),
1228 	}
1229 };
1230 
1231 #ifdef CONFIG_PNP
1232 static bool pnp_driver_registered;
1233 #endif
1234 static bool platform_driver_registered;
1235 
cmos_init(void)1236 static int __init cmos_init(void)
1237 {
1238 	int retval = 0;
1239 
1240 #ifdef	CONFIG_PNP
1241 	retval = pnp_register_driver(&cmos_pnp_driver);
1242 	if (retval == 0)
1243 		pnp_driver_registered = true;
1244 #endif
1245 
1246 	if (!cmos_rtc.dev) {
1247 		retval = platform_driver_probe(&cmos_platform_driver,
1248 					       cmos_platform_probe);
1249 		if (retval == 0)
1250 			platform_driver_registered = true;
1251 	}
1252 
1253 	if (retval == 0)
1254 		return 0;
1255 
1256 #ifdef	CONFIG_PNP
1257 	if (pnp_driver_registered)
1258 		pnp_unregister_driver(&cmos_pnp_driver);
1259 #endif
1260 	return retval;
1261 }
1262 module_init(cmos_init);
1263 
cmos_exit(void)1264 static void __exit cmos_exit(void)
1265 {
1266 #ifdef	CONFIG_PNP
1267 	if (pnp_driver_registered)
1268 		pnp_unregister_driver(&cmos_pnp_driver);
1269 #endif
1270 	if (platform_driver_registered)
1271 		platform_driver_unregister(&cmos_platform_driver);
1272 }
1273 module_exit(cmos_exit);
1274 
1275 
1276 MODULE_AUTHOR("David Brownell");
1277 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1278 MODULE_LICENSE("GPL");
1279