1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 /*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #endif
47
48 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
49 #include <asm-generic/rtc.h>
50
51 struct cmos_rtc {
52 struct rtc_device *rtc;
53 struct device *dev;
54 int irq;
55 struct resource *iomem;
56 time64_t alarm_expires;
57
58 void (*wake_on)(struct device *);
59 void (*wake_off)(struct device *);
60
61 u8 enabled_wake;
62 u8 suspend_ctrl;
63
64 /* newer hardware extends the original register set */
65 u8 day_alrm;
66 u8 mon_alrm;
67 u8 century;
68 };
69
70 /* both platform and pnp busses use negative numbers for invalid irqs */
71 #define is_valid_irq(n) ((n) > 0)
72
73 static const char driver_name[] = "rtc_cmos";
74
75 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
76 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
77 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
78 */
79 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
80
is_intr(u8 rtc_intr)81 static inline int is_intr(u8 rtc_intr)
82 {
83 if (!(rtc_intr & RTC_IRQF))
84 return 0;
85 return rtc_intr & RTC_IRQMASK;
86 }
87
88 /*----------------------------------------------------------------*/
89
90 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
91 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
92 * used in a broken "legacy replacement" mode. The breakage includes
93 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
94 * other (better) use.
95 *
96 * When that broken mode is in use, platform glue provides a partial
97 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
98 * want to use HPET for anything except those IRQs though...
99 */
100 #ifdef CONFIG_HPET_EMULATE_RTC
101 #include <asm/hpet.h>
102 #else
103
is_hpet_enabled(void)104 static inline int is_hpet_enabled(void)
105 {
106 return 0;
107 }
108
hpet_mask_rtc_irq_bit(unsigned long mask)109 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
110 {
111 return 0;
112 }
113
hpet_set_rtc_irq_bit(unsigned long mask)114 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
115 {
116 return 0;
117 }
118
119 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)120 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
121 {
122 return 0;
123 }
124
hpet_set_periodic_freq(unsigned long freq)125 static inline int hpet_set_periodic_freq(unsigned long freq)
126 {
127 return 0;
128 }
129
hpet_rtc_dropped_irq(void)130 static inline int hpet_rtc_dropped_irq(void)
131 {
132 return 0;
133 }
134
hpet_rtc_timer_init(void)135 static inline int hpet_rtc_timer_init(void)
136 {
137 return 0;
138 }
139
140 extern irq_handler_t hpet_rtc_interrupt;
141
hpet_register_irq_handler(irq_handler_t handler)142 static inline int hpet_register_irq_handler(irq_handler_t handler)
143 {
144 return 0;
145 }
146
hpet_unregister_irq_handler(irq_handler_t handler)147 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
148 {
149 return 0;
150 }
151
152 #endif
153
154 /*----------------------------------------------------------------*/
155
156 #ifdef RTC_PORT
157
158 /* Most newer x86 systems have two register banks, the first used
159 * for RTC and NVRAM and the second only for NVRAM. Caller must
160 * own rtc_lock ... and we won't worry about access during NMI.
161 */
162 #define can_bank2 true
163
cmos_read_bank2(unsigned char addr)164 static inline unsigned char cmos_read_bank2(unsigned char addr)
165 {
166 outb(addr, RTC_PORT(2));
167 return inb(RTC_PORT(3));
168 }
169
cmos_write_bank2(unsigned char val,unsigned char addr)170 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
171 {
172 outb(addr, RTC_PORT(2));
173 outb(val, RTC_PORT(3));
174 }
175
176 #else
177
178 #define can_bank2 false
179
cmos_read_bank2(unsigned char addr)180 static inline unsigned char cmos_read_bank2(unsigned char addr)
181 {
182 return 0;
183 }
184
cmos_write_bank2(unsigned char val,unsigned char addr)185 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
186 {
187 }
188
189 #endif
190
191 /*----------------------------------------------------------------*/
192
cmos_read_time(struct device * dev,struct rtc_time * t)193 static int cmos_read_time(struct device *dev, struct rtc_time *t)
194 {
195 /* REVISIT: if the clock has a "century" register, use
196 * that instead of the heuristic in get_rtc_time().
197 * That'll make Y3K compatility (year > 2070) easy!
198 */
199 get_rtc_time(t);
200 return 0;
201 }
202
cmos_set_time(struct device * dev,struct rtc_time * t)203 static int cmos_set_time(struct device *dev, struct rtc_time *t)
204 {
205 /* REVISIT: set the "century" register if available
206 *
207 * NOTE: this ignores the issue whereby updating the seconds
208 * takes effect exactly 500ms after we write the register.
209 * (Also queueing and other delays before we get this far.)
210 */
211 return set_rtc_time(t);
212 }
213
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)214 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
215 {
216 struct cmos_rtc *cmos = dev_get_drvdata(dev);
217 unsigned char rtc_control;
218
219 if (!is_valid_irq(cmos->irq))
220 return -EIO;
221
222 /* Basic alarms only support hour, minute, and seconds fields.
223 * Some also support day and month, for alarms up to a year in
224 * the future.
225 */
226 t->time.tm_mday = -1;
227 t->time.tm_mon = -1;
228
229 spin_lock_irq(&rtc_lock);
230 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
231 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
232 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
233
234 if (cmos->day_alrm) {
235 /* ignore upper bits on readback per ACPI spec */
236 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
237 if (!t->time.tm_mday)
238 t->time.tm_mday = -1;
239
240 if (cmos->mon_alrm) {
241 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
242 if (!t->time.tm_mon)
243 t->time.tm_mon = -1;
244 }
245 }
246
247 rtc_control = CMOS_READ(RTC_CONTROL);
248 spin_unlock_irq(&rtc_lock);
249
250 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
251 if (((unsigned)t->time.tm_sec) < 0x60)
252 t->time.tm_sec = bcd2bin(t->time.tm_sec);
253 else
254 t->time.tm_sec = -1;
255 if (((unsigned)t->time.tm_min) < 0x60)
256 t->time.tm_min = bcd2bin(t->time.tm_min);
257 else
258 t->time.tm_min = -1;
259 if (((unsigned)t->time.tm_hour) < 0x24)
260 t->time.tm_hour = bcd2bin(t->time.tm_hour);
261 else
262 t->time.tm_hour = -1;
263
264 if (cmos->day_alrm) {
265 if (((unsigned)t->time.tm_mday) <= 0x31)
266 t->time.tm_mday = bcd2bin(t->time.tm_mday);
267 else
268 t->time.tm_mday = -1;
269
270 if (cmos->mon_alrm) {
271 if (((unsigned)t->time.tm_mon) <= 0x12)
272 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
273 else
274 t->time.tm_mon = -1;
275 }
276 }
277 }
278 t->time.tm_year = -1;
279
280 t->enabled = !!(rtc_control & RTC_AIE);
281 t->pending = 0;
282
283 return 0;
284 }
285
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)286 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
287 {
288 unsigned char rtc_intr;
289
290 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
291 * allegedly some older rtcs need that to handle irqs properly
292 */
293 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
294
295 if (is_hpet_enabled())
296 return;
297
298 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
299 if (is_intr(rtc_intr))
300 rtc_update_irq(cmos->rtc, 1, rtc_intr);
301 }
302
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)303 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
304 {
305 unsigned char rtc_control;
306
307 /* flush any pending IRQ status, notably for update irqs,
308 * before we enable new IRQs
309 */
310 rtc_control = CMOS_READ(RTC_CONTROL);
311 cmos_checkintr(cmos, rtc_control);
312
313 rtc_control |= mask;
314 CMOS_WRITE(rtc_control, RTC_CONTROL);
315 hpet_set_rtc_irq_bit(mask);
316
317 cmos_checkintr(cmos, rtc_control);
318 }
319
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)320 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
321 {
322 unsigned char rtc_control;
323
324 rtc_control = CMOS_READ(RTC_CONTROL);
325 rtc_control &= ~mask;
326 CMOS_WRITE(rtc_control, RTC_CONTROL);
327 hpet_mask_rtc_irq_bit(mask);
328
329 cmos_checkintr(cmos, rtc_control);
330 }
331
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)332 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
333 {
334 struct cmos_rtc *cmos = dev_get_drvdata(dev);
335 unsigned char mon, mday, hrs, min, sec, rtc_control;
336
337 if (!is_valid_irq(cmos->irq))
338 return -EIO;
339
340 mon = t->time.tm_mon + 1;
341 mday = t->time.tm_mday;
342 hrs = t->time.tm_hour;
343 min = t->time.tm_min;
344 sec = t->time.tm_sec;
345
346 spin_lock_irq(&rtc_lock);
347 rtc_control = CMOS_READ(RTC_CONTROL);
348 spin_unlock_irq(&rtc_lock);
349
350 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
351 /* Writing 0xff means "don't care" or "match all". */
352 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
353 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
354 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
355 min = (min < 60) ? bin2bcd(min) : 0xff;
356 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
357 }
358
359 spin_lock_irq(&rtc_lock);
360
361 /* next rtc irq must not be from previous alarm setting */
362 cmos_irq_disable(cmos, RTC_AIE);
363
364 /* update alarm */
365 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
366 CMOS_WRITE(min, RTC_MINUTES_ALARM);
367 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
368
369 /* the system may support an "enhanced" alarm */
370 if (cmos->day_alrm) {
371 CMOS_WRITE(mday, cmos->day_alrm);
372 if (cmos->mon_alrm)
373 CMOS_WRITE(mon, cmos->mon_alrm);
374 }
375
376 /* FIXME the HPET alarm glue currently ignores day_alrm
377 * and mon_alrm ...
378 */
379 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
380
381 if (t->enabled)
382 cmos_irq_enable(cmos, RTC_AIE);
383
384 spin_unlock_irq(&rtc_lock);
385
386 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
387
388 return 0;
389 }
390
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)391 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
392 {
393 struct cmos_rtc *cmos = dev_get_drvdata(dev);
394 unsigned long flags;
395
396 if (!is_valid_irq(cmos->irq))
397 return -EINVAL;
398
399 spin_lock_irqsave(&rtc_lock, flags);
400
401 if (enabled)
402 cmos_irq_enable(cmos, RTC_AIE);
403 else
404 cmos_irq_disable(cmos, RTC_AIE);
405
406 spin_unlock_irqrestore(&rtc_lock, flags);
407 return 0;
408 }
409
410 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
411
cmos_procfs(struct device * dev,struct seq_file * seq)412 static int cmos_procfs(struct device *dev, struct seq_file *seq)
413 {
414 struct cmos_rtc *cmos = dev_get_drvdata(dev);
415 unsigned char rtc_control, valid;
416
417 spin_lock_irq(&rtc_lock);
418 rtc_control = CMOS_READ(RTC_CONTROL);
419 valid = CMOS_READ(RTC_VALID);
420 spin_unlock_irq(&rtc_lock);
421
422 /* NOTE: at least ICH6 reports battery status using a different
423 * (non-RTC) bit; and SQWE is ignored on many current systems.
424 */
425 seq_printf(seq,
426 "periodic_IRQ\t: %s\n"
427 "update_IRQ\t: %s\n"
428 "HPET_emulated\t: %s\n"
429 // "square_wave\t: %s\n"
430 "BCD\t\t: %s\n"
431 "DST_enable\t: %s\n"
432 "periodic_freq\t: %d\n"
433 "batt_status\t: %s\n",
434 (rtc_control & RTC_PIE) ? "yes" : "no",
435 (rtc_control & RTC_UIE) ? "yes" : "no",
436 is_hpet_enabled() ? "yes" : "no",
437 // (rtc_control & RTC_SQWE) ? "yes" : "no",
438 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
439 (rtc_control & RTC_DST_EN) ? "yes" : "no",
440 cmos->rtc->irq_freq,
441 (valid & RTC_VRT) ? "okay" : "dead");
442
443 return 0;
444 }
445
446 #else
447 #define cmos_procfs NULL
448 #endif
449
450 static const struct rtc_class_ops cmos_rtc_ops = {
451 .read_time = cmos_read_time,
452 .set_time = cmos_set_time,
453 .read_alarm = cmos_read_alarm,
454 .set_alarm = cmos_set_alarm,
455 .proc = cmos_procfs,
456 .alarm_irq_enable = cmos_alarm_irq_enable,
457 };
458
459 /*----------------------------------------------------------------*/
460
461 /*
462 * All these chips have at least 64 bytes of address space, shared by
463 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
464 * by boot firmware. Modern chips have 128 or 256 bytes.
465 */
466
467 #define NVRAM_OFFSET (RTC_REG_D + 1)
468
469 static ssize_t
cmos_nvram_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)470 cmos_nvram_read(struct file *filp, struct kobject *kobj,
471 struct bin_attribute *attr,
472 char *buf, loff_t off, size_t count)
473 {
474 int retval;
475
476 off += NVRAM_OFFSET;
477 spin_lock_irq(&rtc_lock);
478 for (retval = 0; count; count--, off++, retval++) {
479 if (off < 128)
480 *buf++ = CMOS_READ(off);
481 else if (can_bank2)
482 *buf++ = cmos_read_bank2(off);
483 else
484 break;
485 }
486 spin_unlock_irq(&rtc_lock);
487
488 return retval;
489 }
490
491 static ssize_t
cmos_nvram_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)492 cmos_nvram_write(struct file *filp, struct kobject *kobj,
493 struct bin_attribute *attr,
494 char *buf, loff_t off, size_t count)
495 {
496 struct cmos_rtc *cmos;
497 int retval;
498
499 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
500
501 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
502 * checksum on part of the NVRAM data. That's currently ignored
503 * here. If userspace is smart enough to know what fields of
504 * NVRAM to update, updating checksums is also part of its job.
505 */
506 off += NVRAM_OFFSET;
507 spin_lock_irq(&rtc_lock);
508 for (retval = 0; count; count--, off++, retval++) {
509 /* don't trash RTC registers */
510 if (off == cmos->day_alrm
511 || off == cmos->mon_alrm
512 || off == cmos->century)
513 buf++;
514 else if (off < 128)
515 CMOS_WRITE(*buf++, off);
516 else if (can_bank2)
517 cmos_write_bank2(*buf++, off);
518 else
519 break;
520 }
521 spin_unlock_irq(&rtc_lock);
522
523 return retval;
524 }
525
526 static struct bin_attribute nvram = {
527 .attr = {
528 .name = "nvram",
529 .mode = S_IRUGO | S_IWUSR,
530 },
531
532 .read = cmos_nvram_read,
533 .write = cmos_nvram_write,
534 /* size gets set up later */
535 };
536
537 /*----------------------------------------------------------------*/
538
539 static struct cmos_rtc cmos_rtc;
540
cmos_interrupt(int irq,void * p)541 static irqreturn_t cmos_interrupt(int irq, void *p)
542 {
543 u8 irqstat;
544 u8 rtc_control;
545
546 spin_lock(&rtc_lock);
547
548 /* When the HPET interrupt handler calls us, the interrupt
549 * status is passed as arg1 instead of the irq number. But
550 * always clear irq status, even when HPET is in the way.
551 *
552 * Note that HPET and RTC are almost certainly out of phase,
553 * giving different IRQ status ...
554 */
555 irqstat = CMOS_READ(RTC_INTR_FLAGS);
556 rtc_control = CMOS_READ(RTC_CONTROL);
557 if (is_hpet_enabled())
558 irqstat = (unsigned long)irq & 0xF0;
559
560 /* If we were suspended, RTC_CONTROL may not be accurate since the
561 * bios may have cleared it.
562 */
563 if (!cmos_rtc.suspend_ctrl)
564 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
565 else
566 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
567
568 /* All Linux RTC alarms should be treated as if they were oneshot.
569 * Similar code may be needed in system wakeup paths, in case the
570 * alarm woke the system.
571 */
572 if (irqstat & RTC_AIE) {
573 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
574 rtc_control &= ~RTC_AIE;
575 CMOS_WRITE(rtc_control, RTC_CONTROL);
576 hpet_mask_rtc_irq_bit(RTC_AIE);
577 CMOS_READ(RTC_INTR_FLAGS);
578 }
579 spin_unlock(&rtc_lock);
580
581 if (is_intr(irqstat)) {
582 rtc_update_irq(p, 1, irqstat);
583 return IRQ_HANDLED;
584 } else
585 return IRQ_NONE;
586 }
587
588 #ifdef CONFIG_PNP
589 #define INITSECTION
590
591 #else
592 #define INITSECTION __init
593 #endif
594
595 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)596 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
597 {
598 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
599 int retval = 0;
600 unsigned char rtc_control;
601 unsigned address_space;
602 u32 flags = 0;
603
604 /* there can be only one ... */
605 if (cmos_rtc.dev)
606 return -EBUSY;
607
608 if (!ports)
609 return -ENODEV;
610
611 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
612 *
613 * REVISIT non-x86 systems may instead use memory space resources
614 * (needing ioremap etc), not i/o space resources like this ...
615 */
616 if (RTC_IOMAPPED)
617 ports = request_region(ports->start, resource_size(ports),
618 driver_name);
619 else
620 ports = request_mem_region(ports->start, resource_size(ports),
621 driver_name);
622 if (!ports) {
623 dev_dbg(dev, "i/o registers already in use\n");
624 return -EBUSY;
625 }
626
627 cmos_rtc.irq = rtc_irq;
628 cmos_rtc.iomem = ports;
629
630 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
631 * driver did, but don't reject unknown configs. Old hardware
632 * won't address 128 bytes. Newer chips have multiple banks,
633 * though they may not be listed in one I/O resource.
634 */
635 #if defined(CONFIG_ATARI)
636 address_space = 64;
637 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
638 || defined(__sparc__) || defined(__mips__) \
639 || defined(__powerpc__)
640 address_space = 128;
641 #else
642 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
643 address_space = 128;
644 #endif
645 if (can_bank2 && ports->end > (ports->start + 1))
646 address_space = 256;
647
648 /* For ACPI systems extension info comes from the FADT. On others,
649 * board specific setup provides it as appropriate. Systems where
650 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
651 * some almost-clones) can provide hooks to make that behave.
652 *
653 * Note that ACPI doesn't preclude putting these registers into
654 * "extended" areas of the chip, including some that we won't yet
655 * expect CMOS_READ and friends to handle.
656 */
657 if (info) {
658 if (info->flags)
659 flags = info->flags;
660 if (info->address_space)
661 address_space = info->address_space;
662
663 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
664 cmos_rtc.day_alrm = info->rtc_day_alarm;
665 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
666 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
667 if (info->rtc_century && info->rtc_century < 128)
668 cmos_rtc.century = info->rtc_century;
669
670 if (info->wake_on && info->wake_off) {
671 cmos_rtc.wake_on = info->wake_on;
672 cmos_rtc.wake_off = info->wake_off;
673 }
674 }
675
676 cmos_rtc.dev = dev;
677 dev_set_drvdata(dev, &cmos_rtc);
678
679 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
680 &cmos_rtc_ops, THIS_MODULE);
681 if (IS_ERR(cmos_rtc.rtc)) {
682 retval = PTR_ERR(cmos_rtc.rtc);
683 goto cleanup0;
684 }
685
686 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
687
688 spin_lock_irq(&rtc_lock);
689
690 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
691 /* force periodic irq to CMOS reset default of 1024Hz;
692 *
693 * REVISIT it's been reported that at least one x86_64 ALI
694 * mobo doesn't use 32KHz here ... for portability we might
695 * need to do something about other clock frequencies.
696 */
697 cmos_rtc.rtc->irq_freq = 1024;
698 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
699 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
700 }
701
702 /* disable irqs */
703 if (is_valid_irq(rtc_irq))
704 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
705
706 rtc_control = CMOS_READ(RTC_CONTROL);
707
708 spin_unlock_irq(&rtc_lock);
709
710 /* FIXME:
711 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
712 */
713 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
714 dev_warn(dev, "only 24-hr supported\n");
715 retval = -ENXIO;
716 goto cleanup1;
717 }
718
719 if (is_valid_irq(rtc_irq)) {
720 irq_handler_t rtc_cmos_int_handler;
721
722 if (is_hpet_enabled()) {
723 rtc_cmos_int_handler = hpet_rtc_interrupt;
724 retval = hpet_register_irq_handler(cmos_interrupt);
725 if (retval) {
726 dev_warn(dev, "hpet_register_irq_handler "
727 " failed in rtc_init().");
728 goto cleanup1;
729 }
730 } else
731 rtc_cmos_int_handler = cmos_interrupt;
732
733 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
734 0, dev_name(&cmos_rtc.rtc->dev),
735 cmos_rtc.rtc);
736 if (retval < 0) {
737 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
738 goto cleanup1;
739 }
740 }
741 hpet_rtc_timer_init();
742
743 /* export at least the first block of NVRAM */
744 nvram.size = address_space - NVRAM_OFFSET;
745 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
746 if (retval < 0) {
747 dev_dbg(dev, "can't create nvram file? %d\n", retval);
748 goto cleanup2;
749 }
750
751 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
752 !is_valid_irq(rtc_irq) ? "no alarms" :
753 cmos_rtc.mon_alrm ? "alarms up to one year" :
754 cmos_rtc.day_alrm ? "alarms up to one month" :
755 "alarms up to one day",
756 cmos_rtc.century ? ", y3k" : "",
757 nvram.size,
758 is_hpet_enabled() ? ", hpet irqs" : "");
759
760 return 0;
761
762 cleanup2:
763 if (is_valid_irq(rtc_irq))
764 free_irq(rtc_irq, cmos_rtc.rtc);
765 cleanup1:
766 cmos_rtc.dev = NULL;
767 rtc_device_unregister(cmos_rtc.rtc);
768 cleanup0:
769 if (RTC_IOMAPPED)
770 release_region(ports->start, resource_size(ports));
771 else
772 release_mem_region(ports->start, resource_size(ports));
773 return retval;
774 }
775
cmos_do_shutdown(int rtc_irq)776 static void cmos_do_shutdown(int rtc_irq)
777 {
778 spin_lock_irq(&rtc_lock);
779 if (is_valid_irq(rtc_irq))
780 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
781 spin_unlock_irq(&rtc_lock);
782 }
783
cmos_do_remove(struct device * dev)784 static void __exit cmos_do_remove(struct device *dev)
785 {
786 struct cmos_rtc *cmos = dev_get_drvdata(dev);
787 struct resource *ports;
788
789 cmos_do_shutdown(cmos->irq);
790
791 sysfs_remove_bin_file(&dev->kobj, &nvram);
792
793 if (is_valid_irq(cmos->irq)) {
794 free_irq(cmos->irq, cmos->rtc);
795 hpet_unregister_irq_handler(cmos_interrupt);
796 }
797
798 rtc_device_unregister(cmos->rtc);
799 cmos->rtc = NULL;
800
801 ports = cmos->iomem;
802 if (RTC_IOMAPPED)
803 release_region(ports->start, resource_size(ports));
804 else
805 release_mem_region(ports->start, resource_size(ports));
806 cmos->iomem = NULL;
807
808 cmos->dev = NULL;
809 }
810
cmos_aie_poweroff(struct device * dev)811 static int cmos_aie_poweroff(struct device *dev)
812 {
813 struct cmos_rtc *cmos = dev_get_drvdata(dev);
814 struct rtc_time now;
815 time64_t t_now;
816 int retval = 0;
817 unsigned char rtc_control;
818
819 if (!cmos->alarm_expires)
820 return -EINVAL;
821
822 spin_lock_irq(&rtc_lock);
823 rtc_control = CMOS_READ(RTC_CONTROL);
824 spin_unlock_irq(&rtc_lock);
825
826 /* We only care about the situation where AIE is disabled. */
827 if (rtc_control & RTC_AIE)
828 return -EBUSY;
829
830 cmos_read_time(dev, &now);
831 t_now = rtc_tm_to_time64(&now);
832
833 /*
834 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
835 * automatically right after shutdown on some buggy boxes.
836 * This automatic rebooting issue won't happen when the alarm
837 * time is larger than now+1 seconds.
838 *
839 * If the alarm time is equal to now+1 seconds, the issue can be
840 * prevented by cancelling the alarm.
841 */
842 if (cmos->alarm_expires == t_now + 1) {
843 struct rtc_wkalrm alarm;
844
845 /* Cancel the AIE timer by configuring the past time. */
846 rtc_time64_to_tm(t_now - 1, &alarm.time);
847 alarm.enabled = 0;
848 retval = cmos_set_alarm(dev, &alarm);
849 } else if (cmos->alarm_expires > t_now + 1) {
850 retval = -EBUSY;
851 }
852
853 return retval;
854 }
855
856 #ifdef CONFIG_PM
857
cmos_suspend(struct device * dev)858 static int cmos_suspend(struct device *dev)
859 {
860 struct cmos_rtc *cmos = dev_get_drvdata(dev);
861 unsigned char tmp;
862
863 /* only the alarm might be a wakeup event source */
864 spin_lock_irq(&rtc_lock);
865 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
866 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
867 unsigned char mask;
868
869 if (device_may_wakeup(dev))
870 mask = RTC_IRQMASK & ~RTC_AIE;
871 else
872 mask = RTC_IRQMASK;
873 tmp &= ~mask;
874 CMOS_WRITE(tmp, RTC_CONTROL);
875 hpet_mask_rtc_irq_bit(mask);
876
877 cmos_checkintr(cmos, tmp);
878 }
879 spin_unlock_irq(&rtc_lock);
880
881 if (tmp & RTC_AIE) {
882 cmos->enabled_wake = 1;
883 if (cmos->wake_on)
884 cmos->wake_on(dev);
885 else
886 enable_irq_wake(cmos->irq);
887 }
888
889 dev_dbg(dev, "suspend%s, ctrl %02x\n",
890 (tmp & RTC_AIE) ? ", alarm may wake" : "",
891 tmp);
892
893 return 0;
894 }
895
896 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
897 * after a detour through G3 "mechanical off", although the ACPI spec
898 * says wakeup should only work from G1/S4 "hibernate". To most users,
899 * distinctions between S4 and S5 are pointless. So when the hardware
900 * allows, don't draw that distinction.
901 */
cmos_poweroff(struct device * dev)902 static inline int cmos_poweroff(struct device *dev)
903 {
904 return cmos_suspend(dev);
905 }
906
907 #ifdef CONFIG_PM_SLEEP
908
cmos_resume(struct device * dev)909 static int cmos_resume(struct device *dev)
910 {
911 struct cmos_rtc *cmos = dev_get_drvdata(dev);
912 unsigned char tmp;
913
914 if (cmos->enabled_wake) {
915 if (cmos->wake_off)
916 cmos->wake_off(dev);
917 else
918 disable_irq_wake(cmos->irq);
919 cmos->enabled_wake = 0;
920 }
921
922 spin_lock_irq(&rtc_lock);
923 tmp = cmos->suspend_ctrl;
924 cmos->suspend_ctrl = 0;
925 /* re-enable any irqs previously active */
926 if (tmp & RTC_IRQMASK) {
927 unsigned char mask;
928
929 if (device_may_wakeup(dev))
930 hpet_rtc_timer_init();
931
932 do {
933 CMOS_WRITE(tmp, RTC_CONTROL);
934 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
935
936 mask = CMOS_READ(RTC_INTR_FLAGS);
937 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
938 if (!is_hpet_enabled() || !is_intr(mask))
939 break;
940
941 /* force one-shot behavior if HPET blocked
942 * the wake alarm's irq
943 */
944 rtc_update_irq(cmos->rtc, 1, mask);
945 tmp &= ~RTC_AIE;
946 hpet_mask_rtc_irq_bit(RTC_AIE);
947 } while (mask & RTC_AIE);
948 }
949 spin_unlock_irq(&rtc_lock);
950
951 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
952
953 return 0;
954 }
955
956 #endif
957 #else
958
cmos_poweroff(struct device * dev)959 static inline int cmos_poweroff(struct device *dev)
960 {
961 return -ENOSYS;
962 }
963
964 #endif
965
966 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
967
968 /*----------------------------------------------------------------*/
969
970 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
971 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
972 * probably list them in similar PNPBIOS tables; so PNP is more common.
973 *
974 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
975 * predate even PNPBIOS should set up platform_bus devices.
976 */
977
978 #ifdef CONFIG_ACPI
979
980 #include <linux/acpi.h>
981
rtc_handler(void * context)982 static u32 rtc_handler(void *context)
983 {
984 struct device *dev = context;
985
986 pm_wakeup_event(dev, 0);
987 acpi_clear_event(ACPI_EVENT_RTC);
988 acpi_disable_event(ACPI_EVENT_RTC, 0);
989 return ACPI_INTERRUPT_HANDLED;
990 }
991
rtc_wake_setup(struct device * dev)992 static inline void rtc_wake_setup(struct device *dev)
993 {
994 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
995 /*
996 * After the RTC handler is installed, the Fixed_RTC event should
997 * be disabled. Only when the RTC alarm is set will it be enabled.
998 */
999 acpi_clear_event(ACPI_EVENT_RTC);
1000 acpi_disable_event(ACPI_EVENT_RTC, 0);
1001 }
1002
rtc_wake_on(struct device * dev)1003 static void rtc_wake_on(struct device *dev)
1004 {
1005 acpi_clear_event(ACPI_EVENT_RTC);
1006 acpi_enable_event(ACPI_EVENT_RTC, 0);
1007 }
1008
rtc_wake_off(struct device * dev)1009 static void rtc_wake_off(struct device *dev)
1010 {
1011 acpi_disable_event(ACPI_EVENT_RTC, 0);
1012 }
1013
1014 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1015 * its device node and pass extra config data. This helps its driver use
1016 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1017 * that this board's RTC is wakeup-capable (per ACPI spec).
1018 */
1019 static struct cmos_rtc_board_info acpi_rtc_info;
1020
cmos_wake_setup(struct device * dev)1021 static void cmos_wake_setup(struct device *dev)
1022 {
1023 if (acpi_disabled)
1024 return;
1025
1026 rtc_wake_setup(dev);
1027 acpi_rtc_info.wake_on = rtc_wake_on;
1028 acpi_rtc_info.wake_off = rtc_wake_off;
1029
1030 /* workaround bug in some ACPI tables */
1031 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1032 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1033 acpi_gbl_FADT.month_alarm);
1034 acpi_gbl_FADT.month_alarm = 0;
1035 }
1036
1037 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1038 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1039 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1040
1041 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1042 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1043 dev_info(dev, "RTC can wake from S4\n");
1044
1045 dev->platform_data = &acpi_rtc_info;
1046
1047 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1048 device_init_wakeup(dev, 1);
1049 }
1050
1051 #else
1052
cmos_wake_setup(struct device * dev)1053 static void cmos_wake_setup(struct device *dev)
1054 {
1055 }
1056
1057 #endif
1058
1059 #ifdef CONFIG_PNP
1060
1061 #include <linux/pnp.h>
1062
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1063 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1064 {
1065 cmos_wake_setup(&pnp->dev);
1066
1067 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1068 unsigned int irq = 0;
1069 #ifdef CONFIG_X86
1070 /* Some machines contain a PNP entry for the RTC, but
1071 * don't define the IRQ. It should always be safe to
1072 * hardcode it on systems with a legacy PIC.
1073 */
1074 if (nr_legacy_irqs())
1075 irq = 8;
1076 #endif
1077 return cmos_do_probe(&pnp->dev,
1078 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1079 } else {
1080 return cmos_do_probe(&pnp->dev,
1081 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1082 pnp_irq(pnp, 0));
1083 }
1084 }
1085
cmos_pnp_remove(struct pnp_dev * pnp)1086 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1087 {
1088 cmos_do_remove(&pnp->dev);
1089 }
1090
cmos_pnp_shutdown(struct pnp_dev * pnp)1091 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1092 {
1093 struct device *dev = &pnp->dev;
1094 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1095
1096 if (system_state == SYSTEM_POWER_OFF) {
1097 int retval = cmos_poweroff(dev);
1098
1099 if (cmos_aie_poweroff(dev) < 0 && !retval)
1100 return;
1101 }
1102
1103 cmos_do_shutdown(cmos->irq);
1104 }
1105
1106 static const struct pnp_device_id rtc_ids[] = {
1107 { .id = "PNP0b00", },
1108 { .id = "PNP0b01", },
1109 { .id = "PNP0b02", },
1110 { },
1111 };
1112 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1113
1114 static struct pnp_driver cmos_pnp_driver = {
1115 .name = (char *) driver_name,
1116 .id_table = rtc_ids,
1117 .probe = cmos_pnp_probe,
1118 .remove = __exit_p(cmos_pnp_remove),
1119 .shutdown = cmos_pnp_shutdown,
1120
1121 /* flag ensures resume() gets called, and stops syslog spam */
1122 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1123 .driver = {
1124 .pm = &cmos_pm_ops,
1125 },
1126 };
1127
1128 #endif /* CONFIG_PNP */
1129
1130 #ifdef CONFIG_OF
1131 static const struct of_device_id of_cmos_match[] = {
1132 {
1133 .compatible = "motorola,mc146818",
1134 },
1135 { },
1136 };
1137 MODULE_DEVICE_TABLE(of, of_cmos_match);
1138
cmos_of_init(struct platform_device * pdev)1139 static __init void cmos_of_init(struct platform_device *pdev)
1140 {
1141 struct device_node *node = pdev->dev.of_node;
1142 struct rtc_time time;
1143 int ret;
1144 const __be32 *val;
1145
1146 if (!node)
1147 return;
1148
1149 val = of_get_property(node, "ctrl-reg", NULL);
1150 if (val)
1151 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1152
1153 val = of_get_property(node, "freq-reg", NULL);
1154 if (val)
1155 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1156
1157 get_rtc_time(&time);
1158 ret = rtc_valid_tm(&time);
1159 if (ret) {
1160 struct rtc_time def_time = {
1161 .tm_year = 1,
1162 .tm_mday = 1,
1163 };
1164 set_rtc_time(&def_time);
1165 }
1166 }
1167 #else
cmos_of_init(struct platform_device * pdev)1168 static inline void cmos_of_init(struct platform_device *pdev) {}
1169 #endif
1170 /*----------------------------------------------------------------*/
1171
1172 /* Platform setup should have set up an RTC device, when PNP is
1173 * unavailable ... this could happen even on (older) PCs.
1174 */
1175
cmos_platform_probe(struct platform_device * pdev)1176 static int __init cmos_platform_probe(struct platform_device *pdev)
1177 {
1178 struct resource *resource;
1179 int irq;
1180
1181 cmos_of_init(pdev);
1182 cmos_wake_setup(&pdev->dev);
1183
1184 if (RTC_IOMAPPED)
1185 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1186 else
1187 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1188 irq = platform_get_irq(pdev, 0);
1189 if (irq < 0)
1190 irq = -1;
1191
1192 return cmos_do_probe(&pdev->dev, resource, irq);
1193 }
1194
cmos_platform_remove(struct platform_device * pdev)1195 static int __exit cmos_platform_remove(struct platform_device *pdev)
1196 {
1197 cmos_do_remove(&pdev->dev);
1198 return 0;
1199 }
1200
cmos_platform_shutdown(struct platform_device * pdev)1201 static void cmos_platform_shutdown(struct platform_device *pdev)
1202 {
1203 struct device *dev = &pdev->dev;
1204 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1205
1206 if (system_state == SYSTEM_POWER_OFF) {
1207 int retval = cmos_poweroff(dev);
1208
1209 if (cmos_aie_poweroff(dev) < 0 && !retval)
1210 return;
1211 }
1212
1213 cmos_do_shutdown(cmos->irq);
1214 }
1215
1216 /* work with hotplug and coldplug */
1217 MODULE_ALIAS("platform:rtc_cmos");
1218
1219 static struct platform_driver cmos_platform_driver = {
1220 .remove = __exit_p(cmos_platform_remove),
1221 .shutdown = cmos_platform_shutdown,
1222 .driver = {
1223 .name = driver_name,
1224 #ifdef CONFIG_PM
1225 .pm = &cmos_pm_ops,
1226 #endif
1227 .of_match_table = of_match_ptr(of_cmos_match),
1228 }
1229 };
1230
1231 #ifdef CONFIG_PNP
1232 static bool pnp_driver_registered;
1233 #endif
1234 static bool platform_driver_registered;
1235
cmos_init(void)1236 static int __init cmos_init(void)
1237 {
1238 int retval = 0;
1239
1240 #ifdef CONFIG_PNP
1241 retval = pnp_register_driver(&cmos_pnp_driver);
1242 if (retval == 0)
1243 pnp_driver_registered = true;
1244 #endif
1245
1246 if (!cmos_rtc.dev) {
1247 retval = platform_driver_probe(&cmos_platform_driver,
1248 cmos_platform_probe);
1249 if (retval == 0)
1250 platform_driver_registered = true;
1251 }
1252
1253 if (retval == 0)
1254 return 0;
1255
1256 #ifdef CONFIG_PNP
1257 if (pnp_driver_registered)
1258 pnp_unregister_driver(&cmos_pnp_driver);
1259 #endif
1260 return retval;
1261 }
1262 module_init(cmos_init);
1263
cmos_exit(void)1264 static void __exit cmos_exit(void)
1265 {
1266 #ifdef CONFIG_PNP
1267 if (pnp_driver_registered)
1268 pnp_unregister_driver(&cmos_pnp_driver);
1269 #endif
1270 if (platform_driver_registered)
1271 platform_driver_unregister(&cmos_platform_driver);
1272 }
1273 module_exit(cmos_exit);
1274
1275
1276 MODULE_AUTHOR("David Brownell");
1277 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1278 MODULE_LICENSE("GPL");
1279