1 /*
2 * Aic94xx SAS/SATA driver SCB management.
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27 #include <linux/gfp.h>
28 #include <scsi/scsi_host.h>
29
30 #include "aic94xx.h"
31 #include "aic94xx_reg.h"
32 #include "aic94xx_hwi.h"
33 #include "aic94xx_seq.h"
34
35 #include "aic94xx_dump.h"
36
37 /* ---------- EMPTY SCB ---------- */
38
39 #define DL_PHY_MASK 7
40 #define BYTES_DMAED 0
41 #define PRIMITIVE_RECVD 0x08
42 #define PHY_EVENT 0x10
43 #define LINK_RESET_ERROR 0x18
44 #define TIMER_EVENT 0x20
45 #define REQ_TASK_ABORT 0xF0
46 #define REQ_DEVICE_RESET 0xF1
47 #define SIGNAL_NCQ_ERROR 0xF2
48 #define CLEAR_NCQ_ERROR 0xF3
49
50 #define PHY_EVENTS_STATUS (CURRENT_LOSS_OF_SIGNAL | CURRENT_OOB_DONE \
51 | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
52 | CURRENT_OOB_ERROR)
53
get_lrate_mode(struct asd_phy * phy,u8 oob_mode)54 static void get_lrate_mode(struct asd_phy *phy, u8 oob_mode)
55 {
56 struct sas_phy *sas_phy = phy->sas_phy.phy;
57
58 switch (oob_mode & 7) {
59 case PHY_SPEED_60:
60 /* FIXME: sas transport class doesn't have this */
61 phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
62 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
63 break;
64 case PHY_SPEED_30:
65 phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
66 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
67 break;
68 case PHY_SPEED_15:
69 phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
70 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
71 break;
72 }
73 sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
74 sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS;
75 sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
76 sas_phy->maximum_linkrate = phy->phy_desc->max_sas_lrate;
77 sas_phy->minimum_linkrate = phy->phy_desc->min_sas_lrate;
78
79 if (oob_mode & SAS_MODE)
80 phy->sas_phy.oob_mode = SAS_OOB_MODE;
81 else if (oob_mode & SATA_MODE)
82 phy->sas_phy.oob_mode = SATA_OOB_MODE;
83 }
84
asd_phy_event_tasklet(struct asd_ascb * ascb,struct done_list_struct * dl)85 static void asd_phy_event_tasklet(struct asd_ascb *ascb,
86 struct done_list_struct *dl)
87 {
88 struct asd_ha_struct *asd_ha = ascb->ha;
89 struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
90 int phy_id = dl->status_block[0] & DL_PHY_MASK;
91 struct asd_phy *phy = &asd_ha->phys[phy_id];
92
93 u8 oob_status = dl->status_block[1] & PHY_EVENTS_STATUS;
94 u8 oob_mode = dl->status_block[2];
95
96 switch (oob_status) {
97 case CURRENT_LOSS_OF_SIGNAL:
98 /* directly attached device was removed */
99 ASD_DPRINTK("phy%d: device unplugged\n", phy_id);
100 asd_turn_led(asd_ha, phy_id, 0);
101 sas_phy_disconnected(&phy->sas_phy);
102 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
103 break;
104 case CURRENT_OOB_DONE:
105 /* hot plugged device */
106 asd_turn_led(asd_ha, phy_id, 1);
107 get_lrate_mode(phy, oob_mode);
108 ASD_DPRINTK("phy%d device plugged: lrate:0x%x, proto:0x%x\n",
109 phy_id, phy->sas_phy.linkrate, phy->sas_phy.iproto);
110 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
111 break;
112 case CURRENT_SPINUP_HOLD:
113 /* hot plug SATA, no COMWAKE sent */
114 asd_turn_led(asd_ha, phy_id, 1);
115 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
116 break;
117 case CURRENT_GTO_TIMEOUT:
118 case CURRENT_OOB_ERROR:
119 ASD_DPRINTK("phy%d error while OOB: oob status:0x%x\n", phy_id,
120 dl->status_block[1]);
121 asd_turn_led(asd_ha, phy_id, 0);
122 sas_phy_disconnected(&phy->sas_phy);
123 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
124 break;
125 }
126 }
127
128 /* If phys are enabled sparsely, this will do the right thing. */
ord_phy(struct asd_ha_struct * asd_ha,struct asd_phy * phy)129 static unsigned ord_phy(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
130 {
131 u8 enabled_mask = asd_ha->hw_prof.enabled_phys;
132 int i, k = 0;
133
134 for_each_phy(enabled_mask, enabled_mask, i) {
135 if (&asd_ha->phys[i] == phy)
136 return k;
137 k++;
138 }
139 return 0;
140 }
141
142 /**
143 * asd_get_attached_sas_addr -- extract/generate attached SAS address
144 * phy: pointer to asd_phy
145 * sas_addr: pointer to buffer where the SAS address is to be written
146 *
147 * This function extracts the SAS address from an IDENTIFY frame
148 * received. If OOB is SATA, then a SAS address is generated from the
149 * HA tables.
150 *
151 * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
152 * buffer.
153 */
asd_get_attached_sas_addr(struct asd_phy * phy,u8 * sas_addr)154 static void asd_get_attached_sas_addr(struct asd_phy *phy, u8 *sas_addr)
155 {
156 if (phy->sas_phy.frame_rcvd[0] == 0x34
157 && phy->sas_phy.oob_mode == SATA_OOB_MODE) {
158 struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
159 /* FIS device-to-host */
160 u64 addr = be64_to_cpu(*(__be64 *)phy->phy_desc->sas_addr);
161
162 addr += asd_ha->hw_prof.sata_name_base + ord_phy(asd_ha, phy);
163 *(__be64 *)sas_addr = cpu_to_be64(addr);
164 } else {
165 struct sas_identify_frame *idframe =
166 (void *) phy->sas_phy.frame_rcvd;
167 memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
168 }
169 }
170
asd_form_port(struct asd_ha_struct * asd_ha,struct asd_phy * phy)171 static void asd_form_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
172 {
173 int i;
174 struct asd_port *free_port = NULL;
175 struct asd_port *port;
176 struct asd_sas_phy *sas_phy = &phy->sas_phy;
177 unsigned long flags;
178
179 spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
180 if (!phy->asd_port) {
181 for (i = 0; i < ASD_MAX_PHYS; i++) {
182 port = &asd_ha->asd_ports[i];
183
184 /* Check for wide port */
185 if (port->num_phys > 0 &&
186 memcmp(port->sas_addr, sas_phy->sas_addr,
187 SAS_ADDR_SIZE) == 0 &&
188 memcmp(port->attached_sas_addr,
189 sas_phy->attached_sas_addr,
190 SAS_ADDR_SIZE) == 0) {
191 break;
192 }
193
194 /* Find a free port */
195 if (port->num_phys == 0 && free_port == NULL) {
196 free_port = port;
197 }
198 }
199
200 /* Use a free port if this doesn't form a wide port */
201 if (i >= ASD_MAX_PHYS) {
202 port = free_port;
203 BUG_ON(!port);
204 memcpy(port->sas_addr, sas_phy->sas_addr,
205 SAS_ADDR_SIZE);
206 memcpy(port->attached_sas_addr,
207 sas_phy->attached_sas_addr,
208 SAS_ADDR_SIZE);
209 }
210 port->num_phys++;
211 port->phy_mask |= (1U << sas_phy->id);
212 phy->asd_port = port;
213 }
214 ASD_DPRINTK("%s: updating phy_mask 0x%x for phy%d\n",
215 __func__, phy->asd_port->phy_mask, sas_phy->id);
216 asd_update_port_links(asd_ha, phy);
217 spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
218 }
219
asd_deform_port(struct asd_ha_struct * asd_ha,struct asd_phy * phy)220 static void asd_deform_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
221 {
222 struct asd_port *port = phy->asd_port;
223 struct asd_sas_phy *sas_phy = &phy->sas_phy;
224 unsigned long flags;
225
226 spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
227 if (port) {
228 port->num_phys--;
229 port->phy_mask &= ~(1U << sas_phy->id);
230 phy->asd_port = NULL;
231 }
232 spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
233 }
234
asd_bytes_dmaed_tasklet(struct asd_ascb * ascb,struct done_list_struct * dl,int edb_id,int phy_id)235 static void asd_bytes_dmaed_tasklet(struct asd_ascb *ascb,
236 struct done_list_struct *dl,
237 int edb_id, int phy_id)
238 {
239 unsigned long flags;
240 int edb_el = edb_id + ascb->edb_index;
241 struct asd_dma_tok *edb = ascb->ha->seq.edb_arr[edb_el];
242 struct asd_phy *phy = &ascb->ha->phys[phy_id];
243 struct sas_ha_struct *sas_ha = phy->sas_phy.ha;
244 u16 size = ((dl->status_block[3] & 7) << 8) | dl->status_block[2];
245
246 size = min(size, (u16) sizeof(phy->frame_rcvd));
247
248 spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
249 memcpy(phy->sas_phy.frame_rcvd, edb->vaddr, size);
250 phy->sas_phy.frame_rcvd_size = size;
251 asd_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
252 spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
253 asd_dump_frame_rcvd(phy, dl);
254 asd_form_port(ascb->ha, phy);
255 sas_ha->notify_port_event(&phy->sas_phy, PORTE_BYTES_DMAED);
256 }
257
asd_link_reset_err_tasklet(struct asd_ascb * ascb,struct done_list_struct * dl,int phy_id)258 static void asd_link_reset_err_tasklet(struct asd_ascb *ascb,
259 struct done_list_struct *dl,
260 int phy_id)
261 {
262 struct asd_ha_struct *asd_ha = ascb->ha;
263 struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
264 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
265 struct asd_phy *phy = &asd_ha->phys[phy_id];
266 u8 lr_error = dl->status_block[1];
267 u8 retries_left = dl->status_block[2];
268
269 switch (lr_error) {
270 case 0:
271 ASD_DPRINTK("phy%d: Receive ID timer expired\n", phy_id);
272 break;
273 case 1:
274 ASD_DPRINTK("phy%d: Loss of signal\n", phy_id);
275 break;
276 case 2:
277 ASD_DPRINTK("phy%d: Loss of dword sync\n", phy_id);
278 break;
279 case 3:
280 ASD_DPRINTK("phy%d: Receive FIS timeout\n", phy_id);
281 break;
282 default:
283 ASD_DPRINTK("phy%d: unknown link reset error code: 0x%x\n",
284 phy_id, lr_error);
285 break;
286 }
287
288 asd_turn_led(asd_ha, phy_id, 0);
289 sas_phy_disconnected(sas_phy);
290 asd_deform_port(asd_ha, phy);
291 sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
292
293 if (retries_left == 0) {
294 int num = 1;
295 struct asd_ascb *cp = asd_ascb_alloc_list(ascb->ha, &num,
296 GFP_ATOMIC);
297 if (!cp) {
298 asd_printk("%s: out of memory\n", __func__);
299 goto out;
300 }
301 ASD_DPRINTK("phy%d: retries:0 performing link reset seq\n",
302 phy_id);
303 asd_build_control_phy(cp, phy_id, ENABLE_PHY);
304 if (asd_post_ascb_list(ascb->ha, cp, 1) != 0)
305 asd_ascb_free(cp);
306 }
307 out:
308 ;
309 }
310
asd_primitive_rcvd_tasklet(struct asd_ascb * ascb,struct done_list_struct * dl,int phy_id)311 static void asd_primitive_rcvd_tasklet(struct asd_ascb *ascb,
312 struct done_list_struct *dl,
313 int phy_id)
314 {
315 unsigned long flags;
316 struct sas_ha_struct *sas_ha = &ascb->ha->sas_ha;
317 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
318 struct asd_ha_struct *asd_ha = ascb->ha;
319 struct asd_phy *phy = &asd_ha->phys[phy_id];
320 u8 reg = dl->status_block[1];
321 u32 cont = dl->status_block[2] << ((reg & 3)*8);
322
323 reg &= ~3;
324 switch (reg) {
325 case LmPRMSTAT0BYTE0:
326 switch (cont) {
327 case LmBROADCH:
328 case LmBROADRVCH0:
329 case LmBROADRVCH1:
330 case LmBROADSES:
331 ASD_DPRINTK("phy%d: BROADCAST change received:%d\n",
332 phy_id, cont);
333 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
334 sas_phy->sas_prim = ffs(cont);
335 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
336 sas_ha->notify_port_event(sas_phy,PORTE_BROADCAST_RCVD);
337 break;
338
339 case LmUNKNOWNP:
340 ASD_DPRINTK("phy%d: unknown BREAK\n", phy_id);
341 break;
342
343 default:
344 ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
345 phy_id, reg, cont);
346 break;
347 }
348 break;
349 case LmPRMSTAT1BYTE0:
350 switch (cont) {
351 case LmHARDRST:
352 ASD_DPRINTK("phy%d: HARD_RESET primitive rcvd\n",
353 phy_id);
354 /* The sequencer disables all phys on that port.
355 * We have to re-enable the phys ourselves. */
356 asd_deform_port(asd_ha, phy);
357 sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
358 break;
359
360 default:
361 ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
362 phy_id, reg, cont);
363 break;
364 }
365 break;
366 default:
367 ASD_DPRINTK("unknown primitive register:0x%x\n",
368 dl->status_block[1]);
369 break;
370 }
371 }
372
373 /**
374 * asd_invalidate_edb -- invalidate an EDB and if necessary post the ESCB
375 * @ascb: pointer to Empty SCB
376 * @edb_id: index [0,6] to the empty data buffer which is to be invalidated
377 *
378 * After an EDB has been invalidated, if all EDBs in this ESCB have been
379 * invalidated, the ESCB is posted back to the sequencer.
380 * Context is tasklet/IRQ.
381 */
asd_invalidate_edb(struct asd_ascb * ascb,int edb_id)382 void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id)
383 {
384 struct asd_seq_data *seq = &ascb->ha->seq;
385 struct empty_scb *escb = &ascb->scb->escb;
386 struct sg_el *eb = &escb->eb[edb_id];
387 struct asd_dma_tok *edb = seq->edb_arr[ascb->edb_index + edb_id];
388
389 memset(edb->vaddr, 0, ASD_EDB_SIZE);
390 eb->flags |= ELEMENT_NOT_VALID;
391 escb->num_valid--;
392
393 if (escb->num_valid == 0) {
394 int i;
395 /* ASD_DPRINTK("reposting escb: vaddr: 0x%p, "
396 "dma_handle: 0x%08llx, next: 0x%08llx, "
397 "index:%d, opcode:0x%02x\n",
398 ascb->dma_scb.vaddr,
399 (u64)ascb->dma_scb.dma_handle,
400 le64_to_cpu(ascb->scb->header.next_scb),
401 le16_to_cpu(ascb->scb->header.index),
402 ascb->scb->header.opcode);
403 */
404 escb->num_valid = ASD_EDBS_PER_SCB;
405 for (i = 0; i < ASD_EDBS_PER_SCB; i++)
406 escb->eb[i].flags = 0;
407 if (!list_empty(&ascb->list))
408 list_del_init(&ascb->list);
409 i = asd_post_escb_list(ascb->ha, ascb, 1);
410 if (i)
411 asd_printk("couldn't post escb, err:%d\n", i);
412 }
413 }
414
escb_tasklet_complete(struct asd_ascb * ascb,struct done_list_struct * dl)415 static void escb_tasklet_complete(struct asd_ascb *ascb,
416 struct done_list_struct *dl)
417 {
418 struct asd_ha_struct *asd_ha = ascb->ha;
419 struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
420 int edb = (dl->opcode & DL_PHY_MASK) - 1; /* [0xc1,0xc7] -> [0,6] */
421 u8 sb_opcode = dl->status_block[0];
422 int phy_id = sb_opcode & DL_PHY_MASK;
423 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
424 struct asd_phy *phy = &asd_ha->phys[phy_id];
425
426 if (edb > 6 || edb < 0) {
427 ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
428 edb, dl->opcode);
429 ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
430 sb_opcode, phy_id);
431 ASD_DPRINTK("escb: vaddr: 0x%p, "
432 "dma_handle: 0x%llx, next: 0x%llx, "
433 "index:%d, opcode:0x%02x\n",
434 ascb->dma_scb.vaddr,
435 (unsigned long long)ascb->dma_scb.dma_handle,
436 (unsigned long long)
437 le64_to_cpu(ascb->scb->header.next_scb),
438 le16_to_cpu(ascb->scb->header.index),
439 ascb->scb->header.opcode);
440 }
441
442 /* Catch these before we mask off the sb_opcode bits */
443 switch (sb_opcode) {
444 case REQ_TASK_ABORT: {
445 struct asd_ascb *a, *b;
446 u16 tc_abort;
447 struct domain_device *failed_dev = NULL;
448
449 ASD_DPRINTK("%s: REQ_TASK_ABORT, reason=0x%X\n",
450 __func__, dl->status_block[3]);
451
452 /*
453 * Find the task that caused the abort and abort it first.
454 * The sequencer won't put anything on the done list until
455 * that happens.
456 */
457 tc_abort = *((u16*)(&dl->status_block[1]));
458 tc_abort = le16_to_cpu(tc_abort);
459
460 list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
461 struct sas_task *task = a->uldd_task;
462
463 if (a->tc_index != tc_abort)
464 continue;
465
466 if (task) {
467 failed_dev = task->dev;
468 sas_task_abort(task);
469 } else {
470 ASD_DPRINTK("R_T_A for non TASK scb 0x%x\n",
471 a->scb->header.opcode);
472 }
473 break;
474 }
475
476 if (!failed_dev) {
477 ASD_DPRINTK("%s: Can't find task (tc=%d) to abort!\n",
478 __func__, tc_abort);
479 goto out;
480 }
481
482 /*
483 * Now abort everything else for that device (hba?) so
484 * that the EH will wake up and do something.
485 */
486 list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
487 struct sas_task *task = a->uldd_task;
488
489 if (task &&
490 task->dev == failed_dev &&
491 a->tc_index != tc_abort)
492 sas_task_abort(task);
493 }
494
495 goto out;
496 }
497 case REQ_DEVICE_RESET: {
498 struct asd_ascb *a;
499 u16 conn_handle;
500 unsigned long flags;
501 struct sas_task *last_dev_task = NULL;
502
503 conn_handle = *((u16*)(&dl->status_block[1]));
504 conn_handle = le16_to_cpu(conn_handle);
505
506 ASD_DPRINTK("%s: REQ_DEVICE_RESET, reason=0x%X\n", __func__,
507 dl->status_block[3]);
508
509 /* Find the last pending task for the device... */
510 list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
511 u16 x;
512 struct domain_device *dev;
513 struct sas_task *task = a->uldd_task;
514
515 if (!task)
516 continue;
517 dev = task->dev;
518
519 x = (unsigned long)dev->lldd_dev;
520 if (x == conn_handle)
521 last_dev_task = task;
522 }
523
524 if (!last_dev_task) {
525 ASD_DPRINTK("%s: Device reset for idle device %d?\n",
526 __func__, conn_handle);
527 goto out;
528 }
529
530 /* ...and set the reset flag */
531 spin_lock_irqsave(&last_dev_task->task_state_lock, flags);
532 last_dev_task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
533 spin_unlock_irqrestore(&last_dev_task->task_state_lock, flags);
534
535 /* Kill all pending tasks for the device */
536 list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
537 u16 x;
538 struct domain_device *dev;
539 struct sas_task *task = a->uldd_task;
540
541 if (!task)
542 continue;
543 dev = task->dev;
544
545 x = (unsigned long)dev->lldd_dev;
546 if (x == conn_handle)
547 sas_task_abort(task);
548 }
549
550 goto out;
551 }
552 case SIGNAL_NCQ_ERROR:
553 ASD_DPRINTK("%s: SIGNAL_NCQ_ERROR\n", __func__);
554 goto out;
555 case CLEAR_NCQ_ERROR:
556 ASD_DPRINTK("%s: CLEAR_NCQ_ERROR\n", __func__);
557 goto out;
558 }
559
560 sb_opcode &= ~DL_PHY_MASK;
561
562 switch (sb_opcode) {
563 case BYTES_DMAED:
564 ASD_DPRINTK("%s: phy%d: BYTES_DMAED\n", __func__, phy_id);
565 asd_bytes_dmaed_tasklet(ascb, dl, edb, phy_id);
566 break;
567 case PRIMITIVE_RECVD:
568 ASD_DPRINTK("%s: phy%d: PRIMITIVE_RECVD\n", __func__,
569 phy_id);
570 asd_primitive_rcvd_tasklet(ascb, dl, phy_id);
571 break;
572 case PHY_EVENT:
573 ASD_DPRINTK("%s: phy%d: PHY_EVENT\n", __func__, phy_id);
574 asd_phy_event_tasklet(ascb, dl);
575 break;
576 case LINK_RESET_ERROR:
577 ASD_DPRINTK("%s: phy%d: LINK_RESET_ERROR\n", __func__,
578 phy_id);
579 asd_link_reset_err_tasklet(ascb, dl, phy_id);
580 break;
581 case TIMER_EVENT:
582 ASD_DPRINTK("%s: phy%d: TIMER_EVENT, lost dw sync\n",
583 __func__, phy_id);
584 asd_turn_led(asd_ha, phy_id, 0);
585 /* the device is gone */
586 sas_phy_disconnected(sas_phy);
587 asd_deform_port(asd_ha, phy);
588 sas_ha->notify_port_event(sas_phy, PORTE_TIMER_EVENT);
589 break;
590 default:
591 ASD_DPRINTK("%s: phy%d: unknown event:0x%x\n", __func__,
592 phy_id, sb_opcode);
593 ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
594 edb, dl->opcode);
595 ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
596 sb_opcode, phy_id);
597 ASD_DPRINTK("escb: vaddr: 0x%p, "
598 "dma_handle: 0x%llx, next: 0x%llx, "
599 "index:%d, opcode:0x%02x\n",
600 ascb->dma_scb.vaddr,
601 (unsigned long long)ascb->dma_scb.dma_handle,
602 (unsigned long long)
603 le64_to_cpu(ascb->scb->header.next_scb),
604 le16_to_cpu(ascb->scb->header.index),
605 ascb->scb->header.opcode);
606
607 break;
608 }
609 out:
610 asd_invalidate_edb(ascb, edb);
611 }
612
asd_init_post_escbs(struct asd_ha_struct * asd_ha)613 int asd_init_post_escbs(struct asd_ha_struct *asd_ha)
614 {
615 struct asd_seq_data *seq = &asd_ha->seq;
616 int i;
617
618 for (i = 0; i < seq->num_escbs; i++)
619 seq->escb_arr[i]->tasklet_complete = escb_tasklet_complete;
620
621 ASD_DPRINTK("posting %d escbs\n", i);
622 return asd_post_escb_list(asd_ha, seq->escb_arr[0], seq->num_escbs);
623 }
624
625 /* ---------- CONTROL PHY ---------- */
626
627 #define CONTROL_PHY_STATUS (CURRENT_DEVICE_PRESENT | CURRENT_OOB_DONE \
628 | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
629 | CURRENT_OOB_ERROR)
630
631 /**
632 * control_phy_tasklet_complete -- tasklet complete for CONTROL PHY ascb
633 * @ascb: pointer to an ascb
634 * @dl: pointer to the done list entry
635 *
636 * This function completes a CONTROL PHY scb and frees the ascb.
637 * A note on LEDs:
638 * - an LED blinks if there is IO though it,
639 * - if a device is connected to the LED, it is lit,
640 * - if no device is connected to the LED, is is dimmed (off).
641 */
control_phy_tasklet_complete(struct asd_ascb * ascb,struct done_list_struct * dl)642 static void control_phy_tasklet_complete(struct asd_ascb *ascb,
643 struct done_list_struct *dl)
644 {
645 struct asd_ha_struct *asd_ha = ascb->ha;
646 struct scb *scb = ascb->scb;
647 struct control_phy *control_phy = &scb->control_phy;
648 u8 phy_id = control_phy->phy_id;
649 struct asd_phy *phy = &ascb->ha->phys[phy_id];
650
651 u8 status = dl->status_block[0];
652 u8 oob_status = dl->status_block[1];
653 u8 oob_mode = dl->status_block[2];
654 /* u8 oob_signals= dl->status_block[3]; */
655
656 if (status != 0) {
657 ASD_DPRINTK("%s: phy%d status block opcode:0x%x\n",
658 __func__, phy_id, status);
659 goto out;
660 }
661
662 switch (control_phy->sub_func) {
663 case DISABLE_PHY:
664 asd_ha->hw_prof.enabled_phys &= ~(1 << phy_id);
665 asd_turn_led(asd_ha, phy_id, 0);
666 asd_control_led(asd_ha, phy_id, 0);
667 ASD_DPRINTK("%s: disable phy%d\n", __func__, phy_id);
668 break;
669
670 case ENABLE_PHY:
671 asd_control_led(asd_ha, phy_id, 1);
672 if (oob_status & CURRENT_OOB_DONE) {
673 asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
674 get_lrate_mode(phy, oob_mode);
675 asd_turn_led(asd_ha, phy_id, 1);
676 ASD_DPRINTK("%s: phy%d, lrate:0x%x, proto:0x%x\n",
677 __func__, phy_id,phy->sas_phy.linkrate,
678 phy->sas_phy.iproto);
679 } else if (oob_status & CURRENT_SPINUP_HOLD) {
680 asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
681 asd_turn_led(asd_ha, phy_id, 1);
682 ASD_DPRINTK("%s: phy%d, spinup hold\n", __func__,
683 phy_id);
684 } else if (oob_status & CURRENT_ERR_MASK) {
685 asd_turn_led(asd_ha, phy_id, 0);
686 ASD_DPRINTK("%s: phy%d: error: oob status:0x%02x\n",
687 __func__, phy_id, oob_status);
688 } else if (oob_status & (CURRENT_HOT_PLUG_CNCT
689 | CURRENT_DEVICE_PRESENT)) {
690 asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
691 asd_turn_led(asd_ha, phy_id, 1);
692 ASD_DPRINTK("%s: phy%d: hot plug or device present\n",
693 __func__, phy_id);
694 } else {
695 asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
696 asd_turn_led(asd_ha, phy_id, 0);
697 ASD_DPRINTK("%s: phy%d: no device present: "
698 "oob_status:0x%x\n",
699 __func__, phy_id, oob_status);
700 }
701 break;
702 case RELEASE_SPINUP_HOLD:
703 case PHY_NO_OP:
704 case EXECUTE_HARD_RESET:
705 ASD_DPRINTK("%s: phy%d: sub_func:0x%x\n", __func__,
706 phy_id, control_phy->sub_func);
707 /* XXX finish */
708 break;
709 default:
710 ASD_DPRINTK("%s: phy%d: sub_func:0x%x?\n", __func__,
711 phy_id, control_phy->sub_func);
712 break;
713 }
714 out:
715 asd_ascb_free(ascb);
716 }
717
set_speed_mask(u8 * speed_mask,struct asd_phy_desc * pd)718 static void set_speed_mask(u8 *speed_mask, struct asd_phy_desc *pd)
719 {
720 /* disable all speeds, then enable defaults */
721 *speed_mask = SAS_SPEED_60_DIS | SAS_SPEED_30_DIS | SAS_SPEED_15_DIS
722 | SATA_SPEED_30_DIS | SATA_SPEED_15_DIS;
723
724 switch (pd->max_sas_lrate) {
725 case SAS_LINK_RATE_6_0_GBPS:
726 *speed_mask &= ~SAS_SPEED_60_DIS;
727 default:
728 case SAS_LINK_RATE_3_0_GBPS:
729 *speed_mask &= ~SAS_SPEED_30_DIS;
730 case SAS_LINK_RATE_1_5_GBPS:
731 *speed_mask &= ~SAS_SPEED_15_DIS;
732 }
733
734 switch (pd->min_sas_lrate) {
735 case SAS_LINK_RATE_6_0_GBPS:
736 *speed_mask |= SAS_SPEED_30_DIS;
737 case SAS_LINK_RATE_3_0_GBPS:
738 *speed_mask |= SAS_SPEED_15_DIS;
739 default:
740 case SAS_LINK_RATE_1_5_GBPS:
741 /* nothing to do */
742 ;
743 }
744
745 switch (pd->max_sata_lrate) {
746 case SAS_LINK_RATE_3_0_GBPS:
747 *speed_mask &= ~SATA_SPEED_30_DIS;
748 default:
749 case SAS_LINK_RATE_1_5_GBPS:
750 *speed_mask &= ~SATA_SPEED_15_DIS;
751 }
752
753 switch (pd->min_sata_lrate) {
754 case SAS_LINK_RATE_3_0_GBPS:
755 *speed_mask |= SATA_SPEED_15_DIS;
756 default:
757 case SAS_LINK_RATE_1_5_GBPS:
758 /* nothing to do */
759 ;
760 }
761 }
762
763 /**
764 * asd_build_control_phy -- build a CONTROL PHY SCB
765 * @ascb: pointer to an ascb
766 * @phy_id: phy id to control, integer
767 * @subfunc: subfunction, what to actually to do the phy
768 *
769 * This function builds a CONTROL PHY scb. No allocation of any kind
770 * is performed. @ascb is allocated with the list function.
771 * The caller can override the ascb->tasklet_complete to point
772 * to its own callback function. It must call asd_ascb_free()
773 * at its tasklet complete function.
774 * See the default implementation.
775 */
asd_build_control_phy(struct asd_ascb * ascb,int phy_id,u8 subfunc)776 void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc)
777 {
778 struct asd_phy *phy = &ascb->ha->phys[phy_id];
779 struct scb *scb = ascb->scb;
780 struct control_phy *control_phy = &scb->control_phy;
781
782 scb->header.opcode = CONTROL_PHY;
783 control_phy->phy_id = (u8) phy_id;
784 control_phy->sub_func = subfunc;
785
786 switch (subfunc) {
787 case EXECUTE_HARD_RESET: /* 0x81 */
788 case ENABLE_PHY: /* 0x01 */
789 /* decide hot plug delay */
790 control_phy->hot_plug_delay = HOTPLUG_DELAY_TIMEOUT;
791
792 /* decide speed mask */
793 set_speed_mask(&control_phy->speed_mask, phy->phy_desc);
794
795 /* initiator port settings are in the hi nibble */
796 if (phy->sas_phy.role == PHY_ROLE_INITIATOR)
797 control_phy->port_type = SAS_PROTOCOL_ALL << 4;
798 else if (phy->sas_phy.role == PHY_ROLE_TARGET)
799 control_phy->port_type = SAS_PROTOCOL_ALL;
800 else
801 control_phy->port_type =
802 (SAS_PROTOCOL_ALL << 4) | SAS_PROTOCOL_ALL;
803
804 /* link reset retries, this should be nominal */
805 control_phy->link_reset_retries = 10;
806
807 case RELEASE_SPINUP_HOLD: /* 0x02 */
808 /* decide the func_mask */
809 control_phy->func_mask = FUNCTION_MASK_DEFAULT;
810 if (phy->phy_desc->flags & ASD_SATA_SPINUP_HOLD)
811 control_phy->func_mask &= ~SPINUP_HOLD_DIS;
812 else
813 control_phy->func_mask |= SPINUP_HOLD_DIS;
814 }
815
816 control_phy->conn_handle = cpu_to_le16(0xFFFF);
817
818 ascb->tasklet_complete = control_phy_tasklet_complete;
819 }
820
821 /* ---------- INITIATE LINK ADM TASK ---------- */
822
823 #if 0
824
825 static void link_adm_tasklet_complete(struct asd_ascb *ascb,
826 struct done_list_struct *dl)
827 {
828 u8 opcode = dl->opcode;
829 struct initiate_link_adm *link_adm = &ascb->scb->link_adm;
830 u8 phy_id = link_adm->phy_id;
831
832 if (opcode != TC_NO_ERROR) {
833 asd_printk("phy%d: link adm task 0x%x completed with error "
834 "0x%x\n", phy_id, link_adm->sub_func, opcode);
835 }
836 ASD_DPRINTK("phy%d: link adm task 0x%x: 0x%x\n",
837 phy_id, link_adm->sub_func, opcode);
838
839 asd_ascb_free(ascb);
840 }
841
842 void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id,
843 u8 subfunc)
844 {
845 struct scb *scb = ascb->scb;
846 struct initiate_link_adm *link_adm = &scb->link_adm;
847
848 scb->header.opcode = INITIATE_LINK_ADM_TASK;
849
850 link_adm->phy_id = phy_id;
851 link_adm->sub_func = subfunc;
852 link_adm->conn_handle = cpu_to_le16(0xFFFF);
853
854 ascb->tasklet_complete = link_adm_tasklet_complete;
855 }
856
857 #endif /* 0 */
858
859 /* ---------- SCB timer ---------- */
860
861 /**
862 * asd_ascb_timedout -- called when a pending SCB's timer has expired
863 * @data: unsigned long, a pointer to the ascb in question
864 *
865 * This is the default timeout function which does the most necessary.
866 * Upper layers can implement their own timeout function, say to free
867 * resources they have with this SCB, and then call this one at the
868 * end of their timeout function. To do this, one should initialize
869 * the ascb->timer.{function, data, expires} prior to calling the post
870 * function. The timer is started by the post function.
871 */
asd_ascb_timedout(unsigned long data)872 void asd_ascb_timedout(unsigned long data)
873 {
874 struct asd_ascb *ascb = (void *) data;
875 struct asd_seq_data *seq = &ascb->ha->seq;
876 unsigned long flags;
877
878 ASD_DPRINTK("scb:0x%x timed out\n", ascb->scb->header.opcode);
879
880 spin_lock_irqsave(&seq->pend_q_lock, flags);
881 seq->pending--;
882 list_del_init(&ascb->list);
883 spin_unlock_irqrestore(&seq->pend_q_lock, flags);
884
885 asd_ascb_free(ascb);
886 }
887
888 /* ---------- CONTROL PHY ---------- */
889
890 /* Given the spec value, return a driver value. */
891 static const int phy_func_table[] = {
892 [PHY_FUNC_NOP] = PHY_NO_OP,
893 [PHY_FUNC_LINK_RESET] = ENABLE_PHY,
894 [PHY_FUNC_HARD_RESET] = EXECUTE_HARD_RESET,
895 [PHY_FUNC_DISABLE] = DISABLE_PHY,
896 [PHY_FUNC_RELEASE_SPINUP_HOLD] = RELEASE_SPINUP_HOLD,
897 };
898
asd_control_phy(struct asd_sas_phy * phy,enum phy_func func,void * arg)899 int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func, void *arg)
900 {
901 struct asd_ha_struct *asd_ha = phy->ha->lldd_ha;
902 struct asd_phy_desc *pd = asd_ha->phys[phy->id].phy_desc;
903 struct asd_ascb *ascb;
904 struct sas_phy_linkrates *rates;
905 int res = 1;
906
907 switch (func) {
908 case PHY_FUNC_CLEAR_ERROR_LOG:
909 case PHY_FUNC_GET_EVENTS:
910 return -ENOSYS;
911 case PHY_FUNC_SET_LINK_RATE:
912 rates = arg;
913 if (rates->minimum_linkrate) {
914 pd->min_sas_lrate = rates->minimum_linkrate;
915 pd->min_sata_lrate = rates->minimum_linkrate;
916 }
917 if (rates->maximum_linkrate) {
918 pd->max_sas_lrate = rates->maximum_linkrate;
919 pd->max_sata_lrate = rates->maximum_linkrate;
920 }
921 func = PHY_FUNC_LINK_RESET;
922 break;
923 default:
924 break;
925 }
926
927 ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL);
928 if (!ascb)
929 return -ENOMEM;
930
931 asd_build_control_phy(ascb, phy->id, phy_func_table[func]);
932 res = asd_post_ascb_list(asd_ha, ascb , 1);
933 if (res)
934 asd_ascb_free(ascb);
935
936 return res;
937 }
938