• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include "csio_hw.h"
35 #include "csio_init.h"
36 
37 static int
csio_t5_set_mem_win(struct csio_hw * hw,uint32_t win)38 csio_t5_set_mem_win(struct csio_hw *hw, uint32_t win)
39 {
40 	u32 mem_win_base;
41 	/*
42 	 * Truncation intentional: we only read the bottom 32-bits of the
43 	 * 64-bit BAR0/BAR1 ...  We use the hardware backdoor mechanism to
44 	 * read BAR0 instead of using pci_resource_start() because we could be
45 	 * operating from within a Virtual Machine which is trapping our
46 	 * accesses to our Configuration Space and we need to set up the PCI-E
47 	 * Memory Window decoders with the actual addresses which will be
48 	 * coming across the PCI-E link.
49 	 */
50 
51 	/* For T5, only relative offset inside the PCIe BAR is passed */
52 	mem_win_base = MEMWIN_BASE;
53 
54 	/*
55 	 * Set up memory window for accessing adapter memory ranges.  (Read
56 	 * back MA register to ensure that changes propagate before we attempt
57 	 * to use the new values.)
58 	 */
59 	csio_wr_reg32(hw, mem_win_base | BIR_V(0) |
60 			  WINDOW_V(ilog2(MEMWIN_APERTURE) - 10),
61 			  PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
62 	csio_rd_reg32(hw,
63 		      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
64 
65 	return 0;
66 }
67 
68 /*
69  * Interrupt handler for the PCIE module.
70  */
71 static void
csio_t5_pcie_intr_handler(struct csio_hw * hw)72 csio_t5_pcie_intr_handler(struct csio_hw *hw)
73 {
74 	static struct intr_info sysbus_intr_info[] = {
75 		{ RNPP_F, "RXNP array parity error", -1, 1 },
76 		{ RPCP_F, "RXPC array parity error", -1, 1 },
77 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
78 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
79 		{ RFTP_F, "RXFT array parity error", -1, 1 },
80 		{ 0, NULL, 0, 0 }
81 	};
82 	static struct intr_info pcie_port_intr_info[] = {
83 		{ TPCP_F, "TXPC array parity error", -1, 1 },
84 		{ TNPP_F, "TXNP array parity error", -1, 1 },
85 		{ TFTP_F, "TXFT array parity error", -1, 1 },
86 		{ TCAP_F, "TXCA array parity error", -1, 1 },
87 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
88 		{ RCAP_F, "RXCA array parity error", -1, 1 },
89 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
90 		{ RDPE_F, "Rx data parity error", -1, 1 },
91 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
92 		{ 0, NULL, 0, 0 }
93 	};
94 
95 	static struct intr_info pcie_intr_info[] = {
96 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
97 		-1, 1 },
98 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
99 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
100 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
101 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
102 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
103 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
104 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
105 		-1, 1 },
106 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
107 		-1, 1 },
108 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
109 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
110 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
111 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
112 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
113 		-1, 1 },
114 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
115 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
116 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
117 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
118 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
119 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
120 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
121 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
122 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
123 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
124 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
125 		-1, 1 },
126 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
127 		-1, 1 },
128 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
129 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
130 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
131 		{ READRSPERR_F, "Outbound read error", -1, 0 },
132 		{ 0, NULL, 0, 0 }
133 	};
134 
135 	int fat;
136 	fat = csio_handle_intr_status(hw,
137 				      PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
138 				      sysbus_intr_info) +
139 	      csio_handle_intr_status(hw,
140 				      PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
141 				      pcie_port_intr_info) +
142 	      csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info);
143 	if (fat)
144 		csio_hw_fatal_err(hw);
145 }
146 
147 /*
148  * csio_t5_flash_cfg_addr - return the address of the flash configuration file
149  * @hw: the HW module
150  *
151  * Return the address within the flash where the Firmware Configuration
152  * File is stored.
153  */
154 static unsigned int
csio_t5_flash_cfg_addr(struct csio_hw * hw)155 csio_t5_flash_cfg_addr(struct csio_hw *hw)
156 {
157 	return FLASH_CFG_START;
158 }
159 
160 /*
161  *      csio_t5_mc_read - read from MC through backdoor accesses
162  *      @hw: the hw module
163  *      @idx: index to the register
164  *      @addr: address of first byte requested
165  *      @data: 64 bytes of data containing the requested address
166  *      @ecc: where to store the corresponding 64-bit ECC word
167  *
168  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
169  *      that covers the requested address @addr.  If @parity is not %NULL it
170  *      is assigned the 64-bit ECC word for the read data.
171  */
172 static int
csio_t5_mc_read(struct csio_hw * hw,int idx,uint32_t addr,__be32 * data,uint64_t * ecc)173 csio_t5_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
174 		uint64_t *ecc)
175 {
176 	int i;
177 	uint32_t mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
178 	uint32_t mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
179 
180 	mc_bist_cmd_reg = MC_REG(MC_P_BIST_CMD_A, idx);
181 	mc_bist_cmd_addr_reg = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
182 	mc_bist_cmd_len_reg = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
183 	mc_bist_status_rdata_reg = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx);
184 	mc_bist_data_pattern_reg = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
185 
186 	if (csio_rd_reg32(hw, mc_bist_cmd_reg) & START_BIST_F)
187 		return -EBUSY;
188 	csio_wr_reg32(hw, addr & ~0x3fU, mc_bist_cmd_addr_reg);
189 	csio_wr_reg32(hw, 64, mc_bist_cmd_len_reg);
190 	csio_wr_reg32(hw, 0xc, mc_bist_data_pattern_reg);
191 	csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F |  BIST_CMD_GAP_V(1),
192 		      mc_bist_cmd_reg);
193 	i = csio_hw_wait_op_done_val(hw, mc_bist_cmd_reg, START_BIST_F,
194 				     0, 10, 1, NULL);
195 	if (i)
196 		return i;
197 
198 #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA_A, i)
199 
200 	for (i = 15; i >= 0; i--)
201 		*data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
202 	if (ecc)
203 		*ecc = csio_rd_reg64(hw, MC_DATA(16));
204 #undef MC_DATA
205 	return 0;
206 }
207 
208 /*
209  *      csio_t5_edc_read - read from EDC through backdoor accesses
210  *      @hw: the hw module
211  *      @idx: which EDC to access
212  *      @addr: address of first byte requested
213  *      @data: 64 bytes of data containing the requested address
214  *      @ecc: where to store the corresponding 64-bit ECC word
215  *
216  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
217  *      that covers the requested address @addr.  If @parity is not %NULL it
218  *      is assigned the 64-bit ECC word for the read data.
219  */
220 static int
csio_t5_edc_read(struct csio_hw * hw,int idx,uint32_t addr,__be32 * data,uint64_t * ecc)221 csio_t5_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
222 		uint64_t *ecc)
223 {
224 	int i;
225 	uint32_t edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
226 	uint32_t edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
227 
228 /*
229  * These macro are missing in t4_regs.h file.
230  */
231 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
232 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
233 
234 	edc_bist_cmd_reg = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
235 	edc_bist_cmd_addr_reg = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
236 	edc_bist_cmd_len_reg = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
237 	edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
238 	edc_bist_status_rdata_reg = EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx);
239 #undef EDC_REG_T5
240 #undef EDC_STRIDE_T5
241 
242 	if (csio_rd_reg32(hw, edc_bist_cmd_reg) & START_BIST_F)
243 		return -EBUSY;
244 	csio_wr_reg32(hw, addr & ~0x3fU, edc_bist_cmd_addr_reg);
245 	csio_wr_reg32(hw, 64, edc_bist_cmd_len_reg);
246 	csio_wr_reg32(hw, 0xc, edc_bist_cmd_data_pattern);
247 	csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F |  BIST_CMD_GAP_V(1),
248 		      edc_bist_cmd_reg);
249 	i = csio_hw_wait_op_done_val(hw, edc_bist_cmd_reg, START_BIST_F,
250 				     0, 10, 1, NULL);
251 	if (i)
252 		return i;
253 
254 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA_A, i) + idx)
255 
256 	for (i = 15; i >= 0; i--)
257 		*data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
258 	if (ecc)
259 		*ecc = csio_rd_reg64(hw, EDC_DATA(16));
260 #undef EDC_DATA
261 	return 0;
262 }
263 
264 /*
265  * csio_t5_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
266  * @hw: the csio_hw
267  * @win: PCI-E memory Window to use
268  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
269  * @addr: address within indicated memory type
270  * @len: amount of memory to transfer
271  * @buf: host memory buffer
272  * @dir: direction of transfer 1 => read, 0 => write
273  *
274  * Reads/writes an [almost] arbitrary memory region in the firmware: the
275  * firmware memory address, length and host buffer must be aligned on
276  * 32-bit boudaries.  The memory is transferred as a raw byte sequence
277  * from/to the firmware's memory.  If this memory contains data
278  * structures which contain multi-byte integers, it's the callers
279  * responsibility to perform appropriate byte order conversions.
280  */
281 static int
csio_t5_memory_rw(struct csio_hw * hw,u32 win,int mtype,u32 addr,u32 len,uint32_t * buf,int dir)282 csio_t5_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
283 		u32 len, uint32_t *buf, int dir)
284 {
285 	u32 pos, start, offset, memoffset;
286 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
287 
288 	/*
289 	 * Argument sanity checks ...
290 	 */
291 	if ((addr & 0x3) || (len & 0x3))
292 		return -EINVAL;
293 
294 	/* Offset into the region of memory which is being accessed
295 	 * MEM_EDC0 = 0
296 	 * MEM_EDC1 = 1
297 	 * MEM_MC   = 2 -- T4
298 	 * MEM_MC0  = 2 -- For T5
299 	 * MEM_MC1  = 3 -- For T5
300 	 */
301 	edc_size  = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A));
302 	if (mtype != MEM_MC1)
303 		memoffset = (mtype * (edc_size * 1024 * 1024));
304 	else {
305 		mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw,
306 						       MA_EXT_MEMORY_BAR_A));
307 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
308 	}
309 
310 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
311 	addr = addr + memoffset;
312 
313 	/*
314 	 * Each PCI-E Memory Window is programmed with a window size -- or
315 	 * "aperture" -- which controls the granularity of its mapping onto
316 	 * adapter memory.  We need to grab that aperture in order to know
317 	 * how to use the specified window.  The window is also programmed
318 	 * with the base address of the Memory Window in BAR0's address
319 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
320 	 * the address is relative to BAR0.
321 	 */
322 	mem_reg = csio_rd_reg32(hw,
323 			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
324 	mem_aperture = 1 << (WINDOW_V(mem_reg) + 10);
325 	mem_base = PCIEOFST_G(mem_reg) << 10;
326 
327 	start = addr & ~(mem_aperture-1);
328 	offset = addr - start;
329 	win_pf = PFNUM_V(hw->pfn);
330 
331 	csio_dbg(hw, "csio_t5_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
332 		 mem_reg, mem_aperture);
333 	csio_dbg(hw, "csio_t5_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
334 		 mem_base, memoffset);
335 	csio_dbg(hw, "csio_t5_memory_rw: start:0x%x, offset:0x%x, win_pf:%d\n",
336 		 start, offset, win_pf);
337 	csio_dbg(hw, "csio_t5_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
338 		 mtype, addr, len);
339 
340 	for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
341 		/*
342 		 * Move PCI-E Memory Window to our current transfer
343 		 * position.  Read it back to ensure that changes propagate
344 		 * before we attempt to use the new value.
345 		 */
346 		csio_wr_reg32(hw, pos | win_pf,
347 			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
348 		csio_rd_reg32(hw,
349 			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
350 
351 		while (offset < mem_aperture && len > 0) {
352 			if (dir)
353 				*buf++ = csio_rd_reg32(hw, mem_base + offset);
354 			else
355 				csio_wr_reg32(hw, *buf++, mem_base + offset);
356 
357 			offset += sizeof(__be32);
358 			len -= sizeof(__be32);
359 		}
360 	}
361 	return 0;
362 }
363 
364 /*
365  * csio_t5_dfs_create_ext_mem - setup debugfs for MC0 or MC1 to read the values
366  * @hw: the csio_hw
367  *
368  * This function creates files in the debugfs with external memory region
369  * MC0 & MC1.
370  */
371 static void
csio_t5_dfs_create_ext_mem(struct csio_hw * hw)372 csio_t5_dfs_create_ext_mem(struct csio_hw *hw)
373 {
374 	u32 size;
375 	int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A);
376 
377 	if (i & EXT_MEM_ENABLE_F) {
378 		size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A);
379 		csio_add_debugfs_mem(hw, "mc0", MEM_MC0,
380 				     EXT_MEM_SIZE_G(size));
381 	}
382 	if (i & EXT_MEM1_ENABLE_F) {
383 		size = csio_rd_reg32(hw, MA_EXT_MEMORY1_BAR_A);
384 		csio_add_debugfs_mem(hw, "mc1", MEM_MC1,
385 				     EXT_MEM_SIZE_G(size));
386 	}
387 }
388 
389 /* T5 adapter specific function */
390 struct csio_hw_chip_ops t5_ops = {
391 	.chip_set_mem_win		= csio_t5_set_mem_win,
392 	.chip_pcie_intr_handler		= csio_t5_pcie_intr_handler,
393 	.chip_flash_cfg_addr		= csio_t5_flash_cfg_addr,
394 	.chip_mc_read			= csio_t5_mc_read,
395 	.chip_edc_read			= csio_t5_edc_read,
396 	.chip_memory_rw			= csio_t5_memory_rw,
397 	.chip_dfs_create_ext_mem	= csio_t5_dfs_create_ext_mem,
398 };
399