1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include "csio_hw.h"
35 #include "csio_init.h"
36
37 static int
csio_t5_set_mem_win(struct csio_hw * hw,uint32_t win)38 csio_t5_set_mem_win(struct csio_hw *hw, uint32_t win)
39 {
40 u32 mem_win_base;
41 /*
42 * Truncation intentional: we only read the bottom 32-bits of the
43 * 64-bit BAR0/BAR1 ... We use the hardware backdoor mechanism to
44 * read BAR0 instead of using pci_resource_start() because we could be
45 * operating from within a Virtual Machine which is trapping our
46 * accesses to our Configuration Space and we need to set up the PCI-E
47 * Memory Window decoders with the actual addresses which will be
48 * coming across the PCI-E link.
49 */
50
51 /* For T5, only relative offset inside the PCIe BAR is passed */
52 mem_win_base = MEMWIN_BASE;
53
54 /*
55 * Set up memory window for accessing adapter memory ranges. (Read
56 * back MA register to ensure that changes propagate before we attempt
57 * to use the new values.)
58 */
59 csio_wr_reg32(hw, mem_win_base | BIR_V(0) |
60 WINDOW_V(ilog2(MEMWIN_APERTURE) - 10),
61 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
62 csio_rd_reg32(hw,
63 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
64
65 return 0;
66 }
67
68 /*
69 * Interrupt handler for the PCIE module.
70 */
71 static void
csio_t5_pcie_intr_handler(struct csio_hw * hw)72 csio_t5_pcie_intr_handler(struct csio_hw *hw)
73 {
74 static struct intr_info sysbus_intr_info[] = {
75 { RNPP_F, "RXNP array parity error", -1, 1 },
76 { RPCP_F, "RXPC array parity error", -1, 1 },
77 { RCIP_F, "RXCIF array parity error", -1, 1 },
78 { RCCP_F, "Rx completions control array parity error", -1, 1 },
79 { RFTP_F, "RXFT array parity error", -1, 1 },
80 { 0, NULL, 0, 0 }
81 };
82 static struct intr_info pcie_port_intr_info[] = {
83 { TPCP_F, "TXPC array parity error", -1, 1 },
84 { TNPP_F, "TXNP array parity error", -1, 1 },
85 { TFTP_F, "TXFT array parity error", -1, 1 },
86 { TCAP_F, "TXCA array parity error", -1, 1 },
87 { TCIP_F, "TXCIF array parity error", -1, 1 },
88 { RCAP_F, "RXCA array parity error", -1, 1 },
89 { OTDD_F, "outbound request TLP discarded", -1, 1 },
90 { RDPE_F, "Rx data parity error", -1, 1 },
91 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
92 { 0, NULL, 0, 0 }
93 };
94
95 static struct intr_info pcie_intr_info[] = {
96 { MSTGRPPERR_F, "Master Response Read Queue parity error",
97 -1, 1 },
98 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
99 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
100 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
101 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
102 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
103 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
104 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
105 -1, 1 },
106 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
107 -1, 1 },
108 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
109 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
110 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
111 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
112 { DREQWRPERR_F, "PCI DMA channel write request parity error",
113 -1, 1 },
114 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
115 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
116 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
117 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
118 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
119 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
120 { FIDPERR_F, "PCI FID parity error", -1, 1 },
121 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
122 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
123 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
124 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
125 -1, 1 },
126 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
127 -1, 1 },
128 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
129 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
130 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
131 { READRSPERR_F, "Outbound read error", -1, 0 },
132 { 0, NULL, 0, 0 }
133 };
134
135 int fat;
136 fat = csio_handle_intr_status(hw,
137 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
138 sysbus_intr_info) +
139 csio_handle_intr_status(hw,
140 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
141 pcie_port_intr_info) +
142 csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info);
143 if (fat)
144 csio_hw_fatal_err(hw);
145 }
146
147 /*
148 * csio_t5_flash_cfg_addr - return the address of the flash configuration file
149 * @hw: the HW module
150 *
151 * Return the address within the flash where the Firmware Configuration
152 * File is stored.
153 */
154 static unsigned int
csio_t5_flash_cfg_addr(struct csio_hw * hw)155 csio_t5_flash_cfg_addr(struct csio_hw *hw)
156 {
157 return FLASH_CFG_START;
158 }
159
160 /*
161 * csio_t5_mc_read - read from MC through backdoor accesses
162 * @hw: the hw module
163 * @idx: index to the register
164 * @addr: address of first byte requested
165 * @data: 64 bytes of data containing the requested address
166 * @ecc: where to store the corresponding 64-bit ECC word
167 *
168 * Read 64 bytes of data from MC starting at a 64-byte-aligned address
169 * that covers the requested address @addr. If @parity is not %NULL it
170 * is assigned the 64-bit ECC word for the read data.
171 */
172 static int
csio_t5_mc_read(struct csio_hw * hw,int idx,uint32_t addr,__be32 * data,uint64_t * ecc)173 csio_t5_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
174 uint64_t *ecc)
175 {
176 int i;
177 uint32_t mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
178 uint32_t mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
179
180 mc_bist_cmd_reg = MC_REG(MC_P_BIST_CMD_A, idx);
181 mc_bist_cmd_addr_reg = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
182 mc_bist_cmd_len_reg = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
183 mc_bist_status_rdata_reg = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx);
184 mc_bist_data_pattern_reg = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
185
186 if (csio_rd_reg32(hw, mc_bist_cmd_reg) & START_BIST_F)
187 return -EBUSY;
188 csio_wr_reg32(hw, addr & ~0x3fU, mc_bist_cmd_addr_reg);
189 csio_wr_reg32(hw, 64, mc_bist_cmd_len_reg);
190 csio_wr_reg32(hw, 0xc, mc_bist_data_pattern_reg);
191 csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F | BIST_CMD_GAP_V(1),
192 mc_bist_cmd_reg);
193 i = csio_hw_wait_op_done_val(hw, mc_bist_cmd_reg, START_BIST_F,
194 0, 10, 1, NULL);
195 if (i)
196 return i;
197
198 #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA_A, i)
199
200 for (i = 15; i >= 0; i--)
201 *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
202 if (ecc)
203 *ecc = csio_rd_reg64(hw, MC_DATA(16));
204 #undef MC_DATA
205 return 0;
206 }
207
208 /*
209 * csio_t5_edc_read - read from EDC through backdoor accesses
210 * @hw: the hw module
211 * @idx: which EDC to access
212 * @addr: address of first byte requested
213 * @data: 64 bytes of data containing the requested address
214 * @ecc: where to store the corresponding 64-bit ECC word
215 *
216 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
217 * that covers the requested address @addr. If @parity is not %NULL it
218 * is assigned the 64-bit ECC word for the read data.
219 */
220 static int
csio_t5_edc_read(struct csio_hw * hw,int idx,uint32_t addr,__be32 * data,uint64_t * ecc)221 csio_t5_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
222 uint64_t *ecc)
223 {
224 int i;
225 uint32_t edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
226 uint32_t edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
227
228 /*
229 * These macro are missing in t4_regs.h file.
230 */
231 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
232 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
233
234 edc_bist_cmd_reg = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
235 edc_bist_cmd_addr_reg = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
236 edc_bist_cmd_len_reg = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
237 edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
238 edc_bist_status_rdata_reg = EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx);
239 #undef EDC_REG_T5
240 #undef EDC_STRIDE_T5
241
242 if (csio_rd_reg32(hw, edc_bist_cmd_reg) & START_BIST_F)
243 return -EBUSY;
244 csio_wr_reg32(hw, addr & ~0x3fU, edc_bist_cmd_addr_reg);
245 csio_wr_reg32(hw, 64, edc_bist_cmd_len_reg);
246 csio_wr_reg32(hw, 0xc, edc_bist_cmd_data_pattern);
247 csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F | BIST_CMD_GAP_V(1),
248 edc_bist_cmd_reg);
249 i = csio_hw_wait_op_done_val(hw, edc_bist_cmd_reg, START_BIST_F,
250 0, 10, 1, NULL);
251 if (i)
252 return i;
253
254 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA_A, i) + idx)
255
256 for (i = 15; i >= 0; i--)
257 *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
258 if (ecc)
259 *ecc = csio_rd_reg64(hw, EDC_DATA(16));
260 #undef EDC_DATA
261 return 0;
262 }
263
264 /*
265 * csio_t5_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
266 * @hw: the csio_hw
267 * @win: PCI-E memory Window to use
268 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
269 * @addr: address within indicated memory type
270 * @len: amount of memory to transfer
271 * @buf: host memory buffer
272 * @dir: direction of transfer 1 => read, 0 => write
273 *
274 * Reads/writes an [almost] arbitrary memory region in the firmware: the
275 * firmware memory address, length and host buffer must be aligned on
276 * 32-bit boudaries. The memory is transferred as a raw byte sequence
277 * from/to the firmware's memory. If this memory contains data
278 * structures which contain multi-byte integers, it's the callers
279 * responsibility to perform appropriate byte order conversions.
280 */
281 static int
csio_t5_memory_rw(struct csio_hw * hw,u32 win,int mtype,u32 addr,u32 len,uint32_t * buf,int dir)282 csio_t5_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
283 u32 len, uint32_t *buf, int dir)
284 {
285 u32 pos, start, offset, memoffset;
286 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
287
288 /*
289 * Argument sanity checks ...
290 */
291 if ((addr & 0x3) || (len & 0x3))
292 return -EINVAL;
293
294 /* Offset into the region of memory which is being accessed
295 * MEM_EDC0 = 0
296 * MEM_EDC1 = 1
297 * MEM_MC = 2 -- T4
298 * MEM_MC0 = 2 -- For T5
299 * MEM_MC1 = 3 -- For T5
300 */
301 edc_size = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A));
302 if (mtype != MEM_MC1)
303 memoffset = (mtype * (edc_size * 1024 * 1024));
304 else {
305 mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw,
306 MA_EXT_MEMORY_BAR_A));
307 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
308 }
309
310 /* Determine the PCIE_MEM_ACCESS_OFFSET */
311 addr = addr + memoffset;
312
313 /*
314 * Each PCI-E Memory Window is programmed with a window size -- or
315 * "aperture" -- which controls the granularity of its mapping onto
316 * adapter memory. We need to grab that aperture in order to know
317 * how to use the specified window. The window is also programmed
318 * with the base address of the Memory Window in BAR0's address
319 * space. For T4 this is an absolute PCI-E Bus Address. For T5
320 * the address is relative to BAR0.
321 */
322 mem_reg = csio_rd_reg32(hw,
323 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
324 mem_aperture = 1 << (WINDOW_V(mem_reg) + 10);
325 mem_base = PCIEOFST_G(mem_reg) << 10;
326
327 start = addr & ~(mem_aperture-1);
328 offset = addr - start;
329 win_pf = PFNUM_V(hw->pfn);
330
331 csio_dbg(hw, "csio_t5_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
332 mem_reg, mem_aperture);
333 csio_dbg(hw, "csio_t5_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
334 mem_base, memoffset);
335 csio_dbg(hw, "csio_t5_memory_rw: start:0x%x, offset:0x%x, win_pf:%d\n",
336 start, offset, win_pf);
337 csio_dbg(hw, "csio_t5_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
338 mtype, addr, len);
339
340 for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
341 /*
342 * Move PCI-E Memory Window to our current transfer
343 * position. Read it back to ensure that changes propagate
344 * before we attempt to use the new value.
345 */
346 csio_wr_reg32(hw, pos | win_pf,
347 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
348 csio_rd_reg32(hw,
349 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
350
351 while (offset < mem_aperture && len > 0) {
352 if (dir)
353 *buf++ = csio_rd_reg32(hw, mem_base + offset);
354 else
355 csio_wr_reg32(hw, *buf++, mem_base + offset);
356
357 offset += sizeof(__be32);
358 len -= sizeof(__be32);
359 }
360 }
361 return 0;
362 }
363
364 /*
365 * csio_t5_dfs_create_ext_mem - setup debugfs for MC0 or MC1 to read the values
366 * @hw: the csio_hw
367 *
368 * This function creates files in the debugfs with external memory region
369 * MC0 & MC1.
370 */
371 static void
csio_t5_dfs_create_ext_mem(struct csio_hw * hw)372 csio_t5_dfs_create_ext_mem(struct csio_hw *hw)
373 {
374 u32 size;
375 int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A);
376
377 if (i & EXT_MEM_ENABLE_F) {
378 size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A);
379 csio_add_debugfs_mem(hw, "mc0", MEM_MC0,
380 EXT_MEM_SIZE_G(size));
381 }
382 if (i & EXT_MEM1_ENABLE_F) {
383 size = csio_rd_reg32(hw, MA_EXT_MEMORY1_BAR_A);
384 csio_add_debugfs_mem(hw, "mc1", MEM_MC1,
385 EXT_MEM_SIZE_G(size));
386 }
387 }
388
389 /* T5 adapter specific function */
390 struct csio_hw_chip_ops t5_ops = {
391 .chip_set_mem_win = csio_t5_set_mem_win,
392 .chip_pcie_intr_handler = csio_t5_pcie_intr_handler,
393 .chip_flash_cfg_addr = csio_t5_flash_cfg_addr,
394 .chip_mc_read = csio_t5_mc_read,
395 .chip_edc_read = csio_t5_edc_read,
396 .chip_memory_rw = csio_t5_memory_rw,
397 .chip_dfs_create_ext_mem = csio_t5_dfs_create_ext_mem,
398 };
399