1 /*
2 * Copyright (c) 2015, Sony Mobile Communications AB.
3 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 and
7 * only version 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include <linux/hwspinlock.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/soc/qcom/smem.h>
23
24 /*
25 * The Qualcomm shared memory system is a allocate only heap structure that
26 * consists of one of more memory areas that can be accessed by the processors
27 * in the SoC.
28 *
29 * All systems contains a global heap, accessible by all processors in the SoC,
30 * with a table of contents data structure (@smem_header) at the beginning of
31 * the main shared memory block.
32 *
33 * The global header contains meta data for allocations as well as a fixed list
34 * of 512 entries (@smem_global_entry) that can be initialized to reference
35 * parts of the shared memory space.
36 *
37 *
38 * In addition to this global heap a set of "private" heaps can be set up at
39 * boot time with access restrictions so that only certain processor pairs can
40 * access the data.
41 *
42 * These partitions are referenced from an optional partition table
43 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
44 * partition table entries (@smem_ptable_entry) lists the involved processors
45 * (or hosts) and their location in the main shared memory region.
46 *
47 * Each partition starts with a header (@smem_partition_header) that identifies
48 * the partition and holds properties for the two internal memory regions. The
49 * two regions are cached and non-cached memory respectively. Each region
50 * contain a link list of allocation headers (@smem_private_entry) followed by
51 * their data.
52 *
53 * Items in the non-cached region are allocated from the start of the partition
54 * while items in the cached region are allocated from the end. The free area
55 * is hence the region between the cached and non-cached offsets.
56 *
57 *
58 * To synchronize allocations in the shared memory heaps a remote spinlock must
59 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
60 * platforms.
61 *
62 */
63
64 /*
65 * Item 3 of the global heap contains an array of versions for the various
66 * software components in the SoC. We verify that the boot loader version is
67 * what the expected version (SMEM_EXPECTED_VERSION) as a sanity check.
68 */
69 #define SMEM_ITEM_VERSION 3
70 #define SMEM_MASTER_SBL_VERSION_INDEX 7
71 #define SMEM_EXPECTED_VERSION 11
72
73 /*
74 * The first 8 items are only to be allocated by the boot loader while
75 * initializing the heap.
76 */
77 #define SMEM_ITEM_LAST_FIXED 8
78
79 /* Highest accepted item number, for both global and private heaps */
80 #define SMEM_ITEM_COUNT 512
81
82 /* Processor/host identifier for the application processor */
83 #define SMEM_HOST_APPS 0
84
85 /* Max number of processors/hosts in a system */
86 #define SMEM_HOST_COUNT 9
87
88 /**
89 * struct smem_proc_comm - proc_comm communication struct (legacy)
90 * @command: current command to be executed
91 * @status: status of the currently requested command
92 * @params: parameters to the command
93 */
94 struct smem_proc_comm {
95 __le32 command;
96 __le32 status;
97 __le32 params[2];
98 };
99
100 /**
101 * struct smem_global_entry - entry to reference smem items on the heap
102 * @allocated: boolean to indicate if this entry is used
103 * @offset: offset to the allocated space
104 * @size: size of the allocated space, 8 byte aligned
105 * @aux_base: base address for the memory region used by this unit, or 0 for
106 * the default region. bits 0,1 are reserved
107 */
108 struct smem_global_entry {
109 __le32 allocated;
110 __le32 offset;
111 __le32 size;
112 __le32 aux_base; /* bits 1:0 reserved */
113 };
114 #define AUX_BASE_MASK 0xfffffffc
115
116 /**
117 * struct smem_header - header found in beginning of primary smem region
118 * @proc_comm: proc_comm communication interface (legacy)
119 * @version: array of versions for the various subsystems
120 * @initialized: boolean to indicate that smem is initialized
121 * @free_offset: index of the first unallocated byte in smem
122 * @available: number of bytes available for allocation
123 * @reserved: reserved field, must be 0
124 * toc: array of references to items
125 */
126 struct smem_header {
127 struct smem_proc_comm proc_comm[4];
128 __le32 version[32];
129 __le32 initialized;
130 __le32 free_offset;
131 __le32 available;
132 __le32 reserved;
133 struct smem_global_entry toc[SMEM_ITEM_COUNT];
134 };
135
136 /**
137 * struct smem_ptable_entry - one entry in the @smem_ptable list
138 * @offset: offset, within the main shared memory region, of the partition
139 * @size: size of the partition
140 * @flags: flags for the partition (currently unused)
141 * @host0: first processor/host with access to this partition
142 * @host1: second processor/host with access to this partition
143 * @reserved: reserved entries for later use
144 */
145 struct smem_ptable_entry {
146 __le32 offset;
147 __le32 size;
148 __le32 flags;
149 __le16 host0;
150 __le16 host1;
151 __le32 reserved[8];
152 };
153
154 /**
155 * struct smem_ptable - partition table for the private partitions
156 * @magic: magic number, must be SMEM_PTABLE_MAGIC
157 * @version: version of the partition table
158 * @num_entries: number of partitions in the table
159 * @reserved: for now reserved entries
160 * @entry: list of @smem_ptable_entry for the @num_entries partitions
161 */
162 struct smem_ptable {
163 u8 magic[4];
164 __le32 version;
165 __le32 num_entries;
166 __le32 reserved[5];
167 struct smem_ptable_entry entry[];
168 };
169
170 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
171
172 /**
173 * struct smem_partition_header - header of the partitions
174 * @magic: magic number, must be SMEM_PART_MAGIC
175 * @host0: first processor/host with access to this partition
176 * @host1: second processor/host with access to this partition
177 * @size: size of the partition
178 * @offset_free_uncached: offset to the first free byte of uncached memory in
179 * this partition
180 * @offset_free_cached: offset to the first free byte of cached memory in this
181 * partition
182 * @reserved: for now reserved entries
183 */
184 struct smem_partition_header {
185 u8 magic[4];
186 __le16 host0;
187 __le16 host1;
188 __le32 size;
189 __le32 offset_free_uncached;
190 __le32 offset_free_cached;
191 __le32 reserved[3];
192 };
193
194 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
195
196 /**
197 * struct smem_private_entry - header of each item in the private partition
198 * @canary: magic number, must be SMEM_PRIVATE_CANARY
199 * @item: identifying number of the smem item
200 * @size: size of the data, including padding bytes
201 * @padding_data: number of bytes of padding of data
202 * @padding_hdr: number of bytes of padding between the header and the data
203 * @reserved: for now reserved entry
204 */
205 struct smem_private_entry {
206 u16 canary; /* bytes are the same so no swapping needed */
207 __le16 item;
208 __le32 size; /* includes padding bytes */
209 __le16 padding_data;
210 __le16 padding_hdr;
211 __le32 reserved;
212 };
213 #define SMEM_PRIVATE_CANARY 0xa5a5
214
215 /**
216 * struct smem_region - representation of a chunk of memory used for smem
217 * @aux_base: identifier of aux_mem base
218 * @virt_base: virtual base address of memory with this aux_mem identifier
219 * @size: size of the memory region
220 */
221 struct smem_region {
222 u32 aux_base;
223 void __iomem *virt_base;
224 size_t size;
225 };
226
227 /**
228 * struct qcom_smem - device data for the smem device
229 * @dev: device pointer
230 * @hwlock: reference to a hwspinlock
231 * @partitions: list of pointers to partitions affecting the current
232 * processor/host
233 * @num_regions: number of @regions
234 * @regions: list of the memory regions defining the shared memory
235 */
236 struct qcom_smem {
237 struct device *dev;
238
239 struct hwspinlock *hwlock;
240
241 struct smem_partition_header *partitions[SMEM_HOST_COUNT];
242
243 unsigned num_regions;
244 struct smem_region regions[0];
245 };
246
247 static struct smem_private_entry *
phdr_to_last_private_entry(struct smem_partition_header * phdr)248 phdr_to_last_private_entry(struct smem_partition_header *phdr)
249 {
250 void *p = phdr;
251
252 return p + le32_to_cpu(phdr->offset_free_uncached);
253 }
254
phdr_to_first_cached_entry(struct smem_partition_header * phdr)255 static void *phdr_to_first_cached_entry(struct smem_partition_header *phdr)
256 {
257 void *p = phdr;
258
259 return p + le32_to_cpu(phdr->offset_free_cached);
260 }
261
262 static struct smem_private_entry *
phdr_to_first_private_entry(struct smem_partition_header * phdr)263 phdr_to_first_private_entry(struct smem_partition_header *phdr)
264 {
265 void *p = phdr;
266
267 return p + sizeof(*phdr);
268 }
269
270 static struct smem_private_entry *
private_entry_next(struct smem_private_entry * e)271 private_entry_next(struct smem_private_entry *e)
272 {
273 void *p = e;
274
275 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
276 le32_to_cpu(e->size);
277 }
278
entry_to_item(struct smem_private_entry * e)279 static void *entry_to_item(struct smem_private_entry *e)
280 {
281 void *p = e;
282
283 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
284 }
285
286 /* Pointer to the one and only smem handle */
287 static struct qcom_smem *__smem;
288
289 /* Timeout (ms) for the trylock of remote spinlocks */
290 #define HWSPINLOCK_TIMEOUT 1000
291
qcom_smem_alloc_private(struct qcom_smem * smem,unsigned host,unsigned item,size_t size)292 static int qcom_smem_alloc_private(struct qcom_smem *smem,
293 unsigned host,
294 unsigned item,
295 size_t size)
296 {
297 struct smem_partition_header *phdr;
298 struct smem_private_entry *hdr, *end;
299 size_t alloc_size;
300 void *cached;
301
302 phdr = smem->partitions[host];
303 hdr = phdr_to_first_private_entry(phdr);
304 end = phdr_to_last_private_entry(phdr);
305 cached = phdr_to_first_cached_entry(phdr);
306
307 while (hdr < end) {
308 if (hdr->canary != SMEM_PRIVATE_CANARY) {
309 dev_err(smem->dev,
310 "Found invalid canary in host %d partition\n",
311 host);
312 return -EINVAL;
313 }
314
315 if (le16_to_cpu(hdr->item) == item)
316 return -EEXIST;
317
318 hdr = private_entry_next(hdr);
319 }
320
321 /* Check that we don't grow into the cached region */
322 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
323 if ((void *)hdr + alloc_size >= cached) {
324 dev_err(smem->dev, "Out of memory\n");
325 return -ENOSPC;
326 }
327
328 hdr->canary = SMEM_PRIVATE_CANARY;
329 hdr->item = cpu_to_le16(item);
330 hdr->size = cpu_to_le32(ALIGN(size, 8));
331 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
332 hdr->padding_hdr = 0;
333
334 /*
335 * Ensure the header is written before we advance the free offset, so
336 * that remote processors that does not take the remote spinlock still
337 * gets a consistent view of the linked list.
338 */
339 wmb();
340 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
341
342 return 0;
343 }
344
qcom_smem_alloc_global(struct qcom_smem * smem,unsigned item,size_t size)345 static int qcom_smem_alloc_global(struct qcom_smem *smem,
346 unsigned item,
347 size_t size)
348 {
349 struct smem_header *header;
350 struct smem_global_entry *entry;
351
352 if (WARN_ON(item >= SMEM_ITEM_COUNT))
353 return -EINVAL;
354
355 header = smem->regions[0].virt_base;
356 entry = &header->toc[item];
357 if (entry->allocated)
358 return -EEXIST;
359
360 size = ALIGN(size, 8);
361 if (WARN_ON(size > le32_to_cpu(header->available)))
362 return -ENOMEM;
363
364 entry->offset = header->free_offset;
365 entry->size = cpu_to_le32(size);
366
367 /*
368 * Ensure the header is consistent before we mark the item allocated,
369 * so that remote processors will get a consistent view of the item
370 * even though they do not take the spinlock on read.
371 */
372 wmb();
373 entry->allocated = cpu_to_le32(1);
374
375 le32_add_cpu(&header->free_offset, size);
376 le32_add_cpu(&header->available, -size);
377
378 return 0;
379 }
380
381 /**
382 * qcom_smem_alloc() - allocate space for a smem item
383 * @host: remote processor id, or -1
384 * @item: smem item handle
385 * @size: number of bytes to be allocated
386 *
387 * Allocate space for a given smem item of size @size, given that the item is
388 * not yet allocated.
389 */
qcom_smem_alloc(unsigned host,unsigned item,size_t size)390 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
391 {
392 unsigned long flags;
393 int ret;
394
395 if (!__smem)
396 return -EPROBE_DEFER;
397
398 if (item < SMEM_ITEM_LAST_FIXED) {
399 dev_err(__smem->dev,
400 "Rejecting allocation of static entry %d\n", item);
401 return -EINVAL;
402 }
403
404 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
405 HWSPINLOCK_TIMEOUT,
406 &flags);
407 if (ret)
408 return ret;
409
410 if (host < SMEM_HOST_COUNT && __smem->partitions[host])
411 ret = qcom_smem_alloc_private(__smem, host, item, size);
412 else
413 ret = qcom_smem_alloc_global(__smem, item, size);
414
415 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
416
417 return ret;
418 }
419 EXPORT_SYMBOL(qcom_smem_alloc);
420
qcom_smem_get_global(struct qcom_smem * smem,unsigned item,size_t * size)421 static void *qcom_smem_get_global(struct qcom_smem *smem,
422 unsigned item,
423 size_t *size)
424 {
425 struct smem_header *header;
426 struct smem_region *area;
427 struct smem_global_entry *entry;
428 u32 aux_base;
429 unsigned i;
430
431 if (WARN_ON(item >= SMEM_ITEM_COUNT))
432 return ERR_PTR(-EINVAL);
433
434 header = smem->regions[0].virt_base;
435 entry = &header->toc[item];
436 if (!entry->allocated)
437 return ERR_PTR(-ENXIO);
438
439 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
440
441 for (i = 0; i < smem->num_regions; i++) {
442 area = &smem->regions[i];
443
444 if (area->aux_base == aux_base || !aux_base) {
445 if (size != NULL)
446 *size = le32_to_cpu(entry->size);
447 return area->virt_base + le32_to_cpu(entry->offset);
448 }
449 }
450
451 return ERR_PTR(-ENOENT);
452 }
453
qcom_smem_get_private(struct qcom_smem * smem,unsigned host,unsigned item,size_t * size)454 static void *qcom_smem_get_private(struct qcom_smem *smem,
455 unsigned host,
456 unsigned item,
457 size_t *size)
458 {
459 struct smem_partition_header *phdr;
460 struct smem_private_entry *e, *end;
461
462 phdr = smem->partitions[host];
463 e = phdr_to_first_private_entry(phdr);
464 end = phdr_to_last_private_entry(phdr);
465
466 while (e < end) {
467 if (e->canary != SMEM_PRIVATE_CANARY) {
468 dev_err(smem->dev,
469 "Found invalid canary in host %d partition\n",
470 host);
471 return ERR_PTR(-EINVAL);
472 }
473
474 if (le16_to_cpu(e->item) == item) {
475 if (size != NULL)
476 *size = le32_to_cpu(e->size) -
477 le16_to_cpu(e->padding_data);
478
479 return entry_to_item(e);
480 }
481
482 e = private_entry_next(e);
483 }
484
485 return ERR_PTR(-ENOENT);
486 }
487
488 /**
489 * qcom_smem_get() - resolve ptr of size of a smem item
490 * @host: the remote processor, or -1
491 * @item: smem item handle
492 * @size: pointer to be filled out with size of the item
493 *
494 * Looks up smem item and returns pointer to it. Size of smem
495 * item is returned in @size.
496 */
qcom_smem_get(unsigned host,unsigned item,size_t * size)497 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
498 {
499 unsigned long flags;
500 int ret;
501 void *ptr = ERR_PTR(-EPROBE_DEFER);
502
503 if (!__smem)
504 return ptr;
505
506 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
507 HWSPINLOCK_TIMEOUT,
508 &flags);
509 if (ret)
510 return ERR_PTR(ret);
511
512 if (host < SMEM_HOST_COUNT && __smem->partitions[host])
513 ptr = qcom_smem_get_private(__smem, host, item, size);
514 else
515 ptr = qcom_smem_get_global(__smem, item, size);
516
517 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
518
519 return ptr;
520
521 }
522 EXPORT_SYMBOL(qcom_smem_get);
523
524 /**
525 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
526 * @host: the remote processor identifying a partition, or -1
527 *
528 * To be used by smem clients as a quick way to determine if any new
529 * allocations has been made.
530 */
qcom_smem_get_free_space(unsigned host)531 int qcom_smem_get_free_space(unsigned host)
532 {
533 struct smem_partition_header *phdr;
534 struct smem_header *header;
535 unsigned ret;
536
537 if (!__smem)
538 return -EPROBE_DEFER;
539
540 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
541 phdr = __smem->partitions[host];
542 ret = le32_to_cpu(phdr->offset_free_cached) -
543 le32_to_cpu(phdr->offset_free_uncached);
544 } else {
545 header = __smem->regions[0].virt_base;
546 ret = le32_to_cpu(header->available);
547 }
548
549 return ret;
550 }
551 EXPORT_SYMBOL(qcom_smem_get_free_space);
552
qcom_smem_get_sbl_version(struct qcom_smem * smem)553 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
554 {
555 __le32 *versions;
556 size_t size;
557
558 versions = qcom_smem_get_global(smem, SMEM_ITEM_VERSION, &size);
559 if (IS_ERR(versions)) {
560 dev_err(smem->dev, "Unable to read the version item\n");
561 return -ENOENT;
562 }
563
564 if (size < sizeof(unsigned) * SMEM_MASTER_SBL_VERSION_INDEX) {
565 dev_err(smem->dev, "Version item is too small\n");
566 return -EINVAL;
567 }
568
569 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
570 }
571
qcom_smem_enumerate_partitions(struct qcom_smem * smem,unsigned local_host)572 static int qcom_smem_enumerate_partitions(struct qcom_smem *smem,
573 unsigned local_host)
574 {
575 struct smem_partition_header *header;
576 struct smem_ptable_entry *entry;
577 struct smem_ptable *ptable;
578 unsigned remote_host;
579 u32 version, host0, host1;
580 int i;
581
582 ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
583 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
584 return 0;
585
586 version = le32_to_cpu(ptable->version);
587 if (version != 1) {
588 dev_err(smem->dev,
589 "Unsupported partition header version %d\n", version);
590 return -EINVAL;
591 }
592
593 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
594 entry = &ptable->entry[i];
595 host0 = le16_to_cpu(entry->host0);
596 host1 = le16_to_cpu(entry->host1);
597
598 if (host0 != local_host && host1 != local_host)
599 continue;
600
601 if (!le32_to_cpu(entry->offset))
602 continue;
603
604 if (!le32_to_cpu(entry->size))
605 continue;
606
607 if (host0 == local_host)
608 remote_host = host1;
609 else
610 remote_host = host0;
611
612 if (remote_host >= SMEM_HOST_COUNT) {
613 dev_err(smem->dev,
614 "Invalid remote host %d\n",
615 remote_host);
616 return -EINVAL;
617 }
618
619 if (smem->partitions[remote_host]) {
620 dev_err(smem->dev,
621 "Already found a partition for host %d\n",
622 remote_host);
623 return -EINVAL;
624 }
625
626 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
627 host0 = le16_to_cpu(header->host0);
628 host1 = le16_to_cpu(header->host1);
629
630 if (memcmp(header->magic, SMEM_PART_MAGIC,
631 sizeof(header->magic))) {
632 dev_err(smem->dev,
633 "Partition %d has invalid magic\n", i);
634 return -EINVAL;
635 }
636
637 if (host0 != local_host && host1 != local_host) {
638 dev_err(smem->dev,
639 "Partition %d hosts are invalid\n", i);
640 return -EINVAL;
641 }
642
643 if (host0 != remote_host && host1 != remote_host) {
644 dev_err(smem->dev,
645 "Partition %d hosts are invalid\n", i);
646 return -EINVAL;
647 }
648
649 if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) {
650 dev_err(smem->dev,
651 "Partition %d has invalid size\n", i);
652 return -EINVAL;
653 }
654
655 if (le32_to_cpu(header->offset_free_uncached) > le32_to_cpu(header->size)) {
656 dev_err(smem->dev,
657 "Partition %d has invalid free pointer\n", i);
658 return -EINVAL;
659 }
660
661 smem->partitions[remote_host] = header;
662 }
663
664 return 0;
665 }
666
qcom_smem_map_memory(struct qcom_smem * smem,struct device * dev,const char * name,int i)667 static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
668 const char *name, int i)
669 {
670 struct device_node *np;
671 struct resource r;
672 int ret;
673
674 np = of_parse_phandle(dev->of_node, name, 0);
675 if (!np) {
676 dev_err(dev, "No %s specified\n", name);
677 return -EINVAL;
678 }
679
680 ret = of_address_to_resource(np, 0, &r);
681 of_node_put(np);
682 if (ret)
683 return ret;
684
685 smem->regions[i].aux_base = (u32)r.start;
686 smem->regions[i].size = resource_size(&r);
687 smem->regions[i].virt_base = devm_ioremap_nocache(dev, r.start,
688 resource_size(&r));
689 if (!smem->regions[i].virt_base)
690 return -ENOMEM;
691
692 return 0;
693 }
694
qcom_smem_probe(struct platform_device * pdev)695 static int qcom_smem_probe(struct platform_device *pdev)
696 {
697 struct smem_header *header;
698 struct qcom_smem *smem;
699 size_t array_size;
700 int num_regions;
701 int hwlock_id;
702 u32 version;
703 int ret;
704
705 num_regions = 1;
706 if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
707 num_regions++;
708
709 array_size = num_regions * sizeof(struct smem_region);
710 smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
711 if (!smem)
712 return -ENOMEM;
713
714 smem->dev = &pdev->dev;
715 smem->num_regions = num_regions;
716
717 ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
718 if (ret)
719 return ret;
720
721 if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
722 "qcom,rpm-msg-ram", 1)))
723 return ret;
724
725 header = smem->regions[0].virt_base;
726 if (le32_to_cpu(header->initialized) != 1 ||
727 le32_to_cpu(header->reserved)) {
728 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
729 return -EINVAL;
730 }
731
732 version = qcom_smem_get_sbl_version(smem);
733 if (version >> 16 != SMEM_EXPECTED_VERSION) {
734 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
735 return -EINVAL;
736 }
737
738 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
739 if (ret < 0)
740 return ret;
741
742 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
743 if (hwlock_id < 0) {
744 dev_err(&pdev->dev, "failed to retrieve hwlock\n");
745 return hwlock_id;
746 }
747
748 smem->hwlock = hwspin_lock_request_specific(hwlock_id);
749 if (!smem->hwlock)
750 return -ENXIO;
751
752 __smem = smem;
753
754 return 0;
755 }
756
qcom_smem_remove(struct platform_device * pdev)757 static int qcom_smem_remove(struct platform_device *pdev)
758 {
759 hwspin_lock_free(__smem->hwlock);
760 __smem = NULL;
761
762 return 0;
763 }
764
765 static const struct of_device_id qcom_smem_of_match[] = {
766 { .compatible = "qcom,smem" },
767 {}
768 };
769 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
770
771 static struct platform_driver qcom_smem_driver = {
772 .probe = qcom_smem_probe,
773 .remove = qcom_smem_remove,
774 .driver = {
775 .name = "qcom-smem",
776 .of_match_table = qcom_smem_of_match,
777 .suppress_bind_attrs = true,
778 },
779 };
780
qcom_smem_init(void)781 static int __init qcom_smem_init(void)
782 {
783 return platform_driver_register(&qcom_smem_driver);
784 }
785 arch_initcall(qcom_smem_init);
786
qcom_smem_exit(void)787 static void __exit qcom_smem_exit(void)
788 {
789 platform_driver_unregister(&qcom_smem_driver);
790 }
791 module_exit(qcom_smem_exit)
792
793 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
794 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
795 MODULE_LICENSE("GPL v2");
796