• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
23 #include <linux/of.h>
24 
25 #include <linux/io.h>
26 #include <linux/gpio.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pm_runtime.h>
29 
30 /* SPI register offsets */
31 #define SPI_CR					0x0000
32 #define SPI_MR					0x0004
33 #define SPI_RDR					0x0008
34 #define SPI_TDR					0x000c
35 #define SPI_SR					0x0010
36 #define SPI_IER					0x0014
37 #define SPI_IDR					0x0018
38 #define SPI_IMR					0x001c
39 #define SPI_CSR0				0x0030
40 #define SPI_CSR1				0x0034
41 #define SPI_CSR2				0x0038
42 #define SPI_CSR3				0x003c
43 #define SPI_FMR					0x0040
44 #define SPI_FLR					0x0044
45 #define SPI_VERSION				0x00fc
46 #define SPI_RPR					0x0100
47 #define SPI_RCR					0x0104
48 #define SPI_TPR					0x0108
49 #define SPI_TCR					0x010c
50 #define SPI_RNPR				0x0110
51 #define SPI_RNCR				0x0114
52 #define SPI_TNPR				0x0118
53 #define SPI_TNCR				0x011c
54 #define SPI_PTCR				0x0120
55 #define SPI_PTSR				0x0124
56 
57 /* Bitfields in CR */
58 #define SPI_SPIEN_OFFSET			0
59 #define SPI_SPIEN_SIZE				1
60 #define SPI_SPIDIS_OFFSET			1
61 #define SPI_SPIDIS_SIZE				1
62 #define SPI_SWRST_OFFSET			7
63 #define SPI_SWRST_SIZE				1
64 #define SPI_LASTXFER_OFFSET			24
65 #define SPI_LASTXFER_SIZE			1
66 #define SPI_TXFCLR_OFFSET			16
67 #define SPI_TXFCLR_SIZE				1
68 #define SPI_RXFCLR_OFFSET			17
69 #define SPI_RXFCLR_SIZE				1
70 #define SPI_FIFOEN_OFFSET			30
71 #define SPI_FIFOEN_SIZE				1
72 #define SPI_FIFODIS_OFFSET			31
73 #define SPI_FIFODIS_SIZE			1
74 
75 /* Bitfields in MR */
76 #define SPI_MSTR_OFFSET				0
77 #define SPI_MSTR_SIZE				1
78 #define SPI_PS_OFFSET				1
79 #define SPI_PS_SIZE				1
80 #define SPI_PCSDEC_OFFSET			2
81 #define SPI_PCSDEC_SIZE				1
82 #define SPI_FDIV_OFFSET				3
83 #define SPI_FDIV_SIZE				1
84 #define SPI_MODFDIS_OFFSET			4
85 #define SPI_MODFDIS_SIZE			1
86 #define SPI_WDRBT_OFFSET			5
87 #define SPI_WDRBT_SIZE				1
88 #define SPI_LLB_OFFSET				7
89 #define SPI_LLB_SIZE				1
90 #define SPI_PCS_OFFSET				16
91 #define SPI_PCS_SIZE				4
92 #define SPI_DLYBCS_OFFSET			24
93 #define SPI_DLYBCS_SIZE				8
94 
95 /* Bitfields in RDR */
96 #define SPI_RD_OFFSET				0
97 #define SPI_RD_SIZE				16
98 
99 /* Bitfields in TDR */
100 #define SPI_TD_OFFSET				0
101 #define SPI_TD_SIZE				16
102 
103 /* Bitfields in SR */
104 #define SPI_RDRF_OFFSET				0
105 #define SPI_RDRF_SIZE				1
106 #define SPI_TDRE_OFFSET				1
107 #define SPI_TDRE_SIZE				1
108 #define SPI_MODF_OFFSET				2
109 #define SPI_MODF_SIZE				1
110 #define SPI_OVRES_OFFSET			3
111 #define SPI_OVRES_SIZE				1
112 #define SPI_ENDRX_OFFSET			4
113 #define SPI_ENDRX_SIZE				1
114 #define SPI_ENDTX_OFFSET			5
115 #define SPI_ENDTX_SIZE				1
116 #define SPI_RXBUFF_OFFSET			6
117 #define SPI_RXBUFF_SIZE				1
118 #define SPI_TXBUFE_OFFSET			7
119 #define SPI_TXBUFE_SIZE				1
120 #define SPI_NSSR_OFFSET				8
121 #define SPI_NSSR_SIZE				1
122 #define SPI_TXEMPTY_OFFSET			9
123 #define SPI_TXEMPTY_SIZE			1
124 #define SPI_SPIENS_OFFSET			16
125 #define SPI_SPIENS_SIZE				1
126 #define SPI_TXFEF_OFFSET			24
127 #define SPI_TXFEF_SIZE				1
128 #define SPI_TXFFF_OFFSET			25
129 #define SPI_TXFFF_SIZE				1
130 #define SPI_TXFTHF_OFFSET			26
131 #define SPI_TXFTHF_SIZE				1
132 #define SPI_RXFEF_OFFSET			27
133 #define SPI_RXFEF_SIZE				1
134 #define SPI_RXFFF_OFFSET			28
135 #define SPI_RXFFF_SIZE				1
136 #define SPI_RXFTHF_OFFSET			29
137 #define SPI_RXFTHF_SIZE				1
138 #define SPI_TXFPTEF_OFFSET			30
139 #define SPI_TXFPTEF_SIZE			1
140 #define SPI_RXFPTEF_OFFSET			31
141 #define SPI_RXFPTEF_SIZE			1
142 
143 /* Bitfields in CSR0 */
144 #define SPI_CPOL_OFFSET				0
145 #define SPI_CPOL_SIZE				1
146 #define SPI_NCPHA_OFFSET			1
147 #define SPI_NCPHA_SIZE				1
148 #define SPI_CSAAT_OFFSET			3
149 #define SPI_CSAAT_SIZE				1
150 #define SPI_BITS_OFFSET				4
151 #define SPI_BITS_SIZE				4
152 #define SPI_SCBR_OFFSET				8
153 #define SPI_SCBR_SIZE				8
154 #define SPI_DLYBS_OFFSET			16
155 #define SPI_DLYBS_SIZE				8
156 #define SPI_DLYBCT_OFFSET			24
157 #define SPI_DLYBCT_SIZE				8
158 
159 /* Bitfields in RCR */
160 #define SPI_RXCTR_OFFSET			0
161 #define SPI_RXCTR_SIZE				16
162 
163 /* Bitfields in TCR */
164 #define SPI_TXCTR_OFFSET			0
165 #define SPI_TXCTR_SIZE				16
166 
167 /* Bitfields in RNCR */
168 #define SPI_RXNCR_OFFSET			0
169 #define SPI_RXNCR_SIZE				16
170 
171 /* Bitfields in TNCR */
172 #define SPI_TXNCR_OFFSET			0
173 #define SPI_TXNCR_SIZE				16
174 
175 /* Bitfields in PTCR */
176 #define SPI_RXTEN_OFFSET			0
177 #define SPI_RXTEN_SIZE				1
178 #define SPI_RXTDIS_OFFSET			1
179 #define SPI_RXTDIS_SIZE				1
180 #define SPI_TXTEN_OFFSET			8
181 #define SPI_TXTEN_SIZE				1
182 #define SPI_TXTDIS_OFFSET			9
183 #define SPI_TXTDIS_SIZE				1
184 
185 /* Bitfields in FMR */
186 #define SPI_TXRDYM_OFFSET			0
187 #define SPI_TXRDYM_SIZE				2
188 #define SPI_RXRDYM_OFFSET			4
189 #define SPI_RXRDYM_SIZE				2
190 #define SPI_TXFTHRES_OFFSET			16
191 #define SPI_TXFTHRES_SIZE			6
192 #define SPI_RXFTHRES_OFFSET			24
193 #define SPI_RXFTHRES_SIZE			6
194 
195 /* Bitfields in FLR */
196 #define SPI_TXFL_OFFSET				0
197 #define SPI_TXFL_SIZE				6
198 #define SPI_RXFL_OFFSET				16
199 #define SPI_RXFL_SIZE				6
200 
201 /* Constants for BITS */
202 #define SPI_BITS_8_BPT				0
203 #define SPI_BITS_9_BPT				1
204 #define SPI_BITS_10_BPT				2
205 #define SPI_BITS_11_BPT				3
206 #define SPI_BITS_12_BPT				4
207 #define SPI_BITS_13_BPT				5
208 #define SPI_BITS_14_BPT				6
209 #define SPI_BITS_15_BPT				7
210 #define SPI_BITS_16_BPT				8
211 #define SPI_ONE_DATA				0
212 #define SPI_TWO_DATA				1
213 #define SPI_FOUR_DATA				2
214 
215 /* Bit manipulation macros */
216 #define SPI_BIT(name) \
217 	(1 << SPI_##name##_OFFSET)
218 #define SPI_BF(name, value) \
219 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
220 #define SPI_BFEXT(name, value) \
221 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
222 #define SPI_BFINS(name, value, old) \
223 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
224 	  | SPI_BF(name, value))
225 
226 /* Register access macros */
227 #ifdef CONFIG_AVR32
228 #define spi_readl(port, reg) \
229 	__raw_readl((port)->regs + SPI_##reg)
230 #define spi_writel(port, reg, value) \
231 	__raw_writel((value), (port)->regs + SPI_##reg)
232 
233 #define spi_readw(port, reg) \
234 	__raw_readw((port)->regs + SPI_##reg)
235 #define spi_writew(port, reg, value) \
236 	__raw_writew((value), (port)->regs + SPI_##reg)
237 
238 #define spi_readb(port, reg) \
239 	__raw_readb((port)->regs + SPI_##reg)
240 #define spi_writeb(port, reg, value) \
241 	__raw_writeb((value), (port)->regs + SPI_##reg)
242 #else
243 #define spi_readl(port, reg) \
244 	readl_relaxed((port)->regs + SPI_##reg)
245 #define spi_writel(port, reg, value) \
246 	writel_relaxed((value), (port)->regs + SPI_##reg)
247 
248 #define spi_readw(port, reg) \
249 	readw_relaxed((port)->regs + SPI_##reg)
250 #define spi_writew(port, reg, value) \
251 	writew_relaxed((value), (port)->regs + SPI_##reg)
252 
253 #define spi_readb(port, reg) \
254 	readb_relaxed((port)->regs + SPI_##reg)
255 #define spi_writeb(port, reg, value) \
256 	writeb_relaxed((value), (port)->regs + SPI_##reg)
257 #endif
258 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
259  * cache operations; better heuristics consider wordsize and bitrate.
260  */
261 #define DMA_MIN_BYTES	16
262 
263 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
264 
265 #define AUTOSUSPEND_TIMEOUT	2000
266 
267 struct atmel_spi_dma {
268 	struct dma_chan			*chan_rx;
269 	struct dma_chan			*chan_tx;
270 	struct scatterlist		sgrx;
271 	struct scatterlist		sgtx;
272 	struct dma_async_tx_descriptor	*data_desc_rx;
273 	struct dma_async_tx_descriptor	*data_desc_tx;
274 
275 	struct at_dma_slave	dma_slave;
276 };
277 
278 struct atmel_spi_caps {
279 	bool	is_spi2;
280 	bool	has_wdrbt;
281 	bool	has_dma_support;
282 };
283 
284 /*
285  * The core SPI transfer engine just talks to a register bank to set up
286  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
287  * framework provides the base clock, subdivided for each spi_device.
288  */
289 struct atmel_spi {
290 	spinlock_t		lock;
291 	unsigned long		flags;
292 
293 	phys_addr_t		phybase;
294 	void __iomem		*regs;
295 	int			irq;
296 	struct clk		*clk;
297 	struct platform_device	*pdev;
298 
299 	struct spi_transfer	*current_transfer;
300 	int			current_remaining_bytes;
301 	int			done_status;
302 
303 	struct completion	xfer_completion;
304 
305 	/* scratch buffer */
306 	void			*buffer;
307 	dma_addr_t		buffer_dma;
308 
309 	struct atmel_spi_caps	caps;
310 
311 	bool			use_dma;
312 	bool			use_pdc;
313 	bool			use_cs_gpios;
314 	/* dmaengine data */
315 	struct atmel_spi_dma	dma;
316 
317 	bool			keep_cs;
318 
319 	u32			fifo_size;
320 };
321 
322 /* Controller-specific per-slave state */
323 struct atmel_spi_device {
324 	unsigned int		npcs_pin;
325 	u32			csr;
326 };
327 
328 #define BUFFER_SIZE		PAGE_SIZE
329 #define INVALID_DMA_ADDRESS	0xffffffff
330 
331 /*
332  * Version 2 of the SPI controller has
333  *  - CR.LASTXFER
334  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
335  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
336  *  - SPI_CSRx.CSAAT
337  *  - SPI_CSRx.SBCR allows faster clocking
338  */
atmel_spi_is_v2(struct atmel_spi * as)339 static bool atmel_spi_is_v2(struct atmel_spi *as)
340 {
341 	return as->caps.is_spi2;
342 }
343 
344 /*
345  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
346  * they assume that spi slave device state will not change on deselect, so
347  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
348  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
349  * controllers have CSAAT and friends.
350  *
351  * Since the CSAAT functionality is a bit weird on newer controllers as
352  * well, we use GPIO to control nCSx pins on all controllers, updating
353  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
354  * support active-high chipselects despite the controller's belief that
355  * only active-low devices/systems exists.
356  *
357  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
358  * right when driven with GPIO.  ("Mode Fault does not allow more than one
359  * Master on Chip Select 0.")  No workaround exists for that ... so for
360  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
361  * and (c) will trigger that first erratum in some cases.
362  */
363 
cs_activate(struct atmel_spi * as,struct spi_device * spi)364 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
365 {
366 	struct atmel_spi_device *asd = spi->controller_state;
367 	unsigned active = spi->mode & SPI_CS_HIGH;
368 	u32 mr;
369 
370 	if (atmel_spi_is_v2(as)) {
371 		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
372 		/* For the low SPI version, there is a issue that PDC transfer
373 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
374 		 */
375 		spi_writel(as, CSR0, asd->csr);
376 		if (as->caps.has_wdrbt) {
377 			spi_writel(as, MR,
378 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
379 					| SPI_BIT(WDRBT)
380 					| SPI_BIT(MODFDIS)
381 					| SPI_BIT(MSTR));
382 		} else {
383 			spi_writel(as, MR,
384 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
385 					| SPI_BIT(MODFDIS)
386 					| SPI_BIT(MSTR));
387 		}
388 
389 		mr = spi_readl(as, MR);
390 		if (as->use_cs_gpios)
391 			gpio_set_value(asd->npcs_pin, active);
392 	} else {
393 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
394 		int i;
395 		u32 csr;
396 
397 		/* Make sure clock polarity is correct */
398 		for (i = 0; i < spi->master->num_chipselect; i++) {
399 			csr = spi_readl(as, CSR0 + 4 * i);
400 			if ((csr ^ cpol) & SPI_BIT(CPOL))
401 				spi_writel(as, CSR0 + 4 * i,
402 						csr ^ SPI_BIT(CPOL));
403 		}
404 
405 		mr = spi_readl(as, MR);
406 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
407 		if (as->use_cs_gpios && spi->chip_select != 0)
408 			gpio_set_value(asd->npcs_pin, active);
409 		spi_writel(as, MR, mr);
410 	}
411 
412 	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
413 			asd->npcs_pin, active ? " (high)" : "",
414 			mr);
415 }
416 
cs_deactivate(struct atmel_spi * as,struct spi_device * spi)417 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
418 {
419 	struct atmel_spi_device *asd = spi->controller_state;
420 	unsigned active = spi->mode & SPI_CS_HIGH;
421 	u32 mr;
422 
423 	/* only deactivate *this* device; sometimes transfers to
424 	 * another device may be active when this routine is called.
425 	 */
426 	mr = spi_readl(as, MR);
427 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
428 		mr = SPI_BFINS(PCS, 0xf, mr);
429 		spi_writel(as, MR, mr);
430 	}
431 
432 	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
433 			asd->npcs_pin, active ? " (low)" : "",
434 			mr);
435 
436 	if (!as->use_cs_gpios)
437 		spi_writel(as, CR, SPI_BIT(LASTXFER));
438 	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
439 		gpio_set_value(asd->npcs_pin, !active);
440 }
441 
atmel_spi_lock(struct atmel_spi * as)442 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
443 {
444 	spin_lock_irqsave(&as->lock, as->flags);
445 }
446 
atmel_spi_unlock(struct atmel_spi * as)447 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
448 {
449 	spin_unlock_irqrestore(&as->lock, as->flags);
450 }
451 
atmel_spi_use_dma(struct atmel_spi * as,struct spi_transfer * xfer)452 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
453 				struct spi_transfer *xfer)
454 {
455 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
456 }
457 
atmel_spi_dma_slave_config(struct atmel_spi * as,struct dma_slave_config * slave_config,u8 bits_per_word)458 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
459 				struct dma_slave_config *slave_config,
460 				u8 bits_per_word)
461 {
462 	int err = 0;
463 
464 	if (bits_per_word > 8) {
465 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
466 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
467 	} else {
468 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
469 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
470 	}
471 
472 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
473 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
474 	slave_config->src_maxburst = 1;
475 	slave_config->dst_maxburst = 1;
476 	slave_config->device_fc = false;
477 
478 	/*
479 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
480 	 * the Mode Register).
481 	 * So according to the datasheet, when FIFOs are available (and
482 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
483 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
484 	 * Data Register in a single access.
485 	 * However, the first data has to be written into the lowest 16 bits and
486 	 * the second data into the highest 16 bits of the Transmit
487 	 * Data Register. For 8bit data (the most frequent case), it would
488 	 * require to rework tx_buf so each data would actualy fit 16 bits.
489 	 * So we'd rather write only one data at the time. Hence the transmit
490 	 * path works the same whether FIFOs are available (and enabled) or not.
491 	 */
492 	slave_config->direction = DMA_MEM_TO_DEV;
493 	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
494 		dev_err(&as->pdev->dev,
495 			"failed to configure tx dma channel\n");
496 		err = -EINVAL;
497 	}
498 
499 	/*
500 	 * This driver configures the spi controller for master mode (MSTR bit
501 	 * set to '1' in the Mode Register).
502 	 * So according to the datasheet, when FIFOs are available (and
503 	 * enabled), the Receive FIFO operates in Single Data Mode.
504 	 * So the receive path works the same whether FIFOs are available (and
505 	 * enabled) or not.
506 	 */
507 	slave_config->direction = DMA_DEV_TO_MEM;
508 	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
509 		dev_err(&as->pdev->dev,
510 			"failed to configure rx dma channel\n");
511 		err = -EINVAL;
512 	}
513 
514 	return err;
515 }
516 
atmel_spi_configure_dma(struct atmel_spi * as)517 static int atmel_spi_configure_dma(struct atmel_spi *as)
518 {
519 	struct dma_slave_config	slave_config;
520 	struct device *dev = &as->pdev->dev;
521 	int err;
522 
523 	dma_cap_mask_t mask;
524 	dma_cap_zero(mask);
525 	dma_cap_set(DMA_SLAVE, mask);
526 
527 	as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
528 	if (IS_ERR(as->dma.chan_tx)) {
529 		err = PTR_ERR(as->dma.chan_tx);
530 		if (err == -EPROBE_DEFER) {
531 			dev_warn(dev, "no DMA channel available at the moment\n");
532 			return err;
533 		}
534 		dev_err(dev,
535 			"DMA TX channel not available, SPI unable to use DMA\n");
536 		err = -EBUSY;
537 		goto error;
538 	}
539 
540 	/*
541 	 * No reason to check EPROBE_DEFER here since we have already requested
542 	 * tx channel. If it fails here, it's for another reason.
543 	 */
544 	as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
545 
546 	if (!as->dma.chan_rx) {
547 		dev_err(dev,
548 			"DMA RX channel not available, SPI unable to use DMA\n");
549 		err = -EBUSY;
550 		goto error;
551 	}
552 
553 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
554 	if (err)
555 		goto error;
556 
557 	dev_info(&as->pdev->dev,
558 			"Using %s (tx) and %s (rx) for DMA transfers\n",
559 			dma_chan_name(as->dma.chan_tx),
560 			dma_chan_name(as->dma.chan_rx));
561 	return 0;
562 error:
563 	if (as->dma.chan_rx)
564 		dma_release_channel(as->dma.chan_rx);
565 	if (!IS_ERR(as->dma.chan_tx))
566 		dma_release_channel(as->dma.chan_tx);
567 	return err;
568 }
569 
atmel_spi_stop_dma(struct atmel_spi * as)570 static void atmel_spi_stop_dma(struct atmel_spi *as)
571 {
572 	if (as->dma.chan_rx)
573 		dmaengine_terminate_all(as->dma.chan_rx);
574 	if (as->dma.chan_tx)
575 		dmaengine_terminate_all(as->dma.chan_tx);
576 }
577 
atmel_spi_release_dma(struct atmel_spi * as)578 static void atmel_spi_release_dma(struct atmel_spi *as)
579 {
580 	if (as->dma.chan_rx)
581 		dma_release_channel(as->dma.chan_rx);
582 	if (as->dma.chan_tx)
583 		dma_release_channel(as->dma.chan_tx);
584 }
585 
586 /* This function is called by the DMA driver from tasklet context */
dma_callback(void * data)587 static void dma_callback(void *data)
588 {
589 	struct spi_master	*master = data;
590 	struct atmel_spi	*as = spi_master_get_devdata(master);
591 
592 	complete(&as->xfer_completion);
593 }
594 
595 /*
596  * Next transfer using PIO without FIFO.
597  */
atmel_spi_next_xfer_single(struct spi_master * master,struct spi_transfer * xfer)598 static void atmel_spi_next_xfer_single(struct spi_master *master,
599 				       struct spi_transfer *xfer)
600 {
601 	struct atmel_spi	*as = spi_master_get_devdata(master);
602 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
603 
604 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
605 
606 	/* Make sure data is not remaining in RDR */
607 	spi_readl(as, RDR);
608 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
609 		spi_readl(as, RDR);
610 		cpu_relax();
611 	}
612 
613 	if (xfer->tx_buf) {
614 		if (xfer->bits_per_word > 8)
615 			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
616 		else
617 			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
618 	} else {
619 		spi_writel(as, TDR, 0);
620 	}
621 
622 	dev_dbg(master->dev.parent,
623 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
624 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
625 		xfer->bits_per_word);
626 
627 	/* Enable relevant interrupts */
628 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
629 }
630 
631 /*
632  * Next transfer using PIO with FIFO.
633  */
atmel_spi_next_xfer_fifo(struct spi_master * master,struct spi_transfer * xfer)634 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
635 				     struct spi_transfer *xfer)
636 {
637 	struct atmel_spi *as = spi_master_get_devdata(master);
638 	u32 current_remaining_data, num_data;
639 	u32 offset = xfer->len - as->current_remaining_bytes;
640 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
641 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
642 	u16 td0, td1;
643 	u32 fifomr;
644 
645 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
646 
647 	/* Compute the number of data to transfer in the current iteration */
648 	current_remaining_data = ((xfer->bits_per_word > 8) ?
649 				  ((u32)as->current_remaining_bytes >> 1) :
650 				  (u32)as->current_remaining_bytes);
651 	num_data = min(current_remaining_data, as->fifo_size);
652 
653 	/* Flush RX and TX FIFOs */
654 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
655 	while (spi_readl(as, FLR))
656 		cpu_relax();
657 
658 	/* Set RX FIFO Threshold to the number of data to transfer */
659 	fifomr = spi_readl(as, FMR);
660 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
661 
662 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
663 	(void)spi_readl(as, SR);
664 
665 	/* Fill TX FIFO */
666 	while (num_data >= 2) {
667 		if (xfer->tx_buf) {
668 			if (xfer->bits_per_word > 8) {
669 				td0 = *words++;
670 				td1 = *words++;
671 			} else {
672 				td0 = *bytes++;
673 				td1 = *bytes++;
674 			}
675 		} else {
676 			td0 = 0;
677 			td1 = 0;
678 		}
679 
680 		spi_writel(as, TDR, (td1 << 16) | td0);
681 		num_data -= 2;
682 	}
683 
684 	if (num_data) {
685 		if (xfer->tx_buf) {
686 			if (xfer->bits_per_word > 8)
687 				td0 = *words++;
688 			else
689 				td0 = *bytes++;
690 		} else {
691 			td0 = 0;
692 		}
693 
694 		spi_writew(as, TDR, td0);
695 		num_data--;
696 	}
697 
698 	dev_dbg(master->dev.parent,
699 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
700 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
701 		xfer->bits_per_word);
702 
703 	/*
704 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
705 	 * transfer completion.
706 	 */
707 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
708 }
709 
710 /*
711  * Next transfer using PIO.
712  */
atmel_spi_next_xfer_pio(struct spi_master * master,struct spi_transfer * xfer)713 static void atmel_spi_next_xfer_pio(struct spi_master *master,
714 				    struct spi_transfer *xfer)
715 {
716 	struct atmel_spi *as = spi_master_get_devdata(master);
717 
718 	if (as->fifo_size)
719 		atmel_spi_next_xfer_fifo(master, xfer);
720 	else
721 		atmel_spi_next_xfer_single(master, xfer);
722 }
723 
724 /*
725  * Submit next transfer for DMA.
726  */
atmel_spi_next_xfer_dma_submit(struct spi_master * master,struct spi_transfer * xfer,u32 * plen)727 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
728 				struct spi_transfer *xfer,
729 				u32 *plen)
730 {
731 	struct atmel_spi	*as = spi_master_get_devdata(master);
732 	struct dma_chan		*rxchan = as->dma.chan_rx;
733 	struct dma_chan		*txchan = as->dma.chan_tx;
734 	struct dma_async_tx_descriptor *rxdesc;
735 	struct dma_async_tx_descriptor *txdesc;
736 	struct dma_slave_config	slave_config;
737 	dma_cookie_t		cookie;
738 	u32	len = *plen;
739 
740 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
741 
742 	/* Check that the channels are available */
743 	if (!rxchan || !txchan)
744 		return -ENODEV;
745 
746 	/* release lock for DMA operations */
747 	atmel_spi_unlock(as);
748 
749 	/* prepare the RX dma transfer */
750 	sg_init_table(&as->dma.sgrx, 1);
751 	if (xfer->rx_buf) {
752 		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
753 	} else {
754 		as->dma.sgrx.dma_address = as->buffer_dma;
755 		if (len > BUFFER_SIZE)
756 			len = BUFFER_SIZE;
757 	}
758 
759 	/* prepare the TX dma transfer */
760 	sg_init_table(&as->dma.sgtx, 1);
761 	if (xfer->tx_buf) {
762 		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
763 	} else {
764 		as->dma.sgtx.dma_address = as->buffer_dma;
765 		if (len > BUFFER_SIZE)
766 			len = BUFFER_SIZE;
767 		memset(as->buffer, 0, len);
768 	}
769 
770 	sg_dma_len(&as->dma.sgtx) = len;
771 	sg_dma_len(&as->dma.sgrx) = len;
772 
773 	*plen = len;
774 
775 	if (atmel_spi_dma_slave_config(as, &slave_config,
776 				       xfer->bits_per_word))
777 		goto err_exit;
778 
779 	/* Send both scatterlists */
780 	rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
781 					 DMA_FROM_DEVICE,
782 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
783 	if (!rxdesc)
784 		goto err_dma;
785 
786 	txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
787 					 DMA_TO_DEVICE,
788 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
789 	if (!txdesc)
790 		goto err_dma;
791 
792 	dev_dbg(master->dev.parent,
793 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
794 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
795 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
796 
797 	/* Enable relevant interrupts */
798 	spi_writel(as, IER, SPI_BIT(OVRES));
799 
800 	/* Put the callback on the RX transfer only, that should finish last */
801 	rxdesc->callback = dma_callback;
802 	rxdesc->callback_param = master;
803 
804 	/* Submit and fire RX and TX with TX last so we're ready to read! */
805 	cookie = rxdesc->tx_submit(rxdesc);
806 	if (dma_submit_error(cookie))
807 		goto err_dma;
808 	cookie = txdesc->tx_submit(txdesc);
809 	if (dma_submit_error(cookie))
810 		goto err_dma;
811 	rxchan->device->device_issue_pending(rxchan);
812 	txchan->device->device_issue_pending(txchan);
813 
814 	/* take back lock */
815 	atmel_spi_lock(as);
816 	return 0;
817 
818 err_dma:
819 	spi_writel(as, IDR, SPI_BIT(OVRES));
820 	atmel_spi_stop_dma(as);
821 err_exit:
822 	atmel_spi_lock(as);
823 	return -ENOMEM;
824 }
825 
atmel_spi_next_xfer_data(struct spi_master * master,struct spi_transfer * xfer,dma_addr_t * tx_dma,dma_addr_t * rx_dma,u32 * plen)826 static void atmel_spi_next_xfer_data(struct spi_master *master,
827 				struct spi_transfer *xfer,
828 				dma_addr_t *tx_dma,
829 				dma_addr_t *rx_dma,
830 				u32 *plen)
831 {
832 	struct atmel_spi	*as = spi_master_get_devdata(master);
833 	u32			len = *plen;
834 
835 	/* use scratch buffer only when rx or tx data is unspecified */
836 	if (xfer->rx_buf)
837 		*rx_dma = xfer->rx_dma + xfer->len - *plen;
838 	else {
839 		*rx_dma = as->buffer_dma;
840 		if (len > BUFFER_SIZE)
841 			len = BUFFER_SIZE;
842 	}
843 
844 	if (xfer->tx_buf)
845 		*tx_dma = xfer->tx_dma + xfer->len - *plen;
846 	else {
847 		*tx_dma = as->buffer_dma;
848 		if (len > BUFFER_SIZE)
849 			len = BUFFER_SIZE;
850 		memset(as->buffer, 0, len);
851 		dma_sync_single_for_device(&as->pdev->dev,
852 				as->buffer_dma, len, DMA_TO_DEVICE);
853 	}
854 
855 	*plen = len;
856 }
857 
atmel_spi_set_xfer_speed(struct atmel_spi * as,struct spi_device * spi,struct spi_transfer * xfer)858 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
859 				    struct spi_device *spi,
860 				    struct spi_transfer *xfer)
861 {
862 	u32			scbr, csr;
863 	unsigned long		bus_hz;
864 
865 	/* v1 chips start out at half the peripheral bus speed. */
866 	bus_hz = clk_get_rate(as->clk);
867 	if (!atmel_spi_is_v2(as))
868 		bus_hz /= 2;
869 
870 	/*
871 	 * Calculate the lowest divider that satisfies the
872 	 * constraint, assuming div32/fdiv/mbz == 0.
873 	 */
874 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
875 
876 	/*
877 	 * If the resulting divider doesn't fit into the
878 	 * register bitfield, we can't satisfy the constraint.
879 	 */
880 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
881 		dev_err(&spi->dev,
882 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
883 			xfer->speed_hz, scbr, bus_hz/255);
884 		return -EINVAL;
885 	}
886 	if (scbr == 0) {
887 		dev_err(&spi->dev,
888 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
889 			xfer->speed_hz, scbr, bus_hz);
890 		return -EINVAL;
891 	}
892 	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
893 	csr = SPI_BFINS(SCBR, scbr, csr);
894 	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
895 
896 	return 0;
897 }
898 
899 /*
900  * Submit next transfer for PDC.
901  * lock is held, spi irq is blocked
902  */
atmel_spi_pdc_next_xfer(struct spi_master * master,struct spi_message * msg,struct spi_transfer * xfer)903 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
904 					struct spi_message *msg,
905 					struct spi_transfer *xfer)
906 {
907 	struct atmel_spi	*as = spi_master_get_devdata(master);
908 	u32			len;
909 	dma_addr_t		tx_dma, rx_dma;
910 
911 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
912 
913 	len = as->current_remaining_bytes;
914 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
915 	as->current_remaining_bytes -= len;
916 
917 	spi_writel(as, RPR, rx_dma);
918 	spi_writel(as, TPR, tx_dma);
919 
920 	if (msg->spi->bits_per_word > 8)
921 		len >>= 1;
922 	spi_writel(as, RCR, len);
923 	spi_writel(as, TCR, len);
924 
925 	dev_dbg(&msg->spi->dev,
926 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
927 		xfer, xfer->len, xfer->tx_buf,
928 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
929 		(unsigned long long)xfer->rx_dma);
930 
931 	if (as->current_remaining_bytes) {
932 		len = as->current_remaining_bytes;
933 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
934 		as->current_remaining_bytes -= len;
935 
936 		spi_writel(as, RNPR, rx_dma);
937 		spi_writel(as, TNPR, tx_dma);
938 
939 		if (msg->spi->bits_per_word > 8)
940 			len >>= 1;
941 		spi_writel(as, RNCR, len);
942 		spi_writel(as, TNCR, len);
943 
944 		dev_dbg(&msg->spi->dev,
945 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
946 			xfer, xfer->len, xfer->tx_buf,
947 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
948 			(unsigned long long)xfer->rx_dma);
949 	}
950 
951 	/* REVISIT: We're waiting for RXBUFF before we start the next
952 	 * transfer because we need to handle some difficult timing
953 	 * issues otherwise. If we wait for TXBUFE in one transfer and
954 	 * then starts waiting for RXBUFF in the next, it's difficult
955 	 * to tell the difference between the RXBUFF interrupt we're
956 	 * actually waiting for and the RXBUFF interrupt of the
957 	 * previous transfer.
958 	 *
959 	 * It should be doable, though. Just not now...
960 	 */
961 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
962 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
963 }
964 
965 /*
966  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
967  *  - The buffer is either valid for CPU access, else NULL
968  *  - If the buffer is valid, so is its DMA address
969  *
970  * This driver manages the dma address unless message->is_dma_mapped.
971  */
972 static int
atmel_spi_dma_map_xfer(struct atmel_spi * as,struct spi_transfer * xfer)973 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
974 {
975 	struct device	*dev = &as->pdev->dev;
976 
977 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
978 	if (xfer->tx_buf) {
979 		/* tx_buf is a const void* where we need a void * for the dma
980 		 * mapping */
981 		void *nonconst_tx = (void *)xfer->tx_buf;
982 
983 		xfer->tx_dma = dma_map_single(dev,
984 				nonconst_tx, xfer->len,
985 				DMA_TO_DEVICE);
986 		if (dma_mapping_error(dev, xfer->tx_dma))
987 			return -ENOMEM;
988 	}
989 	if (xfer->rx_buf) {
990 		xfer->rx_dma = dma_map_single(dev,
991 				xfer->rx_buf, xfer->len,
992 				DMA_FROM_DEVICE);
993 		if (dma_mapping_error(dev, xfer->rx_dma)) {
994 			if (xfer->tx_buf)
995 				dma_unmap_single(dev,
996 						xfer->tx_dma, xfer->len,
997 						DMA_TO_DEVICE);
998 			return -ENOMEM;
999 		}
1000 	}
1001 	return 0;
1002 }
1003 
atmel_spi_dma_unmap_xfer(struct spi_master * master,struct spi_transfer * xfer)1004 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
1005 				     struct spi_transfer *xfer)
1006 {
1007 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1008 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
1009 				 xfer->len, DMA_TO_DEVICE);
1010 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1011 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
1012 				 xfer->len, DMA_FROM_DEVICE);
1013 }
1014 
atmel_spi_disable_pdc_transfer(struct atmel_spi * as)1015 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1016 {
1017 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1018 }
1019 
1020 static void
atmel_spi_pump_single_data(struct atmel_spi * as,struct spi_transfer * xfer)1021 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1022 {
1023 	u8		*rxp;
1024 	u16		*rxp16;
1025 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1026 
1027 	if (xfer->rx_buf) {
1028 		if (xfer->bits_per_word > 8) {
1029 			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1030 			*rxp16 = spi_readl(as, RDR);
1031 		} else {
1032 			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1033 			*rxp = spi_readl(as, RDR);
1034 		}
1035 	} else {
1036 		spi_readl(as, RDR);
1037 	}
1038 	if (xfer->bits_per_word > 8) {
1039 		if (as->current_remaining_bytes > 2)
1040 			as->current_remaining_bytes -= 2;
1041 		else
1042 			as->current_remaining_bytes = 0;
1043 	} else {
1044 		as->current_remaining_bytes--;
1045 	}
1046 }
1047 
1048 static void
atmel_spi_pump_fifo_data(struct atmel_spi * as,struct spi_transfer * xfer)1049 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1050 {
1051 	u32 fifolr = spi_readl(as, FLR);
1052 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1053 	u32 offset = xfer->len - as->current_remaining_bytes;
1054 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1055 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1056 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1057 
1058 	/* Update the number of remaining bytes to transfer */
1059 	num_bytes = ((xfer->bits_per_word > 8) ?
1060 		     (num_data << 1) :
1061 		     num_data);
1062 
1063 	if (as->current_remaining_bytes > num_bytes)
1064 		as->current_remaining_bytes -= num_bytes;
1065 	else
1066 		as->current_remaining_bytes = 0;
1067 
1068 	/* Handle odd number of bytes when data are more than 8bit width */
1069 	if (xfer->bits_per_word > 8)
1070 		as->current_remaining_bytes &= ~0x1;
1071 
1072 	/* Read data */
1073 	while (num_data) {
1074 		rd = spi_readl(as, RDR);
1075 		if (xfer->rx_buf) {
1076 			if (xfer->bits_per_word > 8)
1077 				*words++ = rd;
1078 			else
1079 				*bytes++ = rd;
1080 		}
1081 		num_data--;
1082 	}
1083 }
1084 
1085 /* Called from IRQ
1086  *
1087  * Must update "current_remaining_bytes" to keep track of data
1088  * to transfer.
1089  */
1090 static void
atmel_spi_pump_pio_data(struct atmel_spi * as,struct spi_transfer * xfer)1091 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1092 {
1093 	if (as->fifo_size)
1094 		atmel_spi_pump_fifo_data(as, xfer);
1095 	else
1096 		atmel_spi_pump_single_data(as, xfer);
1097 }
1098 
1099 /* Interrupt
1100  *
1101  * No need for locking in this Interrupt handler: done_status is the
1102  * only information modified.
1103  */
1104 static irqreturn_t
atmel_spi_pio_interrupt(int irq,void * dev_id)1105 atmel_spi_pio_interrupt(int irq, void *dev_id)
1106 {
1107 	struct spi_master	*master = dev_id;
1108 	struct atmel_spi	*as = spi_master_get_devdata(master);
1109 	u32			status, pending, imr;
1110 	struct spi_transfer	*xfer;
1111 	int			ret = IRQ_NONE;
1112 
1113 	imr = spi_readl(as, IMR);
1114 	status = spi_readl(as, SR);
1115 	pending = status & imr;
1116 
1117 	if (pending & SPI_BIT(OVRES)) {
1118 		ret = IRQ_HANDLED;
1119 		spi_writel(as, IDR, SPI_BIT(OVRES));
1120 		dev_warn(master->dev.parent, "overrun\n");
1121 
1122 		/*
1123 		 * When we get an overrun, we disregard the current
1124 		 * transfer. Data will not be copied back from any
1125 		 * bounce buffer and msg->actual_len will not be
1126 		 * updated with the last xfer.
1127 		 *
1128 		 * We will also not process any remaning transfers in
1129 		 * the message.
1130 		 */
1131 		as->done_status = -EIO;
1132 		smp_wmb();
1133 
1134 		/* Clear any overrun happening while cleaning up */
1135 		spi_readl(as, SR);
1136 
1137 		complete(&as->xfer_completion);
1138 
1139 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1140 		atmel_spi_lock(as);
1141 
1142 		if (as->current_remaining_bytes) {
1143 			ret = IRQ_HANDLED;
1144 			xfer = as->current_transfer;
1145 			atmel_spi_pump_pio_data(as, xfer);
1146 			if (!as->current_remaining_bytes)
1147 				spi_writel(as, IDR, pending);
1148 
1149 			complete(&as->xfer_completion);
1150 		}
1151 
1152 		atmel_spi_unlock(as);
1153 	} else {
1154 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1155 		ret = IRQ_HANDLED;
1156 		spi_writel(as, IDR, pending);
1157 	}
1158 
1159 	return ret;
1160 }
1161 
1162 static irqreturn_t
atmel_spi_pdc_interrupt(int irq,void * dev_id)1163 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1164 {
1165 	struct spi_master	*master = dev_id;
1166 	struct atmel_spi	*as = spi_master_get_devdata(master);
1167 	u32			status, pending, imr;
1168 	int			ret = IRQ_NONE;
1169 
1170 	imr = spi_readl(as, IMR);
1171 	status = spi_readl(as, SR);
1172 	pending = status & imr;
1173 
1174 	if (pending & SPI_BIT(OVRES)) {
1175 
1176 		ret = IRQ_HANDLED;
1177 
1178 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1179 				     | SPI_BIT(OVRES)));
1180 
1181 		/* Clear any overrun happening while cleaning up */
1182 		spi_readl(as, SR);
1183 
1184 		as->done_status = -EIO;
1185 
1186 		complete(&as->xfer_completion);
1187 
1188 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1189 		ret = IRQ_HANDLED;
1190 
1191 		spi_writel(as, IDR, pending);
1192 
1193 		complete(&as->xfer_completion);
1194 	}
1195 
1196 	return ret;
1197 }
1198 
atmel_spi_setup(struct spi_device * spi)1199 static int atmel_spi_setup(struct spi_device *spi)
1200 {
1201 	struct atmel_spi	*as;
1202 	struct atmel_spi_device	*asd;
1203 	u32			csr;
1204 	unsigned int		bits = spi->bits_per_word;
1205 	unsigned int		npcs_pin;
1206 	int			ret;
1207 
1208 	as = spi_master_get_devdata(spi->master);
1209 
1210 	/* see notes above re chipselect */
1211 	if (!as->use_cs_gpios && (spi->mode & SPI_CS_HIGH)) {
1212 		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1213 		return -EINVAL;
1214 	}
1215 
1216 	csr = SPI_BF(BITS, bits - 8);
1217 	if (spi->mode & SPI_CPOL)
1218 		csr |= SPI_BIT(CPOL);
1219 	if (!(spi->mode & SPI_CPHA))
1220 		csr |= SPI_BIT(NCPHA);
1221 	if (!as->use_cs_gpios)
1222 		csr |= SPI_BIT(CSAAT);
1223 
1224 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1225 	 *
1226 	 * DLYBCT would add delays between words, slowing down transfers.
1227 	 * It could potentially be useful to cope with DMA bottlenecks, but
1228 	 * in those cases it's probably best to just use a lower bitrate.
1229 	 */
1230 	csr |= SPI_BF(DLYBS, 0);
1231 	csr |= SPI_BF(DLYBCT, 0);
1232 
1233 	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1234 	npcs_pin = (unsigned long)spi->controller_data;
1235 
1236 	if (!as->use_cs_gpios)
1237 		npcs_pin = spi->chip_select;
1238 	else if (gpio_is_valid(spi->cs_gpio))
1239 		npcs_pin = spi->cs_gpio;
1240 
1241 	asd = spi->controller_state;
1242 	if (!asd) {
1243 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1244 		if (!asd)
1245 			return -ENOMEM;
1246 
1247 		if (as->use_cs_gpios) {
1248 			ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1249 			if (ret) {
1250 				kfree(asd);
1251 				return ret;
1252 			}
1253 
1254 			gpio_direction_output(npcs_pin,
1255 					      !(spi->mode & SPI_CS_HIGH));
1256 		}
1257 
1258 		asd->npcs_pin = npcs_pin;
1259 		spi->controller_state = asd;
1260 	}
1261 
1262 	asd->csr = csr;
1263 
1264 	dev_dbg(&spi->dev,
1265 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1266 		bits, spi->mode, spi->chip_select, csr);
1267 
1268 	if (!atmel_spi_is_v2(as))
1269 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1270 
1271 	return 0;
1272 }
1273 
atmel_spi_one_transfer(struct spi_master * master,struct spi_message * msg,struct spi_transfer * xfer)1274 static int atmel_spi_one_transfer(struct spi_master *master,
1275 					struct spi_message *msg,
1276 					struct spi_transfer *xfer)
1277 {
1278 	struct atmel_spi	*as;
1279 	struct spi_device	*spi = msg->spi;
1280 	u8			bits;
1281 	u32			len;
1282 	struct atmel_spi_device	*asd;
1283 	int			timeout;
1284 	int			ret;
1285 	unsigned long		dma_timeout;
1286 
1287 	as = spi_master_get_devdata(master);
1288 
1289 	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1290 		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1291 		return -EINVAL;
1292 	}
1293 
1294 	asd = spi->controller_state;
1295 	bits = (asd->csr >> 4) & 0xf;
1296 	if (bits != xfer->bits_per_word - 8) {
1297 		dev_dbg(&spi->dev,
1298 			"you can't yet change bits_per_word in transfers\n");
1299 		return -ENOPROTOOPT;
1300 	}
1301 
1302 	/*
1303 	 * DMA map early, for performance (empties dcache ASAP) and
1304 	 * better fault reporting.
1305 	 */
1306 	if ((!msg->is_dma_mapped)
1307 		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
1308 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1309 			return -ENOMEM;
1310 	}
1311 
1312 	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1313 
1314 	as->done_status = 0;
1315 	as->current_transfer = xfer;
1316 	as->current_remaining_bytes = xfer->len;
1317 	while (as->current_remaining_bytes) {
1318 		reinit_completion(&as->xfer_completion);
1319 
1320 		if (as->use_pdc) {
1321 			atmel_spi_pdc_next_xfer(master, msg, xfer);
1322 		} else if (atmel_spi_use_dma(as, xfer)) {
1323 			len = as->current_remaining_bytes;
1324 			ret = atmel_spi_next_xfer_dma_submit(master,
1325 								xfer, &len);
1326 			if (ret) {
1327 				dev_err(&spi->dev,
1328 					"unable to use DMA, fallback to PIO\n");
1329 				atmel_spi_next_xfer_pio(master, xfer);
1330 			} else {
1331 				as->current_remaining_bytes -= len;
1332 				if (as->current_remaining_bytes < 0)
1333 					as->current_remaining_bytes = 0;
1334 			}
1335 		} else {
1336 			atmel_spi_next_xfer_pio(master, xfer);
1337 		}
1338 
1339 		/* interrupts are disabled, so free the lock for schedule */
1340 		atmel_spi_unlock(as);
1341 		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1342 							  SPI_DMA_TIMEOUT);
1343 		atmel_spi_lock(as);
1344 		if (WARN_ON(dma_timeout == 0)) {
1345 			dev_err(&spi->dev, "spi transfer timeout\n");
1346 			as->done_status = -EIO;
1347 		}
1348 
1349 		if (as->done_status)
1350 			break;
1351 	}
1352 
1353 	if (as->done_status) {
1354 		if (as->use_pdc) {
1355 			dev_warn(master->dev.parent,
1356 				"overrun (%u/%u remaining)\n",
1357 				spi_readl(as, TCR), spi_readl(as, RCR));
1358 
1359 			/*
1360 			 * Clean up DMA registers and make sure the data
1361 			 * registers are empty.
1362 			 */
1363 			spi_writel(as, RNCR, 0);
1364 			spi_writel(as, TNCR, 0);
1365 			spi_writel(as, RCR, 0);
1366 			spi_writel(as, TCR, 0);
1367 			for (timeout = 1000; timeout; timeout--)
1368 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1369 					break;
1370 			if (!timeout)
1371 				dev_warn(master->dev.parent,
1372 					 "timeout waiting for TXEMPTY");
1373 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1374 				spi_readl(as, RDR);
1375 
1376 			/* Clear any overrun happening while cleaning up */
1377 			spi_readl(as, SR);
1378 
1379 		} else if (atmel_spi_use_dma(as, xfer)) {
1380 			atmel_spi_stop_dma(as);
1381 		}
1382 
1383 		if (!msg->is_dma_mapped
1384 			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1385 			atmel_spi_dma_unmap_xfer(master, xfer);
1386 
1387 		return 0;
1388 
1389 	} else {
1390 		/* only update length if no error */
1391 		msg->actual_length += xfer->len;
1392 	}
1393 
1394 	if (!msg->is_dma_mapped
1395 		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1396 		atmel_spi_dma_unmap_xfer(master, xfer);
1397 
1398 	if (xfer->delay_usecs)
1399 		udelay(xfer->delay_usecs);
1400 
1401 	if (xfer->cs_change) {
1402 		if (list_is_last(&xfer->transfer_list,
1403 				 &msg->transfers)) {
1404 			as->keep_cs = true;
1405 		} else {
1406 			cs_deactivate(as, msg->spi);
1407 			udelay(10);
1408 			cs_activate(as, msg->spi);
1409 		}
1410 	}
1411 
1412 	return 0;
1413 }
1414 
atmel_spi_transfer_one_message(struct spi_master * master,struct spi_message * msg)1415 static int atmel_spi_transfer_one_message(struct spi_master *master,
1416 						struct spi_message *msg)
1417 {
1418 	struct atmel_spi *as;
1419 	struct spi_transfer *xfer;
1420 	struct spi_device *spi = msg->spi;
1421 	int ret = 0;
1422 
1423 	as = spi_master_get_devdata(master);
1424 
1425 	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1426 					msg, dev_name(&spi->dev));
1427 
1428 	atmel_spi_lock(as);
1429 	cs_activate(as, spi);
1430 
1431 	as->keep_cs = false;
1432 
1433 	msg->status = 0;
1434 	msg->actual_length = 0;
1435 
1436 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1437 		ret = atmel_spi_one_transfer(master, msg, xfer);
1438 		if (ret)
1439 			goto msg_done;
1440 	}
1441 
1442 	if (as->use_pdc)
1443 		atmel_spi_disable_pdc_transfer(as);
1444 
1445 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1446 		dev_dbg(&spi->dev,
1447 			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1448 			xfer, xfer->len,
1449 			xfer->tx_buf, &xfer->tx_dma,
1450 			xfer->rx_buf, &xfer->rx_dma);
1451 	}
1452 
1453 msg_done:
1454 	if (!as->keep_cs)
1455 		cs_deactivate(as, msg->spi);
1456 
1457 	atmel_spi_unlock(as);
1458 
1459 	msg->status = as->done_status;
1460 	spi_finalize_current_message(spi->master);
1461 
1462 	return ret;
1463 }
1464 
atmel_spi_cleanup(struct spi_device * spi)1465 static void atmel_spi_cleanup(struct spi_device *spi)
1466 {
1467 	struct atmel_spi_device	*asd = spi->controller_state;
1468 	unsigned		gpio = (unsigned long) spi->controller_data;
1469 
1470 	if (!asd)
1471 		return;
1472 
1473 	spi->controller_state = NULL;
1474 	gpio_free(gpio);
1475 	kfree(asd);
1476 }
1477 
atmel_get_version(struct atmel_spi * as)1478 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1479 {
1480 	return spi_readl(as, VERSION) & 0x00000fff;
1481 }
1482 
atmel_get_caps(struct atmel_spi * as)1483 static void atmel_get_caps(struct atmel_spi *as)
1484 {
1485 	unsigned int version;
1486 
1487 	version = atmel_get_version(as);
1488 	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1489 
1490 	as->caps.is_spi2 = version > 0x121;
1491 	as->caps.has_wdrbt = version >= 0x210;
1492 	as->caps.has_dma_support = version >= 0x212;
1493 }
1494 
1495 /*-------------------------------------------------------------------------*/
1496 
atmel_spi_probe(struct platform_device * pdev)1497 static int atmel_spi_probe(struct platform_device *pdev)
1498 {
1499 	struct resource		*regs;
1500 	int			irq;
1501 	struct clk		*clk;
1502 	int			ret;
1503 	struct spi_master	*master;
1504 	struct atmel_spi	*as;
1505 
1506 	/* Select default pin state */
1507 	pinctrl_pm_select_default_state(&pdev->dev);
1508 
1509 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1510 	if (!regs)
1511 		return -ENXIO;
1512 
1513 	irq = platform_get_irq(pdev, 0);
1514 	if (irq < 0)
1515 		return irq;
1516 
1517 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1518 	if (IS_ERR(clk))
1519 		return PTR_ERR(clk);
1520 
1521 	/* setup spi core then atmel-specific driver state */
1522 	ret = -ENOMEM;
1523 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1524 	if (!master)
1525 		goto out_free;
1526 
1527 	/* the spi->mode bits understood by this driver: */
1528 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1529 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1530 	master->dev.of_node = pdev->dev.of_node;
1531 	master->bus_num = pdev->id;
1532 	master->num_chipselect = master->dev.of_node ? 0 : 4;
1533 	master->setup = atmel_spi_setup;
1534 	master->transfer_one_message = atmel_spi_transfer_one_message;
1535 	master->cleanup = atmel_spi_cleanup;
1536 	master->auto_runtime_pm = true;
1537 	platform_set_drvdata(pdev, master);
1538 
1539 	as = spi_master_get_devdata(master);
1540 
1541 	/*
1542 	 * Scratch buffer is used for throwaway rx and tx data.
1543 	 * It's coherent to minimize dcache pollution.
1544 	 */
1545 	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1546 					&as->buffer_dma, GFP_KERNEL);
1547 	if (!as->buffer)
1548 		goto out_free;
1549 
1550 	spin_lock_init(&as->lock);
1551 
1552 	as->pdev = pdev;
1553 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1554 	if (IS_ERR(as->regs)) {
1555 		ret = PTR_ERR(as->regs);
1556 		goto out_free_buffer;
1557 	}
1558 	as->phybase = regs->start;
1559 	as->irq = irq;
1560 	as->clk = clk;
1561 
1562 	init_completion(&as->xfer_completion);
1563 
1564 	atmel_get_caps(as);
1565 
1566 	as->use_cs_gpios = true;
1567 	if (atmel_spi_is_v2(as) &&
1568 	    pdev->dev.of_node &&
1569 	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1570 		as->use_cs_gpios = false;
1571 		master->num_chipselect = 4;
1572 	}
1573 
1574 	as->use_dma = false;
1575 	as->use_pdc = false;
1576 	if (as->caps.has_dma_support) {
1577 		ret = atmel_spi_configure_dma(as);
1578 		if (ret == 0)
1579 			as->use_dma = true;
1580 		else if (ret == -EPROBE_DEFER)
1581 			return ret;
1582 	} else {
1583 		as->use_pdc = true;
1584 	}
1585 
1586 	if (as->caps.has_dma_support && !as->use_dma)
1587 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1588 
1589 	if (as->use_pdc) {
1590 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1591 					0, dev_name(&pdev->dev), master);
1592 	} else {
1593 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1594 					0, dev_name(&pdev->dev), master);
1595 	}
1596 	if (ret)
1597 		goto out_unmap_regs;
1598 
1599 	/* Initialize the hardware */
1600 	ret = clk_prepare_enable(clk);
1601 	if (ret)
1602 		goto out_free_irq;
1603 	spi_writel(as, CR, SPI_BIT(SWRST));
1604 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1605 	if (as->caps.has_wdrbt) {
1606 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1607 				| SPI_BIT(MSTR));
1608 	} else {
1609 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1610 	}
1611 
1612 	if (as->use_pdc)
1613 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1614 	spi_writel(as, CR, SPI_BIT(SPIEN));
1615 
1616 	as->fifo_size = 0;
1617 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1618 				  &as->fifo_size)) {
1619 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1620 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1621 	}
1622 
1623 	/* go! */
1624 	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1625 			(unsigned long)regs->start, irq);
1626 
1627 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1628 	pm_runtime_use_autosuspend(&pdev->dev);
1629 	pm_runtime_set_active(&pdev->dev);
1630 	pm_runtime_enable(&pdev->dev);
1631 
1632 	ret = devm_spi_register_master(&pdev->dev, master);
1633 	if (ret)
1634 		goto out_free_dma;
1635 
1636 	return 0;
1637 
1638 out_free_dma:
1639 	pm_runtime_disable(&pdev->dev);
1640 	pm_runtime_set_suspended(&pdev->dev);
1641 
1642 	if (as->use_dma)
1643 		atmel_spi_release_dma(as);
1644 
1645 	spi_writel(as, CR, SPI_BIT(SWRST));
1646 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1647 	clk_disable_unprepare(clk);
1648 out_free_irq:
1649 out_unmap_regs:
1650 out_free_buffer:
1651 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1652 			as->buffer_dma);
1653 out_free:
1654 	spi_master_put(master);
1655 	return ret;
1656 }
1657 
atmel_spi_remove(struct platform_device * pdev)1658 static int atmel_spi_remove(struct platform_device *pdev)
1659 {
1660 	struct spi_master	*master = platform_get_drvdata(pdev);
1661 	struct atmel_spi	*as = spi_master_get_devdata(master);
1662 
1663 	pm_runtime_get_sync(&pdev->dev);
1664 
1665 	/* reset the hardware and block queue progress */
1666 	if (as->use_dma) {
1667 		atmel_spi_stop_dma(as);
1668 		atmel_spi_release_dma(as);
1669 	}
1670 
1671 	spin_lock_irq(&as->lock);
1672 	spi_writel(as, CR, SPI_BIT(SWRST));
1673 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1674 	spi_readl(as, SR);
1675 	spin_unlock_irq(&as->lock);
1676 
1677 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1678 			as->buffer_dma);
1679 
1680 	clk_disable_unprepare(as->clk);
1681 
1682 	pm_runtime_put_noidle(&pdev->dev);
1683 	pm_runtime_disable(&pdev->dev);
1684 
1685 	return 0;
1686 }
1687 
1688 #ifdef CONFIG_PM
atmel_spi_runtime_suspend(struct device * dev)1689 static int atmel_spi_runtime_suspend(struct device *dev)
1690 {
1691 	struct spi_master *master = dev_get_drvdata(dev);
1692 	struct atmel_spi *as = spi_master_get_devdata(master);
1693 
1694 	clk_disable_unprepare(as->clk);
1695 	pinctrl_pm_select_sleep_state(dev);
1696 
1697 	return 0;
1698 }
1699 
atmel_spi_runtime_resume(struct device * dev)1700 static int atmel_spi_runtime_resume(struct device *dev)
1701 {
1702 	struct spi_master *master = dev_get_drvdata(dev);
1703 	struct atmel_spi *as = spi_master_get_devdata(master);
1704 
1705 	pinctrl_pm_select_default_state(dev);
1706 
1707 	return clk_prepare_enable(as->clk);
1708 }
1709 
1710 #ifdef CONFIG_PM_SLEEP
atmel_spi_suspend(struct device * dev)1711 static int atmel_spi_suspend(struct device *dev)
1712 {
1713 	struct spi_master *master = dev_get_drvdata(dev);
1714 	int ret;
1715 
1716 	/* Stop the queue running */
1717 	ret = spi_master_suspend(master);
1718 	if (ret) {
1719 		dev_warn(dev, "cannot suspend master\n");
1720 		return ret;
1721 	}
1722 
1723 	if (!pm_runtime_suspended(dev))
1724 		atmel_spi_runtime_suspend(dev);
1725 
1726 	return 0;
1727 }
1728 
atmel_spi_resume(struct device * dev)1729 static int atmel_spi_resume(struct device *dev)
1730 {
1731 	struct spi_master *master = dev_get_drvdata(dev);
1732 	int ret;
1733 
1734 	if (!pm_runtime_suspended(dev)) {
1735 		ret = atmel_spi_runtime_resume(dev);
1736 		if (ret)
1737 			return ret;
1738 	}
1739 
1740 	/* Start the queue running */
1741 	ret = spi_master_resume(master);
1742 	if (ret)
1743 		dev_err(dev, "problem starting queue (%d)\n", ret);
1744 
1745 	return ret;
1746 }
1747 #endif
1748 
1749 static const struct dev_pm_ops atmel_spi_pm_ops = {
1750 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1751 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1752 			   atmel_spi_runtime_resume, NULL)
1753 };
1754 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1755 #else
1756 #define ATMEL_SPI_PM_OPS	NULL
1757 #endif
1758 
1759 #if defined(CONFIG_OF)
1760 static const struct of_device_id atmel_spi_dt_ids[] = {
1761 	{ .compatible = "atmel,at91rm9200-spi" },
1762 	{ /* sentinel */ }
1763 };
1764 
1765 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1766 #endif
1767 
1768 static struct platform_driver atmel_spi_driver = {
1769 	.driver		= {
1770 		.name	= "atmel_spi",
1771 		.pm	= ATMEL_SPI_PM_OPS,
1772 		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1773 	},
1774 	.probe		= atmel_spi_probe,
1775 	.remove		= atmel_spi_remove,
1776 };
1777 module_platform_driver(atmel_spi_driver);
1778 
1779 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1780 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1781 MODULE_LICENSE("GPL");
1782 MODULE_ALIAS("platform:atmel_spi");
1783