• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for Broadcom BCM2835 auxiliary SPI Controllers
3  *
4  * the driver does not rely on the native chipselects at all
5  * but only uses the gpio type chipselects
6  *
7  * Based on: spi-bcm2835.c
8  *
9  * Copyright (C) 2015 Martin Sperl
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_device.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_irq.h>
35 #include <linux/regmap.h>
36 #include <linux/spi/spi.h>
37 #include <linux/spinlock.h>
38 
39 /*
40  * spi register defines
41  *
42  * note there is garbage in the "official" documentation,
43  * so some data is taken from the file:
44  *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
45  * inside of:
46  *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
47  */
48 
49 /* SPI register offsets */
50 #define BCM2835_AUX_SPI_CNTL0	0x00
51 #define BCM2835_AUX_SPI_CNTL1	0x04
52 #define BCM2835_AUX_SPI_STAT	0x08
53 #define BCM2835_AUX_SPI_PEEK	0x0C
54 #define BCM2835_AUX_SPI_IO	0x20
55 #define BCM2835_AUX_SPI_TXHOLD	0x30
56 
57 /* Bitfields in CNTL0 */
58 #define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
59 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
60 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
61 #define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
62 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
63 #define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
64 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
65 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
66 #define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
67 #define BCM2835_AUX_SPI_CNTL0_CPHA_IN	0x00000400
68 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
69 #define BCM2835_AUX_SPI_CNTL0_CPHA_OUT	0x00000100
70 #define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
71 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
72 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
73 
74 /* Bitfields in CNTL1 */
75 #define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
76 #define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000080
77 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000040
78 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
79 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
80 
81 /* Bitfields in STAT */
82 #define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
83 #define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
84 #define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
85 #define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
86 #define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
87 #define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
88 #define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
89 #define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
90 
91 /* timeout values */
92 #define BCM2835_AUX_SPI_POLLING_LIMIT_US	30
93 #define BCM2835_AUX_SPI_POLLING_JIFFIES		2
94 
95 #define BCM2835_AUX_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
96 				  | SPI_NO_CS)
97 
98 struct bcm2835aux_spi {
99 	void __iomem *regs;
100 	struct clk *clk;
101 	int irq;
102 	u32 cntl[2];
103 	const u8 *tx_buf;
104 	u8 *rx_buf;
105 	int tx_len;
106 	int rx_len;
107 	int pending;
108 };
109 
bcm2835aux_rd(struct bcm2835aux_spi * bs,unsigned reg)110 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
111 {
112 	return readl(bs->regs + reg);
113 }
114 
bcm2835aux_wr(struct bcm2835aux_spi * bs,unsigned reg,u32 val)115 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
116 				 u32 val)
117 {
118 	writel(val, bs->regs + reg);
119 }
120 
bcm2835aux_rd_fifo(struct bcm2835aux_spi * bs)121 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
122 {
123 	u32 data;
124 	int count = min(bs->rx_len, 3);
125 
126 	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
127 	if (bs->rx_buf) {
128 		switch (count) {
129 		case 4:
130 			*bs->rx_buf++ = (data >> 24) & 0xff;
131 			/* fallthrough */
132 		case 3:
133 			*bs->rx_buf++ = (data >> 16) & 0xff;
134 			/* fallthrough */
135 		case 2:
136 			*bs->rx_buf++ = (data >> 8) & 0xff;
137 			/* fallthrough */
138 		case 1:
139 			*bs->rx_buf++ = (data >> 0) & 0xff;
140 			/* fallthrough - no default */
141 		}
142 	}
143 	bs->rx_len -= count;
144 	bs->pending -= count;
145 }
146 
bcm2835aux_wr_fifo(struct bcm2835aux_spi * bs)147 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
148 {
149 	u32 data;
150 	u8 byte;
151 	int count;
152 	int i;
153 
154 	/* gather up to 3 bytes to write to the FIFO */
155 	count = min(bs->tx_len, 3);
156 	data = 0;
157 	for (i = 0; i < count; i++) {
158 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
159 		data |= byte << (8 * (2 - i));
160 	}
161 
162 	/* and set the variable bit-length */
163 	data |= (count * 8) << 24;
164 
165 	/* and decrement length */
166 	bs->tx_len -= count;
167 	bs->pending += count;
168 
169 	/* write to the correct TX-register */
170 	if (bs->tx_len)
171 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
172 	else
173 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
174 }
175 
bcm2835aux_spi_reset_hw(struct bcm2835aux_spi * bs)176 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
177 {
178 	/* disable spi clearing fifo and interrupts */
179 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
180 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
181 		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
182 }
183 
bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi * bs)184 static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
185 {
186 	u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
187 
188 	/* check if we have data to read */
189 	for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
190 	     stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
191 		bcm2835aux_rd_fifo(bs);
192 
193 	/* check if we have data to write */
194 	while (bs->tx_len &&
195 	       (bs->pending < 12) &&
196 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
197 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
198 		bcm2835aux_wr_fifo(bs);
199 	}
200 }
201 
bcm2835aux_spi_interrupt(int irq,void * dev_id)202 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
203 {
204 	struct spi_master *master = dev_id;
205 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
206 
207 	/* IRQ may be shared, so return if our interrupts are disabled */
208 	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
209 	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
210 		return IRQ_NONE;
211 
212 	/* do common fifo handling */
213 	bcm2835aux_spi_transfer_helper(bs);
214 
215 	/* and if rx_len is 0 then wake up completion and disable spi */
216 	if (!bs->rx_len) {
217 		bcm2835aux_spi_reset_hw(bs);
218 		complete(&master->xfer_completion);
219 	}
220 
221 	return IRQ_HANDLED;
222 }
223 
__bcm2835aux_spi_transfer_one_irq(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)224 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
225 					     struct spi_device *spi,
226 					     struct spi_transfer *tfr)
227 {
228 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
229 
230 	/* enable interrupts */
231 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
232 		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
233 		BCM2835_AUX_SPI_CNTL1_IDLE);
234 
235 	/* and wait for finish... */
236 	return 1;
237 }
238 
bcm2835aux_spi_transfer_one_irq(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)239 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
240 					   struct spi_device *spi,
241 					   struct spi_transfer *tfr)
242 {
243 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
244 
245 	/* fill in registers and fifos before enabling interrupts */
246 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
247 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
248 
249 	/* fill in tx fifo with data before enabling interrupts */
250 	while ((bs->tx_len) &&
251 	       (bs->pending < 12) &&
252 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
253 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
254 		bcm2835aux_wr_fifo(bs);
255 	}
256 
257 	/* now run the interrupt mode */
258 	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
259 }
260 
bcm2835aux_spi_transfer_one_poll(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)261 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
262 					    struct spi_device *spi,
263 					struct spi_transfer *tfr)
264 {
265 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
266 	unsigned long timeout;
267 
268 	/* configure spi */
269 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
270 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
271 
272 	/* set the timeout */
273 	timeout = jiffies + BCM2835_AUX_SPI_POLLING_JIFFIES;
274 
275 	/* loop until finished the transfer */
276 	while (bs->rx_len) {
277 
278 		/* do common fifo handling */
279 		bcm2835aux_spi_transfer_helper(bs);
280 
281 		/* there is still data pending to read check the timeout */
282 		if (bs->rx_len && time_after(jiffies, timeout)) {
283 			dev_dbg_ratelimited(&spi->dev,
284 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
285 					    jiffies - timeout,
286 					    bs->tx_len, bs->rx_len);
287 			/* forward to interrupt handler */
288 			return __bcm2835aux_spi_transfer_one_irq(master,
289 							       spi, tfr);
290 		}
291 	}
292 
293 	/* Transfer complete - reset SPI HW */
294 	bcm2835aux_spi_reset_hw(bs);
295 
296 	/* and return without waiting for completion */
297 	return 0;
298 }
299 
bcm2835aux_spi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)300 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
301 				       struct spi_device *spi,
302 				       struct spi_transfer *tfr)
303 {
304 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
305 	unsigned long spi_hz, clk_hz, speed;
306 	unsigned long spi_used_hz;
307 	unsigned long long xfer_time_us;
308 
309 	/* calculate the registers to handle
310 	 *
311 	 * note that we use the variable data mode, which
312 	 * is not optimal for longer transfers as we waste registers
313 	 * resulting (potentially) in more interrupts when transferring
314 	 * more than 12 bytes
315 	 */
316 	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
317 		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
318 		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
319 	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
320 
321 	/* set clock */
322 	spi_hz = tfr->speed_hz;
323 	clk_hz = clk_get_rate(bs->clk);
324 
325 	if (spi_hz >= clk_hz / 2) {
326 		speed = 0;
327 	} else if (spi_hz) {
328 		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
329 		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
330 			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
331 	} else { /* the slowest we can go */
332 		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
333 	}
334 	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
335 
336 	spi_used_hz = clk_hz / (2 * (speed + 1));
337 
338 	/* handle all the modes */
339 	if (spi->mode & SPI_CPOL)
340 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
341 	if (spi->mode & SPI_CPHA)
342 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPHA_OUT |
343 			       BCM2835_AUX_SPI_CNTL0_CPHA_IN;
344 
345 	/* set transmit buffers and length */
346 	bs->tx_buf = tfr->tx_buf;
347 	bs->rx_buf = tfr->rx_buf;
348 	bs->tx_len = tfr->len;
349 	bs->rx_len = tfr->len;
350 	bs->pending = 0;
351 
352 	/* calculate the estimated time in us the transfer runs
353 	 * note that there are are 2 idle clocks after each
354 	 * chunk getting transferred - in our case the chunk size
355 	 * is 3 bytes, so we approximate this by 9 bits/byte
356 	 */
357 	xfer_time_us = tfr->len * 9 * 1000000;
358 	do_div(xfer_time_us, spi_used_hz);
359 
360 	/* run in polling mode for short transfers */
361 	if (xfer_time_us < BCM2835_AUX_SPI_POLLING_LIMIT_US)
362 		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
363 
364 	/* run in interrupt mode for all others */
365 	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
366 }
367 
bcm2835aux_spi_handle_err(struct spi_master * master,struct spi_message * msg)368 static void bcm2835aux_spi_handle_err(struct spi_master *master,
369 				      struct spi_message *msg)
370 {
371 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
372 
373 	bcm2835aux_spi_reset_hw(bs);
374 }
375 
bcm2835aux_spi_probe(struct platform_device * pdev)376 static int bcm2835aux_spi_probe(struct platform_device *pdev)
377 {
378 	struct spi_master *master;
379 	struct bcm2835aux_spi *bs;
380 	struct resource *res;
381 	unsigned long clk_hz;
382 	int err;
383 
384 	master = devm_spi_alloc_master(&pdev->dev, sizeof(*bs));
385 	if (!master) {
386 		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
387 		return -ENOMEM;
388 	}
389 
390 	platform_set_drvdata(pdev, master);
391 	master->mode_bits = BCM2835_AUX_SPI_MODE_BITS;
392 	master->bits_per_word_mask = SPI_BPW_MASK(8);
393 	/* even though the driver never officially supported native CS
394 	 * allow a single native CS for legacy DT support purposes when
395 	 * no cs-gpio is configured.
396 	 * Known limitations for native cs are:
397 	 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
398 	 *     whenever there is a transfer -  this even includes SPI_NO_CS
399 	 * * SPI_CS_HIGH: is ignores - cs are always asserted low
400 	 * * cs_change: cs is deasserted after each spi_transfer
401 	 * * cs_delay_usec: cs is always deasserted one SCK cycle after
402 	 *     a spi_transfer
403 	 */
404 	master->num_chipselect = 1;
405 	master->transfer_one = bcm2835aux_spi_transfer_one;
406 	master->handle_err = bcm2835aux_spi_handle_err;
407 	master->dev.of_node = pdev->dev.of_node;
408 
409 	bs = spi_master_get_devdata(master);
410 
411 	/* the main area */
412 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
413 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
414 	if (IS_ERR(bs->regs))
415 		return PTR_ERR(bs->regs);
416 
417 	bs->clk = devm_clk_get(&pdev->dev, NULL);
418 	if ((!bs->clk) || (IS_ERR(bs->clk))) {
419 		err = PTR_ERR(bs->clk);
420 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
421 		return err;
422 	}
423 
424 	bs->irq = platform_get_irq(pdev, 0);
425 	if (bs->irq <= 0) {
426 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
427 		return bs->irq ? bs->irq : -ENODEV;
428 	}
429 
430 	/* this also enables the HW block */
431 	err = clk_prepare_enable(bs->clk);
432 	if (err) {
433 		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
434 		return err;
435 	}
436 
437 	/* just checking if the clock returns a sane value */
438 	clk_hz = clk_get_rate(bs->clk);
439 	if (!clk_hz) {
440 		dev_err(&pdev->dev, "clock returns 0 Hz\n");
441 		err = -ENODEV;
442 		goto out_clk_disable;
443 	}
444 
445 	/* reset SPI-HW block */
446 	bcm2835aux_spi_reset_hw(bs);
447 
448 	err = devm_request_irq(&pdev->dev, bs->irq,
449 			       bcm2835aux_spi_interrupt,
450 			       IRQF_SHARED,
451 			       dev_name(&pdev->dev), master);
452 	if (err) {
453 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
454 		goto out_clk_disable;
455 	}
456 
457 	err = spi_register_master(master);
458 	if (err) {
459 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
460 		goto out_clk_disable;
461 	}
462 
463 	return 0;
464 
465 out_clk_disable:
466 	clk_disable_unprepare(bs->clk);
467 	return err;
468 }
469 
bcm2835aux_spi_remove(struct platform_device * pdev)470 static int bcm2835aux_spi_remove(struct platform_device *pdev)
471 {
472 	struct spi_master *master = platform_get_drvdata(pdev);
473 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
474 
475 	spi_unregister_master(master);
476 
477 	bcm2835aux_spi_reset_hw(bs);
478 
479 	/* disable the HW block by releasing the clock */
480 	clk_disable_unprepare(bs->clk);
481 
482 	return 0;
483 }
484 
485 static const struct of_device_id bcm2835aux_spi_match[] = {
486 	{ .compatible = "brcm,bcm2835-aux-spi", },
487 	{}
488 };
489 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
490 
491 static struct platform_driver bcm2835aux_spi_driver = {
492 	.driver		= {
493 		.name		= "spi-bcm2835aux",
494 		.of_match_table	= bcm2835aux_spi_match,
495 	},
496 	.probe		= bcm2835aux_spi_probe,
497 	.remove		= bcm2835aux_spi_remove,
498 };
499 module_platform_driver(bcm2835aux_spi_driver);
500 
501 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
502 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
503 MODULE_LICENSE("GPL v2");
504