• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * OMAP2 McSPI controller driver
3  *
4  * Copyright (C) 2005, 2006 Nokia Corporation
5  * Author:	Samuel Ortiz <samuel.ortiz@nokia.com> and
6  *		Juha Yrj�l� <juha.yrjola@nokia.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/omap-dma.h>
27 #include <linux/platform_device.h>
28 #include <linux/err.h>
29 #include <linux/clk.h>
30 #include <linux/io.h>
31 #include <linux/slab.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/gcd.h>
36 
37 #include <linux/spi/spi.h>
38 #include <linux/gpio.h>
39 
40 #include <linux/platform_data/spi-omap2-mcspi.h>
41 
42 #define OMAP2_MCSPI_MAX_FREQ		48000000
43 #define OMAP2_MCSPI_MAX_DIVIDER		4096
44 #define OMAP2_MCSPI_MAX_FIFODEPTH	64
45 #define OMAP2_MCSPI_MAX_FIFOWCNT	0xFFFF
46 #define SPI_AUTOSUSPEND_TIMEOUT		2000
47 
48 #define OMAP2_MCSPI_REVISION		0x00
49 #define OMAP2_MCSPI_SYSSTATUS		0x14
50 #define OMAP2_MCSPI_IRQSTATUS		0x18
51 #define OMAP2_MCSPI_IRQENABLE		0x1c
52 #define OMAP2_MCSPI_WAKEUPENABLE	0x20
53 #define OMAP2_MCSPI_SYST		0x24
54 #define OMAP2_MCSPI_MODULCTRL		0x28
55 #define OMAP2_MCSPI_XFERLEVEL		0x7c
56 
57 /* per-channel banks, 0x14 bytes each, first is: */
58 #define OMAP2_MCSPI_CHCONF0		0x2c
59 #define OMAP2_MCSPI_CHSTAT0		0x30
60 #define OMAP2_MCSPI_CHCTRL0		0x34
61 #define OMAP2_MCSPI_TX0			0x38
62 #define OMAP2_MCSPI_RX0			0x3c
63 
64 /* per-register bitmasks: */
65 #define OMAP2_MCSPI_IRQSTATUS_EOW	BIT(17)
66 
67 #define OMAP2_MCSPI_MODULCTRL_SINGLE	BIT(0)
68 #define OMAP2_MCSPI_MODULCTRL_MS	BIT(2)
69 #define OMAP2_MCSPI_MODULCTRL_STEST	BIT(3)
70 
71 #define OMAP2_MCSPI_CHCONF_PHA		BIT(0)
72 #define OMAP2_MCSPI_CHCONF_POL		BIT(1)
73 #define OMAP2_MCSPI_CHCONF_CLKD_MASK	(0x0f << 2)
74 #define OMAP2_MCSPI_CHCONF_EPOL		BIT(6)
75 #define OMAP2_MCSPI_CHCONF_WL_MASK	(0x1f << 7)
76 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY	BIT(12)
77 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY	BIT(13)
78 #define OMAP2_MCSPI_CHCONF_TRM_MASK	(0x03 << 12)
79 #define OMAP2_MCSPI_CHCONF_DMAW		BIT(14)
80 #define OMAP2_MCSPI_CHCONF_DMAR		BIT(15)
81 #define OMAP2_MCSPI_CHCONF_DPE0		BIT(16)
82 #define OMAP2_MCSPI_CHCONF_DPE1		BIT(17)
83 #define OMAP2_MCSPI_CHCONF_IS		BIT(18)
84 #define OMAP2_MCSPI_CHCONF_TURBO	BIT(19)
85 #define OMAP2_MCSPI_CHCONF_FORCE	BIT(20)
86 #define OMAP2_MCSPI_CHCONF_FFET		BIT(27)
87 #define OMAP2_MCSPI_CHCONF_FFER		BIT(28)
88 #define OMAP2_MCSPI_CHCONF_CLKG		BIT(29)
89 
90 #define OMAP2_MCSPI_CHSTAT_RXS		BIT(0)
91 #define OMAP2_MCSPI_CHSTAT_TXS		BIT(1)
92 #define OMAP2_MCSPI_CHSTAT_EOT		BIT(2)
93 #define OMAP2_MCSPI_CHSTAT_TXFFE	BIT(3)
94 
95 #define OMAP2_MCSPI_CHCTRL_EN		BIT(0)
96 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK	(0xff << 8)
97 
98 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN	BIT(0)
99 
100 /* We have 2 DMA channels per CS, one for RX and one for TX */
101 struct omap2_mcspi_dma {
102 	struct dma_chan *dma_tx;
103 	struct dma_chan *dma_rx;
104 
105 	int dma_tx_sync_dev;
106 	int dma_rx_sync_dev;
107 
108 	struct completion dma_tx_completion;
109 	struct completion dma_rx_completion;
110 
111 	char dma_rx_ch_name[14];
112 	char dma_tx_ch_name[14];
113 };
114 
115 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
116  * cache operations; better heuristics consider wordsize and bitrate.
117  */
118 #define DMA_MIN_BYTES			160
119 
120 
121 /*
122  * Used for context save and restore, structure members to be updated whenever
123  * corresponding registers are modified.
124  */
125 struct omap2_mcspi_regs {
126 	u32 modulctrl;
127 	u32 wakeupenable;
128 	struct list_head cs;
129 };
130 
131 struct omap2_mcspi {
132 	struct spi_master	*master;
133 	/* Virtual base address of the controller */
134 	void __iomem		*base;
135 	unsigned long		phys;
136 	/* SPI1 has 4 channels, while SPI2 has 2 */
137 	struct omap2_mcspi_dma	*dma_channels;
138 	struct device		*dev;
139 	struct omap2_mcspi_regs ctx;
140 	int			fifo_depth;
141 	unsigned int		pin_dir:1;
142 };
143 
144 struct omap2_mcspi_cs {
145 	void __iomem		*base;
146 	unsigned long		phys;
147 	int			word_len;
148 	u16			mode;
149 	struct list_head	node;
150 	/* Context save and restore shadow register */
151 	u32			chconf0, chctrl0;
152 };
153 
mcspi_write_reg(struct spi_master * master,int idx,u32 val)154 static inline void mcspi_write_reg(struct spi_master *master,
155 		int idx, u32 val)
156 {
157 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
158 
159 	writel_relaxed(val, mcspi->base + idx);
160 }
161 
mcspi_read_reg(struct spi_master * master,int idx)162 static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
163 {
164 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
165 
166 	return readl_relaxed(mcspi->base + idx);
167 }
168 
mcspi_write_cs_reg(const struct spi_device * spi,int idx,u32 val)169 static inline void mcspi_write_cs_reg(const struct spi_device *spi,
170 		int idx, u32 val)
171 {
172 	struct omap2_mcspi_cs	*cs = spi->controller_state;
173 
174 	writel_relaxed(val, cs->base +  idx);
175 }
176 
mcspi_read_cs_reg(const struct spi_device * spi,int idx)177 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
178 {
179 	struct omap2_mcspi_cs	*cs = spi->controller_state;
180 
181 	return readl_relaxed(cs->base + idx);
182 }
183 
mcspi_cached_chconf0(const struct spi_device * spi)184 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
185 {
186 	struct omap2_mcspi_cs *cs = spi->controller_state;
187 
188 	return cs->chconf0;
189 }
190 
mcspi_write_chconf0(const struct spi_device * spi,u32 val)191 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
192 {
193 	struct omap2_mcspi_cs *cs = spi->controller_state;
194 
195 	cs->chconf0 = val;
196 	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
197 	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
198 }
199 
mcspi_bytes_per_word(int word_len)200 static inline int mcspi_bytes_per_word(int word_len)
201 {
202 	if (word_len <= 8)
203 		return 1;
204 	else if (word_len <= 16)
205 		return 2;
206 	else /* word_len <= 32 */
207 		return 4;
208 }
209 
omap2_mcspi_set_dma_req(const struct spi_device * spi,int is_read,int enable)210 static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
211 		int is_read, int enable)
212 {
213 	u32 l, rw;
214 
215 	l = mcspi_cached_chconf0(spi);
216 
217 	if (is_read) /* 1 is read, 0 write */
218 		rw = OMAP2_MCSPI_CHCONF_DMAR;
219 	else
220 		rw = OMAP2_MCSPI_CHCONF_DMAW;
221 
222 	if (enable)
223 		l |= rw;
224 	else
225 		l &= ~rw;
226 
227 	mcspi_write_chconf0(spi, l);
228 }
229 
omap2_mcspi_set_enable(const struct spi_device * spi,int enable)230 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
231 {
232 	struct omap2_mcspi_cs *cs = spi->controller_state;
233 	u32 l;
234 
235 	l = cs->chctrl0;
236 	if (enable)
237 		l |= OMAP2_MCSPI_CHCTRL_EN;
238 	else
239 		l &= ~OMAP2_MCSPI_CHCTRL_EN;
240 	cs->chctrl0 = l;
241 	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
242 	/* Flash post-writes */
243 	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
244 }
245 
omap2_mcspi_set_cs(struct spi_device * spi,bool enable)246 static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
247 {
248 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
249 	u32 l;
250 
251 	/* The controller handles the inverted chip selects
252 	 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
253 	 * the inversion from the core spi_set_cs function.
254 	 */
255 	if (spi->mode & SPI_CS_HIGH)
256 		enable = !enable;
257 
258 	if (spi->controller_state) {
259 		int err = pm_runtime_get_sync(mcspi->dev);
260 		if (err < 0) {
261 			dev_err(mcspi->dev, "failed to get sync: %d\n", err);
262 			return;
263 		}
264 
265 		l = mcspi_cached_chconf0(spi);
266 
267 		if (enable)
268 			l &= ~OMAP2_MCSPI_CHCONF_FORCE;
269 		else
270 			l |= OMAP2_MCSPI_CHCONF_FORCE;
271 
272 		mcspi_write_chconf0(spi, l);
273 
274 		pm_runtime_mark_last_busy(mcspi->dev);
275 		pm_runtime_put_autosuspend(mcspi->dev);
276 	}
277 }
278 
omap2_mcspi_set_master_mode(struct spi_master * master)279 static void omap2_mcspi_set_master_mode(struct spi_master *master)
280 {
281 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
282 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
283 	u32 l;
284 
285 	/*
286 	 * Setup when switching from (reset default) slave mode
287 	 * to single-channel master mode
288 	 */
289 	l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
290 	l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
291 	l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
292 	mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
293 
294 	ctx->modulctrl = l;
295 }
296 
omap2_mcspi_set_fifo(const struct spi_device * spi,struct spi_transfer * t,int enable)297 static void omap2_mcspi_set_fifo(const struct spi_device *spi,
298 				struct spi_transfer *t, int enable)
299 {
300 	struct spi_master *master = spi->master;
301 	struct omap2_mcspi_cs *cs = spi->controller_state;
302 	struct omap2_mcspi *mcspi;
303 	unsigned int wcnt;
304 	int max_fifo_depth, bytes_per_word;
305 	u32 chconf, xferlevel;
306 
307 	mcspi = spi_master_get_devdata(master);
308 
309 	chconf = mcspi_cached_chconf0(spi);
310 	if (enable) {
311 		bytes_per_word = mcspi_bytes_per_word(cs->word_len);
312 		if (t->len % bytes_per_word != 0)
313 			goto disable_fifo;
314 
315 		if (t->rx_buf != NULL && t->tx_buf != NULL)
316 			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
317 		else
318 			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
319 
320 		wcnt = t->len / bytes_per_word;
321 		if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
322 			goto disable_fifo;
323 
324 		xferlevel = wcnt << 16;
325 		if (t->rx_buf != NULL) {
326 			chconf |= OMAP2_MCSPI_CHCONF_FFER;
327 			xferlevel |= (bytes_per_word - 1) << 8;
328 		}
329 
330 		if (t->tx_buf != NULL) {
331 			chconf |= OMAP2_MCSPI_CHCONF_FFET;
332 			xferlevel |= bytes_per_word - 1;
333 		}
334 
335 		mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
336 		mcspi_write_chconf0(spi, chconf);
337 		mcspi->fifo_depth = max_fifo_depth;
338 
339 		return;
340 	}
341 
342 disable_fifo:
343 	if (t->rx_buf != NULL)
344 		chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
345 
346 	if (t->tx_buf != NULL)
347 		chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
348 
349 	mcspi_write_chconf0(spi, chconf);
350 	mcspi->fifo_depth = 0;
351 }
352 
omap2_mcspi_restore_ctx(struct omap2_mcspi * mcspi)353 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
354 {
355 	struct spi_master	*spi_cntrl = mcspi->master;
356 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
357 	struct omap2_mcspi_cs	*cs;
358 
359 	/* McSPI: context restore */
360 	mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
361 	mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
362 
363 	list_for_each_entry(cs, &ctx->cs, node)
364 		writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
365 }
366 
mcspi_wait_for_reg_bit(void __iomem * reg,unsigned long bit)367 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
368 {
369 	unsigned long timeout;
370 
371 	timeout = jiffies + msecs_to_jiffies(1000);
372 	while (!(readl_relaxed(reg) & bit)) {
373 		if (time_after(jiffies, timeout)) {
374 			if (!(readl_relaxed(reg) & bit))
375 				return -ETIMEDOUT;
376 			else
377 				return 0;
378 		}
379 		cpu_relax();
380 	}
381 	return 0;
382 }
383 
omap2_mcspi_rx_callback(void * data)384 static void omap2_mcspi_rx_callback(void *data)
385 {
386 	struct spi_device *spi = data;
387 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
388 	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
389 
390 	/* We must disable the DMA RX request */
391 	omap2_mcspi_set_dma_req(spi, 1, 0);
392 
393 	complete(&mcspi_dma->dma_rx_completion);
394 }
395 
omap2_mcspi_tx_callback(void * data)396 static void omap2_mcspi_tx_callback(void *data)
397 {
398 	struct spi_device *spi = data;
399 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
400 	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
401 
402 	/* We must disable the DMA TX request */
403 	omap2_mcspi_set_dma_req(spi, 0, 0);
404 
405 	complete(&mcspi_dma->dma_tx_completion);
406 }
407 
omap2_mcspi_tx_dma(struct spi_device * spi,struct spi_transfer * xfer,struct dma_slave_config cfg)408 static void omap2_mcspi_tx_dma(struct spi_device *spi,
409 				struct spi_transfer *xfer,
410 				struct dma_slave_config cfg)
411 {
412 	struct omap2_mcspi	*mcspi;
413 	struct omap2_mcspi_dma  *mcspi_dma;
414 	unsigned int		count;
415 
416 	mcspi = spi_master_get_devdata(spi->master);
417 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
418 	count = xfer->len;
419 
420 	if (mcspi_dma->dma_tx) {
421 		struct dma_async_tx_descriptor *tx;
422 		struct scatterlist sg;
423 
424 		dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
425 
426 		sg_init_table(&sg, 1);
427 		sg_dma_address(&sg) = xfer->tx_dma;
428 		sg_dma_len(&sg) = xfer->len;
429 
430 		tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1,
431 		DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
432 		if (tx) {
433 			tx->callback = omap2_mcspi_tx_callback;
434 			tx->callback_param = spi;
435 			dmaengine_submit(tx);
436 		} else {
437 			/* FIXME: fall back to PIO? */
438 		}
439 	}
440 	dma_async_issue_pending(mcspi_dma->dma_tx);
441 	omap2_mcspi_set_dma_req(spi, 0, 1);
442 
443 }
444 
445 static unsigned
omap2_mcspi_rx_dma(struct spi_device * spi,struct spi_transfer * xfer,struct dma_slave_config cfg,unsigned es)446 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
447 				struct dma_slave_config cfg,
448 				unsigned es)
449 {
450 	struct omap2_mcspi	*mcspi;
451 	struct omap2_mcspi_dma  *mcspi_dma;
452 	unsigned int		count, dma_count;
453 	u32			l;
454 	int			elements = 0;
455 	int			word_len, element_count;
456 	struct omap2_mcspi_cs	*cs = spi->controller_state;
457 	void __iomem		*chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
458 
459 	mcspi = spi_master_get_devdata(spi->master);
460 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
461 	count = xfer->len;
462 	dma_count = xfer->len;
463 
464 	if (mcspi->fifo_depth == 0)
465 		dma_count -= es;
466 
467 	word_len = cs->word_len;
468 	l = mcspi_cached_chconf0(spi);
469 
470 	if (word_len <= 8)
471 		element_count = count;
472 	else if (word_len <= 16)
473 		element_count = count >> 1;
474 	else /* word_len <= 32 */
475 		element_count = count >> 2;
476 
477 	if (mcspi_dma->dma_rx) {
478 		struct dma_async_tx_descriptor *tx;
479 		struct scatterlist sg;
480 
481 		dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
482 
483 		if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
484 			dma_count -= es;
485 
486 		sg_init_table(&sg, 1);
487 		sg_dma_address(&sg) = xfer->rx_dma;
488 		sg_dma_len(&sg) = dma_count;
489 
490 		tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1,
491 				DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT |
492 				DMA_CTRL_ACK);
493 		if (tx) {
494 			tx->callback = omap2_mcspi_rx_callback;
495 			tx->callback_param = spi;
496 			dmaengine_submit(tx);
497 		} else {
498 				/* FIXME: fall back to PIO? */
499 		}
500 	}
501 
502 	dma_async_issue_pending(mcspi_dma->dma_rx);
503 	omap2_mcspi_set_dma_req(spi, 1, 1);
504 
505 	wait_for_completion(&mcspi_dma->dma_rx_completion);
506 	dma_unmap_single(mcspi->dev, xfer->rx_dma, count,
507 			 DMA_FROM_DEVICE);
508 
509 	if (mcspi->fifo_depth > 0)
510 		return count;
511 
512 	omap2_mcspi_set_enable(spi, 0);
513 
514 	elements = element_count - 1;
515 
516 	if (l & OMAP2_MCSPI_CHCONF_TURBO) {
517 		elements--;
518 
519 		if (!mcspi_wait_for_reg_bit(chstat_reg,
520 					    OMAP2_MCSPI_CHSTAT_RXS)) {
521 			u32 w;
522 
523 			w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
524 			if (word_len <= 8)
525 				((u8 *)xfer->rx_buf)[elements++] = w;
526 			else if (word_len <= 16)
527 				((u16 *)xfer->rx_buf)[elements++] = w;
528 			else /* word_len <= 32 */
529 				((u32 *)xfer->rx_buf)[elements++] = w;
530 		} else {
531 			int bytes_per_word = mcspi_bytes_per_word(word_len);
532 			dev_err(&spi->dev, "DMA RX penultimate word empty\n");
533 			count -= (bytes_per_word << 1);
534 			omap2_mcspi_set_enable(spi, 1);
535 			return count;
536 		}
537 	}
538 	if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
539 		u32 w;
540 
541 		w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
542 		if (word_len <= 8)
543 			((u8 *)xfer->rx_buf)[elements] = w;
544 		else if (word_len <= 16)
545 			((u16 *)xfer->rx_buf)[elements] = w;
546 		else /* word_len <= 32 */
547 			((u32 *)xfer->rx_buf)[elements] = w;
548 	} else {
549 		dev_err(&spi->dev, "DMA RX last word empty\n");
550 		count -= mcspi_bytes_per_word(word_len);
551 	}
552 	omap2_mcspi_set_enable(spi, 1);
553 	return count;
554 }
555 
556 static unsigned
omap2_mcspi_txrx_dma(struct spi_device * spi,struct spi_transfer * xfer)557 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
558 {
559 	struct omap2_mcspi	*mcspi;
560 	struct omap2_mcspi_cs	*cs = spi->controller_state;
561 	struct omap2_mcspi_dma  *mcspi_dma;
562 	unsigned int		count;
563 	u32			l;
564 	u8			*rx;
565 	const u8		*tx;
566 	struct dma_slave_config	cfg;
567 	enum dma_slave_buswidth width;
568 	unsigned es;
569 	void __iomem		*chstat_reg;
570 	void __iomem            *irqstat_reg;
571 	int			wait_res;
572 
573 	mcspi = spi_master_get_devdata(spi->master);
574 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
575 	l = mcspi_cached_chconf0(spi);
576 
577 
578 	if (cs->word_len <= 8) {
579 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
580 		es = 1;
581 	} else if (cs->word_len <= 16) {
582 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
583 		es = 2;
584 	} else {
585 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
586 		es = 4;
587 	}
588 
589 	count = xfer->len;
590 
591 	memset(&cfg, 0, sizeof(cfg));
592 	cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
593 	cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
594 	cfg.src_addr_width = width;
595 	cfg.dst_addr_width = width;
596 	cfg.src_maxburst = 1;
597 	cfg.dst_maxburst = 1;
598 
599 	rx = xfer->rx_buf;
600 	tx = xfer->tx_buf;
601 
602 	if (tx != NULL)
603 		omap2_mcspi_tx_dma(spi, xfer, cfg);
604 
605 	if (rx != NULL)
606 		count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
607 
608 	if (tx != NULL) {
609 		wait_for_completion(&mcspi_dma->dma_tx_completion);
610 		dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
611 				 DMA_TO_DEVICE);
612 
613 		if (mcspi->fifo_depth > 0) {
614 			irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
615 
616 			if (mcspi_wait_for_reg_bit(irqstat_reg,
617 						OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
618 				dev_err(&spi->dev, "EOW timed out\n");
619 
620 			mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
621 					OMAP2_MCSPI_IRQSTATUS_EOW);
622 		}
623 
624 		/* for TX_ONLY mode, be sure all words have shifted out */
625 		if (rx == NULL) {
626 			chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
627 			if (mcspi->fifo_depth > 0) {
628 				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
629 						OMAP2_MCSPI_CHSTAT_TXFFE);
630 				if (wait_res < 0)
631 					dev_err(&spi->dev, "TXFFE timed out\n");
632 			} else {
633 				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
634 						OMAP2_MCSPI_CHSTAT_TXS);
635 				if (wait_res < 0)
636 					dev_err(&spi->dev, "TXS timed out\n");
637 			}
638 			if (wait_res >= 0 &&
639 				(mcspi_wait_for_reg_bit(chstat_reg,
640 					OMAP2_MCSPI_CHSTAT_EOT) < 0))
641 				dev_err(&spi->dev, "EOT timed out\n");
642 		}
643 	}
644 	return count;
645 }
646 
647 static unsigned
omap2_mcspi_txrx_pio(struct spi_device * spi,struct spi_transfer * xfer)648 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
649 {
650 	struct omap2_mcspi	*mcspi;
651 	struct omap2_mcspi_cs	*cs = spi->controller_state;
652 	unsigned int		count, c;
653 	u32			l;
654 	void __iomem		*base = cs->base;
655 	void __iomem		*tx_reg;
656 	void __iomem		*rx_reg;
657 	void __iomem		*chstat_reg;
658 	int			word_len;
659 
660 	mcspi = spi_master_get_devdata(spi->master);
661 	count = xfer->len;
662 	c = count;
663 	word_len = cs->word_len;
664 
665 	l = mcspi_cached_chconf0(spi);
666 
667 	/* We store the pre-calculated register addresses on stack to speed
668 	 * up the transfer loop. */
669 	tx_reg		= base + OMAP2_MCSPI_TX0;
670 	rx_reg		= base + OMAP2_MCSPI_RX0;
671 	chstat_reg	= base + OMAP2_MCSPI_CHSTAT0;
672 
673 	if (c < (word_len>>3))
674 		return 0;
675 
676 	if (word_len <= 8) {
677 		u8		*rx;
678 		const u8	*tx;
679 
680 		rx = xfer->rx_buf;
681 		tx = xfer->tx_buf;
682 
683 		do {
684 			c -= 1;
685 			if (tx != NULL) {
686 				if (mcspi_wait_for_reg_bit(chstat_reg,
687 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
688 					dev_err(&spi->dev, "TXS timed out\n");
689 					goto out;
690 				}
691 				dev_vdbg(&spi->dev, "write-%d %02x\n",
692 						word_len, *tx);
693 				writel_relaxed(*tx++, tx_reg);
694 			}
695 			if (rx != NULL) {
696 				if (mcspi_wait_for_reg_bit(chstat_reg,
697 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
698 					dev_err(&spi->dev, "RXS timed out\n");
699 					goto out;
700 				}
701 
702 				if (c == 1 && tx == NULL &&
703 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
704 					omap2_mcspi_set_enable(spi, 0);
705 					*rx++ = readl_relaxed(rx_reg);
706 					dev_vdbg(&spi->dev, "read-%d %02x\n",
707 						    word_len, *(rx - 1));
708 					if (mcspi_wait_for_reg_bit(chstat_reg,
709 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
710 						dev_err(&spi->dev,
711 							"RXS timed out\n");
712 						goto out;
713 					}
714 					c = 0;
715 				} else if (c == 0 && tx == NULL) {
716 					omap2_mcspi_set_enable(spi, 0);
717 				}
718 
719 				*rx++ = readl_relaxed(rx_reg);
720 				dev_vdbg(&spi->dev, "read-%d %02x\n",
721 						word_len, *(rx - 1));
722 			}
723 		} while (c);
724 	} else if (word_len <= 16) {
725 		u16		*rx;
726 		const u16	*tx;
727 
728 		rx = xfer->rx_buf;
729 		tx = xfer->tx_buf;
730 		do {
731 			c -= 2;
732 			if (tx != NULL) {
733 				if (mcspi_wait_for_reg_bit(chstat_reg,
734 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
735 					dev_err(&spi->dev, "TXS timed out\n");
736 					goto out;
737 				}
738 				dev_vdbg(&spi->dev, "write-%d %04x\n",
739 						word_len, *tx);
740 				writel_relaxed(*tx++, tx_reg);
741 			}
742 			if (rx != NULL) {
743 				if (mcspi_wait_for_reg_bit(chstat_reg,
744 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
745 					dev_err(&spi->dev, "RXS timed out\n");
746 					goto out;
747 				}
748 
749 				if (c == 2 && tx == NULL &&
750 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
751 					omap2_mcspi_set_enable(spi, 0);
752 					*rx++ = readl_relaxed(rx_reg);
753 					dev_vdbg(&spi->dev, "read-%d %04x\n",
754 						    word_len, *(rx - 1));
755 					if (mcspi_wait_for_reg_bit(chstat_reg,
756 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
757 						dev_err(&spi->dev,
758 							"RXS timed out\n");
759 						goto out;
760 					}
761 					c = 0;
762 				} else if (c == 0 && tx == NULL) {
763 					omap2_mcspi_set_enable(spi, 0);
764 				}
765 
766 				*rx++ = readl_relaxed(rx_reg);
767 				dev_vdbg(&spi->dev, "read-%d %04x\n",
768 						word_len, *(rx - 1));
769 			}
770 		} while (c >= 2);
771 	} else if (word_len <= 32) {
772 		u32		*rx;
773 		const u32	*tx;
774 
775 		rx = xfer->rx_buf;
776 		tx = xfer->tx_buf;
777 		do {
778 			c -= 4;
779 			if (tx != NULL) {
780 				if (mcspi_wait_for_reg_bit(chstat_reg,
781 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
782 					dev_err(&spi->dev, "TXS timed out\n");
783 					goto out;
784 				}
785 				dev_vdbg(&spi->dev, "write-%d %08x\n",
786 						word_len, *tx);
787 				writel_relaxed(*tx++, tx_reg);
788 			}
789 			if (rx != NULL) {
790 				if (mcspi_wait_for_reg_bit(chstat_reg,
791 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
792 					dev_err(&spi->dev, "RXS timed out\n");
793 					goto out;
794 				}
795 
796 				if (c == 4 && tx == NULL &&
797 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
798 					omap2_mcspi_set_enable(spi, 0);
799 					*rx++ = readl_relaxed(rx_reg);
800 					dev_vdbg(&spi->dev, "read-%d %08x\n",
801 						    word_len, *(rx - 1));
802 					if (mcspi_wait_for_reg_bit(chstat_reg,
803 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
804 						dev_err(&spi->dev,
805 							"RXS timed out\n");
806 						goto out;
807 					}
808 					c = 0;
809 				} else if (c == 0 && tx == NULL) {
810 					omap2_mcspi_set_enable(spi, 0);
811 				}
812 
813 				*rx++ = readl_relaxed(rx_reg);
814 				dev_vdbg(&spi->dev, "read-%d %08x\n",
815 						word_len, *(rx - 1));
816 			}
817 		} while (c >= 4);
818 	}
819 
820 	/* for TX_ONLY mode, be sure all words have shifted out */
821 	if (xfer->rx_buf == NULL) {
822 		if (mcspi_wait_for_reg_bit(chstat_reg,
823 				OMAP2_MCSPI_CHSTAT_TXS) < 0) {
824 			dev_err(&spi->dev, "TXS timed out\n");
825 		} else if (mcspi_wait_for_reg_bit(chstat_reg,
826 				OMAP2_MCSPI_CHSTAT_EOT) < 0)
827 			dev_err(&spi->dev, "EOT timed out\n");
828 
829 		/* disable chan to purge rx datas received in TX_ONLY transfer,
830 		 * otherwise these rx datas will affect the direct following
831 		 * RX_ONLY transfer.
832 		 */
833 		omap2_mcspi_set_enable(spi, 0);
834 	}
835 out:
836 	omap2_mcspi_set_enable(spi, 1);
837 	return count - c;
838 }
839 
omap2_mcspi_calc_divisor(u32 speed_hz)840 static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
841 {
842 	u32 div;
843 
844 	for (div = 0; div < 15; div++)
845 		if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
846 			return div;
847 
848 	return 15;
849 }
850 
851 /* called only when no transfer is active to this device */
omap2_mcspi_setup_transfer(struct spi_device * spi,struct spi_transfer * t)852 static int omap2_mcspi_setup_transfer(struct spi_device *spi,
853 		struct spi_transfer *t)
854 {
855 	struct omap2_mcspi_cs *cs = spi->controller_state;
856 	struct omap2_mcspi *mcspi;
857 	struct spi_master *spi_cntrl;
858 	u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
859 	u8 word_len = spi->bits_per_word;
860 	u32 speed_hz = spi->max_speed_hz;
861 
862 	mcspi = spi_master_get_devdata(spi->master);
863 	spi_cntrl = mcspi->master;
864 
865 	if (t != NULL && t->bits_per_word)
866 		word_len = t->bits_per_word;
867 
868 	cs->word_len = word_len;
869 
870 	if (t && t->speed_hz)
871 		speed_hz = t->speed_hz;
872 
873 	speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
874 	if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
875 		clkd = omap2_mcspi_calc_divisor(speed_hz);
876 		speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
877 		clkg = 0;
878 	} else {
879 		div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
880 		speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
881 		clkd = (div - 1) & 0xf;
882 		extclk = (div - 1) >> 4;
883 		clkg = OMAP2_MCSPI_CHCONF_CLKG;
884 	}
885 
886 	l = mcspi_cached_chconf0(spi);
887 
888 	/* standard 4-wire master mode:  SCK, MOSI/out, MISO/in, nCS
889 	 * REVISIT: this controller could support SPI_3WIRE mode.
890 	 */
891 	if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
892 		l &= ~OMAP2_MCSPI_CHCONF_IS;
893 		l &= ~OMAP2_MCSPI_CHCONF_DPE1;
894 		l |= OMAP2_MCSPI_CHCONF_DPE0;
895 	} else {
896 		l |= OMAP2_MCSPI_CHCONF_IS;
897 		l |= OMAP2_MCSPI_CHCONF_DPE1;
898 		l &= ~OMAP2_MCSPI_CHCONF_DPE0;
899 	}
900 
901 	/* wordlength */
902 	l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
903 	l |= (word_len - 1) << 7;
904 
905 	/* set chipselect polarity; manage with FORCE */
906 	if (!(spi->mode & SPI_CS_HIGH))
907 		l |= OMAP2_MCSPI_CHCONF_EPOL;	/* active-low; normal */
908 	else
909 		l &= ~OMAP2_MCSPI_CHCONF_EPOL;
910 
911 	/* set clock divisor */
912 	l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
913 	l |= clkd << 2;
914 
915 	/* set clock granularity */
916 	l &= ~OMAP2_MCSPI_CHCONF_CLKG;
917 	l |= clkg;
918 	if (clkg) {
919 		cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
920 		cs->chctrl0 |= extclk << 8;
921 		mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
922 	}
923 
924 	/* set SPI mode 0..3 */
925 	if (spi->mode & SPI_CPOL)
926 		l |= OMAP2_MCSPI_CHCONF_POL;
927 	else
928 		l &= ~OMAP2_MCSPI_CHCONF_POL;
929 	if (spi->mode & SPI_CPHA)
930 		l |= OMAP2_MCSPI_CHCONF_PHA;
931 	else
932 		l &= ~OMAP2_MCSPI_CHCONF_PHA;
933 
934 	mcspi_write_chconf0(spi, l);
935 
936 	cs->mode = spi->mode;
937 
938 	dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
939 			speed_hz,
940 			(spi->mode & SPI_CPHA) ? "trailing" : "leading",
941 			(spi->mode & SPI_CPOL) ? "inverted" : "normal");
942 
943 	return 0;
944 }
945 
946 /*
947  * Note that we currently allow DMA only if we get a channel
948  * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
949  */
omap2_mcspi_request_dma(struct spi_device * spi)950 static int omap2_mcspi_request_dma(struct spi_device *spi)
951 {
952 	struct spi_master	*master = spi->master;
953 	struct omap2_mcspi	*mcspi;
954 	struct omap2_mcspi_dma	*mcspi_dma;
955 	dma_cap_mask_t mask;
956 	unsigned sig;
957 
958 	mcspi = spi_master_get_devdata(master);
959 	mcspi_dma = mcspi->dma_channels + spi->chip_select;
960 
961 	init_completion(&mcspi_dma->dma_rx_completion);
962 	init_completion(&mcspi_dma->dma_tx_completion);
963 
964 	dma_cap_zero(mask);
965 	dma_cap_set(DMA_SLAVE, mask);
966 	sig = mcspi_dma->dma_rx_sync_dev;
967 
968 	mcspi_dma->dma_rx =
969 		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
970 						 &sig, &master->dev,
971 						 mcspi_dma->dma_rx_ch_name);
972 	if (!mcspi_dma->dma_rx)
973 		goto no_dma;
974 
975 	sig = mcspi_dma->dma_tx_sync_dev;
976 	mcspi_dma->dma_tx =
977 		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
978 						 &sig, &master->dev,
979 						 mcspi_dma->dma_tx_ch_name);
980 
981 	if (!mcspi_dma->dma_tx) {
982 		dma_release_channel(mcspi_dma->dma_rx);
983 		mcspi_dma->dma_rx = NULL;
984 		goto no_dma;
985 	}
986 
987 	return 0;
988 
989 no_dma:
990 	dev_warn(&spi->dev, "not using DMA for McSPI\n");
991 	return -EAGAIN;
992 }
993 
omap2_mcspi_setup(struct spi_device * spi)994 static int omap2_mcspi_setup(struct spi_device *spi)
995 {
996 	int			ret;
997 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(spi->master);
998 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
999 	struct omap2_mcspi_dma	*mcspi_dma;
1000 	struct omap2_mcspi_cs	*cs = spi->controller_state;
1001 
1002 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1003 
1004 	if (!cs) {
1005 		cs = kzalloc(sizeof *cs, GFP_KERNEL);
1006 		if (!cs)
1007 			return -ENOMEM;
1008 		cs->base = mcspi->base + spi->chip_select * 0x14;
1009 		cs->phys = mcspi->phys + spi->chip_select * 0x14;
1010 		cs->mode = 0;
1011 		cs->chconf0 = 0;
1012 		cs->chctrl0 = 0;
1013 		spi->controller_state = cs;
1014 		/* Link this to context save list */
1015 		list_add_tail(&cs->node, &ctx->cs);
1016 
1017 		if (gpio_is_valid(spi->cs_gpio)) {
1018 			ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev));
1019 			if (ret) {
1020 				dev_err(&spi->dev, "failed to request gpio\n");
1021 				return ret;
1022 			}
1023 			gpio_direction_output(spi->cs_gpio,
1024 					 !(spi->mode & SPI_CS_HIGH));
1025 		}
1026 	}
1027 
1028 	if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
1029 		ret = omap2_mcspi_request_dma(spi);
1030 		if (ret < 0 && ret != -EAGAIN)
1031 			return ret;
1032 	}
1033 
1034 	ret = pm_runtime_get_sync(mcspi->dev);
1035 	if (ret < 0)
1036 		return ret;
1037 
1038 	ret = omap2_mcspi_setup_transfer(spi, NULL);
1039 	pm_runtime_mark_last_busy(mcspi->dev);
1040 	pm_runtime_put_autosuspend(mcspi->dev);
1041 
1042 	return ret;
1043 }
1044 
omap2_mcspi_cleanup(struct spi_device * spi)1045 static void omap2_mcspi_cleanup(struct spi_device *spi)
1046 {
1047 	struct omap2_mcspi	*mcspi;
1048 	struct omap2_mcspi_dma	*mcspi_dma;
1049 	struct omap2_mcspi_cs	*cs;
1050 
1051 	mcspi = spi_master_get_devdata(spi->master);
1052 
1053 	if (spi->controller_state) {
1054 		/* Unlink controller state from context save list */
1055 		cs = spi->controller_state;
1056 		list_del(&cs->node);
1057 
1058 		kfree(cs);
1059 	}
1060 
1061 	if (spi->chip_select < spi->master->num_chipselect) {
1062 		mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1063 
1064 		if (mcspi_dma->dma_rx) {
1065 			dma_release_channel(mcspi_dma->dma_rx);
1066 			mcspi_dma->dma_rx = NULL;
1067 		}
1068 		if (mcspi_dma->dma_tx) {
1069 			dma_release_channel(mcspi_dma->dma_tx);
1070 			mcspi_dma->dma_tx = NULL;
1071 		}
1072 	}
1073 
1074 	if (gpio_is_valid(spi->cs_gpio))
1075 		gpio_free(spi->cs_gpio);
1076 }
1077 
omap2_mcspi_work_one(struct omap2_mcspi * mcspi,struct spi_device * spi,struct spi_transfer * t)1078 static int omap2_mcspi_work_one(struct omap2_mcspi *mcspi,
1079 		struct spi_device *spi, struct spi_transfer *t)
1080 {
1081 
1082 	/* We only enable one channel at a time -- the one whose message is
1083 	 * -- although this controller would gladly
1084 	 * arbitrate among multiple channels.  This corresponds to "single
1085 	 * channel" master mode.  As a side effect, we need to manage the
1086 	 * chipselect with the FORCE bit ... CS != channel enable.
1087 	 */
1088 
1089 	struct spi_master		*master;
1090 	struct omap2_mcspi_dma		*mcspi_dma;
1091 	struct omap2_mcspi_cs		*cs;
1092 	struct omap2_mcspi_device_config *cd;
1093 	int				par_override = 0;
1094 	int				status = 0;
1095 	u32				chconf;
1096 
1097 	master = spi->master;
1098 	mcspi_dma = mcspi->dma_channels + spi->chip_select;
1099 	cs = spi->controller_state;
1100 	cd = spi->controller_data;
1101 
1102 	/*
1103 	 * The slave driver could have changed spi->mode in which case
1104 	 * it will be different from cs->mode (the current hardware setup).
1105 	 * If so, set par_override (even though its not a parity issue) so
1106 	 * omap2_mcspi_setup_transfer will be called to configure the hardware
1107 	 * with the correct mode on the first iteration of the loop below.
1108 	 */
1109 	if (spi->mode != cs->mode)
1110 		par_override = 1;
1111 
1112 	omap2_mcspi_set_enable(spi, 0);
1113 
1114 	if (gpio_is_valid(spi->cs_gpio))
1115 		omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1116 
1117 	if (par_override ||
1118 	    (t->speed_hz != spi->max_speed_hz) ||
1119 	    (t->bits_per_word != spi->bits_per_word)) {
1120 		par_override = 1;
1121 		status = omap2_mcspi_setup_transfer(spi, t);
1122 		if (status < 0)
1123 			goto out;
1124 		if (t->speed_hz == spi->max_speed_hz &&
1125 		    t->bits_per_word == spi->bits_per_word)
1126 			par_override = 0;
1127 	}
1128 	if (cd && cd->cs_per_word) {
1129 		chconf = mcspi->ctx.modulctrl;
1130 		chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1131 		mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1132 		mcspi->ctx.modulctrl =
1133 			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1134 	}
1135 
1136 	chconf = mcspi_cached_chconf0(spi);
1137 	chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1138 	chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1139 
1140 	if (t->tx_buf == NULL)
1141 		chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1142 	else if (t->rx_buf == NULL)
1143 		chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1144 
1145 	if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1146 		/* Turbo mode is for more than one word */
1147 		if (t->len > ((cs->word_len + 7) >> 3))
1148 			chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1149 	}
1150 
1151 	mcspi_write_chconf0(spi, chconf);
1152 
1153 	if (t->len) {
1154 		unsigned	count;
1155 
1156 		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1157 		    (t->len >= DMA_MIN_BYTES))
1158 			omap2_mcspi_set_fifo(spi, t, 1);
1159 
1160 		omap2_mcspi_set_enable(spi, 1);
1161 
1162 		/* RX_ONLY mode needs dummy data in TX reg */
1163 		if (t->tx_buf == NULL)
1164 			writel_relaxed(0, cs->base
1165 					+ OMAP2_MCSPI_TX0);
1166 
1167 		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1168 		    (t->len >= DMA_MIN_BYTES))
1169 			count = omap2_mcspi_txrx_dma(spi, t);
1170 		else
1171 			count = omap2_mcspi_txrx_pio(spi, t);
1172 
1173 		if (count != t->len) {
1174 			status = -EIO;
1175 			goto out;
1176 		}
1177 	}
1178 
1179 	omap2_mcspi_set_enable(spi, 0);
1180 
1181 	if (mcspi->fifo_depth > 0)
1182 		omap2_mcspi_set_fifo(spi, t, 0);
1183 
1184 out:
1185 	/* Restore defaults if they were overriden */
1186 	if (par_override) {
1187 		par_override = 0;
1188 		status = omap2_mcspi_setup_transfer(spi, NULL);
1189 	}
1190 
1191 	if (cd && cd->cs_per_word) {
1192 		chconf = mcspi->ctx.modulctrl;
1193 		chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1194 		mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1195 		mcspi->ctx.modulctrl =
1196 			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1197 	}
1198 
1199 	omap2_mcspi_set_enable(spi, 0);
1200 
1201 	if (gpio_is_valid(spi->cs_gpio))
1202 		omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1203 
1204 	if (mcspi->fifo_depth > 0 && t)
1205 		omap2_mcspi_set_fifo(spi, t, 0);
1206 
1207 	return status;
1208 }
1209 
omap2_mcspi_prepare_message(struct spi_master * master,struct spi_message * msg)1210 static int omap2_mcspi_prepare_message(struct spi_master *master,
1211 				       struct spi_message *msg)
1212 {
1213 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
1214 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1215 	struct omap2_mcspi_cs	*cs;
1216 
1217 	/* Only a single channel can have the FORCE bit enabled
1218 	 * in its chconf0 register.
1219 	 * Scan all channels and disable them except the current one.
1220 	 * A FORCE can remain from a last transfer having cs_change enabled
1221 	 */
1222 	list_for_each_entry(cs, &ctx->cs, node) {
1223 		if (msg->spi->controller_state == cs)
1224 			continue;
1225 
1226 		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1227 			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1228 			writel_relaxed(cs->chconf0,
1229 					cs->base + OMAP2_MCSPI_CHCONF0);
1230 			readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1231 		}
1232 	}
1233 
1234 	return 0;
1235 }
1236 
omap2_mcspi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * t)1237 static int omap2_mcspi_transfer_one(struct spi_master *master,
1238 		struct spi_device *spi, struct spi_transfer *t)
1239 {
1240 	struct omap2_mcspi	*mcspi;
1241 	struct omap2_mcspi_dma	*mcspi_dma;
1242 	const void	*tx_buf = t->tx_buf;
1243 	void		*rx_buf = t->rx_buf;
1244 	unsigned	len = t->len;
1245 
1246 	mcspi = spi_master_get_devdata(master);
1247 	mcspi_dma = mcspi->dma_channels + spi->chip_select;
1248 
1249 	if ((len && !(rx_buf || tx_buf))) {
1250 		dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
1251 				t->speed_hz,
1252 				len,
1253 				tx_buf ? "tx" : "",
1254 				rx_buf ? "rx" : "",
1255 				t->bits_per_word);
1256 		return -EINVAL;
1257 	}
1258 
1259 	if (len < DMA_MIN_BYTES)
1260 		goto skip_dma_map;
1261 
1262 	if (mcspi_dma->dma_tx && tx_buf != NULL) {
1263 		t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf,
1264 				len, DMA_TO_DEVICE);
1265 		if (dma_mapping_error(mcspi->dev, t->tx_dma)) {
1266 			dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1267 					'T', len);
1268 			return -EINVAL;
1269 		}
1270 	}
1271 	if (mcspi_dma->dma_rx && rx_buf != NULL) {
1272 		t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len,
1273 				DMA_FROM_DEVICE);
1274 		if (dma_mapping_error(mcspi->dev, t->rx_dma)) {
1275 			dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1276 					'R', len);
1277 			if (tx_buf != NULL)
1278 				dma_unmap_single(mcspi->dev, t->tx_dma,
1279 						len, DMA_TO_DEVICE);
1280 			return -EINVAL;
1281 		}
1282 	}
1283 
1284 skip_dma_map:
1285 	return omap2_mcspi_work_one(mcspi, spi, t);
1286 }
1287 
omap2_mcspi_master_setup(struct omap2_mcspi * mcspi)1288 static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
1289 {
1290 	struct spi_master	*master = mcspi->master;
1291 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1292 	int			ret = 0;
1293 
1294 	ret = pm_runtime_get_sync(mcspi->dev);
1295 	if (ret < 0)
1296 		return ret;
1297 
1298 	mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1299 			OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1300 	ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1301 
1302 	omap2_mcspi_set_master_mode(master);
1303 	pm_runtime_mark_last_busy(mcspi->dev);
1304 	pm_runtime_put_autosuspend(mcspi->dev);
1305 	return 0;
1306 }
1307 
omap_mcspi_runtime_resume(struct device * dev)1308 static int omap_mcspi_runtime_resume(struct device *dev)
1309 {
1310 	struct omap2_mcspi	*mcspi;
1311 	struct spi_master	*master;
1312 
1313 	master = dev_get_drvdata(dev);
1314 	mcspi = spi_master_get_devdata(master);
1315 	omap2_mcspi_restore_ctx(mcspi);
1316 
1317 	return 0;
1318 }
1319 
1320 static struct omap2_mcspi_platform_config omap2_pdata = {
1321 	.regs_offset = 0,
1322 };
1323 
1324 static struct omap2_mcspi_platform_config omap4_pdata = {
1325 	.regs_offset = OMAP4_MCSPI_REG_OFFSET,
1326 };
1327 
1328 static const struct of_device_id omap_mcspi_of_match[] = {
1329 	{
1330 		.compatible = "ti,omap2-mcspi",
1331 		.data = &omap2_pdata,
1332 	},
1333 	{
1334 		.compatible = "ti,omap4-mcspi",
1335 		.data = &omap4_pdata,
1336 	},
1337 	{ },
1338 };
1339 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1340 
omap2_mcspi_probe(struct platform_device * pdev)1341 static int omap2_mcspi_probe(struct platform_device *pdev)
1342 {
1343 	struct spi_master	*master;
1344 	const struct omap2_mcspi_platform_config *pdata;
1345 	struct omap2_mcspi	*mcspi;
1346 	struct resource		*r;
1347 	int			status = 0, i;
1348 	u32			regs_offset = 0;
1349 	static int		bus_num = 1;
1350 	struct device_node	*node = pdev->dev.of_node;
1351 	const struct of_device_id *match;
1352 
1353 	master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1354 	if (master == NULL) {
1355 		dev_dbg(&pdev->dev, "master allocation failed\n");
1356 		return -ENOMEM;
1357 	}
1358 
1359 	/* the spi->mode bits understood by this driver: */
1360 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1361 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1362 	master->setup = omap2_mcspi_setup;
1363 	master->auto_runtime_pm = true;
1364 	master->prepare_message = omap2_mcspi_prepare_message;
1365 	master->transfer_one = omap2_mcspi_transfer_one;
1366 	master->set_cs = omap2_mcspi_set_cs;
1367 	master->cleanup = omap2_mcspi_cleanup;
1368 	master->dev.of_node = node;
1369 	master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1370 	master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1371 
1372 	platform_set_drvdata(pdev, master);
1373 
1374 	mcspi = spi_master_get_devdata(master);
1375 	mcspi->master = master;
1376 
1377 	match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1378 	if (match) {
1379 		u32 num_cs = 1; /* default number of chipselect */
1380 		pdata = match->data;
1381 
1382 		of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1383 		master->num_chipselect = num_cs;
1384 		master->bus_num = bus_num++;
1385 		if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1386 			mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1387 	} else {
1388 		pdata = dev_get_platdata(&pdev->dev);
1389 		master->num_chipselect = pdata->num_cs;
1390 		if (pdev->id != -1)
1391 			master->bus_num = pdev->id;
1392 		mcspi->pin_dir = pdata->pin_dir;
1393 	}
1394 	regs_offset = pdata->regs_offset;
1395 
1396 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1397 	if (r == NULL) {
1398 		status = -ENODEV;
1399 		goto free_master;
1400 	}
1401 
1402 	r->start += regs_offset;
1403 	r->end += regs_offset;
1404 	mcspi->phys = r->start;
1405 
1406 	mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1407 	if (IS_ERR(mcspi->base)) {
1408 		status = PTR_ERR(mcspi->base);
1409 		goto free_master;
1410 	}
1411 
1412 	mcspi->dev = &pdev->dev;
1413 
1414 	INIT_LIST_HEAD(&mcspi->ctx.cs);
1415 
1416 	mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1417 					   sizeof(struct omap2_mcspi_dma),
1418 					   GFP_KERNEL);
1419 	if (mcspi->dma_channels == NULL) {
1420 		status = -ENOMEM;
1421 		goto free_master;
1422 	}
1423 
1424 	for (i = 0; i < master->num_chipselect; i++) {
1425 		char *dma_rx_ch_name = mcspi->dma_channels[i].dma_rx_ch_name;
1426 		char *dma_tx_ch_name = mcspi->dma_channels[i].dma_tx_ch_name;
1427 		struct resource *dma_res;
1428 
1429 		sprintf(dma_rx_ch_name, "rx%d", i);
1430 		if (!pdev->dev.of_node) {
1431 			dma_res =
1432 				platform_get_resource_byname(pdev,
1433 							     IORESOURCE_DMA,
1434 							     dma_rx_ch_name);
1435 			if (!dma_res) {
1436 				dev_dbg(&pdev->dev,
1437 					"cannot get DMA RX channel\n");
1438 				status = -ENODEV;
1439 				break;
1440 			}
1441 
1442 			mcspi->dma_channels[i].dma_rx_sync_dev =
1443 				dma_res->start;
1444 		}
1445 		sprintf(dma_tx_ch_name, "tx%d", i);
1446 		if (!pdev->dev.of_node) {
1447 			dma_res =
1448 				platform_get_resource_byname(pdev,
1449 							     IORESOURCE_DMA,
1450 							     dma_tx_ch_name);
1451 			if (!dma_res) {
1452 				dev_dbg(&pdev->dev,
1453 					"cannot get DMA TX channel\n");
1454 				status = -ENODEV;
1455 				break;
1456 			}
1457 
1458 			mcspi->dma_channels[i].dma_tx_sync_dev =
1459 				dma_res->start;
1460 		}
1461 	}
1462 
1463 	if (status < 0)
1464 		goto free_master;
1465 
1466 	pm_runtime_use_autosuspend(&pdev->dev);
1467 	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1468 	pm_runtime_enable(&pdev->dev);
1469 
1470 	status = omap2_mcspi_master_setup(mcspi);
1471 	if (status < 0)
1472 		goto disable_pm;
1473 
1474 	status = devm_spi_register_master(&pdev->dev, master);
1475 	if (status < 0)
1476 		goto disable_pm;
1477 
1478 	return status;
1479 
1480 disable_pm:
1481 	pm_runtime_disable(&pdev->dev);
1482 free_master:
1483 	spi_master_put(master);
1484 	return status;
1485 }
1486 
omap2_mcspi_remove(struct platform_device * pdev)1487 static int omap2_mcspi_remove(struct platform_device *pdev)
1488 {
1489 	struct spi_master *master = platform_get_drvdata(pdev);
1490 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1491 
1492 	pm_runtime_put_sync(mcspi->dev);
1493 	pm_runtime_disable(&pdev->dev);
1494 
1495 	return 0;
1496 }
1497 
1498 /* work with hotplug and coldplug */
1499 MODULE_ALIAS("platform:omap2_mcspi");
1500 
1501 #ifdef	CONFIG_SUSPEND
1502 /*
1503  * When SPI wake up from off-mode, CS is in activate state. If it was in
1504  * unactive state when driver was suspend, then force it to unactive state at
1505  * wake up.
1506  */
omap2_mcspi_resume(struct device * dev)1507 static int omap2_mcspi_resume(struct device *dev)
1508 {
1509 	struct spi_master	*master = dev_get_drvdata(dev);
1510 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
1511 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1512 	struct omap2_mcspi_cs	*cs;
1513 
1514 	pm_runtime_get_sync(mcspi->dev);
1515 	list_for_each_entry(cs, &ctx->cs, node) {
1516 		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1517 			/*
1518 			 * We need to toggle CS state for OMAP take this
1519 			 * change in account.
1520 			 */
1521 			cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1522 			writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1523 			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1524 			writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1525 		}
1526 	}
1527 	pm_runtime_mark_last_busy(mcspi->dev);
1528 	pm_runtime_put_autosuspend(mcspi->dev);
1529 	return 0;
1530 }
1531 #else
1532 #define	omap2_mcspi_resume	NULL
1533 #endif
1534 
1535 static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1536 	.resume = omap2_mcspi_resume,
1537 	.runtime_resume	= omap_mcspi_runtime_resume,
1538 };
1539 
1540 static struct platform_driver omap2_mcspi_driver = {
1541 	.driver = {
1542 		.name =		"omap2_mcspi",
1543 		.pm =		&omap2_mcspi_pm_ops,
1544 		.of_match_table = omap_mcspi_of_match,
1545 	},
1546 	.probe =	omap2_mcspi_probe,
1547 	.remove =	omap2_mcspi_remove,
1548 };
1549 
1550 module_platform_driver(omap2_mcspi_driver);
1551 MODULE_LICENSE("GPL");
1552