1 /*
2 * OMAP2 McSPI controller driver
3 *
4 * Copyright (C) 2005, 2006 Nokia Corporation
5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
6 * Juha Yrj�l� <juha.yrjola@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/omap-dma.h>
27 #include <linux/platform_device.h>
28 #include <linux/err.h>
29 #include <linux/clk.h>
30 #include <linux/io.h>
31 #include <linux/slab.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/gcd.h>
36
37 #include <linux/spi/spi.h>
38 #include <linux/gpio.h>
39
40 #include <linux/platform_data/spi-omap2-mcspi.h>
41
42 #define OMAP2_MCSPI_MAX_FREQ 48000000
43 #define OMAP2_MCSPI_MAX_DIVIDER 4096
44 #define OMAP2_MCSPI_MAX_FIFODEPTH 64
45 #define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
46 #define SPI_AUTOSUSPEND_TIMEOUT 2000
47
48 #define OMAP2_MCSPI_REVISION 0x00
49 #define OMAP2_MCSPI_SYSSTATUS 0x14
50 #define OMAP2_MCSPI_IRQSTATUS 0x18
51 #define OMAP2_MCSPI_IRQENABLE 0x1c
52 #define OMAP2_MCSPI_WAKEUPENABLE 0x20
53 #define OMAP2_MCSPI_SYST 0x24
54 #define OMAP2_MCSPI_MODULCTRL 0x28
55 #define OMAP2_MCSPI_XFERLEVEL 0x7c
56
57 /* per-channel banks, 0x14 bytes each, first is: */
58 #define OMAP2_MCSPI_CHCONF0 0x2c
59 #define OMAP2_MCSPI_CHSTAT0 0x30
60 #define OMAP2_MCSPI_CHCTRL0 0x34
61 #define OMAP2_MCSPI_TX0 0x38
62 #define OMAP2_MCSPI_RX0 0x3c
63
64 /* per-register bitmasks: */
65 #define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
66
67 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
68 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
69 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
70
71 #define OMAP2_MCSPI_CHCONF_PHA BIT(0)
72 #define OMAP2_MCSPI_CHCONF_POL BIT(1)
73 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
74 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
75 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
76 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
77 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
78 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
79 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
80 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
81 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
82 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
83 #define OMAP2_MCSPI_CHCONF_IS BIT(18)
84 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
85 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
86 #define OMAP2_MCSPI_CHCONF_FFET BIT(27)
87 #define OMAP2_MCSPI_CHCONF_FFER BIT(28)
88 #define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
89
90 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
91 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
92 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
93 #define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
94
95 #define OMAP2_MCSPI_CHCTRL_EN BIT(0)
96 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
97
98 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
99
100 /* We have 2 DMA channels per CS, one for RX and one for TX */
101 struct omap2_mcspi_dma {
102 struct dma_chan *dma_tx;
103 struct dma_chan *dma_rx;
104
105 int dma_tx_sync_dev;
106 int dma_rx_sync_dev;
107
108 struct completion dma_tx_completion;
109 struct completion dma_rx_completion;
110
111 char dma_rx_ch_name[14];
112 char dma_tx_ch_name[14];
113 };
114
115 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
116 * cache operations; better heuristics consider wordsize and bitrate.
117 */
118 #define DMA_MIN_BYTES 160
119
120
121 /*
122 * Used for context save and restore, structure members to be updated whenever
123 * corresponding registers are modified.
124 */
125 struct omap2_mcspi_regs {
126 u32 modulctrl;
127 u32 wakeupenable;
128 struct list_head cs;
129 };
130
131 struct omap2_mcspi {
132 struct spi_master *master;
133 /* Virtual base address of the controller */
134 void __iomem *base;
135 unsigned long phys;
136 /* SPI1 has 4 channels, while SPI2 has 2 */
137 struct omap2_mcspi_dma *dma_channels;
138 struct device *dev;
139 struct omap2_mcspi_regs ctx;
140 int fifo_depth;
141 unsigned int pin_dir:1;
142 };
143
144 struct omap2_mcspi_cs {
145 void __iomem *base;
146 unsigned long phys;
147 int word_len;
148 u16 mode;
149 struct list_head node;
150 /* Context save and restore shadow register */
151 u32 chconf0, chctrl0;
152 };
153
mcspi_write_reg(struct spi_master * master,int idx,u32 val)154 static inline void mcspi_write_reg(struct spi_master *master,
155 int idx, u32 val)
156 {
157 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
158
159 writel_relaxed(val, mcspi->base + idx);
160 }
161
mcspi_read_reg(struct spi_master * master,int idx)162 static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
163 {
164 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
165
166 return readl_relaxed(mcspi->base + idx);
167 }
168
mcspi_write_cs_reg(const struct spi_device * spi,int idx,u32 val)169 static inline void mcspi_write_cs_reg(const struct spi_device *spi,
170 int idx, u32 val)
171 {
172 struct omap2_mcspi_cs *cs = spi->controller_state;
173
174 writel_relaxed(val, cs->base + idx);
175 }
176
mcspi_read_cs_reg(const struct spi_device * spi,int idx)177 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
178 {
179 struct omap2_mcspi_cs *cs = spi->controller_state;
180
181 return readl_relaxed(cs->base + idx);
182 }
183
mcspi_cached_chconf0(const struct spi_device * spi)184 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
185 {
186 struct omap2_mcspi_cs *cs = spi->controller_state;
187
188 return cs->chconf0;
189 }
190
mcspi_write_chconf0(const struct spi_device * spi,u32 val)191 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
192 {
193 struct omap2_mcspi_cs *cs = spi->controller_state;
194
195 cs->chconf0 = val;
196 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
197 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
198 }
199
mcspi_bytes_per_word(int word_len)200 static inline int mcspi_bytes_per_word(int word_len)
201 {
202 if (word_len <= 8)
203 return 1;
204 else if (word_len <= 16)
205 return 2;
206 else /* word_len <= 32 */
207 return 4;
208 }
209
omap2_mcspi_set_dma_req(const struct spi_device * spi,int is_read,int enable)210 static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
211 int is_read, int enable)
212 {
213 u32 l, rw;
214
215 l = mcspi_cached_chconf0(spi);
216
217 if (is_read) /* 1 is read, 0 write */
218 rw = OMAP2_MCSPI_CHCONF_DMAR;
219 else
220 rw = OMAP2_MCSPI_CHCONF_DMAW;
221
222 if (enable)
223 l |= rw;
224 else
225 l &= ~rw;
226
227 mcspi_write_chconf0(spi, l);
228 }
229
omap2_mcspi_set_enable(const struct spi_device * spi,int enable)230 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
231 {
232 struct omap2_mcspi_cs *cs = spi->controller_state;
233 u32 l;
234
235 l = cs->chctrl0;
236 if (enable)
237 l |= OMAP2_MCSPI_CHCTRL_EN;
238 else
239 l &= ~OMAP2_MCSPI_CHCTRL_EN;
240 cs->chctrl0 = l;
241 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
242 /* Flash post-writes */
243 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
244 }
245
omap2_mcspi_set_cs(struct spi_device * spi,bool enable)246 static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
247 {
248 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
249 u32 l;
250
251 /* The controller handles the inverted chip selects
252 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
253 * the inversion from the core spi_set_cs function.
254 */
255 if (spi->mode & SPI_CS_HIGH)
256 enable = !enable;
257
258 if (spi->controller_state) {
259 int err = pm_runtime_get_sync(mcspi->dev);
260 if (err < 0) {
261 dev_err(mcspi->dev, "failed to get sync: %d\n", err);
262 return;
263 }
264
265 l = mcspi_cached_chconf0(spi);
266
267 if (enable)
268 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
269 else
270 l |= OMAP2_MCSPI_CHCONF_FORCE;
271
272 mcspi_write_chconf0(spi, l);
273
274 pm_runtime_mark_last_busy(mcspi->dev);
275 pm_runtime_put_autosuspend(mcspi->dev);
276 }
277 }
278
omap2_mcspi_set_master_mode(struct spi_master * master)279 static void omap2_mcspi_set_master_mode(struct spi_master *master)
280 {
281 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
282 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
283 u32 l;
284
285 /*
286 * Setup when switching from (reset default) slave mode
287 * to single-channel master mode
288 */
289 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
290 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
291 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
292 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
293
294 ctx->modulctrl = l;
295 }
296
omap2_mcspi_set_fifo(const struct spi_device * spi,struct spi_transfer * t,int enable)297 static void omap2_mcspi_set_fifo(const struct spi_device *spi,
298 struct spi_transfer *t, int enable)
299 {
300 struct spi_master *master = spi->master;
301 struct omap2_mcspi_cs *cs = spi->controller_state;
302 struct omap2_mcspi *mcspi;
303 unsigned int wcnt;
304 int max_fifo_depth, bytes_per_word;
305 u32 chconf, xferlevel;
306
307 mcspi = spi_master_get_devdata(master);
308
309 chconf = mcspi_cached_chconf0(spi);
310 if (enable) {
311 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
312 if (t->len % bytes_per_word != 0)
313 goto disable_fifo;
314
315 if (t->rx_buf != NULL && t->tx_buf != NULL)
316 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
317 else
318 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
319
320 wcnt = t->len / bytes_per_word;
321 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
322 goto disable_fifo;
323
324 xferlevel = wcnt << 16;
325 if (t->rx_buf != NULL) {
326 chconf |= OMAP2_MCSPI_CHCONF_FFER;
327 xferlevel |= (bytes_per_word - 1) << 8;
328 }
329
330 if (t->tx_buf != NULL) {
331 chconf |= OMAP2_MCSPI_CHCONF_FFET;
332 xferlevel |= bytes_per_word - 1;
333 }
334
335 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
336 mcspi_write_chconf0(spi, chconf);
337 mcspi->fifo_depth = max_fifo_depth;
338
339 return;
340 }
341
342 disable_fifo:
343 if (t->rx_buf != NULL)
344 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
345
346 if (t->tx_buf != NULL)
347 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
348
349 mcspi_write_chconf0(spi, chconf);
350 mcspi->fifo_depth = 0;
351 }
352
omap2_mcspi_restore_ctx(struct omap2_mcspi * mcspi)353 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
354 {
355 struct spi_master *spi_cntrl = mcspi->master;
356 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
357 struct omap2_mcspi_cs *cs;
358
359 /* McSPI: context restore */
360 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
361 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
362
363 list_for_each_entry(cs, &ctx->cs, node)
364 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
365 }
366
mcspi_wait_for_reg_bit(void __iomem * reg,unsigned long bit)367 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
368 {
369 unsigned long timeout;
370
371 timeout = jiffies + msecs_to_jiffies(1000);
372 while (!(readl_relaxed(reg) & bit)) {
373 if (time_after(jiffies, timeout)) {
374 if (!(readl_relaxed(reg) & bit))
375 return -ETIMEDOUT;
376 else
377 return 0;
378 }
379 cpu_relax();
380 }
381 return 0;
382 }
383
omap2_mcspi_rx_callback(void * data)384 static void omap2_mcspi_rx_callback(void *data)
385 {
386 struct spi_device *spi = data;
387 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
388 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
389
390 /* We must disable the DMA RX request */
391 omap2_mcspi_set_dma_req(spi, 1, 0);
392
393 complete(&mcspi_dma->dma_rx_completion);
394 }
395
omap2_mcspi_tx_callback(void * data)396 static void omap2_mcspi_tx_callback(void *data)
397 {
398 struct spi_device *spi = data;
399 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
400 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
401
402 /* We must disable the DMA TX request */
403 omap2_mcspi_set_dma_req(spi, 0, 0);
404
405 complete(&mcspi_dma->dma_tx_completion);
406 }
407
omap2_mcspi_tx_dma(struct spi_device * spi,struct spi_transfer * xfer,struct dma_slave_config cfg)408 static void omap2_mcspi_tx_dma(struct spi_device *spi,
409 struct spi_transfer *xfer,
410 struct dma_slave_config cfg)
411 {
412 struct omap2_mcspi *mcspi;
413 struct omap2_mcspi_dma *mcspi_dma;
414 unsigned int count;
415
416 mcspi = spi_master_get_devdata(spi->master);
417 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
418 count = xfer->len;
419
420 if (mcspi_dma->dma_tx) {
421 struct dma_async_tx_descriptor *tx;
422 struct scatterlist sg;
423
424 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
425
426 sg_init_table(&sg, 1);
427 sg_dma_address(&sg) = xfer->tx_dma;
428 sg_dma_len(&sg) = xfer->len;
429
430 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1,
431 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
432 if (tx) {
433 tx->callback = omap2_mcspi_tx_callback;
434 tx->callback_param = spi;
435 dmaengine_submit(tx);
436 } else {
437 /* FIXME: fall back to PIO? */
438 }
439 }
440 dma_async_issue_pending(mcspi_dma->dma_tx);
441 omap2_mcspi_set_dma_req(spi, 0, 1);
442
443 }
444
445 static unsigned
omap2_mcspi_rx_dma(struct spi_device * spi,struct spi_transfer * xfer,struct dma_slave_config cfg,unsigned es)446 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
447 struct dma_slave_config cfg,
448 unsigned es)
449 {
450 struct omap2_mcspi *mcspi;
451 struct omap2_mcspi_dma *mcspi_dma;
452 unsigned int count, dma_count;
453 u32 l;
454 int elements = 0;
455 int word_len, element_count;
456 struct omap2_mcspi_cs *cs = spi->controller_state;
457 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
458
459 mcspi = spi_master_get_devdata(spi->master);
460 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
461 count = xfer->len;
462 dma_count = xfer->len;
463
464 if (mcspi->fifo_depth == 0)
465 dma_count -= es;
466
467 word_len = cs->word_len;
468 l = mcspi_cached_chconf0(spi);
469
470 if (word_len <= 8)
471 element_count = count;
472 else if (word_len <= 16)
473 element_count = count >> 1;
474 else /* word_len <= 32 */
475 element_count = count >> 2;
476
477 if (mcspi_dma->dma_rx) {
478 struct dma_async_tx_descriptor *tx;
479 struct scatterlist sg;
480
481 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
482
483 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
484 dma_count -= es;
485
486 sg_init_table(&sg, 1);
487 sg_dma_address(&sg) = xfer->rx_dma;
488 sg_dma_len(&sg) = dma_count;
489
490 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1,
491 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT |
492 DMA_CTRL_ACK);
493 if (tx) {
494 tx->callback = omap2_mcspi_rx_callback;
495 tx->callback_param = spi;
496 dmaengine_submit(tx);
497 } else {
498 /* FIXME: fall back to PIO? */
499 }
500 }
501
502 dma_async_issue_pending(mcspi_dma->dma_rx);
503 omap2_mcspi_set_dma_req(spi, 1, 1);
504
505 wait_for_completion(&mcspi_dma->dma_rx_completion);
506 dma_unmap_single(mcspi->dev, xfer->rx_dma, count,
507 DMA_FROM_DEVICE);
508
509 if (mcspi->fifo_depth > 0)
510 return count;
511
512 omap2_mcspi_set_enable(spi, 0);
513
514 elements = element_count - 1;
515
516 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
517 elements--;
518
519 if (!mcspi_wait_for_reg_bit(chstat_reg,
520 OMAP2_MCSPI_CHSTAT_RXS)) {
521 u32 w;
522
523 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
524 if (word_len <= 8)
525 ((u8 *)xfer->rx_buf)[elements++] = w;
526 else if (word_len <= 16)
527 ((u16 *)xfer->rx_buf)[elements++] = w;
528 else /* word_len <= 32 */
529 ((u32 *)xfer->rx_buf)[elements++] = w;
530 } else {
531 int bytes_per_word = mcspi_bytes_per_word(word_len);
532 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
533 count -= (bytes_per_word << 1);
534 omap2_mcspi_set_enable(spi, 1);
535 return count;
536 }
537 }
538 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
539 u32 w;
540
541 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
542 if (word_len <= 8)
543 ((u8 *)xfer->rx_buf)[elements] = w;
544 else if (word_len <= 16)
545 ((u16 *)xfer->rx_buf)[elements] = w;
546 else /* word_len <= 32 */
547 ((u32 *)xfer->rx_buf)[elements] = w;
548 } else {
549 dev_err(&spi->dev, "DMA RX last word empty\n");
550 count -= mcspi_bytes_per_word(word_len);
551 }
552 omap2_mcspi_set_enable(spi, 1);
553 return count;
554 }
555
556 static unsigned
omap2_mcspi_txrx_dma(struct spi_device * spi,struct spi_transfer * xfer)557 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
558 {
559 struct omap2_mcspi *mcspi;
560 struct omap2_mcspi_cs *cs = spi->controller_state;
561 struct omap2_mcspi_dma *mcspi_dma;
562 unsigned int count;
563 u32 l;
564 u8 *rx;
565 const u8 *tx;
566 struct dma_slave_config cfg;
567 enum dma_slave_buswidth width;
568 unsigned es;
569 void __iomem *chstat_reg;
570 void __iomem *irqstat_reg;
571 int wait_res;
572
573 mcspi = spi_master_get_devdata(spi->master);
574 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
575 l = mcspi_cached_chconf0(spi);
576
577
578 if (cs->word_len <= 8) {
579 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
580 es = 1;
581 } else if (cs->word_len <= 16) {
582 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
583 es = 2;
584 } else {
585 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
586 es = 4;
587 }
588
589 count = xfer->len;
590
591 memset(&cfg, 0, sizeof(cfg));
592 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
593 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
594 cfg.src_addr_width = width;
595 cfg.dst_addr_width = width;
596 cfg.src_maxburst = 1;
597 cfg.dst_maxburst = 1;
598
599 rx = xfer->rx_buf;
600 tx = xfer->tx_buf;
601
602 if (tx != NULL)
603 omap2_mcspi_tx_dma(spi, xfer, cfg);
604
605 if (rx != NULL)
606 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
607
608 if (tx != NULL) {
609 wait_for_completion(&mcspi_dma->dma_tx_completion);
610 dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
611 DMA_TO_DEVICE);
612
613 if (mcspi->fifo_depth > 0) {
614 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
615
616 if (mcspi_wait_for_reg_bit(irqstat_reg,
617 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
618 dev_err(&spi->dev, "EOW timed out\n");
619
620 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
621 OMAP2_MCSPI_IRQSTATUS_EOW);
622 }
623
624 /* for TX_ONLY mode, be sure all words have shifted out */
625 if (rx == NULL) {
626 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
627 if (mcspi->fifo_depth > 0) {
628 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
629 OMAP2_MCSPI_CHSTAT_TXFFE);
630 if (wait_res < 0)
631 dev_err(&spi->dev, "TXFFE timed out\n");
632 } else {
633 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
634 OMAP2_MCSPI_CHSTAT_TXS);
635 if (wait_res < 0)
636 dev_err(&spi->dev, "TXS timed out\n");
637 }
638 if (wait_res >= 0 &&
639 (mcspi_wait_for_reg_bit(chstat_reg,
640 OMAP2_MCSPI_CHSTAT_EOT) < 0))
641 dev_err(&spi->dev, "EOT timed out\n");
642 }
643 }
644 return count;
645 }
646
647 static unsigned
omap2_mcspi_txrx_pio(struct spi_device * spi,struct spi_transfer * xfer)648 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
649 {
650 struct omap2_mcspi *mcspi;
651 struct omap2_mcspi_cs *cs = spi->controller_state;
652 unsigned int count, c;
653 u32 l;
654 void __iomem *base = cs->base;
655 void __iomem *tx_reg;
656 void __iomem *rx_reg;
657 void __iomem *chstat_reg;
658 int word_len;
659
660 mcspi = spi_master_get_devdata(spi->master);
661 count = xfer->len;
662 c = count;
663 word_len = cs->word_len;
664
665 l = mcspi_cached_chconf0(spi);
666
667 /* We store the pre-calculated register addresses on stack to speed
668 * up the transfer loop. */
669 tx_reg = base + OMAP2_MCSPI_TX0;
670 rx_reg = base + OMAP2_MCSPI_RX0;
671 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
672
673 if (c < (word_len>>3))
674 return 0;
675
676 if (word_len <= 8) {
677 u8 *rx;
678 const u8 *tx;
679
680 rx = xfer->rx_buf;
681 tx = xfer->tx_buf;
682
683 do {
684 c -= 1;
685 if (tx != NULL) {
686 if (mcspi_wait_for_reg_bit(chstat_reg,
687 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
688 dev_err(&spi->dev, "TXS timed out\n");
689 goto out;
690 }
691 dev_vdbg(&spi->dev, "write-%d %02x\n",
692 word_len, *tx);
693 writel_relaxed(*tx++, tx_reg);
694 }
695 if (rx != NULL) {
696 if (mcspi_wait_for_reg_bit(chstat_reg,
697 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
698 dev_err(&spi->dev, "RXS timed out\n");
699 goto out;
700 }
701
702 if (c == 1 && tx == NULL &&
703 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
704 omap2_mcspi_set_enable(spi, 0);
705 *rx++ = readl_relaxed(rx_reg);
706 dev_vdbg(&spi->dev, "read-%d %02x\n",
707 word_len, *(rx - 1));
708 if (mcspi_wait_for_reg_bit(chstat_reg,
709 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
710 dev_err(&spi->dev,
711 "RXS timed out\n");
712 goto out;
713 }
714 c = 0;
715 } else if (c == 0 && tx == NULL) {
716 omap2_mcspi_set_enable(spi, 0);
717 }
718
719 *rx++ = readl_relaxed(rx_reg);
720 dev_vdbg(&spi->dev, "read-%d %02x\n",
721 word_len, *(rx - 1));
722 }
723 } while (c);
724 } else if (word_len <= 16) {
725 u16 *rx;
726 const u16 *tx;
727
728 rx = xfer->rx_buf;
729 tx = xfer->tx_buf;
730 do {
731 c -= 2;
732 if (tx != NULL) {
733 if (mcspi_wait_for_reg_bit(chstat_reg,
734 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
735 dev_err(&spi->dev, "TXS timed out\n");
736 goto out;
737 }
738 dev_vdbg(&spi->dev, "write-%d %04x\n",
739 word_len, *tx);
740 writel_relaxed(*tx++, tx_reg);
741 }
742 if (rx != NULL) {
743 if (mcspi_wait_for_reg_bit(chstat_reg,
744 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
745 dev_err(&spi->dev, "RXS timed out\n");
746 goto out;
747 }
748
749 if (c == 2 && tx == NULL &&
750 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
751 omap2_mcspi_set_enable(spi, 0);
752 *rx++ = readl_relaxed(rx_reg);
753 dev_vdbg(&spi->dev, "read-%d %04x\n",
754 word_len, *(rx - 1));
755 if (mcspi_wait_for_reg_bit(chstat_reg,
756 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
757 dev_err(&spi->dev,
758 "RXS timed out\n");
759 goto out;
760 }
761 c = 0;
762 } else if (c == 0 && tx == NULL) {
763 omap2_mcspi_set_enable(spi, 0);
764 }
765
766 *rx++ = readl_relaxed(rx_reg);
767 dev_vdbg(&spi->dev, "read-%d %04x\n",
768 word_len, *(rx - 1));
769 }
770 } while (c >= 2);
771 } else if (word_len <= 32) {
772 u32 *rx;
773 const u32 *tx;
774
775 rx = xfer->rx_buf;
776 tx = xfer->tx_buf;
777 do {
778 c -= 4;
779 if (tx != NULL) {
780 if (mcspi_wait_for_reg_bit(chstat_reg,
781 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
782 dev_err(&spi->dev, "TXS timed out\n");
783 goto out;
784 }
785 dev_vdbg(&spi->dev, "write-%d %08x\n",
786 word_len, *tx);
787 writel_relaxed(*tx++, tx_reg);
788 }
789 if (rx != NULL) {
790 if (mcspi_wait_for_reg_bit(chstat_reg,
791 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
792 dev_err(&spi->dev, "RXS timed out\n");
793 goto out;
794 }
795
796 if (c == 4 && tx == NULL &&
797 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
798 omap2_mcspi_set_enable(spi, 0);
799 *rx++ = readl_relaxed(rx_reg);
800 dev_vdbg(&spi->dev, "read-%d %08x\n",
801 word_len, *(rx - 1));
802 if (mcspi_wait_for_reg_bit(chstat_reg,
803 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
804 dev_err(&spi->dev,
805 "RXS timed out\n");
806 goto out;
807 }
808 c = 0;
809 } else if (c == 0 && tx == NULL) {
810 omap2_mcspi_set_enable(spi, 0);
811 }
812
813 *rx++ = readl_relaxed(rx_reg);
814 dev_vdbg(&spi->dev, "read-%d %08x\n",
815 word_len, *(rx - 1));
816 }
817 } while (c >= 4);
818 }
819
820 /* for TX_ONLY mode, be sure all words have shifted out */
821 if (xfer->rx_buf == NULL) {
822 if (mcspi_wait_for_reg_bit(chstat_reg,
823 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
824 dev_err(&spi->dev, "TXS timed out\n");
825 } else if (mcspi_wait_for_reg_bit(chstat_reg,
826 OMAP2_MCSPI_CHSTAT_EOT) < 0)
827 dev_err(&spi->dev, "EOT timed out\n");
828
829 /* disable chan to purge rx datas received in TX_ONLY transfer,
830 * otherwise these rx datas will affect the direct following
831 * RX_ONLY transfer.
832 */
833 omap2_mcspi_set_enable(spi, 0);
834 }
835 out:
836 omap2_mcspi_set_enable(spi, 1);
837 return count - c;
838 }
839
omap2_mcspi_calc_divisor(u32 speed_hz)840 static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
841 {
842 u32 div;
843
844 for (div = 0; div < 15; div++)
845 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
846 return div;
847
848 return 15;
849 }
850
851 /* called only when no transfer is active to this device */
omap2_mcspi_setup_transfer(struct spi_device * spi,struct spi_transfer * t)852 static int omap2_mcspi_setup_transfer(struct spi_device *spi,
853 struct spi_transfer *t)
854 {
855 struct omap2_mcspi_cs *cs = spi->controller_state;
856 struct omap2_mcspi *mcspi;
857 struct spi_master *spi_cntrl;
858 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
859 u8 word_len = spi->bits_per_word;
860 u32 speed_hz = spi->max_speed_hz;
861
862 mcspi = spi_master_get_devdata(spi->master);
863 spi_cntrl = mcspi->master;
864
865 if (t != NULL && t->bits_per_word)
866 word_len = t->bits_per_word;
867
868 cs->word_len = word_len;
869
870 if (t && t->speed_hz)
871 speed_hz = t->speed_hz;
872
873 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
874 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
875 clkd = omap2_mcspi_calc_divisor(speed_hz);
876 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
877 clkg = 0;
878 } else {
879 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
880 speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
881 clkd = (div - 1) & 0xf;
882 extclk = (div - 1) >> 4;
883 clkg = OMAP2_MCSPI_CHCONF_CLKG;
884 }
885
886 l = mcspi_cached_chconf0(spi);
887
888 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
889 * REVISIT: this controller could support SPI_3WIRE mode.
890 */
891 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
892 l &= ~OMAP2_MCSPI_CHCONF_IS;
893 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
894 l |= OMAP2_MCSPI_CHCONF_DPE0;
895 } else {
896 l |= OMAP2_MCSPI_CHCONF_IS;
897 l |= OMAP2_MCSPI_CHCONF_DPE1;
898 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
899 }
900
901 /* wordlength */
902 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
903 l |= (word_len - 1) << 7;
904
905 /* set chipselect polarity; manage with FORCE */
906 if (!(spi->mode & SPI_CS_HIGH))
907 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
908 else
909 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
910
911 /* set clock divisor */
912 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
913 l |= clkd << 2;
914
915 /* set clock granularity */
916 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
917 l |= clkg;
918 if (clkg) {
919 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
920 cs->chctrl0 |= extclk << 8;
921 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
922 }
923
924 /* set SPI mode 0..3 */
925 if (spi->mode & SPI_CPOL)
926 l |= OMAP2_MCSPI_CHCONF_POL;
927 else
928 l &= ~OMAP2_MCSPI_CHCONF_POL;
929 if (spi->mode & SPI_CPHA)
930 l |= OMAP2_MCSPI_CHCONF_PHA;
931 else
932 l &= ~OMAP2_MCSPI_CHCONF_PHA;
933
934 mcspi_write_chconf0(spi, l);
935
936 cs->mode = spi->mode;
937
938 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
939 speed_hz,
940 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
941 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
942
943 return 0;
944 }
945
946 /*
947 * Note that we currently allow DMA only if we get a channel
948 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
949 */
omap2_mcspi_request_dma(struct spi_device * spi)950 static int omap2_mcspi_request_dma(struct spi_device *spi)
951 {
952 struct spi_master *master = spi->master;
953 struct omap2_mcspi *mcspi;
954 struct omap2_mcspi_dma *mcspi_dma;
955 dma_cap_mask_t mask;
956 unsigned sig;
957
958 mcspi = spi_master_get_devdata(master);
959 mcspi_dma = mcspi->dma_channels + spi->chip_select;
960
961 init_completion(&mcspi_dma->dma_rx_completion);
962 init_completion(&mcspi_dma->dma_tx_completion);
963
964 dma_cap_zero(mask);
965 dma_cap_set(DMA_SLAVE, mask);
966 sig = mcspi_dma->dma_rx_sync_dev;
967
968 mcspi_dma->dma_rx =
969 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
970 &sig, &master->dev,
971 mcspi_dma->dma_rx_ch_name);
972 if (!mcspi_dma->dma_rx)
973 goto no_dma;
974
975 sig = mcspi_dma->dma_tx_sync_dev;
976 mcspi_dma->dma_tx =
977 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
978 &sig, &master->dev,
979 mcspi_dma->dma_tx_ch_name);
980
981 if (!mcspi_dma->dma_tx) {
982 dma_release_channel(mcspi_dma->dma_rx);
983 mcspi_dma->dma_rx = NULL;
984 goto no_dma;
985 }
986
987 return 0;
988
989 no_dma:
990 dev_warn(&spi->dev, "not using DMA for McSPI\n");
991 return -EAGAIN;
992 }
993
omap2_mcspi_setup(struct spi_device * spi)994 static int omap2_mcspi_setup(struct spi_device *spi)
995 {
996 int ret;
997 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
998 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
999 struct omap2_mcspi_dma *mcspi_dma;
1000 struct omap2_mcspi_cs *cs = spi->controller_state;
1001
1002 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1003
1004 if (!cs) {
1005 cs = kzalloc(sizeof *cs, GFP_KERNEL);
1006 if (!cs)
1007 return -ENOMEM;
1008 cs->base = mcspi->base + spi->chip_select * 0x14;
1009 cs->phys = mcspi->phys + spi->chip_select * 0x14;
1010 cs->mode = 0;
1011 cs->chconf0 = 0;
1012 cs->chctrl0 = 0;
1013 spi->controller_state = cs;
1014 /* Link this to context save list */
1015 list_add_tail(&cs->node, &ctx->cs);
1016
1017 if (gpio_is_valid(spi->cs_gpio)) {
1018 ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev));
1019 if (ret) {
1020 dev_err(&spi->dev, "failed to request gpio\n");
1021 return ret;
1022 }
1023 gpio_direction_output(spi->cs_gpio,
1024 !(spi->mode & SPI_CS_HIGH));
1025 }
1026 }
1027
1028 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
1029 ret = omap2_mcspi_request_dma(spi);
1030 if (ret < 0 && ret != -EAGAIN)
1031 return ret;
1032 }
1033
1034 ret = pm_runtime_get_sync(mcspi->dev);
1035 if (ret < 0)
1036 return ret;
1037
1038 ret = omap2_mcspi_setup_transfer(spi, NULL);
1039 pm_runtime_mark_last_busy(mcspi->dev);
1040 pm_runtime_put_autosuspend(mcspi->dev);
1041
1042 return ret;
1043 }
1044
omap2_mcspi_cleanup(struct spi_device * spi)1045 static void omap2_mcspi_cleanup(struct spi_device *spi)
1046 {
1047 struct omap2_mcspi *mcspi;
1048 struct omap2_mcspi_dma *mcspi_dma;
1049 struct omap2_mcspi_cs *cs;
1050
1051 mcspi = spi_master_get_devdata(spi->master);
1052
1053 if (spi->controller_state) {
1054 /* Unlink controller state from context save list */
1055 cs = spi->controller_state;
1056 list_del(&cs->node);
1057
1058 kfree(cs);
1059 }
1060
1061 if (spi->chip_select < spi->master->num_chipselect) {
1062 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1063
1064 if (mcspi_dma->dma_rx) {
1065 dma_release_channel(mcspi_dma->dma_rx);
1066 mcspi_dma->dma_rx = NULL;
1067 }
1068 if (mcspi_dma->dma_tx) {
1069 dma_release_channel(mcspi_dma->dma_tx);
1070 mcspi_dma->dma_tx = NULL;
1071 }
1072 }
1073
1074 if (gpio_is_valid(spi->cs_gpio))
1075 gpio_free(spi->cs_gpio);
1076 }
1077
omap2_mcspi_work_one(struct omap2_mcspi * mcspi,struct spi_device * spi,struct spi_transfer * t)1078 static int omap2_mcspi_work_one(struct omap2_mcspi *mcspi,
1079 struct spi_device *spi, struct spi_transfer *t)
1080 {
1081
1082 /* We only enable one channel at a time -- the one whose message is
1083 * -- although this controller would gladly
1084 * arbitrate among multiple channels. This corresponds to "single
1085 * channel" master mode. As a side effect, we need to manage the
1086 * chipselect with the FORCE bit ... CS != channel enable.
1087 */
1088
1089 struct spi_master *master;
1090 struct omap2_mcspi_dma *mcspi_dma;
1091 struct omap2_mcspi_cs *cs;
1092 struct omap2_mcspi_device_config *cd;
1093 int par_override = 0;
1094 int status = 0;
1095 u32 chconf;
1096
1097 master = spi->master;
1098 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1099 cs = spi->controller_state;
1100 cd = spi->controller_data;
1101
1102 /*
1103 * The slave driver could have changed spi->mode in which case
1104 * it will be different from cs->mode (the current hardware setup).
1105 * If so, set par_override (even though its not a parity issue) so
1106 * omap2_mcspi_setup_transfer will be called to configure the hardware
1107 * with the correct mode on the first iteration of the loop below.
1108 */
1109 if (spi->mode != cs->mode)
1110 par_override = 1;
1111
1112 omap2_mcspi_set_enable(spi, 0);
1113
1114 if (gpio_is_valid(spi->cs_gpio))
1115 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1116
1117 if (par_override ||
1118 (t->speed_hz != spi->max_speed_hz) ||
1119 (t->bits_per_word != spi->bits_per_word)) {
1120 par_override = 1;
1121 status = omap2_mcspi_setup_transfer(spi, t);
1122 if (status < 0)
1123 goto out;
1124 if (t->speed_hz == spi->max_speed_hz &&
1125 t->bits_per_word == spi->bits_per_word)
1126 par_override = 0;
1127 }
1128 if (cd && cd->cs_per_word) {
1129 chconf = mcspi->ctx.modulctrl;
1130 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1131 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1132 mcspi->ctx.modulctrl =
1133 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1134 }
1135
1136 chconf = mcspi_cached_chconf0(spi);
1137 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1138 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1139
1140 if (t->tx_buf == NULL)
1141 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1142 else if (t->rx_buf == NULL)
1143 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1144
1145 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1146 /* Turbo mode is for more than one word */
1147 if (t->len > ((cs->word_len + 7) >> 3))
1148 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1149 }
1150
1151 mcspi_write_chconf0(spi, chconf);
1152
1153 if (t->len) {
1154 unsigned count;
1155
1156 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1157 (t->len >= DMA_MIN_BYTES))
1158 omap2_mcspi_set_fifo(spi, t, 1);
1159
1160 omap2_mcspi_set_enable(spi, 1);
1161
1162 /* RX_ONLY mode needs dummy data in TX reg */
1163 if (t->tx_buf == NULL)
1164 writel_relaxed(0, cs->base
1165 + OMAP2_MCSPI_TX0);
1166
1167 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1168 (t->len >= DMA_MIN_BYTES))
1169 count = omap2_mcspi_txrx_dma(spi, t);
1170 else
1171 count = omap2_mcspi_txrx_pio(spi, t);
1172
1173 if (count != t->len) {
1174 status = -EIO;
1175 goto out;
1176 }
1177 }
1178
1179 omap2_mcspi_set_enable(spi, 0);
1180
1181 if (mcspi->fifo_depth > 0)
1182 omap2_mcspi_set_fifo(spi, t, 0);
1183
1184 out:
1185 /* Restore defaults if they were overriden */
1186 if (par_override) {
1187 par_override = 0;
1188 status = omap2_mcspi_setup_transfer(spi, NULL);
1189 }
1190
1191 if (cd && cd->cs_per_word) {
1192 chconf = mcspi->ctx.modulctrl;
1193 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1194 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1195 mcspi->ctx.modulctrl =
1196 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1197 }
1198
1199 omap2_mcspi_set_enable(spi, 0);
1200
1201 if (gpio_is_valid(spi->cs_gpio))
1202 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1203
1204 if (mcspi->fifo_depth > 0 && t)
1205 omap2_mcspi_set_fifo(spi, t, 0);
1206
1207 return status;
1208 }
1209
omap2_mcspi_prepare_message(struct spi_master * master,struct spi_message * msg)1210 static int omap2_mcspi_prepare_message(struct spi_master *master,
1211 struct spi_message *msg)
1212 {
1213 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1214 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1215 struct omap2_mcspi_cs *cs;
1216
1217 /* Only a single channel can have the FORCE bit enabled
1218 * in its chconf0 register.
1219 * Scan all channels and disable them except the current one.
1220 * A FORCE can remain from a last transfer having cs_change enabled
1221 */
1222 list_for_each_entry(cs, &ctx->cs, node) {
1223 if (msg->spi->controller_state == cs)
1224 continue;
1225
1226 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1227 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1228 writel_relaxed(cs->chconf0,
1229 cs->base + OMAP2_MCSPI_CHCONF0);
1230 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1231 }
1232 }
1233
1234 return 0;
1235 }
1236
omap2_mcspi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * t)1237 static int omap2_mcspi_transfer_one(struct spi_master *master,
1238 struct spi_device *spi, struct spi_transfer *t)
1239 {
1240 struct omap2_mcspi *mcspi;
1241 struct omap2_mcspi_dma *mcspi_dma;
1242 const void *tx_buf = t->tx_buf;
1243 void *rx_buf = t->rx_buf;
1244 unsigned len = t->len;
1245
1246 mcspi = spi_master_get_devdata(master);
1247 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1248
1249 if ((len && !(rx_buf || tx_buf))) {
1250 dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
1251 t->speed_hz,
1252 len,
1253 tx_buf ? "tx" : "",
1254 rx_buf ? "rx" : "",
1255 t->bits_per_word);
1256 return -EINVAL;
1257 }
1258
1259 if (len < DMA_MIN_BYTES)
1260 goto skip_dma_map;
1261
1262 if (mcspi_dma->dma_tx && tx_buf != NULL) {
1263 t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf,
1264 len, DMA_TO_DEVICE);
1265 if (dma_mapping_error(mcspi->dev, t->tx_dma)) {
1266 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1267 'T', len);
1268 return -EINVAL;
1269 }
1270 }
1271 if (mcspi_dma->dma_rx && rx_buf != NULL) {
1272 t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len,
1273 DMA_FROM_DEVICE);
1274 if (dma_mapping_error(mcspi->dev, t->rx_dma)) {
1275 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1276 'R', len);
1277 if (tx_buf != NULL)
1278 dma_unmap_single(mcspi->dev, t->tx_dma,
1279 len, DMA_TO_DEVICE);
1280 return -EINVAL;
1281 }
1282 }
1283
1284 skip_dma_map:
1285 return omap2_mcspi_work_one(mcspi, spi, t);
1286 }
1287
omap2_mcspi_master_setup(struct omap2_mcspi * mcspi)1288 static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
1289 {
1290 struct spi_master *master = mcspi->master;
1291 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1292 int ret = 0;
1293
1294 ret = pm_runtime_get_sync(mcspi->dev);
1295 if (ret < 0)
1296 return ret;
1297
1298 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1299 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1300 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1301
1302 omap2_mcspi_set_master_mode(master);
1303 pm_runtime_mark_last_busy(mcspi->dev);
1304 pm_runtime_put_autosuspend(mcspi->dev);
1305 return 0;
1306 }
1307
omap_mcspi_runtime_resume(struct device * dev)1308 static int omap_mcspi_runtime_resume(struct device *dev)
1309 {
1310 struct omap2_mcspi *mcspi;
1311 struct spi_master *master;
1312
1313 master = dev_get_drvdata(dev);
1314 mcspi = spi_master_get_devdata(master);
1315 omap2_mcspi_restore_ctx(mcspi);
1316
1317 return 0;
1318 }
1319
1320 static struct omap2_mcspi_platform_config omap2_pdata = {
1321 .regs_offset = 0,
1322 };
1323
1324 static struct omap2_mcspi_platform_config omap4_pdata = {
1325 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1326 };
1327
1328 static const struct of_device_id omap_mcspi_of_match[] = {
1329 {
1330 .compatible = "ti,omap2-mcspi",
1331 .data = &omap2_pdata,
1332 },
1333 {
1334 .compatible = "ti,omap4-mcspi",
1335 .data = &omap4_pdata,
1336 },
1337 { },
1338 };
1339 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1340
omap2_mcspi_probe(struct platform_device * pdev)1341 static int omap2_mcspi_probe(struct platform_device *pdev)
1342 {
1343 struct spi_master *master;
1344 const struct omap2_mcspi_platform_config *pdata;
1345 struct omap2_mcspi *mcspi;
1346 struct resource *r;
1347 int status = 0, i;
1348 u32 regs_offset = 0;
1349 static int bus_num = 1;
1350 struct device_node *node = pdev->dev.of_node;
1351 const struct of_device_id *match;
1352
1353 master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1354 if (master == NULL) {
1355 dev_dbg(&pdev->dev, "master allocation failed\n");
1356 return -ENOMEM;
1357 }
1358
1359 /* the spi->mode bits understood by this driver: */
1360 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1361 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1362 master->setup = omap2_mcspi_setup;
1363 master->auto_runtime_pm = true;
1364 master->prepare_message = omap2_mcspi_prepare_message;
1365 master->transfer_one = omap2_mcspi_transfer_one;
1366 master->set_cs = omap2_mcspi_set_cs;
1367 master->cleanup = omap2_mcspi_cleanup;
1368 master->dev.of_node = node;
1369 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1370 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1371
1372 platform_set_drvdata(pdev, master);
1373
1374 mcspi = spi_master_get_devdata(master);
1375 mcspi->master = master;
1376
1377 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1378 if (match) {
1379 u32 num_cs = 1; /* default number of chipselect */
1380 pdata = match->data;
1381
1382 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1383 master->num_chipselect = num_cs;
1384 master->bus_num = bus_num++;
1385 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1386 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1387 } else {
1388 pdata = dev_get_platdata(&pdev->dev);
1389 master->num_chipselect = pdata->num_cs;
1390 if (pdev->id != -1)
1391 master->bus_num = pdev->id;
1392 mcspi->pin_dir = pdata->pin_dir;
1393 }
1394 regs_offset = pdata->regs_offset;
1395
1396 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1397 if (r == NULL) {
1398 status = -ENODEV;
1399 goto free_master;
1400 }
1401
1402 r->start += regs_offset;
1403 r->end += regs_offset;
1404 mcspi->phys = r->start;
1405
1406 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1407 if (IS_ERR(mcspi->base)) {
1408 status = PTR_ERR(mcspi->base);
1409 goto free_master;
1410 }
1411
1412 mcspi->dev = &pdev->dev;
1413
1414 INIT_LIST_HEAD(&mcspi->ctx.cs);
1415
1416 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1417 sizeof(struct omap2_mcspi_dma),
1418 GFP_KERNEL);
1419 if (mcspi->dma_channels == NULL) {
1420 status = -ENOMEM;
1421 goto free_master;
1422 }
1423
1424 for (i = 0; i < master->num_chipselect; i++) {
1425 char *dma_rx_ch_name = mcspi->dma_channels[i].dma_rx_ch_name;
1426 char *dma_tx_ch_name = mcspi->dma_channels[i].dma_tx_ch_name;
1427 struct resource *dma_res;
1428
1429 sprintf(dma_rx_ch_name, "rx%d", i);
1430 if (!pdev->dev.of_node) {
1431 dma_res =
1432 platform_get_resource_byname(pdev,
1433 IORESOURCE_DMA,
1434 dma_rx_ch_name);
1435 if (!dma_res) {
1436 dev_dbg(&pdev->dev,
1437 "cannot get DMA RX channel\n");
1438 status = -ENODEV;
1439 break;
1440 }
1441
1442 mcspi->dma_channels[i].dma_rx_sync_dev =
1443 dma_res->start;
1444 }
1445 sprintf(dma_tx_ch_name, "tx%d", i);
1446 if (!pdev->dev.of_node) {
1447 dma_res =
1448 platform_get_resource_byname(pdev,
1449 IORESOURCE_DMA,
1450 dma_tx_ch_name);
1451 if (!dma_res) {
1452 dev_dbg(&pdev->dev,
1453 "cannot get DMA TX channel\n");
1454 status = -ENODEV;
1455 break;
1456 }
1457
1458 mcspi->dma_channels[i].dma_tx_sync_dev =
1459 dma_res->start;
1460 }
1461 }
1462
1463 if (status < 0)
1464 goto free_master;
1465
1466 pm_runtime_use_autosuspend(&pdev->dev);
1467 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1468 pm_runtime_enable(&pdev->dev);
1469
1470 status = omap2_mcspi_master_setup(mcspi);
1471 if (status < 0)
1472 goto disable_pm;
1473
1474 status = devm_spi_register_master(&pdev->dev, master);
1475 if (status < 0)
1476 goto disable_pm;
1477
1478 return status;
1479
1480 disable_pm:
1481 pm_runtime_disable(&pdev->dev);
1482 free_master:
1483 spi_master_put(master);
1484 return status;
1485 }
1486
omap2_mcspi_remove(struct platform_device * pdev)1487 static int omap2_mcspi_remove(struct platform_device *pdev)
1488 {
1489 struct spi_master *master = platform_get_drvdata(pdev);
1490 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1491
1492 pm_runtime_put_sync(mcspi->dev);
1493 pm_runtime_disable(&pdev->dev);
1494
1495 return 0;
1496 }
1497
1498 /* work with hotplug and coldplug */
1499 MODULE_ALIAS("platform:omap2_mcspi");
1500
1501 #ifdef CONFIG_SUSPEND
1502 /*
1503 * When SPI wake up from off-mode, CS is in activate state. If it was in
1504 * unactive state when driver was suspend, then force it to unactive state at
1505 * wake up.
1506 */
omap2_mcspi_resume(struct device * dev)1507 static int omap2_mcspi_resume(struct device *dev)
1508 {
1509 struct spi_master *master = dev_get_drvdata(dev);
1510 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1511 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1512 struct omap2_mcspi_cs *cs;
1513
1514 pm_runtime_get_sync(mcspi->dev);
1515 list_for_each_entry(cs, &ctx->cs, node) {
1516 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1517 /*
1518 * We need to toggle CS state for OMAP take this
1519 * change in account.
1520 */
1521 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1522 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1523 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1524 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1525 }
1526 }
1527 pm_runtime_mark_last_busy(mcspi->dev);
1528 pm_runtime_put_autosuspend(mcspi->dev);
1529 return 0;
1530 }
1531 #else
1532 #define omap2_mcspi_resume NULL
1533 #endif
1534
1535 static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1536 .resume = omap2_mcspi_resume,
1537 .runtime_resume = omap_mcspi_runtime_resume,
1538 };
1539
1540 static struct platform_driver omap2_mcspi_driver = {
1541 .driver = {
1542 .name = "omap2_mcspi",
1543 .pm = &omap2_mcspi_pm_ops,
1544 .of_match_table = omap_mcspi_of_match,
1545 },
1546 .probe = omap2_mcspi_probe,
1547 .remove = omap2_mcspi_remove,
1548 };
1549
1550 module_platform_driver(omap2_mcspi_driver);
1551 MODULE_LICENSE("GPL");
1552