• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SPI driver for NVIDIA's Tegra114 SPI Controller.
3  *
4  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/kthread.h>
30 #include <linux/module.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/reset.h>
36 #include <linux/spi/spi.h>
37 
38 #define SPI_COMMAND1				0x000
39 #define SPI_BIT_LENGTH(x)			(((x) & 0x1f) << 0)
40 #define SPI_PACKED				(1 << 5)
41 #define SPI_TX_EN				(1 << 11)
42 #define SPI_RX_EN				(1 << 12)
43 #define SPI_BOTH_EN_BYTE			(1 << 13)
44 #define SPI_BOTH_EN_BIT				(1 << 14)
45 #define SPI_LSBYTE_FE				(1 << 15)
46 #define SPI_LSBIT_FE				(1 << 16)
47 #define SPI_BIDIROE				(1 << 17)
48 #define SPI_IDLE_SDA_DRIVE_LOW			(0 << 18)
49 #define SPI_IDLE_SDA_DRIVE_HIGH			(1 << 18)
50 #define SPI_IDLE_SDA_PULL_LOW			(2 << 18)
51 #define SPI_IDLE_SDA_PULL_HIGH			(3 << 18)
52 #define SPI_IDLE_SDA_MASK			(3 << 18)
53 #define SPI_CS_SS_VAL				(1 << 20)
54 #define SPI_CS_SW_HW				(1 << 21)
55 /* SPI_CS_POL_INACTIVE bits are default high */
56 						/* n from 0 to 3 */
57 #define SPI_CS_POL_INACTIVE(n)			(1 << (22 + (n)))
58 #define SPI_CS_POL_INACTIVE_MASK		(0xF << 22)
59 
60 #define SPI_CS_SEL_0				(0 << 26)
61 #define SPI_CS_SEL_1				(1 << 26)
62 #define SPI_CS_SEL_2				(2 << 26)
63 #define SPI_CS_SEL_3				(3 << 26)
64 #define SPI_CS_SEL_MASK				(3 << 26)
65 #define SPI_CS_SEL(x)				(((x) & 0x3) << 26)
66 #define SPI_CONTROL_MODE_0			(0 << 28)
67 #define SPI_CONTROL_MODE_1			(1 << 28)
68 #define SPI_CONTROL_MODE_2			(2 << 28)
69 #define SPI_CONTROL_MODE_3			(3 << 28)
70 #define SPI_CONTROL_MODE_MASK			(3 << 28)
71 #define SPI_MODE_SEL(x)				(((x) & 0x3) << 28)
72 #define SPI_M_S					(1 << 30)
73 #define SPI_PIO					(1 << 31)
74 
75 #define SPI_COMMAND2				0x004
76 #define SPI_TX_TAP_DELAY(x)			(((x) & 0x3F) << 6)
77 #define SPI_RX_TAP_DELAY(x)			(((x) & 0x3F) << 0)
78 
79 #define SPI_CS_TIMING1				0x008
80 #define SPI_SETUP_HOLD(setup, hold)		(((setup) << 4) | (hold))
81 #define SPI_CS_SETUP_HOLD(reg, cs, val)			\
82 		((((val) & 0xFFu) << ((cs) * 8)) |	\
83 		((reg) & ~(0xFFu << ((cs) * 8))))
84 
85 #define SPI_CS_TIMING2				0x00C
86 #define CYCLES_BETWEEN_PACKETS_0(x)		(((x) & 0x1F) << 0)
87 #define CS_ACTIVE_BETWEEN_PACKETS_0		(1 << 5)
88 #define CYCLES_BETWEEN_PACKETS_1(x)		(((x) & 0x1F) << 8)
89 #define CS_ACTIVE_BETWEEN_PACKETS_1		(1 << 13)
90 #define CYCLES_BETWEEN_PACKETS_2(x)		(((x) & 0x1F) << 16)
91 #define CS_ACTIVE_BETWEEN_PACKETS_2		(1 << 21)
92 #define CYCLES_BETWEEN_PACKETS_3(x)		(((x) & 0x1F) << 24)
93 #define CS_ACTIVE_BETWEEN_PACKETS_3		(1 << 29)
94 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)		\
95 		(reg = (((val) & 0x1) << ((cs) * 8 + 5)) |	\
96 			((reg) & ~(1 << ((cs) * 8 + 5))))
97 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)		\
98 		(reg = (((val) & 0xF) << ((cs) * 8)) |		\
99 			((reg) & ~(0xF << ((cs) * 8))))
100 
101 #define SPI_TRANS_STATUS			0x010
102 #define SPI_BLK_CNT(val)			(((val) >> 0) & 0xFFFF)
103 #define SPI_SLV_IDLE_COUNT(val)			(((val) >> 16) & 0xFF)
104 #define SPI_RDY					(1 << 30)
105 
106 #define SPI_FIFO_STATUS				0x014
107 #define SPI_RX_FIFO_EMPTY			(1 << 0)
108 #define SPI_RX_FIFO_FULL			(1 << 1)
109 #define SPI_TX_FIFO_EMPTY			(1 << 2)
110 #define SPI_TX_FIFO_FULL			(1 << 3)
111 #define SPI_RX_FIFO_UNF				(1 << 4)
112 #define SPI_RX_FIFO_OVF				(1 << 5)
113 #define SPI_TX_FIFO_UNF				(1 << 6)
114 #define SPI_TX_FIFO_OVF				(1 << 7)
115 #define SPI_ERR					(1 << 8)
116 #define SPI_TX_FIFO_FLUSH			(1 << 14)
117 #define SPI_RX_FIFO_FLUSH			(1 << 15)
118 #define SPI_TX_FIFO_EMPTY_COUNT(val)		(((val) >> 16) & 0x7F)
119 #define SPI_RX_FIFO_FULL_COUNT(val)		(((val) >> 23) & 0x7F)
120 #define SPI_FRAME_END				(1 << 30)
121 #define SPI_CS_INACTIVE				(1 << 31)
122 
123 #define SPI_FIFO_ERROR				(SPI_RX_FIFO_UNF | \
124 			SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
125 #define SPI_FIFO_EMPTY			(SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
126 
127 #define SPI_TX_DATA				0x018
128 #define SPI_RX_DATA				0x01C
129 
130 #define SPI_DMA_CTL				0x020
131 #define SPI_TX_TRIG_1				(0 << 15)
132 #define SPI_TX_TRIG_4				(1 << 15)
133 #define SPI_TX_TRIG_8				(2 << 15)
134 #define SPI_TX_TRIG_16				(3 << 15)
135 #define SPI_TX_TRIG_MASK			(3 << 15)
136 #define SPI_RX_TRIG_1				(0 << 19)
137 #define SPI_RX_TRIG_4				(1 << 19)
138 #define SPI_RX_TRIG_8				(2 << 19)
139 #define SPI_RX_TRIG_16				(3 << 19)
140 #define SPI_RX_TRIG_MASK			(3 << 19)
141 #define SPI_IE_TX				(1 << 28)
142 #define SPI_IE_RX				(1 << 29)
143 #define SPI_CONT				(1 << 30)
144 #define SPI_DMA					(1 << 31)
145 #define SPI_DMA_EN				SPI_DMA
146 
147 #define SPI_DMA_BLK				0x024
148 #define SPI_DMA_BLK_SET(x)			(((x) & 0xFFFF) << 0)
149 
150 #define SPI_TX_FIFO				0x108
151 #define SPI_RX_FIFO				0x188
152 #define MAX_CHIP_SELECT				4
153 #define SPI_FIFO_DEPTH				64
154 #define DATA_DIR_TX				(1 << 0)
155 #define DATA_DIR_RX				(1 << 1)
156 
157 #define SPI_DMA_TIMEOUT				(msecs_to_jiffies(1000))
158 #define DEFAULT_SPI_DMA_BUF_LEN			(16*1024)
159 #define TX_FIFO_EMPTY_COUNT_MAX			SPI_TX_FIFO_EMPTY_COUNT(0x40)
160 #define RX_FIFO_FULL_COUNT_ZERO			SPI_RX_FIFO_FULL_COUNT(0)
161 #define MAX_HOLD_CYCLES				16
162 #define SPI_DEFAULT_SPEED			25000000
163 
164 struct tegra_spi_data {
165 	struct device				*dev;
166 	struct spi_master			*master;
167 	spinlock_t				lock;
168 
169 	struct clk				*clk;
170 	struct reset_control			*rst;
171 	void __iomem				*base;
172 	phys_addr_t				phys;
173 	unsigned				irq;
174 	u32					cur_speed;
175 
176 	struct spi_device			*cur_spi;
177 	struct spi_device			*cs_control;
178 	unsigned				cur_pos;
179 	unsigned				words_per_32bit;
180 	unsigned				bytes_per_word;
181 	unsigned				curr_dma_words;
182 	unsigned				cur_direction;
183 
184 	unsigned				cur_rx_pos;
185 	unsigned				cur_tx_pos;
186 
187 	unsigned				dma_buf_size;
188 	unsigned				max_buf_size;
189 	bool					is_curr_dma_xfer;
190 
191 	struct completion			rx_dma_complete;
192 	struct completion			tx_dma_complete;
193 
194 	u32					tx_status;
195 	u32					rx_status;
196 	u32					status_reg;
197 	bool					is_packed;
198 
199 	u32					command1_reg;
200 	u32					dma_control_reg;
201 	u32					def_command1_reg;
202 
203 	struct completion			xfer_completion;
204 	struct spi_transfer			*curr_xfer;
205 	struct dma_chan				*rx_dma_chan;
206 	u32					*rx_dma_buf;
207 	dma_addr_t				rx_dma_phys;
208 	struct dma_async_tx_descriptor		*rx_dma_desc;
209 
210 	struct dma_chan				*tx_dma_chan;
211 	u32					*tx_dma_buf;
212 	dma_addr_t				tx_dma_phys;
213 	struct dma_async_tx_descriptor		*tx_dma_desc;
214 };
215 
216 static int tegra_spi_runtime_suspend(struct device *dev);
217 static int tegra_spi_runtime_resume(struct device *dev);
218 
tegra_spi_readl(struct tegra_spi_data * tspi,unsigned long reg)219 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
220 		unsigned long reg)
221 {
222 	return readl(tspi->base + reg);
223 }
224 
tegra_spi_writel(struct tegra_spi_data * tspi,u32 val,unsigned long reg)225 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
226 		u32 val, unsigned long reg)
227 {
228 	writel(val, tspi->base + reg);
229 
230 	/* Read back register to make sure that register writes completed */
231 	if (reg != SPI_TX_FIFO)
232 		readl(tspi->base + SPI_COMMAND1);
233 }
234 
tegra_spi_clear_status(struct tegra_spi_data * tspi)235 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
236 {
237 	u32 val;
238 
239 	/* Write 1 to clear status register */
240 	val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
241 	tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
242 
243 	/* Clear fifo status error if any */
244 	val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
245 	if (val & SPI_ERR)
246 		tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
247 				SPI_FIFO_STATUS);
248 }
249 
tegra_spi_calculate_curr_xfer_param(struct spi_device * spi,struct tegra_spi_data * tspi,struct spi_transfer * t)250 static unsigned tegra_spi_calculate_curr_xfer_param(
251 	struct spi_device *spi, struct tegra_spi_data *tspi,
252 	struct spi_transfer *t)
253 {
254 	unsigned remain_len = t->len - tspi->cur_pos;
255 	unsigned max_word;
256 	unsigned bits_per_word = t->bits_per_word;
257 	unsigned max_len;
258 	unsigned total_fifo_words;
259 
260 	tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
261 
262 	if (bits_per_word == 8 || bits_per_word == 16) {
263 		tspi->is_packed = 1;
264 		tspi->words_per_32bit = 32/bits_per_word;
265 	} else {
266 		tspi->is_packed = 0;
267 		tspi->words_per_32bit = 1;
268 	}
269 
270 	if (tspi->is_packed) {
271 		max_len = min(remain_len, tspi->max_buf_size);
272 		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
273 		total_fifo_words = (max_len + 3) / 4;
274 	} else {
275 		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
276 		max_word = min(max_word, tspi->max_buf_size/4);
277 		tspi->curr_dma_words = max_word;
278 		total_fifo_words = max_word;
279 	}
280 	return total_fifo_words;
281 }
282 
tegra_spi_fill_tx_fifo_from_client_txbuf(struct tegra_spi_data * tspi,struct spi_transfer * t)283 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
284 	struct tegra_spi_data *tspi, struct spi_transfer *t)
285 {
286 	unsigned nbytes;
287 	unsigned tx_empty_count;
288 	u32 fifo_status;
289 	unsigned max_n_32bit;
290 	unsigned i, count;
291 	unsigned int written_words;
292 	unsigned fifo_words_left;
293 	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
294 
295 	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
296 	tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
297 
298 	if (tspi->is_packed) {
299 		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
300 		written_words = min(fifo_words_left, tspi->curr_dma_words);
301 		nbytes = written_words * tspi->bytes_per_word;
302 		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
303 		for (count = 0; count < max_n_32bit; count++) {
304 			u32 x = 0;
305 
306 			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
307 				x |= (u32)(*tx_buf++) << (i * 8);
308 			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
309 		}
310 
311 		tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
312 	} else {
313 		unsigned int write_bytes;
314 		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
315 		written_words = max_n_32bit;
316 		nbytes = written_words * tspi->bytes_per_word;
317 		if (nbytes > t->len - tspi->cur_pos)
318 			nbytes = t->len - tspi->cur_pos;
319 		write_bytes = nbytes;
320 		for (count = 0; count < max_n_32bit; count++) {
321 			u32 x = 0;
322 
323 			for (i = 0; nbytes && (i < tspi->bytes_per_word);
324 							i++, nbytes--)
325 				x |= (u32)(*tx_buf++) << (i * 8);
326 			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
327 		}
328 
329 		tspi->cur_tx_pos += write_bytes;
330 	}
331 
332 	return written_words;
333 }
334 
tegra_spi_read_rx_fifo_to_client_rxbuf(struct tegra_spi_data * tspi,struct spi_transfer * t)335 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
336 		struct tegra_spi_data *tspi, struct spi_transfer *t)
337 {
338 	unsigned rx_full_count;
339 	u32 fifo_status;
340 	unsigned i, count;
341 	unsigned int read_words = 0;
342 	unsigned len;
343 	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
344 
345 	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
346 	rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
347 	if (tspi->is_packed) {
348 		len = tspi->curr_dma_words * tspi->bytes_per_word;
349 		for (count = 0; count < rx_full_count; count++) {
350 			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
351 
352 			for (i = 0; len && (i < 4); i++, len--)
353 				*rx_buf++ = (x >> i*8) & 0xFF;
354 		}
355 		read_words += tspi->curr_dma_words;
356 		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
357 	} else {
358 		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
359 		u8 bytes_per_word = tspi->bytes_per_word;
360 		unsigned int read_bytes;
361 
362 		len = rx_full_count * bytes_per_word;
363 		if (len > t->len - tspi->cur_pos)
364 			len = t->len - tspi->cur_pos;
365 		read_bytes = len;
366 		for (count = 0; count < rx_full_count; count++) {
367 			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
368 
369 			for (i = 0; len && (i < bytes_per_word); i++, len--)
370 				*rx_buf++ = (x >> (i*8)) & 0xFF;
371 		}
372 		read_words += rx_full_count;
373 		tspi->cur_rx_pos += read_bytes;
374 	}
375 
376 	return read_words;
377 }
378 
tegra_spi_copy_client_txbuf_to_spi_txbuf(struct tegra_spi_data * tspi,struct spi_transfer * t)379 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
380 		struct tegra_spi_data *tspi, struct spi_transfer *t)
381 {
382 	/* Make the dma buffer to read by cpu */
383 	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
384 				tspi->dma_buf_size, DMA_TO_DEVICE);
385 
386 	if (tspi->is_packed) {
387 		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
388 
389 		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
390 		tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
391 	} else {
392 		unsigned int i;
393 		unsigned int count;
394 		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
395 		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
396 		unsigned int write_bytes;
397 
398 		if (consume > t->len - tspi->cur_pos)
399 			consume = t->len - tspi->cur_pos;
400 		write_bytes = consume;
401 		for (count = 0; count < tspi->curr_dma_words; count++) {
402 			u32 x = 0;
403 
404 			for (i = 0; consume && (i < tspi->bytes_per_word);
405 							i++, consume--)
406 				x |= (u32)(*tx_buf++) << (i * 8);
407 			tspi->tx_dma_buf[count] = x;
408 		}
409 
410 		tspi->cur_tx_pos += write_bytes;
411 	}
412 
413 	/* Make the dma buffer to read by dma */
414 	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
415 				tspi->dma_buf_size, DMA_TO_DEVICE);
416 }
417 
tegra_spi_copy_spi_rxbuf_to_client_rxbuf(struct tegra_spi_data * tspi,struct spi_transfer * t)418 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
419 		struct tegra_spi_data *tspi, struct spi_transfer *t)
420 {
421 	/* Make the dma buffer to read by cpu */
422 	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
423 		tspi->dma_buf_size, DMA_FROM_DEVICE);
424 
425 	if (tspi->is_packed) {
426 		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
427 
428 		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
429 		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
430 	} else {
431 		unsigned int i;
432 		unsigned int count;
433 		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
434 		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
435 		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
436 		unsigned int read_bytes;
437 
438 		if (consume > t->len - tspi->cur_pos)
439 			consume = t->len - tspi->cur_pos;
440 		read_bytes = consume;
441 		for (count = 0; count < tspi->curr_dma_words; count++) {
442 			u32 x = tspi->rx_dma_buf[count] & rx_mask;
443 
444 			for (i = 0; consume && (i < tspi->bytes_per_word);
445 							i++, consume--)
446 				*rx_buf++ = (x >> (i*8)) & 0xFF;
447 		}
448 
449 		tspi->cur_rx_pos += read_bytes;
450 	}
451 
452 	/* Make the dma buffer to read by dma */
453 	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
454 		tspi->dma_buf_size, DMA_FROM_DEVICE);
455 }
456 
tegra_spi_dma_complete(void * args)457 static void tegra_spi_dma_complete(void *args)
458 {
459 	struct completion *dma_complete = args;
460 
461 	complete(dma_complete);
462 }
463 
tegra_spi_start_tx_dma(struct tegra_spi_data * tspi,int len)464 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
465 {
466 	reinit_completion(&tspi->tx_dma_complete);
467 	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
468 				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
469 				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
470 	if (!tspi->tx_dma_desc) {
471 		dev_err(tspi->dev, "Not able to get desc for Tx\n");
472 		return -EIO;
473 	}
474 
475 	tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
476 	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
477 
478 	dmaengine_submit(tspi->tx_dma_desc);
479 	dma_async_issue_pending(tspi->tx_dma_chan);
480 	return 0;
481 }
482 
tegra_spi_start_rx_dma(struct tegra_spi_data * tspi,int len)483 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
484 {
485 	reinit_completion(&tspi->rx_dma_complete);
486 	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
487 				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
488 				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
489 	if (!tspi->rx_dma_desc) {
490 		dev_err(tspi->dev, "Not able to get desc for Rx\n");
491 		return -EIO;
492 	}
493 
494 	tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
495 	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
496 
497 	dmaengine_submit(tspi->rx_dma_desc);
498 	dma_async_issue_pending(tspi->rx_dma_chan);
499 	return 0;
500 }
501 
tegra_spi_start_dma_based_transfer(struct tegra_spi_data * tspi,struct spi_transfer * t)502 static int tegra_spi_start_dma_based_transfer(
503 		struct tegra_spi_data *tspi, struct spi_transfer *t)
504 {
505 	u32 val;
506 	unsigned int len;
507 	int ret = 0;
508 	u32 status;
509 
510 	/* Make sure that Rx and Tx fifo are empty */
511 	status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
512 	if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
513 		dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
514 			(unsigned)status);
515 		return -EIO;
516 	}
517 
518 	val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
519 	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
520 
521 	if (tspi->is_packed)
522 		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
523 					4) * 4;
524 	else
525 		len = tspi->curr_dma_words * 4;
526 
527 	/* Set attention level based on length of transfer */
528 	if (len & 0xF)
529 		val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
530 	else if (((len) >> 4) & 0x1)
531 		val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
532 	else
533 		val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
534 
535 	if (tspi->cur_direction & DATA_DIR_TX)
536 		val |= SPI_IE_TX;
537 
538 	if (tspi->cur_direction & DATA_DIR_RX)
539 		val |= SPI_IE_RX;
540 
541 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
542 	tspi->dma_control_reg = val;
543 
544 	if (tspi->cur_direction & DATA_DIR_TX) {
545 		tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
546 		ret = tegra_spi_start_tx_dma(tspi, len);
547 		if (ret < 0) {
548 			dev_err(tspi->dev,
549 				"Starting tx dma failed, err %d\n", ret);
550 			return ret;
551 		}
552 	}
553 
554 	if (tspi->cur_direction & DATA_DIR_RX) {
555 		/* Make the dma buffer to read by dma */
556 		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
557 				tspi->dma_buf_size, DMA_FROM_DEVICE);
558 
559 		ret = tegra_spi_start_rx_dma(tspi, len);
560 		if (ret < 0) {
561 			dev_err(tspi->dev,
562 				"Starting rx dma failed, err %d\n", ret);
563 			if (tspi->cur_direction & DATA_DIR_TX)
564 				dmaengine_terminate_all(tspi->tx_dma_chan);
565 			return ret;
566 		}
567 	}
568 	tspi->is_curr_dma_xfer = true;
569 	tspi->dma_control_reg = val;
570 
571 	val |= SPI_DMA_EN;
572 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
573 	return ret;
574 }
575 
tegra_spi_start_cpu_based_transfer(struct tegra_spi_data * tspi,struct spi_transfer * t)576 static int tegra_spi_start_cpu_based_transfer(
577 		struct tegra_spi_data *tspi, struct spi_transfer *t)
578 {
579 	u32 val;
580 	unsigned cur_words;
581 
582 	if (tspi->cur_direction & DATA_DIR_TX)
583 		cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
584 	else
585 		cur_words = tspi->curr_dma_words;
586 
587 	val = SPI_DMA_BLK_SET(cur_words - 1);
588 	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
589 
590 	val = 0;
591 	if (tspi->cur_direction & DATA_DIR_TX)
592 		val |= SPI_IE_TX;
593 
594 	if (tspi->cur_direction & DATA_DIR_RX)
595 		val |= SPI_IE_RX;
596 
597 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
598 	tspi->dma_control_reg = val;
599 
600 	tspi->is_curr_dma_xfer = false;
601 
602 	val |= SPI_DMA_EN;
603 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
604 	return 0;
605 }
606 
tegra_spi_init_dma_param(struct tegra_spi_data * tspi,bool dma_to_memory)607 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
608 			bool dma_to_memory)
609 {
610 	struct dma_chan *dma_chan;
611 	u32 *dma_buf;
612 	dma_addr_t dma_phys;
613 	int ret;
614 	struct dma_slave_config dma_sconfig;
615 
616 	dma_chan = dma_request_slave_channel_reason(tspi->dev,
617 					dma_to_memory ? "rx" : "tx");
618 	if (IS_ERR(dma_chan)) {
619 		ret = PTR_ERR(dma_chan);
620 		if (ret != -EPROBE_DEFER)
621 			dev_err(tspi->dev,
622 				"Dma channel is not available: %d\n", ret);
623 		return ret;
624 	}
625 
626 	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
627 				&dma_phys, GFP_KERNEL);
628 	if (!dma_buf) {
629 		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
630 		dma_release_channel(dma_chan);
631 		return -ENOMEM;
632 	}
633 
634 	if (dma_to_memory) {
635 		dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
636 		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
637 		dma_sconfig.src_maxburst = 0;
638 	} else {
639 		dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
640 		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
641 		dma_sconfig.dst_maxburst = 0;
642 	}
643 
644 	ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
645 	if (ret)
646 		goto scrub;
647 	if (dma_to_memory) {
648 		tspi->rx_dma_chan = dma_chan;
649 		tspi->rx_dma_buf = dma_buf;
650 		tspi->rx_dma_phys = dma_phys;
651 	} else {
652 		tspi->tx_dma_chan = dma_chan;
653 		tspi->tx_dma_buf = dma_buf;
654 		tspi->tx_dma_phys = dma_phys;
655 	}
656 	return 0;
657 
658 scrub:
659 	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
660 	dma_release_channel(dma_chan);
661 	return ret;
662 }
663 
tegra_spi_deinit_dma_param(struct tegra_spi_data * tspi,bool dma_to_memory)664 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
665 	bool dma_to_memory)
666 {
667 	u32 *dma_buf;
668 	dma_addr_t dma_phys;
669 	struct dma_chan *dma_chan;
670 
671 	if (dma_to_memory) {
672 		dma_buf = tspi->rx_dma_buf;
673 		dma_chan = tspi->rx_dma_chan;
674 		dma_phys = tspi->rx_dma_phys;
675 		tspi->rx_dma_chan = NULL;
676 		tspi->rx_dma_buf = NULL;
677 	} else {
678 		dma_buf = tspi->tx_dma_buf;
679 		dma_chan = tspi->tx_dma_chan;
680 		dma_phys = tspi->tx_dma_phys;
681 		tspi->tx_dma_buf = NULL;
682 		tspi->tx_dma_chan = NULL;
683 	}
684 	if (!dma_chan)
685 		return;
686 
687 	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
688 	dma_release_channel(dma_chan);
689 }
690 
tegra_spi_setup_transfer_one(struct spi_device * spi,struct spi_transfer * t,bool is_first_of_msg)691 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
692 		struct spi_transfer *t, bool is_first_of_msg)
693 {
694 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
695 	u32 speed = t->speed_hz;
696 	u8 bits_per_word = t->bits_per_word;
697 	u32 command1;
698 	int req_mode;
699 
700 	if (speed != tspi->cur_speed) {
701 		clk_set_rate(tspi->clk, speed);
702 		tspi->cur_speed = speed;
703 	}
704 
705 	tspi->cur_spi = spi;
706 	tspi->cur_pos = 0;
707 	tspi->cur_rx_pos = 0;
708 	tspi->cur_tx_pos = 0;
709 	tspi->curr_xfer = t;
710 
711 	if (is_first_of_msg) {
712 		tegra_spi_clear_status(tspi);
713 
714 		command1 = tspi->def_command1_reg;
715 		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
716 
717 		command1 &= ~SPI_CONTROL_MODE_MASK;
718 		req_mode = spi->mode & 0x3;
719 		if (req_mode == SPI_MODE_0)
720 			command1 |= SPI_CONTROL_MODE_0;
721 		else if (req_mode == SPI_MODE_1)
722 			command1 |= SPI_CONTROL_MODE_1;
723 		else if (req_mode == SPI_MODE_2)
724 			command1 |= SPI_CONTROL_MODE_2;
725 		else if (req_mode == SPI_MODE_3)
726 			command1 |= SPI_CONTROL_MODE_3;
727 
728 		if (tspi->cs_control) {
729 			if (tspi->cs_control != spi)
730 				tegra_spi_writel(tspi, command1, SPI_COMMAND1);
731 			tspi->cs_control = NULL;
732 		} else
733 			tegra_spi_writel(tspi, command1, SPI_COMMAND1);
734 
735 		command1 |= SPI_CS_SW_HW;
736 		if (spi->mode & SPI_CS_HIGH)
737 			command1 |= SPI_CS_SS_VAL;
738 		else
739 			command1 &= ~SPI_CS_SS_VAL;
740 
741 		tegra_spi_writel(tspi, 0, SPI_COMMAND2);
742 	} else {
743 		command1 = tspi->command1_reg;
744 		command1 &= ~SPI_BIT_LENGTH(~0);
745 		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
746 	}
747 
748 	return command1;
749 }
750 
tegra_spi_start_transfer_one(struct spi_device * spi,struct spi_transfer * t,u32 command1)751 static int tegra_spi_start_transfer_one(struct spi_device *spi,
752 		struct spi_transfer *t, u32 command1)
753 {
754 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
755 	unsigned total_fifo_words;
756 	int ret;
757 
758 	total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
759 
760 	if (tspi->is_packed)
761 		command1 |= SPI_PACKED;
762 	else
763 		command1 &= ~SPI_PACKED;
764 
765 	command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
766 	tspi->cur_direction = 0;
767 	if (t->rx_buf) {
768 		command1 |= SPI_RX_EN;
769 		tspi->cur_direction |= DATA_DIR_RX;
770 	}
771 	if (t->tx_buf) {
772 		command1 |= SPI_TX_EN;
773 		tspi->cur_direction |= DATA_DIR_TX;
774 	}
775 	command1 |= SPI_CS_SEL(spi->chip_select);
776 	tegra_spi_writel(tspi, command1, SPI_COMMAND1);
777 	tspi->command1_reg = command1;
778 
779 	dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
780 		tspi->def_command1_reg, (unsigned)command1);
781 
782 	if (total_fifo_words > SPI_FIFO_DEPTH)
783 		ret = tegra_spi_start_dma_based_transfer(tspi, t);
784 	else
785 		ret = tegra_spi_start_cpu_based_transfer(tspi, t);
786 	return ret;
787 }
788 
tegra_spi_setup(struct spi_device * spi)789 static int tegra_spi_setup(struct spi_device *spi)
790 {
791 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
792 	u32 val;
793 	unsigned long flags;
794 	int ret;
795 
796 	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
797 		spi->bits_per_word,
798 		spi->mode & SPI_CPOL ? "" : "~",
799 		spi->mode & SPI_CPHA ? "" : "~",
800 		spi->max_speed_hz);
801 
802 	ret = pm_runtime_get_sync(tspi->dev);
803 	if (ret < 0) {
804 		pm_runtime_put_noidle(tspi->dev);
805 		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
806 		return ret;
807 	}
808 
809 	spin_lock_irqsave(&tspi->lock, flags);
810 	val = tspi->def_command1_reg;
811 	if (spi->mode & SPI_CS_HIGH)
812 		val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
813 	else
814 		val |= SPI_CS_POL_INACTIVE(spi->chip_select);
815 	tspi->def_command1_reg = val;
816 	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
817 	spin_unlock_irqrestore(&tspi->lock, flags);
818 
819 	pm_runtime_put(tspi->dev);
820 	return 0;
821 }
822 
tegra_spi_transfer_delay(int delay)823 static void tegra_spi_transfer_delay(int delay)
824 {
825 	if (!delay)
826 		return;
827 
828 	if (delay >= 1000)
829 		mdelay(delay / 1000);
830 
831 	udelay(delay % 1000);
832 }
833 
tegra_spi_transfer_one_message(struct spi_master * master,struct spi_message * msg)834 static int tegra_spi_transfer_one_message(struct spi_master *master,
835 			struct spi_message *msg)
836 {
837 	bool is_first_msg = true;
838 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
839 	struct spi_transfer *xfer;
840 	struct spi_device *spi = msg->spi;
841 	int ret;
842 	bool skip = false;
843 
844 	msg->status = 0;
845 	msg->actual_length = 0;
846 
847 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
848 		u32 cmd1;
849 
850 		reinit_completion(&tspi->xfer_completion);
851 
852 		cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
853 
854 		if (!xfer->len) {
855 			ret = 0;
856 			skip = true;
857 			goto complete_xfer;
858 		}
859 
860 		ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
861 		if (ret < 0) {
862 			dev_err(tspi->dev,
863 				"spi can not start transfer, err %d\n", ret);
864 			goto complete_xfer;
865 		}
866 
867 		is_first_msg = false;
868 		ret = wait_for_completion_timeout(&tspi->xfer_completion,
869 						SPI_DMA_TIMEOUT);
870 		if (WARN_ON(ret == 0)) {
871 			dev_err(tspi->dev,
872 				"spi trasfer timeout, err %d\n", ret);
873 			ret = -EIO;
874 			goto complete_xfer;
875 		}
876 
877 		if (tspi->tx_status ||  tspi->rx_status) {
878 			dev_err(tspi->dev, "Error in Transfer\n");
879 			ret = -EIO;
880 			goto complete_xfer;
881 		}
882 		msg->actual_length += xfer->len;
883 
884 complete_xfer:
885 		if (ret < 0 || skip) {
886 			tegra_spi_writel(tspi, tspi->def_command1_reg,
887 					SPI_COMMAND1);
888 			tegra_spi_transfer_delay(xfer->delay_usecs);
889 			goto exit;
890 		} else if (list_is_last(&xfer->transfer_list,
891 					&msg->transfers)) {
892 			if (xfer->cs_change)
893 				tspi->cs_control = spi;
894 			else {
895 				tegra_spi_writel(tspi, tspi->def_command1_reg,
896 						SPI_COMMAND1);
897 				tegra_spi_transfer_delay(xfer->delay_usecs);
898 			}
899 		} else if (xfer->cs_change) {
900 			tegra_spi_writel(tspi, tspi->def_command1_reg,
901 					SPI_COMMAND1);
902 			tegra_spi_transfer_delay(xfer->delay_usecs);
903 		}
904 
905 	}
906 	ret = 0;
907 exit:
908 	msg->status = ret;
909 	spi_finalize_current_message(master);
910 	return ret;
911 }
912 
handle_cpu_based_xfer(struct tegra_spi_data * tspi)913 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
914 {
915 	struct spi_transfer *t = tspi->curr_xfer;
916 	unsigned long flags;
917 
918 	spin_lock_irqsave(&tspi->lock, flags);
919 	if (tspi->tx_status ||  tspi->rx_status) {
920 		dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
921 			tspi->status_reg);
922 		dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
923 			tspi->command1_reg, tspi->dma_control_reg);
924 		reset_control_assert(tspi->rst);
925 		udelay(2);
926 		reset_control_deassert(tspi->rst);
927 		complete(&tspi->xfer_completion);
928 		goto exit;
929 	}
930 
931 	if (tspi->cur_direction & DATA_DIR_RX)
932 		tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
933 
934 	if (tspi->cur_direction & DATA_DIR_TX)
935 		tspi->cur_pos = tspi->cur_tx_pos;
936 	else
937 		tspi->cur_pos = tspi->cur_rx_pos;
938 
939 	if (tspi->cur_pos == t->len) {
940 		complete(&tspi->xfer_completion);
941 		goto exit;
942 	}
943 
944 	tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
945 	tegra_spi_start_cpu_based_transfer(tspi, t);
946 exit:
947 	spin_unlock_irqrestore(&tspi->lock, flags);
948 	return IRQ_HANDLED;
949 }
950 
handle_dma_based_xfer(struct tegra_spi_data * tspi)951 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
952 {
953 	struct spi_transfer *t = tspi->curr_xfer;
954 	long wait_status;
955 	int err = 0;
956 	unsigned total_fifo_words;
957 	unsigned long flags;
958 
959 	/* Abort dmas if any error */
960 	if (tspi->cur_direction & DATA_DIR_TX) {
961 		if (tspi->tx_status) {
962 			dmaengine_terminate_all(tspi->tx_dma_chan);
963 			err += 1;
964 		} else {
965 			wait_status = wait_for_completion_interruptible_timeout(
966 				&tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
967 			if (wait_status <= 0) {
968 				dmaengine_terminate_all(tspi->tx_dma_chan);
969 				dev_err(tspi->dev, "TxDma Xfer failed\n");
970 				err += 1;
971 			}
972 		}
973 	}
974 
975 	if (tspi->cur_direction & DATA_DIR_RX) {
976 		if (tspi->rx_status) {
977 			dmaengine_terminate_all(tspi->rx_dma_chan);
978 			err += 2;
979 		} else {
980 			wait_status = wait_for_completion_interruptible_timeout(
981 				&tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
982 			if (wait_status <= 0) {
983 				dmaengine_terminate_all(tspi->rx_dma_chan);
984 				dev_err(tspi->dev, "RxDma Xfer failed\n");
985 				err += 2;
986 			}
987 		}
988 	}
989 
990 	spin_lock_irqsave(&tspi->lock, flags);
991 	if (err) {
992 		dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
993 			tspi->status_reg);
994 		dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
995 			tspi->command1_reg, tspi->dma_control_reg);
996 		reset_control_assert(tspi->rst);
997 		udelay(2);
998 		reset_control_deassert(tspi->rst);
999 		complete(&tspi->xfer_completion);
1000 		spin_unlock_irqrestore(&tspi->lock, flags);
1001 		return IRQ_HANDLED;
1002 	}
1003 
1004 	if (tspi->cur_direction & DATA_DIR_RX)
1005 		tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1006 
1007 	if (tspi->cur_direction & DATA_DIR_TX)
1008 		tspi->cur_pos = tspi->cur_tx_pos;
1009 	else
1010 		tspi->cur_pos = tspi->cur_rx_pos;
1011 
1012 	if (tspi->cur_pos == t->len) {
1013 		complete(&tspi->xfer_completion);
1014 		goto exit;
1015 	}
1016 
1017 	/* Continue transfer in current message */
1018 	total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1019 							tspi, t);
1020 	if (total_fifo_words > SPI_FIFO_DEPTH)
1021 		err = tegra_spi_start_dma_based_transfer(tspi, t);
1022 	else
1023 		err = tegra_spi_start_cpu_based_transfer(tspi, t);
1024 
1025 exit:
1026 	spin_unlock_irqrestore(&tspi->lock, flags);
1027 	return IRQ_HANDLED;
1028 }
1029 
tegra_spi_isr_thread(int irq,void * context_data)1030 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1031 {
1032 	struct tegra_spi_data *tspi = context_data;
1033 
1034 	if (!tspi->is_curr_dma_xfer)
1035 		return handle_cpu_based_xfer(tspi);
1036 	return handle_dma_based_xfer(tspi);
1037 }
1038 
tegra_spi_isr(int irq,void * context_data)1039 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1040 {
1041 	struct tegra_spi_data *tspi = context_data;
1042 
1043 	tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1044 	if (tspi->cur_direction & DATA_DIR_TX)
1045 		tspi->tx_status = tspi->status_reg &
1046 					(SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1047 
1048 	if (tspi->cur_direction & DATA_DIR_RX)
1049 		tspi->rx_status = tspi->status_reg &
1050 					(SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1051 	tegra_spi_clear_status(tspi);
1052 
1053 	return IRQ_WAKE_THREAD;
1054 }
1055 
1056 static const struct of_device_id tegra_spi_of_match[] = {
1057 	{ .compatible = "nvidia,tegra114-spi", },
1058 	{}
1059 };
1060 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1061 
tegra_spi_probe(struct platform_device * pdev)1062 static int tegra_spi_probe(struct platform_device *pdev)
1063 {
1064 	struct spi_master	*master;
1065 	struct tegra_spi_data	*tspi;
1066 	struct resource		*r;
1067 	int ret, spi_irq;
1068 
1069 	master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1070 	if (!master) {
1071 		dev_err(&pdev->dev, "master allocation failed\n");
1072 		return -ENOMEM;
1073 	}
1074 	platform_set_drvdata(pdev, master);
1075 	tspi = spi_master_get_devdata(master);
1076 
1077 	if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1078 				 &master->max_speed_hz))
1079 		master->max_speed_hz = 25000000; /* 25MHz */
1080 
1081 	/* the spi->mode bits understood by this driver: */
1082 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1083 	master->setup = tegra_spi_setup;
1084 	master->transfer_one_message = tegra_spi_transfer_one_message;
1085 	master->num_chipselect = MAX_CHIP_SELECT;
1086 	master->auto_runtime_pm = true;
1087 
1088 	tspi->master = master;
1089 	tspi->dev = &pdev->dev;
1090 	spin_lock_init(&tspi->lock);
1091 
1092 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1093 	tspi->base = devm_ioremap_resource(&pdev->dev, r);
1094 	if (IS_ERR(tspi->base)) {
1095 		ret = PTR_ERR(tspi->base);
1096 		goto exit_free_master;
1097 	}
1098 	tspi->phys = r->start;
1099 
1100 	spi_irq = platform_get_irq(pdev, 0);
1101 	tspi->irq = spi_irq;
1102 
1103 	tspi->clk = devm_clk_get(&pdev->dev, "spi");
1104 	if (IS_ERR(tspi->clk)) {
1105 		dev_err(&pdev->dev, "can not get clock\n");
1106 		ret = PTR_ERR(tspi->clk);
1107 		goto exit_free_master;
1108 	}
1109 
1110 	tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1111 	if (IS_ERR(tspi->rst)) {
1112 		dev_err(&pdev->dev, "can not get reset\n");
1113 		ret = PTR_ERR(tspi->rst);
1114 		goto exit_free_master;
1115 	}
1116 
1117 	tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1118 	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1119 
1120 	ret = tegra_spi_init_dma_param(tspi, true);
1121 	if (ret < 0)
1122 		goto exit_free_master;
1123 	ret = tegra_spi_init_dma_param(tspi, false);
1124 	if (ret < 0)
1125 		goto exit_rx_dma_free;
1126 	tspi->max_buf_size = tspi->dma_buf_size;
1127 	init_completion(&tspi->tx_dma_complete);
1128 	init_completion(&tspi->rx_dma_complete);
1129 
1130 	init_completion(&tspi->xfer_completion);
1131 
1132 	pm_runtime_enable(&pdev->dev);
1133 	if (!pm_runtime_enabled(&pdev->dev)) {
1134 		ret = tegra_spi_runtime_resume(&pdev->dev);
1135 		if (ret)
1136 			goto exit_pm_disable;
1137 	}
1138 
1139 	ret = pm_runtime_get_sync(&pdev->dev);
1140 	if (ret < 0) {
1141 		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1142 		goto exit_pm_disable;
1143 	}
1144 
1145 	reset_control_assert(tspi->rst);
1146 	udelay(2);
1147 	reset_control_deassert(tspi->rst);
1148 	tspi->def_command1_reg  = SPI_M_S;
1149 	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1150 	pm_runtime_put(&pdev->dev);
1151 	ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1152 				   tegra_spi_isr_thread, IRQF_ONESHOT,
1153 				   dev_name(&pdev->dev), tspi);
1154 	if (ret < 0) {
1155 		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1156 			tspi->irq);
1157 		goto exit_pm_disable;
1158 	}
1159 
1160 	master->dev.of_node = pdev->dev.of_node;
1161 	ret = devm_spi_register_master(&pdev->dev, master);
1162 	if (ret < 0) {
1163 		dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1164 		goto exit_free_irq;
1165 	}
1166 	return ret;
1167 
1168 exit_free_irq:
1169 	free_irq(spi_irq, tspi);
1170 exit_pm_disable:
1171 	pm_runtime_disable(&pdev->dev);
1172 	if (!pm_runtime_status_suspended(&pdev->dev))
1173 		tegra_spi_runtime_suspend(&pdev->dev);
1174 	tegra_spi_deinit_dma_param(tspi, false);
1175 exit_rx_dma_free:
1176 	tegra_spi_deinit_dma_param(tspi, true);
1177 exit_free_master:
1178 	spi_master_put(master);
1179 	return ret;
1180 }
1181 
tegra_spi_remove(struct platform_device * pdev)1182 static int tegra_spi_remove(struct platform_device *pdev)
1183 {
1184 	struct spi_master *master = platform_get_drvdata(pdev);
1185 	struct tegra_spi_data	*tspi = spi_master_get_devdata(master);
1186 
1187 	free_irq(tspi->irq, tspi);
1188 
1189 	if (tspi->tx_dma_chan)
1190 		tegra_spi_deinit_dma_param(tspi, false);
1191 
1192 	if (tspi->rx_dma_chan)
1193 		tegra_spi_deinit_dma_param(tspi, true);
1194 
1195 	pm_runtime_disable(&pdev->dev);
1196 	if (!pm_runtime_status_suspended(&pdev->dev))
1197 		tegra_spi_runtime_suspend(&pdev->dev);
1198 
1199 	return 0;
1200 }
1201 
1202 #ifdef CONFIG_PM_SLEEP
tegra_spi_suspend(struct device * dev)1203 static int tegra_spi_suspend(struct device *dev)
1204 {
1205 	struct spi_master *master = dev_get_drvdata(dev);
1206 
1207 	return spi_master_suspend(master);
1208 }
1209 
tegra_spi_resume(struct device * dev)1210 static int tegra_spi_resume(struct device *dev)
1211 {
1212 	struct spi_master *master = dev_get_drvdata(dev);
1213 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1214 	int ret;
1215 
1216 	ret = pm_runtime_get_sync(dev);
1217 	if (ret < 0) {
1218 		pm_runtime_put_noidle(dev);
1219 		dev_err(dev, "pm runtime failed, e = %d\n", ret);
1220 		return ret;
1221 	}
1222 	tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1223 	pm_runtime_put(dev);
1224 
1225 	return spi_master_resume(master);
1226 }
1227 #endif
1228 
tegra_spi_runtime_suspend(struct device * dev)1229 static int tegra_spi_runtime_suspend(struct device *dev)
1230 {
1231 	struct spi_master *master = dev_get_drvdata(dev);
1232 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1233 
1234 	/* Flush all write which are in PPSB queue by reading back */
1235 	tegra_spi_readl(tspi, SPI_COMMAND1);
1236 
1237 	clk_disable_unprepare(tspi->clk);
1238 	return 0;
1239 }
1240 
tegra_spi_runtime_resume(struct device * dev)1241 static int tegra_spi_runtime_resume(struct device *dev)
1242 {
1243 	struct spi_master *master = dev_get_drvdata(dev);
1244 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1245 	int ret;
1246 
1247 	ret = clk_prepare_enable(tspi->clk);
1248 	if (ret < 0) {
1249 		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1250 		return ret;
1251 	}
1252 	return 0;
1253 }
1254 
1255 static const struct dev_pm_ops tegra_spi_pm_ops = {
1256 	SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1257 		tegra_spi_runtime_resume, NULL)
1258 	SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1259 };
1260 static struct platform_driver tegra_spi_driver = {
1261 	.driver = {
1262 		.name		= "spi-tegra114",
1263 		.pm		= &tegra_spi_pm_ops,
1264 		.of_match_table	= tegra_spi_of_match,
1265 	},
1266 	.probe =	tegra_spi_probe,
1267 	.remove =	tegra_spi_remove,
1268 };
1269 module_platform_driver(tegra_spi_driver);
1270 
1271 MODULE_ALIAS("platform:spi-tegra114");
1272 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1273 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1274 MODULE_LICENSE("GPL v2");
1275