1 /***********************************************************************
2 **
3 ** Implementation of the Skein block functions.
4 **
5 ** Source code author: Doug Whiting, 2008.
6 **
7 ** This algorithm and source code is released to the public domain.
8 **
9 ** Compile-time switches:
10 **
11 ** SKEIN_USE_ASM -- set bits (256/512/1024) to select which
12 ** versions use ASM code for block processing
13 ** [default: use C for all block sizes]
14 **
15 ************************************************************************/
16
17 #include <linux/string.h>
18 #include "skein_base.h"
19 #include "skein_block.h"
20
21 #ifndef SKEIN_USE_ASM
22 #define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
23 #endif
24
25 #ifndef SKEIN_LOOP
26 #define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
27 #endif
28
29 #define BLK_BITS (WCNT * 64) /* some useful definitions for code here */
30 #define KW_TWK_BASE (0)
31 #define KW_KEY_BASE (3)
32 #define ks (kw + KW_KEY_BASE)
33 #define ts (kw + KW_TWK_BASE)
34
35 #ifdef SKEIN_DEBUG
36 #define debug_save_tweak(ctx) \
37 { \
38 ctx->h.tweak[0] = ts[0]; \
39 ctx->h.tweak[1] = ts[1]; \
40 }
41 #else
42 #define debug_save_tweak(ctx)
43 #endif
44
45 #if !(SKEIN_USE_ASM & 256)
46 #undef RCNT
47 #define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
48 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
49 #define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
50 #else
51 #define SKEIN_UNROLL_256 (0)
52 #endif
53
54 #if SKEIN_UNROLL_256
55 #if (RCNT % SKEIN_UNROLL_256)
56 #error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
57 #endif
58 #endif
59 #define ROUND256(p0, p1, p2, p3, ROT, r_num) \
60 do { \
61 X##p0 += X##p1; \
62 X##p1 = rotl_64(X##p1, ROT##_0); \
63 X##p1 ^= X##p0; \
64 X##p2 += X##p3; \
65 X##p3 = rotl_64(X##p3, ROT##_1); \
66 X##p3 ^= X##p2; \
67 } while (0)
68
69 #if SKEIN_UNROLL_256 == 0
70 #define R256(p0, p1, p2, p3, ROT, r_num) /* fully unrolled */ \
71 ROUND256(p0, p1, p2, p3, ROT, r_num)
72
73 #define I256(R) \
74 do { \
75 /* inject the key schedule value */ \
76 X0 += ks[((R) + 1) % 5]; \
77 X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3]; \
78 X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3]; \
79 X3 += ks[((R) + 4) % 5] + (R) + 1; \
80 } while (0)
81 #else
82 /* looping version */
83 #define R256(p0, p1, p2, p3, ROT, r_num) ROUND256(p0, p1, p2, p3, ROT, r_num)
84
85 #define I256(R) \
86 do { \
87 /* inject the key schedule value */ \
88 X0 += ks[r + (R) + 0]; \
89 X1 += ks[r + (R) + 1] + ts[r + (R) + 0];\
90 X2 += ks[r + (R) + 2] + ts[r + (R) + 1];\
91 X3 += ks[r + (R) + 3] + r + (R); \
92 /* rotate key schedule */ \
93 ks[r + (R) + 4] = ks[r + (R) - 1]; \
94 ts[r + (R) + 2] = ts[r + (R) - 1]; \
95 } while (0)
96 #endif
97 #define R256_8_ROUNDS(R) \
98 do { \
99 R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \
100 R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \
101 R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \
102 R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \
103 I256(2 * (R)); \
104 R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \
105 R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \
106 R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \
107 R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \
108 I256(2 * (R) + 1); \
109 } while (0)
110
111 #define R256_UNROLL_R(NN) \
112 ((SKEIN_UNROLL_256 == 0 && \
113 SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
114 (SKEIN_UNROLL_256 > (NN)))
115
116 #if (SKEIN_UNROLL_256 > 14)
117 #error "need more unrolling in skein_256_process_block"
118 #endif
119 #endif
120
121 #if !(SKEIN_USE_ASM & 512)
122 #undef RCNT
123 #define RCNT (SKEIN_512_ROUNDS_TOTAL/8)
124
125 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
126 #define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
127 #else
128 #define SKEIN_UNROLL_512 (0)
129 #endif
130
131 #if SKEIN_UNROLL_512
132 #if (RCNT % SKEIN_UNROLL_512)
133 #error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
134 #endif
135 #endif
136 #define ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
137 do { \
138 X##p0 += X##p1; \
139 X##p1 = rotl_64(X##p1, ROT##_0); \
140 X##p1 ^= X##p0; \
141 X##p2 += X##p3; \
142 X##p3 = rotl_64(X##p3, ROT##_1); \
143 X##p3 ^= X##p2; \
144 X##p4 += X##p5; \
145 X##p5 = rotl_64(X##p5, ROT##_2); \
146 X##p5 ^= X##p4; \
147 X##p6 += X##p7; X##p7 = rotl_64(X##p7, ROT##_3);\
148 X##p7 ^= X##p6; \
149 } while (0)
150
151 #if SKEIN_UNROLL_512 == 0
152 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) /* unrolled */ \
153 ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)
154
155 #define I512(R) \
156 do { \
157 /* inject the key schedule value */ \
158 X0 += ks[((R) + 1) % 9]; \
159 X1 += ks[((R) + 2) % 9]; \
160 X2 += ks[((R) + 3) % 9]; \
161 X3 += ks[((R) + 4) % 9]; \
162 X4 += ks[((R) + 5) % 9]; \
163 X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
164 X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
165 X7 += ks[((R) + 8) % 9] + (R) + 1; \
166 } while (0)
167
168 #else /* looping version */
169 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
170 ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
171
172 #define I512(R) \
173 do { \
174 /* inject the key schedule value */ \
175 X0 += ks[r + (R) + 0]; \
176 X1 += ks[r + (R) + 1]; \
177 X2 += ks[r + (R) + 2]; \
178 X3 += ks[r + (R) + 3]; \
179 X4 += ks[r + (R) + 4]; \
180 X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \
181 X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \
182 X7 += ks[r + (R) + 7] + r + (R); \
183 /* rotate key schedule */ \
184 ks[r + (R) + 8] = ks[r + (R) - 1]; \
185 ts[r + (R) + 2] = ts[r + (R) - 1]; \
186 } while (0)
187 #endif /* end of looped code definitions */
188 #define R512_8_ROUNDS(R) /* do 8 full rounds */ \
189 do { \
190 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \
191 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \
192 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \
193 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \
194 I512(2 * (R)); \
195 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \
196 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \
197 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \
198 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \
199 I512(2 * (R) + 1); /* and key injection */ \
200 } while (0)
201 #define R512_UNROLL_R(NN) \
202 ((SKEIN_UNROLL_512 == 0 && \
203 SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || \
204 (SKEIN_UNROLL_512 > (NN)))
205
206 #if (SKEIN_UNROLL_512 > 14)
207 #error "need more unrolling in skein_512_process_block"
208 #endif
209 #endif
210
211 #if !(SKEIN_USE_ASM & 1024)
212 #undef RCNT
213 #define RCNT (SKEIN_1024_ROUNDS_TOTAL/8)
214 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
215 #define SKEIN_UNROLL_1024 ((SKEIN_LOOP) % 10)
216 #else
217 #define SKEIN_UNROLL_1024 (0)
218 #endif
219
220 #if (SKEIN_UNROLL_1024 != 0)
221 #if (RCNT % SKEIN_UNROLL_1024)
222 #error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
223 #endif
224 #endif
225 #define ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
226 pF, ROT, r_num) \
227 do { \
228 X##p0 += X##p1; \
229 X##p1 = rotl_64(X##p1, ROT##_0); \
230 X##p1 ^= X##p0; \
231 X##p2 += X##p3; \
232 X##p3 = rotl_64(X##p3, ROT##_1); \
233 X##p3 ^= X##p2; \
234 X##p4 += X##p5; \
235 X##p5 = rotl_64(X##p5, ROT##_2); \
236 X##p5 ^= X##p4; \
237 X##p6 += X##p7; \
238 X##p7 = rotl_64(X##p7, ROT##_3); \
239 X##p7 ^= X##p6; \
240 X##p8 += X##p9; \
241 X##p9 = rotl_64(X##p9, ROT##_4); \
242 X##p9 ^= X##p8; \
243 X##pA += X##pB; \
244 X##pB = rotl_64(X##pB, ROT##_5); \
245 X##pB ^= X##pA; \
246 X##pC += X##pD; \
247 X##pD = rotl_64(X##pD, ROT##_6); \
248 X##pD ^= X##pC; \
249 X##pE += X##pF; \
250 X##pF = rotl_64(X##pF, ROT##_7); \
251 X##pF ^= X##pE; \
252 } while (0)
253
254 #if SKEIN_UNROLL_1024 == 0
255 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
256 ROT, rn) \
257 ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
258 pF, ROT, rn) \
259
260 #define I1024(R) \
261 do { \
262 /* inject the key schedule value */ \
263 X00 += ks[((R) + 1) % 17]; \
264 X01 += ks[((R) + 2) % 17]; \
265 X02 += ks[((R) + 3) % 17]; \
266 X03 += ks[((R) + 4) % 17]; \
267 X04 += ks[((R) + 5) % 17]; \
268 X05 += ks[((R) + 6) % 17]; \
269 X06 += ks[((R) + 7) % 17]; \
270 X07 += ks[((R) + 8) % 17]; \
271 X08 += ks[((R) + 9) % 17]; \
272 X09 += ks[((R) + 10) % 17]; \
273 X10 += ks[((R) + 11) % 17]; \
274 X11 += ks[((R) + 12) % 17]; \
275 X12 += ks[((R) + 13) % 17]; \
276 X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
277 X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
278 X15 += ks[((R) + 16) % 17] + (R) + 1; \
279 } while (0)
280 #else /* looping version */
281 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
282 ROT, rn) \
283 ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
284 pF, ROT, rn) \
285
286 #define I1024(R) \
287 do { \
288 /* inject the key schedule value */ \
289 X00 += ks[r + (R) + 0]; \
290 X01 += ks[r + (R) + 1]; \
291 X02 += ks[r + (R) + 2]; \
292 X03 += ks[r + (R) + 3]; \
293 X04 += ks[r + (R) + 4]; \
294 X05 += ks[r + (R) + 5]; \
295 X06 += ks[r + (R) + 6]; \
296 X07 += ks[r + (R) + 7]; \
297 X08 += ks[r + (R) + 8]; \
298 X09 += ks[r + (R) + 9]; \
299 X10 += ks[r + (R) + 10]; \
300 X11 += ks[r + (R) + 11]; \
301 X12 += ks[r + (R) + 12]; \
302 X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \
303 X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \
304 X15 += ks[r + (R) + 15] + r + (R); \
305 /* rotate key schedule */ \
306 ks[r + (R) + 16] = ks[r + (R) - 1]; \
307 ts[r + (R) + 2] = ts[r + (R) - 1]; \
308 } while (0)
309
310 #endif
311 #define R1024_8_ROUNDS(R) \
312 do { \
313 R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, \
314 13, 14, 15, R1024_0, 8*(R) + 1); \
315 R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, \
316 05, 08, 01, R1024_1, 8*(R) + 2); \
317 R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, \
318 11, 10, 09, R1024_2, 8*(R) + 3); \
319 R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, \
320 03, 12, 07, R1024_3, 8*(R) + 4); \
321 I1024(2*(R)); \
322 R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, \
323 13, 14, 15, R1024_4, 8*(R) + 5); \
324 R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, \
325 05, 08, 01, R1024_5, 8*(R) + 6); \
326 R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, \
327 11, 10, 09, R1024_6, 8*(R) + 7); \
328 R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, \
329 03, 12, 07, R1024_7, 8*(R) + 8); \
330 I1024(2*(R)+1); \
331 } while (0)
332
333 #define R1024_UNROLL_R(NN) \
334 ((SKEIN_UNROLL_1024 == 0 && \
335 SKEIN_1024_ROUNDS_TOTAL/8 > (NN)) || \
336 (SKEIN_UNROLL_1024 > (NN)))
337
338 #if (SKEIN_UNROLL_1024 > 14)
339 #error "need more unrolling in Skein_1024_Process_Block"
340 #endif
341 #endif
342
343 /***************************** SKEIN_256 ******************************/
344 #if !(SKEIN_USE_ASM & 256)
skein_256_process_block(struct skein_256_ctx * ctx,const u8 * blk_ptr,size_t blk_cnt,size_t byte_cnt_add)345 void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
346 size_t blk_cnt, size_t byte_cnt_add)
347 { /* do it in C */
348 enum {
349 WCNT = SKEIN_256_STATE_WORDS
350 };
351 size_t r;
352 #if SKEIN_UNROLL_256
353 /* key schedule: chaining vars + tweak + "rot"*/
354 u64 kw[WCNT+4+RCNT*2];
355 #else
356 /* key schedule words : chaining vars + tweak */
357 u64 kw[WCNT+4];
358 #endif
359 u64 X0, X1, X2, X3; /* local copy of context vars, for speed */
360 u64 w[WCNT]; /* local copy of input block */
361 #ifdef SKEIN_DEBUG
362 const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */
363
364 X_ptr[0] = &X0;
365 X_ptr[1] = &X1;
366 X_ptr[2] = &X2;
367 X_ptr[3] = &X3;
368 #endif
369 skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
370 ts[0] = ctx->h.tweak[0];
371 ts[1] = ctx->h.tweak[1];
372 do {
373 /*
374 * this implementation only supports 2**64 input bytes
375 * (no carry out here)
376 */
377 ts[0] += byte_cnt_add; /* update processed length */
378
379 /* precompute the key schedule for this block */
380 ks[0] = ctx->x[0];
381 ks[1] = ctx->x[1];
382 ks[2] = ctx->x[2];
383 ks[3] = ctx->x[3];
384 ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
385
386 ts[2] = ts[0] ^ ts[1];
387
388 /* get input block in little-endian format */
389 skein_get64_lsb_first(w, blk_ptr, WCNT);
390 debug_save_tweak(ctx);
391
392 /* do the first full key injection */
393 X0 = w[0] + ks[0];
394 X1 = w[1] + ks[1] + ts[0];
395 X2 = w[2] + ks[2] + ts[1];
396 X3 = w[3] + ks[3];
397
398 blk_ptr += SKEIN_256_BLOCK_BYTES;
399
400 /* run the rounds */
401 for (r = 1;
402 r < (SKEIN_UNROLL_256 ? 2 * RCNT : 2);
403 r += (SKEIN_UNROLL_256 ? 2 * SKEIN_UNROLL_256 : 1)) {
404 R256_8_ROUNDS(0);
405 #if R256_UNROLL_R(1)
406 R256_8_ROUNDS(1);
407 #endif
408 #if R256_UNROLL_R(2)
409 R256_8_ROUNDS(2);
410 #endif
411 #if R256_UNROLL_R(3)
412 R256_8_ROUNDS(3);
413 #endif
414 #if R256_UNROLL_R(4)
415 R256_8_ROUNDS(4);
416 #endif
417 #if R256_UNROLL_R(5)
418 R256_8_ROUNDS(5);
419 #endif
420 #if R256_UNROLL_R(6)
421 R256_8_ROUNDS(6);
422 #endif
423 #if R256_UNROLL_R(7)
424 R256_8_ROUNDS(7);
425 #endif
426 #if R256_UNROLL_R(8)
427 R256_8_ROUNDS(8);
428 #endif
429 #if R256_UNROLL_R(9)
430 R256_8_ROUNDS(9);
431 #endif
432 #if R256_UNROLL_R(10)
433 R256_8_ROUNDS(10);
434 #endif
435 #if R256_UNROLL_R(11)
436 R256_8_ROUNDS(11);
437 #endif
438 #if R256_UNROLL_R(12)
439 R256_8_ROUNDS(12);
440 #endif
441 #if R256_UNROLL_R(13)
442 R256_8_ROUNDS(13);
443 #endif
444 #if R256_UNROLL_R(14)
445 R256_8_ROUNDS(14);
446 #endif
447 }
448 /* do the final "feedforward" xor, update context chaining */
449 ctx->x[0] = X0 ^ w[0];
450 ctx->x[1] = X1 ^ w[1];
451 ctx->x[2] = X2 ^ w[2];
452 ctx->x[3] = X3 ^ w[3];
453
454 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
455 } while (--blk_cnt);
456 ctx->h.tweak[0] = ts[0];
457 ctx->h.tweak[1] = ts[1];
458 }
459
460 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
skein_256_process_block_code_size(void)461 size_t skein_256_process_block_code_size(void)
462 {
463 return ((u8 *) skein_256_process_block_code_size) -
464 ((u8 *) skein_256_process_block);
465 }
skein_256_unroll_cnt(void)466 unsigned int skein_256_unroll_cnt(void)
467 {
468 return SKEIN_UNROLL_256;
469 }
470 #endif
471 #endif
472
473 /***************************** SKEIN_512 ******************************/
474 #if !(SKEIN_USE_ASM & 512)
skein_512_process_block(struct skein_512_ctx * ctx,const u8 * blk_ptr,size_t blk_cnt,size_t byte_cnt_add)475 void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr,
476 size_t blk_cnt, size_t byte_cnt_add)
477 { /* do it in C */
478 enum {
479 WCNT = SKEIN_512_STATE_WORDS
480 };
481 size_t r;
482 #if SKEIN_UNROLL_512
483 u64 kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot"*/
484 #else
485 u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
486 #endif
487 u64 X0, X1, X2, X3, X4, X5, X6, X7; /* local copies, for speed */
488 u64 w[WCNT]; /* local copy of input block */
489 #ifdef SKEIN_DEBUG
490 const u64 *X_ptr[8]; /* use for debugging (help cc put Xn in regs) */
491
492 X_ptr[0] = &X0;
493 X_ptr[1] = &X1;
494 X_ptr[2] = &X2;
495 X_ptr[3] = &X3;
496 X_ptr[4] = &X4;
497 X_ptr[5] = &X5;
498 X_ptr[6] = &X6;
499 X_ptr[7] = &X7;
500 #endif
501
502 skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
503 ts[0] = ctx->h.tweak[0];
504 ts[1] = ctx->h.tweak[1];
505 do {
506 /*
507 * this implementation only supports 2**64 input bytes
508 * (no carry out here)
509 */
510 ts[0] += byte_cnt_add; /* update processed length */
511
512 /* precompute the key schedule for this block */
513 ks[0] = ctx->x[0];
514 ks[1] = ctx->x[1];
515 ks[2] = ctx->x[2];
516 ks[3] = ctx->x[3];
517 ks[4] = ctx->x[4];
518 ks[5] = ctx->x[5];
519 ks[6] = ctx->x[6];
520 ks[7] = ctx->x[7];
521 ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
522 ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
523
524 ts[2] = ts[0] ^ ts[1];
525
526 /* get input block in little-endian format */
527 skein_get64_lsb_first(w, blk_ptr, WCNT);
528 debug_save_tweak(ctx);
529
530 /* do the first full key injection */
531 X0 = w[0] + ks[0];
532 X1 = w[1] + ks[1];
533 X2 = w[2] + ks[2];
534 X3 = w[3] + ks[3];
535 X4 = w[4] + ks[4];
536 X5 = w[5] + ks[5] + ts[0];
537 X6 = w[6] + ks[6] + ts[1];
538 X7 = w[7] + ks[7];
539
540 blk_ptr += SKEIN_512_BLOCK_BYTES;
541
542 /* run the rounds */
543 for (r = 1;
544 r < (SKEIN_UNROLL_512 ? 2 * RCNT : 2);
545 r += (SKEIN_UNROLL_512 ? 2 * SKEIN_UNROLL_512 : 1)) {
546
547 R512_8_ROUNDS(0);
548
549 #if R512_UNROLL_R(1)
550 R512_8_ROUNDS(1);
551 #endif
552 #if R512_UNROLL_R(2)
553 R512_8_ROUNDS(2);
554 #endif
555 #if R512_UNROLL_R(3)
556 R512_8_ROUNDS(3);
557 #endif
558 #if R512_UNROLL_R(4)
559 R512_8_ROUNDS(4);
560 #endif
561 #if R512_UNROLL_R(5)
562 R512_8_ROUNDS(5);
563 #endif
564 #if R512_UNROLL_R(6)
565 R512_8_ROUNDS(6);
566 #endif
567 #if R512_UNROLL_R(7)
568 R512_8_ROUNDS(7);
569 #endif
570 #if R512_UNROLL_R(8)
571 R512_8_ROUNDS(8);
572 #endif
573 #if R512_UNROLL_R(9)
574 R512_8_ROUNDS(9);
575 #endif
576 #if R512_UNROLL_R(10)
577 R512_8_ROUNDS(10);
578 #endif
579 #if R512_UNROLL_R(11)
580 R512_8_ROUNDS(11);
581 #endif
582 #if R512_UNROLL_R(12)
583 R512_8_ROUNDS(12);
584 #endif
585 #if R512_UNROLL_R(13)
586 R512_8_ROUNDS(13);
587 #endif
588 #if R512_UNROLL_R(14)
589 R512_8_ROUNDS(14);
590 #endif
591 }
592
593 /* do the final "feedforward" xor, update context chaining */
594 ctx->x[0] = X0 ^ w[0];
595 ctx->x[1] = X1 ^ w[1];
596 ctx->x[2] = X2 ^ w[2];
597 ctx->x[3] = X3 ^ w[3];
598 ctx->x[4] = X4 ^ w[4];
599 ctx->x[5] = X5 ^ w[5];
600 ctx->x[6] = X6 ^ w[6];
601 ctx->x[7] = X7 ^ w[7];
602
603 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
604 } while (--blk_cnt);
605 ctx->h.tweak[0] = ts[0];
606 ctx->h.tweak[1] = ts[1];
607 }
608
609 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
skein_512_process_block_code_size(void)610 size_t skein_512_process_block_code_size(void)
611 {
612 return ((u8 *) skein_512_process_block_code_size) -
613 ((u8 *) skein_512_process_block);
614 }
skein_512_unroll_cnt(void)615 unsigned int skein_512_unroll_cnt(void)
616 {
617 return SKEIN_UNROLL_512;
618 }
619 #endif
620 #endif
621
622 /***************************** SKEIN_1024 ******************************/
623 #if !(SKEIN_USE_ASM & 1024)
skein_1024_process_block(struct skein_1024_ctx * ctx,const u8 * blk_ptr,size_t blk_cnt,size_t byte_cnt_add)624 void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr,
625 size_t blk_cnt, size_t byte_cnt_add)
626 { /* do it in C, always looping (unrolled is bigger AND slower!) */
627 enum {
628 WCNT = SKEIN_1024_STATE_WORDS
629 };
630 size_t r;
631 #if (SKEIN_UNROLL_1024 != 0)
632 u64 kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot" */
633 #else
634 u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
635 #endif
636
637 /* local copy of vars, for speed */
638 u64 X00, X01, X02, X03, X04, X05, X06, X07,
639 X08, X09, X10, X11, X12, X13, X14, X15;
640 u64 w[WCNT]; /* local copy of input block */
641
642 skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
643 ts[0] = ctx->h.tweak[0];
644 ts[1] = ctx->h.tweak[1];
645 do {
646 /*
647 * this implementation only supports 2**64 input bytes
648 * (no carry out here)
649 */
650 ts[0] += byte_cnt_add; /* update processed length */
651
652 /* precompute the key schedule for this block */
653 ks[0] = ctx->x[0];
654 ks[1] = ctx->x[1];
655 ks[2] = ctx->x[2];
656 ks[3] = ctx->x[3];
657 ks[4] = ctx->x[4];
658 ks[5] = ctx->x[5];
659 ks[6] = ctx->x[6];
660 ks[7] = ctx->x[7];
661 ks[8] = ctx->x[8];
662 ks[9] = ctx->x[9];
663 ks[10] = ctx->x[10];
664 ks[11] = ctx->x[11];
665 ks[12] = ctx->x[12];
666 ks[13] = ctx->x[13];
667 ks[14] = ctx->x[14];
668 ks[15] = ctx->x[15];
669 ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
670 ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
671 ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
672 ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
673
674 ts[2] = ts[0] ^ ts[1];
675
676 /* get input block in little-endian format */
677 skein_get64_lsb_first(w, blk_ptr, WCNT);
678 debug_save_tweak(ctx);
679
680 /* do the first full key injection */
681 X00 = w[0] + ks[0];
682 X01 = w[1] + ks[1];
683 X02 = w[2] + ks[2];
684 X03 = w[3] + ks[3];
685 X04 = w[4] + ks[4];
686 X05 = w[5] + ks[5];
687 X06 = w[6] + ks[6];
688 X07 = w[7] + ks[7];
689 X08 = w[8] + ks[8];
690 X09 = w[9] + ks[9];
691 X10 = w[10] + ks[10];
692 X11 = w[11] + ks[11];
693 X12 = w[12] + ks[12];
694 X13 = w[13] + ks[13] + ts[0];
695 X14 = w[14] + ks[14] + ts[1];
696 X15 = w[15] + ks[15];
697
698 for (r = 1;
699 r < (SKEIN_UNROLL_1024 ? 2 * RCNT : 2);
700 r += (SKEIN_UNROLL_1024 ? 2 * SKEIN_UNROLL_1024 : 1)) {
701 R1024_8_ROUNDS(0);
702 #if R1024_UNROLL_R(1)
703 R1024_8_ROUNDS(1);
704 #endif
705 #if R1024_UNROLL_R(2)
706 R1024_8_ROUNDS(2);
707 #endif
708 #if R1024_UNROLL_R(3)
709 R1024_8_ROUNDS(3);
710 #endif
711 #if R1024_UNROLL_R(4)
712 R1024_8_ROUNDS(4);
713 #endif
714 #if R1024_UNROLL_R(5)
715 R1024_8_ROUNDS(5);
716 #endif
717 #if R1024_UNROLL_R(6)
718 R1024_8_ROUNDS(6);
719 #endif
720 #if R1024_UNROLL_R(7)
721 R1024_8_ROUNDS(7);
722 #endif
723 #if R1024_UNROLL_R(8)
724 R1024_8_ROUNDS(8);
725 #endif
726 #if R1024_UNROLL_R(9)
727 R1024_8_ROUNDS(9);
728 #endif
729 #if R1024_UNROLL_R(10)
730 R1024_8_ROUNDS(10);
731 #endif
732 #if R1024_UNROLL_R(11)
733 R1024_8_ROUNDS(11);
734 #endif
735 #if R1024_UNROLL_R(12)
736 R1024_8_ROUNDS(12);
737 #endif
738 #if R1024_UNROLL_R(13)
739 R1024_8_ROUNDS(13);
740 #endif
741 #if R1024_UNROLL_R(14)
742 R1024_8_ROUNDS(14);
743 #endif
744 }
745 /* do the final "feedforward" xor, update context chaining */
746
747 ctx->x[0] = X00 ^ w[0];
748 ctx->x[1] = X01 ^ w[1];
749 ctx->x[2] = X02 ^ w[2];
750 ctx->x[3] = X03 ^ w[3];
751 ctx->x[4] = X04 ^ w[4];
752 ctx->x[5] = X05 ^ w[5];
753 ctx->x[6] = X06 ^ w[6];
754 ctx->x[7] = X07 ^ w[7];
755 ctx->x[8] = X08 ^ w[8];
756 ctx->x[9] = X09 ^ w[9];
757 ctx->x[10] = X10 ^ w[10];
758 ctx->x[11] = X11 ^ w[11];
759 ctx->x[12] = X12 ^ w[12];
760 ctx->x[13] = X13 ^ w[13];
761 ctx->x[14] = X14 ^ w[14];
762 ctx->x[15] = X15 ^ w[15];
763
764 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
765 blk_ptr += SKEIN_1024_BLOCK_BYTES;
766 } while (--blk_cnt);
767 ctx->h.tweak[0] = ts[0];
768 ctx->h.tweak[1] = ts[1];
769 }
770
771 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
skein_1024_process_block_code_size(void)772 size_t skein_1024_process_block_code_size(void)
773 {
774 return ((u8 *) skein_1024_process_block_code_size) -
775 ((u8 *) skein_1024_process_block);
776 }
skein_1024_unroll_cnt(void)777 unsigned int skein_1024_unroll_cnt(void)
778 {
779 return SKEIN_UNROLL_1024;
780 }
781 #endif
782 #endif
783