• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/drivers/thermal/cpu_cooling.c
3  *
4  *  Copyright (C) 2012	Samsung Electronics Co., Ltd(http://www.samsung.com)
5  *  Copyright (C) 2012  Amit Daniel <amit.kachhap@linaro.org>
6  *
7  *  Copyright (C) 2014  Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; version 2 of the License.
13  *
14  *  This program is distributed in the hope that it will be useful, but
15  *  WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  *  General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22  *
23  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24  */
25 #include <linux/module.h>
26 #include <linux/thermal.h>
27 #include <linux/cpufreq.h>
28 #include <linux/err.h>
29 #include <linux/pm_opp.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/cpu_cooling.h>
33 
34 #include <trace/events/thermal.h>
35 
36 /*
37  * Cooling state <-> CPUFreq frequency
38  *
39  * Cooling states are translated to frequencies throughout this driver and this
40  * is the relation between them.
41  *
42  * Highest cooling state corresponds to lowest possible frequency.
43  *
44  * i.e.
45  *	level 0 --> 1st Max Freq
46  *	level 1 --> 2nd Max Freq
47  *	...
48  */
49 
50 /**
51  * struct power_table - frequency to power conversion
52  * @frequency:	frequency in KHz
53  * @power:	power in mW
54  *
55  * This structure is built when the cooling device registers and helps
56  * in translating frequency to power and viceversa.
57  */
58 struct power_table {
59 	u32 frequency;
60 	u32 power;
61 };
62 
63 /**
64  * struct cpufreq_cooling_device - data for cooling device with cpufreq
65  * @id: unique integer value corresponding to each cpufreq_cooling_device
66  *	registered.
67  * @cool_dev: thermal_cooling_device pointer to keep track of the
68  *	registered cooling device.
69  * @cpufreq_state: integer value representing the current state of cpufreq
70  *	cooling	devices.
71  * @clipped_freq: integer value representing the absolute value of the clipped
72  *	frequency.
73  * @max_level: maximum cooling level. One less than total number of valid
74  *	cpufreq frequencies.
75  * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
76  * @node: list_head to link all cpufreq_cooling_device together.
77  * @last_load: load measured by the latest call to cpufreq_get_actual_power()
78  * @time_in_idle: previous reading of the absolute time that this cpu was idle
79  * @time_in_idle_timestamp: wall time of the last invocation of
80  *	get_cpu_idle_time_us()
81  * @dyn_power_table: array of struct power_table for frequency to power
82  *	conversion, sorted in ascending order.
83  * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84  * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85  * @plat_get_static_power: callback to calculate the static power
86  *
87  * This structure is required for keeping information of each registered
88  * cpufreq_cooling_device.
89  */
90 struct cpufreq_cooling_device {
91 	int id;
92 	struct thermal_cooling_device *cool_dev;
93 	unsigned int cpufreq_state;
94 	unsigned int clipped_freq;
95 	unsigned int max_level;
96 	unsigned int *freq_table;	/* In descending order */
97 	struct cpumask allowed_cpus;
98 	struct list_head node;
99 	u32 last_load;
100 	u64 *time_in_idle;
101 	u64 *time_in_idle_timestamp;
102 	struct power_table *dyn_power_table;
103 	int dyn_power_table_entries;
104 	struct device *cpu_dev;
105 	get_static_t plat_get_static_power;
106 };
107 static DEFINE_IDR(cpufreq_idr);
108 static DEFINE_MUTEX(cooling_cpufreq_lock);
109 
110 static unsigned int cpufreq_dev_count;
111 
112 static DEFINE_MUTEX(cooling_list_lock);
113 static LIST_HEAD(cpufreq_dev_list);
114 
115 /**
116  * get_idr - function to get a unique id.
117  * @idr: struct idr * handle used to create a id.
118  * @id: int * value generated by this function.
119  *
120  * This function will populate @id with an unique
121  * id, using the idr API.
122  *
123  * Return: 0 on success, an error code on failure.
124  */
get_idr(struct idr * idr,int * id)125 static int get_idr(struct idr *idr, int *id)
126 {
127 	int ret;
128 
129 	mutex_lock(&cooling_cpufreq_lock);
130 	ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
131 	mutex_unlock(&cooling_cpufreq_lock);
132 	if (unlikely(ret < 0))
133 		return ret;
134 	*id = ret;
135 
136 	return 0;
137 }
138 
139 /**
140  * release_idr - function to free the unique id.
141  * @idr: struct idr * handle used for creating the id.
142  * @id: int value representing the unique id.
143  */
release_idr(struct idr * idr,int id)144 static void release_idr(struct idr *idr, int id)
145 {
146 	mutex_lock(&cooling_cpufreq_lock);
147 	idr_remove(idr, id);
148 	mutex_unlock(&cooling_cpufreq_lock);
149 }
150 
151 /* Below code defines functions to be used for cpufreq as cooling device */
152 
153 /**
154  * get_level: Find the level for a particular frequency
155  * @cpufreq_dev: cpufreq_dev for which the property is required
156  * @freq: Frequency
157  *
158  * Return: level on success, THERMAL_CSTATE_INVALID on error.
159  */
get_level(struct cpufreq_cooling_device * cpufreq_dev,unsigned int freq)160 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
161 			       unsigned int freq)
162 {
163 	unsigned long level;
164 
165 	for (level = 0; level <= cpufreq_dev->max_level; level++) {
166 		if (freq == cpufreq_dev->freq_table[level])
167 			return level;
168 
169 		if (freq > cpufreq_dev->freq_table[level])
170 			break;
171 	}
172 
173 	return THERMAL_CSTATE_INVALID;
174 }
175 
176 /**
177  * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
178  * @cpu: cpu for which the level is required
179  * @freq: the frequency of interest
180  *
181  * This function will match the cooling level corresponding to the
182  * requested @freq and return it.
183  *
184  * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
185  * otherwise.
186  */
cpufreq_cooling_get_level(unsigned int cpu,unsigned int freq)187 unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
188 {
189 	struct cpufreq_cooling_device *cpufreq_dev;
190 
191 	mutex_lock(&cooling_list_lock);
192 	list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
193 		if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
194 			unsigned long level = get_level(cpufreq_dev, freq);
195 
196 			mutex_unlock(&cooling_list_lock);
197 			return level;
198 		}
199 	}
200 	mutex_unlock(&cooling_list_lock);
201 
202 	pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
203 	return THERMAL_CSTATE_INVALID;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
206 
207 /**
208  * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
209  * @nb:	struct notifier_block * with callback info.
210  * @event: value showing cpufreq event for which this function invoked.
211  * @data: callback-specific data
212  *
213  * Callback to hijack the notification on cpufreq policy transition.
214  * Every time there is a change in policy, we will intercept and
215  * update the cpufreq policy with thermal constraints.
216  *
217  * Return: 0 (success)
218  */
cpufreq_thermal_notifier(struct notifier_block * nb,unsigned long event,void * data)219 static int cpufreq_thermal_notifier(struct notifier_block *nb,
220 				    unsigned long event, void *data)
221 {
222 	struct cpufreq_policy *policy = data;
223 	unsigned long clipped_freq;
224 	struct cpufreq_cooling_device *cpufreq_dev;
225 
226 	if (event != CPUFREQ_ADJUST)
227 		return NOTIFY_DONE;
228 
229 	mutex_lock(&cooling_list_lock);
230 	list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
231 		if (!cpumask_test_cpu(policy->cpu, &cpufreq_dev->allowed_cpus))
232 			continue;
233 
234 		/*
235 		 * policy->max is the maximum allowed frequency defined by user
236 		 * and clipped_freq is the maximum that thermal constraints
237 		 * allow.
238 		 *
239 		 * If clipped_freq is lower than policy->max, then we need to
240 		 * readjust policy->max.
241 		 *
242 		 * But, if clipped_freq is greater than policy->max, we don't
243 		 * need to do anything.
244 		 */
245 		clipped_freq = cpufreq_dev->clipped_freq;
246 
247 		if (policy->max > clipped_freq)
248 			cpufreq_verify_within_limits(policy, 0, clipped_freq);
249 		break;
250 	}
251 	mutex_unlock(&cooling_list_lock);
252 
253 	return NOTIFY_OK;
254 }
255 
256 /**
257  * build_dyn_power_table() - create a dynamic power to frequency table
258  * @cpufreq_device:	the cpufreq cooling device in which to store the table
259  * @capacitance: dynamic power coefficient for these cpus
260  *
261  * Build a dynamic power to frequency table for this cpu and store it
262  * in @cpufreq_device.  This table will be used in cpu_power_to_freq() and
263  * cpu_freq_to_power() to convert between power and frequency
264  * efficiently.  Power is stored in mW, frequency in KHz.  The
265  * resulting table is in ascending order.
266  *
267  * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
268  * -ENOMEM if we run out of memory or -EAGAIN if an OPP was
269  * added/enabled while the function was executing.
270  */
build_dyn_power_table(struct cpufreq_cooling_device * cpufreq_device,u32 capacitance)271 static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
272 				 u32 capacitance)
273 {
274 	struct power_table *power_table;
275 	struct dev_pm_opp *opp;
276 	struct device *dev = NULL;
277 	int num_opps = 0, cpu, i, ret = 0;
278 	unsigned long freq;
279 
280 	for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
281 		dev = get_cpu_device(cpu);
282 		if (!dev) {
283 			dev_warn(&cpufreq_device->cool_dev->device,
284 				 "No cpu device for cpu %d\n", cpu);
285 			continue;
286 		}
287 
288 		num_opps = dev_pm_opp_get_opp_count(dev);
289 		if (num_opps > 0)
290 			break;
291 		else if (num_opps < 0)
292 			return num_opps;
293 	}
294 
295 	if (num_opps == 0)
296 		return -EINVAL;
297 
298 	power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
299 	if (!power_table)
300 		return -ENOMEM;
301 
302 	rcu_read_lock();
303 
304 	for (freq = 0, i = 0;
305 	     opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
306 	     freq++, i++) {
307 		u32 freq_mhz, voltage_mv;
308 		u64 power;
309 
310 		if (i >= num_opps) {
311 			rcu_read_unlock();
312 			ret = -EAGAIN;
313 			goto free_power_table;
314 		}
315 
316 		freq_mhz = freq / 1000000;
317 		voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
318 
319 		/*
320 		 * Do the multiplication with MHz and millivolt so as
321 		 * to not overflow.
322 		 */
323 		power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
324 		do_div(power, 1000000000);
325 
326 		/* frequency is stored in power_table in KHz */
327 		power_table[i].frequency = freq / 1000;
328 
329 		/* power is stored in mW */
330 		power_table[i].power = power;
331 	}
332 
333 	rcu_read_unlock();
334 
335 	if (i != num_opps) {
336 		ret = PTR_ERR(opp);
337 		goto free_power_table;
338 	}
339 
340 	cpufreq_device->cpu_dev = dev;
341 	cpufreq_device->dyn_power_table = power_table;
342 	cpufreq_device->dyn_power_table_entries = i;
343 
344 	return 0;
345 
346 free_power_table:
347 	kfree(power_table);
348 
349 	return ret;
350 }
351 
cpu_freq_to_power(struct cpufreq_cooling_device * cpufreq_device,u32 freq)352 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
353 			     u32 freq)
354 {
355 	int i;
356 	struct power_table *pt = cpufreq_device->dyn_power_table;
357 
358 	for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
359 		if (freq < pt[i].frequency)
360 			break;
361 
362 	return pt[i - 1].power;
363 }
364 
cpu_power_to_freq(struct cpufreq_cooling_device * cpufreq_device,u32 power)365 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
366 			     u32 power)
367 {
368 	int i;
369 	struct power_table *pt = cpufreq_device->dyn_power_table;
370 
371 	for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
372 		if (power < pt[i].power)
373 			break;
374 
375 	return pt[i - 1].frequency;
376 }
377 
378 /**
379  * get_load() - get load for a cpu since last updated
380  * @cpufreq_device:	&struct cpufreq_cooling_device for this cpu
381  * @cpu:	cpu number
382  * @cpu_idx:	index of the cpu in cpufreq_device->allowed_cpus
383  *
384  * Return: The average load of cpu @cpu in percentage since this
385  * function was last called.
386  */
get_load(struct cpufreq_cooling_device * cpufreq_device,int cpu,int cpu_idx)387 static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu,
388 		    int cpu_idx)
389 {
390 	u32 load;
391 	u64 now, now_idle, delta_time, delta_idle;
392 
393 	now_idle = get_cpu_idle_time(cpu, &now, 0);
394 	delta_idle = now_idle - cpufreq_device->time_in_idle[cpu_idx];
395 	delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu_idx];
396 
397 	if (delta_time <= delta_idle)
398 		load = 0;
399 	else
400 		load = div64_u64(100 * (delta_time - delta_idle), delta_time);
401 
402 	cpufreq_device->time_in_idle[cpu_idx] = now_idle;
403 	cpufreq_device->time_in_idle_timestamp[cpu_idx] = now;
404 
405 	return load;
406 }
407 
408 /**
409  * get_static_power() - calculate the static power consumed by the cpus
410  * @cpufreq_device:	struct &cpufreq_cooling_device for this cpu cdev
411  * @tz:		thermal zone device in which we're operating
412  * @freq:	frequency in KHz
413  * @power:	pointer in which to store the calculated static power
414  *
415  * Calculate the static power consumed by the cpus described by
416  * @cpu_actor running at frequency @freq.  This function relies on a
417  * platform specific function that should have been provided when the
418  * actor was registered.  If it wasn't, the static power is assumed to
419  * be negligible.  The calculated static power is stored in @power.
420  *
421  * Return: 0 on success, -E* on failure.
422  */
get_static_power(struct cpufreq_cooling_device * cpufreq_device,struct thermal_zone_device * tz,unsigned long freq,u32 * power)423 static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
424 			    struct thermal_zone_device *tz, unsigned long freq,
425 			    u32 *power)
426 {
427 	struct dev_pm_opp *opp;
428 	unsigned long voltage;
429 	struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
430 	unsigned long freq_hz = freq * 1000;
431 
432 	if (!cpufreq_device->plat_get_static_power ||
433 	    !cpufreq_device->cpu_dev) {
434 		*power = 0;
435 		return 0;
436 	}
437 
438 	rcu_read_lock();
439 
440 	opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
441 					 true);
442 	voltage = dev_pm_opp_get_voltage(opp);
443 
444 	rcu_read_unlock();
445 
446 	if (voltage == 0) {
447 		dev_warn_ratelimited(cpufreq_device->cpu_dev,
448 				     "Failed to get voltage for frequency %lu: %ld\n",
449 				     freq_hz, IS_ERR(opp) ? PTR_ERR(opp) : 0);
450 		return -EINVAL;
451 	}
452 
453 	return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
454 						     voltage, power);
455 }
456 
457 /**
458  * get_dynamic_power() - calculate the dynamic power
459  * @cpufreq_device:	&cpufreq_cooling_device for this cdev
460  * @freq:	current frequency
461  *
462  * Return: the dynamic power consumed by the cpus described by
463  * @cpufreq_device.
464  */
get_dynamic_power(struct cpufreq_cooling_device * cpufreq_device,unsigned long freq)465 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
466 			     unsigned long freq)
467 {
468 	u32 raw_cpu_power;
469 
470 	raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
471 	return (raw_cpu_power * cpufreq_device->last_load) / 100;
472 }
473 
474 /* cpufreq cooling device callback functions are defined below */
475 
476 /**
477  * cpufreq_get_max_state - callback function to get the max cooling state.
478  * @cdev: thermal cooling device pointer.
479  * @state: fill this variable with the max cooling state.
480  *
481  * Callback for the thermal cooling device to return the cpufreq
482  * max cooling state.
483  *
484  * Return: 0 on success, an error code otherwise.
485  */
cpufreq_get_max_state(struct thermal_cooling_device * cdev,unsigned long * state)486 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
487 				 unsigned long *state)
488 {
489 	struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
490 
491 	*state = cpufreq_device->max_level;
492 	return 0;
493 }
494 
495 /**
496  * cpufreq_get_cur_state - callback function to get the current cooling state.
497  * @cdev: thermal cooling device pointer.
498  * @state: fill this variable with the current cooling state.
499  *
500  * Callback for the thermal cooling device to return the cpufreq
501  * current cooling state.
502  *
503  * Return: 0 on success, an error code otherwise.
504  */
cpufreq_get_cur_state(struct thermal_cooling_device * cdev,unsigned long * state)505 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
506 				 unsigned long *state)
507 {
508 	struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
509 
510 	*state = cpufreq_device->cpufreq_state;
511 
512 	return 0;
513 }
514 
515 /**
516  * cpufreq_set_cur_state - callback function to set the current cooling state.
517  * @cdev: thermal cooling device pointer.
518  * @state: set this variable to the current cooling state.
519  *
520  * Callback for the thermal cooling device to change the cpufreq
521  * current cooling state.
522  *
523  * Return: 0 on success, an error code otherwise.
524  */
cpufreq_set_cur_state(struct thermal_cooling_device * cdev,unsigned long state)525 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
526 				 unsigned long state)
527 {
528 	struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
529 	unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
530 	unsigned int clip_freq;
531 
532 	/* Request state should be less than max_level */
533 	if (WARN_ON(state > cpufreq_device->max_level))
534 		return -EINVAL;
535 
536 	/* Check if the old cooling action is same as new cooling action */
537 	if (cpufreq_device->cpufreq_state == state)
538 		return 0;
539 
540 	clip_freq = cpufreq_device->freq_table[state];
541 	cpufreq_device->cpufreq_state = state;
542 	cpufreq_device->clipped_freq = clip_freq;
543 
544 	cpufreq_update_policy(cpu);
545 
546 	return 0;
547 }
548 
549 /**
550  * cpufreq_get_requested_power() - get the current power
551  * @cdev:	&thermal_cooling_device pointer
552  * @tz:		a valid thermal zone device pointer
553  * @power:	pointer in which to store the resulting power
554  *
555  * Calculate the current power consumption of the cpus in milliwatts
556  * and store it in @power.  This function should actually calculate
557  * the requested power, but it's hard to get the frequency that
558  * cpufreq would have assigned if there were no thermal limits.
559  * Instead, we calculate the current power on the assumption that the
560  * immediate future will look like the immediate past.
561  *
562  * We use the current frequency and the average load since this
563  * function was last called.  In reality, there could have been
564  * multiple opps since this function was last called and that affects
565  * the load calculation.  While it's not perfectly accurate, this
566  * simplification is good enough and works.  REVISIT this, as more
567  * complex code may be needed if experiments show that it's not
568  * accurate enough.
569  *
570  * Return: 0 on success, -E* if getting the static power failed.
571  */
cpufreq_get_requested_power(struct thermal_cooling_device * cdev,struct thermal_zone_device * tz,u32 * power)572 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
573 				       struct thermal_zone_device *tz,
574 				       u32 *power)
575 {
576 	unsigned long freq;
577 	int i = 0, cpu, ret;
578 	u32 static_power, dynamic_power, total_load = 0;
579 	struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
580 	u32 *load_cpu = NULL;
581 
582 	cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
583 
584 	/*
585 	 * All the CPUs are offline, thus the requested power by
586 	 * the cdev is 0
587 	 */
588 	if (cpu >= nr_cpu_ids) {
589 		*power = 0;
590 		return 0;
591 	}
592 
593 	freq = cpufreq_quick_get(cpu);
594 
595 	if (trace_thermal_power_cpu_get_power_enabled()) {
596 		u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
597 
598 		load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
599 	}
600 
601 	for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
602 		u32 load;
603 
604 		if (cpu_online(cpu))
605 			load = get_load(cpufreq_device, cpu, i);
606 		else
607 			load = 0;
608 
609 		total_load += load;
610 		if (load_cpu)
611 			load_cpu[i] = load;
612 
613 		i++;
614 	}
615 
616 	cpufreq_device->last_load = total_load;
617 
618 	dynamic_power = get_dynamic_power(cpufreq_device, freq);
619 	ret = get_static_power(cpufreq_device, tz, freq, &static_power);
620 	if (ret) {
621 		kfree(load_cpu);
622 		return ret;
623 	}
624 
625 	if (load_cpu) {
626 		trace_thermal_power_cpu_get_power(
627 			&cpufreq_device->allowed_cpus,
628 			freq, load_cpu, i, dynamic_power, static_power);
629 
630 		kfree(load_cpu);
631 	}
632 
633 	*power = static_power + dynamic_power;
634 	return 0;
635 }
636 
637 /**
638  * cpufreq_state2power() - convert a cpu cdev state to power consumed
639  * @cdev:	&thermal_cooling_device pointer
640  * @tz:		a valid thermal zone device pointer
641  * @state:	cooling device state to be converted
642  * @power:	pointer in which to store the resulting power
643  *
644  * Convert cooling device state @state into power consumption in
645  * milliwatts assuming 100% load.  Store the calculated power in
646  * @power.
647  *
648  * Return: 0 on success, -EINVAL if the cooling device state could not
649  * be converted into a frequency or other -E* if there was an error
650  * when calculating the static power.
651  */
cpufreq_state2power(struct thermal_cooling_device * cdev,struct thermal_zone_device * tz,unsigned long state,u32 * power)652 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
653 			       struct thermal_zone_device *tz,
654 			       unsigned long state, u32 *power)
655 {
656 	unsigned int freq, num_cpus;
657 	cpumask_t cpumask;
658 	u32 static_power, dynamic_power;
659 	int ret;
660 	struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
661 
662 	cpumask_and(&cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
663 	num_cpus = cpumask_weight(&cpumask);
664 
665 	/* None of our cpus are online, so no power */
666 	if (num_cpus == 0) {
667 		*power = 0;
668 		return 0;
669 	}
670 
671 	freq = cpufreq_device->freq_table[state];
672 	if (!freq)
673 		return -EINVAL;
674 
675 	dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
676 	ret = get_static_power(cpufreq_device, tz, freq, &static_power);
677 	if (ret)
678 		return ret;
679 
680 	*power = static_power + dynamic_power;
681 	return 0;
682 }
683 
684 /**
685  * cpufreq_power2state() - convert power to a cooling device state
686  * @cdev:	&thermal_cooling_device pointer
687  * @tz:		a valid thermal zone device pointer
688  * @power:	power in milliwatts to be converted
689  * @state:	pointer in which to store the resulting state
690  *
691  * Calculate a cooling device state for the cpus described by @cdev
692  * that would allow them to consume at most @power mW and store it in
693  * @state.  Note that this calculation depends on external factors
694  * such as the cpu load or the current static power.  Calling this
695  * function with the same power as input can yield different cooling
696  * device states depending on those external factors.
697  *
698  * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
699  * the calculated frequency could not be converted to a valid state.
700  * The latter should not happen unless the frequencies available to
701  * cpufreq have changed since the initialization of the cpu cooling
702  * device.
703  */
cpufreq_power2state(struct thermal_cooling_device * cdev,struct thermal_zone_device * tz,u32 power,unsigned long * state)704 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
705 			       struct thermal_zone_device *tz, u32 power,
706 			       unsigned long *state)
707 {
708 	unsigned int cpu, cur_freq, target_freq;
709 	int ret;
710 	s32 dyn_power;
711 	u32 last_load, normalised_power, static_power;
712 	struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
713 
714 	cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
715 
716 	/* None of our cpus are online */
717 	if (cpu >= nr_cpu_ids)
718 		return -ENODEV;
719 
720 	cur_freq = cpufreq_quick_get(cpu);
721 	ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
722 	if (ret)
723 		return ret;
724 
725 	dyn_power = power - static_power;
726 	dyn_power = dyn_power > 0 ? dyn_power : 0;
727 	last_load = cpufreq_device->last_load ?: 1;
728 	normalised_power = (dyn_power * 100) / last_load;
729 	target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
730 
731 	*state = cpufreq_cooling_get_level(cpu, target_freq);
732 	if (*state == THERMAL_CSTATE_INVALID) {
733 		dev_warn_ratelimited(&cdev->device,
734 				     "Failed to convert %dKHz for cpu %d into a cdev state\n",
735 				     target_freq, cpu);
736 		return -EINVAL;
737 	}
738 
739 	trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
740 				      target_freq, *state, power);
741 	return 0;
742 }
743 
744 /* Bind cpufreq callbacks to thermal cooling device ops */
745 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
746 	.get_max_state = cpufreq_get_max_state,
747 	.get_cur_state = cpufreq_get_cur_state,
748 	.set_cur_state = cpufreq_set_cur_state,
749 };
750 
751 /* Notifier for cpufreq policy change */
752 static struct notifier_block thermal_cpufreq_notifier_block = {
753 	.notifier_call = cpufreq_thermal_notifier,
754 };
755 
find_next_max(struct cpufreq_frequency_table * table,unsigned int prev_max)756 static unsigned int find_next_max(struct cpufreq_frequency_table *table,
757 				  unsigned int prev_max)
758 {
759 	struct cpufreq_frequency_table *pos;
760 	unsigned int max = 0;
761 
762 	cpufreq_for_each_valid_entry(pos, table) {
763 		if (pos->frequency > max && pos->frequency < prev_max)
764 			max = pos->frequency;
765 	}
766 
767 	return max;
768 }
769 
770 /**
771  * __cpufreq_cooling_register - helper function to create cpufreq cooling device
772  * @np: a valid struct device_node to the cooling device device tree node
773  * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
774  * Normally this should be same as cpufreq policy->related_cpus.
775  * @capacitance: dynamic power coefficient for these cpus
776  * @plat_static_func: function to calculate the static power consumed by these
777  *                    cpus (optional)
778  *
779  * This interface function registers the cpufreq cooling device with the name
780  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
781  * cooling devices. It also gives the opportunity to link the cooling device
782  * with a device tree node, in order to bind it via the thermal DT code.
783  *
784  * Return: a valid struct thermal_cooling_device pointer on success,
785  * on failure, it returns a corresponding ERR_PTR().
786  */
787 static struct thermal_cooling_device *
__cpufreq_cooling_register(struct device_node * np,const struct cpumask * clip_cpus,u32 capacitance,get_static_t plat_static_func)788 __cpufreq_cooling_register(struct device_node *np,
789 			const struct cpumask *clip_cpus, u32 capacitance,
790 			get_static_t plat_static_func)
791 {
792 	struct thermal_cooling_device *cool_dev;
793 	struct cpufreq_cooling_device *cpufreq_dev;
794 	char dev_name[THERMAL_NAME_LENGTH];
795 	struct cpufreq_frequency_table *pos, *table;
796 	unsigned int freq, i, num_cpus;
797 	int ret;
798 
799 	table = cpufreq_frequency_get_table(cpumask_first(clip_cpus));
800 	if (!table) {
801 		pr_debug("%s: CPUFreq table not found\n", __func__);
802 		return ERR_PTR(-EPROBE_DEFER);
803 	}
804 
805 	cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
806 	if (!cpufreq_dev)
807 		return ERR_PTR(-ENOMEM);
808 
809 	num_cpus = cpumask_weight(clip_cpus);
810 	cpufreq_dev->time_in_idle = kcalloc(num_cpus,
811 					    sizeof(*cpufreq_dev->time_in_idle),
812 					    GFP_KERNEL);
813 	if (!cpufreq_dev->time_in_idle) {
814 		cool_dev = ERR_PTR(-ENOMEM);
815 		goto free_cdev;
816 	}
817 
818 	cpufreq_dev->time_in_idle_timestamp =
819 		kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
820 			GFP_KERNEL);
821 	if (!cpufreq_dev->time_in_idle_timestamp) {
822 		cool_dev = ERR_PTR(-ENOMEM);
823 		goto free_time_in_idle;
824 	}
825 
826 	/* Find max levels */
827 	cpufreq_for_each_valid_entry(pos, table)
828 		cpufreq_dev->max_level++;
829 
830 	cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
831 					  cpufreq_dev->max_level, GFP_KERNEL);
832 	if (!cpufreq_dev->freq_table) {
833 		cool_dev = ERR_PTR(-ENOMEM);
834 		goto free_time_in_idle_timestamp;
835 	}
836 
837 	/* max_level is an index, not a counter */
838 	cpufreq_dev->max_level--;
839 
840 	cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
841 
842 	if (capacitance) {
843 		cpufreq_cooling_ops.get_requested_power =
844 			cpufreq_get_requested_power;
845 		cpufreq_cooling_ops.state2power = cpufreq_state2power;
846 		cpufreq_cooling_ops.power2state = cpufreq_power2state;
847 		cpufreq_dev->plat_get_static_power = plat_static_func;
848 
849 		ret = build_dyn_power_table(cpufreq_dev, capacitance);
850 		if (ret) {
851 			cool_dev = ERR_PTR(ret);
852 			goto free_table;
853 		}
854 	}
855 
856 	ret = get_idr(&cpufreq_idr, &cpufreq_dev->id);
857 	if (ret) {
858 		cool_dev = ERR_PTR(ret);
859 		goto free_power_table;
860 	}
861 
862 	/* Fill freq-table in descending order of frequencies */
863 	for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
864 		freq = find_next_max(table, freq);
865 		cpufreq_dev->freq_table[i] = freq;
866 
867 		/* Warn for duplicate entries */
868 		if (!freq)
869 			pr_warn("%s: table has duplicate entries\n", __func__);
870 		else
871 			pr_debug("%s: freq:%u KHz\n", __func__, freq);
872 	}
873 
874 	snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
875 		 cpufreq_dev->id);
876 
877 	cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
878 						      &cpufreq_cooling_ops);
879 	if (IS_ERR(cool_dev))
880 		goto remove_idr;
881 
882 	cpufreq_dev->clipped_freq = cpufreq_dev->freq_table[0];
883 	cpufreq_dev->cool_dev = cool_dev;
884 
885 	mutex_lock(&cooling_cpufreq_lock);
886 
887 	mutex_lock(&cooling_list_lock);
888 	list_add(&cpufreq_dev->node, &cpufreq_dev_list);
889 	mutex_unlock(&cooling_list_lock);
890 
891 	/* Register the notifier for first cpufreq cooling device */
892 	if (!cpufreq_dev_count++)
893 		cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
894 					  CPUFREQ_POLICY_NOTIFIER);
895 	mutex_unlock(&cooling_cpufreq_lock);
896 
897 	return cool_dev;
898 
899 remove_idr:
900 	release_idr(&cpufreq_idr, cpufreq_dev->id);
901 free_power_table:
902 	kfree(cpufreq_dev->dyn_power_table);
903 free_table:
904 	kfree(cpufreq_dev->freq_table);
905 free_time_in_idle_timestamp:
906 	kfree(cpufreq_dev->time_in_idle_timestamp);
907 free_time_in_idle:
908 	kfree(cpufreq_dev->time_in_idle);
909 free_cdev:
910 	kfree(cpufreq_dev);
911 
912 	return cool_dev;
913 }
914 
915 /**
916  * cpufreq_cooling_register - function to create cpufreq cooling device.
917  * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
918  *
919  * This interface function registers the cpufreq cooling device with the name
920  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
921  * cooling devices.
922  *
923  * Return: a valid struct thermal_cooling_device pointer on success,
924  * on failure, it returns a corresponding ERR_PTR().
925  */
926 struct thermal_cooling_device *
cpufreq_cooling_register(const struct cpumask * clip_cpus)927 cpufreq_cooling_register(const struct cpumask *clip_cpus)
928 {
929 	return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
930 }
931 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
932 
933 /**
934  * of_cpufreq_cooling_register - function to create cpufreq cooling device.
935  * @np: a valid struct device_node to the cooling device device tree node
936  * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
937  *
938  * This interface function registers the cpufreq cooling device with the name
939  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
940  * cooling devices. Using this API, the cpufreq cooling device will be
941  * linked to the device tree node provided.
942  *
943  * Return: a valid struct thermal_cooling_device pointer on success,
944  * on failure, it returns a corresponding ERR_PTR().
945  */
946 struct thermal_cooling_device *
of_cpufreq_cooling_register(struct device_node * np,const struct cpumask * clip_cpus)947 of_cpufreq_cooling_register(struct device_node *np,
948 			    const struct cpumask *clip_cpus)
949 {
950 	if (!np)
951 		return ERR_PTR(-EINVAL);
952 
953 	return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
954 }
955 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
956 
957 /**
958  * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
959  * @clip_cpus:	cpumask of cpus where the frequency constraints will happen
960  * @capacitance:	dynamic power coefficient for these cpus
961  * @plat_static_func:	function to calculate the static power consumed by these
962  *			cpus (optional)
963  *
964  * This interface function registers the cpufreq cooling device with
965  * the name "thermal-cpufreq-%x".  This api can support multiple
966  * instances of cpufreq cooling devices.  Using this function, the
967  * cooling device will implement the power extensions by using a
968  * simple cpu power model.  The cpus must have registered their OPPs
969  * using the OPP library.
970  *
971  * An optional @plat_static_func may be provided to calculate the
972  * static power consumed by these cpus.  If the platform's static
973  * power consumption is unknown or negligible, make it NULL.
974  *
975  * Return: a valid struct thermal_cooling_device pointer on success,
976  * on failure, it returns a corresponding ERR_PTR().
977  */
978 struct thermal_cooling_device *
cpufreq_power_cooling_register(const struct cpumask * clip_cpus,u32 capacitance,get_static_t plat_static_func)979 cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
980 			       get_static_t plat_static_func)
981 {
982 	return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
983 				plat_static_func);
984 }
985 EXPORT_SYMBOL(cpufreq_power_cooling_register);
986 
987 /**
988  * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
989  * @np:	a valid struct device_node to the cooling device device tree node
990  * @clip_cpus:	cpumask of cpus where the frequency constraints will happen
991  * @capacitance:	dynamic power coefficient for these cpus
992  * @plat_static_func:	function to calculate the static power consumed by these
993  *			cpus (optional)
994  *
995  * This interface function registers the cpufreq cooling device with
996  * the name "thermal-cpufreq-%x".  This api can support multiple
997  * instances of cpufreq cooling devices.  Using this API, the cpufreq
998  * cooling device will be linked to the device tree node provided.
999  * Using this function, the cooling device will implement the power
1000  * extensions by using a simple cpu power model.  The cpus must have
1001  * registered their OPPs using the OPP library.
1002  *
1003  * An optional @plat_static_func may be provided to calculate the
1004  * static power consumed by these cpus.  If the platform's static
1005  * power consumption is unknown or negligible, make it NULL.
1006  *
1007  * Return: a valid struct thermal_cooling_device pointer on success,
1008  * on failure, it returns a corresponding ERR_PTR().
1009  */
1010 struct thermal_cooling_device *
of_cpufreq_power_cooling_register(struct device_node * np,const struct cpumask * clip_cpus,u32 capacitance,get_static_t plat_static_func)1011 of_cpufreq_power_cooling_register(struct device_node *np,
1012 				  const struct cpumask *clip_cpus,
1013 				  u32 capacitance,
1014 				  get_static_t plat_static_func)
1015 {
1016 	if (!np)
1017 		return ERR_PTR(-EINVAL);
1018 
1019 	return __cpufreq_cooling_register(np, clip_cpus, capacitance,
1020 				plat_static_func);
1021 }
1022 EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
1023 
1024 /**
1025  * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1026  * @cdev: thermal cooling device pointer.
1027  *
1028  * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
1029  */
cpufreq_cooling_unregister(struct thermal_cooling_device * cdev)1030 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
1031 {
1032 	struct cpufreq_cooling_device *cpufreq_dev;
1033 
1034 	if (!cdev)
1035 		return;
1036 
1037 	cpufreq_dev = cdev->devdata;
1038 
1039 	/* Unregister the notifier for the last cpufreq cooling device */
1040 	mutex_lock(&cooling_cpufreq_lock);
1041 	if (!--cpufreq_dev_count)
1042 		cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
1043 					    CPUFREQ_POLICY_NOTIFIER);
1044 
1045 	mutex_lock(&cooling_list_lock);
1046 	list_del(&cpufreq_dev->node);
1047 	mutex_unlock(&cooling_list_lock);
1048 
1049 	mutex_unlock(&cooling_cpufreq_lock);
1050 
1051 	thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
1052 	release_idr(&cpufreq_idr, cpufreq_dev->id);
1053 	kfree(cpufreq_dev->dyn_power_table);
1054 	kfree(cpufreq_dev->time_in_idle_timestamp);
1055 	kfree(cpufreq_dev->time_in_idle);
1056 	kfree(cpufreq_dev->freq_table);
1057 	kfree(cpufreq_dev);
1058 }
1059 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
1060