1 /*
2 * Xilinx USB peripheral controller driver
3 *
4 * Copyright (C) 2004 by Thomas Rathbone
5 * Copyright (C) 2005 by HP Labs
6 * Copyright (C) 2005 by David Brownell
7 * Copyright (C) 2010 - 2014 Xilinx, Inc.
8 *
9 * Some parts of this driver code is based on the driver for at91-series
10 * USB peripheral controller (at91_udc.c).
11 *
12 * This program is free software; you can redistribute it
13 * and/or modify it under the terms of the GNU General Public
14 * License as published by the Free Software Foundation;
15 * either version 2 of the License, or (at your option) any
16 * later version.
17 */
18
19 #include <linux/delay.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_platform.h>
28 #include <linux/of_irq.h>
29 #include <linux/prefetch.h>
30 #include <linux/usb/ch9.h>
31 #include <linux/usb/gadget.h>
32
33 /* Register offsets for the USB device.*/
34 #define XUSB_EP0_CONFIG_OFFSET 0x0000 /* EP0 Config Reg Offset */
35 #define XUSB_SETUP_PKT_ADDR_OFFSET 0x0080 /* Setup Packet Address */
36 #define XUSB_ADDRESS_OFFSET 0x0100 /* Address Register */
37 #define XUSB_CONTROL_OFFSET 0x0104 /* Control Register */
38 #define XUSB_STATUS_OFFSET 0x0108 /* Status Register */
39 #define XUSB_FRAMENUM_OFFSET 0x010C /* Frame Number Register */
40 #define XUSB_IER_OFFSET 0x0110 /* Interrupt Enable Register */
41 #define XUSB_BUFFREADY_OFFSET 0x0114 /* Buffer Ready Register */
42 #define XUSB_TESTMODE_OFFSET 0x0118 /* Test Mode Register */
43 #define XUSB_DMA_RESET_OFFSET 0x0200 /* DMA Soft Reset Register */
44 #define XUSB_DMA_CONTROL_OFFSET 0x0204 /* DMA Control Register */
45 #define XUSB_DMA_DSAR_ADDR_OFFSET 0x0208 /* DMA source Address Reg */
46 #define XUSB_DMA_DDAR_ADDR_OFFSET 0x020C /* DMA destination Addr Reg */
47 #define XUSB_DMA_LENGTH_OFFSET 0x0210 /* DMA Length Register */
48 #define XUSB_DMA_STATUS_OFFSET 0x0214 /* DMA Status Register */
49
50 /* Endpoint Configuration Space offsets */
51 #define XUSB_EP_CFGSTATUS_OFFSET 0x00 /* Endpoint Config Status */
52 #define XUSB_EP_BUF0COUNT_OFFSET 0x08 /* Buffer 0 Count */
53 #define XUSB_EP_BUF1COUNT_OFFSET 0x0C /* Buffer 1 Count */
54
55 #define XUSB_CONTROL_USB_READY_MASK 0x80000000 /* USB ready Mask */
56 #define XUSB_CONTROL_USB_RMTWAKE_MASK 0x40000000 /* Remote wake up mask */
57
58 /* Interrupt register related masks.*/
59 #define XUSB_STATUS_GLOBAL_INTR_MASK 0x80000000 /* Global Intr Enable */
60 #define XUSB_STATUS_DMADONE_MASK 0x04000000 /* DMA done Mask */
61 #define XUSB_STATUS_DMAERR_MASK 0x02000000 /* DMA Error Mask */
62 #define XUSB_STATUS_DMABUSY_MASK 0x80000000 /* DMA Error Mask */
63 #define XUSB_STATUS_RESUME_MASK 0x01000000 /* USB Resume Mask */
64 #define XUSB_STATUS_RESET_MASK 0x00800000 /* USB Reset Mask */
65 #define XUSB_STATUS_SUSPEND_MASK 0x00400000 /* USB Suspend Mask */
66 #define XUSB_STATUS_DISCONNECT_MASK 0x00200000 /* USB Disconnect Mask */
67 #define XUSB_STATUS_FIFO_BUFF_RDY_MASK 0x00100000 /* FIFO Buff Ready Mask */
68 #define XUSB_STATUS_FIFO_BUFF_FREE_MASK 0x00080000 /* FIFO Buff Free Mask */
69 #define XUSB_STATUS_SETUP_PACKET_MASK 0x00040000 /* Setup packet received */
70 #define XUSB_STATUS_EP1_BUFF2_COMP_MASK 0x00000200 /* EP 1 Buff 2 Processed */
71 #define XUSB_STATUS_EP1_BUFF1_COMP_MASK 0x00000002 /* EP 1 Buff 1 Processed */
72 #define XUSB_STATUS_EP0_BUFF2_COMP_MASK 0x00000100 /* EP 0 Buff 2 Processed */
73 #define XUSB_STATUS_EP0_BUFF1_COMP_MASK 0x00000001 /* EP 0 Buff 1 Processed */
74 #define XUSB_STATUS_HIGH_SPEED_MASK 0x00010000 /* USB Speed Mask */
75 /* Suspend,Reset,Suspend and Disconnect Mask */
76 #define XUSB_STATUS_INTR_EVENT_MASK 0x01E00000
77 /* Buffers completion Mask */
78 #define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK 0x0000FEFF
79 /* Mask for buffer 0 and buffer 1 completion for all Endpoints */
80 #define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK 0x00000101
81 #define XUSB_STATUS_EP_BUFF2_SHIFT 8 /* EP buffer offset */
82
83 /* Endpoint Configuration Status Register */
84 #define XUSB_EP_CFG_VALID_MASK 0x80000000 /* Endpoint Valid bit */
85 #define XUSB_EP_CFG_STALL_MASK 0x40000000 /* Endpoint Stall bit */
86 #define XUSB_EP_CFG_DATA_TOGGLE_MASK 0x08000000 /* Endpoint Data toggle */
87
88 /* USB device specific global configuration constants.*/
89 #define XUSB_MAX_ENDPOINTS 8 /* Maximum End Points */
90 #define XUSB_EP_NUMBER_ZERO 0 /* End point Zero */
91 /* DPRAM is the source address for DMA transfer */
92 #define XUSB_DMA_READ_FROM_DPRAM 0x80000000
93 #define XUSB_DMA_DMASR_BUSY 0x80000000 /* DMA busy */
94 #define XUSB_DMA_DMASR_ERROR 0x40000000 /* DMA Error */
95 /*
96 * When this bit is set, the DMA buffer ready bit is set by hardware upon
97 * DMA transfer completion.
98 */
99 #define XUSB_DMA_BRR_CTRL 0x40000000 /* DMA bufready ctrl bit */
100 /* Phase States */
101 #define SETUP_PHASE 0x0000 /* Setup Phase */
102 #define DATA_PHASE 0x0001 /* Data Phase */
103 #define STATUS_PHASE 0x0002 /* Status Phase */
104
105 #define EP0_MAX_PACKET 64 /* Endpoint 0 maximum packet length */
106 #define STATUSBUFF_SIZE 2 /* Buffer size for GET_STATUS command */
107 #define EPNAME_SIZE 4 /* Buffer size for endpoint name */
108
109 /* container_of helper macros */
110 #define to_udc(g) container_of((g), struct xusb_udc, gadget)
111 #define to_xusb_ep(ep) container_of((ep), struct xusb_ep, ep_usb)
112 #define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
113
114 /**
115 * struct xusb_req - Xilinx USB device request structure
116 * @usb_req: Linux usb request structure
117 * @queue: usb device request queue
118 * @ep: pointer to xusb_endpoint structure
119 */
120 struct xusb_req {
121 struct usb_request usb_req;
122 struct list_head queue;
123 struct xusb_ep *ep;
124 };
125
126 /**
127 * struct xusb_ep - USB end point structure.
128 * @ep_usb: usb endpoint instance
129 * @queue: endpoint message queue
130 * @udc: xilinx usb peripheral driver instance pointer
131 * @desc: pointer to the usb endpoint descriptor
132 * @rambase: the endpoint buffer address
133 * @offset: the endpoint register offset value
134 * @name: name of the endpoint
135 * @epnumber: endpoint number
136 * @maxpacket: maximum packet size the endpoint can store
137 * @buffer0count: the size of the packet recieved in the first buffer
138 * @buffer1count: the size of the packet received in the second buffer
139 * @curbufnum: current buffer of endpoint that will be processed next
140 * @buffer0ready: the busy state of first buffer
141 * @buffer1ready: the busy state of second buffer
142 * @is_in: endpoint direction (IN or OUT)
143 * @is_iso: endpoint type(isochronous or non isochronous)
144 */
145 struct xusb_ep {
146 struct usb_ep ep_usb;
147 struct list_head queue;
148 struct xusb_udc *udc;
149 const struct usb_endpoint_descriptor *desc;
150 u32 rambase;
151 u32 offset;
152 char name[4];
153 u16 epnumber;
154 u16 maxpacket;
155 u16 buffer0count;
156 u16 buffer1count;
157 u8 curbufnum;
158 bool buffer0ready;
159 bool buffer1ready;
160 bool is_in;
161 bool is_iso;
162 };
163
164 /**
165 * struct xusb_udc - USB peripheral driver structure
166 * @gadget: USB gadget driver instance
167 * @ep: an array of endpoint structures
168 * @driver: pointer to the usb gadget driver instance
169 * @setup: usb_ctrlrequest structure for control requests
170 * @req: pointer to dummy request for get status command
171 * @dev: pointer to device structure in gadget
172 * @usb_state: device in suspended state or not
173 * @remote_wkp: remote wakeup enabled by host
174 * @setupseqtx: tx status
175 * @setupseqrx: rx status
176 * @addr: the usb device base address
177 * @lock: instance of spinlock
178 * @dma_enabled: flag indicating whether the dma is included in the system
179 * @read_fn: function pointer to read device registers
180 * @write_fn: function pointer to write to device registers
181 */
182 struct xusb_udc {
183 struct usb_gadget gadget;
184 struct xusb_ep ep[8];
185 struct usb_gadget_driver *driver;
186 struct usb_ctrlrequest setup;
187 struct xusb_req *req;
188 struct device *dev;
189 u32 usb_state;
190 u32 remote_wkp;
191 u32 setupseqtx;
192 u32 setupseqrx;
193 void __iomem *addr;
194 spinlock_t lock;
195 bool dma_enabled;
196
197 unsigned int (*read_fn)(void __iomem *);
198 void (*write_fn)(void __iomem *, u32, u32);
199 };
200
201 /* Endpoint buffer start addresses in the core */
202 static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
203 0x1600 };
204
205 static const char driver_name[] = "xilinx-udc";
206 static const char ep0name[] = "ep0";
207
208 /* Control endpoint configuration.*/
209 static const struct usb_endpoint_descriptor config_bulk_out_desc = {
210 .bLength = USB_DT_ENDPOINT_SIZE,
211 .bDescriptorType = USB_DT_ENDPOINT,
212 .bEndpointAddress = USB_DIR_OUT,
213 .bmAttributes = USB_ENDPOINT_XFER_BULK,
214 .wMaxPacketSize = cpu_to_le16(EP0_MAX_PACKET),
215 };
216
217 /**
218 * xudc_write32 - little endian write to device registers
219 * @addr: base addr of device registers
220 * @offset: register offset
221 * @val: data to be written
222 */
xudc_write32(void __iomem * addr,u32 offset,u32 val)223 static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
224 {
225 iowrite32(val, addr + offset);
226 }
227
228 /**
229 * xudc_read32 - little endian read from device registers
230 * @addr: addr of device register
231 * Return: value at addr
232 */
xudc_read32(void __iomem * addr)233 static unsigned int xudc_read32(void __iomem *addr)
234 {
235 return ioread32(addr);
236 }
237
238 /**
239 * xudc_write32_be - big endian write to device registers
240 * @addr: base addr of device registers
241 * @offset: register offset
242 * @val: data to be written
243 */
xudc_write32_be(void __iomem * addr,u32 offset,u32 val)244 static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
245 {
246 iowrite32be(val, addr + offset);
247 }
248
249 /**
250 * xudc_read32_be - big endian read from device registers
251 * @addr: addr of device register
252 * Return: value at addr
253 */
xudc_read32_be(void __iomem * addr)254 static unsigned int xudc_read32_be(void __iomem *addr)
255 {
256 return ioread32be(addr);
257 }
258
259 /**
260 * xudc_wrstatus - Sets up the usb device status stages.
261 * @udc: pointer to the usb device controller structure.
262 */
xudc_wrstatus(struct xusb_udc * udc)263 static void xudc_wrstatus(struct xusb_udc *udc)
264 {
265 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
266 u32 epcfgreg;
267
268 epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
269 XUSB_EP_CFG_DATA_TOGGLE_MASK;
270 udc->write_fn(udc->addr, ep0->offset, epcfgreg);
271 udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
272 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
273 }
274
275 /**
276 * xudc_epconfig - Configures the given endpoint.
277 * @ep: pointer to the usb device endpoint structure.
278 * @udc: pointer to the usb peripheral controller structure.
279 *
280 * This function configures a specific endpoint with the given configuration
281 * data.
282 */
xudc_epconfig(struct xusb_ep * ep,struct xusb_udc * udc)283 static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
284 {
285 u32 epcfgreg;
286
287 /*
288 * Configure the end point direction, type, Max Packet Size and the
289 * EP buffer location.
290 */
291 epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
292 (ep->ep_usb.maxpacket << 15) | (ep->rambase));
293 udc->write_fn(udc->addr, ep->offset, epcfgreg);
294
295 /* Set the Buffer count and the Buffer ready bits.*/
296 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
297 ep->buffer0count);
298 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
299 ep->buffer1count);
300 if (ep->buffer0ready)
301 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
302 1 << ep->epnumber);
303 if (ep->buffer1ready)
304 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
305 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
306 }
307
308 /**
309 * xudc_start_dma - Starts DMA transfer.
310 * @ep: pointer to the usb device endpoint structure.
311 * @src: DMA source address.
312 * @dst: DMA destination address.
313 * @length: number of bytes to transfer.
314 *
315 * Return: 0 on success, error code on failure
316 *
317 * This function starts DMA transfer by writing to DMA source,
318 * destination and lenth registers.
319 */
xudc_start_dma(struct xusb_ep * ep,dma_addr_t src,dma_addr_t dst,u32 length)320 static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
321 dma_addr_t dst, u32 length)
322 {
323 struct xusb_udc *udc = ep->udc;
324 int rc = 0;
325 u32 timeout = 500;
326 u32 reg;
327
328 /*
329 * Set the addresses in the DMA source and
330 * destination registers and then set the length
331 * into the DMA length register.
332 */
333 udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
334 udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
335 udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
336
337 /*
338 * Wait till DMA transaction is complete and
339 * check whether the DMA transaction was
340 * successful.
341 */
342 do {
343 reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
344 if (!(reg & XUSB_DMA_DMASR_BUSY))
345 break;
346
347 /*
348 * We can't sleep here, because it's also called from
349 * interrupt context.
350 */
351 timeout--;
352 if (!timeout) {
353 dev_err(udc->dev, "DMA timeout\n");
354 return -ETIMEDOUT;
355 }
356 udelay(1);
357 } while (1);
358
359 if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
360 XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
361 dev_err(udc->dev, "DMA Error\n");
362 rc = -EINVAL;
363 }
364
365 return rc;
366 }
367
368 /**
369 * xudc_dma_send - Sends IN data using DMA.
370 * @ep: pointer to the usb device endpoint structure.
371 * @req: pointer to the usb request structure.
372 * @buffer: pointer to data to be sent.
373 * @length: number of bytes to send.
374 *
375 * Return: 0 on success, -EAGAIN if no buffer is free and error
376 * code on failure.
377 *
378 * This function sends data using DMA.
379 */
xudc_dma_send(struct xusb_ep * ep,struct xusb_req * req,u8 * buffer,u32 length)380 static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
381 u8 *buffer, u32 length)
382 {
383 u32 *eprambase;
384 dma_addr_t src;
385 dma_addr_t dst;
386 struct xusb_udc *udc = ep->udc;
387
388 src = req->usb_req.dma + req->usb_req.actual;
389 if (req->usb_req.length)
390 dma_sync_single_for_device(udc->dev, src,
391 length, DMA_TO_DEVICE);
392 if (!ep->curbufnum && !ep->buffer0ready) {
393 /* Get the Buffer address and copy the transmit data.*/
394 eprambase = (u32 __force *)(udc->addr + ep->rambase);
395 dst = virt_to_phys(eprambase);
396 udc->write_fn(udc->addr, ep->offset +
397 XUSB_EP_BUF0COUNT_OFFSET, length);
398 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
399 XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
400 ep->buffer0ready = 1;
401 ep->curbufnum = 1;
402 } else if (ep->curbufnum && !ep->buffer1ready) {
403 /* Get the Buffer address and copy the transmit data.*/
404 eprambase = (u32 __force *)(udc->addr + ep->rambase +
405 ep->ep_usb.maxpacket);
406 dst = virt_to_phys(eprambase);
407 udc->write_fn(udc->addr, ep->offset +
408 XUSB_EP_BUF1COUNT_OFFSET, length);
409 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
410 XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
411 XUSB_STATUS_EP_BUFF2_SHIFT)));
412 ep->buffer1ready = 1;
413 ep->curbufnum = 0;
414 } else {
415 /* None of ping pong buffers are ready currently .*/
416 return -EAGAIN;
417 }
418
419 return xudc_start_dma(ep, src, dst, length);
420 }
421
422 /**
423 * xudc_dma_receive - Receives OUT data using DMA.
424 * @ep: pointer to the usb device endpoint structure.
425 * @req: pointer to the usb request structure.
426 * @buffer: pointer to storage buffer of received data.
427 * @length: number of bytes to receive.
428 *
429 * Return: 0 on success, -EAGAIN if no buffer is free and error
430 * code on failure.
431 *
432 * This function receives data using DMA.
433 */
xudc_dma_receive(struct xusb_ep * ep,struct xusb_req * req,u8 * buffer,u32 length)434 static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
435 u8 *buffer, u32 length)
436 {
437 u32 *eprambase;
438 dma_addr_t src;
439 dma_addr_t dst;
440 struct xusb_udc *udc = ep->udc;
441
442 dst = req->usb_req.dma + req->usb_req.actual;
443 if (!ep->curbufnum && !ep->buffer0ready) {
444 /* Get the Buffer address and copy the transmit data */
445 eprambase = (u32 __force *)(udc->addr + ep->rambase);
446 src = virt_to_phys(eprambase);
447 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
448 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
449 (1 << ep->epnumber));
450 ep->buffer0ready = 1;
451 ep->curbufnum = 1;
452 } else if (ep->curbufnum && !ep->buffer1ready) {
453 /* Get the Buffer address and copy the transmit data */
454 eprambase = (u32 __force *)(udc->addr +
455 ep->rambase + ep->ep_usb.maxpacket);
456 src = virt_to_phys(eprambase);
457 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
458 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
459 (1 << (ep->epnumber +
460 XUSB_STATUS_EP_BUFF2_SHIFT)));
461 ep->buffer1ready = 1;
462 ep->curbufnum = 0;
463 } else {
464 /* None of the ping-pong buffers are ready currently */
465 return -EAGAIN;
466 }
467
468 return xudc_start_dma(ep, src, dst, length);
469 }
470
471 /**
472 * xudc_eptxrx - Transmits or receives data to or from an endpoint.
473 * @ep: pointer to the usb endpoint configuration structure.
474 * @req: pointer to the usb request structure.
475 * @bufferptr: pointer to buffer containing the data to be sent.
476 * @bufferlen: The number of data bytes to be sent.
477 *
478 * Return: 0 on success, -EAGAIN if no buffer is free.
479 *
480 * This function copies the transmit/receive data to/from the end point buffer
481 * and enables the buffer for transmission/reception.
482 */
xudc_eptxrx(struct xusb_ep * ep,struct xusb_req * req,u8 * bufferptr,u32 bufferlen)483 static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
484 u8 *bufferptr, u32 bufferlen)
485 {
486 u32 *eprambase;
487 u32 bytestosend;
488 int rc = 0;
489 struct xusb_udc *udc = ep->udc;
490
491 bytestosend = bufferlen;
492 if (udc->dma_enabled) {
493 if (ep->is_in)
494 rc = xudc_dma_send(ep, req, bufferptr, bufferlen);
495 else
496 rc = xudc_dma_receive(ep, req, bufferptr, bufferlen);
497 return rc;
498 }
499 /* Put the transmit buffer into the correct ping-pong buffer.*/
500 if (!ep->curbufnum && !ep->buffer0ready) {
501 /* Get the Buffer address and copy the transmit data.*/
502 eprambase = (u32 __force *)(udc->addr + ep->rambase);
503 if (ep->is_in) {
504 memcpy(eprambase, bufferptr, bytestosend);
505 udc->write_fn(udc->addr, ep->offset +
506 XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
507 } else {
508 memcpy(bufferptr, eprambase, bytestosend);
509 }
510 /*
511 * Enable the buffer for transmission.
512 */
513 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
514 1 << ep->epnumber);
515 ep->buffer0ready = 1;
516 ep->curbufnum = 1;
517 } else if (ep->curbufnum && !ep->buffer1ready) {
518 /* Get the Buffer address and copy the transmit data.*/
519 eprambase = (u32 __force *)(udc->addr + ep->rambase +
520 ep->ep_usb.maxpacket);
521 if (ep->is_in) {
522 memcpy(eprambase, bufferptr, bytestosend);
523 udc->write_fn(udc->addr, ep->offset +
524 XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
525 } else {
526 memcpy(bufferptr, eprambase, bytestosend);
527 }
528 /*
529 * Enable the buffer for transmission.
530 */
531 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
532 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
533 ep->buffer1ready = 1;
534 ep->curbufnum = 0;
535 } else {
536 /* None of the ping-pong buffers are ready currently */
537 return -EAGAIN;
538 }
539 return rc;
540 }
541
542 /**
543 * xudc_done - Exeutes the endpoint data transfer completion tasks.
544 * @ep: pointer to the usb device endpoint structure.
545 * @req: pointer to the usb request structure.
546 * @status: Status of the data transfer.
547 *
548 * Deletes the message from the queue and updates data transfer completion
549 * status.
550 */
xudc_done(struct xusb_ep * ep,struct xusb_req * req,int status)551 static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
552 {
553 struct xusb_udc *udc = ep->udc;
554
555 list_del_init(&req->queue);
556
557 if (req->usb_req.status == -EINPROGRESS)
558 req->usb_req.status = status;
559 else
560 status = req->usb_req.status;
561
562 if (status && status != -ESHUTDOWN)
563 dev_dbg(udc->dev, "%s done %p, status %d\n",
564 ep->ep_usb.name, req, status);
565 /* unmap request if DMA is present*/
566 if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
567 usb_gadget_unmap_request(&udc->gadget, &req->usb_req,
568 ep->is_in);
569
570 if (req->usb_req.complete) {
571 spin_unlock(&udc->lock);
572 req->usb_req.complete(&ep->ep_usb, &req->usb_req);
573 spin_lock(&udc->lock);
574 }
575 }
576
577 /**
578 * xudc_read_fifo - Reads the data from the given endpoint buffer.
579 * @ep: pointer to the usb device endpoint structure.
580 * @req: pointer to the usb request structure.
581 *
582 * Return: 0 if request is completed and -EAGAIN if not completed.
583 *
584 * Pulls OUT packet data from the endpoint buffer.
585 */
xudc_read_fifo(struct xusb_ep * ep,struct xusb_req * req)586 static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
587 {
588 u8 *buf;
589 u32 is_short, count, bufferspace;
590 u8 bufoffset;
591 u8 two_pkts = 0;
592 int ret;
593 int retval = -EAGAIN;
594 struct xusb_udc *udc = ep->udc;
595
596 if (ep->buffer0ready && ep->buffer1ready) {
597 dev_dbg(udc->dev, "Packet NOT ready!\n");
598 return retval;
599 }
600 top:
601 if (ep->curbufnum)
602 bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
603 else
604 bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
605
606 count = udc->read_fn(udc->addr + ep->offset + bufoffset);
607
608 if (!ep->buffer0ready && !ep->buffer1ready)
609 two_pkts = 1;
610
611 buf = req->usb_req.buf + req->usb_req.actual;
612 prefetchw(buf);
613 bufferspace = req->usb_req.length - req->usb_req.actual;
614 is_short = count < ep->ep_usb.maxpacket;
615
616 if (unlikely(!bufferspace)) {
617 /*
618 * This happens when the driver's buffer
619 * is smaller than what the host sent.
620 * discard the extra data.
621 */
622 if (req->usb_req.status != -EOVERFLOW)
623 dev_dbg(udc->dev, "%s overflow %d\n",
624 ep->ep_usb.name, count);
625 req->usb_req.status = -EOVERFLOW;
626 xudc_done(ep, req, -EOVERFLOW);
627 return 0;
628 }
629
630 ret = xudc_eptxrx(ep, req, buf, count);
631 switch (ret) {
632 case 0:
633 req->usb_req.actual += min(count, bufferspace);
634 dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
635 ep->ep_usb.name, count, is_short ? "/S" : "", req,
636 req->usb_req.actual, req->usb_req.length);
637 bufferspace -= count;
638 /* Completion */
639 if ((req->usb_req.actual == req->usb_req.length) || is_short) {
640 if (udc->dma_enabled && req->usb_req.length)
641 dma_sync_single_for_cpu(udc->dev,
642 req->usb_req.dma,
643 req->usb_req.actual,
644 DMA_FROM_DEVICE);
645 xudc_done(ep, req, 0);
646 return 0;
647 }
648 if (two_pkts) {
649 two_pkts = 0;
650 goto top;
651 }
652 break;
653 case -EAGAIN:
654 dev_dbg(udc->dev, "receive busy\n");
655 break;
656 case -EINVAL:
657 case -ETIMEDOUT:
658 /* DMA error, dequeue the request */
659 xudc_done(ep, req, -ECONNRESET);
660 retval = 0;
661 break;
662 }
663
664 return retval;
665 }
666
667 /**
668 * xudc_write_fifo - Writes data into the given endpoint buffer.
669 * @ep: pointer to the usb device endpoint structure.
670 * @req: pointer to the usb request structure.
671 *
672 * Return: 0 if request is completed and -EAGAIN if not completed.
673 *
674 * Loads endpoint buffer for an IN packet.
675 */
xudc_write_fifo(struct xusb_ep * ep,struct xusb_req * req)676 static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
677 {
678 u32 max;
679 u32 length;
680 int ret;
681 int retval = -EAGAIN;
682 struct xusb_udc *udc = ep->udc;
683 int is_last, is_short = 0;
684 u8 *buf;
685
686 max = le16_to_cpu(ep->desc->wMaxPacketSize);
687 buf = req->usb_req.buf + req->usb_req.actual;
688 prefetch(buf);
689 length = req->usb_req.length - req->usb_req.actual;
690 length = min(length, max);
691
692 ret = xudc_eptxrx(ep, req, buf, length);
693 switch (ret) {
694 case 0:
695 req->usb_req.actual += length;
696 if (unlikely(length != max)) {
697 is_last = is_short = 1;
698 } else {
699 if (likely(req->usb_req.length !=
700 req->usb_req.actual) || req->usb_req.zero)
701 is_last = 0;
702 else
703 is_last = 1;
704 }
705 dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
706 __func__, ep->ep_usb.name, length, is_last ? "/L" : "",
707 is_short ? "/S" : "",
708 req->usb_req.length - req->usb_req.actual, req);
709 /* completion */
710 if (is_last) {
711 xudc_done(ep, req, 0);
712 retval = 0;
713 }
714 break;
715 case -EAGAIN:
716 dev_dbg(udc->dev, "Send busy\n");
717 break;
718 case -EINVAL:
719 case -ETIMEDOUT:
720 /* DMA error, dequeue the request */
721 xudc_done(ep, req, -ECONNRESET);
722 retval = 0;
723 break;
724 }
725
726 return retval;
727 }
728
729 /**
730 * xudc_nuke - Cleans up the data transfer message list.
731 * @ep: pointer to the usb device endpoint structure.
732 * @status: Status of the data transfer.
733 */
xudc_nuke(struct xusb_ep * ep,int status)734 static void xudc_nuke(struct xusb_ep *ep, int status)
735 {
736 struct xusb_req *req;
737
738 while (!list_empty(&ep->queue)) {
739 req = list_first_entry(&ep->queue, struct xusb_req, queue);
740 xudc_done(ep, req, status);
741 }
742 }
743
744 /**
745 * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
746 * @_ep: pointer to the usb device endpoint structure.
747 * @value: value to indicate stall/unstall.
748 *
749 * Return: 0 for success and error value on failure
750 */
xudc_ep_set_halt(struct usb_ep * _ep,int value)751 static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
752 {
753 struct xusb_ep *ep = to_xusb_ep(_ep);
754 struct xusb_udc *udc;
755 unsigned long flags;
756 u32 epcfgreg;
757
758 if (!_ep || (!ep->desc && ep->epnumber)) {
759 pr_debug("%s: bad ep or descriptor\n", __func__);
760 return -EINVAL;
761 }
762 udc = ep->udc;
763
764 if (ep->is_in && (!list_empty(&ep->queue)) && value) {
765 dev_dbg(udc->dev, "requests pending can't halt\n");
766 return -EAGAIN;
767 }
768
769 if (ep->buffer0ready || ep->buffer1ready) {
770 dev_dbg(udc->dev, "HW buffers busy can't halt\n");
771 return -EAGAIN;
772 }
773
774 spin_lock_irqsave(&udc->lock, flags);
775
776 if (value) {
777 /* Stall the device.*/
778 epcfgreg = udc->read_fn(udc->addr + ep->offset);
779 epcfgreg |= XUSB_EP_CFG_STALL_MASK;
780 udc->write_fn(udc->addr, ep->offset, epcfgreg);
781 } else {
782 /* Unstall the device.*/
783 epcfgreg = udc->read_fn(udc->addr + ep->offset);
784 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
785 udc->write_fn(udc->addr, ep->offset, epcfgreg);
786 if (ep->epnumber) {
787 /* Reset the toggle bit.*/
788 epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
789 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
790 udc->write_fn(udc->addr, ep->offset, epcfgreg);
791 }
792 }
793
794 spin_unlock_irqrestore(&udc->lock, flags);
795 return 0;
796 }
797
798 /**
799 * xudc_ep_enable - Enables the given endpoint.
800 * @ep: pointer to the xusb endpoint structure.
801 * @desc: pointer to usb endpoint descriptor.
802 *
803 * Return: 0 for success and error value on failure
804 */
__xudc_ep_enable(struct xusb_ep * ep,const struct usb_endpoint_descriptor * desc)805 static int __xudc_ep_enable(struct xusb_ep *ep,
806 const struct usb_endpoint_descriptor *desc)
807 {
808 struct xusb_udc *udc = ep->udc;
809 u32 tmp;
810 u32 epcfg;
811 u32 ier;
812 u16 maxpacket;
813
814 ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
815 /* Bit 3...0:endpoint number */
816 ep->epnumber = (desc->bEndpointAddress & 0x0f);
817 ep->desc = desc;
818 ep->ep_usb.desc = desc;
819 tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
820 ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
821
822 switch (tmp) {
823 case USB_ENDPOINT_XFER_CONTROL:
824 dev_dbg(udc->dev, "only one control endpoint\n");
825 /* NON- ISO */
826 ep->is_iso = 0;
827 return -EINVAL;
828 case USB_ENDPOINT_XFER_INT:
829 /* NON- ISO */
830 ep->is_iso = 0;
831 if (maxpacket > 64) {
832 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
833 return -EINVAL;
834 }
835 break;
836 case USB_ENDPOINT_XFER_BULK:
837 /* NON- ISO */
838 ep->is_iso = 0;
839 if (!(is_power_of_2(maxpacket) && maxpacket >= 8 &&
840 maxpacket <= 512)) {
841 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
842 return -EINVAL;
843 }
844 break;
845 case USB_ENDPOINT_XFER_ISOC:
846 /* ISO */
847 ep->is_iso = 1;
848 break;
849 }
850
851 ep->buffer0ready = 0;
852 ep->buffer1ready = 0;
853 ep->curbufnum = 0;
854 ep->rambase = rambase[ep->epnumber];
855 xudc_epconfig(ep, udc);
856
857 dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
858 ep->epnumber, maxpacket);
859
860 /* Enable the End point.*/
861 epcfg = udc->read_fn(udc->addr + ep->offset);
862 epcfg |= XUSB_EP_CFG_VALID_MASK;
863 udc->write_fn(udc->addr, ep->offset, epcfg);
864 if (ep->epnumber)
865 ep->rambase <<= 2;
866
867 /* Enable buffer completion interrupts for endpoint */
868 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
869 ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
870 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
871
872 /* for OUT endpoint set buffers ready to receive */
873 if (ep->epnumber && !ep->is_in) {
874 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
875 1 << ep->epnumber);
876 ep->buffer0ready = 1;
877 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
878 (1 << (ep->epnumber +
879 XUSB_STATUS_EP_BUFF2_SHIFT)));
880 ep->buffer1ready = 1;
881 }
882
883 return 0;
884 }
885
886 /**
887 * xudc_ep_enable - Enables the given endpoint.
888 * @_ep: pointer to the usb endpoint structure.
889 * @desc: pointer to usb endpoint descriptor.
890 *
891 * Return: 0 for success and error value on failure
892 */
xudc_ep_enable(struct usb_ep * _ep,const struct usb_endpoint_descriptor * desc)893 static int xudc_ep_enable(struct usb_ep *_ep,
894 const struct usb_endpoint_descriptor *desc)
895 {
896 struct xusb_ep *ep;
897 struct xusb_udc *udc;
898 unsigned long flags;
899 int ret;
900
901 if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
902 pr_debug("%s: bad ep or descriptor\n", __func__);
903 return -EINVAL;
904 }
905
906 ep = to_xusb_ep(_ep);
907 udc = ep->udc;
908
909 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
910 dev_dbg(udc->dev, "bogus device state\n");
911 return -ESHUTDOWN;
912 }
913
914 spin_lock_irqsave(&udc->lock, flags);
915 ret = __xudc_ep_enable(ep, desc);
916 spin_unlock_irqrestore(&udc->lock, flags);
917
918 return ret;
919 }
920
921 /**
922 * xudc_ep_disable - Disables the given endpoint.
923 * @_ep: pointer to the usb endpoint structure.
924 *
925 * Return: 0 for success and error value on failure
926 */
xudc_ep_disable(struct usb_ep * _ep)927 static int xudc_ep_disable(struct usb_ep *_ep)
928 {
929 struct xusb_ep *ep;
930 unsigned long flags;
931 u32 epcfg;
932 struct xusb_udc *udc;
933
934 if (!_ep) {
935 pr_debug("%s: invalid ep\n", __func__);
936 return -EINVAL;
937 }
938
939 ep = to_xusb_ep(_ep);
940 udc = ep->udc;
941
942 spin_lock_irqsave(&udc->lock, flags);
943
944 xudc_nuke(ep, -ESHUTDOWN);
945
946 /* Restore the endpoint's pristine config */
947 ep->desc = NULL;
948 ep->ep_usb.desc = NULL;
949
950 dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
951 /* Disable the endpoint.*/
952 epcfg = udc->read_fn(udc->addr + ep->offset);
953 epcfg &= ~XUSB_EP_CFG_VALID_MASK;
954 udc->write_fn(udc->addr, ep->offset, epcfg);
955
956 spin_unlock_irqrestore(&udc->lock, flags);
957 return 0;
958 }
959
960 /**
961 * xudc_ep_alloc_request - Initializes the request queue.
962 * @_ep: pointer to the usb endpoint structure.
963 * @gfp_flags: Flags related to the request call.
964 *
965 * Return: pointer to request structure on success and a NULL on failure.
966 */
xudc_ep_alloc_request(struct usb_ep * _ep,gfp_t gfp_flags)967 static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
968 gfp_t gfp_flags)
969 {
970 struct xusb_ep *ep = to_xusb_ep(_ep);
971 struct xusb_udc *udc;
972 struct xusb_req *req;
973
974 udc = ep->udc;
975 req = kzalloc(sizeof(*req), gfp_flags);
976 if (!req) {
977 dev_err(udc->dev, "%s:not enough memory", __func__);
978 return NULL;
979 }
980
981 req->ep = ep;
982 INIT_LIST_HEAD(&req->queue);
983 return &req->usb_req;
984 }
985
986 /**
987 * xudc_free_request - Releases the request from queue.
988 * @_ep: pointer to the usb device endpoint structure.
989 * @_req: pointer to the usb request structure.
990 */
xudc_free_request(struct usb_ep * _ep,struct usb_request * _req)991 static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
992 {
993 struct xusb_req *req = to_xusb_req(_req);
994
995 kfree(req);
996 }
997
998 /**
999 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1000 * @ep0: pointer to the xusb endpoint 0 structure.
1001 * @req: pointer to the xusb request structure.
1002 *
1003 * Return: 0 for success and error value on failure
1004 */
__xudc_ep0_queue(struct xusb_ep * ep0,struct xusb_req * req)1005 static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
1006 {
1007 struct xusb_udc *udc = ep0->udc;
1008 u32 length;
1009 u8 *corebuf;
1010
1011 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1012 dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1013 return -EINVAL;
1014 }
1015 if (!list_empty(&ep0->queue)) {
1016 dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1017 return -EBUSY;
1018 }
1019
1020 req->usb_req.status = -EINPROGRESS;
1021 req->usb_req.actual = 0;
1022
1023 list_add_tail(&req->queue, &ep0->queue);
1024
1025 if (udc->setup.bRequestType & USB_DIR_IN) {
1026 prefetch(req->usb_req.buf);
1027 length = req->usb_req.length;
1028 corebuf = (void __force *) ((ep0->rambase << 2) +
1029 udc->addr);
1030 length = req->usb_req.actual = min_t(u32, length,
1031 EP0_MAX_PACKET);
1032 memcpy(corebuf, req->usb_req.buf, length);
1033 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1034 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1035 } else {
1036 if (udc->setup.wLength) {
1037 /* Enable EP0 buffer to receive data */
1038 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1039 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1040 } else {
1041 xudc_wrstatus(udc);
1042 }
1043 }
1044
1045 return 0;
1046 }
1047
1048 /**
1049 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1050 * @_ep: pointer to the usb endpoint 0 structure.
1051 * @_req: pointer to the usb request structure.
1052 * @gfp_flags: Flags related to the request call.
1053 *
1054 * Return: 0 for success and error value on failure
1055 */
xudc_ep0_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)1056 static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1057 gfp_t gfp_flags)
1058 {
1059 struct xusb_req *req = to_xusb_req(_req);
1060 struct xusb_ep *ep0 = to_xusb_ep(_ep);
1061 struct xusb_udc *udc = ep0->udc;
1062 unsigned long flags;
1063 int ret;
1064
1065 spin_lock_irqsave(&udc->lock, flags);
1066 ret = __xudc_ep0_queue(ep0, req);
1067 spin_unlock_irqrestore(&udc->lock, flags);
1068
1069 return ret;
1070 }
1071
1072 /**
1073 * xudc_ep_queue - Adds the request to endpoint queue.
1074 * @_ep: pointer to the usb endpoint structure.
1075 * @_req: pointer to the usb request structure.
1076 * @gfp_flags: Flags related to the request call.
1077 *
1078 * Return: 0 for success and error value on failure
1079 */
xudc_ep_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)1080 static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1081 gfp_t gfp_flags)
1082 {
1083 struct xusb_req *req = to_xusb_req(_req);
1084 struct xusb_ep *ep = to_xusb_ep(_ep);
1085 struct xusb_udc *udc = ep->udc;
1086 int ret;
1087 unsigned long flags;
1088
1089 if (!ep->desc) {
1090 dev_dbg(udc->dev, "%s:queing request to disabled %s\n",
1091 __func__, ep->name);
1092 return -ESHUTDOWN;
1093 }
1094
1095 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1096 dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1097 return -EINVAL;
1098 }
1099
1100 spin_lock_irqsave(&udc->lock, flags);
1101
1102 _req->status = -EINPROGRESS;
1103 _req->actual = 0;
1104
1105 if (udc->dma_enabled) {
1106 ret = usb_gadget_map_request(&udc->gadget, &req->usb_req,
1107 ep->is_in);
1108 if (ret) {
1109 dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1110 ep->epnumber);
1111 spin_unlock_irqrestore(&udc->lock, flags);
1112 return -EAGAIN;
1113 }
1114 }
1115
1116 if (list_empty(&ep->queue)) {
1117 if (ep->is_in) {
1118 dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1119 if (!xudc_write_fifo(ep, req))
1120 req = NULL;
1121 } else {
1122 dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1123 if (!xudc_read_fifo(ep, req))
1124 req = NULL;
1125 }
1126 }
1127
1128 if (req != NULL)
1129 list_add_tail(&req->queue, &ep->queue);
1130
1131 spin_unlock_irqrestore(&udc->lock, flags);
1132 return 0;
1133 }
1134
1135 /**
1136 * xudc_ep_dequeue - Removes the request from the queue.
1137 * @_ep: pointer to the usb device endpoint structure.
1138 * @_req: pointer to the usb request structure.
1139 *
1140 * Return: 0 for success and error value on failure
1141 */
xudc_ep_dequeue(struct usb_ep * _ep,struct usb_request * _req)1142 static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1143 {
1144 struct xusb_ep *ep = to_xusb_ep(_ep);
1145 struct xusb_req *req = to_xusb_req(_req);
1146 struct xusb_udc *udc = ep->udc;
1147 unsigned long flags;
1148
1149 spin_lock_irqsave(&udc->lock, flags);
1150 /* Make sure it's actually queued on this endpoint */
1151 list_for_each_entry(req, &ep->queue, queue) {
1152 if (&req->usb_req == _req)
1153 break;
1154 }
1155 if (&req->usb_req != _req) {
1156 spin_unlock_irqrestore(&ep->udc->lock, flags);
1157 return -EINVAL;
1158 }
1159 xudc_done(ep, req, -ECONNRESET);
1160 spin_unlock_irqrestore(&udc->lock, flags);
1161
1162 return 0;
1163 }
1164
1165 /**
1166 * xudc_ep0_enable - Enables the given endpoint.
1167 * @ep: pointer to the usb endpoint structure.
1168 * @desc: pointer to usb endpoint descriptor.
1169 *
1170 * Return: error always.
1171 *
1172 * endpoint 0 enable should not be called by gadget layer.
1173 */
xudc_ep0_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)1174 static int xudc_ep0_enable(struct usb_ep *ep,
1175 const struct usb_endpoint_descriptor *desc)
1176 {
1177 return -EINVAL;
1178 }
1179
1180 /**
1181 * xudc_ep0_disable - Disables the given endpoint.
1182 * @ep: pointer to the usb endpoint structure.
1183 *
1184 * Return: error always.
1185 *
1186 * endpoint 0 disable should not be called by gadget layer.
1187 */
xudc_ep0_disable(struct usb_ep * ep)1188 static int xudc_ep0_disable(struct usb_ep *ep)
1189 {
1190 return -EINVAL;
1191 }
1192
1193 static const struct usb_ep_ops xusb_ep0_ops = {
1194 .enable = xudc_ep0_enable,
1195 .disable = xudc_ep0_disable,
1196 .alloc_request = xudc_ep_alloc_request,
1197 .free_request = xudc_free_request,
1198 .queue = xudc_ep0_queue,
1199 .dequeue = xudc_ep_dequeue,
1200 .set_halt = xudc_ep_set_halt,
1201 };
1202
1203 static const struct usb_ep_ops xusb_ep_ops = {
1204 .enable = xudc_ep_enable,
1205 .disable = xudc_ep_disable,
1206 .alloc_request = xudc_ep_alloc_request,
1207 .free_request = xudc_free_request,
1208 .queue = xudc_ep_queue,
1209 .dequeue = xudc_ep_dequeue,
1210 .set_halt = xudc_ep_set_halt,
1211 };
1212
1213 /**
1214 * xudc_get_frame - Reads the current usb frame number.
1215 * @gadget: pointer to the usb gadget structure.
1216 *
1217 * Return: current frame number for success and error value on failure.
1218 */
xudc_get_frame(struct usb_gadget * gadget)1219 static int xudc_get_frame(struct usb_gadget *gadget)
1220 {
1221 struct xusb_udc *udc;
1222 int frame;
1223
1224 if (!gadget)
1225 return -ENODEV;
1226
1227 udc = to_udc(gadget);
1228 frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1229 return frame;
1230 }
1231
1232 /**
1233 * xudc_wakeup - Send remote wakeup signal to host
1234 * @gadget: pointer to the usb gadget structure.
1235 *
1236 * Return: 0 on success and error on failure
1237 */
xudc_wakeup(struct usb_gadget * gadget)1238 static int xudc_wakeup(struct usb_gadget *gadget)
1239 {
1240 struct xusb_udc *udc = to_udc(gadget);
1241 u32 crtlreg;
1242 int status = -EINVAL;
1243 unsigned long flags;
1244
1245 spin_lock_irqsave(&udc->lock, flags);
1246
1247 /* Remote wake up not enabled by host */
1248 if (!udc->remote_wkp)
1249 goto done;
1250
1251 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1252 crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1253 /* set remote wake up bit */
1254 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1255 /*
1256 * wait for a while and reset remote wake up bit since this bit
1257 * is not cleared by HW after sending remote wakeup to host.
1258 */
1259 mdelay(2);
1260
1261 crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1262 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1263 status = 0;
1264 done:
1265 spin_unlock_irqrestore(&udc->lock, flags);
1266 return status;
1267 }
1268
1269 /**
1270 * xudc_pullup - start/stop USB traffic
1271 * @gadget: pointer to the usb gadget structure.
1272 * @is_on: flag to start or stop
1273 *
1274 * Return: 0 always
1275 *
1276 * This function starts/stops SIE engine of IP based on is_on.
1277 */
xudc_pullup(struct usb_gadget * gadget,int is_on)1278 static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1279 {
1280 struct xusb_udc *udc = to_udc(gadget);
1281 unsigned long flags;
1282 u32 crtlreg;
1283
1284 spin_lock_irqsave(&udc->lock, flags);
1285
1286 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1287 if (is_on)
1288 crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1289 else
1290 crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1291
1292 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1293
1294 spin_unlock_irqrestore(&udc->lock, flags);
1295
1296 return 0;
1297 }
1298
1299 /**
1300 * xudc_eps_init - initialize endpoints.
1301 * @udc: pointer to the usb device controller structure.
1302 */
xudc_eps_init(struct xusb_udc * udc)1303 static void xudc_eps_init(struct xusb_udc *udc)
1304 {
1305 u32 ep_number;
1306
1307 INIT_LIST_HEAD(&udc->gadget.ep_list);
1308
1309 for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1310 struct xusb_ep *ep = &udc->ep[ep_number];
1311
1312 if (ep_number) {
1313 list_add_tail(&ep->ep_usb.ep_list,
1314 &udc->gadget.ep_list);
1315 usb_ep_set_maxpacket_limit(&ep->ep_usb,
1316 (unsigned short) ~0);
1317 snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number);
1318 ep->ep_usb.name = ep->name;
1319 ep->ep_usb.ops = &xusb_ep_ops;
1320
1321 ep->ep_usb.caps.type_iso = true;
1322 ep->ep_usb.caps.type_bulk = true;
1323 ep->ep_usb.caps.type_int = true;
1324 } else {
1325 ep->ep_usb.name = ep0name;
1326 usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET);
1327 ep->ep_usb.ops = &xusb_ep0_ops;
1328
1329 ep->ep_usb.caps.type_control = true;
1330 }
1331
1332 ep->ep_usb.caps.dir_in = true;
1333 ep->ep_usb.caps.dir_out = true;
1334
1335 ep->udc = udc;
1336 ep->epnumber = ep_number;
1337 ep->desc = NULL;
1338 /*
1339 * The configuration register address offset between
1340 * each endpoint is 0x10.
1341 */
1342 ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1343 ep->is_in = 0;
1344 ep->is_iso = 0;
1345 ep->maxpacket = 0;
1346 xudc_epconfig(ep, udc);
1347
1348 /* Initialize one queue per endpoint */
1349 INIT_LIST_HEAD(&ep->queue);
1350 }
1351 }
1352
1353 /**
1354 * xudc_stop_activity - Stops any further activity on the device.
1355 * @udc: pointer to the usb device controller structure.
1356 */
xudc_stop_activity(struct xusb_udc * udc)1357 static void xudc_stop_activity(struct xusb_udc *udc)
1358 {
1359 int i;
1360 struct xusb_ep *ep;
1361
1362 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1363 ep = &udc->ep[i];
1364 xudc_nuke(ep, -ESHUTDOWN);
1365 }
1366 }
1367
1368 /**
1369 * xudc_start - Starts the device.
1370 * @gadget: pointer to the usb gadget structure
1371 * @driver: pointer to gadget driver structure
1372 *
1373 * Return: zero on success and error on failure
1374 */
xudc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1375 static int xudc_start(struct usb_gadget *gadget,
1376 struct usb_gadget_driver *driver)
1377 {
1378 struct xusb_udc *udc = to_udc(gadget);
1379 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1380 const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1381 unsigned long flags;
1382 int ret = 0;
1383
1384 spin_lock_irqsave(&udc->lock, flags);
1385
1386 if (udc->driver) {
1387 dev_err(udc->dev, "%s is already bound to %s\n",
1388 udc->gadget.name, udc->driver->driver.name);
1389 ret = -EBUSY;
1390 goto err;
1391 }
1392
1393 /* hook up the driver */
1394 udc->driver = driver;
1395 udc->gadget.speed = driver->max_speed;
1396
1397 /* Enable the control endpoint. */
1398 ret = __xudc_ep_enable(ep0, desc);
1399
1400 /* Set device address and remote wakeup to 0 */
1401 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1402 udc->remote_wkp = 0;
1403 err:
1404 spin_unlock_irqrestore(&udc->lock, flags);
1405 return ret;
1406 }
1407
1408 /**
1409 * xudc_stop - stops the device.
1410 * @gadget: pointer to the usb gadget structure
1411 * @driver: pointer to usb gadget driver structure
1412 *
1413 * Return: zero always
1414 */
xudc_stop(struct usb_gadget * gadget)1415 static int xudc_stop(struct usb_gadget *gadget)
1416 {
1417 struct xusb_udc *udc = to_udc(gadget);
1418 unsigned long flags;
1419
1420 spin_lock_irqsave(&udc->lock, flags);
1421
1422 udc->gadget.speed = USB_SPEED_UNKNOWN;
1423 udc->driver = NULL;
1424
1425 /* Set device address and remote wakeup to 0 */
1426 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1427 udc->remote_wkp = 0;
1428
1429 xudc_stop_activity(udc);
1430
1431 spin_unlock_irqrestore(&udc->lock, flags);
1432
1433 return 0;
1434 }
1435
1436 static const struct usb_gadget_ops xusb_udc_ops = {
1437 .get_frame = xudc_get_frame,
1438 .wakeup = xudc_wakeup,
1439 .pullup = xudc_pullup,
1440 .udc_start = xudc_start,
1441 .udc_stop = xudc_stop,
1442 };
1443
1444 /**
1445 * xudc_clear_stall_all_ep - clears stall of every endpoint.
1446 * @udc: pointer to the udc structure.
1447 */
xudc_clear_stall_all_ep(struct xusb_udc * udc)1448 static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1449 {
1450 struct xusb_ep *ep;
1451 u32 epcfgreg;
1452 int i;
1453
1454 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1455 ep = &udc->ep[i];
1456 epcfgreg = udc->read_fn(udc->addr + ep->offset);
1457 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1458 udc->write_fn(udc->addr, ep->offset, epcfgreg);
1459 if (ep->epnumber) {
1460 /* Reset the toggle bit.*/
1461 epcfgreg = udc->read_fn(udc->addr + ep->offset);
1462 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1463 udc->write_fn(udc->addr, ep->offset, epcfgreg);
1464 }
1465 }
1466 }
1467
1468 /**
1469 * xudc_startup_handler - The usb device controller interrupt handler.
1470 * @udc: pointer to the udc structure.
1471 * @intrstatus: The mask value containing the interrupt sources.
1472 *
1473 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1474 */
xudc_startup_handler(struct xusb_udc * udc,u32 intrstatus)1475 static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1476 {
1477 u32 intrreg;
1478
1479 if (intrstatus & XUSB_STATUS_RESET_MASK) {
1480
1481 dev_dbg(udc->dev, "Reset\n");
1482
1483 if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1484 udc->gadget.speed = USB_SPEED_HIGH;
1485 else
1486 udc->gadget.speed = USB_SPEED_FULL;
1487
1488 xudc_stop_activity(udc);
1489 xudc_clear_stall_all_ep(udc);
1490 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1491
1492 /* Set device address and remote wakeup to 0 */
1493 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1494 udc->remote_wkp = 0;
1495
1496 /* Enable the suspend, resume and disconnect */
1497 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1498 intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1499 XUSB_STATUS_DISCONNECT_MASK;
1500 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1501 }
1502 if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1503
1504 dev_dbg(udc->dev, "Suspend\n");
1505
1506 /* Enable the reset, resume and disconnect */
1507 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1508 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1509 XUSB_STATUS_DISCONNECT_MASK;
1510 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1511
1512 udc->usb_state = USB_STATE_SUSPENDED;
1513
1514 if (udc->driver->suspend) {
1515 spin_unlock(&udc->lock);
1516 udc->driver->suspend(&udc->gadget);
1517 spin_lock(&udc->lock);
1518 }
1519 }
1520 if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1521 bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1522
1523 dev_WARN_ONCE(udc->dev, condition,
1524 "Resume IRQ while not suspended\n");
1525
1526 dev_dbg(udc->dev, "Resume\n");
1527
1528 /* Enable the reset, suspend and disconnect */
1529 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1530 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1531 XUSB_STATUS_DISCONNECT_MASK;
1532 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1533
1534 udc->usb_state = 0;
1535
1536 if (udc->driver->resume) {
1537 spin_unlock(&udc->lock);
1538 udc->driver->resume(&udc->gadget);
1539 spin_lock(&udc->lock);
1540 }
1541 }
1542 if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1543
1544 dev_dbg(udc->dev, "Disconnect\n");
1545
1546 /* Enable the reset, resume and suspend */
1547 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1548 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1549 XUSB_STATUS_SUSPEND_MASK;
1550 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1551
1552 if (udc->driver && udc->driver->disconnect) {
1553 spin_unlock(&udc->lock);
1554 udc->driver->disconnect(&udc->gadget);
1555 spin_lock(&udc->lock);
1556 }
1557 }
1558 }
1559
1560 /**
1561 * xudc_ep0_stall - Stall endpoint zero.
1562 * @udc: pointer to the udc structure.
1563 *
1564 * This function stalls endpoint zero.
1565 */
xudc_ep0_stall(struct xusb_udc * udc)1566 static void xudc_ep0_stall(struct xusb_udc *udc)
1567 {
1568 u32 epcfgreg;
1569 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1570
1571 epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1572 epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1573 udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1574 }
1575
1576 /**
1577 * xudc_setaddress - executes SET_ADDRESS command
1578 * @udc: pointer to the udc structure.
1579 *
1580 * This function executes USB SET_ADDRESS command
1581 */
xudc_setaddress(struct xusb_udc * udc)1582 static void xudc_setaddress(struct xusb_udc *udc)
1583 {
1584 struct xusb_ep *ep0 = &udc->ep[0];
1585 struct xusb_req *req = udc->req;
1586 int ret;
1587
1588 req->usb_req.length = 0;
1589 ret = __xudc_ep0_queue(ep0, req);
1590 if (ret == 0)
1591 return;
1592
1593 dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1594 xudc_ep0_stall(udc);
1595 }
1596
1597 /**
1598 * xudc_getstatus - executes GET_STATUS command
1599 * @udc: pointer to the udc structure.
1600 *
1601 * This function executes USB GET_STATUS command
1602 */
xudc_getstatus(struct xusb_udc * udc)1603 static void xudc_getstatus(struct xusb_udc *udc)
1604 {
1605 struct xusb_ep *ep0 = &udc->ep[0];
1606 struct xusb_req *req = udc->req;
1607 struct xusb_ep *target_ep;
1608 u16 status = 0;
1609 u32 epcfgreg;
1610 int epnum;
1611 u32 halt;
1612 int ret;
1613
1614 switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1615 case USB_RECIP_DEVICE:
1616 /* Get device status */
1617 status = 1 << USB_DEVICE_SELF_POWERED;
1618 if (udc->remote_wkp)
1619 status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1620 break;
1621 case USB_RECIP_INTERFACE:
1622 break;
1623 case USB_RECIP_ENDPOINT:
1624 epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1625 target_ep = &udc->ep[epnum];
1626 epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1627 halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1628 if (udc->setup.wIndex & USB_DIR_IN) {
1629 if (!target_ep->is_in)
1630 goto stall;
1631 } else {
1632 if (target_ep->is_in)
1633 goto stall;
1634 }
1635 if (halt)
1636 status = 1 << USB_ENDPOINT_HALT;
1637 break;
1638 default:
1639 goto stall;
1640 }
1641
1642 req->usb_req.length = 2;
1643 *(u16 *)req->usb_req.buf = cpu_to_le16(status);
1644 ret = __xudc_ep0_queue(ep0, req);
1645 if (ret == 0)
1646 return;
1647 stall:
1648 dev_err(udc->dev, "Can't respond to getstatus request\n");
1649 xudc_ep0_stall(udc);
1650 }
1651
1652 /**
1653 * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1654 * @udc: pointer to the usb device controller structure.
1655 *
1656 * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1657 */
xudc_set_clear_feature(struct xusb_udc * udc)1658 static void xudc_set_clear_feature(struct xusb_udc *udc)
1659 {
1660 struct xusb_ep *ep0 = &udc->ep[0];
1661 struct xusb_req *req = udc->req;
1662 struct xusb_ep *target_ep;
1663 u8 endpoint;
1664 u8 outinbit;
1665 u32 epcfgreg;
1666 int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1667 int ret;
1668
1669 switch (udc->setup.bRequestType) {
1670 case USB_RECIP_DEVICE:
1671 switch (udc->setup.wValue) {
1672 case USB_DEVICE_TEST_MODE:
1673 /*
1674 * The Test Mode will be executed
1675 * after the status phase.
1676 */
1677 break;
1678 case USB_DEVICE_REMOTE_WAKEUP:
1679 if (flag)
1680 udc->remote_wkp = 1;
1681 else
1682 udc->remote_wkp = 0;
1683 break;
1684 default:
1685 xudc_ep0_stall(udc);
1686 break;
1687 }
1688 break;
1689 case USB_RECIP_ENDPOINT:
1690 if (!udc->setup.wValue) {
1691 endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1692 target_ep = &udc->ep[endpoint];
1693 outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK;
1694 outinbit = outinbit >> 7;
1695
1696 /* Make sure direction matches.*/
1697 if (outinbit != target_ep->is_in) {
1698 xudc_ep0_stall(udc);
1699 return;
1700 }
1701 epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1702 if (!endpoint) {
1703 /* Clear the stall.*/
1704 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1705 udc->write_fn(udc->addr,
1706 target_ep->offset, epcfgreg);
1707 } else {
1708 if (flag) {
1709 epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1710 udc->write_fn(udc->addr,
1711 target_ep->offset,
1712 epcfgreg);
1713 } else {
1714 /* Unstall the endpoint.*/
1715 epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1716 XUSB_EP_CFG_DATA_TOGGLE_MASK);
1717 udc->write_fn(udc->addr,
1718 target_ep->offset,
1719 epcfgreg);
1720 }
1721 }
1722 }
1723 break;
1724 default:
1725 xudc_ep0_stall(udc);
1726 return;
1727 }
1728
1729 req->usb_req.length = 0;
1730 ret = __xudc_ep0_queue(ep0, req);
1731 if (ret == 0)
1732 return;
1733
1734 dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1735 xudc_ep0_stall(udc);
1736 }
1737
1738 /**
1739 * xudc_handle_setup - Processes the setup packet.
1740 * @udc: pointer to the usb device controller structure.
1741 *
1742 * Process setup packet and delegate to gadget layer.
1743 */
xudc_handle_setup(struct xusb_udc * udc)1744 static void xudc_handle_setup(struct xusb_udc *udc)
1745 {
1746 struct xusb_ep *ep0 = &udc->ep[0];
1747 struct usb_ctrlrequest setup;
1748 u32 *ep0rambase;
1749
1750 /* Load up the chapter 9 command buffer.*/
1751 ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1752 memcpy(&setup, ep0rambase, 8);
1753
1754 udc->setup = setup;
1755 udc->setup.wValue = cpu_to_le16(setup.wValue);
1756 udc->setup.wIndex = cpu_to_le16(setup.wIndex);
1757 udc->setup.wLength = cpu_to_le16(setup.wLength);
1758
1759 /* Clear previous requests */
1760 xudc_nuke(ep0, -ECONNRESET);
1761
1762 if (udc->setup.bRequestType & USB_DIR_IN) {
1763 /* Execute the get command.*/
1764 udc->setupseqrx = STATUS_PHASE;
1765 udc->setupseqtx = DATA_PHASE;
1766 } else {
1767 /* Execute the put command.*/
1768 udc->setupseqrx = DATA_PHASE;
1769 udc->setupseqtx = STATUS_PHASE;
1770 }
1771
1772 switch (udc->setup.bRequest) {
1773 case USB_REQ_GET_STATUS:
1774 /* Data+Status phase form udc */
1775 if ((udc->setup.bRequestType &
1776 (USB_DIR_IN | USB_TYPE_MASK)) !=
1777 (USB_DIR_IN | USB_TYPE_STANDARD))
1778 break;
1779 xudc_getstatus(udc);
1780 return;
1781 case USB_REQ_SET_ADDRESS:
1782 /* Status phase from udc */
1783 if (udc->setup.bRequestType != (USB_DIR_OUT |
1784 USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1785 break;
1786 xudc_setaddress(udc);
1787 return;
1788 case USB_REQ_CLEAR_FEATURE:
1789 case USB_REQ_SET_FEATURE:
1790 /* Requests with no data phase, status phase from udc */
1791 if ((udc->setup.bRequestType & USB_TYPE_MASK)
1792 != USB_TYPE_STANDARD)
1793 break;
1794 xudc_set_clear_feature(udc);
1795 return;
1796 default:
1797 break;
1798 }
1799
1800 spin_unlock(&udc->lock);
1801 if (udc->driver->setup(&udc->gadget, &setup) < 0)
1802 xudc_ep0_stall(udc);
1803 spin_lock(&udc->lock);
1804 }
1805
1806 /**
1807 * xudc_ep0_out - Processes the endpoint 0 OUT token.
1808 * @udc: pointer to the usb device controller structure.
1809 */
xudc_ep0_out(struct xusb_udc * udc)1810 static void xudc_ep0_out(struct xusb_udc *udc)
1811 {
1812 struct xusb_ep *ep0 = &udc->ep[0];
1813 struct xusb_req *req;
1814 u8 *ep0rambase;
1815 unsigned int bytes_to_rx;
1816 void *buffer;
1817
1818 req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1819
1820 switch (udc->setupseqrx) {
1821 case STATUS_PHASE:
1822 /*
1823 * This resets both state machines for the next
1824 * Setup packet.
1825 */
1826 udc->setupseqrx = SETUP_PHASE;
1827 udc->setupseqtx = SETUP_PHASE;
1828 req->usb_req.actual = req->usb_req.length;
1829 xudc_done(ep0, req, 0);
1830 break;
1831 case DATA_PHASE:
1832 bytes_to_rx = udc->read_fn(udc->addr +
1833 XUSB_EP_BUF0COUNT_OFFSET);
1834 /* Copy the data to be received from the DPRAM. */
1835 ep0rambase = (u8 __force *) (udc->addr +
1836 (ep0->rambase << 2));
1837 buffer = req->usb_req.buf + req->usb_req.actual;
1838 req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1839 memcpy(buffer, ep0rambase, bytes_to_rx);
1840
1841 if (req->usb_req.length == req->usb_req.actual) {
1842 /* Data transfer completed get ready for Status stage */
1843 xudc_wrstatus(udc);
1844 } else {
1845 /* Enable EP0 buffer to receive data */
1846 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1847 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1848 }
1849 break;
1850 default:
1851 break;
1852 }
1853 }
1854
1855 /**
1856 * xudc_ep0_in - Processes the endpoint 0 IN token.
1857 * @udc: pointer to the usb device controller structure.
1858 */
xudc_ep0_in(struct xusb_udc * udc)1859 static void xudc_ep0_in(struct xusb_udc *udc)
1860 {
1861 struct xusb_ep *ep0 = &udc->ep[0];
1862 struct xusb_req *req;
1863 unsigned int bytes_to_tx;
1864 void *buffer;
1865 u32 epcfgreg;
1866 u16 count = 0;
1867 u16 length;
1868 u8 *ep0rambase;
1869 u8 test_mode = udc->setup.wIndex >> 8;
1870
1871 req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1872 bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1873
1874 switch (udc->setupseqtx) {
1875 case STATUS_PHASE:
1876 switch (udc->setup.bRequest) {
1877 case USB_REQ_SET_ADDRESS:
1878 /* Set the address of the device.*/
1879 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1880 udc->setup.wValue);
1881 break;
1882 case USB_REQ_SET_FEATURE:
1883 if (udc->setup.bRequestType ==
1884 USB_RECIP_DEVICE) {
1885 if (udc->setup.wValue ==
1886 USB_DEVICE_TEST_MODE)
1887 udc->write_fn(udc->addr,
1888 XUSB_TESTMODE_OFFSET,
1889 test_mode);
1890 }
1891 break;
1892 }
1893 req->usb_req.actual = req->usb_req.length;
1894 xudc_done(ep0, req, 0);
1895 break;
1896 case DATA_PHASE:
1897 if (!bytes_to_tx) {
1898 /*
1899 * We're done with data transfer, next
1900 * will be zero length OUT with data toggle of
1901 * 1. Setup data_toggle.
1902 */
1903 epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1904 epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1905 udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1906 udc->setupseqtx = STATUS_PHASE;
1907 } else {
1908 length = count = min_t(u32, bytes_to_tx,
1909 EP0_MAX_PACKET);
1910 /* Copy the data to be transmitted into the DPRAM. */
1911 ep0rambase = (u8 __force *) (udc->addr +
1912 (ep0->rambase << 2));
1913 buffer = req->usb_req.buf + req->usb_req.actual;
1914 req->usb_req.actual = req->usb_req.actual + length;
1915 memcpy(ep0rambase, buffer, length);
1916 }
1917 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1918 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1919 break;
1920 default:
1921 break;
1922 }
1923 }
1924
1925 /**
1926 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1927 * @udc: pointer to the udc structure.
1928 * @intrstatus: It's the mask value for the interrupt sources on endpoint 0.
1929 *
1930 * Processes the commands received during enumeration phase.
1931 */
xudc_ctrl_ep_handler(struct xusb_udc * udc,u32 intrstatus)1932 static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1933 {
1934
1935 if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1936 xudc_handle_setup(udc);
1937 } else {
1938 if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1939 xudc_ep0_out(udc);
1940 else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1941 xudc_ep0_in(udc);
1942 }
1943 }
1944
1945 /**
1946 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1947 * @udc: pointer to the udc structure.
1948 * @epnum: End point number for which the interrupt is to be processed
1949 * @intrstatus: mask value for interrupt sources of endpoints other
1950 * than endpoint 0.
1951 *
1952 * Processes the buffer completion interrupts.
1953 */
xudc_nonctrl_ep_handler(struct xusb_udc * udc,u8 epnum,u32 intrstatus)1954 static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1955 u32 intrstatus)
1956 {
1957
1958 struct xusb_req *req;
1959 struct xusb_ep *ep;
1960
1961 ep = &udc->ep[epnum];
1962 /* Process the End point interrupts.*/
1963 if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1964 ep->buffer0ready = 0;
1965 if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1966 ep->buffer1ready = 0;
1967
1968 if (list_empty(&ep->queue))
1969 return;
1970
1971 req = list_first_entry(&ep->queue, struct xusb_req, queue);
1972
1973 if (ep->is_in)
1974 xudc_write_fifo(ep, req);
1975 else
1976 xudc_read_fifo(ep, req);
1977 }
1978
1979 /**
1980 * xudc_irq - The main interrupt handler.
1981 * @irq: The interrupt number.
1982 * @_udc: pointer to the usb device controller structure.
1983 *
1984 * Return: IRQ_HANDLED after the interrupt is handled.
1985 */
xudc_irq(int irq,void * _udc)1986 static irqreturn_t xudc_irq(int irq, void *_udc)
1987 {
1988 struct xusb_udc *udc = _udc;
1989 u32 intrstatus;
1990 u32 ier;
1991 u8 index;
1992 u32 bufintr;
1993 unsigned long flags;
1994
1995 spin_lock_irqsave(&udc->lock, flags);
1996
1997 /*
1998 * Event interrupts are level sensitive hence first disable
1999 * IER, read ISR and figure out active interrupts.
2000 */
2001 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2002 ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
2003 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2004
2005 /* Read the Interrupt Status Register.*/
2006 intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
2007
2008 /* Call the handler for the event interrupt.*/
2009 if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2010 /*
2011 * Check if there is any action to be done for :
2012 * - USB Reset received {XUSB_STATUS_RESET_MASK}
2013 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2014 * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2015 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2016 */
2017 xudc_startup_handler(udc, intrstatus);
2018 }
2019
2020 /* Check the buffer completion interrupts */
2021 if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2022 /* Enable Reset, Suspend, Resume and Disconnect */
2023 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2024 ier |= XUSB_STATUS_INTR_EVENT_MASK;
2025 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2026
2027 if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2028 xudc_ctrl_ep_handler(udc, intrstatus);
2029
2030 for (index = 1; index < 8; index++) {
2031 bufintr = ((intrstatus &
2032 (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2033 (index - 1))) || (intrstatus &
2034 (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2035 (index - 1))));
2036 if (bufintr) {
2037 xudc_nonctrl_ep_handler(udc, index,
2038 intrstatus);
2039 }
2040 }
2041 }
2042
2043 spin_unlock_irqrestore(&udc->lock, flags);
2044 return IRQ_HANDLED;
2045 }
2046
2047 /**
2048 * xudc_probe - The device probe function for driver initialization.
2049 * @pdev: pointer to the platform device structure.
2050 *
2051 * Return: 0 for success and error value on failure
2052 */
xudc_probe(struct platform_device * pdev)2053 static int xudc_probe(struct platform_device *pdev)
2054 {
2055 struct device_node *np = pdev->dev.of_node;
2056 struct resource *res;
2057 struct xusb_udc *udc;
2058 struct xusb_ep *ep0;
2059 int irq;
2060 int ret;
2061 u32 ier;
2062 u8 *buff;
2063
2064 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2065 if (!udc)
2066 return -ENOMEM;
2067
2068 /* Create a dummy request for GET_STATUS, SET_ADDRESS */
2069 udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req),
2070 GFP_KERNEL);
2071 if (!udc->req)
2072 return -ENOMEM;
2073
2074 buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2075 if (!buff)
2076 return -ENOMEM;
2077
2078 udc->req->usb_req.buf = buff;
2079
2080 /* Map the registers */
2081 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2082 udc->addr = devm_ioremap_resource(&pdev->dev, res);
2083 if (IS_ERR(udc->addr))
2084 return PTR_ERR(udc->addr);
2085
2086 irq = platform_get_irq(pdev, 0);
2087 if (irq < 0) {
2088 dev_err(&pdev->dev, "unable to get irq\n");
2089 return irq;
2090 }
2091 ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0,
2092 dev_name(&pdev->dev), udc);
2093 if (ret < 0) {
2094 dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2095 goto fail;
2096 }
2097
2098 udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma");
2099
2100 /* Setup gadget structure */
2101 udc->gadget.ops = &xusb_udc_ops;
2102 udc->gadget.max_speed = USB_SPEED_HIGH;
2103 udc->gadget.speed = USB_SPEED_UNKNOWN;
2104 udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2105 udc->gadget.name = driver_name;
2106
2107 spin_lock_init(&udc->lock);
2108
2109 /* Check for IP endianness */
2110 udc->write_fn = xudc_write32_be;
2111 udc->read_fn = xudc_read32_be;
2112 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, TEST_J);
2113 if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2114 != TEST_J) {
2115 udc->write_fn = xudc_write32;
2116 udc->read_fn = xudc_read32;
2117 }
2118 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2119
2120 xudc_eps_init(udc);
2121
2122 ep0 = &udc->ep[0];
2123
2124 /* Set device address to 0.*/
2125 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2126
2127 ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2128 if (ret)
2129 goto fail;
2130
2131 udc->dev = &udc->gadget.dev;
2132
2133 /* Enable the interrupts.*/
2134 ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2135 XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2136 XUSB_STATUS_SETUP_PACKET_MASK |
2137 XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2138
2139 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2140
2141 platform_set_drvdata(pdev, udc);
2142
2143 dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2144 driver_name, (u32)res->start, udc->addr,
2145 udc->dma_enabled ? "with DMA" : "without DMA");
2146
2147 return 0;
2148 fail:
2149 dev_err(&pdev->dev, "probe failed, %d\n", ret);
2150 return ret;
2151 }
2152
2153 /**
2154 * xudc_remove - Releases the resources allocated during the initialization.
2155 * @pdev: pointer to the platform device structure.
2156 *
2157 * Return: 0 always
2158 */
xudc_remove(struct platform_device * pdev)2159 static int xudc_remove(struct platform_device *pdev)
2160 {
2161 struct xusb_udc *udc = platform_get_drvdata(pdev);
2162
2163 usb_del_gadget_udc(&udc->gadget);
2164
2165 return 0;
2166 }
2167
2168 /* Match table for of_platform binding */
2169 static const struct of_device_id usb_of_match[] = {
2170 { .compatible = "xlnx,usb2-device-4.00.a", },
2171 { /* end of list */ },
2172 };
2173 MODULE_DEVICE_TABLE(of, usb_of_match);
2174
2175 static struct platform_driver xudc_driver = {
2176 .driver = {
2177 .name = driver_name,
2178 .of_match_table = usb_of_match,
2179 },
2180 .probe = xudc_probe,
2181 .remove = xudc_remove,
2182 };
2183
2184 module_platform_driver(xudc_driver);
2185
2186 MODULE_DESCRIPTION("Xilinx udc driver");
2187 MODULE_AUTHOR("Xilinx, Inc");
2188 MODULE_LICENSE("GPL");
2189