• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Faraday FOTG210 EHCI-like driver
2  *
3  * Copyright (c) 2013 Faraday Technology Corporation
4  *
5  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
6  *	   Feng-Hsin Chiang <john453@faraday-tech.com>
7  *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
8  *
9  * Most of code borrowed from the Linux-3.7 EHCI driver
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19  * for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software Foundation,
23  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 #include <linux/module.h>
26 #include <linux/device.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/delay.h>
30 #include <linux/ioport.h>
31 #include <linux/sched.h>
32 #include <linux/vmalloc.h>
33 #include <linux/errno.h>
34 #include <linux/init.h>
35 #include <linux/hrtimer.h>
36 #include <linux/list.h>
37 #include <linux/interrupt.h>
38 #include <linux/usb.h>
39 #include <linux/usb/hcd.h>
40 #include <linux/moduleparam.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/debugfs.h>
43 #include <linux/slab.h>
44 #include <linux/uaccess.h>
45 #include <linux/platform_device.h>
46 #include <linux/io.h>
47 
48 #include <asm/byteorder.h>
49 #include <asm/irq.h>
50 #include <asm/unaligned.h>
51 
52 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
53 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
54 static const char hcd_name[] = "fotg210_hcd";
55 
56 #undef FOTG210_URB_TRACE
57 #define FOTG210_STATS
58 
59 /* magic numbers that can affect system performance */
60 #define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
61 #define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
62 #define FOTG210_TUNE_RL_TT	0
63 #define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
64 #define FOTG210_TUNE_MULT_TT	1
65 
66 /* Some drivers think it's safe to schedule isochronous transfers more than 256
67  * ms into the future (partly as a result of an old bug in the scheduling
68  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
69  * length of 512 frames instead of 256.
70  */
71 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
72 
73 /* Initial IRQ latency:  faster than hw default */
74 static int log2_irq_thresh; /* 0 to 6 */
75 module_param(log2_irq_thresh, int, S_IRUGO);
76 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
77 
78 /* initial park setting:  slower than hw default */
79 static unsigned park;
80 module_param(park, uint, S_IRUGO);
81 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
82 
83 /* for link power management(LPM) feature */
84 static unsigned int hird;
85 module_param(hird, int, S_IRUGO);
86 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
87 
88 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
89 
90 #include "fotg210.h"
91 
92 #define fotg210_dbg(fotg210, fmt, args...) \
93 	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
94 #define fotg210_err(fotg210, fmt, args...) \
95 	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
96 #define fotg210_info(fotg210, fmt, args...) \
97 	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
98 #define fotg210_warn(fotg210, fmt, args...) \
99 	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
100 
101 /* check the values in the HCSPARAMS register (host controller _Structural_
102  * parameters) see EHCI spec, Table 2-4 for each value
103  */
dbg_hcs_params(struct fotg210_hcd * fotg210,char * label)104 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
105 {
106 	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
107 
108 	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
109 			HCS_N_PORTS(params));
110 }
111 
112 /* check the values in the HCCPARAMS register (host controller _Capability_
113  * parameters) see EHCI Spec, Table 2-5 for each value
114  */
dbg_hcc_params(struct fotg210_hcd * fotg210,char * label)115 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
116 {
117 	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
118 
119 	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
120 			params,
121 			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
122 			HCC_CANPARK(params) ? " park" : "");
123 }
124 
125 static void __maybe_unused
dbg_qtd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)126 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
127 {
128 	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
129 			hc32_to_cpup(fotg210, &qtd->hw_next),
130 			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
131 			hc32_to_cpup(fotg210, &qtd->hw_token),
132 			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
133 	if (qtd->hw_buf[1])
134 		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
135 				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
136 				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
137 				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
138 				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
139 }
140 
141 static void __maybe_unused
dbg_qh(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qh * qh)142 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
143 {
144 	struct fotg210_qh_hw *hw = qh->hw;
145 
146 	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
147 			hw->hw_next, hw->hw_info1, hw->hw_info2,
148 			hw->hw_current);
149 
150 	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
151 }
152 
153 static void __maybe_unused
dbg_itd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_itd * itd)154 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
155 {
156 	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
157 			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
158 			itd->urb);
159 
160 	fotg210_dbg(fotg210,
161 			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
162 			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
163 			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
164 			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
165 			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
166 			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
167 			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
168 			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
169 			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
170 
171 	fotg210_dbg(fotg210,
172 			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
173 			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
174 			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
175 			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
176 			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
177 			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
178 			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
179 			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
180 
181 	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
182 			itd->index[0], itd->index[1], itd->index[2],
183 			itd->index[3], itd->index[4], itd->index[5],
184 			itd->index[6], itd->index[7]);
185 }
186 
187 static int __maybe_unused
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)188 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
189 {
190 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
191 			label, label[0] ? " " : "", status,
192 			(status & STS_ASS) ? " Async" : "",
193 			(status & STS_PSS) ? " Periodic" : "",
194 			(status & STS_RECL) ? " Recl" : "",
195 			(status & STS_HALT) ? " Halt" : "",
196 			(status & STS_IAA) ? " IAA" : "",
197 			(status & STS_FATAL) ? " FATAL" : "",
198 			(status & STS_FLR) ? " FLR" : "",
199 			(status & STS_PCD) ? " PCD" : "",
200 			(status & STS_ERR) ? " ERR" : "",
201 			(status & STS_INT) ? " INT" : "");
202 }
203 
204 static int __maybe_unused
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)205 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
206 {
207 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
208 			label, label[0] ? " " : "", enable,
209 			(enable & STS_IAA) ? " IAA" : "",
210 			(enable & STS_FATAL) ? " FATAL" : "",
211 			(enable & STS_FLR) ? " FLR" : "",
212 			(enable & STS_PCD) ? " PCD" : "",
213 			(enable & STS_ERR) ? " ERR" : "",
214 			(enable & STS_INT) ? " INT" : "");
215 }
216 
217 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
218 
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)219 static int dbg_command_buf(char *buf, unsigned len, const char *label,
220 		u32 command)
221 {
222 	return scnprintf(buf, len,
223 			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
224 			label, label[0] ? " " : "", command,
225 			(command & CMD_PARK) ? " park" : "(park)",
226 			CMD_PARK_CNT(command),
227 			(command >> 16) & 0x3f,
228 			(command & CMD_IAAD) ? " IAAD" : "",
229 			(command & CMD_ASE) ? " Async" : "",
230 			(command & CMD_PSE) ? " Periodic" : "",
231 			fls_strings[(command >> 2) & 0x3],
232 			(command & CMD_RESET) ? " Reset" : "",
233 			(command & CMD_RUN) ? "RUN" : "HALT");
234 }
235 
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)236 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
237 		u32 status)
238 {
239 	char *sig;
240 
241 	/* signaling state */
242 	switch (status & (3 << 10)) {
243 	case 0 << 10:
244 		sig = "se0";
245 		break;
246 	case 1 << 10:
247 		sig = "k";
248 		break; /* low speed */
249 	case 2 << 10:
250 		sig = "j";
251 		break;
252 	default:
253 		sig = "?";
254 		break;
255 	}
256 
257 	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
258 			label, label[0] ? " " : "", port, status,
259 			status >> 25, /*device address */
260 			sig,
261 			(status & PORT_RESET) ? " RESET" : "",
262 			(status & PORT_SUSPEND) ? " SUSPEND" : "",
263 			(status & PORT_RESUME) ? " RESUME" : "",
264 			(status & PORT_PEC) ? " PEC" : "",
265 			(status & PORT_PE) ? " PE" : "",
266 			(status & PORT_CSC) ? " CSC" : "",
267 			(status & PORT_CONNECT) ? " CONNECT" : "");
268 
269 	return buf;
270 }
271 
272 /* functions have the "wrong" filename when they're output... */
273 #define dbg_status(fotg210, label, status) {			\
274 	char _buf[80];						\
275 	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
276 	fotg210_dbg(fotg210, "%s\n", _buf);			\
277 }
278 
279 #define dbg_cmd(fotg210, label, command) {			\
280 	char _buf[80];						\
281 	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
282 	fotg210_dbg(fotg210, "%s\n", _buf);			\
283 }
284 
285 #define dbg_port(fotg210, label, port, status) {			       \
286 	char _buf[80];							       \
287 	fotg210_dbg(fotg210, "%s\n",					       \
288 			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
289 }
290 
291 /* troubleshooting help: expose state in debugfs */
292 static int debug_async_open(struct inode *, struct file *);
293 static int debug_periodic_open(struct inode *, struct file *);
294 static int debug_registers_open(struct inode *, struct file *);
295 static int debug_async_open(struct inode *, struct file *);
296 
297 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
298 static int debug_close(struct inode *, struct file *);
299 
300 static const struct file_operations debug_async_fops = {
301 	.owner		= THIS_MODULE,
302 	.open		= debug_async_open,
303 	.read		= debug_output,
304 	.release	= debug_close,
305 	.llseek		= default_llseek,
306 };
307 static const struct file_operations debug_periodic_fops = {
308 	.owner		= THIS_MODULE,
309 	.open		= debug_periodic_open,
310 	.read		= debug_output,
311 	.release	= debug_close,
312 	.llseek		= default_llseek,
313 };
314 static const struct file_operations debug_registers_fops = {
315 	.owner		= THIS_MODULE,
316 	.open		= debug_registers_open,
317 	.read		= debug_output,
318 	.release	= debug_close,
319 	.llseek		= default_llseek,
320 };
321 
322 static struct dentry *fotg210_debug_root;
323 
324 struct debug_buffer {
325 	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
326 	struct usb_bus *bus;
327 	struct mutex mutex;	/* protect filling of buffer */
328 	size_t count;		/* number of characters filled into buffer */
329 	char *output_buf;
330 	size_t alloc_size;
331 };
332 
speed_char(u32 scratch)333 static inline char speed_char(u32 scratch)
334 {
335 	switch (scratch & (3 << 12)) {
336 	case QH_FULL_SPEED:
337 		return 'f';
338 
339 	case QH_LOW_SPEED:
340 		return 'l';
341 
342 	case QH_HIGH_SPEED:
343 		return 'h';
344 
345 	default:
346 		return '?';
347 	}
348 }
349 
token_mark(struct fotg210_hcd * fotg210,__hc32 token)350 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
351 {
352 	__u32 v = hc32_to_cpu(fotg210, token);
353 
354 	if (v & QTD_STS_ACTIVE)
355 		return '*';
356 	if (v & QTD_STS_HALT)
357 		return '-';
358 	if (!IS_SHORT_READ(v))
359 		return ' ';
360 	/* tries to advance through hw_alt_next */
361 	return '/';
362 }
363 
qh_lines(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,char ** nextp,unsigned * sizep)364 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
365 		char **nextp, unsigned *sizep)
366 {
367 	u32 scratch;
368 	u32 hw_curr;
369 	struct fotg210_qtd *td;
370 	unsigned temp;
371 	unsigned size = *sizep;
372 	char *next = *nextp;
373 	char mark;
374 	__le32 list_end = FOTG210_LIST_END(fotg210);
375 	struct fotg210_qh_hw *hw = qh->hw;
376 
377 	if (hw->hw_qtd_next == list_end) /* NEC does this */
378 		mark = '@';
379 	else
380 		mark = token_mark(fotg210, hw->hw_token);
381 	if (mark == '/') { /* qh_alt_next controls qh advance? */
382 		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
383 		    fotg210->async->hw->hw_alt_next)
384 			mark = '#'; /* blocked */
385 		else if (hw->hw_alt_next == list_end)
386 			mark = '.'; /* use hw_qtd_next */
387 		/* else alt_next points to some other qtd */
388 	}
389 	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
390 	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
391 	temp = scnprintf(next, size,
392 			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
393 			qh, scratch & 0x007f,
394 			speed_char(scratch),
395 			(scratch >> 8) & 0x000f,
396 			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
397 			hc32_to_cpup(fotg210, &hw->hw_token), mark,
398 			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
399 				? "data1" : "data0",
400 			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
401 	size -= temp;
402 	next += temp;
403 
404 	/* hc may be modifying the list as we read it ... */
405 	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
406 		scratch = hc32_to_cpup(fotg210, &td->hw_token);
407 		mark = ' ';
408 		if (hw_curr == td->qtd_dma)
409 			mark = '*';
410 		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
411 			mark = '+';
412 		else if (QTD_LENGTH(scratch)) {
413 			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
414 				mark = '#';
415 			else if (td->hw_alt_next != list_end)
416 				mark = '/';
417 		}
418 		temp = snprintf(next, size,
419 				"\n\t%p%c%s len=%d %08x urb %p",
420 				td, mark, ({ char *tmp;
421 				 switch ((scratch>>8)&0x03) {
422 				 case 0:
423 					tmp = "out";
424 					break;
425 				 case 1:
426 					tmp = "in";
427 					break;
428 				 case 2:
429 					tmp = "setup";
430 					break;
431 				 default:
432 					tmp = "?";
433 					break;
434 				 } tmp; }),
435 				(scratch >> 16) & 0x7fff,
436 				scratch,
437 				td->urb);
438 		if (size < temp)
439 			temp = size;
440 		size -= temp;
441 		next += temp;
442 		if (temp == size)
443 			goto done;
444 	}
445 
446 	temp = snprintf(next, size, "\n");
447 	if (size < temp)
448 		temp = size;
449 
450 	size -= temp;
451 	next += temp;
452 
453 done:
454 	*sizep = size;
455 	*nextp = next;
456 }
457 
fill_async_buffer(struct debug_buffer * buf)458 static ssize_t fill_async_buffer(struct debug_buffer *buf)
459 {
460 	struct usb_hcd *hcd;
461 	struct fotg210_hcd *fotg210;
462 	unsigned long flags;
463 	unsigned temp, size;
464 	char *next;
465 	struct fotg210_qh *qh;
466 
467 	hcd = bus_to_hcd(buf->bus);
468 	fotg210 = hcd_to_fotg210(hcd);
469 	next = buf->output_buf;
470 	size = buf->alloc_size;
471 
472 	*next = 0;
473 
474 	/* dumps a snapshot of the async schedule.
475 	 * usually empty except for long-term bulk reads, or head.
476 	 * one QH per line, and TDs we know about
477 	 */
478 	spin_lock_irqsave(&fotg210->lock, flags);
479 	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
480 			qh = qh->qh_next.qh)
481 		qh_lines(fotg210, qh, &next, &size);
482 	if (fotg210->async_unlink && size > 0) {
483 		temp = scnprintf(next, size, "\nunlink =\n");
484 		size -= temp;
485 		next += temp;
486 
487 		for (qh = fotg210->async_unlink; size > 0 && qh;
488 				qh = qh->unlink_next)
489 			qh_lines(fotg210, qh, &next, &size);
490 	}
491 	spin_unlock_irqrestore(&fotg210->lock, flags);
492 
493 	return strlen(buf->output_buf);
494 }
495 
496 /* count tds, get ep direction */
output_buf_tds_dir(char * buf,struct fotg210_hcd * fotg210,struct fotg210_qh_hw * hw,struct fotg210_qh * qh,unsigned size)497 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
498 		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
499 {
500 	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
501 	struct fotg210_qtd *qtd;
502 	char *type = "";
503 	unsigned temp = 0;
504 
505 	/* count tds, get ep direction */
506 	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
507 		temp++;
508 		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
509 		case 0:
510 			type = "out";
511 			continue;
512 		case 1:
513 			type = "in";
514 			continue;
515 		}
516 	}
517 
518 	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
519 			speed_char(scratch), scratch & 0x007f,
520 			(scratch >> 8) & 0x000f, type, qh->usecs,
521 			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
522 }
523 
524 #define DBG_SCHED_LIMIT 64
fill_periodic_buffer(struct debug_buffer * buf)525 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
526 {
527 	struct usb_hcd *hcd;
528 	struct fotg210_hcd *fotg210;
529 	unsigned long flags;
530 	union fotg210_shadow p, *seen;
531 	unsigned temp, size, seen_count;
532 	char *next;
533 	unsigned i;
534 	__hc32 tag;
535 
536 	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
537 	if (!seen)
538 		return 0;
539 
540 	seen_count = 0;
541 
542 	hcd = bus_to_hcd(buf->bus);
543 	fotg210 = hcd_to_fotg210(hcd);
544 	next = buf->output_buf;
545 	size = buf->alloc_size;
546 
547 	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
548 	size -= temp;
549 	next += temp;
550 
551 	/* dump a snapshot of the periodic schedule.
552 	 * iso changes, interrupt usually doesn't.
553 	 */
554 	spin_lock_irqsave(&fotg210->lock, flags);
555 	for (i = 0; i < fotg210->periodic_size; i++) {
556 		p = fotg210->pshadow[i];
557 		if (likely(!p.ptr))
558 			continue;
559 
560 		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
561 
562 		temp = scnprintf(next, size, "%4d: ", i);
563 		size -= temp;
564 		next += temp;
565 
566 		do {
567 			struct fotg210_qh_hw *hw;
568 
569 			switch (hc32_to_cpu(fotg210, tag)) {
570 			case Q_TYPE_QH:
571 				hw = p.qh->hw;
572 				temp = scnprintf(next, size, " qh%d-%04x/%p",
573 						p.qh->period,
574 						hc32_to_cpup(fotg210,
575 							&hw->hw_info2)
576 							/* uframe masks */
577 							& (QH_CMASK | QH_SMASK),
578 						p.qh);
579 				size -= temp;
580 				next += temp;
581 				/* don't repeat what follows this qh */
582 				for (temp = 0; temp < seen_count; temp++) {
583 					if (seen[temp].ptr != p.ptr)
584 						continue;
585 					if (p.qh->qh_next.ptr) {
586 						temp = scnprintf(next, size,
587 								" ...");
588 						size -= temp;
589 						next += temp;
590 					}
591 					break;
592 				}
593 				/* show more info the first time around */
594 				if (temp == seen_count) {
595 					temp = output_buf_tds_dir(next,
596 							fotg210, hw,
597 							p.qh, size);
598 
599 					if (seen_count < DBG_SCHED_LIMIT)
600 						seen[seen_count++].qh = p.qh;
601 				} else
602 					temp = 0;
603 				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
604 				p = p.qh->qh_next;
605 				break;
606 			case Q_TYPE_FSTN:
607 				temp = scnprintf(next, size,
608 						" fstn-%8x/%p",
609 						p.fstn->hw_prev, p.fstn);
610 				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
611 				p = p.fstn->fstn_next;
612 				break;
613 			case Q_TYPE_ITD:
614 				temp = scnprintf(next, size,
615 						" itd/%p", p.itd);
616 				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
617 				p = p.itd->itd_next;
618 				break;
619 			}
620 			size -= temp;
621 			next += temp;
622 		} while (p.ptr);
623 
624 		temp = scnprintf(next, size, "\n");
625 		size -= temp;
626 		next += temp;
627 	}
628 	spin_unlock_irqrestore(&fotg210->lock, flags);
629 	kfree(seen);
630 
631 	return buf->alloc_size - size;
632 }
633 #undef DBG_SCHED_LIMIT
634 
rh_state_string(struct fotg210_hcd * fotg210)635 static const char *rh_state_string(struct fotg210_hcd *fotg210)
636 {
637 	switch (fotg210->rh_state) {
638 	case FOTG210_RH_HALTED:
639 		return "halted";
640 	case FOTG210_RH_SUSPENDED:
641 		return "suspended";
642 	case FOTG210_RH_RUNNING:
643 		return "running";
644 	case FOTG210_RH_STOPPING:
645 		return "stopping";
646 	}
647 	return "?";
648 }
649 
fill_registers_buffer(struct debug_buffer * buf)650 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
651 {
652 	struct usb_hcd *hcd;
653 	struct fotg210_hcd *fotg210;
654 	unsigned long flags;
655 	unsigned temp, size, i;
656 	char *next, scratch[80];
657 	static const char fmt[] = "%*s\n";
658 	static const char label[] = "";
659 
660 	hcd = bus_to_hcd(buf->bus);
661 	fotg210 = hcd_to_fotg210(hcd);
662 	next = buf->output_buf;
663 	size = buf->alloc_size;
664 
665 	spin_lock_irqsave(&fotg210->lock, flags);
666 
667 	if (!HCD_HW_ACCESSIBLE(hcd)) {
668 		size = scnprintf(next, size,
669 				"bus %s, device %s\n"
670 				"%s\n"
671 				"SUSPENDED(no register access)\n",
672 				hcd->self.controller->bus->name,
673 				dev_name(hcd->self.controller),
674 				hcd->product_desc);
675 		goto done;
676 	}
677 
678 	/* Capability Registers */
679 	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
680 			&fotg210->caps->hc_capbase));
681 	temp = scnprintf(next, size,
682 			"bus %s, device %s\n"
683 			"%s\n"
684 			"EHCI %x.%02x, rh state %s\n",
685 			hcd->self.controller->bus->name,
686 			dev_name(hcd->self.controller),
687 			hcd->product_desc,
688 			i >> 8, i & 0x0ff, rh_state_string(fotg210));
689 	size -= temp;
690 	next += temp;
691 
692 	/* FIXME interpret both types of params */
693 	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
694 	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
695 	size -= temp;
696 	next += temp;
697 
698 	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
699 	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
700 	size -= temp;
701 	next += temp;
702 
703 	/* Operational Registers */
704 	temp = dbg_status_buf(scratch, sizeof(scratch), label,
705 			fotg210_readl(fotg210, &fotg210->regs->status));
706 	temp = scnprintf(next, size, fmt, temp, scratch);
707 	size -= temp;
708 	next += temp;
709 
710 	temp = dbg_command_buf(scratch, sizeof(scratch), label,
711 			fotg210_readl(fotg210, &fotg210->regs->command));
712 	temp = scnprintf(next, size, fmt, temp, scratch);
713 	size -= temp;
714 	next += temp;
715 
716 	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
717 			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
718 	temp = scnprintf(next, size, fmt, temp, scratch);
719 	size -= temp;
720 	next += temp;
721 
722 	temp = scnprintf(next, size, "uframe %04x\n",
723 			fotg210_read_frame_index(fotg210));
724 	size -= temp;
725 	next += temp;
726 
727 	if (fotg210->async_unlink) {
728 		temp = scnprintf(next, size, "async unlink qh %p\n",
729 				fotg210->async_unlink);
730 		size -= temp;
731 		next += temp;
732 	}
733 
734 #ifdef FOTG210_STATS
735 	temp = scnprintf(next, size,
736 			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
737 			fotg210->stats.normal, fotg210->stats.error,
738 			fotg210->stats.iaa, fotg210->stats.lost_iaa);
739 	size -= temp;
740 	next += temp;
741 
742 	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
743 			fotg210->stats.complete, fotg210->stats.unlink);
744 	size -= temp;
745 	next += temp;
746 #endif
747 
748 done:
749 	spin_unlock_irqrestore(&fotg210->lock, flags);
750 
751 	return buf->alloc_size - size;
752 }
753 
754 static struct debug_buffer
alloc_buffer(struct usb_bus * bus,ssize_t (* fill_func)(struct debug_buffer *))755 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
756 {
757 	struct debug_buffer *buf;
758 
759 	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
760 
761 	if (buf) {
762 		buf->bus = bus;
763 		buf->fill_func = fill_func;
764 		mutex_init(&buf->mutex);
765 		buf->alloc_size = PAGE_SIZE;
766 	}
767 
768 	return buf;
769 }
770 
fill_buffer(struct debug_buffer * buf)771 static int fill_buffer(struct debug_buffer *buf)
772 {
773 	int ret = 0;
774 
775 	if (!buf->output_buf)
776 		buf->output_buf = vmalloc(buf->alloc_size);
777 
778 	if (!buf->output_buf) {
779 		ret = -ENOMEM;
780 		goto out;
781 	}
782 
783 	ret = buf->fill_func(buf);
784 
785 	if (ret >= 0) {
786 		buf->count = ret;
787 		ret = 0;
788 	}
789 
790 out:
791 	return ret;
792 }
793 
debug_output(struct file * file,char __user * user_buf,size_t len,loff_t * offset)794 static ssize_t debug_output(struct file *file, char __user *user_buf,
795 		size_t len, loff_t *offset)
796 {
797 	struct debug_buffer *buf = file->private_data;
798 	int ret = 0;
799 
800 	mutex_lock(&buf->mutex);
801 	if (buf->count == 0) {
802 		ret = fill_buffer(buf);
803 		if (ret != 0) {
804 			mutex_unlock(&buf->mutex);
805 			goto out;
806 		}
807 	}
808 	mutex_unlock(&buf->mutex);
809 
810 	ret = simple_read_from_buffer(user_buf, len, offset,
811 			buf->output_buf, buf->count);
812 
813 out:
814 	return ret;
815 
816 }
817 
debug_close(struct inode * inode,struct file * file)818 static int debug_close(struct inode *inode, struct file *file)
819 {
820 	struct debug_buffer *buf = file->private_data;
821 
822 	if (buf) {
823 		vfree(buf->output_buf);
824 		kfree(buf);
825 	}
826 
827 	return 0;
828 }
debug_async_open(struct inode * inode,struct file * file)829 static int debug_async_open(struct inode *inode, struct file *file)
830 {
831 	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
832 
833 	return file->private_data ? 0 : -ENOMEM;
834 }
835 
debug_periodic_open(struct inode * inode,struct file * file)836 static int debug_periodic_open(struct inode *inode, struct file *file)
837 {
838 	struct debug_buffer *buf;
839 
840 	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
841 	if (!buf)
842 		return -ENOMEM;
843 
844 	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
845 	file->private_data = buf;
846 	return 0;
847 }
848 
debug_registers_open(struct inode * inode,struct file * file)849 static int debug_registers_open(struct inode *inode, struct file *file)
850 {
851 	file->private_data = alloc_buffer(inode->i_private,
852 			fill_registers_buffer);
853 
854 	return file->private_data ? 0 : -ENOMEM;
855 }
856 
create_debug_files(struct fotg210_hcd * fotg210)857 static inline void create_debug_files(struct fotg210_hcd *fotg210)
858 {
859 	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
860 
861 	fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
862 			fotg210_debug_root);
863 	if (!fotg210->debug_dir)
864 		return;
865 
866 	if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
867 			&debug_async_fops))
868 		goto file_error;
869 
870 	if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
871 			&debug_periodic_fops))
872 		goto file_error;
873 
874 	if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
875 			&debug_registers_fops))
876 		goto file_error;
877 
878 	return;
879 
880 file_error:
881 	debugfs_remove_recursive(fotg210->debug_dir);
882 }
883 
remove_debug_files(struct fotg210_hcd * fotg210)884 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
885 {
886 	debugfs_remove_recursive(fotg210->debug_dir);
887 }
888 
889 /* handshake - spin reading hc until handshake completes or fails
890  * @ptr: address of hc register to be read
891  * @mask: bits to look at in result of read
892  * @done: value of those bits when handshake succeeds
893  * @usec: timeout in microseconds
894  *
895  * Returns negative errno, or zero on success
896  *
897  * Success happens when the "mask" bits have the specified value (hardware
898  * handshake done).  There are two failure modes:  "usec" have passed (major
899  * hardware flakeout), or the register reads as all-ones (hardware removed).
900  *
901  * That last failure should_only happen in cases like physical cardbus eject
902  * before driver shutdown. But it also seems to be caused by bugs in cardbus
903  * bridge shutdown:  shutting down the bridge before the devices using it.
904  */
handshake(struct fotg210_hcd * fotg210,void __iomem * ptr,u32 mask,u32 done,int usec)905 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
906 		u32 mask, u32 done, int usec)
907 {
908 	u32 result;
909 
910 	do {
911 		result = fotg210_readl(fotg210, ptr);
912 		if (result == ~(u32)0)		/* card removed */
913 			return -ENODEV;
914 		result &= mask;
915 		if (result == done)
916 			return 0;
917 		udelay(1);
918 		usec--;
919 	} while (usec > 0);
920 	return -ETIMEDOUT;
921 }
922 
923 /* Force HC to halt state from unknown (EHCI spec section 2.3).
924  * Must be called with interrupts enabled and the lock not held.
925  */
fotg210_halt(struct fotg210_hcd * fotg210)926 static int fotg210_halt(struct fotg210_hcd *fotg210)
927 {
928 	u32 temp;
929 
930 	spin_lock_irq(&fotg210->lock);
931 
932 	/* disable any irqs left enabled by previous code */
933 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
934 
935 	/*
936 	 * This routine gets called during probe before fotg210->command
937 	 * has been initialized, so we can't rely on its value.
938 	 */
939 	fotg210->command &= ~CMD_RUN;
940 	temp = fotg210_readl(fotg210, &fotg210->regs->command);
941 	temp &= ~(CMD_RUN | CMD_IAAD);
942 	fotg210_writel(fotg210, temp, &fotg210->regs->command);
943 
944 	spin_unlock_irq(&fotg210->lock);
945 	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
946 
947 	return handshake(fotg210, &fotg210->regs->status,
948 			STS_HALT, STS_HALT, 16 * 125);
949 }
950 
951 /* Reset a non-running (STS_HALT == 1) controller.
952  * Must be called with interrupts enabled and the lock not held.
953  */
fotg210_reset(struct fotg210_hcd * fotg210)954 static int fotg210_reset(struct fotg210_hcd *fotg210)
955 {
956 	int retval;
957 	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
958 
959 	/* If the EHCI debug controller is active, special care must be
960 	 * taken before and after a host controller reset
961 	 */
962 	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
963 		fotg210->debug = NULL;
964 
965 	command |= CMD_RESET;
966 	dbg_cmd(fotg210, "reset", command);
967 	fotg210_writel(fotg210, command, &fotg210->regs->command);
968 	fotg210->rh_state = FOTG210_RH_HALTED;
969 	fotg210->next_statechange = jiffies;
970 	retval = handshake(fotg210, &fotg210->regs->command,
971 			CMD_RESET, 0, 250 * 1000);
972 
973 	if (retval)
974 		return retval;
975 
976 	if (fotg210->debug)
977 		dbgp_external_startup(fotg210_to_hcd(fotg210));
978 
979 	fotg210->port_c_suspend = fotg210->suspended_ports =
980 			fotg210->resuming_ports = 0;
981 	return retval;
982 }
983 
984 /* Idle the controller (turn off the schedules).
985  * Must be called with interrupts enabled and the lock not held.
986  */
fotg210_quiesce(struct fotg210_hcd * fotg210)987 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
988 {
989 	u32 temp;
990 
991 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
992 		return;
993 
994 	/* wait for any schedule enables/disables to take effect */
995 	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
996 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
997 			16 * 125);
998 
999 	/* then disable anything that's still active */
1000 	spin_lock_irq(&fotg210->lock);
1001 	fotg210->command &= ~(CMD_ASE | CMD_PSE);
1002 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1003 	spin_unlock_irq(&fotg210->lock);
1004 
1005 	/* hardware can take 16 microframes to turn off ... */
1006 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1007 			16 * 125);
1008 }
1009 
1010 static void end_unlink_async(struct fotg210_hcd *fotg210);
1011 static void unlink_empty_async(struct fotg210_hcd *fotg210);
1012 static void fotg210_work(struct fotg210_hcd *fotg210);
1013 static void start_unlink_intr(struct fotg210_hcd *fotg210,
1014 			      struct fotg210_qh *qh);
1015 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1016 
1017 /* Set a bit in the USBCMD register */
fotg210_set_command_bit(struct fotg210_hcd * fotg210,u32 bit)1018 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1019 {
1020 	fotg210->command |= bit;
1021 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1022 
1023 	/* unblock posted write */
1024 	fotg210_readl(fotg210, &fotg210->regs->command);
1025 }
1026 
1027 /* Clear a bit in the USBCMD register */
fotg210_clear_command_bit(struct fotg210_hcd * fotg210,u32 bit)1028 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1029 {
1030 	fotg210->command &= ~bit;
1031 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1032 
1033 	/* unblock posted write */
1034 	fotg210_readl(fotg210, &fotg210->regs->command);
1035 }
1036 
1037 /* EHCI timer support...  Now using hrtimers.
1038  *
1039  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1040  * the timer routine runs, it checks each possible event; events that are
1041  * currently enabled and whose expiration time has passed get handled.
1042  * The set of enabled events is stored as a collection of bitflags in
1043  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1044  * increasing delay values (ranging between 1 ms and 100 ms).
1045  *
1046  * Rather than implementing a sorted list or tree of all pending events,
1047  * we keep track only of the lowest-numbered pending event, in
1048  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1049  * expiration time is set to the timeout value for this event.
1050  *
1051  * As a result, events might not get handled right away; the actual delay
1052  * could be anywhere up to twice the requested delay.  This doesn't
1053  * matter, because none of the events are especially time-critical.  The
1054  * ones that matter most all have a delay of 1 ms, so they will be
1055  * handled after 2 ms at most, which is okay.  In addition to this, we
1056  * allow for an expiration range of 1 ms.
1057  */
1058 
1059 /* Delay lengths for the hrtimer event types.
1060  * Keep this list sorted by delay length, in the same order as
1061  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1062  */
1063 static unsigned event_delays_ns[] = {
1064 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1065 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1066 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1067 	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1068 	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1069 	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1070 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1071 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1072 	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1073 	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1074 };
1075 
1076 /* Enable a pending hrtimer event */
fotg210_enable_event(struct fotg210_hcd * fotg210,unsigned event,bool resched)1077 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1078 		bool resched)
1079 {
1080 	ktime_t *timeout = &fotg210->hr_timeouts[event];
1081 
1082 	if (resched)
1083 		*timeout = ktime_add(ktime_get(),
1084 				ktime_set(0, event_delays_ns[event]));
1085 	fotg210->enabled_hrtimer_events |= (1 << event);
1086 
1087 	/* Track only the lowest-numbered pending event */
1088 	if (event < fotg210->next_hrtimer_event) {
1089 		fotg210->next_hrtimer_event = event;
1090 		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1091 				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1092 	}
1093 }
1094 
1095 
1096 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
fotg210_poll_ASS(struct fotg210_hcd * fotg210)1097 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1098 {
1099 	unsigned actual, want;
1100 
1101 	/* Don't enable anything if the controller isn't running (e.g., died) */
1102 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1103 		return;
1104 
1105 	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1106 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1107 
1108 	if (want != actual) {
1109 
1110 		/* Poll again later, but give up after about 20 ms */
1111 		if (fotg210->ASS_poll_count++ < 20) {
1112 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1113 					true);
1114 			return;
1115 		}
1116 		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1117 				want, actual);
1118 	}
1119 	fotg210->ASS_poll_count = 0;
1120 
1121 	/* The status is up-to-date; restart or stop the schedule as needed */
1122 	if (want == 0) {	/* Stopped */
1123 		if (fotg210->async_count > 0)
1124 			fotg210_set_command_bit(fotg210, CMD_ASE);
1125 
1126 	} else {		/* Running */
1127 		if (fotg210->async_count == 0) {
1128 
1129 			/* Turn off the schedule after a while */
1130 			fotg210_enable_event(fotg210,
1131 					FOTG210_HRTIMER_DISABLE_ASYNC,
1132 					true);
1133 		}
1134 	}
1135 }
1136 
1137 /* Turn off the async schedule after a brief delay */
fotg210_disable_ASE(struct fotg210_hcd * fotg210)1138 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1139 {
1140 	fotg210_clear_command_bit(fotg210, CMD_ASE);
1141 }
1142 
1143 
1144 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
fotg210_poll_PSS(struct fotg210_hcd * fotg210)1145 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1146 {
1147 	unsigned actual, want;
1148 
1149 	/* Don't do anything if the controller isn't running (e.g., died) */
1150 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1151 		return;
1152 
1153 	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1154 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1155 
1156 	if (want != actual) {
1157 
1158 		/* Poll again later, but give up after about 20 ms */
1159 		if (fotg210->PSS_poll_count++ < 20) {
1160 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1161 					true);
1162 			return;
1163 		}
1164 		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1165 				want, actual);
1166 	}
1167 	fotg210->PSS_poll_count = 0;
1168 
1169 	/* The status is up-to-date; restart or stop the schedule as needed */
1170 	if (want == 0) {	/* Stopped */
1171 		if (fotg210->periodic_count > 0)
1172 			fotg210_set_command_bit(fotg210, CMD_PSE);
1173 
1174 	} else {		/* Running */
1175 		if (fotg210->periodic_count == 0) {
1176 
1177 			/* Turn off the schedule after a while */
1178 			fotg210_enable_event(fotg210,
1179 					FOTG210_HRTIMER_DISABLE_PERIODIC,
1180 					true);
1181 		}
1182 	}
1183 }
1184 
1185 /* Turn off the periodic schedule after a brief delay */
fotg210_disable_PSE(struct fotg210_hcd * fotg210)1186 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1187 {
1188 	fotg210_clear_command_bit(fotg210, CMD_PSE);
1189 }
1190 
1191 
1192 /* Poll the STS_HALT status bit; see when a dead controller stops */
fotg210_handle_controller_death(struct fotg210_hcd * fotg210)1193 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1194 {
1195 	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1196 
1197 		/* Give up after a few milliseconds */
1198 		if (fotg210->died_poll_count++ < 5) {
1199 			/* Try again later */
1200 			fotg210_enable_event(fotg210,
1201 					FOTG210_HRTIMER_POLL_DEAD, true);
1202 			return;
1203 		}
1204 		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1205 	}
1206 
1207 	/* Clean up the mess */
1208 	fotg210->rh_state = FOTG210_RH_HALTED;
1209 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1210 	fotg210_work(fotg210);
1211 	end_unlink_async(fotg210);
1212 
1213 	/* Not in process context, so don't try to reset the controller */
1214 }
1215 
1216 
1217 /* Handle unlinked interrupt QHs once they are gone from the hardware */
fotg210_handle_intr_unlinks(struct fotg210_hcd * fotg210)1218 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1219 {
1220 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1221 
1222 	/*
1223 	 * Process all the QHs on the intr_unlink list that were added
1224 	 * before the current unlink cycle began.  The list is in
1225 	 * temporal order, so stop when we reach the first entry in the
1226 	 * current cycle.  But if the root hub isn't running then
1227 	 * process all the QHs on the list.
1228 	 */
1229 	fotg210->intr_unlinking = true;
1230 	while (fotg210->intr_unlink) {
1231 		struct fotg210_qh *qh = fotg210->intr_unlink;
1232 
1233 		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1234 			break;
1235 		fotg210->intr_unlink = qh->unlink_next;
1236 		qh->unlink_next = NULL;
1237 		end_unlink_intr(fotg210, qh);
1238 	}
1239 
1240 	/* Handle remaining entries later */
1241 	if (fotg210->intr_unlink) {
1242 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1243 				true);
1244 		++fotg210->intr_unlink_cycle;
1245 	}
1246 	fotg210->intr_unlinking = false;
1247 }
1248 
1249 
1250 /* Start another free-iTDs/siTDs cycle */
start_free_itds(struct fotg210_hcd * fotg210)1251 static void start_free_itds(struct fotg210_hcd *fotg210)
1252 {
1253 	if (!(fotg210->enabled_hrtimer_events &
1254 			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1255 		fotg210->last_itd_to_free = list_entry(
1256 				fotg210->cached_itd_list.prev,
1257 				struct fotg210_itd, itd_list);
1258 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1259 	}
1260 }
1261 
1262 /* Wait for controller to stop using old iTDs and siTDs */
end_free_itds(struct fotg210_hcd * fotg210)1263 static void end_free_itds(struct fotg210_hcd *fotg210)
1264 {
1265 	struct fotg210_itd *itd, *n;
1266 
1267 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1268 		fotg210->last_itd_to_free = NULL;
1269 
1270 	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1271 		list_del(&itd->itd_list);
1272 		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1273 		if (itd == fotg210->last_itd_to_free)
1274 			break;
1275 	}
1276 
1277 	if (!list_empty(&fotg210->cached_itd_list))
1278 		start_free_itds(fotg210);
1279 }
1280 
1281 
1282 /* Handle lost (or very late) IAA interrupts */
fotg210_iaa_watchdog(struct fotg210_hcd * fotg210)1283 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1284 {
1285 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1286 		return;
1287 
1288 	/*
1289 	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1290 	 * So we need this watchdog, but must protect it against both
1291 	 * (a) SMP races against real IAA firing and retriggering, and
1292 	 * (b) clean HC shutdown, when IAA watchdog was pending.
1293 	 */
1294 	if (fotg210->async_iaa) {
1295 		u32 cmd, status;
1296 
1297 		/* If we get here, IAA is *REALLY* late.  It's barely
1298 		 * conceivable that the system is so busy that CMD_IAAD
1299 		 * is still legitimately set, so let's be sure it's
1300 		 * clear before we read STS_IAA.  (The HC should clear
1301 		 * CMD_IAAD when it sets STS_IAA.)
1302 		 */
1303 		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1304 
1305 		/*
1306 		 * If IAA is set here it either legitimately triggered
1307 		 * after the watchdog timer expired (_way_ late, so we'll
1308 		 * still count it as lost) ... or a silicon erratum:
1309 		 * - VIA seems to set IAA without triggering the IRQ;
1310 		 * - IAAD potentially cleared without setting IAA.
1311 		 */
1312 		status = fotg210_readl(fotg210, &fotg210->regs->status);
1313 		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1314 			COUNT(fotg210->stats.lost_iaa);
1315 			fotg210_writel(fotg210, STS_IAA,
1316 					&fotg210->regs->status);
1317 		}
1318 
1319 		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1320 				status, cmd);
1321 		end_unlink_async(fotg210);
1322 	}
1323 }
1324 
1325 
1326 /* Enable the I/O watchdog, if appropriate */
turn_on_io_watchdog(struct fotg210_hcd * fotg210)1327 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1328 {
1329 	/* Not needed if the controller isn't running or it's already enabled */
1330 	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1331 			(fotg210->enabled_hrtimer_events &
1332 			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1333 		return;
1334 
1335 	/*
1336 	 * Isochronous transfers always need the watchdog.
1337 	 * For other sorts we use it only if the flag is set.
1338 	 */
1339 	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1340 			fotg210->async_count + fotg210->intr_count > 0))
1341 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1342 				true);
1343 }
1344 
1345 
1346 /* Handler functions for the hrtimer event types.
1347  * Keep this array in the same order as the event types indexed by
1348  * enum fotg210_hrtimer_event in fotg210.h.
1349  */
1350 static void (*event_handlers[])(struct fotg210_hcd *) = {
1351 	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1352 	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1353 	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1354 	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1355 	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1356 	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1357 	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1358 	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1359 	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1360 	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1361 };
1362 
fotg210_hrtimer_func(struct hrtimer * t)1363 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1364 {
1365 	struct fotg210_hcd *fotg210 =
1366 			container_of(t, struct fotg210_hcd, hrtimer);
1367 	ktime_t now;
1368 	unsigned long events;
1369 	unsigned long flags;
1370 	unsigned e;
1371 
1372 	spin_lock_irqsave(&fotg210->lock, flags);
1373 
1374 	events = fotg210->enabled_hrtimer_events;
1375 	fotg210->enabled_hrtimer_events = 0;
1376 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1377 
1378 	/*
1379 	 * Check each pending event.  If its time has expired, handle
1380 	 * the event; otherwise re-enable it.
1381 	 */
1382 	now = ktime_get();
1383 	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1384 		if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
1385 			event_handlers[e](fotg210);
1386 		else
1387 			fotg210_enable_event(fotg210, e, false);
1388 	}
1389 
1390 	spin_unlock_irqrestore(&fotg210->lock, flags);
1391 	return HRTIMER_NORESTART;
1392 }
1393 
1394 #define fotg210_bus_suspend NULL
1395 #define fotg210_bus_resume NULL
1396 
check_reset_complete(struct fotg210_hcd * fotg210,int index,u32 __iomem * status_reg,int port_status)1397 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1398 		u32 __iomem *status_reg, int port_status)
1399 {
1400 	if (!(port_status & PORT_CONNECT))
1401 		return port_status;
1402 
1403 	/* if reset finished and it's still not enabled -- handoff */
1404 	if (!(port_status & PORT_PE))
1405 		/* with integrated TT, there's nobody to hand it to! */
1406 		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1407 				index + 1);
1408 	else
1409 		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1410 				index + 1);
1411 
1412 	return port_status;
1413 }
1414 
1415 
1416 /* build "status change" packet (one or two bytes) from HC registers */
1417 
fotg210_hub_status_data(struct usb_hcd * hcd,char * buf)1418 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1419 {
1420 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1421 	u32 temp, status;
1422 	u32 mask;
1423 	int retval = 1;
1424 	unsigned long flags;
1425 
1426 	/* init status to no-changes */
1427 	buf[0] = 0;
1428 
1429 	/* Inform the core about resumes-in-progress by returning
1430 	 * a non-zero value even if there are no status changes.
1431 	 */
1432 	status = fotg210->resuming_ports;
1433 
1434 	mask = PORT_CSC | PORT_PEC;
1435 	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1436 
1437 	/* no hub change reports (bit 0) for now (power, ...) */
1438 
1439 	/* port N changes (bit N)? */
1440 	spin_lock_irqsave(&fotg210->lock, flags);
1441 
1442 	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1443 
1444 	/*
1445 	 * Return status information even for ports with OWNER set.
1446 	 * Otherwise hub_wq wouldn't see the disconnect event when a
1447 	 * high-speed device is switched over to the companion
1448 	 * controller by the user.
1449 	 */
1450 
1451 	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1452 			(fotg210->reset_done[0] &&
1453 			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1454 		buf[0] |= 1 << 1;
1455 		status = STS_PCD;
1456 	}
1457 	/* FIXME autosuspend idle root hubs */
1458 	spin_unlock_irqrestore(&fotg210->lock, flags);
1459 	return status ? retval : 0;
1460 }
1461 
fotg210_hub_descriptor(struct fotg210_hcd * fotg210,struct usb_hub_descriptor * desc)1462 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1463 		struct usb_hub_descriptor *desc)
1464 {
1465 	int ports = HCS_N_PORTS(fotg210->hcs_params);
1466 	u16 temp;
1467 
1468 	desc->bDescriptorType = USB_DT_HUB;
1469 	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1470 	desc->bHubContrCurrent = 0;
1471 
1472 	desc->bNbrPorts = ports;
1473 	temp = 1 + (ports / 8);
1474 	desc->bDescLength = 7 + 2 * temp;
1475 
1476 	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1477 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1478 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1479 
1480 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1481 	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1482 	desc->wHubCharacteristics = cpu_to_le16(temp);
1483 }
1484 
fotg210_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)1485 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1486 		u16 wIndex, char *buf, u16 wLength)
1487 {
1488 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1489 	int ports = HCS_N_PORTS(fotg210->hcs_params);
1490 	u32 __iomem *status_reg = &fotg210->regs->port_status;
1491 	u32 temp, temp1, status;
1492 	unsigned long flags;
1493 	int retval = 0;
1494 	unsigned selector;
1495 
1496 	/*
1497 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1498 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1499 	 * (track current state ourselves) ... blink for diagnostics,
1500 	 * power, "this is the one", etc.  EHCI spec supports this.
1501 	 */
1502 
1503 	spin_lock_irqsave(&fotg210->lock, flags);
1504 	switch (typeReq) {
1505 	case ClearHubFeature:
1506 		switch (wValue) {
1507 		case C_HUB_LOCAL_POWER:
1508 		case C_HUB_OVER_CURRENT:
1509 			/* no hub-wide feature/status flags */
1510 			break;
1511 		default:
1512 			goto error;
1513 		}
1514 		break;
1515 	case ClearPortFeature:
1516 		if (!wIndex || wIndex > ports)
1517 			goto error;
1518 		wIndex--;
1519 		temp = fotg210_readl(fotg210, status_reg);
1520 		temp &= ~PORT_RWC_BITS;
1521 
1522 		/*
1523 		 * Even if OWNER is set, so the port is owned by the
1524 		 * companion controller, hub_wq needs to be able to clear
1525 		 * the port-change status bits (especially
1526 		 * USB_PORT_STAT_C_CONNECTION).
1527 		 */
1528 
1529 		switch (wValue) {
1530 		case USB_PORT_FEAT_ENABLE:
1531 			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1532 			break;
1533 		case USB_PORT_FEAT_C_ENABLE:
1534 			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1535 			break;
1536 		case USB_PORT_FEAT_SUSPEND:
1537 			if (temp & PORT_RESET)
1538 				goto error;
1539 			if (!(temp & PORT_SUSPEND))
1540 				break;
1541 			if ((temp & PORT_PE) == 0)
1542 				goto error;
1543 
1544 			/* resume signaling for 20 msec */
1545 			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1546 			fotg210->reset_done[wIndex] = jiffies
1547 					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1548 			break;
1549 		case USB_PORT_FEAT_C_SUSPEND:
1550 			clear_bit(wIndex, &fotg210->port_c_suspend);
1551 			break;
1552 		case USB_PORT_FEAT_C_CONNECTION:
1553 			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1554 			break;
1555 		case USB_PORT_FEAT_C_OVER_CURRENT:
1556 			fotg210_writel(fotg210, temp | OTGISR_OVC,
1557 					&fotg210->regs->otgisr);
1558 			break;
1559 		case USB_PORT_FEAT_C_RESET:
1560 			/* GetPortStatus clears reset */
1561 			break;
1562 		default:
1563 			goto error;
1564 		}
1565 		fotg210_readl(fotg210, &fotg210->regs->command);
1566 		break;
1567 	case GetHubDescriptor:
1568 		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1569 				buf);
1570 		break;
1571 	case GetHubStatus:
1572 		/* no hub-wide feature/status flags */
1573 		memset(buf, 0, 4);
1574 		/*cpu_to_le32s ((u32 *) buf); */
1575 		break;
1576 	case GetPortStatus:
1577 		if (!wIndex || wIndex > ports)
1578 			goto error;
1579 		wIndex--;
1580 		status = 0;
1581 		temp = fotg210_readl(fotg210, status_reg);
1582 
1583 		/* wPortChange bits */
1584 		if (temp & PORT_CSC)
1585 			status |= USB_PORT_STAT_C_CONNECTION << 16;
1586 		if (temp & PORT_PEC)
1587 			status |= USB_PORT_STAT_C_ENABLE << 16;
1588 
1589 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1590 		if (temp1 & OTGISR_OVC)
1591 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1592 
1593 		/* whoever resumes must GetPortStatus to complete it!! */
1594 		if (temp & PORT_RESUME) {
1595 
1596 			/* Remote Wakeup received? */
1597 			if (!fotg210->reset_done[wIndex]) {
1598 				/* resume signaling for 20 msec */
1599 				fotg210->reset_done[wIndex] = jiffies
1600 						+ msecs_to_jiffies(20);
1601 				/* check the port again */
1602 				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1603 						fotg210->reset_done[wIndex]);
1604 			}
1605 
1606 			/* resume completed? */
1607 			else if (time_after_eq(jiffies,
1608 					fotg210->reset_done[wIndex])) {
1609 				clear_bit(wIndex, &fotg210->suspended_ports);
1610 				set_bit(wIndex, &fotg210->port_c_suspend);
1611 				fotg210->reset_done[wIndex] = 0;
1612 
1613 				/* stop resume signaling */
1614 				temp = fotg210_readl(fotg210, status_reg);
1615 				fotg210_writel(fotg210, temp &
1616 						~(PORT_RWC_BITS | PORT_RESUME),
1617 						status_reg);
1618 				clear_bit(wIndex, &fotg210->resuming_ports);
1619 				retval = handshake(fotg210, status_reg,
1620 						PORT_RESUME, 0, 2000);/* 2ms */
1621 				if (retval != 0) {
1622 					fotg210_err(fotg210,
1623 							"port %d resume error %d\n",
1624 							wIndex + 1, retval);
1625 					goto error;
1626 				}
1627 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1628 			}
1629 		}
1630 
1631 		/* whoever resets must GetPortStatus to complete it!! */
1632 		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1633 				fotg210->reset_done[wIndex])) {
1634 			status |= USB_PORT_STAT_C_RESET << 16;
1635 			fotg210->reset_done[wIndex] = 0;
1636 			clear_bit(wIndex, &fotg210->resuming_ports);
1637 
1638 			/* force reset to complete */
1639 			fotg210_writel(fotg210,
1640 					temp & ~(PORT_RWC_BITS | PORT_RESET),
1641 					status_reg);
1642 			/* REVISIT:  some hardware needs 550+ usec to clear
1643 			 * this bit; seems too long to spin routinely...
1644 			 */
1645 			retval = handshake(fotg210, status_reg,
1646 					PORT_RESET, 0, 1000);
1647 			if (retval != 0) {
1648 				fotg210_err(fotg210, "port %d reset error %d\n",
1649 						wIndex + 1, retval);
1650 				goto error;
1651 			}
1652 
1653 			/* see what we found out */
1654 			temp = check_reset_complete(fotg210, wIndex, status_reg,
1655 					fotg210_readl(fotg210, status_reg));
1656 
1657 			/* restart schedule */
1658 			fotg210->command |= CMD_RUN;
1659 			fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1660 		}
1661 
1662 		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1663 			fotg210->reset_done[wIndex] = 0;
1664 			clear_bit(wIndex, &fotg210->resuming_ports);
1665 		}
1666 
1667 		/* transfer dedicated ports to the companion hc */
1668 		if ((temp & PORT_CONNECT) &&
1669 				test_bit(wIndex, &fotg210->companion_ports)) {
1670 			temp &= ~PORT_RWC_BITS;
1671 			fotg210_writel(fotg210, temp, status_reg);
1672 			fotg210_dbg(fotg210, "port %d --> companion\n",
1673 					wIndex + 1);
1674 			temp = fotg210_readl(fotg210, status_reg);
1675 		}
1676 
1677 		/*
1678 		 * Even if OWNER is set, there's no harm letting hub_wq
1679 		 * see the wPortStatus values (they should all be 0 except
1680 		 * for PORT_POWER anyway).
1681 		 */
1682 
1683 		if (temp & PORT_CONNECT) {
1684 			status |= USB_PORT_STAT_CONNECTION;
1685 			status |= fotg210_port_speed(fotg210, temp);
1686 		}
1687 		if (temp & PORT_PE)
1688 			status |= USB_PORT_STAT_ENABLE;
1689 
1690 		/* maybe the port was unsuspended without our knowledge */
1691 		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1692 			status |= USB_PORT_STAT_SUSPEND;
1693 		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1694 			clear_bit(wIndex, &fotg210->suspended_ports);
1695 			clear_bit(wIndex, &fotg210->resuming_ports);
1696 			fotg210->reset_done[wIndex] = 0;
1697 			if (temp & PORT_PE)
1698 				set_bit(wIndex, &fotg210->port_c_suspend);
1699 		}
1700 
1701 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1702 		if (temp1 & OTGISR_OVC)
1703 			status |= USB_PORT_STAT_OVERCURRENT;
1704 		if (temp & PORT_RESET)
1705 			status |= USB_PORT_STAT_RESET;
1706 		if (test_bit(wIndex, &fotg210->port_c_suspend))
1707 			status |= USB_PORT_STAT_C_SUSPEND << 16;
1708 
1709 		if (status & ~0xffff)	/* only if wPortChange is interesting */
1710 			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1711 		put_unaligned_le32(status, buf);
1712 		break;
1713 	case SetHubFeature:
1714 		switch (wValue) {
1715 		case C_HUB_LOCAL_POWER:
1716 		case C_HUB_OVER_CURRENT:
1717 			/* no hub-wide feature/status flags */
1718 			break;
1719 		default:
1720 			goto error;
1721 		}
1722 		break;
1723 	case SetPortFeature:
1724 		selector = wIndex >> 8;
1725 		wIndex &= 0xff;
1726 
1727 		if (!wIndex || wIndex > ports)
1728 			goto error;
1729 		wIndex--;
1730 		temp = fotg210_readl(fotg210, status_reg);
1731 		temp &= ~PORT_RWC_BITS;
1732 		switch (wValue) {
1733 		case USB_PORT_FEAT_SUSPEND:
1734 			if ((temp & PORT_PE) == 0
1735 					|| (temp & PORT_RESET) != 0)
1736 				goto error;
1737 
1738 			/* After above check the port must be connected.
1739 			 * Set appropriate bit thus could put phy into low power
1740 			 * mode if we have hostpc feature
1741 			 */
1742 			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1743 					status_reg);
1744 			set_bit(wIndex, &fotg210->suspended_ports);
1745 			break;
1746 		case USB_PORT_FEAT_RESET:
1747 			if (temp & PORT_RESUME)
1748 				goto error;
1749 			/* line status bits may report this as low speed,
1750 			 * which can be fine if this root hub has a
1751 			 * transaction translator built in.
1752 			 */
1753 			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1754 			temp |= PORT_RESET;
1755 			temp &= ~PORT_PE;
1756 
1757 			/*
1758 			 * caller must wait, then call GetPortStatus
1759 			 * usb 2.0 spec says 50 ms resets on root
1760 			 */
1761 			fotg210->reset_done[wIndex] = jiffies
1762 					+ msecs_to_jiffies(50);
1763 			fotg210_writel(fotg210, temp, status_reg);
1764 			break;
1765 
1766 		/* For downstream facing ports (these):  one hub port is put
1767 		 * into test mode according to USB2 11.24.2.13, then the hub
1768 		 * must be reset (which for root hub now means rmmod+modprobe,
1769 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1770 		 * about the EHCI-specific stuff.
1771 		 */
1772 		case USB_PORT_FEAT_TEST:
1773 			if (!selector || selector > 5)
1774 				goto error;
1775 			spin_unlock_irqrestore(&fotg210->lock, flags);
1776 			fotg210_quiesce(fotg210);
1777 			spin_lock_irqsave(&fotg210->lock, flags);
1778 
1779 			/* Put all enabled ports into suspend */
1780 			temp = fotg210_readl(fotg210, status_reg) &
1781 				~PORT_RWC_BITS;
1782 			if (temp & PORT_PE)
1783 				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1784 						status_reg);
1785 
1786 			spin_unlock_irqrestore(&fotg210->lock, flags);
1787 			fotg210_halt(fotg210);
1788 			spin_lock_irqsave(&fotg210->lock, flags);
1789 
1790 			temp = fotg210_readl(fotg210, status_reg);
1791 			temp |= selector << 16;
1792 			fotg210_writel(fotg210, temp, status_reg);
1793 			break;
1794 
1795 		default:
1796 			goto error;
1797 		}
1798 		fotg210_readl(fotg210, &fotg210->regs->command);
1799 		break;
1800 
1801 	default:
1802 error:
1803 		/* "stall" on error */
1804 		retval = -EPIPE;
1805 	}
1806 	spin_unlock_irqrestore(&fotg210->lock, flags);
1807 	return retval;
1808 }
1809 
fotg210_relinquish_port(struct usb_hcd * hcd,int portnum)1810 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1811 		int portnum)
1812 {
1813 	return;
1814 }
1815 
fotg210_port_handed_over(struct usb_hcd * hcd,int portnum)1816 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1817 		int portnum)
1818 {
1819 	return 0;
1820 }
1821 
1822 /* There's basically three types of memory:
1823  *	- data used only by the HCD ... kmalloc is fine
1824  *	- async and periodic schedules, shared by HC and HCD ... these
1825  *	  need to use dma_pool or dma_alloc_coherent
1826  *	- driver buffers, read/written by HC ... single shot DMA mapped
1827  *
1828  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1829  * No memory seen by this driver is pageable.
1830  */
1831 
1832 /* Allocate the key transfer structures from the previously allocated pool */
fotg210_qtd_init(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t dma)1833 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1834 		struct fotg210_qtd *qtd, dma_addr_t dma)
1835 {
1836 	memset(qtd, 0, sizeof(*qtd));
1837 	qtd->qtd_dma = dma;
1838 	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1839 	qtd->hw_next = FOTG210_LIST_END(fotg210);
1840 	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1841 	INIT_LIST_HEAD(&qtd->qtd_list);
1842 }
1843 
fotg210_qtd_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1844 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1845 		gfp_t flags)
1846 {
1847 	struct fotg210_qtd *qtd;
1848 	dma_addr_t dma;
1849 
1850 	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1851 	if (qtd != NULL)
1852 		fotg210_qtd_init(fotg210, qtd, dma);
1853 
1854 	return qtd;
1855 }
1856 
fotg210_qtd_free(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)1857 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1858 		struct fotg210_qtd *qtd)
1859 {
1860 	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1861 }
1862 
1863 
qh_destroy(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)1864 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1865 {
1866 	/* clean qtds first, and know this is not linked */
1867 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1868 		fotg210_dbg(fotg210, "unused qh not empty!\n");
1869 		BUG();
1870 	}
1871 	if (qh->dummy)
1872 		fotg210_qtd_free(fotg210, qh->dummy);
1873 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1874 	kfree(qh);
1875 }
1876 
fotg210_qh_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1877 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1878 		gfp_t flags)
1879 {
1880 	struct fotg210_qh *qh;
1881 	dma_addr_t dma;
1882 
1883 	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1884 	if (!qh)
1885 		goto done;
1886 	qh->hw = (struct fotg210_qh_hw *)
1887 		dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1888 	if (!qh->hw)
1889 		goto fail;
1890 	memset(qh->hw, 0, sizeof(*qh->hw));
1891 	qh->qh_dma = dma;
1892 	INIT_LIST_HEAD(&qh->qtd_list);
1893 
1894 	/* dummy td enables safe urb queuing */
1895 	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1896 	if (qh->dummy == NULL) {
1897 		fotg210_dbg(fotg210, "no dummy td\n");
1898 		goto fail1;
1899 	}
1900 done:
1901 	return qh;
1902 fail1:
1903 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1904 fail:
1905 	kfree(qh);
1906 	return NULL;
1907 }
1908 
1909 /* The queue heads and transfer descriptors are managed from pools tied
1910  * to each of the "per device" structures.
1911  * This is the initialisation and cleanup code.
1912  */
1913 
fotg210_mem_cleanup(struct fotg210_hcd * fotg210)1914 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1915 {
1916 	if (fotg210->async)
1917 		qh_destroy(fotg210, fotg210->async);
1918 	fotg210->async = NULL;
1919 
1920 	if (fotg210->dummy)
1921 		qh_destroy(fotg210, fotg210->dummy);
1922 	fotg210->dummy = NULL;
1923 
1924 	/* DMA consistent memory and pools */
1925 	dma_pool_destroy(fotg210->qtd_pool);
1926 	fotg210->qtd_pool = NULL;
1927 
1928 	dma_pool_destroy(fotg210->qh_pool);
1929 	fotg210->qh_pool = NULL;
1930 
1931 	dma_pool_destroy(fotg210->itd_pool);
1932 	fotg210->itd_pool = NULL;
1933 
1934 	if (fotg210->periodic)
1935 		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1936 				fotg210->periodic_size * sizeof(u32),
1937 				fotg210->periodic, fotg210->periodic_dma);
1938 	fotg210->periodic = NULL;
1939 
1940 	/* shadow periodic table */
1941 	kfree(fotg210->pshadow);
1942 	fotg210->pshadow = NULL;
1943 }
1944 
1945 /* remember to add cleanup code (above) if you add anything here */
fotg210_mem_init(struct fotg210_hcd * fotg210,gfp_t flags)1946 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1947 {
1948 	int i;
1949 
1950 	/* QTDs for control/bulk/intr transfers */
1951 	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1952 			fotg210_to_hcd(fotg210)->self.controller,
1953 			sizeof(struct fotg210_qtd),
1954 			32 /* byte alignment (for hw parts) */,
1955 			4096 /* can't cross 4K */);
1956 	if (!fotg210->qtd_pool)
1957 		goto fail;
1958 
1959 	/* QHs for control/bulk/intr transfers */
1960 	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1961 			fotg210_to_hcd(fotg210)->self.controller,
1962 			sizeof(struct fotg210_qh_hw),
1963 			32 /* byte alignment (for hw parts) */,
1964 			4096 /* can't cross 4K */);
1965 	if (!fotg210->qh_pool)
1966 		goto fail;
1967 
1968 	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1969 	if (!fotg210->async)
1970 		goto fail;
1971 
1972 	/* ITD for high speed ISO transfers */
1973 	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1974 			fotg210_to_hcd(fotg210)->self.controller,
1975 			sizeof(struct fotg210_itd),
1976 			64 /* byte alignment (for hw parts) */,
1977 			4096 /* can't cross 4K */);
1978 	if (!fotg210->itd_pool)
1979 		goto fail;
1980 
1981 	/* Hardware periodic table */
1982 	fotg210->periodic = (__le32 *)
1983 		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1984 				fotg210->periodic_size * sizeof(__le32),
1985 				&fotg210->periodic_dma, 0);
1986 	if (fotg210->periodic == NULL)
1987 		goto fail;
1988 
1989 	for (i = 0; i < fotg210->periodic_size; i++)
1990 		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1991 
1992 	/* software shadow of hardware table */
1993 	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1994 			flags);
1995 	if (fotg210->pshadow != NULL)
1996 		return 0;
1997 
1998 fail:
1999 	fotg210_dbg(fotg210, "couldn't init memory\n");
2000 	fotg210_mem_cleanup(fotg210);
2001 	return -ENOMEM;
2002 }
2003 /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
2004  *
2005  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
2006  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2007  * buffers needed for the larger number).  We use one QH per endpoint, queue
2008  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
2009  *
2010  * ISO traffic uses "ISO TD" (itd) records, and (along with
2011  * interrupts) needs careful scheduling.  Performance improvements can be
2012  * an ongoing challenge.  That's in "ehci-sched.c".
2013  *
2014  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2015  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2016  * (b) special fields in qh entries or (c) split iso entries.  TTs will
2017  * buffer low/full speed data so the host collects it at high speed.
2018  */
2019 
2020 /* fill a qtd, returning how much of the buffer we were able to queue up */
qtd_fill(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)2021 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
2022 		dma_addr_t buf, size_t len, int token, int maxpacket)
2023 {
2024 	int i, count;
2025 	u64 addr = buf;
2026 
2027 	/* one buffer entry per 4K ... first might be short or unaligned */
2028 	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2029 	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2030 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2031 	if (likely(len < count))		/* ... iff needed */
2032 		count = len;
2033 	else {
2034 		buf +=  0x1000;
2035 		buf &= ~0x0fff;
2036 
2037 		/* per-qtd limit: from 16K to 20K (best alignment) */
2038 		for (i = 1; count < len && i < 5; i++) {
2039 			addr = buf;
2040 			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2041 			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2042 					(u32)(addr >> 32));
2043 			buf += 0x1000;
2044 			if ((count + 0x1000) < len)
2045 				count += 0x1000;
2046 			else
2047 				count = len;
2048 		}
2049 
2050 		/* short packets may only terminate transfers */
2051 		if (count != len)
2052 			count -= (count % maxpacket);
2053 	}
2054 	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2055 	qtd->length = count;
2056 
2057 	return count;
2058 }
2059 
qh_update(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct fotg210_qtd * qtd)2060 static inline void qh_update(struct fotg210_hcd *fotg210,
2061 		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2062 {
2063 	struct fotg210_qh_hw *hw = qh->hw;
2064 
2065 	/* writes to an active overlay are unsafe */
2066 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2067 
2068 	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2069 	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2070 
2071 	/* Except for control endpoints, we make hardware maintain data
2072 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2073 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2074 	 * ever clear it.
2075 	 */
2076 	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2077 		unsigned is_out, epnum;
2078 
2079 		is_out = qh->is_out;
2080 		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2081 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2082 			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2083 			usb_settoggle(qh->dev, epnum, is_out, 1);
2084 		}
2085 	}
2086 
2087 	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2088 }
2089 
2090 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2091  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2092  * recovery (including urb dequeue) would need software changes to a QH...
2093  */
qh_refresh(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2094 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2095 {
2096 	struct fotg210_qtd *qtd;
2097 
2098 	if (list_empty(&qh->qtd_list))
2099 		qtd = qh->dummy;
2100 	else {
2101 		qtd = list_entry(qh->qtd_list.next,
2102 				struct fotg210_qtd, qtd_list);
2103 		/*
2104 		 * first qtd may already be partially processed.
2105 		 * If we come here during unlink, the QH overlay region
2106 		 * might have reference to the just unlinked qtd. The
2107 		 * qtd is updated in qh_completions(). Update the QH
2108 		 * overlay here.
2109 		 */
2110 		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2111 			qh->hw->hw_qtd_next = qtd->hw_next;
2112 			qtd = NULL;
2113 		}
2114 	}
2115 
2116 	if (qtd)
2117 		qh_update(fotg210, qh, qtd);
2118 }
2119 
2120 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2121 
fotg210_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2122 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2123 		struct usb_host_endpoint *ep)
2124 {
2125 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2126 	struct fotg210_qh *qh = ep->hcpriv;
2127 	unsigned long flags;
2128 
2129 	spin_lock_irqsave(&fotg210->lock, flags);
2130 	qh->clearing_tt = 0;
2131 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2132 			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2133 		qh_link_async(fotg210, qh);
2134 	spin_unlock_irqrestore(&fotg210->lock, flags);
2135 }
2136 
fotg210_clear_tt_buffer(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct urb * urb,u32 token)2137 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2138 		struct fotg210_qh *qh, struct urb *urb, u32 token)
2139 {
2140 
2141 	/* If an async split transaction gets an error or is unlinked,
2142 	 * the TT buffer may be left in an indeterminate state.  We
2143 	 * have to clear the TT buffer.
2144 	 *
2145 	 * Note: this routine is never called for Isochronous transfers.
2146 	 */
2147 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2148 		struct usb_device *tt = urb->dev->tt->hub;
2149 
2150 		dev_dbg(&tt->dev,
2151 				"clear tt buffer port %d, a%d ep%d t%08x\n",
2152 				urb->dev->ttport, urb->dev->devnum,
2153 				usb_pipeendpoint(urb->pipe), token);
2154 
2155 		if (urb->dev->tt->hub !=
2156 				fotg210_to_hcd(fotg210)->self.root_hub) {
2157 			if (usb_hub_clear_tt_buffer(urb) == 0)
2158 				qh->clearing_tt = 1;
2159 		}
2160 	}
2161 }
2162 
qtd_copy_status(struct fotg210_hcd * fotg210,struct urb * urb,size_t length,u32 token)2163 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2164 		size_t length, u32 token)
2165 {
2166 	int status = -EINPROGRESS;
2167 
2168 	/* count IN/OUT bytes, not SETUP (even short packets) */
2169 	if (likely(QTD_PID(token) != 2))
2170 		urb->actual_length += length - QTD_LENGTH(token);
2171 
2172 	/* don't modify error codes */
2173 	if (unlikely(urb->unlinked))
2174 		return status;
2175 
2176 	/* force cleanup after short read; not always an error */
2177 	if (unlikely(IS_SHORT_READ(token)))
2178 		status = -EREMOTEIO;
2179 
2180 	/* serious "can't proceed" faults reported by the hardware */
2181 	if (token & QTD_STS_HALT) {
2182 		if (token & QTD_STS_BABBLE) {
2183 			/* FIXME "must" disable babbling device's port too */
2184 			status = -EOVERFLOW;
2185 		/* CERR nonzero + halt --> stall */
2186 		} else if (QTD_CERR(token)) {
2187 			status = -EPIPE;
2188 
2189 		/* In theory, more than one of the following bits can be set
2190 		 * since they are sticky and the transaction is retried.
2191 		 * Which to test first is rather arbitrary.
2192 		 */
2193 		} else if (token & QTD_STS_MMF) {
2194 			/* fs/ls interrupt xfer missed the complete-split */
2195 			status = -EPROTO;
2196 		} else if (token & QTD_STS_DBE) {
2197 			status = (QTD_PID(token) == 1) /* IN ? */
2198 				? -ENOSR  /* hc couldn't read data */
2199 				: -ECOMM; /* hc couldn't write data */
2200 		} else if (token & QTD_STS_XACT) {
2201 			/* timeout, bad CRC, wrong PID, etc */
2202 			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2203 					urb->dev->devpath,
2204 					usb_pipeendpoint(urb->pipe),
2205 					usb_pipein(urb->pipe) ? "in" : "out");
2206 			status = -EPROTO;
2207 		} else {	/* unknown */
2208 			status = -EPROTO;
2209 		}
2210 
2211 		fotg210_dbg(fotg210,
2212 				"dev%d ep%d%s qtd token %08x --> status %d\n",
2213 				usb_pipedevice(urb->pipe),
2214 				usb_pipeendpoint(urb->pipe),
2215 				usb_pipein(urb->pipe) ? "in" : "out",
2216 				token, status);
2217 	}
2218 
2219 	return status;
2220 }
2221 
fotg210_urb_done(struct fotg210_hcd * fotg210,struct urb * urb,int status)2222 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2223 		int status)
2224 __releases(fotg210->lock)
2225 __acquires(fotg210->lock)
2226 {
2227 	if (likely(urb->hcpriv != NULL)) {
2228 		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2229 
2230 		/* S-mask in a QH means it's an interrupt urb */
2231 		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2232 
2233 			/* ... update hc-wide periodic stats (for usbfs) */
2234 			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2235 		}
2236 	}
2237 
2238 	if (unlikely(urb->unlinked)) {
2239 		COUNT(fotg210->stats.unlink);
2240 	} else {
2241 		/* report non-error and short read status as zero */
2242 		if (status == -EINPROGRESS || status == -EREMOTEIO)
2243 			status = 0;
2244 		COUNT(fotg210->stats.complete);
2245 	}
2246 
2247 #ifdef FOTG210_URB_TRACE
2248 	fotg210_dbg(fotg210,
2249 			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2250 			__func__, urb->dev->devpath, urb,
2251 			usb_pipeendpoint(urb->pipe),
2252 			usb_pipein(urb->pipe) ? "in" : "out",
2253 			status,
2254 			urb->actual_length, urb->transfer_buffer_length);
2255 #endif
2256 
2257 	/* complete() can reenter this HCD */
2258 	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2259 	spin_unlock(&fotg210->lock);
2260 	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2261 	spin_lock(&fotg210->lock);
2262 }
2263 
2264 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2265 
2266 /* Process and free completed qtds for a qh, returning URBs to drivers.
2267  * Chases up to qh->hw_current.  Returns number of completions called,
2268  * indicating how much "real" work we did.
2269  */
qh_completions(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2270 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2271 		struct fotg210_qh *qh)
2272 {
2273 	struct fotg210_qtd *last, *end = qh->dummy;
2274 	struct list_head *entry, *tmp;
2275 	int last_status;
2276 	int stopped;
2277 	unsigned count = 0;
2278 	u8 state;
2279 	struct fotg210_qh_hw *hw = qh->hw;
2280 
2281 	if (unlikely(list_empty(&qh->qtd_list)))
2282 		return count;
2283 
2284 	/* completions (or tasks on other cpus) must never clobber HALT
2285 	 * till we've gone through and cleaned everything up, even when
2286 	 * they add urbs to this qh's queue or mark them for unlinking.
2287 	 *
2288 	 * NOTE:  unlinking expects to be done in queue order.
2289 	 *
2290 	 * It's a bug for qh->qh_state to be anything other than
2291 	 * QH_STATE_IDLE, unless our caller is scan_async() or
2292 	 * scan_intr().
2293 	 */
2294 	state = qh->qh_state;
2295 	qh->qh_state = QH_STATE_COMPLETING;
2296 	stopped = (state == QH_STATE_IDLE);
2297 
2298 rescan:
2299 	last = NULL;
2300 	last_status = -EINPROGRESS;
2301 	qh->needs_rescan = 0;
2302 
2303 	/* remove de-activated QTDs from front of queue.
2304 	 * after faults (including short reads), cleanup this urb
2305 	 * then let the queue advance.
2306 	 * if queue is stopped, handles unlinks.
2307 	 */
2308 	list_for_each_safe(entry, tmp, &qh->qtd_list) {
2309 		struct fotg210_qtd *qtd;
2310 		struct urb *urb;
2311 		u32 token = 0;
2312 
2313 		qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2314 		urb = qtd->urb;
2315 
2316 		/* clean up any state from previous QTD ...*/
2317 		if (last) {
2318 			if (likely(last->urb != urb)) {
2319 				fotg210_urb_done(fotg210, last->urb,
2320 						last_status);
2321 				count++;
2322 				last_status = -EINPROGRESS;
2323 			}
2324 			fotg210_qtd_free(fotg210, last);
2325 			last = NULL;
2326 		}
2327 
2328 		/* ignore urbs submitted during completions we reported */
2329 		if (qtd == end)
2330 			break;
2331 
2332 		/* hardware copies qtd out of qh overlay */
2333 		rmb();
2334 		token = hc32_to_cpu(fotg210, qtd->hw_token);
2335 
2336 		/* always clean up qtds the hc de-activated */
2337 retry_xacterr:
2338 		if ((token & QTD_STS_ACTIVE) == 0) {
2339 
2340 			/* Report Data Buffer Error: non-fatal but useful */
2341 			if (token & QTD_STS_DBE)
2342 				fotg210_dbg(fotg210,
2343 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2344 					urb, usb_endpoint_num(&urb->ep->desc),
2345 					usb_endpoint_dir_in(&urb->ep->desc)
2346 						? "in" : "out",
2347 					urb->transfer_buffer_length, qtd, qh);
2348 
2349 			/* on STALL, error, and short reads this urb must
2350 			 * complete and all its qtds must be recycled.
2351 			 */
2352 			if ((token & QTD_STS_HALT) != 0) {
2353 
2354 				/* retry transaction errors until we
2355 				 * reach the software xacterr limit
2356 				 */
2357 				if ((token & QTD_STS_XACT) &&
2358 						QTD_CERR(token) == 0 &&
2359 						++qh->xacterrs < QH_XACTERR_MAX &&
2360 						!urb->unlinked) {
2361 					fotg210_dbg(fotg210,
2362 						"detected XactErr len %zu/%zu retry %d\n",
2363 						qtd->length - QTD_LENGTH(token),
2364 						qtd->length,
2365 						qh->xacterrs);
2366 
2367 					/* reset the token in the qtd and the
2368 					 * qh overlay (which still contains
2369 					 * the qtd) so that we pick up from
2370 					 * where we left off
2371 					 */
2372 					token &= ~QTD_STS_HALT;
2373 					token |= QTD_STS_ACTIVE |
2374 						 (FOTG210_TUNE_CERR << 10);
2375 					qtd->hw_token = cpu_to_hc32(fotg210,
2376 							token);
2377 					wmb();
2378 					hw->hw_token = cpu_to_hc32(fotg210,
2379 							token);
2380 					goto retry_xacterr;
2381 				}
2382 				stopped = 1;
2383 
2384 			/* magic dummy for some short reads; qh won't advance.
2385 			 * that silicon quirk can kick in with this dummy too.
2386 			 *
2387 			 * other short reads won't stop the queue, including
2388 			 * control transfers (status stage handles that) or
2389 			 * most other single-qtd reads ... the queue stops if
2390 			 * URB_SHORT_NOT_OK was set so the driver submitting
2391 			 * the urbs could clean it up.
2392 			 */
2393 			} else if (IS_SHORT_READ(token) &&
2394 					!(qtd->hw_alt_next &
2395 					FOTG210_LIST_END(fotg210))) {
2396 				stopped = 1;
2397 			}
2398 
2399 		/* stop scanning when we reach qtds the hc is using */
2400 		} else if (likely(!stopped
2401 				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2402 			break;
2403 
2404 		/* scan the whole queue for unlinks whenever it stops */
2405 		} else {
2406 			stopped = 1;
2407 
2408 			/* cancel everything if we halt, suspend, etc */
2409 			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2410 				last_status = -ESHUTDOWN;
2411 
2412 			/* this qtd is active; skip it unless a previous qtd
2413 			 * for its urb faulted, or its urb was canceled.
2414 			 */
2415 			else if (last_status == -EINPROGRESS && !urb->unlinked)
2416 				continue;
2417 
2418 			/* qh unlinked; token in overlay may be most current */
2419 			if (state == QH_STATE_IDLE &&
2420 					cpu_to_hc32(fotg210, qtd->qtd_dma)
2421 					== hw->hw_current) {
2422 				token = hc32_to_cpu(fotg210, hw->hw_token);
2423 
2424 				/* An unlink may leave an incomplete
2425 				 * async transaction in the TT buffer.
2426 				 * We have to clear it.
2427 				 */
2428 				fotg210_clear_tt_buffer(fotg210, qh, urb,
2429 						token);
2430 			}
2431 		}
2432 
2433 		/* unless we already know the urb's status, collect qtd status
2434 		 * and update count of bytes transferred.  in common short read
2435 		 * cases with only one data qtd (including control transfers),
2436 		 * queue processing won't halt.  but with two or more qtds (for
2437 		 * example, with a 32 KB transfer), when the first qtd gets a
2438 		 * short read the second must be removed by hand.
2439 		 */
2440 		if (last_status == -EINPROGRESS) {
2441 			last_status = qtd_copy_status(fotg210, urb,
2442 					qtd->length, token);
2443 			if (last_status == -EREMOTEIO &&
2444 					(qtd->hw_alt_next &
2445 					FOTG210_LIST_END(fotg210)))
2446 				last_status = -EINPROGRESS;
2447 
2448 			/* As part of low/full-speed endpoint-halt processing
2449 			 * we must clear the TT buffer (11.17.5).
2450 			 */
2451 			if (unlikely(last_status != -EINPROGRESS &&
2452 					last_status != -EREMOTEIO)) {
2453 				/* The TT's in some hubs malfunction when they
2454 				 * receive this request following a STALL (they
2455 				 * stop sending isochronous packets).  Since a
2456 				 * STALL can't leave the TT buffer in a busy
2457 				 * state (if you believe Figures 11-48 - 11-51
2458 				 * in the USB 2.0 spec), we won't clear the TT
2459 				 * buffer in this case.  Strictly speaking this
2460 				 * is a violation of the spec.
2461 				 */
2462 				if (last_status != -EPIPE)
2463 					fotg210_clear_tt_buffer(fotg210, qh,
2464 							urb, token);
2465 			}
2466 		}
2467 
2468 		/* if we're removing something not at the queue head,
2469 		 * patch the hardware queue pointer.
2470 		 */
2471 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2472 			last = list_entry(qtd->qtd_list.prev,
2473 					struct fotg210_qtd, qtd_list);
2474 			last->hw_next = qtd->hw_next;
2475 		}
2476 
2477 		/* remove qtd; it's recycled after possible urb completion */
2478 		list_del(&qtd->qtd_list);
2479 		last = qtd;
2480 
2481 		/* reinit the xacterr counter for the next qtd */
2482 		qh->xacterrs = 0;
2483 	}
2484 
2485 	/* last urb's completion might still need calling */
2486 	if (likely(last != NULL)) {
2487 		fotg210_urb_done(fotg210, last->urb, last_status);
2488 		count++;
2489 		fotg210_qtd_free(fotg210, last);
2490 	}
2491 
2492 	/* Do we need to rescan for URBs dequeued during a giveback? */
2493 	if (unlikely(qh->needs_rescan)) {
2494 		/* If the QH is already unlinked, do the rescan now. */
2495 		if (state == QH_STATE_IDLE)
2496 			goto rescan;
2497 
2498 		/* Otherwise we have to wait until the QH is fully unlinked.
2499 		 * Our caller will start an unlink if qh->needs_rescan is
2500 		 * set.  But if an unlink has already started, nothing needs
2501 		 * to be done.
2502 		 */
2503 		if (state != QH_STATE_LINKED)
2504 			qh->needs_rescan = 0;
2505 	}
2506 
2507 	/* restore original state; caller must unlink or relink */
2508 	qh->qh_state = state;
2509 
2510 	/* be sure the hardware's done with the qh before refreshing
2511 	 * it after fault cleanup, or recovering from silicon wrongly
2512 	 * overlaying the dummy qtd (which reduces DMA chatter).
2513 	 */
2514 	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2515 		switch (state) {
2516 		case QH_STATE_IDLE:
2517 			qh_refresh(fotg210, qh);
2518 			break;
2519 		case QH_STATE_LINKED:
2520 			/* We won't refresh a QH that's linked (after the HC
2521 			 * stopped the queue).  That avoids a race:
2522 			 *  - HC reads first part of QH;
2523 			 *  - CPU updates that first part and the token;
2524 			 *  - HC reads rest of that QH, including token
2525 			 * Result:  HC gets an inconsistent image, and then
2526 			 * DMAs to/from the wrong memory (corrupting it).
2527 			 *
2528 			 * That should be rare for interrupt transfers,
2529 			 * except maybe high bandwidth ...
2530 			 */
2531 
2532 			/* Tell the caller to start an unlink */
2533 			qh->needs_rescan = 1;
2534 			break;
2535 		/* otherwise, unlink already started */
2536 		}
2537 	}
2538 
2539 	return count;
2540 }
2541 
2542 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2543 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2544 /* ... and packet size, for any kind of endpoint descriptor */
2545 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2546 
2547 /* reverse of qh_urb_transaction:  free a list of TDs.
2548  * used for cleanup after errors, before HC sees an URB's TDs.
2549  */
qtd_list_free(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list)2550 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2551 		struct list_head *qtd_list)
2552 {
2553 	struct list_head *entry, *temp;
2554 
2555 	list_for_each_safe(entry, temp, qtd_list) {
2556 		struct fotg210_qtd *qtd;
2557 
2558 		qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2559 		list_del(&qtd->qtd_list);
2560 		fotg210_qtd_free(fotg210, qtd);
2561 	}
2562 }
2563 
2564 /* create a list of filled qtds for this URB; won't link into qh.
2565  */
qh_urb_transaction(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head,gfp_t flags)2566 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2567 		struct urb *urb, struct list_head *head, gfp_t flags)
2568 {
2569 	struct fotg210_qtd *qtd, *qtd_prev;
2570 	dma_addr_t buf;
2571 	int len, this_sg_len, maxpacket;
2572 	int is_input;
2573 	u32 token;
2574 	int i;
2575 	struct scatterlist *sg;
2576 
2577 	/*
2578 	 * URBs map to sequences of QTDs:  one logical transaction
2579 	 */
2580 	qtd = fotg210_qtd_alloc(fotg210, flags);
2581 	if (unlikely(!qtd))
2582 		return NULL;
2583 	list_add_tail(&qtd->qtd_list, head);
2584 	qtd->urb = urb;
2585 
2586 	token = QTD_STS_ACTIVE;
2587 	token |= (FOTG210_TUNE_CERR << 10);
2588 	/* for split transactions, SplitXState initialized to zero */
2589 
2590 	len = urb->transfer_buffer_length;
2591 	is_input = usb_pipein(urb->pipe);
2592 	if (usb_pipecontrol(urb->pipe)) {
2593 		/* SETUP pid */
2594 		qtd_fill(fotg210, qtd, urb->setup_dma,
2595 				sizeof(struct usb_ctrlrequest),
2596 				token | (2 /* "setup" */ << 8), 8);
2597 
2598 		/* ... and always at least one more pid */
2599 		token ^= QTD_TOGGLE;
2600 		qtd_prev = qtd;
2601 		qtd = fotg210_qtd_alloc(fotg210, flags);
2602 		if (unlikely(!qtd))
2603 			goto cleanup;
2604 		qtd->urb = urb;
2605 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2606 		list_add_tail(&qtd->qtd_list, head);
2607 
2608 		/* for zero length DATA stages, STATUS is always IN */
2609 		if (len == 0)
2610 			token |= (1 /* "in" */ << 8);
2611 	}
2612 
2613 	/*
2614 	 * data transfer stage:  buffer setup
2615 	 */
2616 	i = urb->num_mapped_sgs;
2617 	if (len > 0 && i > 0) {
2618 		sg = urb->sg;
2619 		buf = sg_dma_address(sg);
2620 
2621 		/* urb->transfer_buffer_length may be smaller than the
2622 		 * size of the scatterlist (or vice versa)
2623 		 */
2624 		this_sg_len = min_t(int, sg_dma_len(sg), len);
2625 	} else {
2626 		sg = NULL;
2627 		buf = urb->transfer_dma;
2628 		this_sg_len = len;
2629 	}
2630 
2631 	if (is_input)
2632 		token |= (1 /* "in" */ << 8);
2633 	/* else it's already initted to "out" pid (0 << 8) */
2634 
2635 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2636 
2637 	/*
2638 	 * buffer gets wrapped in one or more qtds;
2639 	 * last one may be "short" (including zero len)
2640 	 * and may serve as a control status ack
2641 	 */
2642 	for (;;) {
2643 		int this_qtd_len;
2644 
2645 		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2646 				maxpacket);
2647 		this_sg_len -= this_qtd_len;
2648 		len -= this_qtd_len;
2649 		buf += this_qtd_len;
2650 
2651 		/*
2652 		 * short reads advance to a "magic" dummy instead of the next
2653 		 * qtd ... that forces the queue to stop, for manual cleanup.
2654 		 * (this will usually be overridden later.)
2655 		 */
2656 		if (is_input)
2657 			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2658 
2659 		/* qh makes control packets use qtd toggle; maybe switch it */
2660 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2661 			token ^= QTD_TOGGLE;
2662 
2663 		if (likely(this_sg_len <= 0)) {
2664 			if (--i <= 0 || len <= 0)
2665 				break;
2666 			sg = sg_next(sg);
2667 			buf = sg_dma_address(sg);
2668 			this_sg_len = min_t(int, sg_dma_len(sg), len);
2669 		}
2670 
2671 		qtd_prev = qtd;
2672 		qtd = fotg210_qtd_alloc(fotg210, flags);
2673 		if (unlikely(!qtd))
2674 			goto cleanup;
2675 		qtd->urb = urb;
2676 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2677 		list_add_tail(&qtd->qtd_list, head);
2678 	}
2679 
2680 	/*
2681 	 * unless the caller requires manual cleanup after short reads,
2682 	 * have the alt_next mechanism keep the queue running after the
2683 	 * last data qtd (the only one, for control and most other cases).
2684 	 */
2685 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2686 			usb_pipecontrol(urb->pipe)))
2687 		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2688 
2689 	/*
2690 	 * control requests may need a terminating data "status" ack;
2691 	 * other OUT ones may need a terminating short packet
2692 	 * (zero length).
2693 	 */
2694 	if (likely(urb->transfer_buffer_length != 0)) {
2695 		int one_more = 0;
2696 
2697 		if (usb_pipecontrol(urb->pipe)) {
2698 			one_more = 1;
2699 			token ^= 0x0100;	/* "in" <--> "out"  */
2700 			token |= QTD_TOGGLE;	/* force DATA1 */
2701 		} else if (usb_pipeout(urb->pipe)
2702 				&& (urb->transfer_flags & URB_ZERO_PACKET)
2703 				&& !(urb->transfer_buffer_length % maxpacket)) {
2704 			one_more = 1;
2705 		}
2706 		if (one_more) {
2707 			qtd_prev = qtd;
2708 			qtd = fotg210_qtd_alloc(fotg210, flags);
2709 			if (unlikely(!qtd))
2710 				goto cleanup;
2711 			qtd->urb = urb;
2712 			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2713 			list_add_tail(&qtd->qtd_list, head);
2714 
2715 			/* never any data in such packets */
2716 			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2717 		}
2718 	}
2719 
2720 	/* by default, enable interrupt on urb completion */
2721 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2722 		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2723 	return head;
2724 
2725 cleanup:
2726 	qtd_list_free(fotg210, urb, head);
2727 	return NULL;
2728 }
2729 
2730 /* Would be best to create all qh's from config descriptors,
2731  * when each interface/altsetting is established.  Unlink
2732  * any previous qh and cancel its urbs first; endpoints are
2733  * implicitly reset then (data toggle too).
2734  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2735 */
2736 
2737 
2738 /* Each QH holds a qtd list; a QH is used for everything except iso.
2739  *
2740  * For interrupt urbs, the scheduler must set the microframe scheduling
2741  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2742  * just one microframe in the s-mask.  For split interrupt transactions
2743  * there are additional complications: c-mask, maybe FSTNs.
2744  */
qh_make(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t flags)2745 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2746 		gfp_t flags)
2747 {
2748 	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2749 	u32 info1 = 0, info2 = 0;
2750 	int is_input, type;
2751 	int maxp = 0;
2752 	struct usb_tt *tt = urb->dev->tt;
2753 	struct fotg210_qh_hw *hw;
2754 
2755 	if (!qh)
2756 		return qh;
2757 
2758 	/*
2759 	 * init endpoint/device data for this QH
2760 	 */
2761 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2762 	info1 |= usb_pipedevice(urb->pipe) << 0;
2763 
2764 	is_input = usb_pipein(urb->pipe);
2765 	type = usb_pipetype(urb->pipe);
2766 	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2767 
2768 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2769 	 * acts like up to 3KB, but is built from smaller packets.
2770 	 */
2771 	if (max_packet(maxp) > 1024) {
2772 		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2773 				max_packet(maxp));
2774 		goto done;
2775 	}
2776 
2777 	/* Compute interrupt scheduling parameters just once, and save.
2778 	 * - allowing for high bandwidth, how many nsec/uframe are used?
2779 	 * - split transactions need a second CSPLIT uframe; same question
2780 	 * - splits also need a schedule gap (for full/low speed I/O)
2781 	 * - qh has a polling interval
2782 	 *
2783 	 * For control/bulk requests, the HC or TT handles these.
2784 	 */
2785 	if (type == PIPE_INTERRUPT) {
2786 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2787 				is_input, 0,
2788 				hb_mult(maxp) * max_packet(maxp)));
2789 		qh->start = NO_FRAME;
2790 
2791 		if (urb->dev->speed == USB_SPEED_HIGH) {
2792 			qh->c_usecs = 0;
2793 			qh->gap_uf = 0;
2794 
2795 			qh->period = urb->interval >> 3;
2796 			if (qh->period == 0 && urb->interval != 1) {
2797 				/* NOTE interval 2 or 4 uframes could work.
2798 				 * But interval 1 scheduling is simpler, and
2799 				 * includes high bandwidth.
2800 				 */
2801 				urb->interval = 1;
2802 			} else if (qh->period > fotg210->periodic_size) {
2803 				qh->period = fotg210->periodic_size;
2804 				urb->interval = qh->period << 3;
2805 			}
2806 		} else {
2807 			int think_time;
2808 
2809 			/* gap is f(FS/LS transfer times) */
2810 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2811 					is_input, 0, maxp) / (125 * 1000);
2812 
2813 			/* FIXME this just approximates SPLIT/CSPLIT times */
2814 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2815 				qh->c_usecs = qh->usecs + HS_USECS(0);
2816 				qh->usecs = HS_USECS(1);
2817 			} else {		/* SPLIT+DATA, gap, CSPLIT */
2818 				qh->usecs += HS_USECS(1);
2819 				qh->c_usecs = HS_USECS(0);
2820 			}
2821 
2822 			think_time = tt ? tt->think_time : 0;
2823 			qh->tt_usecs = NS_TO_US(think_time +
2824 					usb_calc_bus_time(urb->dev->speed,
2825 					is_input, 0, max_packet(maxp)));
2826 			qh->period = urb->interval;
2827 			if (qh->period > fotg210->periodic_size) {
2828 				qh->period = fotg210->periodic_size;
2829 				urb->interval = qh->period;
2830 			}
2831 		}
2832 	}
2833 
2834 	/* support for tt scheduling, and access to toggles */
2835 	qh->dev = urb->dev;
2836 
2837 	/* using TT? */
2838 	switch (urb->dev->speed) {
2839 	case USB_SPEED_LOW:
2840 		info1 |= QH_LOW_SPEED;
2841 		/* FALL THROUGH */
2842 
2843 	case USB_SPEED_FULL:
2844 		/* EPS 0 means "full" */
2845 		if (type != PIPE_INTERRUPT)
2846 			info1 |= (FOTG210_TUNE_RL_TT << 28);
2847 		if (type == PIPE_CONTROL) {
2848 			info1 |= QH_CONTROL_EP;		/* for TT */
2849 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2850 		}
2851 		info1 |= maxp << 16;
2852 
2853 		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2854 
2855 		/* Some Freescale processors have an erratum in which the
2856 		 * port number in the queue head was 0..N-1 instead of 1..N.
2857 		 */
2858 		if (fotg210_has_fsl_portno_bug(fotg210))
2859 			info2 |= (urb->dev->ttport-1) << 23;
2860 		else
2861 			info2 |= urb->dev->ttport << 23;
2862 
2863 		/* set the address of the TT; for TDI's integrated
2864 		 * root hub tt, leave it zeroed.
2865 		 */
2866 		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2867 			info2 |= tt->hub->devnum << 16;
2868 
2869 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2870 
2871 		break;
2872 
2873 	case USB_SPEED_HIGH:		/* no TT involved */
2874 		info1 |= QH_HIGH_SPEED;
2875 		if (type == PIPE_CONTROL) {
2876 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2877 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2878 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2879 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2880 		} else if (type == PIPE_BULK) {
2881 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2882 			/* The USB spec says that high speed bulk endpoints
2883 			 * always use 512 byte maxpacket.  But some device
2884 			 * vendors decided to ignore that, and MSFT is happy
2885 			 * to help them do so.  So now people expect to use
2886 			 * such nonconformant devices with Linux too; sigh.
2887 			 */
2888 			info1 |= max_packet(maxp) << 16;
2889 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2890 		} else {		/* PIPE_INTERRUPT */
2891 			info1 |= max_packet(maxp) << 16;
2892 			info2 |= hb_mult(maxp) << 30;
2893 		}
2894 		break;
2895 	default:
2896 		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2897 				urb->dev->speed);
2898 done:
2899 		qh_destroy(fotg210, qh);
2900 		return NULL;
2901 	}
2902 
2903 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2904 
2905 	/* init as live, toggle clear, advance to dummy */
2906 	qh->qh_state = QH_STATE_IDLE;
2907 	hw = qh->hw;
2908 	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2909 	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2910 	qh->is_out = !is_input;
2911 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2912 	qh_refresh(fotg210, qh);
2913 	return qh;
2914 }
2915 
enable_async(struct fotg210_hcd * fotg210)2916 static void enable_async(struct fotg210_hcd *fotg210)
2917 {
2918 	if (fotg210->async_count++)
2919 		return;
2920 
2921 	/* Stop waiting to turn off the async schedule */
2922 	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2923 
2924 	/* Don't start the schedule until ASS is 0 */
2925 	fotg210_poll_ASS(fotg210);
2926 	turn_on_io_watchdog(fotg210);
2927 }
2928 
disable_async(struct fotg210_hcd * fotg210)2929 static void disable_async(struct fotg210_hcd *fotg210)
2930 {
2931 	if (--fotg210->async_count)
2932 		return;
2933 
2934 	/* The async schedule and async_unlink list are supposed to be empty */
2935 	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2936 
2937 	/* Don't turn off the schedule until ASS is 1 */
2938 	fotg210_poll_ASS(fotg210);
2939 }
2940 
2941 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
2942 
qh_link_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2943 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2944 {
2945 	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2946 	struct fotg210_qh *head;
2947 
2948 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2949 	if (unlikely(qh->clearing_tt))
2950 		return;
2951 
2952 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2953 
2954 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2955 	qh_refresh(fotg210, qh);
2956 
2957 	/* splice right after start */
2958 	head = fotg210->async;
2959 	qh->qh_next = head->qh_next;
2960 	qh->hw->hw_next = head->hw->hw_next;
2961 	wmb();
2962 
2963 	head->qh_next.qh = qh;
2964 	head->hw->hw_next = dma;
2965 
2966 	qh->xacterrs = 0;
2967 	qh->qh_state = QH_STATE_LINKED;
2968 	/* qtd completions reported later by interrupt */
2969 
2970 	enable_async(fotg210);
2971 }
2972 
2973 /* For control/bulk/interrupt, return QH with these TDs appended.
2974  * Allocates and initializes the QH if necessary.
2975  * Returns null if it can't allocate a QH it needs to.
2976  * If the QH has TDs (urbs) already, that's great.
2977  */
qh_append_tds(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)2978 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2979 		struct urb *urb, struct list_head *qtd_list,
2980 		int epnum, void **ptr)
2981 {
2982 	struct fotg210_qh *qh = NULL;
2983 	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2984 
2985 	qh = (struct fotg210_qh *) *ptr;
2986 	if (unlikely(qh == NULL)) {
2987 		/* can't sleep here, we have fotg210->lock... */
2988 		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2989 		*ptr = qh;
2990 	}
2991 	if (likely(qh != NULL)) {
2992 		struct fotg210_qtd *qtd;
2993 
2994 		if (unlikely(list_empty(qtd_list)))
2995 			qtd = NULL;
2996 		else
2997 			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2998 					qtd_list);
2999 
3000 		/* control qh may need patching ... */
3001 		if (unlikely(epnum == 0)) {
3002 			/* usb_reset_device() briefly reverts to address 0 */
3003 			if (usb_pipedevice(urb->pipe) == 0)
3004 				qh->hw->hw_info1 &= ~qh_addr_mask;
3005 		}
3006 
3007 		/* just one way to queue requests: swap with the dummy qtd.
3008 		 * only hc or qh_refresh() ever modify the overlay.
3009 		 */
3010 		if (likely(qtd != NULL)) {
3011 			struct fotg210_qtd *dummy;
3012 			dma_addr_t dma;
3013 			__hc32 token;
3014 
3015 			/* to avoid racing the HC, use the dummy td instead of
3016 			 * the first td of our list (becomes new dummy).  both
3017 			 * tds stay deactivated until we're done, when the
3018 			 * HC is allowed to fetch the old dummy (4.10.2).
3019 			 */
3020 			token = qtd->hw_token;
3021 			qtd->hw_token = HALT_BIT(fotg210);
3022 
3023 			dummy = qh->dummy;
3024 
3025 			dma = dummy->qtd_dma;
3026 			*dummy = *qtd;
3027 			dummy->qtd_dma = dma;
3028 
3029 			list_del(&qtd->qtd_list);
3030 			list_add(&dummy->qtd_list, qtd_list);
3031 			list_splice_tail(qtd_list, &qh->qtd_list);
3032 
3033 			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3034 			qh->dummy = qtd;
3035 
3036 			/* hc must see the new dummy at list end */
3037 			dma = qtd->qtd_dma;
3038 			qtd = list_entry(qh->qtd_list.prev,
3039 					struct fotg210_qtd, qtd_list);
3040 			qtd->hw_next = QTD_NEXT(fotg210, dma);
3041 
3042 			/* let the hc process these next qtds */
3043 			wmb();
3044 			dummy->hw_token = token;
3045 
3046 			urb->hcpriv = qh;
3047 		}
3048 	}
3049 	return qh;
3050 }
3051 
submit_async(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3052 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3053 		struct list_head *qtd_list, gfp_t mem_flags)
3054 {
3055 	int epnum;
3056 	unsigned long flags;
3057 	struct fotg210_qh *qh = NULL;
3058 	int rc;
3059 
3060 	epnum = urb->ep->desc.bEndpointAddress;
3061 
3062 #ifdef FOTG210_URB_TRACE
3063 	{
3064 		struct fotg210_qtd *qtd;
3065 
3066 		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3067 		fotg210_dbg(fotg210,
3068 				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3069 				__func__, urb->dev->devpath, urb,
3070 				epnum & 0x0f, (epnum & USB_DIR_IN)
3071 					? "in" : "out",
3072 				urb->transfer_buffer_length,
3073 				qtd, urb->ep->hcpriv);
3074 	}
3075 #endif
3076 
3077 	spin_lock_irqsave(&fotg210->lock, flags);
3078 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3079 		rc = -ESHUTDOWN;
3080 		goto done;
3081 	}
3082 	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3083 	if (unlikely(rc))
3084 		goto done;
3085 
3086 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3087 	if (unlikely(qh == NULL)) {
3088 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3089 		rc = -ENOMEM;
3090 		goto done;
3091 	}
3092 
3093 	/* Control/bulk operations through TTs don't need scheduling,
3094 	 * the HC and TT handle it when the TT has a buffer ready.
3095 	 */
3096 	if (likely(qh->qh_state == QH_STATE_IDLE))
3097 		qh_link_async(fotg210, qh);
3098 done:
3099 	spin_unlock_irqrestore(&fotg210->lock, flags);
3100 	if (unlikely(qh == NULL))
3101 		qtd_list_free(fotg210, urb, qtd_list);
3102 	return rc;
3103 }
3104 
single_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3105 static void single_unlink_async(struct fotg210_hcd *fotg210,
3106 		struct fotg210_qh *qh)
3107 {
3108 	struct fotg210_qh *prev;
3109 
3110 	/* Add to the end of the list of QHs waiting for the next IAAD */
3111 	qh->qh_state = QH_STATE_UNLINK;
3112 	if (fotg210->async_unlink)
3113 		fotg210->async_unlink_last->unlink_next = qh;
3114 	else
3115 		fotg210->async_unlink = qh;
3116 	fotg210->async_unlink_last = qh;
3117 
3118 	/* Unlink it from the schedule */
3119 	prev = fotg210->async;
3120 	while (prev->qh_next.qh != qh)
3121 		prev = prev->qh_next.qh;
3122 
3123 	prev->hw->hw_next = qh->hw->hw_next;
3124 	prev->qh_next = qh->qh_next;
3125 	if (fotg210->qh_scan_next == qh)
3126 		fotg210->qh_scan_next = qh->qh_next.qh;
3127 }
3128 
start_iaa_cycle(struct fotg210_hcd * fotg210,bool nested)3129 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3130 {
3131 	/*
3132 	 * Do nothing if an IAA cycle is already running or
3133 	 * if one will be started shortly.
3134 	 */
3135 	if (fotg210->async_iaa || fotg210->async_unlinking)
3136 		return;
3137 
3138 	/* Do all the waiting QHs at once */
3139 	fotg210->async_iaa = fotg210->async_unlink;
3140 	fotg210->async_unlink = NULL;
3141 
3142 	/* If the controller isn't running, we don't have to wait for it */
3143 	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3144 		if (!nested)		/* Avoid recursion */
3145 			end_unlink_async(fotg210);
3146 
3147 	/* Otherwise start a new IAA cycle */
3148 	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3149 		/* Make sure the unlinks are all visible to the hardware */
3150 		wmb();
3151 
3152 		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3153 				&fotg210->regs->command);
3154 		fotg210_readl(fotg210, &fotg210->regs->command);
3155 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3156 				true);
3157 	}
3158 }
3159 
3160 /* the async qh for the qtds being unlinked are now gone from the HC */
3161 
end_unlink_async(struct fotg210_hcd * fotg210)3162 static void end_unlink_async(struct fotg210_hcd *fotg210)
3163 {
3164 	struct fotg210_qh *qh;
3165 
3166 	/* Process the idle QHs */
3167 restart:
3168 	fotg210->async_unlinking = true;
3169 	while (fotg210->async_iaa) {
3170 		qh = fotg210->async_iaa;
3171 		fotg210->async_iaa = qh->unlink_next;
3172 		qh->unlink_next = NULL;
3173 
3174 		qh->qh_state = QH_STATE_IDLE;
3175 		qh->qh_next.qh = NULL;
3176 
3177 		qh_completions(fotg210, qh);
3178 		if (!list_empty(&qh->qtd_list) &&
3179 				fotg210->rh_state == FOTG210_RH_RUNNING)
3180 			qh_link_async(fotg210, qh);
3181 		disable_async(fotg210);
3182 	}
3183 	fotg210->async_unlinking = false;
3184 
3185 	/* Start a new IAA cycle if any QHs are waiting for it */
3186 	if (fotg210->async_unlink) {
3187 		start_iaa_cycle(fotg210, true);
3188 		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3189 			goto restart;
3190 	}
3191 }
3192 
unlink_empty_async(struct fotg210_hcd * fotg210)3193 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3194 {
3195 	struct fotg210_qh *qh, *next;
3196 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3197 	bool check_unlinks_later = false;
3198 
3199 	/* Unlink all the async QHs that have been empty for a timer cycle */
3200 	next = fotg210->async->qh_next.qh;
3201 	while (next) {
3202 		qh = next;
3203 		next = qh->qh_next.qh;
3204 
3205 		if (list_empty(&qh->qtd_list) &&
3206 				qh->qh_state == QH_STATE_LINKED) {
3207 			if (!stopped && qh->unlink_cycle ==
3208 					fotg210->async_unlink_cycle)
3209 				check_unlinks_later = true;
3210 			else
3211 				single_unlink_async(fotg210, qh);
3212 		}
3213 	}
3214 
3215 	/* Start a new IAA cycle if any QHs are waiting for it */
3216 	if (fotg210->async_unlink)
3217 		start_iaa_cycle(fotg210, false);
3218 
3219 	/* QHs that haven't been empty for long enough will be handled later */
3220 	if (check_unlinks_later) {
3221 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3222 				true);
3223 		++fotg210->async_unlink_cycle;
3224 	}
3225 }
3226 
3227 /* makes sure the async qh will become idle */
3228 /* caller must own fotg210->lock */
3229 
start_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3230 static void start_unlink_async(struct fotg210_hcd *fotg210,
3231 		struct fotg210_qh *qh)
3232 {
3233 	/*
3234 	 * If the QH isn't linked then there's nothing we can do
3235 	 * unless we were called during a giveback, in which case
3236 	 * qh_completions() has to deal with it.
3237 	 */
3238 	if (qh->qh_state != QH_STATE_LINKED) {
3239 		if (qh->qh_state == QH_STATE_COMPLETING)
3240 			qh->needs_rescan = 1;
3241 		return;
3242 	}
3243 
3244 	single_unlink_async(fotg210, qh);
3245 	start_iaa_cycle(fotg210, false);
3246 }
3247 
scan_async(struct fotg210_hcd * fotg210)3248 static void scan_async(struct fotg210_hcd *fotg210)
3249 {
3250 	struct fotg210_qh *qh;
3251 	bool check_unlinks_later = false;
3252 
3253 	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3254 	while (fotg210->qh_scan_next) {
3255 		qh = fotg210->qh_scan_next;
3256 		fotg210->qh_scan_next = qh->qh_next.qh;
3257 rescan:
3258 		/* clean any finished work for this qh */
3259 		if (!list_empty(&qh->qtd_list)) {
3260 			int temp;
3261 
3262 			/*
3263 			 * Unlinks could happen here; completion reporting
3264 			 * drops the lock.  That's why fotg210->qh_scan_next
3265 			 * always holds the next qh to scan; if the next qh
3266 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3267 			 * in single_unlink_async().
3268 			 */
3269 			temp = qh_completions(fotg210, qh);
3270 			if (qh->needs_rescan) {
3271 				start_unlink_async(fotg210, qh);
3272 			} else if (list_empty(&qh->qtd_list)
3273 					&& qh->qh_state == QH_STATE_LINKED) {
3274 				qh->unlink_cycle = fotg210->async_unlink_cycle;
3275 				check_unlinks_later = true;
3276 			} else if (temp != 0)
3277 				goto rescan;
3278 		}
3279 	}
3280 
3281 	/*
3282 	 * Unlink empty entries, reducing DMA usage as well
3283 	 * as HCD schedule-scanning costs.  Delay for any qh
3284 	 * we just scanned, there's a not-unusual case that it
3285 	 * doesn't stay idle for long.
3286 	 */
3287 	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3288 			!(fotg210->enabled_hrtimer_events &
3289 			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3290 		fotg210_enable_event(fotg210,
3291 				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3292 		++fotg210->async_unlink_cycle;
3293 	}
3294 }
3295 /* EHCI scheduled transaction support:  interrupt, iso, split iso
3296  * These are called "periodic" transactions in the EHCI spec.
3297  *
3298  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3299  * with the "asynchronous" transaction support (control/bulk transfers).
3300  * The only real difference is in how interrupt transfers are scheduled.
3301  *
3302  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3303  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3304  * pre-calculated schedule data to make appending to the queue be quick.
3305  */
3306 static int fotg210_get_frame(struct usb_hcd *hcd);
3307 
3308 /* periodic_next_shadow - return "next" pointer on shadow list
3309  * @periodic: host pointer to qh/itd
3310  * @tag: hardware tag for type of this record
3311  */
periodic_next_shadow(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3312 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3313 		union fotg210_shadow *periodic, __hc32 tag)
3314 {
3315 	switch (hc32_to_cpu(fotg210, tag)) {
3316 	case Q_TYPE_QH:
3317 		return &periodic->qh->qh_next;
3318 	case Q_TYPE_FSTN:
3319 		return &periodic->fstn->fstn_next;
3320 	default:
3321 		return &periodic->itd->itd_next;
3322 	}
3323 }
3324 
shadow_next_periodic(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3325 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3326 		union fotg210_shadow *periodic, __hc32 tag)
3327 {
3328 	switch (hc32_to_cpu(fotg210, tag)) {
3329 	/* our fotg210_shadow.qh is actually software part */
3330 	case Q_TYPE_QH:
3331 		return &periodic->qh->hw->hw_next;
3332 	/* others are hw parts */
3333 	default:
3334 		return periodic->hw_next;
3335 	}
3336 }
3337 
3338 /* caller must hold fotg210->lock */
periodic_unlink(struct fotg210_hcd * fotg210,unsigned frame,void * ptr)3339 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3340 		void *ptr)
3341 {
3342 	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3343 	__hc32 *hw_p = &fotg210->periodic[frame];
3344 	union fotg210_shadow here = *prev_p;
3345 
3346 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3347 	while (here.ptr && here.ptr != ptr) {
3348 		prev_p = periodic_next_shadow(fotg210, prev_p,
3349 				Q_NEXT_TYPE(fotg210, *hw_p));
3350 		hw_p = shadow_next_periodic(fotg210, &here,
3351 				Q_NEXT_TYPE(fotg210, *hw_p));
3352 		here = *prev_p;
3353 	}
3354 	/* an interrupt entry (at list end) could have been shared */
3355 	if (!here.ptr)
3356 		return;
3357 
3358 	/* update shadow and hardware lists ... the old "next" pointers
3359 	 * from ptr may still be in use, the caller updates them.
3360 	 */
3361 	*prev_p = *periodic_next_shadow(fotg210, &here,
3362 			Q_NEXT_TYPE(fotg210, *hw_p));
3363 
3364 	*hw_p = *shadow_next_periodic(fotg210, &here,
3365 			Q_NEXT_TYPE(fotg210, *hw_p));
3366 }
3367 
3368 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe)3369 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3370 		unsigned frame, unsigned uframe)
3371 {
3372 	__hc32 *hw_p = &fotg210->periodic[frame];
3373 	union fotg210_shadow *q = &fotg210->pshadow[frame];
3374 	unsigned usecs = 0;
3375 	struct fotg210_qh_hw *hw;
3376 
3377 	while (q->ptr) {
3378 		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3379 		case Q_TYPE_QH:
3380 			hw = q->qh->hw;
3381 			/* is it in the S-mask? */
3382 			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3383 				usecs += q->qh->usecs;
3384 			/* ... or C-mask? */
3385 			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3386 					1 << (8 + uframe)))
3387 				usecs += q->qh->c_usecs;
3388 			hw_p = &hw->hw_next;
3389 			q = &q->qh->qh_next;
3390 			break;
3391 		/* case Q_TYPE_FSTN: */
3392 		default:
3393 			/* for "save place" FSTNs, count the relevant INTR
3394 			 * bandwidth from the previous frame
3395 			 */
3396 			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3397 				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3398 
3399 			hw_p = &q->fstn->hw_next;
3400 			q = &q->fstn->fstn_next;
3401 			break;
3402 		case Q_TYPE_ITD:
3403 			if (q->itd->hw_transaction[uframe])
3404 				usecs += q->itd->stream->usecs;
3405 			hw_p = &q->itd->hw_next;
3406 			q = &q->itd->itd_next;
3407 			break;
3408 		}
3409 	}
3410 	if (usecs > fotg210->uframe_periodic_max)
3411 		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3412 				frame * 8 + uframe, usecs);
3413 	return usecs;
3414 }
3415 
same_tt(struct usb_device * dev1,struct usb_device * dev2)3416 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3417 {
3418 	if (!dev1->tt || !dev2->tt)
3419 		return 0;
3420 	if (dev1->tt != dev2->tt)
3421 		return 0;
3422 	if (dev1->tt->multi)
3423 		return dev1->ttport == dev2->ttport;
3424 	else
3425 		return 1;
3426 }
3427 
3428 /* return true iff the device's transaction translator is available
3429  * for a periodic transfer starting at the specified frame, using
3430  * all the uframes in the mask.
3431  */
tt_no_collision(struct fotg210_hcd * fotg210,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)3432 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3433 		struct usb_device *dev, unsigned frame, u32 uf_mask)
3434 {
3435 	if (period == 0)	/* error */
3436 		return 0;
3437 
3438 	/* note bandwidth wastage:  split never follows csplit
3439 	 * (different dev or endpoint) until the next uframe.
3440 	 * calling convention doesn't make that distinction.
3441 	 */
3442 	for (; frame < fotg210->periodic_size; frame += period) {
3443 		union fotg210_shadow here;
3444 		__hc32 type;
3445 		struct fotg210_qh_hw *hw;
3446 
3447 		here = fotg210->pshadow[frame];
3448 		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3449 		while (here.ptr) {
3450 			switch (hc32_to_cpu(fotg210, type)) {
3451 			case Q_TYPE_ITD:
3452 				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3453 				here = here.itd->itd_next;
3454 				continue;
3455 			case Q_TYPE_QH:
3456 				hw = here.qh->hw;
3457 				if (same_tt(dev, here.qh->dev)) {
3458 					u32 mask;
3459 
3460 					mask = hc32_to_cpu(fotg210,
3461 							hw->hw_info2);
3462 					/* "knows" no gap is needed */
3463 					mask |= mask >> 8;
3464 					if (mask & uf_mask)
3465 						break;
3466 				}
3467 				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3468 				here = here.qh->qh_next;
3469 				continue;
3470 			/* case Q_TYPE_FSTN: */
3471 			default:
3472 				fotg210_dbg(fotg210,
3473 						"periodic frame %d bogus type %d\n",
3474 						frame, type);
3475 			}
3476 
3477 			/* collision or error */
3478 			return 0;
3479 		}
3480 	}
3481 
3482 	/* no collision */
3483 	return 1;
3484 }
3485 
enable_periodic(struct fotg210_hcd * fotg210)3486 static void enable_periodic(struct fotg210_hcd *fotg210)
3487 {
3488 	if (fotg210->periodic_count++)
3489 		return;
3490 
3491 	/* Stop waiting to turn off the periodic schedule */
3492 	fotg210->enabled_hrtimer_events &=
3493 		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3494 
3495 	/* Don't start the schedule until PSS is 0 */
3496 	fotg210_poll_PSS(fotg210);
3497 	turn_on_io_watchdog(fotg210);
3498 }
3499 
disable_periodic(struct fotg210_hcd * fotg210)3500 static void disable_periodic(struct fotg210_hcd *fotg210)
3501 {
3502 	if (--fotg210->periodic_count)
3503 		return;
3504 
3505 	/* Don't turn off the schedule until PSS is 1 */
3506 	fotg210_poll_PSS(fotg210);
3507 }
3508 
3509 /* periodic schedule slots have iso tds (normal or split) first, then a
3510  * sparse tree for active interrupt transfers.
3511  *
3512  * this just links in a qh; caller guarantees uframe masks are set right.
3513  * no FSTN support (yet; fotg210 0.96+)
3514  */
qh_link_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3515 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3516 {
3517 	unsigned i;
3518 	unsigned period = qh->period;
3519 
3520 	dev_dbg(&qh->dev->dev,
3521 			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3522 			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3523 			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3524 			qh->c_usecs);
3525 
3526 	/* high bandwidth, or otherwise every microframe */
3527 	if (period == 0)
3528 		period = 1;
3529 
3530 	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3531 		union fotg210_shadow *prev = &fotg210->pshadow[i];
3532 		__hc32 *hw_p = &fotg210->periodic[i];
3533 		union fotg210_shadow here = *prev;
3534 		__hc32 type = 0;
3535 
3536 		/* skip the iso nodes at list head */
3537 		while (here.ptr) {
3538 			type = Q_NEXT_TYPE(fotg210, *hw_p);
3539 			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3540 				break;
3541 			prev = periodic_next_shadow(fotg210, prev, type);
3542 			hw_p = shadow_next_periodic(fotg210, &here, type);
3543 			here = *prev;
3544 		}
3545 
3546 		/* sorting each branch by period (slow-->fast)
3547 		 * enables sharing interior tree nodes
3548 		 */
3549 		while (here.ptr && qh != here.qh) {
3550 			if (qh->period > here.qh->period)
3551 				break;
3552 			prev = &here.qh->qh_next;
3553 			hw_p = &here.qh->hw->hw_next;
3554 			here = *prev;
3555 		}
3556 		/* link in this qh, unless some earlier pass did that */
3557 		if (qh != here.qh) {
3558 			qh->qh_next = here;
3559 			if (here.qh)
3560 				qh->hw->hw_next = *hw_p;
3561 			wmb();
3562 			prev->qh = qh;
3563 			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3564 		}
3565 	}
3566 	qh->qh_state = QH_STATE_LINKED;
3567 	qh->xacterrs = 0;
3568 
3569 	/* update per-qh bandwidth for usbfs */
3570 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3571 		? ((qh->usecs + qh->c_usecs) / qh->period)
3572 		: (qh->usecs * 8);
3573 
3574 	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3575 
3576 	/* maybe enable periodic schedule processing */
3577 	++fotg210->intr_count;
3578 	enable_periodic(fotg210);
3579 }
3580 
qh_unlink_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3581 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3582 		struct fotg210_qh *qh)
3583 {
3584 	unsigned i;
3585 	unsigned period;
3586 
3587 	/*
3588 	 * If qh is for a low/full-speed device, simply unlinking it
3589 	 * could interfere with an ongoing split transaction.  To unlink
3590 	 * it safely would require setting the QH_INACTIVATE bit and
3591 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3592 	 *
3593 	 * We won't bother with any of this.  Instead, we assume that the
3594 	 * only reason for unlinking an interrupt QH while the current URB
3595 	 * is still active is to dequeue all the URBs (flush the whole
3596 	 * endpoint queue).
3597 	 *
3598 	 * If rebalancing the periodic schedule is ever implemented, this
3599 	 * approach will no longer be valid.
3600 	 */
3601 
3602 	/* high bandwidth, or otherwise part of every microframe */
3603 	period = qh->period;
3604 	if (!period)
3605 		period = 1;
3606 
3607 	for (i = qh->start; i < fotg210->periodic_size; i += period)
3608 		periodic_unlink(fotg210, i, qh);
3609 
3610 	/* update per-qh bandwidth for usbfs */
3611 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3612 		? ((qh->usecs + qh->c_usecs) / qh->period)
3613 		: (qh->usecs * 8);
3614 
3615 	dev_dbg(&qh->dev->dev,
3616 			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3617 			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3618 			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3619 			qh->c_usecs);
3620 
3621 	/* qh->qh_next still "live" to HC */
3622 	qh->qh_state = QH_STATE_UNLINK;
3623 	qh->qh_next.ptr = NULL;
3624 
3625 	if (fotg210->qh_scan_next == qh)
3626 		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3627 				struct fotg210_qh, intr_node);
3628 	list_del(&qh->intr_node);
3629 }
3630 
start_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3631 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3632 		struct fotg210_qh *qh)
3633 {
3634 	/* If the QH isn't linked then there's nothing we can do
3635 	 * unless we were called during a giveback, in which case
3636 	 * qh_completions() has to deal with it.
3637 	 */
3638 	if (qh->qh_state != QH_STATE_LINKED) {
3639 		if (qh->qh_state == QH_STATE_COMPLETING)
3640 			qh->needs_rescan = 1;
3641 		return;
3642 	}
3643 
3644 	qh_unlink_periodic(fotg210, qh);
3645 
3646 	/* Make sure the unlinks are visible before starting the timer */
3647 	wmb();
3648 
3649 	/*
3650 	 * The EHCI spec doesn't say how long it takes the controller to
3651 	 * stop accessing an unlinked interrupt QH.  The timer delay is
3652 	 * 9 uframes; presumably that will be long enough.
3653 	 */
3654 	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3655 
3656 	/* New entries go at the end of the intr_unlink list */
3657 	if (fotg210->intr_unlink)
3658 		fotg210->intr_unlink_last->unlink_next = qh;
3659 	else
3660 		fotg210->intr_unlink = qh;
3661 	fotg210->intr_unlink_last = qh;
3662 
3663 	if (fotg210->intr_unlinking)
3664 		;	/* Avoid recursive calls */
3665 	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3666 		fotg210_handle_intr_unlinks(fotg210);
3667 	else if (fotg210->intr_unlink == qh) {
3668 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3669 				true);
3670 		++fotg210->intr_unlink_cycle;
3671 	}
3672 }
3673 
end_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3674 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3675 {
3676 	struct fotg210_qh_hw *hw = qh->hw;
3677 	int rc;
3678 
3679 	qh->qh_state = QH_STATE_IDLE;
3680 	hw->hw_next = FOTG210_LIST_END(fotg210);
3681 
3682 	qh_completions(fotg210, qh);
3683 
3684 	/* reschedule QH iff another request is queued */
3685 	if (!list_empty(&qh->qtd_list) &&
3686 			fotg210->rh_state == FOTG210_RH_RUNNING) {
3687 		rc = qh_schedule(fotg210, qh);
3688 
3689 		/* An error here likely indicates handshake failure
3690 		 * or no space left in the schedule.  Neither fault
3691 		 * should happen often ...
3692 		 *
3693 		 * FIXME kill the now-dysfunctional queued urbs
3694 		 */
3695 		if (rc != 0)
3696 			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3697 					qh, rc);
3698 	}
3699 
3700 	/* maybe turn off periodic schedule */
3701 	--fotg210->intr_count;
3702 	disable_periodic(fotg210);
3703 }
3704 
check_period(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)3705 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3706 		unsigned uframe, unsigned period, unsigned usecs)
3707 {
3708 	int claimed;
3709 
3710 	/* complete split running into next frame?
3711 	 * given FSTN support, we could sometimes check...
3712 	 */
3713 	if (uframe >= 8)
3714 		return 0;
3715 
3716 	/* convert "usecs we need" to "max already claimed" */
3717 	usecs = fotg210->uframe_periodic_max - usecs;
3718 
3719 	/* we "know" 2 and 4 uframe intervals were rejected; so
3720 	 * for period 0, check _every_ microframe in the schedule.
3721 	 */
3722 	if (unlikely(period == 0)) {
3723 		do {
3724 			for (uframe = 0; uframe < 7; uframe++) {
3725 				claimed = periodic_usecs(fotg210, frame,
3726 						uframe);
3727 				if (claimed > usecs)
3728 					return 0;
3729 			}
3730 		} while ((frame += 1) < fotg210->periodic_size);
3731 
3732 	/* just check the specified uframe, at that period */
3733 	} else {
3734 		do {
3735 			claimed = periodic_usecs(fotg210, frame, uframe);
3736 			if (claimed > usecs)
3737 				return 0;
3738 		} while ((frame += period) < fotg210->periodic_size);
3739 	}
3740 
3741 	/* success! */
3742 	return 1;
3743 }
3744 
check_intr_schedule(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,const struct fotg210_qh * qh,__hc32 * c_maskp)3745 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3746 		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3747 {
3748 	int retval = -ENOSPC;
3749 	u8 mask = 0;
3750 
3751 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3752 		goto done;
3753 
3754 	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3755 		goto done;
3756 	if (!qh->c_usecs) {
3757 		retval = 0;
3758 		*c_maskp = 0;
3759 		goto done;
3760 	}
3761 
3762 	/* Make sure this tt's buffer is also available for CSPLITs.
3763 	 * We pessimize a bit; probably the typical full speed case
3764 	 * doesn't need the second CSPLIT.
3765 	 *
3766 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3767 	 * one smart pass...
3768 	 */
3769 	mask = 0x03 << (uframe + qh->gap_uf);
3770 	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3771 
3772 	mask |= 1 << uframe;
3773 	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3774 		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3775 				qh->period, qh->c_usecs))
3776 			goto done;
3777 		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3778 				qh->period, qh->c_usecs))
3779 			goto done;
3780 		retval = 0;
3781 	}
3782 done:
3783 	return retval;
3784 }
3785 
3786 /* "first fit" scheduling policy used the first time through,
3787  * or when the previous schedule slot can't be re-used.
3788  */
qh_schedule(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3789 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3790 {
3791 	int status;
3792 	unsigned uframe;
3793 	__hc32 c_mask;
3794 	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3795 	struct fotg210_qh_hw *hw = qh->hw;
3796 
3797 	qh_refresh(fotg210, qh);
3798 	hw->hw_next = FOTG210_LIST_END(fotg210);
3799 	frame = qh->start;
3800 
3801 	/* reuse the previous schedule slots, if we can */
3802 	if (frame < qh->period) {
3803 		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3804 		status = check_intr_schedule(fotg210, frame, --uframe,
3805 				qh, &c_mask);
3806 	} else {
3807 		uframe = 0;
3808 		c_mask = 0;
3809 		status = -ENOSPC;
3810 	}
3811 
3812 	/* else scan the schedule to find a group of slots such that all
3813 	 * uframes have enough periodic bandwidth available.
3814 	 */
3815 	if (status) {
3816 		/* "normal" case, uframing flexible except with splits */
3817 		if (qh->period) {
3818 			int i;
3819 
3820 			for (i = qh->period; status && i > 0; --i) {
3821 				frame = ++fotg210->random_frame % qh->period;
3822 				for (uframe = 0; uframe < 8; uframe++) {
3823 					status = check_intr_schedule(fotg210,
3824 							frame, uframe, qh,
3825 							&c_mask);
3826 					if (status == 0)
3827 						break;
3828 				}
3829 			}
3830 
3831 		/* qh->period == 0 means every uframe */
3832 		} else {
3833 			frame = 0;
3834 			status = check_intr_schedule(fotg210, 0, 0, qh,
3835 					&c_mask);
3836 		}
3837 		if (status)
3838 			goto done;
3839 		qh->start = frame;
3840 
3841 		/* reset S-frame and (maybe) C-frame masks */
3842 		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3843 		hw->hw_info2 |= qh->period
3844 			? cpu_to_hc32(fotg210, 1 << uframe)
3845 			: cpu_to_hc32(fotg210, QH_SMASK);
3846 		hw->hw_info2 |= c_mask;
3847 	} else
3848 		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3849 
3850 	/* stuff into the periodic schedule */
3851 	qh_link_periodic(fotg210, qh);
3852 done:
3853 	return status;
3854 }
3855 
intr_submit(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3856 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3857 		struct list_head *qtd_list, gfp_t mem_flags)
3858 {
3859 	unsigned epnum;
3860 	unsigned long flags;
3861 	struct fotg210_qh *qh;
3862 	int status;
3863 	struct list_head empty;
3864 
3865 	/* get endpoint and transfer/schedule data */
3866 	epnum = urb->ep->desc.bEndpointAddress;
3867 
3868 	spin_lock_irqsave(&fotg210->lock, flags);
3869 
3870 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3871 		status = -ESHUTDOWN;
3872 		goto done_not_linked;
3873 	}
3874 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3875 	if (unlikely(status))
3876 		goto done_not_linked;
3877 
3878 	/* get qh and force any scheduling errors */
3879 	INIT_LIST_HEAD(&empty);
3880 	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3881 	if (qh == NULL) {
3882 		status = -ENOMEM;
3883 		goto done;
3884 	}
3885 	if (qh->qh_state == QH_STATE_IDLE) {
3886 		status = qh_schedule(fotg210, qh);
3887 		if (status)
3888 			goto done;
3889 	}
3890 
3891 	/* then queue the urb's tds to the qh */
3892 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3893 	BUG_ON(qh == NULL);
3894 
3895 	/* ... update usbfs periodic stats */
3896 	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3897 
3898 done:
3899 	if (unlikely(status))
3900 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3901 done_not_linked:
3902 	spin_unlock_irqrestore(&fotg210->lock, flags);
3903 	if (status)
3904 		qtd_list_free(fotg210, urb, qtd_list);
3905 
3906 	return status;
3907 }
3908 
scan_intr(struct fotg210_hcd * fotg210)3909 static void scan_intr(struct fotg210_hcd *fotg210)
3910 {
3911 	struct fotg210_qh *qh;
3912 
3913 	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3914 			&fotg210->intr_qh_list, intr_node) {
3915 rescan:
3916 		/* clean any finished work for this qh */
3917 		if (!list_empty(&qh->qtd_list)) {
3918 			int temp;
3919 
3920 			/*
3921 			 * Unlinks could happen here; completion reporting
3922 			 * drops the lock.  That's why fotg210->qh_scan_next
3923 			 * always holds the next qh to scan; if the next qh
3924 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3925 			 * in qh_unlink_periodic().
3926 			 */
3927 			temp = qh_completions(fotg210, qh);
3928 			if (unlikely(qh->needs_rescan ||
3929 					(list_empty(&qh->qtd_list) &&
3930 					qh->qh_state == QH_STATE_LINKED)))
3931 				start_unlink_intr(fotg210, qh);
3932 			else if (temp != 0)
3933 				goto rescan;
3934 		}
3935 	}
3936 }
3937 
3938 /* fotg210_iso_stream ops work with both ITD and SITD */
3939 
iso_stream_alloc(gfp_t mem_flags)3940 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3941 {
3942 	struct fotg210_iso_stream *stream;
3943 
3944 	stream = kzalloc(sizeof(*stream), mem_flags);
3945 	if (likely(stream != NULL)) {
3946 		INIT_LIST_HEAD(&stream->td_list);
3947 		INIT_LIST_HEAD(&stream->free_list);
3948 		stream->next_uframe = -1;
3949 	}
3950 	return stream;
3951 }
3952 
iso_stream_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct usb_device * dev,int pipe,unsigned interval)3953 static void iso_stream_init(struct fotg210_hcd *fotg210,
3954 		struct fotg210_iso_stream *stream, struct usb_device *dev,
3955 		int pipe, unsigned interval)
3956 {
3957 	u32 buf1;
3958 	unsigned epnum, maxp;
3959 	int is_input;
3960 	long bandwidth;
3961 	unsigned multi;
3962 
3963 	/*
3964 	 * this might be a "high bandwidth" highspeed endpoint,
3965 	 * as encoded in the ep descriptor's wMaxPacket field
3966 	 */
3967 	epnum = usb_pipeendpoint(pipe);
3968 	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3969 	maxp = usb_maxpacket(dev, pipe, !is_input);
3970 	if (is_input)
3971 		buf1 = (1 << 11);
3972 	else
3973 		buf1 = 0;
3974 
3975 	maxp = max_packet(maxp);
3976 	multi = hb_mult(maxp);
3977 	buf1 |= maxp;
3978 	maxp *= multi;
3979 
3980 	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3981 	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3982 	stream->buf2 = cpu_to_hc32(fotg210, multi);
3983 
3984 	/* usbfs wants to report the average usecs per frame tied up
3985 	 * when transfers on this endpoint are scheduled ...
3986 	 */
3987 	if (dev->speed == USB_SPEED_FULL) {
3988 		interval <<= 3;
3989 		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3990 				is_input, 1, maxp));
3991 		stream->usecs /= 8;
3992 	} else {
3993 		stream->highspeed = 1;
3994 		stream->usecs = HS_USECS_ISO(maxp);
3995 	}
3996 	bandwidth = stream->usecs * 8;
3997 	bandwidth /= interval;
3998 
3999 	stream->bandwidth = bandwidth;
4000 	stream->udev = dev;
4001 	stream->bEndpointAddress = is_input | epnum;
4002 	stream->interval = interval;
4003 	stream->maxp = maxp;
4004 }
4005 
iso_stream_find(struct fotg210_hcd * fotg210,struct urb * urb)4006 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
4007 		struct urb *urb)
4008 {
4009 	unsigned epnum;
4010 	struct fotg210_iso_stream *stream;
4011 	struct usb_host_endpoint *ep;
4012 	unsigned long flags;
4013 
4014 	epnum = usb_pipeendpoint(urb->pipe);
4015 	if (usb_pipein(urb->pipe))
4016 		ep = urb->dev->ep_in[epnum];
4017 	else
4018 		ep = urb->dev->ep_out[epnum];
4019 
4020 	spin_lock_irqsave(&fotg210->lock, flags);
4021 	stream = ep->hcpriv;
4022 
4023 	if (unlikely(stream == NULL)) {
4024 		stream = iso_stream_alloc(GFP_ATOMIC);
4025 		if (likely(stream != NULL)) {
4026 			ep->hcpriv = stream;
4027 			stream->ep = ep;
4028 			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4029 					urb->interval);
4030 		}
4031 
4032 	/* if dev->ep[epnum] is a QH, hw is set */
4033 	} else if (unlikely(stream->hw != NULL)) {
4034 		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4035 				urb->dev->devpath, epnum,
4036 				usb_pipein(urb->pipe) ? "in" : "out");
4037 		stream = NULL;
4038 	}
4039 
4040 	spin_unlock_irqrestore(&fotg210->lock, flags);
4041 	return stream;
4042 }
4043 
4044 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4045 
iso_sched_alloc(unsigned packets,gfp_t mem_flags)4046 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4047 		gfp_t mem_flags)
4048 {
4049 	struct fotg210_iso_sched *iso_sched;
4050 	int size = sizeof(*iso_sched);
4051 
4052 	size += packets * sizeof(struct fotg210_iso_packet);
4053 	iso_sched = kzalloc(size, mem_flags);
4054 	if (likely(iso_sched != NULL))
4055 		INIT_LIST_HEAD(&iso_sched->td_list);
4056 
4057 	return iso_sched;
4058 }
4059 
itd_sched_init(struct fotg210_hcd * fotg210,struct fotg210_iso_sched * iso_sched,struct fotg210_iso_stream * stream,struct urb * urb)4060 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4061 		struct fotg210_iso_sched *iso_sched,
4062 		struct fotg210_iso_stream *stream, struct urb *urb)
4063 {
4064 	unsigned i;
4065 	dma_addr_t dma = urb->transfer_dma;
4066 
4067 	/* how many uframes are needed for these transfers */
4068 	iso_sched->span = urb->number_of_packets * stream->interval;
4069 
4070 	/* figure out per-uframe itd fields that we'll need later
4071 	 * when we fit new itds into the schedule.
4072 	 */
4073 	for (i = 0; i < urb->number_of_packets; i++) {
4074 		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4075 		unsigned length;
4076 		dma_addr_t buf;
4077 		u32 trans;
4078 
4079 		length = urb->iso_frame_desc[i].length;
4080 		buf = dma + urb->iso_frame_desc[i].offset;
4081 
4082 		trans = FOTG210_ISOC_ACTIVE;
4083 		trans |= buf & 0x0fff;
4084 		if (unlikely(((i + 1) == urb->number_of_packets))
4085 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4086 			trans |= FOTG210_ITD_IOC;
4087 		trans |= length << 16;
4088 		uframe->transaction = cpu_to_hc32(fotg210, trans);
4089 
4090 		/* might need to cross a buffer page within a uframe */
4091 		uframe->bufp = (buf & ~(u64)0x0fff);
4092 		buf += length;
4093 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4094 			uframe->cross = 1;
4095 	}
4096 }
4097 
iso_sched_free(struct fotg210_iso_stream * stream,struct fotg210_iso_sched * iso_sched)4098 static void iso_sched_free(struct fotg210_iso_stream *stream,
4099 		struct fotg210_iso_sched *iso_sched)
4100 {
4101 	if (!iso_sched)
4102 		return;
4103 	/* caller must hold fotg210->lock!*/
4104 	list_splice(&iso_sched->td_list, &stream->free_list);
4105 	kfree(iso_sched);
4106 }
4107 
itd_urb_transaction(struct fotg210_iso_stream * stream,struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4108 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4109 		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4110 {
4111 	struct fotg210_itd *itd;
4112 	dma_addr_t itd_dma;
4113 	int i;
4114 	unsigned num_itds;
4115 	struct fotg210_iso_sched *sched;
4116 	unsigned long flags;
4117 
4118 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4119 	if (unlikely(sched == NULL))
4120 		return -ENOMEM;
4121 
4122 	itd_sched_init(fotg210, sched, stream, urb);
4123 
4124 	if (urb->interval < 8)
4125 		num_itds = 1 + (sched->span + 7) / 8;
4126 	else
4127 		num_itds = urb->number_of_packets;
4128 
4129 	/* allocate/init ITDs */
4130 	spin_lock_irqsave(&fotg210->lock, flags);
4131 	for (i = 0; i < num_itds; i++) {
4132 
4133 		/*
4134 		 * Use iTDs from the free list, but not iTDs that may
4135 		 * still be in use by the hardware.
4136 		 */
4137 		if (likely(!list_empty(&stream->free_list))) {
4138 			itd = list_first_entry(&stream->free_list,
4139 					struct fotg210_itd, itd_list);
4140 			if (itd->frame == fotg210->now_frame)
4141 				goto alloc_itd;
4142 			list_del(&itd->itd_list);
4143 			itd_dma = itd->itd_dma;
4144 		} else {
4145 alloc_itd:
4146 			spin_unlock_irqrestore(&fotg210->lock, flags);
4147 			itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4148 					&itd_dma);
4149 			spin_lock_irqsave(&fotg210->lock, flags);
4150 			if (!itd) {
4151 				iso_sched_free(stream, sched);
4152 				spin_unlock_irqrestore(&fotg210->lock, flags);
4153 				return -ENOMEM;
4154 			}
4155 		}
4156 
4157 		memset(itd, 0, sizeof(*itd));
4158 		itd->itd_dma = itd_dma;
4159 		list_add(&itd->itd_list, &sched->td_list);
4160 	}
4161 	spin_unlock_irqrestore(&fotg210->lock, flags);
4162 
4163 	/* temporarily store schedule info in hcpriv */
4164 	urb->hcpriv = sched;
4165 	urb->error_count = 0;
4166 	return 0;
4167 }
4168 
itd_slot_ok(struct fotg210_hcd * fotg210,u32 mod,u32 uframe,u8 usecs,u32 period)4169 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4170 		u8 usecs, u32 period)
4171 {
4172 	uframe %= period;
4173 	do {
4174 		/* can't commit more than uframe_periodic_max usec */
4175 		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4176 				> (fotg210->uframe_periodic_max - usecs))
4177 			return 0;
4178 
4179 		/* we know urb->interval is 2^N uframes */
4180 		uframe += period;
4181 	} while (uframe < mod);
4182 	return 1;
4183 }
4184 
4185 /* This scheduler plans almost as far into the future as it has actual
4186  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4187  * "as small as possible" to be cache-friendlier.)  That limits the size
4188  * transfers you can stream reliably; avoid more than 64 msec per urb.
4189  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4190  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4191  * and other factors); or more than about 230 msec total (for portability,
4192  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4193  */
4194 
4195 #define SCHEDULE_SLOP 80 /* microframes */
4196 
iso_stream_schedule(struct fotg210_hcd * fotg210,struct urb * urb,struct fotg210_iso_stream * stream)4197 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4198 		struct fotg210_iso_stream *stream)
4199 {
4200 	u32 now, next, start, period, span;
4201 	int status;
4202 	unsigned mod = fotg210->periodic_size << 3;
4203 	struct fotg210_iso_sched *sched = urb->hcpriv;
4204 
4205 	period = urb->interval;
4206 	span = sched->span;
4207 
4208 	if (span > mod - SCHEDULE_SLOP) {
4209 		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4210 		status = -EFBIG;
4211 		goto fail;
4212 	}
4213 
4214 	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4215 
4216 	/* Typical case: reuse current schedule, stream is still active.
4217 	 * Hopefully there are no gaps from the host falling behind
4218 	 * (irq delays etc), but if there are we'll take the next
4219 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4220 	 */
4221 	if (likely(!list_empty(&stream->td_list))) {
4222 		u32 excess;
4223 
4224 		/* For high speed devices, allow scheduling within the
4225 		 * isochronous scheduling threshold.  For full speed devices
4226 		 * and Intel PCI-based controllers, don't (work around for
4227 		 * Intel ICH9 bug).
4228 		 */
4229 		if (!stream->highspeed && fotg210->fs_i_thresh)
4230 			next = now + fotg210->i_thresh;
4231 		else
4232 			next = now;
4233 
4234 		/* Fell behind (by up to twice the slop amount)?
4235 		 * We decide based on the time of the last currently-scheduled
4236 		 * slot, not the time of the next available slot.
4237 		 */
4238 		excess = (stream->next_uframe - period - next) & (mod - 1);
4239 		if (excess >= mod - 2 * SCHEDULE_SLOP)
4240 			start = next + excess - mod + period *
4241 					DIV_ROUND_UP(mod - excess, period);
4242 		else
4243 			start = next + excess + period;
4244 		if (start - now >= mod) {
4245 			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4246 					urb, start - now - period, period,
4247 					mod);
4248 			status = -EFBIG;
4249 			goto fail;
4250 		}
4251 	}
4252 
4253 	/* need to schedule; when's the next (u)frame we could start?
4254 	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4255 	 * isn't free, the slop should handle reasonably slow cpus.  it
4256 	 * can also help high bandwidth if the dma and irq loads don't
4257 	 * jump until after the queue is primed.
4258 	 */
4259 	else {
4260 		int done = 0;
4261 
4262 		start = SCHEDULE_SLOP + (now & ~0x07);
4263 
4264 		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4265 
4266 		/* find a uframe slot with enough bandwidth.
4267 		 * Early uframes are more precious because full-speed
4268 		 * iso IN transfers can't use late uframes,
4269 		 * and therefore they should be allocated last.
4270 		 */
4271 		next = start;
4272 		start += period;
4273 		do {
4274 			start--;
4275 			/* check schedule: enough space? */
4276 			if (itd_slot_ok(fotg210, mod, start,
4277 					stream->usecs, period))
4278 				done = 1;
4279 		} while (start > next && !done);
4280 
4281 		/* no room in the schedule */
4282 		if (!done) {
4283 			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4284 					urb, now, now + mod);
4285 			status = -ENOSPC;
4286 			goto fail;
4287 		}
4288 	}
4289 
4290 	/* Tried to schedule too far into the future? */
4291 	if (unlikely(start - now + span - period >=
4292 			mod - 2 * SCHEDULE_SLOP)) {
4293 		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4294 				urb, start - now, span - period,
4295 				mod - 2 * SCHEDULE_SLOP);
4296 		status = -EFBIG;
4297 		goto fail;
4298 	}
4299 
4300 	stream->next_uframe = start & (mod - 1);
4301 
4302 	/* report high speed start in uframes; full speed, in frames */
4303 	urb->start_frame = stream->next_uframe;
4304 	if (!stream->highspeed)
4305 		urb->start_frame >>= 3;
4306 
4307 	/* Make sure scan_isoc() sees these */
4308 	if (fotg210->isoc_count == 0)
4309 		fotg210->next_frame = now >> 3;
4310 	return 0;
4311 
4312 fail:
4313 	iso_sched_free(stream, sched);
4314 	urb->hcpriv = NULL;
4315 	return status;
4316 }
4317 
itd_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct fotg210_itd * itd)4318 static inline void itd_init(struct fotg210_hcd *fotg210,
4319 		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4320 {
4321 	int i;
4322 
4323 	/* it's been recently zeroed */
4324 	itd->hw_next = FOTG210_LIST_END(fotg210);
4325 	itd->hw_bufp[0] = stream->buf0;
4326 	itd->hw_bufp[1] = stream->buf1;
4327 	itd->hw_bufp[2] = stream->buf2;
4328 
4329 	for (i = 0; i < 8; i++)
4330 		itd->index[i] = -1;
4331 
4332 	/* All other fields are filled when scheduling */
4333 }
4334 
itd_patch(struct fotg210_hcd * fotg210,struct fotg210_itd * itd,struct fotg210_iso_sched * iso_sched,unsigned index,u16 uframe)4335 static inline void itd_patch(struct fotg210_hcd *fotg210,
4336 		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4337 		unsigned index, u16 uframe)
4338 {
4339 	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4340 	unsigned pg = itd->pg;
4341 
4342 	uframe &= 0x07;
4343 	itd->index[uframe] = index;
4344 
4345 	itd->hw_transaction[uframe] = uf->transaction;
4346 	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4347 	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4348 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4349 
4350 	/* iso_frame_desc[].offset must be strictly increasing */
4351 	if (unlikely(uf->cross)) {
4352 		u64 bufp = uf->bufp + 4096;
4353 
4354 		itd->pg = ++pg;
4355 		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4356 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4357 	}
4358 }
4359 
itd_link(struct fotg210_hcd * fotg210,unsigned frame,struct fotg210_itd * itd)4360 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4361 		struct fotg210_itd *itd)
4362 {
4363 	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4364 	__hc32 *hw_p = &fotg210->periodic[frame];
4365 	union fotg210_shadow here = *prev;
4366 	__hc32 type = 0;
4367 
4368 	/* skip any iso nodes which might belong to previous microframes */
4369 	while (here.ptr) {
4370 		type = Q_NEXT_TYPE(fotg210, *hw_p);
4371 		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4372 			break;
4373 		prev = periodic_next_shadow(fotg210, prev, type);
4374 		hw_p = shadow_next_periodic(fotg210, &here, type);
4375 		here = *prev;
4376 	}
4377 
4378 	itd->itd_next = here;
4379 	itd->hw_next = *hw_p;
4380 	prev->itd = itd;
4381 	itd->frame = frame;
4382 	wmb();
4383 	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4384 }
4385 
4386 /* fit urb's itds into the selected schedule slot; activate as needed */
itd_link_urb(struct fotg210_hcd * fotg210,struct urb * urb,unsigned mod,struct fotg210_iso_stream * stream)4387 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4388 		unsigned mod, struct fotg210_iso_stream *stream)
4389 {
4390 	int packet;
4391 	unsigned next_uframe, uframe, frame;
4392 	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4393 	struct fotg210_itd *itd;
4394 
4395 	next_uframe = stream->next_uframe & (mod - 1);
4396 
4397 	if (unlikely(list_empty(&stream->td_list))) {
4398 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4399 				+= stream->bandwidth;
4400 		fotg210_dbg(fotg210,
4401 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4402 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4403 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4404 			urb->interval,
4405 			next_uframe >> 3, next_uframe & 0x7);
4406 	}
4407 
4408 	/* fill iTDs uframe by uframe */
4409 	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4410 		if (itd == NULL) {
4411 			/* ASSERT:  we have all necessary itds */
4412 
4413 			/* ASSERT:  no itds for this endpoint in this uframe */
4414 
4415 			itd = list_entry(iso_sched->td_list.next,
4416 					struct fotg210_itd, itd_list);
4417 			list_move_tail(&itd->itd_list, &stream->td_list);
4418 			itd->stream = stream;
4419 			itd->urb = urb;
4420 			itd_init(fotg210, stream, itd);
4421 		}
4422 
4423 		uframe = next_uframe & 0x07;
4424 		frame = next_uframe >> 3;
4425 
4426 		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4427 
4428 		next_uframe += stream->interval;
4429 		next_uframe &= mod - 1;
4430 		packet++;
4431 
4432 		/* link completed itds into the schedule */
4433 		if (((next_uframe >> 3) != frame)
4434 				|| packet == urb->number_of_packets) {
4435 			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4436 					itd);
4437 			itd = NULL;
4438 		}
4439 	}
4440 	stream->next_uframe = next_uframe;
4441 
4442 	/* don't need that schedule data any more */
4443 	iso_sched_free(stream, iso_sched);
4444 	urb->hcpriv = NULL;
4445 
4446 	++fotg210->isoc_count;
4447 	enable_periodic(fotg210);
4448 }
4449 
4450 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4451 		FOTG210_ISOC_XACTERR)
4452 
4453 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4454  * and hence its completion callback probably added things to the hardware
4455  * schedule.
4456  *
4457  * Note that we carefully avoid recycling this descriptor until after any
4458  * completion callback runs, so that it won't be reused quickly.  That is,
4459  * assuming (a) no more than two urbs per frame on this endpoint, and also
4460  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4461  * corrupts things if you reuse completed descriptors very quickly...
4462  */
itd_complete(struct fotg210_hcd * fotg210,struct fotg210_itd * itd)4463 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4464 {
4465 	struct urb *urb = itd->urb;
4466 	struct usb_iso_packet_descriptor *desc;
4467 	u32 t;
4468 	unsigned uframe;
4469 	int urb_index = -1;
4470 	struct fotg210_iso_stream *stream = itd->stream;
4471 	struct usb_device *dev;
4472 	bool retval = false;
4473 
4474 	/* for each uframe with a packet */
4475 	for (uframe = 0; uframe < 8; uframe++) {
4476 		if (likely(itd->index[uframe] == -1))
4477 			continue;
4478 		urb_index = itd->index[uframe];
4479 		desc = &urb->iso_frame_desc[urb_index];
4480 
4481 		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4482 		itd->hw_transaction[uframe] = 0;
4483 
4484 		/* report transfer status */
4485 		if (unlikely(t & ISO_ERRS)) {
4486 			urb->error_count++;
4487 			if (t & FOTG210_ISOC_BUF_ERR)
4488 				desc->status = usb_pipein(urb->pipe)
4489 					? -ENOSR  /* hc couldn't read */
4490 					: -ECOMM; /* hc couldn't write */
4491 			else if (t & FOTG210_ISOC_BABBLE)
4492 				desc->status = -EOVERFLOW;
4493 			else /* (t & FOTG210_ISOC_XACTERR) */
4494 				desc->status = -EPROTO;
4495 
4496 			/* HC need not update length with this error */
4497 			if (!(t & FOTG210_ISOC_BABBLE)) {
4498 				desc->actual_length = FOTG210_ITD_LENGTH(t);
4499 				urb->actual_length += desc->actual_length;
4500 			}
4501 		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4502 			desc->status = 0;
4503 			desc->actual_length = FOTG210_ITD_LENGTH(t);
4504 			urb->actual_length += desc->actual_length;
4505 		} else {
4506 			/* URB was too late */
4507 			desc->status = -EXDEV;
4508 		}
4509 	}
4510 
4511 	/* handle completion now? */
4512 	if (likely((urb_index + 1) != urb->number_of_packets))
4513 		goto done;
4514 
4515 	/* ASSERT: it's really the last itd for this urb
4516 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4517 	 *	BUG_ON (itd->urb == urb);
4518 	 */
4519 
4520 	/* give urb back to the driver; completion often (re)submits */
4521 	dev = urb->dev;
4522 	fotg210_urb_done(fotg210, urb, 0);
4523 	retval = true;
4524 	urb = NULL;
4525 
4526 	--fotg210->isoc_count;
4527 	disable_periodic(fotg210);
4528 
4529 	if (unlikely(list_is_singular(&stream->td_list))) {
4530 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4531 				-= stream->bandwidth;
4532 		fotg210_dbg(fotg210,
4533 			"deschedule devp %s ep%d%s-iso\n",
4534 			dev->devpath, stream->bEndpointAddress & 0x0f,
4535 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4536 	}
4537 
4538 done:
4539 	itd->urb = NULL;
4540 
4541 	/* Add to the end of the free list for later reuse */
4542 	list_move_tail(&itd->itd_list, &stream->free_list);
4543 
4544 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4545 	if (list_empty(&stream->td_list)) {
4546 		list_splice_tail_init(&stream->free_list,
4547 				&fotg210->cached_itd_list);
4548 		start_free_itds(fotg210);
4549 	}
4550 
4551 	return retval;
4552 }
4553 
itd_submit(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4554 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4555 		gfp_t mem_flags)
4556 {
4557 	int status = -EINVAL;
4558 	unsigned long flags;
4559 	struct fotg210_iso_stream *stream;
4560 
4561 	/* Get iso_stream head */
4562 	stream = iso_stream_find(fotg210, urb);
4563 	if (unlikely(stream == NULL)) {
4564 		fotg210_dbg(fotg210, "can't get iso stream\n");
4565 		return -ENOMEM;
4566 	}
4567 	if (unlikely(urb->interval != stream->interval &&
4568 			fotg210_port_speed(fotg210, 0) ==
4569 			USB_PORT_STAT_HIGH_SPEED)) {
4570 		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4571 				stream->interval, urb->interval);
4572 		goto done;
4573 	}
4574 
4575 #ifdef FOTG210_URB_TRACE
4576 	fotg210_dbg(fotg210,
4577 			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4578 			__func__, urb->dev->devpath, urb,
4579 			usb_pipeendpoint(urb->pipe),
4580 			usb_pipein(urb->pipe) ? "in" : "out",
4581 			urb->transfer_buffer_length,
4582 			urb->number_of_packets, urb->interval,
4583 			stream);
4584 #endif
4585 
4586 	/* allocate ITDs w/o locking anything */
4587 	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4588 	if (unlikely(status < 0)) {
4589 		fotg210_dbg(fotg210, "can't init itds\n");
4590 		goto done;
4591 	}
4592 
4593 	/* schedule ... need to lock */
4594 	spin_lock_irqsave(&fotg210->lock, flags);
4595 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4596 		status = -ESHUTDOWN;
4597 		goto done_not_linked;
4598 	}
4599 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4600 	if (unlikely(status))
4601 		goto done_not_linked;
4602 	status = iso_stream_schedule(fotg210, urb, stream);
4603 	if (likely(status == 0))
4604 		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4605 	else
4606 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4607 done_not_linked:
4608 	spin_unlock_irqrestore(&fotg210->lock, flags);
4609 done:
4610 	return status;
4611 }
4612 
scan_frame_queue(struct fotg210_hcd * fotg210,unsigned frame,unsigned now_frame,bool live)4613 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4614 		unsigned now_frame, bool live)
4615 {
4616 	unsigned uf;
4617 	bool modified;
4618 	union fotg210_shadow q, *q_p;
4619 	__hc32 type, *hw_p;
4620 
4621 	/* scan each element in frame's queue for completions */
4622 	q_p = &fotg210->pshadow[frame];
4623 	hw_p = &fotg210->periodic[frame];
4624 	q.ptr = q_p->ptr;
4625 	type = Q_NEXT_TYPE(fotg210, *hw_p);
4626 	modified = false;
4627 
4628 	while (q.ptr) {
4629 		switch (hc32_to_cpu(fotg210, type)) {
4630 		case Q_TYPE_ITD:
4631 			/* If this ITD is still active, leave it for
4632 			 * later processing ... check the next entry.
4633 			 * No need to check for activity unless the
4634 			 * frame is current.
4635 			 */
4636 			if (frame == now_frame && live) {
4637 				rmb();
4638 				for (uf = 0; uf < 8; uf++) {
4639 					if (q.itd->hw_transaction[uf] &
4640 							ITD_ACTIVE(fotg210))
4641 						break;
4642 				}
4643 				if (uf < 8) {
4644 					q_p = &q.itd->itd_next;
4645 					hw_p = &q.itd->hw_next;
4646 					type = Q_NEXT_TYPE(fotg210,
4647 							q.itd->hw_next);
4648 					q = *q_p;
4649 					break;
4650 				}
4651 			}
4652 
4653 			/* Take finished ITDs out of the schedule
4654 			 * and process them:  recycle, maybe report
4655 			 * URB completion.  HC won't cache the
4656 			 * pointer for much longer, if at all.
4657 			 */
4658 			*q_p = q.itd->itd_next;
4659 			*hw_p = q.itd->hw_next;
4660 			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4661 			wmb();
4662 			modified = itd_complete(fotg210, q.itd);
4663 			q = *q_p;
4664 			break;
4665 		default:
4666 			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4667 					type, frame, q.ptr);
4668 			/* FALL THROUGH */
4669 		case Q_TYPE_QH:
4670 		case Q_TYPE_FSTN:
4671 			/* End of the iTDs and siTDs */
4672 			q.ptr = NULL;
4673 			break;
4674 		}
4675 
4676 		/* assume completion callbacks modify the queue */
4677 		if (unlikely(modified && fotg210->isoc_count > 0))
4678 			return -EINVAL;
4679 	}
4680 	return 0;
4681 }
4682 
scan_isoc(struct fotg210_hcd * fotg210)4683 static void scan_isoc(struct fotg210_hcd *fotg210)
4684 {
4685 	unsigned uf, now_frame, frame, ret;
4686 	unsigned fmask = fotg210->periodic_size - 1;
4687 	bool live;
4688 
4689 	/*
4690 	 * When running, scan from last scan point up to "now"
4691 	 * else clean up by scanning everything that's left.
4692 	 * Touches as few pages as possible:  cache-friendly.
4693 	 */
4694 	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4695 		uf = fotg210_read_frame_index(fotg210);
4696 		now_frame = (uf >> 3) & fmask;
4697 		live = true;
4698 	} else  {
4699 		now_frame = (fotg210->next_frame - 1) & fmask;
4700 		live = false;
4701 	}
4702 	fotg210->now_frame = now_frame;
4703 
4704 	frame = fotg210->next_frame;
4705 	for (;;) {
4706 		ret = 1;
4707 		while (ret != 0)
4708 			ret = scan_frame_queue(fotg210, frame,
4709 					now_frame, live);
4710 
4711 		/* Stop when we have reached the current frame */
4712 		if (frame == now_frame)
4713 			break;
4714 		frame = (frame + 1) & fmask;
4715 	}
4716 	fotg210->next_frame = now_frame;
4717 }
4718 
4719 /* Display / Set uframe_periodic_max
4720  */
show_uframe_periodic_max(struct device * dev,struct device_attribute * attr,char * buf)4721 static ssize_t show_uframe_periodic_max(struct device *dev,
4722 		struct device_attribute *attr, char *buf)
4723 {
4724 	struct fotg210_hcd *fotg210;
4725 	int n;
4726 
4727 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4728 	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4729 	return n;
4730 }
4731 
4732 
store_uframe_periodic_max(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4733 static ssize_t store_uframe_periodic_max(struct device *dev,
4734 		struct device_attribute *attr, const char *buf, size_t count)
4735 {
4736 	struct fotg210_hcd *fotg210;
4737 	unsigned uframe_periodic_max;
4738 	unsigned frame, uframe;
4739 	unsigned short allocated_max;
4740 	unsigned long flags;
4741 	ssize_t ret;
4742 
4743 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4744 	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4745 		return -EINVAL;
4746 
4747 	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4748 		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4749 				uframe_periodic_max);
4750 		return -EINVAL;
4751 	}
4752 
4753 	ret = -EINVAL;
4754 
4755 	/*
4756 	 * lock, so that our checking does not race with possible periodic
4757 	 * bandwidth allocation through submitting new urbs.
4758 	 */
4759 	spin_lock_irqsave(&fotg210->lock, flags);
4760 
4761 	/*
4762 	 * for request to decrease max periodic bandwidth, we have to check
4763 	 * every microframe in the schedule to see whether the decrease is
4764 	 * possible.
4765 	 */
4766 	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4767 		allocated_max = 0;
4768 
4769 		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4770 			for (uframe = 0; uframe < 7; ++uframe)
4771 				allocated_max = max(allocated_max,
4772 						periodic_usecs(fotg210, frame,
4773 						uframe));
4774 
4775 		if (allocated_max > uframe_periodic_max) {
4776 			fotg210_info(fotg210,
4777 					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4778 					allocated_max, uframe_periodic_max);
4779 			goto out_unlock;
4780 		}
4781 	}
4782 
4783 	/* increasing is always ok */
4784 
4785 	fotg210_info(fotg210,
4786 			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4787 			100 * uframe_periodic_max/125, uframe_periodic_max);
4788 
4789 	if (uframe_periodic_max != 100)
4790 		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4791 
4792 	fotg210->uframe_periodic_max = uframe_periodic_max;
4793 	ret = count;
4794 
4795 out_unlock:
4796 	spin_unlock_irqrestore(&fotg210->lock, flags);
4797 	return ret;
4798 }
4799 
4800 static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4801 		   store_uframe_periodic_max);
4802 
create_sysfs_files(struct fotg210_hcd * fotg210)4803 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4804 {
4805 	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4806 	int i = 0;
4807 
4808 	if (i)
4809 		goto out;
4810 
4811 	i = device_create_file(controller, &dev_attr_uframe_periodic_max);
4812 out:
4813 	return i;
4814 }
4815 
remove_sysfs_files(struct fotg210_hcd * fotg210)4816 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4817 {
4818 	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4819 
4820 	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4821 }
4822 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4823  * The firmware seems to think that powering off is a wakeup event!
4824  * This routine turns off remote wakeup and everything else, on all ports.
4825  */
fotg210_turn_off_all_ports(struct fotg210_hcd * fotg210)4826 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4827 {
4828 	u32 __iomem *status_reg = &fotg210->regs->port_status;
4829 
4830 	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4831 }
4832 
4833 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4834  * Must be called with interrupts enabled and the lock not held.
4835  */
fotg210_silence_controller(struct fotg210_hcd * fotg210)4836 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4837 {
4838 	fotg210_halt(fotg210);
4839 
4840 	spin_lock_irq(&fotg210->lock);
4841 	fotg210->rh_state = FOTG210_RH_HALTED;
4842 	fotg210_turn_off_all_ports(fotg210);
4843 	spin_unlock_irq(&fotg210->lock);
4844 }
4845 
4846 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4847  * This forcibly disables dma and IRQs, helping kexec and other cases
4848  * where the next system software may expect clean state.
4849  */
fotg210_shutdown(struct usb_hcd * hcd)4850 static void fotg210_shutdown(struct usb_hcd *hcd)
4851 {
4852 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4853 
4854 	spin_lock_irq(&fotg210->lock);
4855 	fotg210->shutdown = true;
4856 	fotg210->rh_state = FOTG210_RH_STOPPING;
4857 	fotg210->enabled_hrtimer_events = 0;
4858 	spin_unlock_irq(&fotg210->lock);
4859 
4860 	fotg210_silence_controller(fotg210);
4861 
4862 	hrtimer_cancel(&fotg210->hrtimer);
4863 }
4864 
4865 /* fotg210_work is called from some interrupts, timers, and so on.
4866  * it calls driver completion functions, after dropping fotg210->lock.
4867  */
fotg210_work(struct fotg210_hcd * fotg210)4868 static void fotg210_work(struct fotg210_hcd *fotg210)
4869 {
4870 	/* another CPU may drop fotg210->lock during a schedule scan while
4871 	 * it reports urb completions.  this flag guards against bogus
4872 	 * attempts at re-entrant schedule scanning.
4873 	 */
4874 	if (fotg210->scanning) {
4875 		fotg210->need_rescan = true;
4876 		return;
4877 	}
4878 	fotg210->scanning = true;
4879 
4880 rescan:
4881 	fotg210->need_rescan = false;
4882 	if (fotg210->async_count)
4883 		scan_async(fotg210);
4884 	if (fotg210->intr_count > 0)
4885 		scan_intr(fotg210);
4886 	if (fotg210->isoc_count > 0)
4887 		scan_isoc(fotg210);
4888 	if (fotg210->need_rescan)
4889 		goto rescan;
4890 	fotg210->scanning = false;
4891 
4892 	/* the IO watchdog guards against hardware or driver bugs that
4893 	 * misplace IRQs, and should let us run completely without IRQs.
4894 	 * such lossage has been observed on both VT6202 and VT8235.
4895 	 */
4896 	turn_on_io_watchdog(fotg210);
4897 }
4898 
4899 /* Called when the fotg210_hcd module is removed.
4900  */
fotg210_stop(struct usb_hcd * hcd)4901 static void fotg210_stop(struct usb_hcd *hcd)
4902 {
4903 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4904 
4905 	fotg210_dbg(fotg210, "stop\n");
4906 
4907 	/* no more interrupts ... */
4908 
4909 	spin_lock_irq(&fotg210->lock);
4910 	fotg210->enabled_hrtimer_events = 0;
4911 	spin_unlock_irq(&fotg210->lock);
4912 
4913 	fotg210_quiesce(fotg210);
4914 	fotg210_silence_controller(fotg210);
4915 	fotg210_reset(fotg210);
4916 
4917 	hrtimer_cancel(&fotg210->hrtimer);
4918 	remove_sysfs_files(fotg210);
4919 	remove_debug_files(fotg210);
4920 
4921 	/* root hub is shut down separately (first, when possible) */
4922 	spin_lock_irq(&fotg210->lock);
4923 	end_free_itds(fotg210);
4924 	spin_unlock_irq(&fotg210->lock);
4925 	fotg210_mem_cleanup(fotg210);
4926 
4927 #ifdef FOTG210_STATS
4928 	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4929 			fotg210->stats.normal, fotg210->stats.error,
4930 			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4931 	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4932 			fotg210->stats.complete, fotg210->stats.unlink);
4933 #endif
4934 
4935 	dbg_status(fotg210, "fotg210_stop completed",
4936 			fotg210_readl(fotg210, &fotg210->regs->status));
4937 }
4938 
4939 /* one-time init, only for memory state */
hcd_fotg210_init(struct usb_hcd * hcd)4940 static int hcd_fotg210_init(struct usb_hcd *hcd)
4941 {
4942 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4943 	u32 temp;
4944 	int retval;
4945 	u32 hcc_params;
4946 	struct fotg210_qh_hw *hw;
4947 
4948 	spin_lock_init(&fotg210->lock);
4949 
4950 	/*
4951 	 * keep io watchdog by default, those good HCDs could turn off it later
4952 	 */
4953 	fotg210->need_io_watchdog = 1;
4954 
4955 	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4956 	fotg210->hrtimer.function = fotg210_hrtimer_func;
4957 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4958 
4959 	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4960 
4961 	/*
4962 	 * by default set standard 80% (== 100 usec/uframe) max periodic
4963 	 * bandwidth as required by USB 2.0
4964 	 */
4965 	fotg210->uframe_periodic_max = 100;
4966 
4967 	/*
4968 	 * hw default: 1K periodic list heads, one per frame.
4969 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4970 	 */
4971 	fotg210->periodic_size = DEFAULT_I_TDPS;
4972 	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4973 	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4974 
4975 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4976 		/* periodic schedule size can be smaller than default */
4977 		switch (FOTG210_TUNE_FLS) {
4978 		case 0:
4979 			fotg210->periodic_size = 1024;
4980 			break;
4981 		case 1:
4982 			fotg210->periodic_size = 512;
4983 			break;
4984 		case 2:
4985 			fotg210->periodic_size = 256;
4986 			break;
4987 		default:
4988 			BUG();
4989 		}
4990 	}
4991 	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4992 	if (retval < 0)
4993 		return retval;
4994 
4995 	/* controllers may cache some of the periodic schedule ... */
4996 	fotg210->i_thresh = 2;
4997 
4998 	/*
4999 	 * dedicate a qh for the async ring head, since we couldn't unlink
5000 	 * a 'real' qh without stopping the async schedule [4.8].  use it
5001 	 * as the 'reclamation list head' too.
5002 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
5003 	 * from automatically advancing to the next td after short reads.
5004 	 */
5005 	fotg210->async->qh_next.qh = NULL;
5006 	hw = fotg210->async->hw;
5007 	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
5008 	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
5009 	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
5010 	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
5011 	fotg210->async->qh_state = QH_STATE_LINKED;
5012 	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
5013 
5014 	/* clear interrupt enables, set irq latency */
5015 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5016 		log2_irq_thresh = 0;
5017 	temp = 1 << (16 + log2_irq_thresh);
5018 	if (HCC_CANPARK(hcc_params)) {
5019 		/* HW default park == 3, on hardware that supports it (like
5020 		 * NVidia and ALI silicon), maximizes throughput on the async
5021 		 * schedule by avoiding QH fetches between transfers.
5022 		 *
5023 		 * With fast usb storage devices and NForce2, "park" seems to
5024 		 * make problems:  throughput reduction (!), data errors...
5025 		 */
5026 		if (park) {
5027 			park = min_t(unsigned, park, 3);
5028 			temp |= CMD_PARK;
5029 			temp |= park << 8;
5030 		}
5031 		fotg210_dbg(fotg210, "park %d\n", park);
5032 	}
5033 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5034 		/* periodic schedule size can be smaller than default */
5035 		temp &= ~(3 << 2);
5036 		temp |= (FOTG210_TUNE_FLS << 2);
5037 	}
5038 	fotg210->command = temp;
5039 
5040 	/* Accept arbitrarily long scatter-gather lists */
5041 	if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5042 		hcd->self.sg_tablesize = ~0;
5043 	return 0;
5044 }
5045 
5046 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
fotg210_run(struct usb_hcd * hcd)5047 static int fotg210_run(struct usb_hcd *hcd)
5048 {
5049 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5050 	u32 temp;
5051 	u32 hcc_params;
5052 
5053 	hcd->uses_new_polling = 1;
5054 
5055 	/* EHCI spec section 4.1 */
5056 
5057 	fotg210_writel(fotg210, fotg210->periodic_dma,
5058 			&fotg210->regs->frame_list);
5059 	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5060 			&fotg210->regs->async_next);
5061 
5062 	/*
5063 	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5064 	 * be used; it constrains QH/ITD/SITD and QTD locations.
5065 	 * pci_pool consistent memory always uses segment zero.
5066 	 * streaming mappings for I/O buffers, like pci_map_single(),
5067 	 * can return segments above 4GB, if the device allows.
5068 	 *
5069 	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5070 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5071 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5072 	 * host side drivers though.
5073 	 */
5074 	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5075 
5076 	/*
5077 	 * Philips, Intel, and maybe others need CMD_RUN before the
5078 	 * root hub will detect new devices (why?); NEC doesn't
5079 	 */
5080 	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5081 	fotg210->command |= CMD_RUN;
5082 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5083 	dbg_cmd(fotg210, "init", fotg210->command);
5084 
5085 	/*
5086 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5087 	 * are explicitly handed to companion controller(s), so no TT is
5088 	 * involved with the root hub.  (Except where one is integrated,
5089 	 * and there's no companion controller unless maybe for USB OTG.)
5090 	 *
5091 	 * Turning on the CF flag will transfer ownership of all ports
5092 	 * from the companions to the EHCI controller.  If any of the
5093 	 * companions are in the middle of a port reset at the time, it
5094 	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5095 	 * guarantees that no resets are in progress.  After we set CF,
5096 	 * a short delay lets the hardware catch up; new resets shouldn't
5097 	 * be started before the port switching actions could complete.
5098 	 */
5099 	down_write(&ehci_cf_port_reset_rwsem);
5100 	fotg210->rh_state = FOTG210_RH_RUNNING;
5101 	/* unblock posted writes */
5102 	fotg210_readl(fotg210, &fotg210->regs->command);
5103 	usleep_range(5000, 10000);
5104 	up_write(&ehci_cf_port_reset_rwsem);
5105 	fotg210->last_periodic_enable = ktime_get_real();
5106 
5107 	temp = HC_VERSION(fotg210,
5108 			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5109 	fotg210_info(fotg210,
5110 			"USB %x.%x started, EHCI %x.%02x\n",
5111 			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5112 			temp >> 8, temp & 0xff);
5113 
5114 	fotg210_writel(fotg210, INTR_MASK,
5115 			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5116 
5117 	/* GRR this is run-once init(), being done every time the HC starts.
5118 	 * So long as they're part of class devices, we can't do it init()
5119 	 * since the class device isn't created that early.
5120 	 */
5121 	create_debug_files(fotg210);
5122 	create_sysfs_files(fotg210);
5123 
5124 	return 0;
5125 }
5126 
fotg210_setup(struct usb_hcd * hcd)5127 static int fotg210_setup(struct usb_hcd *hcd)
5128 {
5129 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5130 	int retval;
5131 
5132 	fotg210->regs = (void __iomem *)fotg210->caps +
5133 			HC_LENGTH(fotg210,
5134 			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5135 	dbg_hcs_params(fotg210, "reset");
5136 	dbg_hcc_params(fotg210, "reset");
5137 
5138 	/* cache this readonly data; minimize chip reads */
5139 	fotg210->hcs_params = fotg210_readl(fotg210,
5140 			&fotg210->caps->hcs_params);
5141 
5142 	fotg210->sbrn = HCD_USB2;
5143 
5144 	/* data structure init */
5145 	retval = hcd_fotg210_init(hcd);
5146 	if (retval)
5147 		return retval;
5148 
5149 	retval = fotg210_halt(fotg210);
5150 	if (retval)
5151 		return retval;
5152 
5153 	fotg210_reset(fotg210);
5154 
5155 	return 0;
5156 }
5157 
fotg210_irq(struct usb_hcd * hcd)5158 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5159 {
5160 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5161 	u32 status, masked_status, pcd_status = 0, cmd;
5162 	int bh;
5163 
5164 	spin_lock(&fotg210->lock);
5165 
5166 	status = fotg210_readl(fotg210, &fotg210->regs->status);
5167 
5168 	/* e.g. cardbus physical eject */
5169 	if (status == ~(u32) 0) {
5170 		fotg210_dbg(fotg210, "device removed\n");
5171 		goto dead;
5172 	}
5173 
5174 	/*
5175 	 * We don't use STS_FLR, but some controllers don't like it to
5176 	 * remain on, so mask it out along with the other status bits.
5177 	 */
5178 	masked_status = status & (INTR_MASK | STS_FLR);
5179 
5180 	/* Shared IRQ? */
5181 	if (!masked_status ||
5182 			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5183 		spin_unlock(&fotg210->lock);
5184 		return IRQ_NONE;
5185 	}
5186 
5187 	/* clear (just) interrupts */
5188 	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5189 	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5190 	bh = 0;
5191 
5192 	/* unrequested/ignored: Frame List Rollover */
5193 	dbg_status(fotg210, "irq", status);
5194 
5195 	/* INT, ERR, and IAA interrupt rates can be throttled */
5196 
5197 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5198 	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5199 		if (likely((status & STS_ERR) == 0))
5200 			COUNT(fotg210->stats.normal);
5201 		else
5202 			COUNT(fotg210->stats.error);
5203 		bh = 1;
5204 	}
5205 
5206 	/* complete the unlinking of some qh [4.15.2.3] */
5207 	if (status & STS_IAA) {
5208 
5209 		/* Turn off the IAA watchdog */
5210 		fotg210->enabled_hrtimer_events &=
5211 			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5212 
5213 		/*
5214 		 * Mild optimization: Allow another IAAD to reset the
5215 		 * hrtimer, if one occurs before the next expiration.
5216 		 * In theory we could always cancel the hrtimer, but
5217 		 * tests show that about half the time it will be reset
5218 		 * for some other event anyway.
5219 		 */
5220 		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5221 			++fotg210->next_hrtimer_event;
5222 
5223 		/* guard against (alleged) silicon errata */
5224 		if (cmd & CMD_IAAD)
5225 			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5226 		if (fotg210->async_iaa) {
5227 			COUNT(fotg210->stats.iaa);
5228 			end_unlink_async(fotg210);
5229 		} else
5230 			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5231 	}
5232 
5233 	/* remote wakeup [4.3.1] */
5234 	if (status & STS_PCD) {
5235 		int pstatus;
5236 		u32 __iomem *status_reg = &fotg210->regs->port_status;
5237 
5238 		/* kick root hub later */
5239 		pcd_status = status;
5240 
5241 		/* resume root hub? */
5242 		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5243 			usb_hcd_resume_root_hub(hcd);
5244 
5245 		pstatus = fotg210_readl(fotg210, status_reg);
5246 
5247 		if (test_bit(0, &fotg210->suspended_ports) &&
5248 				((pstatus & PORT_RESUME) ||
5249 				!(pstatus & PORT_SUSPEND)) &&
5250 				(pstatus & PORT_PE) &&
5251 				fotg210->reset_done[0] == 0) {
5252 
5253 			/* start 20 msec resume signaling from this port,
5254 			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5255 			 * stop that signaling.  Use 5 ms extra for safety,
5256 			 * like usb_port_resume() does.
5257 			 */
5258 			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5259 			set_bit(0, &fotg210->resuming_ports);
5260 			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5261 			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5262 		}
5263 	}
5264 
5265 	/* PCI errors [4.15.2.4] */
5266 	if (unlikely((status & STS_FATAL) != 0)) {
5267 		fotg210_err(fotg210, "fatal error\n");
5268 		dbg_cmd(fotg210, "fatal", cmd);
5269 		dbg_status(fotg210, "fatal", status);
5270 dead:
5271 		usb_hc_died(hcd);
5272 
5273 		/* Don't let the controller do anything more */
5274 		fotg210->shutdown = true;
5275 		fotg210->rh_state = FOTG210_RH_STOPPING;
5276 		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5277 		fotg210_writel(fotg210, fotg210->command,
5278 				&fotg210->regs->command);
5279 		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5280 		fotg210_handle_controller_death(fotg210);
5281 
5282 		/* Handle completions when the controller stops */
5283 		bh = 0;
5284 	}
5285 
5286 	if (bh)
5287 		fotg210_work(fotg210);
5288 	spin_unlock(&fotg210->lock);
5289 	if (pcd_status)
5290 		usb_hcd_poll_rh_status(hcd);
5291 	return IRQ_HANDLED;
5292 }
5293 
5294 /* non-error returns are a promise to giveback() the urb later
5295  * we drop ownership so next owner (or urb unlink) can get it
5296  *
5297  * urb + dev is in hcd.self.controller.urb_list
5298  * we're queueing TDs onto software and hardware lists
5299  *
5300  * hcd-specific init for hcpriv hasn't been done yet
5301  *
5302  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5303  * to a (possibly active) QH, and the same QH scanning code.
5304  */
fotg210_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)5305 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5306 		gfp_t mem_flags)
5307 {
5308 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5309 	struct list_head qtd_list;
5310 
5311 	INIT_LIST_HEAD(&qtd_list);
5312 
5313 	switch (usb_pipetype(urb->pipe)) {
5314 	case PIPE_CONTROL:
5315 		/* qh_completions() code doesn't handle all the fault cases
5316 		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5317 		 */
5318 		if (urb->transfer_buffer_length > (16 * 1024))
5319 			return -EMSGSIZE;
5320 		/* FALLTHROUGH */
5321 	/* case PIPE_BULK: */
5322 	default:
5323 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5324 			return -ENOMEM;
5325 		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5326 
5327 	case PIPE_INTERRUPT:
5328 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5329 			return -ENOMEM;
5330 		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5331 
5332 	case PIPE_ISOCHRONOUS:
5333 		return itd_submit(fotg210, urb, mem_flags);
5334 	}
5335 }
5336 
5337 /* remove from hardware lists
5338  * completions normally happen asynchronously
5339  */
5340 
fotg210_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)5341 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5342 {
5343 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5344 	struct fotg210_qh *qh;
5345 	unsigned long flags;
5346 	int rc;
5347 
5348 	spin_lock_irqsave(&fotg210->lock, flags);
5349 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5350 	if (rc)
5351 		goto done;
5352 
5353 	switch (usb_pipetype(urb->pipe)) {
5354 	/* case PIPE_CONTROL: */
5355 	/* case PIPE_BULK:*/
5356 	default:
5357 		qh = (struct fotg210_qh *) urb->hcpriv;
5358 		if (!qh)
5359 			break;
5360 		switch (qh->qh_state) {
5361 		case QH_STATE_LINKED:
5362 		case QH_STATE_COMPLETING:
5363 			start_unlink_async(fotg210, qh);
5364 			break;
5365 		case QH_STATE_UNLINK:
5366 		case QH_STATE_UNLINK_WAIT:
5367 			/* already started */
5368 			break;
5369 		case QH_STATE_IDLE:
5370 			/* QH might be waiting for a Clear-TT-Buffer */
5371 			qh_completions(fotg210, qh);
5372 			break;
5373 		}
5374 		break;
5375 
5376 	case PIPE_INTERRUPT:
5377 		qh = (struct fotg210_qh *) urb->hcpriv;
5378 		if (!qh)
5379 			break;
5380 		switch (qh->qh_state) {
5381 		case QH_STATE_LINKED:
5382 		case QH_STATE_COMPLETING:
5383 			start_unlink_intr(fotg210, qh);
5384 			break;
5385 		case QH_STATE_IDLE:
5386 			qh_completions(fotg210, qh);
5387 			break;
5388 		default:
5389 			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5390 					qh, qh->qh_state);
5391 			goto done;
5392 		}
5393 		break;
5394 
5395 	case PIPE_ISOCHRONOUS:
5396 		/* itd... */
5397 
5398 		/* wait till next completion, do it then. */
5399 		/* completion irqs can wait up to 1024 msec, */
5400 		break;
5401 	}
5402 done:
5403 	spin_unlock_irqrestore(&fotg210->lock, flags);
5404 	return rc;
5405 }
5406 
5407 /* bulk qh holds the data toggle */
5408 
fotg210_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5409 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5410 		struct usb_host_endpoint *ep)
5411 {
5412 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5413 	unsigned long flags;
5414 	struct fotg210_qh *qh, *tmp;
5415 
5416 	/* ASSERT:  any requests/urbs are being unlinked */
5417 	/* ASSERT:  nobody can be submitting urbs for this any more */
5418 
5419 rescan:
5420 	spin_lock_irqsave(&fotg210->lock, flags);
5421 	qh = ep->hcpriv;
5422 	if (!qh)
5423 		goto done;
5424 
5425 	/* endpoints can be iso streams.  for now, we don't
5426 	 * accelerate iso completions ... so spin a while.
5427 	 */
5428 	if (qh->hw == NULL) {
5429 		struct fotg210_iso_stream *stream = ep->hcpriv;
5430 
5431 		if (!list_empty(&stream->td_list))
5432 			goto idle_timeout;
5433 
5434 		/* BUG_ON(!list_empty(&stream->free_list)); */
5435 		kfree(stream);
5436 		goto done;
5437 	}
5438 
5439 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5440 		qh->qh_state = QH_STATE_IDLE;
5441 	switch (qh->qh_state) {
5442 	case QH_STATE_LINKED:
5443 	case QH_STATE_COMPLETING:
5444 		for (tmp = fotg210->async->qh_next.qh;
5445 				tmp && tmp != qh;
5446 				tmp = tmp->qh_next.qh)
5447 			continue;
5448 		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5449 		 * may already be unlinked.
5450 		 */
5451 		if (tmp)
5452 			start_unlink_async(fotg210, qh);
5453 		/* FALL THROUGH */
5454 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5455 	case QH_STATE_UNLINK_WAIT:
5456 idle_timeout:
5457 		spin_unlock_irqrestore(&fotg210->lock, flags);
5458 		schedule_timeout_uninterruptible(1);
5459 		goto rescan;
5460 	case QH_STATE_IDLE:		/* fully unlinked */
5461 		if (qh->clearing_tt)
5462 			goto idle_timeout;
5463 		if (list_empty(&qh->qtd_list)) {
5464 			qh_destroy(fotg210, qh);
5465 			break;
5466 		}
5467 		/* else FALL THROUGH */
5468 	default:
5469 		/* caller was supposed to have unlinked any requests;
5470 		 * that's not our job.  just leak this memory.
5471 		 */
5472 		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5473 				qh, ep->desc.bEndpointAddress, qh->qh_state,
5474 				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5475 		break;
5476 	}
5477 done:
5478 	ep->hcpriv = NULL;
5479 	spin_unlock_irqrestore(&fotg210->lock, flags);
5480 }
5481 
fotg210_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5482 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5483 		struct usb_host_endpoint *ep)
5484 {
5485 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5486 	struct fotg210_qh *qh;
5487 	int eptype = usb_endpoint_type(&ep->desc);
5488 	int epnum = usb_endpoint_num(&ep->desc);
5489 	int is_out = usb_endpoint_dir_out(&ep->desc);
5490 	unsigned long flags;
5491 
5492 	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5493 		return;
5494 
5495 	spin_lock_irqsave(&fotg210->lock, flags);
5496 	qh = ep->hcpriv;
5497 
5498 	/* For Bulk and Interrupt endpoints we maintain the toggle state
5499 	 * in the hardware; the toggle bits in udev aren't used at all.
5500 	 * When an endpoint is reset by usb_clear_halt() we must reset
5501 	 * the toggle bit in the QH.
5502 	 */
5503 	if (qh) {
5504 		usb_settoggle(qh->dev, epnum, is_out, 0);
5505 		if (!list_empty(&qh->qtd_list)) {
5506 			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5507 		} else if (qh->qh_state == QH_STATE_LINKED ||
5508 				qh->qh_state == QH_STATE_COMPLETING) {
5509 
5510 			/* The toggle value in the QH can't be updated
5511 			 * while the QH is active.  Unlink it now;
5512 			 * re-linking will call qh_refresh().
5513 			 */
5514 			if (eptype == USB_ENDPOINT_XFER_BULK)
5515 				start_unlink_async(fotg210, qh);
5516 			else
5517 				start_unlink_intr(fotg210, qh);
5518 		}
5519 	}
5520 	spin_unlock_irqrestore(&fotg210->lock, flags);
5521 }
5522 
fotg210_get_frame(struct usb_hcd * hcd)5523 static int fotg210_get_frame(struct usb_hcd *hcd)
5524 {
5525 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5526 
5527 	return (fotg210_read_frame_index(fotg210) >> 3) %
5528 		fotg210->periodic_size;
5529 }
5530 
5531 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5532  * because its registers (and irq) are shared between host/gadget/otg
5533  * functions  and in order to facilitate role switching we cannot
5534  * give the fotg210 driver exclusive access to those.
5535  */
5536 MODULE_DESCRIPTION(DRIVER_DESC);
5537 MODULE_AUTHOR(DRIVER_AUTHOR);
5538 MODULE_LICENSE("GPL");
5539 
5540 static const struct hc_driver fotg210_fotg210_hc_driver = {
5541 	.description		= hcd_name,
5542 	.product_desc		= "Faraday USB2.0 Host Controller",
5543 	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5544 
5545 	/*
5546 	 * generic hardware linkage
5547 	 */
5548 	.irq			= fotg210_irq,
5549 	.flags			= HCD_MEMORY | HCD_USB2,
5550 
5551 	/*
5552 	 * basic lifecycle operations
5553 	 */
5554 	.reset			= hcd_fotg210_init,
5555 	.start			= fotg210_run,
5556 	.stop			= fotg210_stop,
5557 	.shutdown		= fotg210_shutdown,
5558 
5559 	/*
5560 	 * managing i/o requests and associated device resources
5561 	 */
5562 	.urb_enqueue		= fotg210_urb_enqueue,
5563 	.urb_dequeue		= fotg210_urb_dequeue,
5564 	.endpoint_disable	= fotg210_endpoint_disable,
5565 	.endpoint_reset		= fotg210_endpoint_reset,
5566 
5567 	/*
5568 	 * scheduling support
5569 	 */
5570 	.get_frame_number	= fotg210_get_frame,
5571 
5572 	/*
5573 	 * root hub support
5574 	 */
5575 	.hub_status_data	= fotg210_hub_status_data,
5576 	.hub_control		= fotg210_hub_control,
5577 	.bus_suspend		= fotg210_bus_suspend,
5578 	.bus_resume		= fotg210_bus_resume,
5579 
5580 	.relinquish_port	= fotg210_relinquish_port,
5581 	.port_handed_over	= fotg210_port_handed_over,
5582 
5583 	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5584 };
5585 
fotg210_init(struct fotg210_hcd * fotg210)5586 static void fotg210_init(struct fotg210_hcd *fotg210)
5587 {
5588 	u32 value;
5589 
5590 	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5591 			&fotg210->regs->gmir);
5592 
5593 	value = ioread32(&fotg210->regs->otgcsr);
5594 	value &= ~OTGCSR_A_BUS_DROP;
5595 	value |= OTGCSR_A_BUS_REQ;
5596 	iowrite32(value, &fotg210->regs->otgcsr);
5597 }
5598 
5599 /**
5600  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5601  *
5602  * Allocates basic resources for this USB host controller, and
5603  * then invokes the start() method for the HCD associated with it
5604  * through the hotplug entry's driver_data.
5605  */
fotg210_hcd_probe(struct platform_device * pdev)5606 static int fotg210_hcd_probe(struct platform_device *pdev)
5607 {
5608 	struct device *dev = &pdev->dev;
5609 	struct usb_hcd *hcd;
5610 	struct resource *res;
5611 	int irq;
5612 	int retval;
5613 	struct fotg210_hcd *fotg210;
5614 
5615 	if (usb_disabled())
5616 		return -ENODEV;
5617 
5618 	pdev->dev.power.power_state = PMSG_ON;
5619 
5620 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5621 	if (!res) {
5622 		dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5623 				dev_name(dev));
5624 		return -ENODEV;
5625 	}
5626 
5627 	irq = res->start;
5628 
5629 	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5630 			dev_name(dev));
5631 	if (!hcd) {
5632 		dev_err(dev, "failed to create hcd\n");
5633 		retval = -ENOMEM;
5634 		goto fail_create_hcd;
5635 	}
5636 
5637 	hcd->has_tt = 1;
5638 
5639 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5640 	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5641 	if (IS_ERR(hcd->regs)) {
5642 		retval = PTR_ERR(hcd->regs);
5643 		goto failed;
5644 	}
5645 
5646 	hcd->rsrc_start = res->start;
5647 	hcd->rsrc_len = resource_size(res);
5648 
5649 	fotg210 = hcd_to_fotg210(hcd);
5650 
5651 	fotg210->caps = hcd->regs;
5652 
5653 	retval = fotg210_setup(hcd);
5654 	if (retval)
5655 		goto failed;
5656 
5657 	fotg210_init(fotg210);
5658 
5659 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5660 	if (retval) {
5661 		dev_err(dev, "failed to add hcd with err %d\n", retval);
5662 		goto failed;
5663 	}
5664 	device_wakeup_enable(hcd->self.controller);
5665 
5666 	return retval;
5667 
5668 failed:
5669 	usb_put_hcd(hcd);
5670 fail_create_hcd:
5671 	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5672 	return retval;
5673 }
5674 
5675 /**
5676  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5677  * @dev: USB Host Controller being removed
5678  *
5679  */
fotg210_hcd_remove(struct platform_device * pdev)5680 static int fotg210_hcd_remove(struct platform_device *pdev)
5681 {
5682 	struct device *dev = &pdev->dev;
5683 	struct usb_hcd *hcd = dev_get_drvdata(dev);
5684 
5685 	if (!hcd)
5686 		return 0;
5687 
5688 	usb_remove_hcd(hcd);
5689 	usb_put_hcd(hcd);
5690 
5691 	return 0;
5692 }
5693 
5694 static struct platform_driver fotg210_hcd_driver = {
5695 	.driver = {
5696 		.name   = "fotg210-hcd",
5697 	},
5698 	.probe  = fotg210_hcd_probe,
5699 	.remove = fotg210_hcd_remove,
5700 };
5701 
fotg210_hcd_init(void)5702 static int __init fotg210_hcd_init(void)
5703 {
5704 	int retval = 0;
5705 
5706 	if (usb_disabled())
5707 		return -ENODEV;
5708 
5709 	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5710 	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5711 	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5712 			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5713 		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5714 
5715 	pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5716 			hcd_name, sizeof(struct fotg210_qh),
5717 			sizeof(struct fotg210_qtd),
5718 			sizeof(struct fotg210_itd));
5719 
5720 	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5721 	if (!fotg210_debug_root) {
5722 		retval = -ENOENT;
5723 		goto err_debug;
5724 	}
5725 
5726 	retval = platform_driver_register(&fotg210_hcd_driver);
5727 	if (retval < 0)
5728 		goto clean;
5729 	return retval;
5730 
5731 clean:
5732 	debugfs_remove(fotg210_debug_root);
5733 	fotg210_debug_root = NULL;
5734 err_debug:
5735 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5736 	return retval;
5737 }
5738 module_init(fotg210_hcd_init);
5739 
fotg210_hcd_cleanup(void)5740 static void __exit fotg210_hcd_cleanup(void)
5741 {
5742 	platform_driver_unregister(&fotg210_hcd_driver);
5743 	debugfs_remove(fotg210_debug_root);
5744 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5745 }
5746 module_exit(fotg210_hcd_cleanup);
5747