1 /*
2 * linux/drivers/video/pxafb.c
3 *
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 * which in turn is
10 * Based on acornfb.c Copyright (C) Russell King.
11 *
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
14 * more details.
15 *
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
17 *
18 * Please direct your questions and comments on this driver to the following
19 * email address:
20 *
21 * linux-arm-kernel@lists.arm.linux.org.uk
22 *
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
24 *
25 * Copyright (C) 2004, Intel Corporation
26 *
27 * 2003/08/27: <yu.tang@intel.com>
28 * 2004/03/10: <stanley.cai@intel.com>
29 * 2004/10/28: <yan.yin@intel.com>
30 *
31 * Copyright (C) 2006-2008 Marvell International Ltd.
32 * All Rights Reserved
33 */
34
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
43 #include <linux/mm.h>
44 #include <linux/fb.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57 #include <linux/console.h>
58
59 #include <mach/hardware.h>
60 #include <asm/io.h>
61 #include <asm/irq.h>
62 #include <asm/div64.h>
63 #include <mach/bitfield.h>
64 #include <linux/platform_data/video-pxafb.h>
65
66 /*
67 * Complain if VAR is out of range.
68 */
69 #define DEBUG_VAR 1
70
71 #include "pxafb.h"
72
73 /* Bits which should not be set in machine configuration structures */
74 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
75 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
76 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
77
78 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
79 LCCR3_PCD | LCCR3_BPP(0xf))
80
81 static int pxafb_activate_var(struct fb_var_screeninfo *var,
82 struct pxafb_info *);
83 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
84 static void setup_base_frame(struct pxafb_info *fbi,
85 struct fb_var_screeninfo *var, int branch);
86 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
87 unsigned long offset, size_t size);
88
89 static unsigned long video_mem_size = 0;
90
91 static inline unsigned long
lcd_readl(struct pxafb_info * fbi,unsigned int off)92 lcd_readl(struct pxafb_info *fbi, unsigned int off)
93 {
94 return __raw_readl(fbi->mmio_base + off);
95 }
96
97 static inline void
lcd_writel(struct pxafb_info * fbi,unsigned int off,unsigned long val)98 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
99 {
100 __raw_writel(val, fbi->mmio_base + off);
101 }
102
pxafb_schedule_work(struct pxafb_info * fbi,u_int state)103 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
104 {
105 unsigned long flags;
106
107 local_irq_save(flags);
108 /*
109 * We need to handle two requests being made at the same time.
110 * There are two important cases:
111 * 1. When we are changing VT (C_REENABLE) while unblanking
112 * (C_ENABLE) We must perform the unblanking, which will
113 * do our REENABLE for us.
114 * 2. When we are blanking, but immediately unblank before
115 * we have blanked. We do the "REENABLE" thing here as
116 * well, just to be sure.
117 */
118 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
119 state = (u_int) -1;
120 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
121 state = C_REENABLE;
122
123 if (state != (u_int)-1) {
124 fbi->task_state = state;
125 schedule_work(&fbi->task);
126 }
127 local_irq_restore(flags);
128 }
129
chan_to_field(u_int chan,struct fb_bitfield * bf)130 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
131 {
132 chan &= 0xffff;
133 chan >>= 16 - bf->length;
134 return chan << bf->offset;
135 }
136
137 static int
pxafb_setpalettereg(u_int regno,u_int red,u_int green,u_int blue,u_int trans,struct fb_info * info)138 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
139 u_int trans, struct fb_info *info)
140 {
141 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
142 u_int val;
143
144 if (regno >= fbi->palette_size)
145 return 1;
146
147 if (fbi->fb.var.grayscale) {
148 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
149 return 0;
150 }
151
152 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
153 case LCCR4_PAL_FOR_0:
154 val = ((red >> 0) & 0xf800);
155 val |= ((green >> 5) & 0x07e0);
156 val |= ((blue >> 11) & 0x001f);
157 fbi->palette_cpu[regno] = val;
158 break;
159 case LCCR4_PAL_FOR_1:
160 val = ((red << 8) & 0x00f80000);
161 val |= ((green >> 0) & 0x0000fc00);
162 val |= ((blue >> 8) & 0x000000f8);
163 ((u32 *)(fbi->palette_cpu))[regno] = val;
164 break;
165 case LCCR4_PAL_FOR_2:
166 val = ((red << 8) & 0x00fc0000);
167 val |= ((green >> 0) & 0x0000fc00);
168 val |= ((blue >> 8) & 0x000000fc);
169 ((u32 *)(fbi->palette_cpu))[regno] = val;
170 break;
171 case LCCR4_PAL_FOR_3:
172 val = ((red << 8) & 0x00ff0000);
173 val |= ((green >> 0) & 0x0000ff00);
174 val |= ((blue >> 8) & 0x000000ff);
175 ((u32 *)(fbi->palette_cpu))[regno] = val;
176 break;
177 }
178
179 return 0;
180 }
181
182 static int
pxafb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int trans,struct fb_info * info)183 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
184 u_int trans, struct fb_info *info)
185 {
186 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
187 unsigned int val;
188 int ret = 1;
189
190 /*
191 * If inverse mode was selected, invert all the colours
192 * rather than the register number. The register number
193 * is what you poke into the framebuffer to produce the
194 * colour you requested.
195 */
196 if (fbi->cmap_inverse) {
197 red = 0xffff - red;
198 green = 0xffff - green;
199 blue = 0xffff - blue;
200 }
201
202 /*
203 * If greyscale is true, then we convert the RGB value
204 * to greyscale no matter what visual we are using.
205 */
206 if (fbi->fb.var.grayscale)
207 red = green = blue = (19595 * red + 38470 * green +
208 7471 * blue) >> 16;
209
210 switch (fbi->fb.fix.visual) {
211 case FB_VISUAL_TRUECOLOR:
212 /*
213 * 16-bit True Colour. We encode the RGB value
214 * according to the RGB bitfield information.
215 */
216 if (regno < 16) {
217 u32 *pal = fbi->fb.pseudo_palette;
218
219 val = chan_to_field(red, &fbi->fb.var.red);
220 val |= chan_to_field(green, &fbi->fb.var.green);
221 val |= chan_to_field(blue, &fbi->fb.var.blue);
222
223 pal[regno] = val;
224 ret = 0;
225 }
226 break;
227
228 case FB_VISUAL_STATIC_PSEUDOCOLOR:
229 case FB_VISUAL_PSEUDOCOLOR:
230 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
231 break;
232 }
233
234 return ret;
235 }
236
237 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
var_to_depth(struct fb_var_screeninfo * var)238 static inline int var_to_depth(struct fb_var_screeninfo *var)
239 {
240 return var->red.length + var->green.length +
241 var->blue.length + var->transp.length;
242 }
243
244 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
pxafb_var_to_bpp(struct fb_var_screeninfo * var)245 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
246 {
247 int bpp = -EINVAL;
248
249 switch (var->bits_per_pixel) {
250 case 1: bpp = 0; break;
251 case 2: bpp = 1; break;
252 case 4: bpp = 2; break;
253 case 8: bpp = 3; break;
254 case 16: bpp = 4; break;
255 case 24:
256 switch (var_to_depth(var)) {
257 case 18: bpp = 6; break; /* 18-bits/pixel packed */
258 case 19: bpp = 8; break; /* 19-bits/pixel packed */
259 case 24: bpp = 9; break;
260 }
261 break;
262 case 32:
263 switch (var_to_depth(var)) {
264 case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
265 case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
266 case 25: bpp = 10; break;
267 }
268 break;
269 }
270 return bpp;
271 }
272
273 /*
274 * pxafb_var_to_lccr3():
275 * Convert a bits per pixel value to the correct bit pattern for LCCR3
276 *
277 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
278 * implication of the acutal use of transparency bit, which we handle it
279 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
280 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
281 *
282 * Transparency for palette pixel formats is not supported at the moment.
283 */
pxafb_var_to_lccr3(struct fb_var_screeninfo * var)284 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
285 {
286 int bpp = pxafb_var_to_bpp(var);
287 uint32_t lccr3;
288
289 if (bpp < 0)
290 return 0;
291
292 lccr3 = LCCR3_BPP(bpp);
293
294 switch (var_to_depth(var)) {
295 case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
296 case 18: lccr3 |= LCCR3_PDFOR_3; break;
297 case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
298 break;
299 case 19:
300 case 25: lccr3 |= LCCR3_PDFOR_0; break;
301 }
302 return lccr3;
303 }
304
305 #define SET_PIXFMT(v, r, g, b, t) \
306 ({ \
307 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
308 (v)->transp.length = (t) ? (t) : 0; \
309 (v)->blue.length = (b); (v)->blue.offset = 0; \
310 (v)->green.length = (g); (v)->green.offset = (b); \
311 (v)->red.length = (r); (v)->red.offset = (b) + (g); \
312 })
313
314 /* set the RGBT bitfields of fb_var_screeninf according to
315 * var->bits_per_pixel and given depth
316 */
pxafb_set_pixfmt(struct fb_var_screeninfo * var,int depth)317 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
318 {
319 if (depth == 0)
320 depth = var->bits_per_pixel;
321
322 if (var->bits_per_pixel < 16) {
323 /* indexed pixel formats */
324 var->red.offset = 0; var->red.length = 8;
325 var->green.offset = 0; var->green.length = 8;
326 var->blue.offset = 0; var->blue.length = 8;
327 var->transp.offset = 0; var->transp.length = 8;
328 }
329
330 switch (depth) {
331 case 16: var->transp.length ?
332 SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */
333 SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */
334 case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */
335 case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */
336 case 24: var->transp.length ?
337 SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */
338 SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */
339 case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */
340 }
341 }
342
343 #ifdef CONFIG_CPU_FREQ
344 /*
345 * pxafb_display_dma_period()
346 * Calculate the minimum period (in picoseconds) between two DMA
347 * requests for the LCD controller. If we hit this, it means we're
348 * doing nothing but LCD DMA.
349 */
pxafb_display_dma_period(struct fb_var_screeninfo * var)350 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
351 {
352 /*
353 * Period = pixclock * bits_per_byte * bytes_per_transfer
354 * / memory_bits_per_pixel;
355 */
356 return var->pixclock * 8 * 16 / var->bits_per_pixel;
357 }
358 #endif
359
360 /*
361 * Select the smallest mode that allows the desired resolution to be
362 * displayed. If desired parameters can be rounded up.
363 */
pxafb_getmode(struct pxafb_mach_info * mach,struct fb_var_screeninfo * var)364 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
365 struct fb_var_screeninfo *var)
366 {
367 struct pxafb_mode_info *mode = NULL;
368 struct pxafb_mode_info *modelist = mach->modes;
369 unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
370 unsigned int i;
371
372 for (i = 0; i < mach->num_modes; i++) {
373 if (modelist[i].xres >= var->xres &&
374 modelist[i].yres >= var->yres &&
375 modelist[i].xres < best_x &&
376 modelist[i].yres < best_y &&
377 modelist[i].bpp >= var->bits_per_pixel) {
378 best_x = modelist[i].xres;
379 best_y = modelist[i].yres;
380 mode = &modelist[i];
381 }
382 }
383
384 return mode;
385 }
386
pxafb_setmode(struct fb_var_screeninfo * var,struct pxafb_mode_info * mode)387 static void pxafb_setmode(struct fb_var_screeninfo *var,
388 struct pxafb_mode_info *mode)
389 {
390 var->xres = mode->xres;
391 var->yres = mode->yres;
392 var->bits_per_pixel = mode->bpp;
393 var->pixclock = mode->pixclock;
394 var->hsync_len = mode->hsync_len;
395 var->left_margin = mode->left_margin;
396 var->right_margin = mode->right_margin;
397 var->vsync_len = mode->vsync_len;
398 var->upper_margin = mode->upper_margin;
399 var->lower_margin = mode->lower_margin;
400 var->sync = mode->sync;
401 var->grayscale = mode->cmap_greyscale;
402 var->transp.length = mode->transparency;
403
404 /* set the initial RGBA bitfields */
405 pxafb_set_pixfmt(var, mode->depth);
406 }
407
pxafb_adjust_timing(struct pxafb_info * fbi,struct fb_var_screeninfo * var)408 static int pxafb_adjust_timing(struct pxafb_info *fbi,
409 struct fb_var_screeninfo *var)
410 {
411 int line_length;
412
413 var->xres = max_t(int, var->xres, MIN_XRES);
414 var->yres = max_t(int, var->yres, MIN_YRES);
415
416 if (!(fbi->lccr0 & LCCR0_LCDT)) {
417 clamp_val(var->hsync_len, 1, 64);
418 clamp_val(var->vsync_len, 1, 64);
419 clamp_val(var->left_margin, 1, 255);
420 clamp_val(var->right_margin, 1, 255);
421 clamp_val(var->upper_margin, 1, 255);
422 clamp_val(var->lower_margin, 1, 255);
423 }
424
425 /* make sure each line is aligned on word boundary */
426 line_length = var->xres * var->bits_per_pixel / 8;
427 line_length = ALIGN(line_length, 4);
428 var->xres = line_length * 8 / var->bits_per_pixel;
429
430 /* we don't support xpan, force xres_virtual to be equal to xres */
431 var->xres_virtual = var->xres;
432
433 if (var->accel_flags & FB_ACCELF_TEXT)
434 var->yres_virtual = fbi->fb.fix.smem_len / line_length;
435 else
436 var->yres_virtual = max(var->yres_virtual, var->yres);
437
438 /* check for limits */
439 if (var->xres > MAX_XRES || var->yres > MAX_YRES)
440 return -EINVAL;
441
442 if (var->yres > var->yres_virtual)
443 return -EINVAL;
444
445 return 0;
446 }
447
448 /*
449 * pxafb_check_var():
450 * Get the video params out of 'var'. If a value doesn't fit, round it up,
451 * if it's too big, return -EINVAL.
452 *
453 * Round up in the following order: bits_per_pixel, xres,
454 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
455 * bitfields, horizontal timing, vertical timing.
456 */
pxafb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)457 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
458 {
459 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
460 struct pxafb_mach_info *inf = dev_get_platdata(fbi->dev);
461 int err;
462
463 if (inf->fixed_modes) {
464 struct pxafb_mode_info *mode;
465
466 mode = pxafb_getmode(inf, var);
467 if (!mode)
468 return -EINVAL;
469 pxafb_setmode(var, mode);
470 }
471
472 /* do a test conversion to BPP fields to check the color formats */
473 err = pxafb_var_to_bpp(var);
474 if (err < 0)
475 return err;
476
477 pxafb_set_pixfmt(var, var_to_depth(var));
478
479 err = pxafb_adjust_timing(fbi, var);
480 if (err)
481 return err;
482
483 #ifdef CONFIG_CPU_FREQ
484 pr_debug("pxafb: dma period = %d ps\n",
485 pxafb_display_dma_period(var));
486 #endif
487
488 return 0;
489 }
490
491 /*
492 * pxafb_set_par():
493 * Set the user defined part of the display for the specified console
494 */
pxafb_set_par(struct fb_info * info)495 static int pxafb_set_par(struct fb_info *info)
496 {
497 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
498 struct fb_var_screeninfo *var = &info->var;
499
500 if (var->bits_per_pixel >= 16)
501 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
502 else if (!fbi->cmap_static)
503 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
504 else {
505 /*
506 * Some people have weird ideas about wanting static
507 * pseudocolor maps. I suspect their user space
508 * applications are broken.
509 */
510 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
511 }
512
513 fbi->fb.fix.line_length = var->xres_virtual *
514 var->bits_per_pixel / 8;
515 if (var->bits_per_pixel >= 16)
516 fbi->palette_size = 0;
517 else
518 fbi->palette_size = var->bits_per_pixel == 1 ?
519 4 : 1 << var->bits_per_pixel;
520
521 fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
522
523 if (fbi->fb.var.bits_per_pixel >= 16)
524 fb_dealloc_cmap(&fbi->fb.cmap);
525 else
526 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
527
528 pxafb_activate_var(var, fbi);
529
530 return 0;
531 }
532
pxafb_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)533 static int pxafb_pan_display(struct fb_var_screeninfo *var,
534 struct fb_info *info)
535 {
536 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
537 struct fb_var_screeninfo newvar;
538 int dma = DMA_MAX + DMA_BASE;
539
540 if (fbi->state != C_ENABLE)
541 return 0;
542
543 /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
544 * was passed in and copy the rest from the old screeninfo.
545 */
546 memcpy(&newvar, &fbi->fb.var, sizeof(newvar));
547 newvar.xoffset = var->xoffset;
548 newvar.yoffset = var->yoffset;
549 newvar.vmode &= ~FB_VMODE_YWRAP;
550 newvar.vmode |= var->vmode & FB_VMODE_YWRAP;
551
552 setup_base_frame(fbi, &newvar, 1);
553
554 if (fbi->lccr0 & LCCR0_SDS)
555 lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
556
557 lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
558 return 0;
559 }
560
561 /*
562 * pxafb_blank():
563 * Blank the display by setting all palette values to zero. Note, the
564 * 16 bpp mode does not really use the palette, so this will not
565 * blank the display in all modes.
566 */
pxafb_blank(int blank,struct fb_info * info)567 static int pxafb_blank(int blank, struct fb_info *info)
568 {
569 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
570 int i;
571
572 switch (blank) {
573 case FB_BLANK_POWERDOWN:
574 case FB_BLANK_VSYNC_SUSPEND:
575 case FB_BLANK_HSYNC_SUSPEND:
576 case FB_BLANK_NORMAL:
577 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
578 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
579 for (i = 0; i < fbi->palette_size; i++)
580 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
581
582 pxafb_schedule_work(fbi, C_DISABLE);
583 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
584 break;
585
586 case FB_BLANK_UNBLANK:
587 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
588 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
589 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
590 fb_set_cmap(&fbi->fb.cmap, info);
591 pxafb_schedule_work(fbi, C_ENABLE);
592 }
593 return 0;
594 }
595
596 static struct fb_ops pxafb_ops = {
597 .owner = THIS_MODULE,
598 .fb_check_var = pxafb_check_var,
599 .fb_set_par = pxafb_set_par,
600 .fb_pan_display = pxafb_pan_display,
601 .fb_setcolreg = pxafb_setcolreg,
602 .fb_fillrect = cfb_fillrect,
603 .fb_copyarea = cfb_copyarea,
604 .fb_imageblit = cfb_imageblit,
605 .fb_blank = pxafb_blank,
606 };
607
608 #ifdef CONFIG_FB_PXA_OVERLAY
overlay1fb_setup(struct pxafb_layer * ofb)609 static void overlay1fb_setup(struct pxafb_layer *ofb)
610 {
611 int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
612 unsigned long start = ofb->video_mem_phys;
613 setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
614 }
615
616 /* Depending on the enable status of overlay1/2, the DMA should be
617 * updated from FDADRx (when disabled) or FBRx (when enabled).
618 */
overlay1fb_enable(struct pxafb_layer * ofb)619 static void overlay1fb_enable(struct pxafb_layer *ofb)
620 {
621 int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
622 uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
623
624 lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
625 lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
626 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
627 }
628
overlay1fb_disable(struct pxafb_layer * ofb)629 static void overlay1fb_disable(struct pxafb_layer *ofb)
630 {
631 uint32_t lccr5;
632
633 if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN))
634 return;
635
636 lccr5 = lcd_readl(ofb->fbi, LCCR5);
637
638 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
639
640 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
641 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
642 lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
643
644 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
645 pr_warning("%s: timeout disabling overlay1\n", __func__);
646
647 lcd_writel(ofb->fbi, LCCR5, lccr5);
648 }
649
overlay2fb_setup(struct pxafb_layer * ofb)650 static void overlay2fb_setup(struct pxafb_layer *ofb)
651 {
652 int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
653 unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
654
655 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
656 size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
657 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
658 } else {
659 size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
660 switch (pfor) {
661 case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
662 case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
663 case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
664 }
665 start[1] = start[0] + size;
666 start[2] = start[1] + size / div;
667 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
668 setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
669 setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
670 }
671 }
672
overlay2fb_enable(struct pxafb_layer * ofb)673 static void overlay2fb_enable(struct pxafb_layer *ofb)
674 {
675 int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
676 int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
677 uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0);
678 uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
679 uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
680
681 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
682 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
683 else {
684 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
685 lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
686 lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
687 }
688 lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
689 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
690 }
691
overlay2fb_disable(struct pxafb_layer * ofb)692 static void overlay2fb_disable(struct pxafb_layer *ofb)
693 {
694 uint32_t lccr5;
695
696 if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN))
697 return;
698
699 lccr5 = lcd_readl(ofb->fbi, LCCR5);
700
701 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
702
703 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
704 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
705 lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3);
706 lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
707 lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
708
709 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
710 pr_warning("%s: timeout disabling overlay2\n", __func__);
711 }
712
713 static struct pxafb_layer_ops ofb_ops[] = {
714 [0] = {
715 .enable = overlay1fb_enable,
716 .disable = overlay1fb_disable,
717 .setup = overlay1fb_setup,
718 },
719 [1] = {
720 .enable = overlay2fb_enable,
721 .disable = overlay2fb_disable,
722 .setup = overlay2fb_setup,
723 },
724 };
725
overlayfb_open(struct fb_info * info,int user)726 static int overlayfb_open(struct fb_info *info, int user)
727 {
728 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
729
730 /* no support for framebuffer console on overlay */
731 if (user == 0)
732 return -ENODEV;
733
734 if (ofb->usage++ == 0) {
735 /* unblank the base framebuffer */
736 console_lock();
737 fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
738 console_unlock();
739 }
740
741 return 0;
742 }
743
overlayfb_release(struct fb_info * info,int user)744 static int overlayfb_release(struct fb_info *info, int user)
745 {
746 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
747
748 if (ofb->usage == 1) {
749 ofb->ops->disable(ofb);
750 ofb->fb.var.height = -1;
751 ofb->fb.var.width = -1;
752 ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0;
753 ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0;
754
755 ofb->usage--;
756 }
757 return 0;
758 }
759
overlayfb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)760 static int overlayfb_check_var(struct fb_var_screeninfo *var,
761 struct fb_info *info)
762 {
763 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
764 struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
765 int xpos, ypos, pfor, bpp;
766
767 xpos = NONSTD_TO_XPOS(var->nonstd);
768 ypos = NONSTD_TO_YPOS(var->nonstd);
769 pfor = NONSTD_TO_PFOR(var->nonstd);
770
771 bpp = pxafb_var_to_bpp(var);
772 if (bpp < 0)
773 return -EINVAL;
774
775 /* no support for YUV format on overlay1 */
776 if (ofb->id == OVERLAY1 && pfor != 0)
777 return -EINVAL;
778
779 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
780 switch (pfor) {
781 case OVERLAY_FORMAT_RGB:
782 bpp = pxafb_var_to_bpp(var);
783 if (bpp < 0)
784 return -EINVAL;
785
786 pxafb_set_pixfmt(var, var_to_depth(var));
787 break;
788 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
789 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
790 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
791 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
792 default:
793 return -EINVAL;
794 }
795
796 /* each line must start at a 32-bit word boundary */
797 if ((xpos * bpp) % 32)
798 return -EINVAL;
799
800 /* xres must align on 32-bit word boundary */
801 var->xres = roundup(var->xres * bpp, 32) / bpp;
802
803 if ((xpos + var->xres > base_var->xres) ||
804 (ypos + var->yres > base_var->yres))
805 return -EINVAL;
806
807 var->xres_virtual = var->xres;
808 var->yres_virtual = max(var->yres, var->yres_virtual);
809 return 0;
810 }
811
overlayfb_check_video_memory(struct pxafb_layer * ofb)812 static int overlayfb_check_video_memory(struct pxafb_layer *ofb)
813 {
814 struct fb_var_screeninfo *var = &ofb->fb.var;
815 int pfor = NONSTD_TO_PFOR(var->nonstd);
816 int size, bpp = 0;
817
818 switch (pfor) {
819 case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
820 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
821 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
822 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
823 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
824 }
825
826 ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
827
828 size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
829
830 if (ofb->video_mem) {
831 if (ofb->video_mem_size >= size)
832 return 0;
833 }
834 return -EINVAL;
835 }
836
overlayfb_set_par(struct fb_info * info)837 static int overlayfb_set_par(struct fb_info *info)
838 {
839 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
840 struct fb_var_screeninfo *var = &info->var;
841 int xpos, ypos, pfor, bpp, ret;
842
843 ret = overlayfb_check_video_memory(ofb);
844 if (ret)
845 return ret;
846
847 bpp = pxafb_var_to_bpp(var);
848 xpos = NONSTD_TO_XPOS(var->nonstd);
849 ypos = NONSTD_TO_YPOS(var->nonstd);
850 pfor = NONSTD_TO_PFOR(var->nonstd);
851
852 ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
853 OVLxC1_BPP(bpp);
854 ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
855
856 if (ofb->id == OVERLAY2)
857 ofb->control[1] |= OVL2C2_PFOR(pfor);
858
859 ofb->ops->setup(ofb);
860 ofb->ops->enable(ofb);
861 return 0;
862 }
863
864 static struct fb_ops overlay_fb_ops = {
865 .owner = THIS_MODULE,
866 .fb_open = overlayfb_open,
867 .fb_release = overlayfb_release,
868 .fb_check_var = overlayfb_check_var,
869 .fb_set_par = overlayfb_set_par,
870 };
871
init_pxafb_overlay(struct pxafb_info * fbi,struct pxafb_layer * ofb,int id)872 static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb,
873 int id)
874 {
875 sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
876
877 ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
878 ofb->fb.fix.xpanstep = 0;
879 ofb->fb.fix.ypanstep = 1;
880
881 ofb->fb.var.activate = FB_ACTIVATE_NOW;
882 ofb->fb.var.height = -1;
883 ofb->fb.var.width = -1;
884 ofb->fb.var.vmode = FB_VMODE_NONINTERLACED;
885
886 ofb->fb.fbops = &overlay_fb_ops;
887 ofb->fb.flags = FBINFO_FLAG_DEFAULT;
888 ofb->fb.node = -1;
889 ofb->fb.pseudo_palette = NULL;
890
891 ofb->id = id;
892 ofb->ops = &ofb_ops[id];
893 ofb->usage = 0;
894 ofb->fbi = fbi;
895 init_completion(&ofb->branch_done);
896 }
897
pxafb_overlay_supported(void)898 static inline int pxafb_overlay_supported(void)
899 {
900 if (cpu_is_pxa27x() || cpu_is_pxa3xx())
901 return 1;
902
903 return 0;
904 }
905
pxafb_overlay_map_video_memory(struct pxafb_info * pxafb,struct pxafb_layer * ofb)906 static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb,
907 struct pxafb_layer *ofb)
908 {
909 /* We assume that user will use at most video_mem_size for overlay fb,
910 * anyway, it's useless to use 16bpp main plane and 24bpp overlay
911 */
912 ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size),
913 GFP_KERNEL | __GFP_ZERO);
914 if (ofb->video_mem == NULL)
915 return -ENOMEM;
916
917 ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
918 ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size);
919
920 mutex_lock(&ofb->fb.mm_lock);
921 ofb->fb.fix.smem_start = ofb->video_mem_phys;
922 ofb->fb.fix.smem_len = pxafb->video_mem_size;
923 mutex_unlock(&ofb->fb.mm_lock);
924
925 ofb->fb.screen_base = ofb->video_mem;
926
927 return 0;
928 }
929
pxafb_overlay_init(struct pxafb_info * fbi)930 static void pxafb_overlay_init(struct pxafb_info *fbi)
931 {
932 int i, ret;
933
934 if (!pxafb_overlay_supported())
935 return;
936
937 for (i = 0; i < 2; i++) {
938 struct pxafb_layer *ofb = &fbi->overlay[i];
939 init_pxafb_overlay(fbi, ofb, i);
940 ret = register_framebuffer(&ofb->fb);
941 if (ret) {
942 dev_err(fbi->dev, "failed to register overlay %d\n", i);
943 continue;
944 }
945 ret = pxafb_overlay_map_video_memory(fbi, ofb);
946 if (ret) {
947 dev_err(fbi->dev,
948 "failed to map video memory for overlay %d\n",
949 i);
950 unregister_framebuffer(&ofb->fb);
951 continue;
952 }
953 ofb->registered = 1;
954 }
955
956 /* mask all IU/BS/EOF/SOF interrupts */
957 lcd_writel(fbi, LCCR5, ~0);
958
959 pr_info("PXA Overlay driver loaded successfully!\n");
960 }
961
pxafb_overlay_exit(struct pxafb_info * fbi)962 static void pxafb_overlay_exit(struct pxafb_info *fbi)
963 {
964 int i;
965
966 if (!pxafb_overlay_supported())
967 return;
968
969 for (i = 0; i < 2; i++) {
970 struct pxafb_layer *ofb = &fbi->overlay[i];
971 if (ofb->registered) {
972 if (ofb->video_mem)
973 free_pages_exact(ofb->video_mem,
974 ofb->video_mem_size);
975 unregister_framebuffer(&ofb->fb);
976 }
977 }
978 }
979 #else
pxafb_overlay_init(struct pxafb_info * fbi)980 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
pxafb_overlay_exit(struct pxafb_info * fbi)981 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
982 #endif /* CONFIG_FB_PXA_OVERLAY */
983
984 /*
985 * Calculate the PCD value from the clock rate (in picoseconds).
986 * We take account of the PPCR clock setting.
987 * From PXA Developer's Manual:
988 *
989 * PixelClock = LCLK
990 * -------------
991 * 2 ( PCD + 1 )
992 *
993 * PCD = LCLK
994 * ------------- - 1
995 * 2(PixelClock)
996 *
997 * Where:
998 * LCLK = LCD/Memory Clock
999 * PCD = LCCR3[7:0]
1000 *
1001 * PixelClock here is in Hz while the pixclock argument given is the
1002 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1003 *
1004 * The function get_lclk_frequency_10khz returns LCLK in units of
1005 * 10khz. Calling the result of this function lclk gives us the
1006 * following
1007 *
1008 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1009 * -------------------------------------- - 1
1010 * 2
1011 *
1012 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1013 */
get_pcd(struct pxafb_info * fbi,unsigned int pixclock)1014 static inline unsigned int get_pcd(struct pxafb_info *fbi,
1015 unsigned int pixclock)
1016 {
1017 unsigned long long pcd;
1018
1019 /* FIXME: Need to take into account Double Pixel Clock mode
1020 * (DPC) bit? or perhaps set it based on the various clock
1021 * speeds */
1022 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
1023 pcd *= pixclock;
1024 do_div(pcd, 100000000 * 2);
1025 /* no need for this, since we should subtract 1 anyway. they cancel */
1026 /* pcd += 1; */ /* make up for integer math truncations */
1027 return (unsigned int)pcd;
1028 }
1029
1030 /*
1031 * Some touchscreens need hsync information from the video driver to
1032 * function correctly. We export it here. Note that 'hsync_time' and
1033 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1034 * of the hsync period in seconds.
1035 */
set_hsync_time(struct pxafb_info * fbi,unsigned int pcd)1036 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
1037 {
1038 unsigned long htime;
1039
1040 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
1041 fbi->hsync_time = 0;
1042 return;
1043 }
1044
1045 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
1046
1047 fbi->hsync_time = htime;
1048 }
1049
pxafb_get_hsync_time(struct device * dev)1050 unsigned long pxafb_get_hsync_time(struct device *dev)
1051 {
1052 struct pxafb_info *fbi = dev_get_drvdata(dev);
1053
1054 /* If display is blanked/suspended, hsync isn't active */
1055 if (!fbi || (fbi->state != C_ENABLE))
1056 return 0;
1057
1058 return fbi->hsync_time;
1059 }
1060 EXPORT_SYMBOL(pxafb_get_hsync_time);
1061
setup_frame_dma(struct pxafb_info * fbi,int dma,int pal,unsigned long start,size_t size)1062 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
1063 unsigned long start, size_t size)
1064 {
1065 struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1066 unsigned int dma_desc_off, pal_desc_off;
1067
1068 if (dma < 0 || dma >= DMA_MAX * 2)
1069 return -EINVAL;
1070
1071 dma_desc = &fbi->dma_buff->dma_desc[dma];
1072 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1073
1074 dma_desc->fsadr = start;
1075 dma_desc->fidr = 0;
1076 dma_desc->ldcmd = size;
1077
1078 if (pal < 0 || pal >= PAL_MAX * 2) {
1079 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1080 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1081 } else {
1082 pal_desc = &fbi->dma_buff->pal_desc[pal];
1083 pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1084
1085 pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1086 pal_desc->fidr = 0;
1087
1088 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1089 pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1090 else
1091 pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1092
1093 pal_desc->ldcmd |= LDCMD_PAL;
1094
1095 /* flip back and forth between palette and frame buffer */
1096 pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1097 dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1098 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1099 }
1100
1101 return 0;
1102 }
1103
setup_base_frame(struct pxafb_info * fbi,struct fb_var_screeninfo * var,int branch)1104 static void setup_base_frame(struct pxafb_info *fbi,
1105 struct fb_var_screeninfo *var,
1106 int branch)
1107 {
1108 struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1109 int nbytes, dma, pal, bpp = var->bits_per_pixel;
1110 unsigned long offset;
1111
1112 dma = DMA_BASE + (branch ? DMA_MAX : 0);
1113 pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1114
1115 nbytes = fix->line_length * var->yres;
1116 offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1117
1118 if (fbi->lccr0 & LCCR0_SDS) {
1119 nbytes = nbytes / 2;
1120 setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1121 }
1122
1123 setup_frame_dma(fbi, dma, pal, offset, nbytes);
1124 }
1125
1126 #ifdef CONFIG_FB_PXA_SMARTPANEL
setup_smart_dma(struct pxafb_info * fbi)1127 static int setup_smart_dma(struct pxafb_info *fbi)
1128 {
1129 struct pxafb_dma_descriptor *dma_desc;
1130 unsigned long dma_desc_off, cmd_buff_off;
1131
1132 dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1133 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1134 cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1135
1136 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1137 dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1138 dma_desc->fidr = 0;
1139 dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1140
1141 fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1142 return 0;
1143 }
1144
pxafb_smart_flush(struct fb_info * info)1145 int pxafb_smart_flush(struct fb_info *info)
1146 {
1147 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1148 uint32_t prsr;
1149 int ret = 0;
1150
1151 /* disable controller until all registers are set up */
1152 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1153
1154 /* 1. make it an even number of commands to align on 32-bit boundary
1155 * 2. add the interrupt command to the end of the chain so we can
1156 * keep track of the end of the transfer
1157 */
1158
1159 while (fbi->n_smart_cmds & 1)
1160 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1161
1162 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1163 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1164 setup_smart_dma(fbi);
1165
1166 /* continue to execute next command */
1167 prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1168 lcd_writel(fbi, PRSR, prsr);
1169
1170 /* stop the processor in case it executed "wait for sync" cmd */
1171 lcd_writel(fbi, CMDCR, 0x0001);
1172
1173 /* don't send interrupts for fifo underruns on channel 6 */
1174 lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1175
1176 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1177 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1178 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1179 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1180 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1181 lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1182
1183 /* begin sending */
1184 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1185
1186 if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1187 pr_warning("%s: timeout waiting for command done\n",
1188 __func__);
1189 ret = -ETIMEDOUT;
1190 }
1191
1192 /* quick disable */
1193 prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1194 lcd_writel(fbi, PRSR, prsr);
1195 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1196 lcd_writel(fbi, FDADR6, 0);
1197 fbi->n_smart_cmds = 0;
1198 return ret;
1199 }
1200
pxafb_smart_queue(struct fb_info * info,uint16_t * cmds,int n_cmds)1201 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1202 {
1203 int i;
1204 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1205
1206 for (i = 0; i < n_cmds; i++, cmds++) {
1207 /* if it is a software delay, flush and delay */
1208 if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1209 pxafb_smart_flush(info);
1210 mdelay(*cmds & 0xff);
1211 continue;
1212 }
1213
1214 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1215 if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1216 pxafb_smart_flush(info);
1217
1218 fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1219 }
1220
1221 return 0;
1222 }
1223
__smart_timing(unsigned time_ns,unsigned long lcd_clk)1224 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1225 {
1226 unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1227 return (t == 0) ? 1 : t;
1228 }
1229
setup_smart_timing(struct pxafb_info * fbi,struct fb_var_screeninfo * var)1230 static void setup_smart_timing(struct pxafb_info *fbi,
1231 struct fb_var_screeninfo *var)
1232 {
1233 struct pxafb_mach_info *inf = dev_get_platdata(fbi->dev);
1234 struct pxafb_mode_info *mode = &inf->modes[0];
1235 unsigned long lclk = clk_get_rate(fbi->clk);
1236 unsigned t1, t2, t3, t4;
1237
1238 t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1239 t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1240 t3 = mode->op_hold_time;
1241 t4 = mode->cmd_inh_time;
1242
1243 fbi->reg_lccr1 =
1244 LCCR1_DisWdth(var->xres) |
1245 LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1246 LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1247 LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1248
1249 fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1250 fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1251 fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1252 fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1253
1254 /* FIXME: make this configurable */
1255 fbi->reg_cmdcr = 1;
1256 }
1257
pxafb_smart_thread(void * arg)1258 static int pxafb_smart_thread(void *arg)
1259 {
1260 struct pxafb_info *fbi = arg;
1261 struct pxafb_mach_info *inf = dev_get_platdata(fbi->dev);
1262
1263 if (!inf->smart_update) {
1264 pr_err("%s: not properly initialized, thread terminated\n",
1265 __func__);
1266 return -EINVAL;
1267 }
1268 inf = dev_get_platdata(fbi->dev);
1269
1270 pr_debug("%s(): task starting\n", __func__);
1271
1272 set_freezable();
1273 while (!kthread_should_stop()) {
1274
1275 if (try_to_freeze())
1276 continue;
1277
1278 mutex_lock(&fbi->ctrlr_lock);
1279
1280 if (fbi->state == C_ENABLE) {
1281 inf->smart_update(&fbi->fb);
1282 complete(&fbi->refresh_done);
1283 }
1284
1285 mutex_unlock(&fbi->ctrlr_lock);
1286
1287 set_current_state(TASK_INTERRUPTIBLE);
1288 schedule_timeout(msecs_to_jiffies(30));
1289 }
1290
1291 pr_debug("%s(): task ending\n", __func__);
1292 return 0;
1293 }
1294
pxafb_smart_init(struct pxafb_info * fbi)1295 static int pxafb_smart_init(struct pxafb_info *fbi)
1296 {
1297 if (!(fbi->lccr0 & LCCR0_LCDT))
1298 return 0;
1299
1300 fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1301 fbi->n_smart_cmds = 0;
1302
1303 init_completion(&fbi->command_done);
1304 init_completion(&fbi->refresh_done);
1305
1306 fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1307 "lcd_refresh");
1308 if (IS_ERR(fbi->smart_thread)) {
1309 pr_err("%s: unable to create kernel thread\n", __func__);
1310 return PTR_ERR(fbi->smart_thread);
1311 }
1312
1313 return 0;
1314 }
1315 #else
pxafb_smart_init(struct pxafb_info * fbi)1316 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1317 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1318
setup_parallel_timing(struct pxafb_info * fbi,struct fb_var_screeninfo * var)1319 static void setup_parallel_timing(struct pxafb_info *fbi,
1320 struct fb_var_screeninfo *var)
1321 {
1322 unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1323
1324 fbi->reg_lccr1 =
1325 LCCR1_DisWdth(var->xres) +
1326 LCCR1_HorSnchWdth(var->hsync_len) +
1327 LCCR1_BegLnDel(var->left_margin) +
1328 LCCR1_EndLnDel(var->right_margin);
1329
1330 /*
1331 * If we have a dual scan LCD, we need to halve
1332 * the YRES parameter.
1333 */
1334 lines_per_panel = var->yres;
1335 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1336 lines_per_panel /= 2;
1337
1338 fbi->reg_lccr2 =
1339 LCCR2_DisHght(lines_per_panel) +
1340 LCCR2_VrtSnchWdth(var->vsync_len) +
1341 LCCR2_BegFrmDel(var->upper_margin) +
1342 LCCR2_EndFrmDel(var->lower_margin);
1343
1344 fbi->reg_lccr3 = fbi->lccr3 |
1345 (var->sync & FB_SYNC_HOR_HIGH_ACT ?
1346 LCCR3_HorSnchH : LCCR3_HorSnchL) |
1347 (var->sync & FB_SYNC_VERT_HIGH_ACT ?
1348 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
1349
1350 if (pcd) {
1351 fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1352 set_hsync_time(fbi, pcd);
1353 }
1354 }
1355
1356 /*
1357 * pxafb_activate_var():
1358 * Configures LCD Controller based on entries in var parameter.
1359 * Settings are only written to the controller if changes were made.
1360 */
pxafb_activate_var(struct fb_var_screeninfo * var,struct pxafb_info * fbi)1361 static int pxafb_activate_var(struct fb_var_screeninfo *var,
1362 struct pxafb_info *fbi)
1363 {
1364 u_long flags;
1365
1366 /* Update shadow copy atomically */
1367 local_irq_save(flags);
1368
1369 #ifdef CONFIG_FB_PXA_SMARTPANEL
1370 if (fbi->lccr0 & LCCR0_LCDT)
1371 setup_smart_timing(fbi, var);
1372 else
1373 #endif
1374 setup_parallel_timing(fbi, var);
1375
1376 setup_base_frame(fbi, var, 0);
1377
1378 fbi->reg_lccr0 = fbi->lccr0 |
1379 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1380 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
1381
1382 fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1383
1384 fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1385 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1386 local_irq_restore(flags);
1387
1388 /*
1389 * Only update the registers if the controller is enabled
1390 * and something has changed.
1391 */
1392 if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1393 (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1394 (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1395 (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1396 (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1397 (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1398 ((fbi->lccr0 & LCCR0_SDS) &&
1399 (lcd_readl(fbi, FDADR1) != fbi->fdadr[1])))
1400 pxafb_schedule_work(fbi, C_REENABLE);
1401
1402 return 0;
1403 }
1404
1405 /*
1406 * NOTE! The following functions are purely helpers for set_ctrlr_state.
1407 * Do not call them directly; set_ctrlr_state does the correct serialisation
1408 * to ensure that things happen in the right way 100% of time time.
1409 * -- rmk
1410 */
__pxafb_backlight_power(struct pxafb_info * fbi,int on)1411 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1412 {
1413 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1414
1415 if (fbi->backlight_power)
1416 fbi->backlight_power(on);
1417 }
1418
__pxafb_lcd_power(struct pxafb_info * fbi,int on)1419 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1420 {
1421 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1422
1423 if (fbi->lcd_power)
1424 fbi->lcd_power(on, &fbi->fb.var);
1425 }
1426
pxafb_enable_controller(struct pxafb_info * fbi)1427 static void pxafb_enable_controller(struct pxafb_info *fbi)
1428 {
1429 pr_debug("pxafb: Enabling LCD controller\n");
1430 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1431 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1432 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1433 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1434 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1435 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1436
1437 /* enable LCD controller clock */
1438 clk_prepare_enable(fbi->clk);
1439
1440 if (fbi->lccr0 & LCCR0_LCDT)
1441 return;
1442
1443 /* Sequence from 11.7.10 */
1444 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1445 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1446 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1447 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1448 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1449
1450 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1451 if (fbi->lccr0 & LCCR0_SDS)
1452 lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1453 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1454 }
1455
pxafb_disable_controller(struct pxafb_info * fbi)1456 static void pxafb_disable_controller(struct pxafb_info *fbi)
1457 {
1458 uint32_t lccr0;
1459
1460 #ifdef CONFIG_FB_PXA_SMARTPANEL
1461 if (fbi->lccr0 & LCCR0_LCDT) {
1462 wait_for_completion_timeout(&fbi->refresh_done,
1463 msecs_to_jiffies(200));
1464 return;
1465 }
1466 #endif
1467
1468 /* Clear LCD Status Register */
1469 lcd_writel(fbi, LCSR, 0xffffffff);
1470
1471 lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1472 lcd_writel(fbi, LCCR0, lccr0);
1473 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1474
1475 wait_for_completion_timeout(&fbi->disable_done, msecs_to_jiffies(200));
1476
1477 /* disable LCD controller clock */
1478 clk_disable_unprepare(fbi->clk);
1479 }
1480
1481 /*
1482 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1483 */
pxafb_handle_irq(int irq,void * dev_id)1484 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1485 {
1486 struct pxafb_info *fbi = dev_id;
1487 unsigned int lccr0, lcsr;
1488
1489 lcsr = lcd_readl(fbi, LCSR);
1490 if (lcsr & LCSR_LDD) {
1491 lccr0 = lcd_readl(fbi, LCCR0);
1492 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1493 complete(&fbi->disable_done);
1494 }
1495
1496 #ifdef CONFIG_FB_PXA_SMARTPANEL
1497 if (lcsr & LCSR_CMD_INT)
1498 complete(&fbi->command_done);
1499 #endif
1500 lcd_writel(fbi, LCSR, lcsr);
1501
1502 #ifdef CONFIG_FB_PXA_OVERLAY
1503 {
1504 unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
1505 if (lcsr1 & LCSR1_BS(1))
1506 complete(&fbi->overlay[0].branch_done);
1507
1508 if (lcsr1 & LCSR1_BS(2))
1509 complete(&fbi->overlay[1].branch_done);
1510
1511 lcd_writel(fbi, LCSR1, lcsr1);
1512 }
1513 #endif
1514 return IRQ_HANDLED;
1515 }
1516
1517 /*
1518 * This function must be called from task context only, since it will
1519 * sleep when disabling the LCD controller, or if we get two contending
1520 * processes trying to alter state.
1521 */
set_ctrlr_state(struct pxafb_info * fbi,u_int state)1522 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1523 {
1524 u_int old_state;
1525
1526 mutex_lock(&fbi->ctrlr_lock);
1527
1528 old_state = fbi->state;
1529
1530 /*
1531 * Hack around fbcon initialisation.
1532 */
1533 if (old_state == C_STARTUP && state == C_REENABLE)
1534 state = C_ENABLE;
1535
1536 switch (state) {
1537 case C_DISABLE_CLKCHANGE:
1538 /*
1539 * Disable controller for clock change. If the
1540 * controller is already disabled, then do nothing.
1541 */
1542 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1543 fbi->state = state;
1544 /* TODO __pxafb_lcd_power(fbi, 0); */
1545 pxafb_disable_controller(fbi);
1546 }
1547 break;
1548
1549 case C_DISABLE_PM:
1550 case C_DISABLE:
1551 /*
1552 * Disable controller
1553 */
1554 if (old_state != C_DISABLE) {
1555 fbi->state = state;
1556 __pxafb_backlight_power(fbi, 0);
1557 __pxafb_lcd_power(fbi, 0);
1558 if (old_state != C_DISABLE_CLKCHANGE)
1559 pxafb_disable_controller(fbi);
1560 }
1561 break;
1562
1563 case C_ENABLE_CLKCHANGE:
1564 /*
1565 * Enable the controller after clock change. Only
1566 * do this if we were disabled for the clock change.
1567 */
1568 if (old_state == C_DISABLE_CLKCHANGE) {
1569 fbi->state = C_ENABLE;
1570 pxafb_enable_controller(fbi);
1571 /* TODO __pxafb_lcd_power(fbi, 1); */
1572 }
1573 break;
1574
1575 case C_REENABLE:
1576 /*
1577 * Re-enable the controller only if it was already
1578 * enabled. This is so we reprogram the control
1579 * registers.
1580 */
1581 if (old_state == C_ENABLE) {
1582 __pxafb_lcd_power(fbi, 0);
1583 pxafb_disable_controller(fbi);
1584 pxafb_enable_controller(fbi);
1585 __pxafb_lcd_power(fbi, 1);
1586 }
1587 break;
1588
1589 case C_ENABLE_PM:
1590 /*
1591 * Re-enable the controller after PM. This is not
1592 * perfect - think about the case where we were doing
1593 * a clock change, and we suspended half-way through.
1594 */
1595 if (old_state != C_DISABLE_PM)
1596 break;
1597 /* fall through */
1598
1599 case C_ENABLE:
1600 /*
1601 * Power up the LCD screen, enable controller, and
1602 * turn on the backlight.
1603 */
1604 if (old_state != C_ENABLE) {
1605 fbi->state = C_ENABLE;
1606 pxafb_enable_controller(fbi);
1607 __pxafb_lcd_power(fbi, 1);
1608 __pxafb_backlight_power(fbi, 1);
1609 }
1610 break;
1611 }
1612 mutex_unlock(&fbi->ctrlr_lock);
1613 }
1614
1615 /*
1616 * Our LCD controller task (which is called when we blank or unblank)
1617 * via keventd.
1618 */
pxafb_task(struct work_struct * work)1619 static void pxafb_task(struct work_struct *work)
1620 {
1621 struct pxafb_info *fbi =
1622 container_of(work, struct pxafb_info, task);
1623 u_int state = xchg(&fbi->task_state, -1);
1624
1625 set_ctrlr_state(fbi, state);
1626 }
1627
1628 #ifdef CONFIG_CPU_FREQ
1629 /*
1630 * CPU clock speed change handler. We need to adjust the LCD timing
1631 * parameters when the CPU clock is adjusted by the power management
1632 * subsystem.
1633 *
1634 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1635 */
1636 static int
pxafb_freq_transition(struct notifier_block * nb,unsigned long val,void * data)1637 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1638 {
1639 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1640 /* TODO struct cpufreq_freqs *f = data; */
1641 u_int pcd;
1642
1643 switch (val) {
1644 case CPUFREQ_PRECHANGE:
1645 #ifdef CONFIG_FB_PXA_OVERLAY
1646 if (!(fbi->overlay[0].usage || fbi->overlay[1].usage))
1647 #endif
1648 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1649 break;
1650
1651 case CPUFREQ_POSTCHANGE:
1652 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1653 set_hsync_time(fbi, pcd);
1654 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1655 LCCR3_PixClkDiv(pcd);
1656 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1657 break;
1658 }
1659 return 0;
1660 }
1661
1662 static int
pxafb_freq_policy(struct notifier_block * nb,unsigned long val,void * data)1663 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1664 {
1665 struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1666 struct fb_var_screeninfo *var = &fbi->fb.var;
1667 struct cpufreq_policy *policy = data;
1668
1669 switch (val) {
1670 case CPUFREQ_ADJUST:
1671 pr_debug("min dma period: %d ps, "
1672 "new clock %d kHz\n", pxafb_display_dma_period(var),
1673 policy->max);
1674 /* TODO: fill in min/max values */
1675 break;
1676 }
1677 return 0;
1678 }
1679 #endif
1680
1681 #ifdef CONFIG_PM
1682 /*
1683 * Power management hooks. Note that we won't be called from IRQ context,
1684 * unlike the blank functions above, so we may sleep.
1685 */
pxafb_suspend(struct device * dev)1686 static int pxafb_suspend(struct device *dev)
1687 {
1688 struct pxafb_info *fbi = dev_get_drvdata(dev);
1689
1690 set_ctrlr_state(fbi, C_DISABLE_PM);
1691 return 0;
1692 }
1693
pxafb_resume(struct device * dev)1694 static int pxafb_resume(struct device *dev)
1695 {
1696 struct pxafb_info *fbi = dev_get_drvdata(dev);
1697
1698 set_ctrlr_state(fbi, C_ENABLE_PM);
1699 return 0;
1700 }
1701
1702 static const struct dev_pm_ops pxafb_pm_ops = {
1703 .suspend = pxafb_suspend,
1704 .resume = pxafb_resume,
1705 };
1706 #endif
1707
pxafb_init_video_memory(struct pxafb_info * fbi)1708 static int pxafb_init_video_memory(struct pxafb_info *fbi)
1709 {
1710 int size = PAGE_ALIGN(fbi->video_mem_size);
1711
1712 fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1713 if (fbi->video_mem == NULL)
1714 return -ENOMEM;
1715
1716 fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1717 fbi->video_mem_size = size;
1718
1719 fbi->fb.fix.smem_start = fbi->video_mem_phys;
1720 fbi->fb.fix.smem_len = fbi->video_mem_size;
1721 fbi->fb.screen_base = fbi->video_mem;
1722
1723 return fbi->video_mem ? 0 : -ENOMEM;
1724 }
1725
pxafb_decode_mach_info(struct pxafb_info * fbi,struct pxafb_mach_info * inf)1726 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1727 struct pxafb_mach_info *inf)
1728 {
1729 unsigned int lcd_conn = inf->lcd_conn;
1730 struct pxafb_mode_info *m;
1731 int i;
1732
1733 fbi->cmap_inverse = inf->cmap_inverse;
1734 fbi->cmap_static = inf->cmap_static;
1735 fbi->lccr4 = inf->lccr4;
1736
1737 switch (lcd_conn & LCD_TYPE_MASK) {
1738 case LCD_TYPE_MONO_STN:
1739 fbi->lccr0 = LCCR0_CMS;
1740 break;
1741 case LCD_TYPE_MONO_DSTN:
1742 fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1743 break;
1744 case LCD_TYPE_COLOR_STN:
1745 fbi->lccr0 = 0;
1746 break;
1747 case LCD_TYPE_COLOR_DSTN:
1748 fbi->lccr0 = LCCR0_SDS;
1749 break;
1750 case LCD_TYPE_COLOR_TFT:
1751 fbi->lccr0 = LCCR0_PAS;
1752 break;
1753 case LCD_TYPE_SMART_PANEL:
1754 fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1755 break;
1756 default:
1757 /* fall back to backward compatibility way */
1758 fbi->lccr0 = inf->lccr0;
1759 fbi->lccr3 = inf->lccr3;
1760 goto decode_mode;
1761 }
1762
1763 if (lcd_conn == LCD_MONO_STN_8BPP)
1764 fbi->lccr0 |= LCCR0_DPD;
1765
1766 fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1767
1768 fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1769 fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1770 fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
1771
1772 decode_mode:
1773 pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1774
1775 /* decide video memory size as follows:
1776 * 1. default to mode of maximum resolution
1777 * 2. allow platform to override
1778 * 3. allow module parameter to override
1779 */
1780 for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1781 fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1782 m->xres * m->yres * m->bpp / 8);
1783
1784 if (inf->video_mem_size > fbi->video_mem_size)
1785 fbi->video_mem_size = inf->video_mem_size;
1786
1787 if (video_mem_size > fbi->video_mem_size)
1788 fbi->video_mem_size = video_mem_size;
1789 }
1790
pxafb_init_fbinfo(struct device * dev)1791 static struct pxafb_info *pxafb_init_fbinfo(struct device *dev)
1792 {
1793 struct pxafb_info *fbi;
1794 void *addr;
1795 struct pxafb_mach_info *inf = dev_get_platdata(dev);
1796
1797 /* Alloc the pxafb_info and pseudo_palette in one step */
1798 fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1799 if (!fbi)
1800 return NULL;
1801
1802 memset(fbi, 0, sizeof(struct pxafb_info));
1803 fbi->dev = dev;
1804
1805 fbi->clk = clk_get(dev, NULL);
1806 if (IS_ERR(fbi->clk)) {
1807 kfree(fbi);
1808 return NULL;
1809 }
1810
1811 strcpy(fbi->fb.fix.id, PXA_NAME);
1812
1813 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1814 fbi->fb.fix.type_aux = 0;
1815 fbi->fb.fix.xpanstep = 0;
1816 fbi->fb.fix.ypanstep = 1;
1817 fbi->fb.fix.ywrapstep = 0;
1818 fbi->fb.fix.accel = FB_ACCEL_NONE;
1819
1820 fbi->fb.var.nonstd = 0;
1821 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1822 fbi->fb.var.height = -1;
1823 fbi->fb.var.width = -1;
1824 fbi->fb.var.accel_flags = FB_ACCELF_TEXT;
1825 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1826
1827 fbi->fb.fbops = &pxafb_ops;
1828 fbi->fb.flags = FBINFO_DEFAULT;
1829 fbi->fb.node = -1;
1830
1831 addr = fbi;
1832 addr = addr + sizeof(struct pxafb_info);
1833 fbi->fb.pseudo_palette = addr;
1834
1835 fbi->state = C_STARTUP;
1836 fbi->task_state = (u_char)-1;
1837
1838 pxafb_decode_mach_info(fbi, inf);
1839
1840 #ifdef CONFIG_FB_PXA_OVERLAY
1841 /* place overlay(s) on top of base */
1842 if (pxafb_overlay_supported())
1843 fbi->lccr0 |= LCCR0_OUC;
1844 #endif
1845
1846 init_waitqueue_head(&fbi->ctrlr_wait);
1847 INIT_WORK(&fbi->task, pxafb_task);
1848 mutex_init(&fbi->ctrlr_lock);
1849 init_completion(&fbi->disable_done);
1850
1851 return fbi;
1852 }
1853
1854 #ifdef CONFIG_FB_PXA_PARAMETERS
parse_opt_mode(struct device * dev,const char * this_opt)1855 static int parse_opt_mode(struct device *dev, const char *this_opt)
1856 {
1857 struct pxafb_mach_info *inf = dev_get_platdata(dev);
1858
1859 const char *name = this_opt+5;
1860 unsigned int namelen = strlen(name);
1861 int res_specified = 0, bpp_specified = 0;
1862 unsigned int xres = 0, yres = 0, bpp = 0;
1863 int yres_specified = 0;
1864 int i;
1865 for (i = namelen-1; i >= 0; i--) {
1866 switch (name[i]) {
1867 case '-':
1868 namelen = i;
1869 if (!bpp_specified && !yres_specified) {
1870 bpp = simple_strtoul(&name[i+1], NULL, 0);
1871 bpp_specified = 1;
1872 } else
1873 goto done;
1874 break;
1875 case 'x':
1876 if (!yres_specified) {
1877 yres = simple_strtoul(&name[i+1], NULL, 0);
1878 yres_specified = 1;
1879 } else
1880 goto done;
1881 break;
1882 case '0' ... '9':
1883 break;
1884 default:
1885 goto done;
1886 }
1887 }
1888 if (i < 0 && yres_specified) {
1889 xres = simple_strtoul(name, NULL, 0);
1890 res_specified = 1;
1891 }
1892 done:
1893 if (res_specified) {
1894 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1895 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1896 }
1897 if (bpp_specified)
1898 switch (bpp) {
1899 case 1:
1900 case 2:
1901 case 4:
1902 case 8:
1903 case 16:
1904 inf->modes[0].bpp = bpp;
1905 dev_info(dev, "overriding bit depth: %d\n", bpp);
1906 break;
1907 default:
1908 dev_err(dev, "Depth %d is not valid\n", bpp);
1909 return -EINVAL;
1910 }
1911 return 0;
1912 }
1913
parse_opt(struct device * dev,char * this_opt)1914 static int parse_opt(struct device *dev, char *this_opt)
1915 {
1916 struct pxafb_mach_info *inf = dev_get_platdata(dev);
1917 struct pxafb_mode_info *mode = &inf->modes[0];
1918 char s[64];
1919
1920 s[0] = '\0';
1921
1922 if (!strncmp(this_opt, "vmem:", 5)) {
1923 video_mem_size = memparse(this_opt + 5, NULL);
1924 } else if (!strncmp(this_opt, "mode:", 5)) {
1925 return parse_opt_mode(dev, this_opt);
1926 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1927 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1928 sprintf(s, "pixclock: %ld\n", mode->pixclock);
1929 } else if (!strncmp(this_opt, "left:", 5)) {
1930 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1931 sprintf(s, "left: %u\n", mode->left_margin);
1932 } else if (!strncmp(this_opt, "right:", 6)) {
1933 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1934 sprintf(s, "right: %u\n", mode->right_margin);
1935 } else if (!strncmp(this_opt, "upper:", 6)) {
1936 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1937 sprintf(s, "upper: %u\n", mode->upper_margin);
1938 } else if (!strncmp(this_opt, "lower:", 6)) {
1939 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1940 sprintf(s, "lower: %u\n", mode->lower_margin);
1941 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1942 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1943 sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1944 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1945 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1946 sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1947 } else if (!strncmp(this_opt, "hsync:", 6)) {
1948 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1949 sprintf(s, "hsync: Active Low\n");
1950 mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1951 } else {
1952 sprintf(s, "hsync: Active High\n");
1953 mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1954 }
1955 } else if (!strncmp(this_opt, "vsync:", 6)) {
1956 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1957 sprintf(s, "vsync: Active Low\n");
1958 mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1959 } else {
1960 sprintf(s, "vsync: Active High\n");
1961 mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1962 }
1963 } else if (!strncmp(this_opt, "dpc:", 4)) {
1964 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1965 sprintf(s, "double pixel clock: false\n");
1966 inf->lccr3 &= ~LCCR3_DPC;
1967 } else {
1968 sprintf(s, "double pixel clock: true\n");
1969 inf->lccr3 |= LCCR3_DPC;
1970 }
1971 } else if (!strncmp(this_opt, "outputen:", 9)) {
1972 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1973 sprintf(s, "output enable: active low\n");
1974 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1975 } else {
1976 sprintf(s, "output enable: active high\n");
1977 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1978 }
1979 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1980 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1981 sprintf(s, "pixel clock polarity: falling edge\n");
1982 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1983 } else {
1984 sprintf(s, "pixel clock polarity: rising edge\n");
1985 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1986 }
1987 } else if (!strncmp(this_opt, "color", 5)) {
1988 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1989 } else if (!strncmp(this_opt, "mono", 4)) {
1990 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1991 } else if (!strncmp(this_opt, "active", 6)) {
1992 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1993 } else if (!strncmp(this_opt, "passive", 7)) {
1994 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1995 } else if (!strncmp(this_opt, "single", 6)) {
1996 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1997 } else if (!strncmp(this_opt, "dual", 4)) {
1998 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1999 } else if (!strncmp(this_opt, "4pix", 4)) {
2000 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
2001 } else if (!strncmp(this_opt, "8pix", 4)) {
2002 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
2003 } else {
2004 dev_err(dev, "unknown option: %s\n", this_opt);
2005 return -EINVAL;
2006 }
2007
2008 if (s[0] != '\0')
2009 dev_info(dev, "override %s", s);
2010
2011 return 0;
2012 }
2013
pxafb_parse_options(struct device * dev,char * options)2014 static int pxafb_parse_options(struct device *dev, char *options)
2015 {
2016 char *this_opt;
2017 int ret;
2018
2019 if (!options || !*options)
2020 return 0;
2021
2022 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
2023
2024 /* could be made table driven or similar?... */
2025 while ((this_opt = strsep(&options, ",")) != NULL) {
2026 ret = parse_opt(dev, this_opt);
2027 if (ret)
2028 return ret;
2029 }
2030 return 0;
2031 }
2032
2033 static char g_options[256] = "";
2034
2035 #ifndef MODULE
pxafb_setup_options(void)2036 static int __init pxafb_setup_options(void)
2037 {
2038 char *options = NULL;
2039
2040 if (fb_get_options("pxafb", &options))
2041 return -ENODEV;
2042
2043 if (options)
2044 strlcpy(g_options, options, sizeof(g_options));
2045
2046 return 0;
2047 }
2048 #else
2049 #define pxafb_setup_options() (0)
2050
2051 module_param_string(options, g_options, sizeof(g_options), 0);
2052 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
2053 #endif
2054
2055 #else
2056 #define pxafb_parse_options(...) (0)
2057 #define pxafb_setup_options() (0)
2058 #endif
2059
2060 #ifdef DEBUG_VAR
2061 /* Check for various illegal bit-combinations. Currently only
2062 * a warning is given. */
pxafb_check_options(struct device * dev,struct pxafb_mach_info * inf)2063 static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf)
2064 {
2065 if (inf->lcd_conn)
2066 return;
2067
2068 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2069 dev_warn(dev, "machine LCCR0 setting contains "
2070 "illegal bits: %08x\n",
2071 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
2072 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2073 dev_warn(dev, "machine LCCR3 setting contains "
2074 "illegal bits: %08x\n",
2075 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
2076 if (inf->lccr0 & LCCR0_DPD &&
2077 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2078 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2079 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2080 dev_warn(dev, "Double Pixel Data (DPD) mode is "
2081 "only valid in passive mono"
2082 " single panel mode\n");
2083 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2084 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2085 dev_warn(dev, "Dual panel only valid in passive mode\n");
2086 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2087 (inf->modes->upper_margin || inf->modes->lower_margin))
2088 dev_warn(dev, "Upper and lower margins must be 0 in "
2089 "passive mode\n");
2090 }
2091 #else
2092 #define pxafb_check_options(...) do {} while (0)
2093 #endif
2094
pxafb_probe(struct platform_device * dev)2095 static int pxafb_probe(struct platform_device *dev)
2096 {
2097 struct pxafb_info *fbi;
2098 struct pxafb_mach_info *inf;
2099 struct resource *r;
2100 int irq, ret;
2101
2102 dev_dbg(&dev->dev, "pxafb_probe\n");
2103
2104 inf = dev_get_platdata(&dev->dev);
2105 ret = -ENOMEM;
2106 fbi = NULL;
2107 if (!inf)
2108 goto failed;
2109
2110 ret = pxafb_parse_options(&dev->dev, g_options);
2111 if (ret < 0)
2112 goto failed;
2113
2114 pxafb_check_options(&dev->dev, inf);
2115
2116 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2117 inf->modes->xres,
2118 inf->modes->yres,
2119 inf->modes->bpp);
2120 if (inf->modes->xres == 0 ||
2121 inf->modes->yres == 0 ||
2122 inf->modes->bpp == 0) {
2123 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2124 ret = -EINVAL;
2125 goto failed;
2126 }
2127
2128 fbi = pxafb_init_fbinfo(&dev->dev);
2129 if (!fbi) {
2130 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
2131 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2132 ret = -ENOMEM;
2133 goto failed;
2134 }
2135
2136 if (cpu_is_pxa3xx() && inf->acceleration_enabled)
2137 fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
2138
2139 fbi->backlight_power = inf->pxafb_backlight_power;
2140 fbi->lcd_power = inf->pxafb_lcd_power;
2141
2142 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2143 if (r == NULL) {
2144 dev_err(&dev->dev, "no I/O memory resource defined\n");
2145 ret = -ENODEV;
2146 goto failed_fbi;
2147 }
2148
2149 r = request_mem_region(r->start, resource_size(r), dev->name);
2150 if (r == NULL) {
2151 dev_err(&dev->dev, "failed to request I/O memory\n");
2152 ret = -EBUSY;
2153 goto failed_fbi;
2154 }
2155
2156 fbi->mmio_base = ioremap(r->start, resource_size(r));
2157 if (fbi->mmio_base == NULL) {
2158 dev_err(&dev->dev, "failed to map I/O memory\n");
2159 ret = -EBUSY;
2160 goto failed_free_res;
2161 }
2162
2163 fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2164 fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2165 &fbi->dma_buff_phys, GFP_KERNEL);
2166 if (fbi->dma_buff == NULL) {
2167 dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2168 ret = -ENOMEM;
2169 goto failed_free_io;
2170 }
2171
2172 ret = pxafb_init_video_memory(fbi);
2173 if (ret) {
2174 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2175 ret = -ENOMEM;
2176 goto failed_free_dma;
2177 }
2178
2179 irq = platform_get_irq(dev, 0);
2180 if (irq < 0) {
2181 dev_err(&dev->dev, "no IRQ defined\n");
2182 ret = -ENODEV;
2183 goto failed_free_mem;
2184 }
2185
2186 ret = request_irq(irq, pxafb_handle_irq, 0, "LCD", fbi);
2187 if (ret) {
2188 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2189 ret = -EBUSY;
2190 goto failed_free_mem;
2191 }
2192
2193 ret = pxafb_smart_init(fbi);
2194 if (ret) {
2195 dev_err(&dev->dev, "failed to initialize smartpanel\n");
2196 goto failed_free_irq;
2197 }
2198
2199 /*
2200 * This makes sure that our colour bitfield
2201 * descriptors are correctly initialised.
2202 */
2203 ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2204 if (ret) {
2205 dev_err(&dev->dev, "failed to get suitable mode\n");
2206 goto failed_free_irq;
2207 }
2208
2209 ret = pxafb_set_par(&fbi->fb);
2210 if (ret) {
2211 dev_err(&dev->dev, "Failed to set parameters\n");
2212 goto failed_free_irq;
2213 }
2214
2215 platform_set_drvdata(dev, fbi);
2216
2217 ret = register_framebuffer(&fbi->fb);
2218 if (ret < 0) {
2219 dev_err(&dev->dev,
2220 "Failed to register framebuffer device: %d\n", ret);
2221 goto failed_free_cmap;
2222 }
2223
2224 pxafb_overlay_init(fbi);
2225
2226 #ifdef CONFIG_CPU_FREQ
2227 fbi->freq_transition.notifier_call = pxafb_freq_transition;
2228 fbi->freq_policy.notifier_call = pxafb_freq_policy;
2229 cpufreq_register_notifier(&fbi->freq_transition,
2230 CPUFREQ_TRANSITION_NOTIFIER);
2231 cpufreq_register_notifier(&fbi->freq_policy,
2232 CPUFREQ_POLICY_NOTIFIER);
2233 #endif
2234
2235 /*
2236 * Ok, now enable the LCD controller
2237 */
2238 set_ctrlr_state(fbi, C_ENABLE);
2239
2240 return 0;
2241
2242 failed_free_cmap:
2243 if (fbi->fb.cmap.len)
2244 fb_dealloc_cmap(&fbi->fb.cmap);
2245 failed_free_irq:
2246 free_irq(irq, fbi);
2247 failed_free_mem:
2248 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2249 failed_free_dma:
2250 dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2251 fbi->dma_buff, fbi->dma_buff_phys);
2252 failed_free_io:
2253 iounmap(fbi->mmio_base);
2254 failed_free_res:
2255 release_mem_region(r->start, resource_size(r));
2256 failed_fbi:
2257 clk_put(fbi->clk);
2258 kfree(fbi);
2259 failed:
2260 return ret;
2261 }
2262
pxafb_remove(struct platform_device * dev)2263 static int pxafb_remove(struct platform_device *dev)
2264 {
2265 struct pxafb_info *fbi = platform_get_drvdata(dev);
2266 struct resource *r;
2267 int irq;
2268 struct fb_info *info;
2269
2270 if (!fbi)
2271 return 0;
2272
2273 info = &fbi->fb;
2274
2275 pxafb_overlay_exit(fbi);
2276 unregister_framebuffer(info);
2277
2278 pxafb_disable_controller(fbi);
2279
2280 if (fbi->fb.cmap.len)
2281 fb_dealloc_cmap(&fbi->fb.cmap);
2282
2283 irq = platform_get_irq(dev, 0);
2284 free_irq(irq, fbi);
2285
2286 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2287
2288 dma_free_writecombine(&dev->dev, fbi->dma_buff_size,
2289 fbi->dma_buff, fbi->dma_buff_phys);
2290
2291 iounmap(fbi->mmio_base);
2292
2293 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2294 release_mem_region(r->start, resource_size(r));
2295
2296 clk_put(fbi->clk);
2297 kfree(fbi);
2298
2299 return 0;
2300 }
2301
2302 static struct platform_driver pxafb_driver = {
2303 .probe = pxafb_probe,
2304 .remove = pxafb_remove,
2305 .driver = {
2306 .name = "pxa2xx-fb",
2307 #ifdef CONFIG_PM
2308 .pm = &pxafb_pm_ops,
2309 #endif
2310 },
2311 };
2312
pxafb_init(void)2313 static int __init pxafb_init(void)
2314 {
2315 if (pxafb_setup_options())
2316 return -EINVAL;
2317
2318 return platform_driver_register(&pxafb_driver);
2319 }
2320
pxafb_exit(void)2321 static void __exit pxafb_exit(void)
2322 {
2323 platform_driver_unregister(&pxafb_driver);
2324 }
2325
2326 module_init(pxafb_init);
2327 module_exit(pxafb_exit);
2328
2329 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2330 MODULE_LICENSE("GPL");
2331