• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37 
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48 
49 #include <trace/events/swiotlb.h>
50 /*
51  * Used to do a quick range check in swiotlb_tbl_unmap_single and
52  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53  * API.
54  */
55 
56 #ifndef CONFIG_X86
dma_alloc_coherent_mask(struct device * dev,gfp_t gfp)57 static unsigned long dma_alloc_coherent_mask(struct device *dev,
58 					    gfp_t gfp)
59 {
60 	unsigned long dma_mask = 0;
61 
62 	dma_mask = dev->coherent_dma_mask;
63 	if (!dma_mask)
64 		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
65 
66 	return dma_mask;
67 }
68 #endif
69 
70 static char *xen_io_tlb_start, *xen_io_tlb_end;
71 static unsigned long xen_io_tlb_nslabs;
72 /*
73  * Quick lookup value of the bus address of the IOTLB.
74  */
75 
76 static u64 start_dma_addr;
77 
78 /*
79  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
80  * can be 32bit when dma_addr_t is 64bit leading to a loss in
81  * information if the shift is done before casting to 64bit.
82  */
xen_phys_to_bus(phys_addr_t paddr)83 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
84 {
85 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
86 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
87 
88 	dma |= paddr & ~XEN_PAGE_MASK;
89 
90 	return dma;
91 }
92 
xen_bus_to_phys(dma_addr_t baddr)93 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
94 {
95 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
96 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
97 	phys_addr_t paddr = dma;
98 
99 	paddr |= baddr & ~XEN_PAGE_MASK;
100 
101 	return paddr;
102 }
103 
xen_virt_to_bus(void * address)104 static inline dma_addr_t xen_virt_to_bus(void *address)
105 {
106 	return xen_phys_to_bus(virt_to_phys(address));
107 }
108 
check_pages_physically_contiguous(unsigned long xen_pfn,unsigned int offset,size_t length)109 static int check_pages_physically_contiguous(unsigned long xen_pfn,
110 					     unsigned int offset,
111 					     size_t length)
112 {
113 	unsigned long next_bfn;
114 	int i;
115 	int nr_pages;
116 
117 	next_bfn = pfn_to_bfn(xen_pfn);
118 	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
119 
120 	for (i = 1; i < nr_pages; i++) {
121 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
122 			return 0;
123 	}
124 	return 1;
125 }
126 
range_straddles_page_boundary(phys_addr_t p,size_t size)127 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
128 {
129 	unsigned long xen_pfn = XEN_PFN_DOWN(p);
130 	unsigned int offset = p & ~XEN_PAGE_MASK;
131 
132 	if (offset + size <= XEN_PAGE_SIZE)
133 		return 0;
134 	if (check_pages_physically_contiguous(xen_pfn, offset, size))
135 		return 0;
136 	return 1;
137 }
138 
is_xen_swiotlb_buffer(dma_addr_t dma_addr)139 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
140 {
141 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
142 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
143 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
144 
145 	/* If the address is outside our domain, it CAN
146 	 * have the same virtual address as another address
147 	 * in our domain. Therefore _only_ check address within our domain.
148 	 */
149 	if (pfn_valid(PFN_DOWN(paddr))) {
150 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
151 		       paddr < virt_to_phys(xen_io_tlb_end);
152 	}
153 	return 0;
154 }
155 
156 static int max_dma_bits = 32;
157 
158 static int
xen_swiotlb_fixup(void * buf,size_t size,unsigned long nslabs)159 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
160 {
161 	int i, rc;
162 	int dma_bits;
163 	dma_addr_t dma_handle;
164 	phys_addr_t p = virt_to_phys(buf);
165 
166 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
167 
168 	i = 0;
169 	do {
170 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
171 
172 		do {
173 			rc = xen_create_contiguous_region(
174 				p + (i << IO_TLB_SHIFT),
175 				get_order(slabs << IO_TLB_SHIFT),
176 				dma_bits, &dma_handle);
177 		} while (rc && dma_bits++ < max_dma_bits);
178 		if (rc)
179 			return rc;
180 
181 		i += slabs;
182 	} while (i < nslabs);
183 	return 0;
184 }
xen_set_nslabs(unsigned long nr_tbl)185 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
186 {
187 	if (!nr_tbl) {
188 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
189 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
190 	} else
191 		xen_io_tlb_nslabs = nr_tbl;
192 
193 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
194 }
195 
196 enum xen_swiotlb_err {
197 	XEN_SWIOTLB_UNKNOWN = 0,
198 	XEN_SWIOTLB_ENOMEM,
199 	XEN_SWIOTLB_EFIXUP
200 };
201 
xen_swiotlb_error(enum xen_swiotlb_err err)202 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
203 {
204 	switch (err) {
205 	case XEN_SWIOTLB_ENOMEM:
206 		return "Cannot allocate Xen-SWIOTLB buffer\n";
207 	case XEN_SWIOTLB_EFIXUP:
208 		return "Failed to get contiguous memory for DMA from Xen!\n"\
209 		    "You either: don't have the permissions, do not have"\
210 		    " enough free memory under 4GB, or the hypervisor memory"\
211 		    " is too fragmented!";
212 	default:
213 		break;
214 	}
215 	return "";
216 }
xen_swiotlb_init(int verbose,bool early)217 int __ref xen_swiotlb_init(int verbose, bool early)
218 {
219 	unsigned long bytes, order;
220 	int rc = -ENOMEM;
221 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
222 	unsigned int repeat = 3;
223 
224 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
225 retry:
226 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
227 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
228 	/*
229 	 * Get IO TLB memory from any location.
230 	 */
231 	if (early)
232 		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
233 	else {
234 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
235 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
236 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
237 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
238 			if (xen_io_tlb_start)
239 				break;
240 			order--;
241 		}
242 		if (order != get_order(bytes)) {
243 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
244 				(PAGE_SIZE << order) >> 20);
245 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
246 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
247 		}
248 	}
249 	if (!xen_io_tlb_start) {
250 		m_ret = XEN_SWIOTLB_ENOMEM;
251 		goto error;
252 	}
253 	xen_io_tlb_end = xen_io_tlb_start + bytes;
254 	/*
255 	 * And replace that memory with pages under 4GB.
256 	 */
257 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
258 			       bytes,
259 			       xen_io_tlb_nslabs);
260 	if (rc) {
261 		if (early)
262 			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
263 		else {
264 			free_pages((unsigned long)xen_io_tlb_start, order);
265 			xen_io_tlb_start = NULL;
266 		}
267 		m_ret = XEN_SWIOTLB_EFIXUP;
268 		goto error;
269 	}
270 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
271 	if (early) {
272 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
273 			 verbose))
274 			panic("Cannot allocate SWIOTLB buffer");
275 		rc = 0;
276 	} else
277 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
278 	return rc;
279 error:
280 	if (repeat--) {
281 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
282 					(xen_io_tlb_nslabs >> 1));
283 		pr_info("Lowering to %luMB\n",
284 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
285 		goto retry;
286 	}
287 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
288 	if (early)
289 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
290 	else
291 		free_pages((unsigned long)xen_io_tlb_start, order);
292 	return rc;
293 }
294 void *
xen_swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags,struct dma_attrs * attrs)295 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
296 			   dma_addr_t *dma_handle, gfp_t flags,
297 			   struct dma_attrs *attrs)
298 {
299 	void *ret;
300 	int order = get_order(size);
301 	u64 dma_mask = DMA_BIT_MASK(32);
302 	phys_addr_t phys;
303 	dma_addr_t dev_addr;
304 
305 	/*
306 	* Ignore region specifiers - the kernel's ideas of
307 	* pseudo-phys memory layout has nothing to do with the
308 	* machine physical layout.  We can't allocate highmem
309 	* because we can't return a pointer to it.
310 	*/
311 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
312 
313 	/* Convert the size to actually allocated. */
314 	size = 1UL << (order + XEN_PAGE_SHIFT);
315 
316 	/* On ARM this function returns an ioremap'ped virtual address for
317 	 * which virt_to_phys doesn't return the corresponding physical
318 	 * address. In fact on ARM virt_to_phys only works for kernel direct
319 	 * mapped RAM memory. Also see comment below.
320 	 */
321 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
322 
323 	if (!ret)
324 		return ret;
325 
326 	if (hwdev && hwdev->coherent_dma_mask)
327 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
328 
329 	/* At this point dma_handle is the physical address, next we are
330 	 * going to set it to the machine address.
331 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
332 	 * to *dma_handle. */
333 	phys = *dma_handle;
334 	dev_addr = xen_phys_to_bus(phys);
335 	if (((dev_addr + size - 1 <= dma_mask)) &&
336 	    !range_straddles_page_boundary(phys, size))
337 		*dma_handle = dev_addr;
338 	else {
339 		if (xen_create_contiguous_region(phys, order,
340 						 fls64(dma_mask), dma_handle) != 0) {
341 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
342 			return NULL;
343 		}
344 	}
345 	memset(ret, 0, size);
346 	return ret;
347 }
348 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
349 
350 void
xen_swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dev_addr,struct dma_attrs * attrs)351 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
352 			  dma_addr_t dev_addr, struct dma_attrs *attrs)
353 {
354 	int order = get_order(size);
355 	phys_addr_t phys;
356 	u64 dma_mask = DMA_BIT_MASK(32);
357 
358 	if (hwdev && hwdev->coherent_dma_mask)
359 		dma_mask = hwdev->coherent_dma_mask;
360 
361 	/* do not use virt_to_phys because on ARM it doesn't return you the
362 	 * physical address */
363 	phys = xen_bus_to_phys(dev_addr);
364 
365 	/* Convert the size to actually allocated. */
366 	size = 1UL << (order + XEN_PAGE_SHIFT);
367 
368 	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
369 		     range_straddles_page_boundary(phys, size)))
370 		xen_destroy_contiguous_region(phys, order);
371 
372 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
373 }
374 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
375 
376 
377 /*
378  * Map a single buffer of the indicated size for DMA in streaming mode.  The
379  * physical address to use is returned.
380  *
381  * Once the device is given the dma address, the device owns this memory until
382  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
383  */
xen_swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)384 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
385 				unsigned long offset, size_t size,
386 				enum dma_data_direction dir,
387 				struct dma_attrs *attrs)
388 {
389 	phys_addr_t map, phys = page_to_phys(page) + offset;
390 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
391 
392 	BUG_ON(dir == DMA_NONE);
393 	/*
394 	 * If the address happens to be in the device's DMA window,
395 	 * we can safely return the device addr and not worry about bounce
396 	 * buffering it.
397 	 */
398 	if (dma_capable(dev, dev_addr, size) &&
399 	    !range_straddles_page_boundary(phys, size) &&
400 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
401 		!swiotlb_force) {
402 		/* we are not interested in the dma_addr returned by
403 		 * xen_dma_map_page, only in the potential cache flushes executed
404 		 * by the function. */
405 		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
406 		return dev_addr;
407 	}
408 
409 	/*
410 	 * Oh well, have to allocate and map a bounce buffer.
411 	 */
412 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
413 
414 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
415 	if (map == SWIOTLB_MAP_ERROR)
416 		return DMA_ERROR_CODE;
417 
418 	dev_addr = xen_phys_to_bus(map);
419 	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
420 					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
421 
422 	/*
423 	 * Ensure that the address returned is DMA'ble
424 	 */
425 	if (!dma_capable(dev, dev_addr, size)) {
426 		swiotlb_tbl_unmap_single(dev, map, size, dir);
427 		dev_addr = 0;
428 	}
429 	return dev_addr;
430 }
431 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
432 
433 /*
434  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
435  * match what was provided for in a previous xen_swiotlb_map_page call.  All
436  * other usages are undefined.
437  *
438  * After this call, reads by the cpu to the buffer are guaranteed to see
439  * whatever the device wrote there.
440  */
xen_unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)441 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
442 			     size_t size, enum dma_data_direction dir,
443 				 struct dma_attrs *attrs)
444 {
445 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
446 
447 	BUG_ON(dir == DMA_NONE);
448 
449 	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
450 
451 	/* NOTE: We use dev_addr here, not paddr! */
452 	if (is_xen_swiotlb_buffer(dev_addr)) {
453 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
454 		return;
455 	}
456 
457 	if (dir != DMA_FROM_DEVICE)
458 		return;
459 
460 	/*
461 	 * phys_to_virt doesn't work with hihgmem page but we could
462 	 * call dma_mark_clean() with hihgmem page here. However, we
463 	 * are fine since dma_mark_clean() is null on POWERPC. We can
464 	 * make dma_mark_clean() take a physical address if necessary.
465 	 */
466 	dma_mark_clean(phys_to_virt(paddr), size);
467 }
468 
xen_swiotlb_unmap_page(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)469 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
470 			    size_t size, enum dma_data_direction dir,
471 			    struct dma_attrs *attrs)
472 {
473 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
474 }
475 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
476 
477 /*
478  * Make physical memory consistent for a single streaming mode DMA translation
479  * after a transfer.
480  *
481  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
482  * using the cpu, yet do not wish to teardown the dma mapping, you must
483  * call this function before doing so.  At the next point you give the dma
484  * address back to the card, you must first perform a
485  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
486  */
487 static void
xen_swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)488 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
489 			size_t size, enum dma_data_direction dir,
490 			enum dma_sync_target target)
491 {
492 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
493 
494 	BUG_ON(dir == DMA_NONE);
495 
496 	if (target == SYNC_FOR_CPU)
497 		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
498 
499 	/* NOTE: We use dev_addr here, not paddr! */
500 	if (is_xen_swiotlb_buffer(dev_addr))
501 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
502 
503 	if (target == SYNC_FOR_DEVICE)
504 		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
505 
506 	if (dir != DMA_FROM_DEVICE)
507 		return;
508 
509 	dma_mark_clean(phys_to_virt(paddr), size);
510 }
511 
512 void
xen_swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)513 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
514 				size_t size, enum dma_data_direction dir)
515 {
516 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
517 }
518 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
519 
520 void
xen_swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)521 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
522 				   size_t size, enum dma_data_direction dir)
523 {
524 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
525 }
526 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
527 
528 /*
529  * Map a set of buffers described by scatterlist in streaming mode for DMA.
530  * This is the scatter-gather version of the above xen_swiotlb_map_page
531  * interface.  Here the scatter gather list elements are each tagged with the
532  * appropriate dma address and length.  They are obtained via
533  * sg_dma_{address,length}(SG).
534  *
535  * NOTE: An implementation may be able to use a smaller number of
536  *       DMA address/length pairs than there are SG table elements.
537  *       (for example via virtual mapping capabilities)
538  *       The routine returns the number of addr/length pairs actually
539  *       used, at most nents.
540  *
541  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
542  * same here.
543  */
544 int
xen_swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)545 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
546 			 int nelems, enum dma_data_direction dir,
547 			 struct dma_attrs *attrs)
548 {
549 	struct scatterlist *sg;
550 	int i;
551 
552 	BUG_ON(dir == DMA_NONE);
553 
554 	for_each_sg(sgl, sg, nelems, i) {
555 		phys_addr_t paddr = sg_phys(sg);
556 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
557 
558 		if (swiotlb_force ||
559 		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
560 		    !dma_capable(hwdev, dev_addr, sg->length) ||
561 		    range_straddles_page_boundary(paddr, sg->length)) {
562 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
563 								 start_dma_addr,
564 								 sg_phys(sg),
565 								 sg->length,
566 								 dir);
567 			if (map == SWIOTLB_MAP_ERROR) {
568 				dev_warn(hwdev, "swiotlb buffer is full\n");
569 				/* Don't panic here, we expect map_sg users
570 				   to do proper error handling. */
571 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
572 							   attrs);
573 				sg_dma_len(sgl) = 0;
574 				return 0;
575 			}
576 			dev_addr = xen_phys_to_bus(map);
577 			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
578 						dev_addr,
579 						map & ~PAGE_MASK,
580 						sg->length,
581 						dir,
582 						attrs);
583 			sg->dma_address = dev_addr;
584 		} else {
585 			/* we are not interested in the dma_addr returned by
586 			 * xen_dma_map_page, only in the potential cache flushes executed
587 			 * by the function. */
588 			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
589 						dev_addr,
590 						paddr & ~PAGE_MASK,
591 						sg->length,
592 						dir,
593 						attrs);
594 			sg->dma_address = dev_addr;
595 		}
596 		sg_dma_len(sg) = sg->length;
597 	}
598 	return nelems;
599 }
600 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
601 
602 /*
603  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
604  * concerning calls here are the same as for swiotlb_unmap_page() above.
605  */
606 void
xen_swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)607 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
608 			   int nelems, enum dma_data_direction dir,
609 			   struct dma_attrs *attrs)
610 {
611 	struct scatterlist *sg;
612 	int i;
613 
614 	BUG_ON(dir == DMA_NONE);
615 
616 	for_each_sg(sgl, sg, nelems, i)
617 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
618 
619 }
620 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
621 
622 /*
623  * Make physical memory consistent for a set of streaming mode DMA translations
624  * after a transfer.
625  *
626  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
627  * and usage.
628  */
629 static void
xen_swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,enum dma_sync_target target)630 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
631 		    int nelems, enum dma_data_direction dir,
632 		    enum dma_sync_target target)
633 {
634 	struct scatterlist *sg;
635 	int i;
636 
637 	for_each_sg(sgl, sg, nelems, i)
638 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
639 					sg_dma_len(sg), dir, target);
640 }
641 
642 void
xen_swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)643 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
644 			    int nelems, enum dma_data_direction dir)
645 {
646 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
647 }
648 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
649 
650 void
xen_swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)651 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
652 			       int nelems, enum dma_data_direction dir)
653 {
654 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
655 }
656 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
657 
658 int
xen_swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t dma_addr)659 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
660 {
661 	return !dma_addr;
662 }
663 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
664 
665 /*
666  * Return whether the given device DMA address mask can be supported
667  * properly.  For example, if your device can only drive the low 24-bits
668  * during bus mastering, then you would pass 0x00ffffff as the mask to
669  * this function.
670  */
671 int
xen_swiotlb_dma_supported(struct device * hwdev,u64 mask)672 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
673 {
674 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
675 }
676 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
677 
678 int
xen_swiotlb_set_dma_mask(struct device * dev,u64 dma_mask)679 xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
680 {
681 	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
682 		return -EIO;
683 
684 	*dev->dma_mask = dma_mask;
685 
686 	return 0;
687 }
688 EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);
689 
690 /*
691  * Create userspace mapping for the DMA-coherent memory.
692  * This function should be called with the pages from the current domain only,
693  * passing pages mapped from other domains would lead to memory corruption.
694  */
695 int
xen_swiotlb_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,struct dma_attrs * attrs)696 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
697 		     void *cpu_addr, dma_addr_t dma_addr, size_t size,
698 		     struct dma_attrs *attrs)
699 {
700 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
701 	if (__generic_dma_ops(dev)->mmap)
702 		return __generic_dma_ops(dev)->mmap(dev, vma, cpu_addr,
703 						    dma_addr, size, attrs);
704 #endif
705 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
706 }
707 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mmap);
708