• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 /* Just an arbitrary number so we can be sure this happened */
29 #define BACKREF_FOUND_SHARED 6
30 
31 struct extent_inode_elem {
32 	u64 inum;
33 	u64 offset;
34 	struct extent_inode_elem *next;
35 };
36 
check_extent_in_eb(struct btrfs_key * key,struct extent_buffer * eb,struct btrfs_file_extent_item * fi,u64 extent_item_pos,struct extent_inode_elem ** eie)37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
38 				struct btrfs_file_extent_item *fi,
39 				u64 extent_item_pos,
40 				struct extent_inode_elem **eie)
41 {
42 	u64 offset = 0;
43 	struct extent_inode_elem *e;
44 
45 	if (!btrfs_file_extent_compression(eb, fi) &&
46 	    !btrfs_file_extent_encryption(eb, fi) &&
47 	    !btrfs_file_extent_other_encoding(eb, fi)) {
48 		u64 data_offset;
49 		u64 data_len;
50 
51 		data_offset = btrfs_file_extent_offset(eb, fi);
52 		data_len = btrfs_file_extent_num_bytes(eb, fi);
53 
54 		if (extent_item_pos < data_offset ||
55 		    extent_item_pos >= data_offset + data_len)
56 			return 1;
57 		offset = extent_item_pos - data_offset;
58 	}
59 
60 	e = kmalloc(sizeof(*e), GFP_NOFS);
61 	if (!e)
62 		return -ENOMEM;
63 
64 	e->next = *eie;
65 	e->inum = key->objectid;
66 	e->offset = key->offset + offset;
67 	*eie = e;
68 
69 	return 0;
70 }
71 
free_inode_elem_list(struct extent_inode_elem * eie)72 static void free_inode_elem_list(struct extent_inode_elem *eie)
73 {
74 	struct extent_inode_elem *eie_next;
75 
76 	for (; eie; eie = eie_next) {
77 		eie_next = eie->next;
78 		kfree(eie);
79 	}
80 }
81 
find_extent_in_eb(struct extent_buffer * eb,u64 wanted_disk_byte,u64 extent_item_pos,struct extent_inode_elem ** eie)82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
83 				u64 extent_item_pos,
84 				struct extent_inode_elem **eie)
85 {
86 	u64 disk_byte;
87 	struct btrfs_key key;
88 	struct btrfs_file_extent_item *fi;
89 	int slot;
90 	int nritems;
91 	int extent_type;
92 	int ret;
93 
94 	/*
95 	 * from the shared data ref, we only have the leaf but we need
96 	 * the key. thus, we must look into all items and see that we
97 	 * find one (some) with a reference to our extent item.
98 	 */
99 	nritems = btrfs_header_nritems(eb);
100 	for (slot = 0; slot < nritems; ++slot) {
101 		btrfs_item_key_to_cpu(eb, &key, slot);
102 		if (key.type != BTRFS_EXTENT_DATA_KEY)
103 			continue;
104 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
105 		extent_type = btrfs_file_extent_type(eb, fi);
106 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
107 			continue;
108 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
110 		if (disk_byte != wanted_disk_byte)
111 			continue;
112 
113 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
114 		if (ret < 0)
115 			return ret;
116 	}
117 
118 	return 0;
119 }
120 
121 /*
122  * this structure records all encountered refs on the way up to the root
123  */
124 struct __prelim_ref {
125 	struct list_head list;
126 	u64 root_id;
127 	struct btrfs_key key_for_search;
128 	int level;
129 	int count;
130 	struct extent_inode_elem *inode_list;
131 	u64 parent;
132 	u64 wanted_disk_byte;
133 };
134 
135 static struct kmem_cache *btrfs_prelim_ref_cache;
136 
btrfs_prelim_ref_init(void)137 int __init btrfs_prelim_ref_init(void)
138 {
139 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
140 					sizeof(struct __prelim_ref),
141 					0,
142 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
143 					NULL);
144 	if (!btrfs_prelim_ref_cache)
145 		return -ENOMEM;
146 	return 0;
147 }
148 
btrfs_prelim_ref_exit(void)149 void btrfs_prelim_ref_exit(void)
150 {
151 	if (btrfs_prelim_ref_cache)
152 		kmem_cache_destroy(btrfs_prelim_ref_cache);
153 }
154 
155 /*
156  * the rules for all callers of this function are:
157  * - obtaining the parent is the goal
158  * - if you add a key, you must know that it is a correct key
159  * - if you cannot add the parent or a correct key, then we will look into the
160  *   block later to set a correct key
161  *
162  * delayed refs
163  * ============
164  *        backref type | shared | indirect | shared | indirect
165  * information         |   tree |     tree |   data |     data
166  * --------------------+--------+----------+--------+----------
167  *      parent logical |    y   |     -    |    -   |     -
168  *      key to resolve |    -   |     y    |    y   |     y
169  *  tree block logical |    -   |     -    |    -   |     -
170  *  root for resolving |    y   |     y    |    y   |     y
171  *
172  * - column 1:       we've the parent -> done
173  * - column 2, 3, 4: we use the key to find the parent
174  *
175  * on disk refs (inline or keyed)
176  * ==============================
177  *        backref type | shared | indirect | shared | indirect
178  * information         |   tree |     tree |   data |     data
179  * --------------------+--------+----------+--------+----------
180  *      parent logical |    y   |     -    |    y   |     -
181  *      key to resolve |    -   |     -    |    -   |     y
182  *  tree block logical |    y   |     y    |    y   |     y
183  *  root for resolving |    -   |     y    |    y   |     y
184  *
185  * - column 1, 3: we've the parent -> done
186  * - column 2:    we take the first key from the block to find the parent
187  *                (see __add_missing_keys)
188  * - column 4:    we use the key to find the parent
189  *
190  * additional information that's available but not required to find the parent
191  * block might help in merging entries to gain some speed.
192  */
193 
__add_prelim_ref(struct list_head * head,u64 root_id,struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,gfp_t gfp_mask)194 static int __add_prelim_ref(struct list_head *head, u64 root_id,
195 			    struct btrfs_key *key, int level,
196 			    u64 parent, u64 wanted_disk_byte, int count,
197 			    gfp_t gfp_mask)
198 {
199 	struct __prelim_ref *ref;
200 
201 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
202 		return 0;
203 
204 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
205 	if (!ref)
206 		return -ENOMEM;
207 
208 	ref->root_id = root_id;
209 	if (key) {
210 		ref->key_for_search = *key;
211 		/*
212 		 * We can often find data backrefs with an offset that is too
213 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
214 		 * underflows when subtracting a file's offset with the data
215 		 * offset of its corresponding extent data item. This can
216 		 * happen for example in the clone ioctl.
217 		 * So if we detect such case we set the search key's offset to
218 		 * zero to make sure we will find the matching file extent item
219 		 * at add_all_parents(), otherwise we will miss it because the
220 		 * offset taken form the backref is much larger then the offset
221 		 * of the file extent item. This can make us scan a very large
222 		 * number of file extent items, but at least it will not make
223 		 * us miss any.
224 		 * This is an ugly workaround for a behaviour that should have
225 		 * never existed, but it does and a fix for the clone ioctl
226 		 * would touch a lot of places, cause backwards incompatibility
227 		 * and would not fix the problem for extents cloned with older
228 		 * kernels.
229 		 */
230 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
231 		    ref->key_for_search.offset >= LLONG_MAX)
232 			ref->key_for_search.offset = 0;
233 	} else {
234 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
235 	}
236 
237 	ref->inode_list = NULL;
238 	ref->level = level;
239 	ref->count = count;
240 	ref->parent = parent;
241 	ref->wanted_disk_byte = wanted_disk_byte;
242 	list_add_tail(&ref->list, head);
243 
244 	return 0;
245 }
246 
add_all_parents(struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct __prelim_ref * ref,int level,u64 time_seq,const u64 * extent_item_pos,u64 total_refs)247 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
248 			   struct ulist *parents, struct __prelim_ref *ref,
249 			   int level, u64 time_seq, const u64 *extent_item_pos,
250 			   u64 total_refs)
251 {
252 	int ret = 0;
253 	int slot;
254 	struct extent_buffer *eb;
255 	struct btrfs_key key;
256 	struct btrfs_key *key_for_search = &ref->key_for_search;
257 	struct btrfs_file_extent_item *fi;
258 	struct extent_inode_elem *eie = NULL, *old = NULL;
259 	u64 disk_byte;
260 	u64 wanted_disk_byte = ref->wanted_disk_byte;
261 	u64 count = 0;
262 
263 	if (level != 0) {
264 		eb = path->nodes[level];
265 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
266 		if (ret < 0)
267 			return ret;
268 		return 0;
269 	}
270 
271 	/*
272 	 * We normally enter this function with the path already pointing to
273 	 * the first item to check. But sometimes, we may enter it with
274 	 * slot==nritems. In that case, go to the next leaf before we continue.
275 	 */
276 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
277 		if (time_seq == (u64)-1)
278 			ret = btrfs_next_leaf(root, path);
279 		else
280 			ret = btrfs_next_old_leaf(root, path, time_seq);
281 	}
282 
283 	while (!ret && count < total_refs) {
284 		eb = path->nodes[0];
285 		slot = path->slots[0];
286 
287 		btrfs_item_key_to_cpu(eb, &key, slot);
288 
289 		if (key.objectid != key_for_search->objectid ||
290 		    key.type != BTRFS_EXTENT_DATA_KEY)
291 			break;
292 
293 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
294 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
295 
296 		if (disk_byte == wanted_disk_byte) {
297 			eie = NULL;
298 			old = NULL;
299 			count++;
300 			if (extent_item_pos) {
301 				ret = check_extent_in_eb(&key, eb, fi,
302 						*extent_item_pos,
303 						&eie);
304 				if (ret < 0)
305 					break;
306 			}
307 			if (ret > 0)
308 				goto next;
309 			ret = ulist_add_merge_ptr(parents, eb->start,
310 						  eie, (void **)&old, GFP_NOFS);
311 			if (ret < 0)
312 				break;
313 			if (!ret && extent_item_pos) {
314 				while (old->next)
315 					old = old->next;
316 				old->next = eie;
317 			}
318 			eie = NULL;
319 		}
320 next:
321 		if (time_seq == (u64)-1)
322 			ret = btrfs_next_item(root, path);
323 		else
324 			ret = btrfs_next_old_item(root, path, time_seq);
325 	}
326 
327 	if (ret > 0)
328 		ret = 0;
329 	else if (ret < 0)
330 		free_inode_elem_list(eie);
331 	return ret;
332 }
333 
334 /*
335  * resolve an indirect backref in the form (root_id, key, level)
336  * to a logical address
337  */
__resolve_indirect_ref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct __prelim_ref * ref,struct ulist * parents,const u64 * extent_item_pos,u64 total_refs)338 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
339 				  struct btrfs_path *path, u64 time_seq,
340 				  struct __prelim_ref *ref,
341 				  struct ulist *parents,
342 				  const u64 *extent_item_pos, u64 total_refs)
343 {
344 	struct btrfs_root *root;
345 	struct btrfs_key root_key;
346 	struct extent_buffer *eb;
347 	int ret = 0;
348 	int root_level;
349 	int level = ref->level;
350 	int index;
351 
352 	root_key.objectid = ref->root_id;
353 	root_key.type = BTRFS_ROOT_ITEM_KEY;
354 	root_key.offset = (u64)-1;
355 
356 	index = srcu_read_lock(&fs_info->subvol_srcu);
357 
358 	root = btrfs_get_fs_root(fs_info, &root_key, false);
359 	if (IS_ERR(root)) {
360 		srcu_read_unlock(&fs_info->subvol_srcu, index);
361 		ret = PTR_ERR(root);
362 		goto out;
363 	}
364 
365 	if (btrfs_test_is_dummy_root(root)) {
366 		srcu_read_unlock(&fs_info->subvol_srcu, index);
367 		ret = -ENOENT;
368 		goto out;
369 	}
370 
371 	if (path->search_commit_root)
372 		root_level = btrfs_header_level(root->commit_root);
373 	else if (time_seq == (u64)-1)
374 		root_level = btrfs_header_level(root->node);
375 	else
376 		root_level = btrfs_old_root_level(root, time_seq);
377 
378 	if (root_level + 1 == level) {
379 		srcu_read_unlock(&fs_info->subvol_srcu, index);
380 		goto out;
381 	}
382 
383 	path->lowest_level = level;
384 	if (time_seq == (u64)-1)
385 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
386 					0, 0);
387 	else
388 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
389 					    time_seq);
390 
391 	/* root node has been locked, we can release @subvol_srcu safely here */
392 	srcu_read_unlock(&fs_info->subvol_srcu, index);
393 
394 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
395 		 "%d for key (%llu %u %llu)\n",
396 		 ref->root_id, level, ref->count, ret,
397 		 ref->key_for_search.objectid, ref->key_for_search.type,
398 		 ref->key_for_search.offset);
399 	if (ret < 0)
400 		goto out;
401 
402 	eb = path->nodes[level];
403 	while (!eb) {
404 		if (WARN_ON(!level)) {
405 			ret = 1;
406 			goto out;
407 		}
408 		level--;
409 		eb = path->nodes[level];
410 	}
411 
412 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
413 			      extent_item_pos, total_refs);
414 out:
415 	path->lowest_level = 0;
416 	btrfs_release_path(path);
417 	return ret;
418 }
419 
420 /*
421  * resolve all indirect backrefs from the list
422  */
__resolve_indirect_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct list_head * head,const u64 * extent_item_pos,u64 total_refs,u64 root_objectid)423 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
424 				   struct btrfs_path *path, u64 time_seq,
425 				   struct list_head *head,
426 				   const u64 *extent_item_pos, u64 total_refs,
427 				   u64 root_objectid)
428 {
429 	int err;
430 	int ret = 0;
431 	struct __prelim_ref *ref;
432 	struct __prelim_ref *ref_safe;
433 	struct __prelim_ref *new_ref;
434 	struct ulist *parents;
435 	struct ulist_node *node;
436 	struct ulist_iterator uiter;
437 
438 	parents = ulist_alloc(GFP_NOFS);
439 	if (!parents)
440 		return -ENOMEM;
441 
442 	/*
443 	 * _safe allows us to insert directly after the current item without
444 	 * iterating over the newly inserted items.
445 	 * we're also allowed to re-assign ref during iteration.
446 	 */
447 	list_for_each_entry_safe(ref, ref_safe, head, list) {
448 		if (ref->parent)	/* already direct */
449 			continue;
450 		if (ref->count == 0)
451 			continue;
452 		if (root_objectid && ref->root_id != root_objectid) {
453 			ret = BACKREF_FOUND_SHARED;
454 			goto out;
455 		}
456 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
457 					     parents, extent_item_pos,
458 					     total_refs);
459 		/*
460 		 * we can only tolerate ENOENT,otherwise,we should catch error
461 		 * and return directly.
462 		 */
463 		if (err == -ENOENT) {
464 			continue;
465 		} else if (err) {
466 			ret = err;
467 			goto out;
468 		}
469 
470 		/* we put the first parent into the ref at hand */
471 		ULIST_ITER_INIT(&uiter);
472 		node = ulist_next(parents, &uiter);
473 		ref->parent = node ? node->val : 0;
474 		ref->inode_list = node ?
475 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
476 
477 		/* additional parents require new refs being added here */
478 		while ((node = ulist_next(parents, &uiter))) {
479 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
480 						   GFP_NOFS);
481 			if (!new_ref) {
482 				ret = -ENOMEM;
483 				goto out;
484 			}
485 			memcpy(new_ref, ref, sizeof(*ref));
486 			new_ref->parent = node->val;
487 			new_ref->inode_list = (struct extent_inode_elem *)
488 							(uintptr_t)node->aux;
489 			list_add(&new_ref->list, &ref->list);
490 		}
491 		ulist_reinit(parents);
492 	}
493 out:
494 	ulist_free(parents);
495 	return ret;
496 }
497 
ref_for_same_block(struct __prelim_ref * ref1,struct __prelim_ref * ref2)498 static inline int ref_for_same_block(struct __prelim_ref *ref1,
499 				     struct __prelim_ref *ref2)
500 {
501 	if (ref1->level != ref2->level)
502 		return 0;
503 	if (ref1->root_id != ref2->root_id)
504 		return 0;
505 	if (ref1->key_for_search.type != ref2->key_for_search.type)
506 		return 0;
507 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
508 		return 0;
509 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
510 		return 0;
511 	if (ref1->parent != ref2->parent)
512 		return 0;
513 
514 	return 1;
515 }
516 
517 /*
518  * read tree blocks and add keys where required.
519  */
__add_missing_keys(struct btrfs_fs_info * fs_info,struct list_head * head)520 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
521 			      struct list_head *head)
522 {
523 	struct list_head *pos;
524 	struct extent_buffer *eb;
525 
526 	list_for_each(pos, head) {
527 		struct __prelim_ref *ref;
528 		ref = list_entry(pos, struct __prelim_ref, list);
529 
530 		if (ref->parent)
531 			continue;
532 		if (ref->key_for_search.type)
533 			continue;
534 		BUG_ON(!ref->wanted_disk_byte);
535 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
536 				     0);
537 		if (IS_ERR(eb)) {
538 			return PTR_ERR(eb);
539 		} else if (!extent_buffer_uptodate(eb)) {
540 			free_extent_buffer(eb);
541 			return -EIO;
542 		}
543 		btrfs_tree_read_lock(eb);
544 		if (btrfs_header_level(eb) == 0)
545 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
546 		else
547 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
548 		btrfs_tree_read_unlock(eb);
549 		free_extent_buffer(eb);
550 	}
551 	return 0;
552 }
553 
554 /*
555  * merge backrefs and adjust counts accordingly
556  *
557  * mode = 1: merge identical keys, if key is set
558  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
559  *           additionally, we could even add a key range for the blocks we
560  *           looked into to merge even more (-> replace unresolved refs by those
561  *           having a parent).
562  * mode = 2: merge identical parents
563  */
__merge_refs(struct list_head * head,int mode)564 static void __merge_refs(struct list_head *head, int mode)
565 {
566 	struct list_head *pos1;
567 
568 	list_for_each(pos1, head) {
569 		struct list_head *n2;
570 		struct list_head *pos2;
571 		struct __prelim_ref *ref1;
572 
573 		ref1 = list_entry(pos1, struct __prelim_ref, list);
574 
575 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
576 		     pos2 = n2, n2 = pos2->next) {
577 			struct __prelim_ref *ref2;
578 			struct __prelim_ref *xchg;
579 			struct extent_inode_elem *eie;
580 
581 			ref2 = list_entry(pos2, struct __prelim_ref, list);
582 
583 			if (!ref_for_same_block(ref1, ref2))
584 				continue;
585 			if (mode == 1) {
586 				if (!ref1->parent && ref2->parent) {
587 					xchg = ref1;
588 					ref1 = ref2;
589 					ref2 = xchg;
590 				}
591 			} else {
592 				if (ref1->parent != ref2->parent)
593 					continue;
594 			}
595 
596 			eie = ref1->inode_list;
597 			while (eie && eie->next)
598 				eie = eie->next;
599 			if (eie)
600 				eie->next = ref2->inode_list;
601 			else
602 				ref1->inode_list = ref2->inode_list;
603 			ref1->count += ref2->count;
604 
605 			list_del(&ref2->list);
606 			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
607 		}
608 
609 	}
610 }
611 
612 /*
613  * add all currently queued delayed refs from this head whose seq nr is
614  * smaller or equal that seq to the list
615  */
__add_delayed_refs(struct btrfs_delayed_ref_head * head,u64 seq,struct list_head * prefs,u64 * total_refs,u64 inum)616 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
617 			      struct list_head *prefs, u64 *total_refs,
618 			      u64 inum)
619 {
620 	struct btrfs_delayed_ref_node *node;
621 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
622 	struct btrfs_key key;
623 	struct btrfs_key op_key = {0};
624 	int sgn;
625 	int ret = 0;
626 
627 	if (extent_op && extent_op->update_key)
628 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
629 
630 	spin_lock(&head->lock);
631 	list_for_each_entry(node, &head->ref_list, list) {
632 		if (node->seq > seq)
633 			continue;
634 
635 		switch (node->action) {
636 		case BTRFS_ADD_DELAYED_EXTENT:
637 		case BTRFS_UPDATE_DELAYED_HEAD:
638 			WARN_ON(1);
639 			continue;
640 		case BTRFS_ADD_DELAYED_REF:
641 			sgn = 1;
642 			break;
643 		case BTRFS_DROP_DELAYED_REF:
644 			sgn = -1;
645 			break;
646 		default:
647 			BUG_ON(1);
648 		}
649 		*total_refs += (node->ref_mod * sgn);
650 		switch (node->type) {
651 		case BTRFS_TREE_BLOCK_REF_KEY: {
652 			struct btrfs_delayed_tree_ref *ref;
653 
654 			ref = btrfs_delayed_node_to_tree_ref(node);
655 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
656 					       ref->level + 1, 0, node->bytenr,
657 					       node->ref_mod * sgn, GFP_ATOMIC);
658 			break;
659 		}
660 		case BTRFS_SHARED_BLOCK_REF_KEY: {
661 			struct btrfs_delayed_tree_ref *ref;
662 
663 			ref = btrfs_delayed_node_to_tree_ref(node);
664 			ret = __add_prelim_ref(prefs, 0, NULL,
665 					       ref->level + 1, ref->parent,
666 					       node->bytenr,
667 					       node->ref_mod * sgn, GFP_ATOMIC);
668 			break;
669 		}
670 		case BTRFS_EXTENT_DATA_REF_KEY: {
671 			struct btrfs_delayed_data_ref *ref;
672 			ref = btrfs_delayed_node_to_data_ref(node);
673 
674 			key.objectid = ref->objectid;
675 			key.type = BTRFS_EXTENT_DATA_KEY;
676 			key.offset = ref->offset;
677 
678 			/*
679 			 * Found a inum that doesn't match our known inum, we
680 			 * know it's shared.
681 			 */
682 			if (inum && ref->objectid != inum) {
683 				ret = BACKREF_FOUND_SHARED;
684 				break;
685 			}
686 
687 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
688 					       node->bytenr,
689 					       node->ref_mod * sgn, GFP_ATOMIC);
690 			break;
691 		}
692 		case BTRFS_SHARED_DATA_REF_KEY: {
693 			struct btrfs_delayed_data_ref *ref;
694 
695 			ref = btrfs_delayed_node_to_data_ref(node);
696 			ret = __add_prelim_ref(prefs, 0, NULL, 0,
697 					       ref->parent, node->bytenr,
698 					       node->ref_mod * sgn, GFP_ATOMIC);
699 			break;
700 		}
701 		default:
702 			WARN_ON(1);
703 		}
704 		if (ret)
705 			break;
706 	}
707 	spin_unlock(&head->lock);
708 	return ret;
709 }
710 
711 /*
712  * add all inline backrefs for bytenr to the list
713  */
__add_inline_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int * info_level,struct list_head * prefs,u64 * total_refs,u64 inum)714 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
715 			     struct btrfs_path *path, u64 bytenr,
716 			     int *info_level, struct list_head *prefs,
717 			     u64 *total_refs, u64 inum)
718 {
719 	int ret = 0;
720 	int slot;
721 	struct extent_buffer *leaf;
722 	struct btrfs_key key;
723 	struct btrfs_key found_key;
724 	unsigned long ptr;
725 	unsigned long end;
726 	struct btrfs_extent_item *ei;
727 	u64 flags;
728 	u64 item_size;
729 
730 	/*
731 	 * enumerate all inline refs
732 	 */
733 	leaf = path->nodes[0];
734 	slot = path->slots[0];
735 
736 	item_size = btrfs_item_size_nr(leaf, slot);
737 	BUG_ON(item_size < sizeof(*ei));
738 
739 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
740 	flags = btrfs_extent_flags(leaf, ei);
741 	*total_refs += btrfs_extent_refs(leaf, ei);
742 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
743 
744 	ptr = (unsigned long)(ei + 1);
745 	end = (unsigned long)ei + item_size;
746 
747 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
748 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
749 		struct btrfs_tree_block_info *info;
750 
751 		info = (struct btrfs_tree_block_info *)ptr;
752 		*info_level = btrfs_tree_block_level(leaf, info);
753 		ptr += sizeof(struct btrfs_tree_block_info);
754 		BUG_ON(ptr > end);
755 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
756 		*info_level = found_key.offset;
757 	} else {
758 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
759 	}
760 
761 	while (ptr < end) {
762 		struct btrfs_extent_inline_ref *iref;
763 		u64 offset;
764 		int type;
765 
766 		iref = (struct btrfs_extent_inline_ref *)ptr;
767 		type = btrfs_extent_inline_ref_type(leaf, iref);
768 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
769 
770 		switch (type) {
771 		case BTRFS_SHARED_BLOCK_REF_KEY:
772 			ret = __add_prelim_ref(prefs, 0, NULL,
773 						*info_level + 1, offset,
774 						bytenr, 1, GFP_NOFS);
775 			break;
776 		case BTRFS_SHARED_DATA_REF_KEY: {
777 			struct btrfs_shared_data_ref *sdref;
778 			int count;
779 
780 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
781 			count = btrfs_shared_data_ref_count(leaf, sdref);
782 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
783 					       bytenr, count, GFP_NOFS);
784 			break;
785 		}
786 		case BTRFS_TREE_BLOCK_REF_KEY:
787 			ret = __add_prelim_ref(prefs, offset, NULL,
788 					       *info_level + 1, 0,
789 					       bytenr, 1, GFP_NOFS);
790 			break;
791 		case BTRFS_EXTENT_DATA_REF_KEY: {
792 			struct btrfs_extent_data_ref *dref;
793 			int count;
794 			u64 root;
795 
796 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
797 			count = btrfs_extent_data_ref_count(leaf, dref);
798 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
799 								      dref);
800 			key.type = BTRFS_EXTENT_DATA_KEY;
801 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
802 
803 			if (inum && key.objectid != inum) {
804 				ret = BACKREF_FOUND_SHARED;
805 				break;
806 			}
807 
808 			root = btrfs_extent_data_ref_root(leaf, dref);
809 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
810 					       bytenr, count, GFP_NOFS);
811 			break;
812 		}
813 		default:
814 			WARN_ON(1);
815 		}
816 		if (ret)
817 			return ret;
818 		ptr += btrfs_extent_inline_ref_size(type);
819 	}
820 
821 	return 0;
822 }
823 
824 /*
825  * add all non-inline backrefs for bytenr to the list
826  */
__add_keyed_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int info_level,struct list_head * prefs,u64 inum)827 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
828 			    struct btrfs_path *path, u64 bytenr,
829 			    int info_level, struct list_head *prefs, u64 inum)
830 {
831 	struct btrfs_root *extent_root = fs_info->extent_root;
832 	int ret;
833 	int slot;
834 	struct extent_buffer *leaf;
835 	struct btrfs_key key;
836 
837 	while (1) {
838 		ret = btrfs_next_item(extent_root, path);
839 		if (ret < 0)
840 			break;
841 		if (ret) {
842 			ret = 0;
843 			break;
844 		}
845 
846 		slot = path->slots[0];
847 		leaf = path->nodes[0];
848 		btrfs_item_key_to_cpu(leaf, &key, slot);
849 
850 		if (key.objectid != bytenr)
851 			break;
852 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
853 			continue;
854 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
855 			break;
856 
857 		switch (key.type) {
858 		case BTRFS_SHARED_BLOCK_REF_KEY:
859 			ret = __add_prelim_ref(prefs, 0, NULL,
860 						info_level + 1, key.offset,
861 						bytenr, 1, GFP_NOFS);
862 			break;
863 		case BTRFS_SHARED_DATA_REF_KEY: {
864 			struct btrfs_shared_data_ref *sdref;
865 			int count;
866 
867 			sdref = btrfs_item_ptr(leaf, slot,
868 					      struct btrfs_shared_data_ref);
869 			count = btrfs_shared_data_ref_count(leaf, sdref);
870 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
871 						bytenr, count, GFP_NOFS);
872 			break;
873 		}
874 		case BTRFS_TREE_BLOCK_REF_KEY:
875 			ret = __add_prelim_ref(prefs, key.offset, NULL,
876 					       info_level + 1, 0,
877 					       bytenr, 1, GFP_NOFS);
878 			break;
879 		case BTRFS_EXTENT_DATA_REF_KEY: {
880 			struct btrfs_extent_data_ref *dref;
881 			int count;
882 			u64 root;
883 
884 			dref = btrfs_item_ptr(leaf, slot,
885 					      struct btrfs_extent_data_ref);
886 			count = btrfs_extent_data_ref_count(leaf, dref);
887 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
888 								      dref);
889 			key.type = BTRFS_EXTENT_DATA_KEY;
890 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
891 
892 			if (inum && key.objectid != inum) {
893 				ret = BACKREF_FOUND_SHARED;
894 				break;
895 			}
896 
897 			root = btrfs_extent_data_ref_root(leaf, dref);
898 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
899 					       bytenr, count, GFP_NOFS);
900 			break;
901 		}
902 		default:
903 			WARN_ON(1);
904 		}
905 		if (ret)
906 			return ret;
907 
908 	}
909 
910 	return ret;
911 }
912 
913 /*
914  * this adds all existing backrefs (inline backrefs, backrefs and delayed
915  * refs) for the given bytenr to the refs list, merges duplicates and resolves
916  * indirect refs to their parent bytenr.
917  * When roots are found, they're added to the roots list
918  *
919  * NOTE: This can return values > 0
920  *
921  * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
922  * much like trans == NULL case, the difference only lies in it will not
923  * commit root.
924  * The special case is for qgroup to search roots in commit_transaction().
925  *
926  * FIXME some caching might speed things up
927  */
find_parent_nodes(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist * refs,struct ulist * roots,const u64 * extent_item_pos,u64 root_objectid,u64 inum)928 static int find_parent_nodes(struct btrfs_trans_handle *trans,
929 			     struct btrfs_fs_info *fs_info, u64 bytenr,
930 			     u64 time_seq, struct ulist *refs,
931 			     struct ulist *roots, const u64 *extent_item_pos,
932 			     u64 root_objectid, u64 inum)
933 {
934 	struct btrfs_key key;
935 	struct btrfs_path *path;
936 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
937 	struct btrfs_delayed_ref_head *head;
938 	int info_level = 0;
939 	int ret;
940 	struct list_head prefs_delayed;
941 	struct list_head prefs;
942 	struct __prelim_ref *ref;
943 	struct extent_inode_elem *eie = NULL;
944 	u64 total_refs = 0;
945 
946 	INIT_LIST_HEAD(&prefs);
947 	INIT_LIST_HEAD(&prefs_delayed);
948 
949 	key.objectid = bytenr;
950 	key.offset = (u64)-1;
951 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
952 		key.type = BTRFS_METADATA_ITEM_KEY;
953 	else
954 		key.type = BTRFS_EXTENT_ITEM_KEY;
955 
956 	path = btrfs_alloc_path();
957 	if (!path)
958 		return -ENOMEM;
959 	if (!trans) {
960 		path->search_commit_root = 1;
961 		path->skip_locking = 1;
962 	}
963 
964 	if (time_seq == (u64)-1)
965 		path->skip_locking = 1;
966 
967 	/*
968 	 * grab both a lock on the path and a lock on the delayed ref head.
969 	 * We need both to get a consistent picture of how the refs look
970 	 * at a specified point in time
971 	 */
972 again:
973 	head = NULL;
974 
975 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
976 	if (ret < 0)
977 		goto out;
978 	if (ret == 0) {
979 		/* This shouldn't happen, indicates a bug or fs corruption. */
980 		ASSERT(ret != 0);
981 		ret = -EUCLEAN;
982 		goto out;
983 	}
984 
985 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
986 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
987 	    time_seq != (u64)-1) {
988 #else
989 	if (trans && time_seq != (u64)-1) {
990 #endif
991 		/*
992 		 * look if there are updates for this ref queued and lock the
993 		 * head
994 		 */
995 		delayed_refs = &trans->transaction->delayed_refs;
996 		spin_lock(&delayed_refs->lock);
997 		head = btrfs_find_delayed_ref_head(trans, bytenr);
998 		if (head) {
999 			if (!mutex_trylock(&head->mutex)) {
1000 				atomic_inc(&head->node.refs);
1001 				spin_unlock(&delayed_refs->lock);
1002 
1003 				btrfs_release_path(path);
1004 
1005 				/*
1006 				 * Mutex was contended, block until it's
1007 				 * released and try again
1008 				 */
1009 				mutex_lock(&head->mutex);
1010 				mutex_unlock(&head->mutex);
1011 				btrfs_put_delayed_ref(&head->node);
1012 				goto again;
1013 			}
1014 			spin_unlock(&delayed_refs->lock);
1015 			ret = __add_delayed_refs(head, time_seq,
1016 						 &prefs_delayed, &total_refs,
1017 						 inum);
1018 			mutex_unlock(&head->mutex);
1019 			if (ret)
1020 				goto out;
1021 		} else {
1022 			spin_unlock(&delayed_refs->lock);
1023 		}
1024 	}
1025 
1026 	if (path->slots[0]) {
1027 		struct extent_buffer *leaf;
1028 		int slot;
1029 
1030 		path->slots[0]--;
1031 		leaf = path->nodes[0];
1032 		slot = path->slots[0];
1033 		btrfs_item_key_to_cpu(leaf, &key, slot);
1034 		if (key.objectid == bytenr &&
1035 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1036 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1037 			ret = __add_inline_refs(fs_info, path, bytenr,
1038 						&info_level, &prefs,
1039 						&total_refs, inum);
1040 			if (ret)
1041 				goto out;
1042 			ret = __add_keyed_refs(fs_info, path, bytenr,
1043 					       info_level, &prefs, inum);
1044 			if (ret)
1045 				goto out;
1046 		}
1047 	}
1048 	btrfs_release_path(path);
1049 
1050 	list_splice_init(&prefs_delayed, &prefs);
1051 
1052 	ret = __add_missing_keys(fs_info, &prefs);
1053 	if (ret)
1054 		goto out;
1055 
1056 	__merge_refs(&prefs, 1);
1057 
1058 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1059 				      extent_item_pos, total_refs,
1060 				      root_objectid);
1061 	if (ret)
1062 		goto out;
1063 
1064 	__merge_refs(&prefs, 2);
1065 
1066 	while (!list_empty(&prefs)) {
1067 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1068 		WARN_ON(ref->count < 0);
1069 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1070 			if (root_objectid && ref->root_id != root_objectid) {
1071 				ret = BACKREF_FOUND_SHARED;
1072 				goto out;
1073 			}
1074 
1075 			/* no parent == root of tree */
1076 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1077 			if (ret < 0)
1078 				goto out;
1079 		}
1080 		if (ref->count && ref->parent) {
1081 			if (extent_item_pos && !ref->inode_list &&
1082 			    ref->level == 0) {
1083 				struct extent_buffer *eb;
1084 
1085 				eb = read_tree_block(fs_info->extent_root,
1086 							   ref->parent, 0);
1087 				if (IS_ERR(eb)) {
1088 					ret = PTR_ERR(eb);
1089 					goto out;
1090 				} else if (!extent_buffer_uptodate(eb)) {
1091 					free_extent_buffer(eb);
1092 					ret = -EIO;
1093 					goto out;
1094 				}
1095 				btrfs_tree_read_lock(eb);
1096 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1097 				ret = find_extent_in_eb(eb, bytenr,
1098 							*extent_item_pos, &eie);
1099 				btrfs_tree_read_unlock_blocking(eb);
1100 				free_extent_buffer(eb);
1101 				if (ret < 0)
1102 					goto out;
1103 				ref->inode_list = eie;
1104 			}
1105 			ret = ulist_add_merge_ptr(refs, ref->parent,
1106 						  ref->inode_list,
1107 						  (void **)&eie, GFP_NOFS);
1108 			if (ret < 0)
1109 				goto out;
1110 			if (!ret && extent_item_pos) {
1111 				/*
1112 				 * We've recorded that parent, so we must extend
1113 				 * its inode list here.
1114 				 *
1115 				 * However if there was corruption we may not
1116 				 * have found an eie, return an error in this
1117 				 * case.
1118 				 */
1119 				ASSERT(eie);
1120 				if (!eie) {
1121 					ret = -EUCLEAN;
1122 					goto out;
1123 				}
1124 				while (eie->next)
1125 					eie = eie->next;
1126 				eie->next = ref->inode_list;
1127 			}
1128 			eie = NULL;
1129 		}
1130 		list_del(&ref->list);
1131 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1132 	}
1133 
1134 out:
1135 	btrfs_free_path(path);
1136 	while (!list_empty(&prefs)) {
1137 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1138 		list_del(&ref->list);
1139 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1140 	}
1141 	while (!list_empty(&prefs_delayed)) {
1142 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1143 				       list);
1144 		list_del(&ref->list);
1145 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1146 	}
1147 	if (ret < 0)
1148 		free_inode_elem_list(eie);
1149 	return ret;
1150 }
1151 
1152 static void free_leaf_list(struct ulist *blocks)
1153 {
1154 	struct ulist_node *node = NULL;
1155 	struct extent_inode_elem *eie;
1156 	struct ulist_iterator uiter;
1157 
1158 	ULIST_ITER_INIT(&uiter);
1159 	while ((node = ulist_next(blocks, &uiter))) {
1160 		if (!node->aux)
1161 			continue;
1162 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1163 		free_inode_elem_list(eie);
1164 		node->aux = 0;
1165 	}
1166 
1167 	ulist_free(blocks);
1168 }
1169 
1170 /*
1171  * Finds all leafs with a reference to the specified combination of bytenr and
1172  * offset. key_list_head will point to a list of corresponding keys (caller must
1173  * free each list element). The leafs will be stored in the leafs ulist, which
1174  * must be freed with ulist_free.
1175  *
1176  * returns 0 on success, <0 on error
1177  */
1178 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1179 				struct btrfs_fs_info *fs_info, u64 bytenr,
1180 				u64 time_seq, struct ulist **leafs,
1181 				const u64 *extent_item_pos)
1182 {
1183 	int ret;
1184 
1185 	*leafs = ulist_alloc(GFP_NOFS);
1186 	if (!*leafs)
1187 		return -ENOMEM;
1188 
1189 	ret = find_parent_nodes(trans, fs_info, bytenr,
1190 				time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1191 	if (ret < 0 && ret != -ENOENT) {
1192 		free_leaf_list(*leafs);
1193 		return ret;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 /*
1200  * walk all backrefs for a given extent to find all roots that reference this
1201  * extent. Walking a backref means finding all extents that reference this
1202  * extent and in turn walk the backrefs of those, too. Naturally this is a
1203  * recursive process, but here it is implemented in an iterative fashion: We
1204  * find all referencing extents for the extent in question and put them on a
1205  * list. In turn, we find all referencing extents for those, further appending
1206  * to the list. The way we iterate the list allows adding more elements after
1207  * the current while iterating. The process stops when we reach the end of the
1208  * list. Found roots are added to the roots list.
1209  *
1210  * returns 0 on success, < 0 on error.
1211  */
1212 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1213 				  struct btrfs_fs_info *fs_info, u64 bytenr,
1214 				  u64 time_seq, struct ulist **roots)
1215 {
1216 	struct ulist *tmp;
1217 	struct ulist_node *node = NULL;
1218 	struct ulist_iterator uiter;
1219 	int ret;
1220 
1221 	tmp = ulist_alloc(GFP_NOFS);
1222 	if (!tmp)
1223 		return -ENOMEM;
1224 	*roots = ulist_alloc(GFP_NOFS);
1225 	if (!*roots) {
1226 		ulist_free(tmp);
1227 		return -ENOMEM;
1228 	}
1229 
1230 	ULIST_ITER_INIT(&uiter);
1231 	while (1) {
1232 		ret = find_parent_nodes(trans, fs_info, bytenr,
1233 					time_seq, tmp, *roots, NULL, 0, 0);
1234 		if (ret < 0 && ret != -ENOENT) {
1235 			ulist_free(tmp);
1236 			ulist_free(*roots);
1237 			*roots = NULL;
1238 			return ret;
1239 		}
1240 		node = ulist_next(tmp, &uiter);
1241 		if (!node)
1242 			break;
1243 		bytenr = node->val;
1244 		cond_resched();
1245 	}
1246 
1247 	ulist_free(tmp);
1248 	return 0;
1249 }
1250 
1251 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1252 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1253 			 u64 time_seq, struct ulist **roots)
1254 {
1255 	int ret;
1256 
1257 	if (!trans)
1258 		down_read(&fs_info->commit_root_sem);
1259 	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1260 	if (!trans)
1261 		up_read(&fs_info->commit_root_sem);
1262 	return ret;
1263 }
1264 
1265 /**
1266  * btrfs_check_shared - tell us whether an extent is shared
1267  *
1268  * @trans: optional trans handle
1269  *
1270  * btrfs_check_shared uses the backref walking code but will short
1271  * circuit as soon as it finds a root or inode that doesn't match the
1272  * one passed in. This provides a significant performance benefit for
1273  * callers (such as fiemap) which want to know whether the extent is
1274  * shared but do not need a ref count.
1275  *
1276  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1277  */
1278 int btrfs_check_shared(struct btrfs_trans_handle *trans,
1279 		       struct btrfs_fs_info *fs_info, u64 root_objectid,
1280 		       u64 inum, u64 bytenr)
1281 {
1282 	struct ulist *tmp = NULL;
1283 	struct ulist *roots = NULL;
1284 	struct ulist_iterator uiter;
1285 	struct ulist_node *node;
1286 	struct seq_list elem = SEQ_LIST_INIT(elem);
1287 	int ret = 0;
1288 
1289 	tmp = ulist_alloc(GFP_NOFS);
1290 	roots = ulist_alloc(GFP_NOFS);
1291 	if (!tmp || !roots) {
1292 		ulist_free(tmp);
1293 		ulist_free(roots);
1294 		return -ENOMEM;
1295 	}
1296 
1297 	if (trans)
1298 		btrfs_get_tree_mod_seq(fs_info, &elem);
1299 	else
1300 		down_read(&fs_info->commit_root_sem);
1301 	ULIST_ITER_INIT(&uiter);
1302 	while (1) {
1303 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1304 					roots, NULL, root_objectid, inum);
1305 		if (ret == BACKREF_FOUND_SHARED) {
1306 			/* this is the only condition under which we return 1 */
1307 			ret = 1;
1308 			break;
1309 		}
1310 		if (ret < 0 && ret != -ENOENT)
1311 			break;
1312 		ret = 0;
1313 		node = ulist_next(tmp, &uiter);
1314 		if (!node)
1315 			break;
1316 		bytenr = node->val;
1317 		cond_resched();
1318 	}
1319 	if (trans)
1320 		btrfs_put_tree_mod_seq(fs_info, &elem);
1321 	else
1322 		up_read(&fs_info->commit_root_sem);
1323 	ulist_free(tmp);
1324 	ulist_free(roots);
1325 	return ret;
1326 }
1327 
1328 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1329 			  u64 start_off, struct btrfs_path *path,
1330 			  struct btrfs_inode_extref **ret_extref,
1331 			  u64 *found_off)
1332 {
1333 	int ret, slot;
1334 	struct btrfs_key key;
1335 	struct btrfs_key found_key;
1336 	struct btrfs_inode_extref *extref;
1337 	struct extent_buffer *leaf;
1338 	unsigned long ptr;
1339 
1340 	key.objectid = inode_objectid;
1341 	key.type = BTRFS_INODE_EXTREF_KEY;
1342 	key.offset = start_off;
1343 
1344 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1345 	if (ret < 0)
1346 		return ret;
1347 
1348 	while (1) {
1349 		leaf = path->nodes[0];
1350 		slot = path->slots[0];
1351 		if (slot >= btrfs_header_nritems(leaf)) {
1352 			/*
1353 			 * If the item at offset is not found,
1354 			 * btrfs_search_slot will point us to the slot
1355 			 * where it should be inserted. In our case
1356 			 * that will be the slot directly before the
1357 			 * next INODE_REF_KEY_V2 item. In the case
1358 			 * that we're pointing to the last slot in a
1359 			 * leaf, we must move one leaf over.
1360 			 */
1361 			ret = btrfs_next_leaf(root, path);
1362 			if (ret) {
1363 				if (ret >= 1)
1364 					ret = -ENOENT;
1365 				break;
1366 			}
1367 			continue;
1368 		}
1369 
1370 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1371 
1372 		/*
1373 		 * Check that we're still looking at an extended ref key for
1374 		 * this particular objectid. If we have different
1375 		 * objectid or type then there are no more to be found
1376 		 * in the tree and we can exit.
1377 		 */
1378 		ret = -ENOENT;
1379 		if (found_key.objectid != inode_objectid)
1380 			break;
1381 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1382 			break;
1383 
1384 		ret = 0;
1385 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1386 		extref = (struct btrfs_inode_extref *)ptr;
1387 		*ret_extref = extref;
1388 		if (found_off)
1389 			*found_off = found_key.offset;
1390 		break;
1391 	}
1392 
1393 	return ret;
1394 }
1395 
1396 /*
1397  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1398  * Elements of the path are separated by '/' and the path is guaranteed to be
1399  * 0-terminated. the path is only given within the current file system.
1400  * Therefore, it never starts with a '/'. the caller is responsible to provide
1401  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1402  * the start point of the resulting string is returned. this pointer is within
1403  * dest, normally.
1404  * in case the path buffer would overflow, the pointer is decremented further
1405  * as if output was written to the buffer, though no more output is actually
1406  * generated. that way, the caller can determine how much space would be
1407  * required for the path to fit into the buffer. in that case, the returned
1408  * value will be smaller than dest. callers must check this!
1409  */
1410 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1411 			u32 name_len, unsigned long name_off,
1412 			struct extent_buffer *eb_in, u64 parent,
1413 			char *dest, u32 size)
1414 {
1415 	int slot;
1416 	u64 next_inum;
1417 	int ret;
1418 	s64 bytes_left = ((s64)size) - 1;
1419 	struct extent_buffer *eb = eb_in;
1420 	struct btrfs_key found_key;
1421 	int leave_spinning = path->leave_spinning;
1422 	struct btrfs_inode_ref *iref;
1423 
1424 	if (bytes_left >= 0)
1425 		dest[bytes_left] = '\0';
1426 
1427 	path->leave_spinning = 1;
1428 	while (1) {
1429 		bytes_left -= name_len;
1430 		if (bytes_left >= 0)
1431 			read_extent_buffer(eb, dest + bytes_left,
1432 					   name_off, name_len);
1433 		if (eb != eb_in) {
1434 			if (!path->skip_locking)
1435 				btrfs_tree_read_unlock_blocking(eb);
1436 			free_extent_buffer(eb);
1437 		}
1438 		ret = btrfs_find_item(fs_root, path, parent, 0,
1439 				BTRFS_INODE_REF_KEY, &found_key);
1440 		if (ret > 0)
1441 			ret = -ENOENT;
1442 		if (ret)
1443 			break;
1444 
1445 		next_inum = found_key.offset;
1446 
1447 		/* regular exit ahead */
1448 		if (parent == next_inum)
1449 			break;
1450 
1451 		slot = path->slots[0];
1452 		eb = path->nodes[0];
1453 		/* make sure we can use eb after releasing the path */
1454 		if (eb != eb_in) {
1455 			if (!path->skip_locking)
1456 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1457 			path->nodes[0] = NULL;
1458 			path->locks[0] = 0;
1459 		}
1460 		btrfs_release_path(path);
1461 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1462 
1463 		name_len = btrfs_inode_ref_name_len(eb, iref);
1464 		name_off = (unsigned long)(iref + 1);
1465 
1466 		parent = next_inum;
1467 		--bytes_left;
1468 		if (bytes_left >= 0)
1469 			dest[bytes_left] = '/';
1470 	}
1471 
1472 	btrfs_release_path(path);
1473 	path->leave_spinning = leave_spinning;
1474 
1475 	if (ret)
1476 		return ERR_PTR(ret);
1477 
1478 	return dest + bytes_left;
1479 }
1480 
1481 /*
1482  * this makes the path point to (logical EXTENT_ITEM *)
1483  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1484  * tree blocks and <0 on error.
1485  */
1486 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1487 			struct btrfs_path *path, struct btrfs_key *found_key,
1488 			u64 *flags_ret)
1489 {
1490 	int ret;
1491 	u64 flags;
1492 	u64 size = 0;
1493 	u32 item_size;
1494 	struct extent_buffer *eb;
1495 	struct btrfs_extent_item *ei;
1496 	struct btrfs_key key;
1497 
1498 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1499 		key.type = BTRFS_METADATA_ITEM_KEY;
1500 	else
1501 		key.type = BTRFS_EXTENT_ITEM_KEY;
1502 	key.objectid = logical;
1503 	key.offset = (u64)-1;
1504 
1505 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1506 	if (ret < 0)
1507 		return ret;
1508 
1509 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1510 	if (ret) {
1511 		if (ret > 0)
1512 			ret = -ENOENT;
1513 		return ret;
1514 	}
1515 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1516 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1517 		size = fs_info->extent_root->nodesize;
1518 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1519 		size = found_key->offset;
1520 
1521 	if (found_key->objectid > logical ||
1522 	    found_key->objectid + size <= logical) {
1523 		pr_debug("logical %llu is not within any extent\n", logical);
1524 		return -ENOENT;
1525 	}
1526 
1527 	eb = path->nodes[0];
1528 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1529 	BUG_ON(item_size < sizeof(*ei));
1530 
1531 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1532 	flags = btrfs_extent_flags(eb, ei);
1533 
1534 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1535 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1536 		 logical, logical - found_key->objectid, found_key->objectid,
1537 		 found_key->offset, flags, item_size);
1538 
1539 	WARN_ON(!flags_ret);
1540 	if (flags_ret) {
1541 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1542 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1543 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1544 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1545 		else
1546 			BUG_ON(1);
1547 		return 0;
1548 	}
1549 
1550 	return -EIO;
1551 }
1552 
1553 /*
1554  * helper function to iterate extent inline refs. ptr must point to a 0 value
1555  * for the first call and may be modified. it is used to track state.
1556  * if more refs exist, 0 is returned and the next call to
1557  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1558  * next ref. after the last ref was processed, 1 is returned.
1559  * returns <0 on error
1560  */
1561 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1562 				   struct btrfs_key *key,
1563 				   struct btrfs_extent_item *ei, u32 item_size,
1564 				   struct btrfs_extent_inline_ref **out_eiref,
1565 				   int *out_type)
1566 {
1567 	unsigned long end;
1568 	u64 flags;
1569 	struct btrfs_tree_block_info *info;
1570 
1571 	if (!*ptr) {
1572 		/* first call */
1573 		flags = btrfs_extent_flags(eb, ei);
1574 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1575 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1576 				/* a skinny metadata extent */
1577 				*out_eiref =
1578 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1579 			} else {
1580 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1581 				info = (struct btrfs_tree_block_info *)(ei + 1);
1582 				*out_eiref =
1583 				   (struct btrfs_extent_inline_ref *)(info + 1);
1584 			}
1585 		} else {
1586 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1587 		}
1588 		*ptr = (unsigned long)*out_eiref;
1589 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1590 			return -ENOENT;
1591 	}
1592 
1593 	end = (unsigned long)ei + item_size;
1594 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1595 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1596 
1597 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1598 	WARN_ON(*ptr > end);
1599 	if (*ptr == end)
1600 		return 1; /* last */
1601 
1602 	return 0;
1603 }
1604 
1605 /*
1606  * reads the tree block backref for an extent. tree level and root are returned
1607  * through out_level and out_root. ptr must point to a 0 value for the first
1608  * call and may be modified (see __get_extent_inline_ref comment).
1609  * returns 0 if data was provided, 1 if there was no more data to provide or
1610  * <0 on error.
1611  */
1612 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1613 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1614 			    u32 item_size, u64 *out_root, u8 *out_level)
1615 {
1616 	int ret;
1617 	int type;
1618 	struct btrfs_extent_inline_ref *eiref;
1619 
1620 	if (*ptr == (unsigned long)-1)
1621 		return 1;
1622 
1623 	while (1) {
1624 		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1625 					      &eiref, &type);
1626 		if (ret < 0)
1627 			return ret;
1628 
1629 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1630 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1631 			break;
1632 
1633 		if (ret == 1)
1634 			return 1;
1635 	}
1636 
1637 	/* we can treat both ref types equally here */
1638 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1639 
1640 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1641 		struct btrfs_tree_block_info *info;
1642 
1643 		info = (struct btrfs_tree_block_info *)(ei + 1);
1644 		*out_level = btrfs_tree_block_level(eb, info);
1645 	} else {
1646 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1647 		*out_level = (u8)key->offset;
1648 	}
1649 
1650 	if (ret == 1)
1651 		*ptr = (unsigned long)-1;
1652 
1653 	return 0;
1654 }
1655 
1656 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1657 				u64 root, u64 extent_item_objectid,
1658 				iterate_extent_inodes_t *iterate, void *ctx)
1659 {
1660 	struct extent_inode_elem *eie;
1661 	int ret = 0;
1662 
1663 	for (eie = inode_list; eie; eie = eie->next) {
1664 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1665 			 "root %llu\n", extent_item_objectid,
1666 			 eie->inum, eie->offset, root);
1667 		ret = iterate(eie->inum, eie->offset, root, ctx);
1668 		if (ret) {
1669 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1670 				 extent_item_objectid, ret);
1671 			break;
1672 		}
1673 	}
1674 
1675 	return ret;
1676 }
1677 
1678 /*
1679  * calls iterate() for every inode that references the extent identified by
1680  * the given parameters.
1681  * when the iterator function returns a non-zero value, iteration stops.
1682  */
1683 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1684 				u64 extent_item_objectid, u64 extent_item_pos,
1685 				int search_commit_root,
1686 				iterate_extent_inodes_t *iterate, void *ctx)
1687 {
1688 	int ret;
1689 	struct btrfs_trans_handle *trans = NULL;
1690 	struct ulist *refs = NULL;
1691 	struct ulist *roots = NULL;
1692 	struct ulist_node *ref_node = NULL;
1693 	struct ulist_node *root_node = NULL;
1694 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1695 	struct ulist_iterator ref_uiter;
1696 	struct ulist_iterator root_uiter;
1697 
1698 	pr_debug("resolving all inodes for extent %llu\n",
1699 			extent_item_objectid);
1700 
1701 	if (!search_commit_root) {
1702 		trans = btrfs_attach_transaction(fs_info->extent_root);
1703 		if (IS_ERR(trans)) {
1704 			if (PTR_ERR(trans) != -ENOENT &&
1705 			    PTR_ERR(trans) != -EROFS)
1706 				return PTR_ERR(trans);
1707 			trans = NULL;
1708 		}
1709 	}
1710 
1711 	if (trans)
1712 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1713 	else
1714 		down_read(&fs_info->commit_root_sem);
1715 
1716 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1717 				   tree_mod_seq_elem.seq, &refs,
1718 				   &extent_item_pos);
1719 	if (ret)
1720 		goto out;
1721 
1722 	ULIST_ITER_INIT(&ref_uiter);
1723 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1724 		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1725 					     tree_mod_seq_elem.seq, &roots);
1726 		if (ret)
1727 			break;
1728 		ULIST_ITER_INIT(&root_uiter);
1729 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1730 			pr_debug("root %llu references leaf %llu, data list "
1731 				 "%#llx\n", root_node->val, ref_node->val,
1732 				 ref_node->aux);
1733 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1734 						(uintptr_t)ref_node->aux,
1735 						root_node->val,
1736 						extent_item_objectid,
1737 						iterate, ctx);
1738 		}
1739 		ulist_free(roots);
1740 	}
1741 
1742 	free_leaf_list(refs);
1743 out:
1744 	if (trans) {
1745 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1746 		btrfs_end_transaction(trans, fs_info->extent_root);
1747 	} else {
1748 		up_read(&fs_info->commit_root_sem);
1749 	}
1750 
1751 	return ret;
1752 }
1753 
1754 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1755 				struct btrfs_path *path,
1756 				iterate_extent_inodes_t *iterate, void *ctx)
1757 {
1758 	int ret;
1759 	u64 extent_item_pos;
1760 	u64 flags = 0;
1761 	struct btrfs_key found_key;
1762 	int search_commit_root = path->search_commit_root;
1763 
1764 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1765 	btrfs_release_path(path);
1766 	if (ret < 0)
1767 		return ret;
1768 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1769 		return -EINVAL;
1770 
1771 	extent_item_pos = logical - found_key.objectid;
1772 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1773 					extent_item_pos, search_commit_root,
1774 					iterate, ctx);
1775 
1776 	return ret;
1777 }
1778 
1779 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1780 			      struct extent_buffer *eb, void *ctx);
1781 
1782 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1783 			      struct btrfs_path *path,
1784 			      iterate_irefs_t *iterate, void *ctx)
1785 {
1786 	int ret = 0;
1787 	int slot;
1788 	u32 cur;
1789 	u32 len;
1790 	u32 name_len;
1791 	u64 parent = 0;
1792 	int found = 0;
1793 	struct extent_buffer *eb;
1794 	struct btrfs_item *item;
1795 	struct btrfs_inode_ref *iref;
1796 	struct btrfs_key found_key;
1797 
1798 	while (!ret) {
1799 		ret = btrfs_find_item(fs_root, path, inum,
1800 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1801 				&found_key);
1802 
1803 		if (ret < 0)
1804 			break;
1805 		if (ret) {
1806 			ret = found ? 0 : -ENOENT;
1807 			break;
1808 		}
1809 		++found;
1810 
1811 		parent = found_key.offset;
1812 		slot = path->slots[0];
1813 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1814 		if (!eb) {
1815 			ret = -ENOMEM;
1816 			break;
1817 		}
1818 		extent_buffer_get(eb);
1819 		btrfs_tree_read_lock(eb);
1820 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1821 		btrfs_release_path(path);
1822 
1823 		item = btrfs_item_nr(slot);
1824 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1825 
1826 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1827 			name_len = btrfs_inode_ref_name_len(eb, iref);
1828 			/* path must be released before calling iterate()! */
1829 			pr_debug("following ref at offset %u for inode %llu in "
1830 				 "tree %llu\n", cur, found_key.objectid,
1831 				 fs_root->objectid);
1832 			ret = iterate(parent, name_len,
1833 				      (unsigned long)(iref + 1), eb, ctx);
1834 			if (ret)
1835 				break;
1836 			len = sizeof(*iref) + name_len;
1837 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1838 		}
1839 		btrfs_tree_read_unlock_blocking(eb);
1840 		free_extent_buffer(eb);
1841 	}
1842 
1843 	btrfs_release_path(path);
1844 
1845 	return ret;
1846 }
1847 
1848 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1849 				 struct btrfs_path *path,
1850 				 iterate_irefs_t *iterate, void *ctx)
1851 {
1852 	int ret;
1853 	int slot;
1854 	u64 offset = 0;
1855 	u64 parent;
1856 	int found = 0;
1857 	struct extent_buffer *eb;
1858 	struct btrfs_inode_extref *extref;
1859 	u32 item_size;
1860 	u32 cur_offset;
1861 	unsigned long ptr;
1862 
1863 	while (1) {
1864 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1865 					    &offset);
1866 		if (ret < 0)
1867 			break;
1868 		if (ret) {
1869 			ret = found ? 0 : -ENOENT;
1870 			break;
1871 		}
1872 		++found;
1873 
1874 		slot = path->slots[0];
1875 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1876 		if (!eb) {
1877 			ret = -ENOMEM;
1878 			break;
1879 		}
1880 		extent_buffer_get(eb);
1881 
1882 		btrfs_tree_read_lock(eb);
1883 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1884 		btrfs_release_path(path);
1885 
1886 		item_size = btrfs_item_size_nr(eb, slot);
1887 		ptr = btrfs_item_ptr_offset(eb, slot);
1888 		cur_offset = 0;
1889 
1890 		while (cur_offset < item_size) {
1891 			u32 name_len;
1892 
1893 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1894 			parent = btrfs_inode_extref_parent(eb, extref);
1895 			name_len = btrfs_inode_extref_name_len(eb, extref);
1896 			ret = iterate(parent, name_len,
1897 				      (unsigned long)&extref->name, eb, ctx);
1898 			if (ret)
1899 				break;
1900 
1901 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
1902 			cur_offset += sizeof(*extref);
1903 		}
1904 		btrfs_tree_read_unlock_blocking(eb);
1905 		free_extent_buffer(eb);
1906 
1907 		offset++;
1908 	}
1909 
1910 	btrfs_release_path(path);
1911 
1912 	return ret;
1913 }
1914 
1915 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1916 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1917 			 void *ctx)
1918 {
1919 	int ret;
1920 	int found_refs = 0;
1921 
1922 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1923 	if (!ret)
1924 		++found_refs;
1925 	else if (ret != -ENOENT)
1926 		return ret;
1927 
1928 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1929 	if (ret == -ENOENT && found_refs)
1930 		return 0;
1931 
1932 	return ret;
1933 }
1934 
1935 /*
1936  * returns 0 if the path could be dumped (probably truncated)
1937  * returns <0 in case of an error
1938  */
1939 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1940 			 struct extent_buffer *eb, void *ctx)
1941 {
1942 	struct inode_fs_paths *ipath = ctx;
1943 	char *fspath;
1944 	char *fspath_min;
1945 	int i = ipath->fspath->elem_cnt;
1946 	const int s_ptr = sizeof(char *);
1947 	u32 bytes_left;
1948 
1949 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1950 					ipath->fspath->bytes_left - s_ptr : 0;
1951 
1952 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1953 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1954 				   name_off, eb, inum, fspath_min, bytes_left);
1955 	if (IS_ERR(fspath))
1956 		return PTR_ERR(fspath);
1957 
1958 	if (fspath > fspath_min) {
1959 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1960 		++ipath->fspath->elem_cnt;
1961 		ipath->fspath->bytes_left = fspath - fspath_min;
1962 	} else {
1963 		++ipath->fspath->elem_missed;
1964 		ipath->fspath->bytes_missing += fspath_min - fspath;
1965 		ipath->fspath->bytes_left = 0;
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 /*
1972  * this dumps all file system paths to the inode into the ipath struct, provided
1973  * is has been created large enough. each path is zero-terminated and accessed
1974  * from ipath->fspath->val[i].
1975  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1976  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1977  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1978  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1979  * have been needed to return all paths.
1980  */
1981 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1982 {
1983 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1984 			     inode_to_path, ipath);
1985 }
1986 
1987 struct btrfs_data_container *init_data_container(u32 total_bytes)
1988 {
1989 	struct btrfs_data_container *data;
1990 	size_t alloc_bytes;
1991 
1992 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1993 	data = vmalloc(alloc_bytes);
1994 	if (!data)
1995 		return ERR_PTR(-ENOMEM);
1996 
1997 	if (total_bytes >= sizeof(*data)) {
1998 		data->bytes_left = total_bytes - sizeof(*data);
1999 		data->bytes_missing = 0;
2000 	} else {
2001 		data->bytes_missing = sizeof(*data) - total_bytes;
2002 		data->bytes_left = 0;
2003 	}
2004 
2005 	data->elem_cnt = 0;
2006 	data->elem_missed = 0;
2007 
2008 	return data;
2009 }
2010 
2011 /*
2012  * allocates space to return multiple file system paths for an inode.
2013  * total_bytes to allocate are passed, note that space usable for actual path
2014  * information will be total_bytes - sizeof(struct inode_fs_paths).
2015  * the returned pointer must be freed with free_ipath() in the end.
2016  */
2017 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2018 					struct btrfs_path *path)
2019 {
2020 	struct inode_fs_paths *ifp;
2021 	struct btrfs_data_container *fspath;
2022 
2023 	fspath = init_data_container(total_bytes);
2024 	if (IS_ERR(fspath))
2025 		return (void *)fspath;
2026 
2027 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
2028 	if (!ifp) {
2029 		kfree(fspath);
2030 		return ERR_PTR(-ENOMEM);
2031 	}
2032 
2033 	ifp->btrfs_path = path;
2034 	ifp->fspath = fspath;
2035 	ifp->fs_root = fs_root;
2036 
2037 	return ifp;
2038 }
2039 
2040 void free_ipath(struct inode_fs_paths *ipath)
2041 {
2042 	if (!ipath)
2043 		return;
2044 	vfree(ipath->fspath);
2045 	kfree(ipath);
2046 }
2047