• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * Copyright (C) 2007 Oracle.  All rights reserved.
3   *
4   * This program is free software; you can redistribute it and/or
5   * modify it under the terms of the GNU General Public
6   * License v2 as published by the Free Software Foundation.
7   *
8   * This program is distributed in the hope that it will be useful,
9   * but WITHOUT ANY WARRANTY; without even the implied warranty of
10   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11   * General Public License for more details.
12   *
13   * You should have received a copy of the GNU General Public
14   * License along with this program; if not, write to the
15   * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16   * Boston, MA 021110-1307, USA.
17   */
18  
19  #include <linux/delay.h>
20  #include <linux/kthread.h>
21  #include <linux/pagemap.h>
22  
23  #include "ctree.h"
24  #include "disk-io.h"
25  #include "free-space-cache.h"
26  #include "inode-map.h"
27  #include "transaction.h"
28  
caching_kthread(void * data)29  static int caching_kthread(void *data)
30  {
31  	struct btrfs_root *root = data;
32  	struct btrfs_fs_info *fs_info = root->fs_info;
33  	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
34  	struct btrfs_key key;
35  	struct btrfs_path *path;
36  	struct extent_buffer *leaf;
37  	u64 last = (u64)-1;
38  	int slot;
39  	int ret;
40  
41  	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
42  		return 0;
43  
44  	path = btrfs_alloc_path();
45  	if (!path)
46  		return -ENOMEM;
47  
48  	/* Since the commit root is read-only, we can safely skip locking. */
49  	path->skip_locking = 1;
50  	path->search_commit_root = 1;
51  	path->reada = 2;
52  
53  	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
54  	key.offset = 0;
55  	key.type = BTRFS_INODE_ITEM_KEY;
56  again:
57  	/* need to make sure the commit_root doesn't disappear */
58  	down_read(&fs_info->commit_root_sem);
59  
60  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
61  	if (ret < 0)
62  		goto out;
63  
64  	while (1) {
65  		if (btrfs_fs_closing(fs_info))
66  			goto out;
67  
68  		leaf = path->nodes[0];
69  		slot = path->slots[0];
70  		if (slot >= btrfs_header_nritems(leaf)) {
71  			ret = btrfs_next_leaf(root, path);
72  			if (ret < 0)
73  				goto out;
74  			else if (ret > 0)
75  				break;
76  
77  			if (need_resched() ||
78  			    btrfs_transaction_in_commit(fs_info)) {
79  				leaf = path->nodes[0];
80  
81  				if (WARN_ON(btrfs_header_nritems(leaf) == 0))
82  					break;
83  
84  				/*
85  				 * Save the key so we can advances forward
86  				 * in the next search.
87  				 */
88  				btrfs_item_key_to_cpu(leaf, &key, 0);
89  				btrfs_release_path(path);
90  				root->ino_cache_progress = last;
91  				up_read(&fs_info->commit_root_sem);
92  				schedule_timeout(1);
93  				goto again;
94  			} else
95  				continue;
96  		}
97  
98  		btrfs_item_key_to_cpu(leaf, &key, slot);
99  
100  		if (key.type != BTRFS_INODE_ITEM_KEY)
101  			goto next;
102  
103  		if (key.objectid >= root->highest_objectid)
104  			break;
105  
106  		if (last != (u64)-1 && last + 1 != key.objectid) {
107  			__btrfs_add_free_space(ctl, last + 1,
108  					       key.objectid - last - 1);
109  			wake_up(&root->ino_cache_wait);
110  		}
111  
112  		last = key.objectid;
113  next:
114  		path->slots[0]++;
115  	}
116  
117  	if (last < root->highest_objectid - 1) {
118  		__btrfs_add_free_space(ctl, last + 1,
119  				       root->highest_objectid - last - 1);
120  	}
121  
122  	spin_lock(&root->ino_cache_lock);
123  	root->ino_cache_state = BTRFS_CACHE_FINISHED;
124  	spin_unlock(&root->ino_cache_lock);
125  
126  	root->ino_cache_progress = (u64)-1;
127  	btrfs_unpin_free_ino(root);
128  out:
129  	wake_up(&root->ino_cache_wait);
130  	up_read(&fs_info->commit_root_sem);
131  
132  	btrfs_free_path(path);
133  
134  	return ret;
135  }
136  
start_caching(struct btrfs_root * root)137  static void start_caching(struct btrfs_root *root)
138  {
139  	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
140  	struct task_struct *tsk;
141  	int ret;
142  	u64 objectid;
143  
144  	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
145  		return;
146  
147  	spin_lock(&root->ino_cache_lock);
148  	if (root->ino_cache_state != BTRFS_CACHE_NO) {
149  		spin_unlock(&root->ino_cache_lock);
150  		return;
151  	}
152  
153  	root->ino_cache_state = BTRFS_CACHE_STARTED;
154  	spin_unlock(&root->ino_cache_lock);
155  
156  	ret = load_free_ino_cache(root->fs_info, root);
157  	if (ret == 1) {
158  		spin_lock(&root->ino_cache_lock);
159  		root->ino_cache_state = BTRFS_CACHE_FINISHED;
160  		spin_unlock(&root->ino_cache_lock);
161  		wake_up(&root->ino_cache_wait);
162  		return;
163  	}
164  
165  	/*
166  	 * It can be quite time-consuming to fill the cache by searching
167  	 * through the extent tree, and this can keep ino allocation path
168  	 * waiting. Therefore at start we quickly find out the highest
169  	 * inode number and we know we can use inode numbers which fall in
170  	 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
171  	 */
172  	ret = btrfs_find_free_objectid(root, &objectid);
173  	if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
174  		__btrfs_add_free_space(ctl, objectid,
175  				       BTRFS_LAST_FREE_OBJECTID - objectid + 1);
176  	}
177  
178  	tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
179  			  root->root_key.objectid);
180  	if (IS_ERR(tsk)) {
181  		btrfs_warn(root->fs_info, "failed to start inode caching task");
182  		btrfs_clear_pending_and_info(root->fs_info, INODE_MAP_CACHE,
183  				"disabling inode map caching");
184  	}
185  }
186  
btrfs_find_free_ino(struct btrfs_root * root,u64 * objectid)187  int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
188  {
189  	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
190  		return btrfs_find_free_objectid(root, objectid);
191  
192  again:
193  	*objectid = btrfs_find_ino_for_alloc(root);
194  
195  	if (*objectid != 0)
196  		return 0;
197  
198  	start_caching(root);
199  
200  	wait_event(root->ino_cache_wait,
201  		   root->ino_cache_state == BTRFS_CACHE_FINISHED ||
202  		   root->free_ino_ctl->free_space > 0);
203  
204  	if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
205  	    root->free_ino_ctl->free_space == 0)
206  		return -ENOSPC;
207  	else
208  		goto again;
209  }
210  
btrfs_return_ino(struct btrfs_root * root,u64 objectid)211  void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
212  {
213  	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
214  
215  	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
216  		return;
217  again:
218  	if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
219  		__btrfs_add_free_space(pinned, objectid, 1);
220  	} else {
221  		down_write(&root->fs_info->commit_root_sem);
222  		spin_lock(&root->ino_cache_lock);
223  		if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
224  			spin_unlock(&root->ino_cache_lock);
225  			up_write(&root->fs_info->commit_root_sem);
226  			goto again;
227  		}
228  		spin_unlock(&root->ino_cache_lock);
229  
230  		start_caching(root);
231  
232  		__btrfs_add_free_space(pinned, objectid, 1);
233  
234  		up_write(&root->fs_info->commit_root_sem);
235  	}
236  }
237  
238  /*
239   * When a transaction is committed, we'll move those inode numbers which are
240   * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
241   * others will just be dropped, because the commit root we were searching has
242   * changed.
243   *
244   * Must be called with root->fs_info->commit_root_sem held
245   */
btrfs_unpin_free_ino(struct btrfs_root * root)246  void btrfs_unpin_free_ino(struct btrfs_root *root)
247  {
248  	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
249  	struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
250  	spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
251  	struct btrfs_free_space *info;
252  	struct rb_node *n;
253  	u64 count;
254  
255  	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
256  		return;
257  
258  	while (1) {
259  		bool add_to_ctl = true;
260  
261  		spin_lock(rbroot_lock);
262  		n = rb_first(rbroot);
263  		if (!n) {
264  			spin_unlock(rbroot_lock);
265  			break;
266  		}
267  
268  		info = rb_entry(n, struct btrfs_free_space, offset_index);
269  		BUG_ON(info->bitmap); /* Logic error */
270  
271  		if (info->offset > root->ino_cache_progress)
272  			add_to_ctl = false;
273  		else if (info->offset + info->bytes > root->ino_cache_progress)
274  			count = root->ino_cache_progress - info->offset + 1;
275  		else
276  			count = info->bytes;
277  
278  		rb_erase(&info->offset_index, rbroot);
279  		spin_unlock(rbroot_lock);
280  		if (add_to_ctl)
281  			__btrfs_add_free_space(ctl, info->offset, count);
282  		kmem_cache_free(btrfs_free_space_cachep, info);
283  	}
284  }
285  
286  #define INIT_THRESHOLD	(((1024 * 32) / 2) / sizeof(struct btrfs_free_space))
287  #define INODES_PER_BITMAP (PAGE_CACHE_SIZE * 8)
288  
289  /*
290   * The goal is to keep the memory used by the free_ino tree won't
291   * exceed the memory if we use bitmaps only.
292   */
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)293  static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
294  {
295  	struct btrfs_free_space *info;
296  	struct rb_node *n;
297  	int max_ino;
298  	int max_bitmaps;
299  
300  	n = rb_last(&ctl->free_space_offset);
301  	if (!n) {
302  		ctl->extents_thresh = INIT_THRESHOLD;
303  		return;
304  	}
305  	info = rb_entry(n, struct btrfs_free_space, offset_index);
306  
307  	/*
308  	 * Find the maximum inode number in the filesystem. Note we
309  	 * ignore the fact that this can be a bitmap, because we are
310  	 * not doing precise calculation.
311  	 */
312  	max_ino = info->bytes - 1;
313  
314  	max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
315  	if (max_bitmaps <= ctl->total_bitmaps) {
316  		ctl->extents_thresh = 0;
317  		return;
318  	}
319  
320  	ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
321  				PAGE_CACHE_SIZE / sizeof(*info);
322  }
323  
324  /*
325   * We don't fall back to bitmap, if we are below the extents threshold
326   * or this chunk of inode numbers is a big one.
327   */
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)328  static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
329  		       struct btrfs_free_space *info)
330  {
331  	if (ctl->free_extents < ctl->extents_thresh ||
332  	    info->bytes > INODES_PER_BITMAP / 10)
333  		return false;
334  
335  	return true;
336  }
337  
338  static struct btrfs_free_space_op free_ino_op = {
339  	.recalc_thresholds	= recalculate_thresholds,
340  	.use_bitmap		= use_bitmap,
341  };
342  
pinned_recalc_thresholds(struct btrfs_free_space_ctl * ctl)343  static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
344  {
345  }
346  
pinned_use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)347  static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
348  			      struct btrfs_free_space *info)
349  {
350  	/*
351  	 * We always use extents for two reasons:
352  	 *
353  	 * - The pinned tree is only used during the process of caching
354  	 *   work.
355  	 * - Make code simpler. See btrfs_unpin_free_ino().
356  	 */
357  	return false;
358  }
359  
360  static struct btrfs_free_space_op pinned_free_ino_op = {
361  	.recalc_thresholds	= pinned_recalc_thresholds,
362  	.use_bitmap		= pinned_use_bitmap,
363  };
364  
btrfs_init_free_ino_ctl(struct btrfs_root * root)365  void btrfs_init_free_ino_ctl(struct btrfs_root *root)
366  {
367  	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
368  	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
369  
370  	spin_lock_init(&ctl->tree_lock);
371  	ctl->unit = 1;
372  	ctl->start = 0;
373  	ctl->private = NULL;
374  	ctl->op = &free_ino_op;
375  	INIT_LIST_HEAD(&ctl->trimming_ranges);
376  	mutex_init(&ctl->cache_writeout_mutex);
377  
378  	/*
379  	 * Initially we allow to use 16K of ram to cache chunks of
380  	 * inode numbers before we resort to bitmaps. This is somewhat
381  	 * arbitrary, but it will be adjusted in runtime.
382  	 */
383  	ctl->extents_thresh = INIT_THRESHOLD;
384  
385  	spin_lock_init(&pinned->tree_lock);
386  	pinned->unit = 1;
387  	pinned->start = 0;
388  	pinned->private = NULL;
389  	pinned->extents_thresh = 0;
390  	pinned->op = &pinned_free_ino_op;
391  }
392  
btrfs_save_ino_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans)393  int btrfs_save_ino_cache(struct btrfs_root *root,
394  			 struct btrfs_trans_handle *trans)
395  {
396  	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
397  	struct btrfs_path *path;
398  	struct inode *inode;
399  	struct btrfs_block_rsv *rsv;
400  	u64 num_bytes;
401  	u64 alloc_hint = 0;
402  	int ret;
403  	int prealloc;
404  	bool retry = false;
405  
406  	/* only fs tree and subvol/snap needs ino cache */
407  	if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
408  	    (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
409  	     root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
410  		return 0;
411  
412  	/* Don't save inode cache if we are deleting this root */
413  	if (btrfs_root_refs(&root->root_item) == 0)
414  		return 0;
415  
416  	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
417  		return 0;
418  
419  	path = btrfs_alloc_path();
420  	if (!path)
421  		return -ENOMEM;
422  
423  	rsv = trans->block_rsv;
424  	trans->block_rsv = &root->fs_info->trans_block_rsv;
425  
426  	num_bytes = trans->bytes_reserved;
427  	/*
428  	 * 1 item for inode item insertion if need
429  	 * 4 items for inode item update (in the worst case)
430  	 * 1 items for slack space if we need do truncation
431  	 * 1 item for free space object
432  	 * 3 items for pre-allocation
433  	 */
434  	trans->bytes_reserved = btrfs_calc_trans_metadata_size(root, 10);
435  	ret = btrfs_block_rsv_add(root, trans->block_rsv,
436  				  trans->bytes_reserved,
437  				  BTRFS_RESERVE_NO_FLUSH);
438  	if (ret)
439  		goto out;
440  	trace_btrfs_space_reservation(root->fs_info, "ino_cache",
441  				      trans->transid, trans->bytes_reserved, 1);
442  again:
443  	inode = lookup_free_ino_inode(root, path);
444  	if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
445  		ret = PTR_ERR(inode);
446  		goto out_release;
447  	}
448  
449  	if (IS_ERR(inode)) {
450  		BUG_ON(retry); /* Logic error */
451  		retry = true;
452  
453  		ret = create_free_ino_inode(root, trans, path);
454  		if (ret)
455  			goto out_release;
456  		goto again;
457  	}
458  
459  	BTRFS_I(inode)->generation = 0;
460  	ret = btrfs_update_inode(trans, root, inode);
461  	if (ret) {
462  		btrfs_abort_transaction(trans, root, ret);
463  		goto out_put;
464  	}
465  
466  	if (i_size_read(inode) > 0) {
467  		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
468  		if (ret) {
469  			if (ret != -ENOSPC)
470  				btrfs_abort_transaction(trans, root, ret);
471  			goto out_put;
472  		}
473  	}
474  
475  	spin_lock(&root->ino_cache_lock);
476  	if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
477  		ret = -1;
478  		spin_unlock(&root->ino_cache_lock);
479  		goto out_put;
480  	}
481  	spin_unlock(&root->ino_cache_lock);
482  
483  	spin_lock(&ctl->tree_lock);
484  	prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
485  	prealloc = ALIGN(prealloc, PAGE_CACHE_SIZE);
486  	prealloc += ctl->total_bitmaps * PAGE_CACHE_SIZE;
487  	spin_unlock(&ctl->tree_lock);
488  
489  	/* Just to make sure we have enough space */
490  	prealloc += 8 * PAGE_CACHE_SIZE;
491  
492  	ret = btrfs_delalloc_reserve_space(inode, 0, prealloc);
493  	if (ret)
494  		goto out_put;
495  
496  	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
497  					      prealloc, prealloc, &alloc_hint);
498  	if (ret) {
499  		btrfs_delalloc_release_space(inode, 0, prealloc);
500  		goto out_put;
501  	}
502  	btrfs_free_reserved_data_space(inode, 0, prealloc);
503  
504  	ret = btrfs_write_out_ino_cache(root, trans, path, inode);
505  out_put:
506  	iput(inode);
507  out_release:
508  	trace_btrfs_space_reservation(root->fs_info, "ino_cache",
509  				      trans->transid, trans->bytes_reserved, 0);
510  	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
511  out:
512  	trans->block_rsv = rsv;
513  	trans->bytes_reserved = num_bytes;
514  
515  	btrfs_free_path(path);
516  	return ret;
517  }
518  
btrfs_find_highest_objectid(struct btrfs_root * root,u64 * objectid)519  int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
520  {
521  	struct btrfs_path *path;
522  	int ret;
523  	struct extent_buffer *l;
524  	struct btrfs_key search_key;
525  	struct btrfs_key found_key;
526  	int slot;
527  
528  	path = btrfs_alloc_path();
529  	if (!path)
530  		return -ENOMEM;
531  
532  	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
533  	search_key.type = -1;
534  	search_key.offset = (u64)-1;
535  	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
536  	if (ret < 0)
537  		goto error;
538  	BUG_ON(ret == 0); /* Corruption */
539  	if (path->slots[0] > 0) {
540  		slot = path->slots[0] - 1;
541  		l = path->nodes[0];
542  		btrfs_item_key_to_cpu(l, &found_key, slot);
543  		*objectid = max_t(u64, found_key.objectid,
544  				  BTRFS_FIRST_FREE_OBJECTID - 1);
545  	} else {
546  		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
547  	}
548  	ret = 0;
549  error:
550  	btrfs_free_path(path);
551  	return ret;
552  }
553  
btrfs_find_free_objectid(struct btrfs_root * root,u64 * objectid)554  int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
555  {
556  	int ret;
557  	mutex_lock(&root->objectid_mutex);
558  
559  	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
560  		ret = -ENOSPC;
561  		goto out;
562  	}
563  
564  	*objectid = ++root->highest_objectid;
565  	ret = 0;
566  out:
567  	mutex_unlock(&root->objectid_mutex);
568  	return ret;
569  }
570