• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_recover {
67 	atomic_t		refs;
68 	struct btrfs_bio	*bbio;
69 	u64			map_length;
70 };
71 
72 struct scrub_page {
73 	struct scrub_block	*sblock;
74 	struct page		*page;
75 	struct btrfs_device	*dev;
76 	struct list_head	list;
77 	u64			flags;  /* extent flags */
78 	u64			generation;
79 	u64			logical;
80 	u64			physical;
81 	u64			physical_for_dev_replace;
82 	atomic_t		refs;
83 	struct {
84 		unsigned int	mirror_num:8;
85 		unsigned int	have_csum:1;
86 		unsigned int	io_error:1;
87 	};
88 	u8			csum[BTRFS_CSUM_SIZE];
89 
90 	struct scrub_recover	*recover;
91 };
92 
93 struct scrub_bio {
94 	int			index;
95 	struct scrub_ctx	*sctx;
96 	struct btrfs_device	*dev;
97 	struct bio		*bio;
98 	int			err;
99 	u64			logical;
100 	u64			physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106 	int			page_count;
107 	int			next_free;
108 	struct btrfs_work	work;
109 };
110 
111 struct scrub_block {
112 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 	int			page_count;
114 	atomic_t		outstanding_pages;
115 	atomic_t		refs; /* free mem on transition to zero */
116 	struct scrub_ctx	*sctx;
117 	struct scrub_parity	*sparity;
118 	struct {
119 		unsigned int	header_error:1;
120 		unsigned int	checksum_error:1;
121 		unsigned int	no_io_error_seen:1;
122 		unsigned int	generation_error:1; /* also sets header_error */
123 
124 		/* The following is for the data used to check parity */
125 		/* It is for the data with checksum */
126 		unsigned int	data_corrected:1;
127 	};
128 	struct btrfs_work	work;
129 };
130 
131 /* Used for the chunks with parity stripe such RAID5/6 */
132 struct scrub_parity {
133 	struct scrub_ctx	*sctx;
134 
135 	struct btrfs_device	*scrub_dev;
136 
137 	u64			logic_start;
138 
139 	u64			logic_end;
140 
141 	int			nsectors;
142 
143 	int			stripe_len;
144 
145 	atomic_t		refs;
146 
147 	struct list_head	spages;
148 
149 	/* Work of parity check and repair */
150 	struct btrfs_work	work;
151 
152 	/* Mark the parity blocks which have data */
153 	unsigned long		*dbitmap;
154 
155 	/*
156 	 * Mark the parity blocks which have data, but errors happen when
157 	 * read data or check data
158 	 */
159 	unsigned long		*ebitmap;
160 
161 	unsigned long		bitmap[0];
162 };
163 
164 struct scrub_wr_ctx {
165 	struct scrub_bio *wr_curr_bio;
166 	struct btrfs_device *tgtdev;
167 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 	atomic_t flush_all_writes;
169 	struct mutex wr_lock;
170 };
171 
172 struct scrub_ctx {
173 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174 	struct btrfs_root	*dev_root;
175 	int			first_free;
176 	int			curr;
177 	atomic_t		bios_in_flight;
178 	atomic_t		workers_pending;
179 	spinlock_t		list_lock;
180 	wait_queue_head_t	list_wait;
181 	u16			csum_size;
182 	struct list_head	csum_list;
183 	atomic_t		cancel_req;
184 	int			readonly;
185 	int			pages_per_rd_bio;
186 	u32			sectorsize;
187 	u32			nodesize;
188 
189 	int			is_dev_replace;
190 	struct scrub_wr_ctx	wr_ctx;
191 
192 	/*
193 	 * statistics
194 	 */
195 	struct btrfs_scrub_progress stat;
196 	spinlock_t		stat_lock;
197 
198 	/*
199 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 	 * decrement bios_in_flight and workers_pending and then do a wakeup
201 	 * on the list_wait wait queue. We must ensure the main scrub task
202 	 * doesn't free the scrub context before or while the workers are
203 	 * doing the wakeup() call.
204 	 */
205 	atomic_t                refs;
206 };
207 
208 struct scrub_fixup_nodatasum {
209 	struct scrub_ctx	*sctx;
210 	struct btrfs_device	*dev;
211 	u64			logical;
212 	struct btrfs_root	*root;
213 	struct btrfs_work	work;
214 	int			mirror_num;
215 };
216 
217 struct scrub_nocow_inode {
218 	u64			inum;
219 	u64			offset;
220 	u64			root;
221 	struct list_head	list;
222 };
223 
224 struct scrub_copy_nocow_ctx {
225 	struct scrub_ctx	*sctx;
226 	u64			logical;
227 	u64			len;
228 	int			mirror_num;
229 	u64			physical_for_dev_replace;
230 	struct list_head	inodes;
231 	struct btrfs_work	work;
232 };
233 
234 struct scrub_warning {
235 	struct btrfs_path	*path;
236 	u64			extent_item_size;
237 	const char		*errstr;
238 	sector_t		sector;
239 	u64			logical;
240 	struct btrfs_device	*dev;
241 };
242 
243 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249 				     struct scrub_block *sblocks_for_recheck);
250 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 				struct scrub_block *sblock,
252 				int retry_failed_mirror);
253 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255 					     struct scrub_block *sblock_good);
256 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
257 					    struct scrub_block *sblock_good,
258 					    int page_num, int force_write);
259 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
260 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
261 					   int page_num);
262 static int scrub_checksum_data(struct scrub_block *sblock);
263 static int scrub_checksum_tree_block(struct scrub_block *sblock);
264 static int scrub_checksum_super(struct scrub_block *sblock);
265 static void scrub_block_get(struct scrub_block *sblock);
266 static void scrub_block_put(struct scrub_block *sblock);
267 static void scrub_page_get(struct scrub_page *spage);
268 static void scrub_page_put(struct scrub_page *spage);
269 static void scrub_parity_get(struct scrub_parity *sparity);
270 static void scrub_parity_put(struct scrub_parity *sparity);
271 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
272 				    struct scrub_page *spage);
273 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274 		       u64 physical, struct btrfs_device *dev, u64 flags,
275 		       u64 gen, int mirror_num, u8 *csum, int force,
276 		       u64 physical_for_dev_replace);
277 static void scrub_bio_end_io(struct bio *bio);
278 static void scrub_bio_end_io_worker(struct btrfs_work *work);
279 static void scrub_block_complete(struct scrub_block *sblock);
280 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
281 			       u64 extent_logical, u64 extent_len,
282 			       u64 *extent_physical,
283 			       struct btrfs_device **extent_dev,
284 			       int *extent_mirror_num);
285 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
286 			      struct scrub_wr_ctx *wr_ctx,
287 			      struct btrfs_fs_info *fs_info,
288 			      struct btrfs_device *dev,
289 			      int is_dev_replace);
290 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
291 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
292 				    struct scrub_page *spage);
293 static void scrub_wr_submit(struct scrub_ctx *sctx);
294 static void scrub_wr_bio_end_io(struct bio *bio);
295 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
296 static int write_page_nocow(struct scrub_ctx *sctx,
297 			    u64 physical_for_dev_replace, struct page *page);
298 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299 				      struct scrub_copy_nocow_ctx *ctx);
300 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
301 			    int mirror_num, u64 physical_for_dev_replace);
302 static void copy_nocow_pages_worker(struct btrfs_work *work);
303 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305 static void scrub_put_ctx(struct scrub_ctx *sctx);
306 
307 
scrub_pending_bio_inc(struct scrub_ctx * sctx)308 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
309 {
310 	atomic_inc(&sctx->refs);
311 	atomic_inc(&sctx->bios_in_flight);
312 }
313 
scrub_pending_bio_dec(struct scrub_ctx * sctx)314 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
315 {
316 	atomic_dec(&sctx->bios_in_flight);
317 	wake_up(&sctx->list_wait);
318 	scrub_put_ctx(sctx);
319 }
320 
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)321 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
322 {
323 	while (atomic_read(&fs_info->scrub_pause_req)) {
324 		mutex_unlock(&fs_info->scrub_lock);
325 		wait_event(fs_info->scrub_pause_wait,
326 		   atomic_read(&fs_info->scrub_pause_req) == 0);
327 		mutex_lock(&fs_info->scrub_lock);
328 	}
329 }
330 
scrub_pause_on(struct btrfs_fs_info * fs_info)331 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
332 {
333 	atomic_inc(&fs_info->scrubs_paused);
334 	wake_up(&fs_info->scrub_pause_wait);
335 }
336 
scrub_pause_off(struct btrfs_fs_info * fs_info)337 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
338 {
339 	mutex_lock(&fs_info->scrub_lock);
340 	__scrub_blocked_if_needed(fs_info);
341 	atomic_dec(&fs_info->scrubs_paused);
342 	mutex_unlock(&fs_info->scrub_lock);
343 
344 	wake_up(&fs_info->scrub_pause_wait);
345 }
346 
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)347 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
348 {
349 	scrub_pause_on(fs_info);
350 	scrub_pause_off(fs_info);
351 }
352 
353 /*
354  * used for workers that require transaction commits (i.e., for the
355  * NOCOW case)
356  */
scrub_pending_trans_workers_inc(struct scrub_ctx * sctx)357 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
358 {
359 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
360 
361 	atomic_inc(&sctx->refs);
362 	/*
363 	 * increment scrubs_running to prevent cancel requests from
364 	 * completing as long as a worker is running. we must also
365 	 * increment scrubs_paused to prevent deadlocking on pause
366 	 * requests used for transactions commits (as the worker uses a
367 	 * transaction context). it is safe to regard the worker
368 	 * as paused for all matters practical. effectively, we only
369 	 * avoid cancellation requests from completing.
370 	 */
371 	mutex_lock(&fs_info->scrub_lock);
372 	atomic_inc(&fs_info->scrubs_running);
373 	atomic_inc(&fs_info->scrubs_paused);
374 	mutex_unlock(&fs_info->scrub_lock);
375 
376 	/*
377 	 * check if @scrubs_running=@scrubs_paused condition
378 	 * inside wait_event() is not an atomic operation.
379 	 * which means we may inc/dec @scrub_running/paused
380 	 * at any time. Let's wake up @scrub_pause_wait as
381 	 * much as we can to let commit transaction blocked less.
382 	 */
383 	wake_up(&fs_info->scrub_pause_wait);
384 
385 	atomic_inc(&sctx->workers_pending);
386 }
387 
388 /* used for workers that require transaction commits */
scrub_pending_trans_workers_dec(struct scrub_ctx * sctx)389 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
390 {
391 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
392 
393 	/*
394 	 * see scrub_pending_trans_workers_inc() why we're pretending
395 	 * to be paused in the scrub counters
396 	 */
397 	mutex_lock(&fs_info->scrub_lock);
398 	atomic_dec(&fs_info->scrubs_running);
399 	atomic_dec(&fs_info->scrubs_paused);
400 	mutex_unlock(&fs_info->scrub_lock);
401 	atomic_dec(&sctx->workers_pending);
402 	wake_up(&fs_info->scrub_pause_wait);
403 	wake_up(&sctx->list_wait);
404 	scrub_put_ctx(sctx);
405 }
406 
scrub_free_csums(struct scrub_ctx * sctx)407 static void scrub_free_csums(struct scrub_ctx *sctx)
408 {
409 	while (!list_empty(&sctx->csum_list)) {
410 		struct btrfs_ordered_sum *sum;
411 		sum = list_first_entry(&sctx->csum_list,
412 				       struct btrfs_ordered_sum, list);
413 		list_del(&sum->list);
414 		kfree(sum);
415 	}
416 }
417 
scrub_free_ctx(struct scrub_ctx * sctx)418 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
419 {
420 	int i;
421 
422 	if (!sctx)
423 		return;
424 
425 	scrub_free_wr_ctx(&sctx->wr_ctx);
426 
427 	/* this can happen when scrub is cancelled */
428 	if (sctx->curr != -1) {
429 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
430 
431 		for (i = 0; i < sbio->page_count; i++) {
432 			WARN_ON(!sbio->pagev[i]->page);
433 			scrub_block_put(sbio->pagev[i]->sblock);
434 		}
435 		bio_put(sbio->bio);
436 	}
437 
438 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
439 		struct scrub_bio *sbio = sctx->bios[i];
440 
441 		if (!sbio)
442 			break;
443 		kfree(sbio);
444 	}
445 
446 	scrub_free_csums(sctx);
447 	kfree(sctx);
448 }
449 
scrub_put_ctx(struct scrub_ctx * sctx)450 static void scrub_put_ctx(struct scrub_ctx *sctx)
451 {
452 	if (atomic_dec_and_test(&sctx->refs))
453 		scrub_free_ctx(sctx);
454 }
455 
456 static noinline_for_stack
scrub_setup_ctx(struct btrfs_device * dev,int is_dev_replace)457 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
458 {
459 	struct scrub_ctx *sctx;
460 	int		i;
461 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
462 	int ret;
463 
464 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
465 	if (!sctx)
466 		goto nomem;
467 	atomic_set(&sctx->refs, 1);
468 	sctx->is_dev_replace = is_dev_replace;
469 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
470 	sctx->curr = -1;
471 	sctx->dev_root = dev->dev_root;
472 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
473 		struct scrub_bio *sbio;
474 
475 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
476 		if (!sbio)
477 			goto nomem;
478 		sctx->bios[i] = sbio;
479 
480 		sbio->index = i;
481 		sbio->sctx = sctx;
482 		sbio->page_count = 0;
483 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
484 				scrub_bio_end_io_worker, NULL, NULL);
485 
486 		if (i != SCRUB_BIOS_PER_SCTX - 1)
487 			sctx->bios[i]->next_free = i + 1;
488 		else
489 			sctx->bios[i]->next_free = -1;
490 	}
491 	sctx->first_free = 0;
492 	sctx->nodesize = dev->dev_root->nodesize;
493 	sctx->sectorsize = dev->dev_root->sectorsize;
494 	atomic_set(&sctx->bios_in_flight, 0);
495 	atomic_set(&sctx->workers_pending, 0);
496 	atomic_set(&sctx->cancel_req, 0);
497 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
498 	INIT_LIST_HEAD(&sctx->csum_list);
499 
500 	spin_lock_init(&sctx->list_lock);
501 	spin_lock_init(&sctx->stat_lock);
502 	init_waitqueue_head(&sctx->list_wait);
503 
504 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
505 				 fs_info->dev_replace.tgtdev, is_dev_replace);
506 	if (ret) {
507 		scrub_free_ctx(sctx);
508 		return ERR_PTR(ret);
509 	}
510 	return sctx;
511 
512 nomem:
513 	scrub_free_ctx(sctx);
514 	return ERR_PTR(-ENOMEM);
515 }
516 
scrub_print_warning_inode(u64 inum,u64 offset,u64 root,void * warn_ctx)517 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
518 				     void *warn_ctx)
519 {
520 	u64 isize;
521 	u32 nlink;
522 	int ret;
523 	int i;
524 	struct extent_buffer *eb;
525 	struct btrfs_inode_item *inode_item;
526 	struct scrub_warning *swarn = warn_ctx;
527 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
528 	struct inode_fs_paths *ipath = NULL;
529 	struct btrfs_root *local_root;
530 	struct btrfs_key root_key;
531 	struct btrfs_key key;
532 
533 	root_key.objectid = root;
534 	root_key.type = BTRFS_ROOT_ITEM_KEY;
535 	root_key.offset = (u64)-1;
536 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
537 	if (IS_ERR(local_root)) {
538 		ret = PTR_ERR(local_root);
539 		goto err;
540 	}
541 
542 	/*
543 	 * this makes the path point to (inum INODE_ITEM ioff)
544 	 */
545 	key.objectid = inum;
546 	key.type = BTRFS_INODE_ITEM_KEY;
547 	key.offset = 0;
548 
549 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
550 	if (ret) {
551 		btrfs_release_path(swarn->path);
552 		goto err;
553 	}
554 
555 	eb = swarn->path->nodes[0];
556 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
557 					struct btrfs_inode_item);
558 	isize = btrfs_inode_size(eb, inode_item);
559 	nlink = btrfs_inode_nlink(eb, inode_item);
560 	btrfs_release_path(swarn->path);
561 
562 	ipath = init_ipath(4096, local_root, swarn->path);
563 	if (IS_ERR(ipath)) {
564 		ret = PTR_ERR(ipath);
565 		ipath = NULL;
566 		goto err;
567 	}
568 	ret = paths_from_inode(inum, ipath);
569 
570 	if (ret < 0)
571 		goto err;
572 
573 	/*
574 	 * we deliberately ignore the bit ipath might have been too small to
575 	 * hold all of the paths here
576 	 */
577 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
578 		btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
579 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
580 			"length %llu, links %u (path: %s)", swarn->errstr,
581 			swarn->logical, rcu_str_deref(swarn->dev->name),
582 			(unsigned long long)swarn->sector, root, inum, offset,
583 			min(isize - offset, (u64)PAGE_SIZE), nlink,
584 			(char *)(unsigned long)ipath->fspath->val[i]);
585 
586 	free_ipath(ipath);
587 	return 0;
588 
589 err:
590 	btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
591 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
592 		"resolving failed with ret=%d", swarn->errstr,
593 		swarn->logical, rcu_str_deref(swarn->dev->name),
594 		(unsigned long long)swarn->sector, root, inum, offset, ret);
595 
596 	free_ipath(ipath);
597 	return 0;
598 }
599 
scrub_print_warning(const char * errstr,struct scrub_block * sblock)600 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
601 {
602 	struct btrfs_device *dev;
603 	struct btrfs_fs_info *fs_info;
604 	struct btrfs_path *path;
605 	struct btrfs_key found_key;
606 	struct extent_buffer *eb;
607 	struct btrfs_extent_item *ei;
608 	struct scrub_warning swarn;
609 	unsigned long ptr = 0;
610 	u64 extent_item_pos;
611 	u64 flags = 0;
612 	u64 ref_root;
613 	u32 item_size;
614 	u8 ref_level;
615 	int ret;
616 
617 	WARN_ON(sblock->page_count < 1);
618 	dev = sblock->pagev[0]->dev;
619 	fs_info = sblock->sctx->dev_root->fs_info;
620 
621 	path = btrfs_alloc_path();
622 	if (!path)
623 		return;
624 
625 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
626 	swarn.logical = sblock->pagev[0]->logical;
627 	swarn.errstr = errstr;
628 	swarn.dev = NULL;
629 
630 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
631 				  &flags);
632 	if (ret < 0)
633 		goto out;
634 
635 	extent_item_pos = swarn.logical - found_key.objectid;
636 	swarn.extent_item_size = found_key.offset;
637 
638 	eb = path->nodes[0];
639 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
640 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
641 
642 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
643 		do {
644 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
645 						      item_size, &ref_root,
646 						      &ref_level);
647 			btrfs_warn_in_rcu(fs_info,
648 				"%s at logical %llu on dev %s, "
649 				"sector %llu: metadata %s (level %d) in tree "
650 				"%llu", errstr, swarn.logical,
651 				rcu_str_deref(dev->name),
652 				(unsigned long long)swarn.sector,
653 				ref_level ? "node" : "leaf",
654 				ret < 0 ? -1 : ref_level,
655 				ret < 0 ? -1 : ref_root);
656 		} while (ret != 1);
657 		btrfs_release_path(path);
658 	} else {
659 		btrfs_release_path(path);
660 		swarn.path = path;
661 		swarn.dev = dev;
662 		iterate_extent_inodes(fs_info, found_key.objectid,
663 					extent_item_pos, 1,
664 					scrub_print_warning_inode, &swarn);
665 	}
666 
667 out:
668 	btrfs_free_path(path);
669 }
670 
scrub_fixup_readpage(u64 inum,u64 offset,u64 root,void * fixup_ctx)671 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
672 {
673 	struct page *page = NULL;
674 	unsigned long index;
675 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
676 	int ret;
677 	int corrected = 0;
678 	struct btrfs_key key;
679 	struct inode *inode = NULL;
680 	struct btrfs_fs_info *fs_info;
681 	u64 end = offset + PAGE_SIZE - 1;
682 	struct btrfs_root *local_root;
683 	int srcu_index;
684 
685 	key.objectid = root;
686 	key.type = BTRFS_ROOT_ITEM_KEY;
687 	key.offset = (u64)-1;
688 
689 	fs_info = fixup->root->fs_info;
690 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
691 
692 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
693 	if (IS_ERR(local_root)) {
694 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
695 		return PTR_ERR(local_root);
696 	}
697 
698 	key.type = BTRFS_INODE_ITEM_KEY;
699 	key.objectid = inum;
700 	key.offset = 0;
701 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
702 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
703 	if (IS_ERR(inode))
704 		return PTR_ERR(inode);
705 
706 	index = offset >> PAGE_CACHE_SHIFT;
707 
708 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
709 	if (!page) {
710 		ret = -ENOMEM;
711 		goto out;
712 	}
713 
714 	if (PageUptodate(page)) {
715 		if (PageDirty(page)) {
716 			/*
717 			 * we need to write the data to the defect sector. the
718 			 * data that was in that sector is not in memory,
719 			 * because the page was modified. we must not write the
720 			 * modified page to that sector.
721 			 *
722 			 * TODO: what could be done here: wait for the delalloc
723 			 *       runner to write out that page (might involve
724 			 *       COW) and see whether the sector is still
725 			 *       referenced afterwards.
726 			 *
727 			 * For the meantime, we'll treat this error
728 			 * incorrectable, although there is a chance that a
729 			 * later scrub will find the bad sector again and that
730 			 * there's no dirty page in memory, then.
731 			 */
732 			ret = -EIO;
733 			goto out;
734 		}
735 		ret = repair_io_failure(inode, offset, PAGE_SIZE,
736 					fixup->logical, page,
737 					offset - page_offset(page),
738 					fixup->mirror_num);
739 		unlock_page(page);
740 		corrected = !ret;
741 	} else {
742 		/*
743 		 * we need to get good data first. the general readpage path
744 		 * will call repair_io_failure for us, we just have to make
745 		 * sure we read the bad mirror.
746 		 */
747 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
748 					EXTENT_DAMAGED, GFP_NOFS);
749 		if (ret) {
750 			/* set_extent_bits should give proper error */
751 			WARN_ON(ret > 0);
752 			if (ret > 0)
753 				ret = -EFAULT;
754 			goto out;
755 		}
756 
757 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
758 						btrfs_get_extent,
759 						fixup->mirror_num);
760 		wait_on_page_locked(page);
761 
762 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
763 						end, EXTENT_DAMAGED, 0, NULL);
764 		if (!corrected)
765 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
766 						EXTENT_DAMAGED, GFP_NOFS);
767 	}
768 
769 out:
770 	if (page)
771 		put_page(page);
772 
773 	iput(inode);
774 
775 	if (ret < 0)
776 		return ret;
777 
778 	if (ret == 0 && corrected) {
779 		/*
780 		 * we only need to call readpage for one of the inodes belonging
781 		 * to this extent. so make iterate_extent_inodes stop
782 		 */
783 		return 1;
784 	}
785 
786 	return -EIO;
787 }
788 
scrub_fixup_nodatasum(struct btrfs_work * work)789 static void scrub_fixup_nodatasum(struct btrfs_work *work)
790 {
791 	int ret;
792 	struct scrub_fixup_nodatasum *fixup;
793 	struct scrub_ctx *sctx;
794 	struct btrfs_trans_handle *trans = NULL;
795 	struct btrfs_path *path;
796 	int uncorrectable = 0;
797 
798 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
799 	sctx = fixup->sctx;
800 
801 	path = btrfs_alloc_path();
802 	if (!path) {
803 		spin_lock(&sctx->stat_lock);
804 		++sctx->stat.malloc_errors;
805 		spin_unlock(&sctx->stat_lock);
806 		uncorrectable = 1;
807 		goto out;
808 	}
809 
810 	trans = btrfs_join_transaction(fixup->root);
811 	if (IS_ERR(trans)) {
812 		uncorrectable = 1;
813 		goto out;
814 	}
815 
816 	/*
817 	 * the idea is to trigger a regular read through the standard path. we
818 	 * read a page from the (failed) logical address by specifying the
819 	 * corresponding copynum of the failed sector. thus, that readpage is
820 	 * expected to fail.
821 	 * that is the point where on-the-fly error correction will kick in
822 	 * (once it's finished) and rewrite the failed sector if a good copy
823 	 * can be found.
824 	 */
825 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
826 						path, scrub_fixup_readpage,
827 						fixup);
828 	if (ret < 0) {
829 		uncorrectable = 1;
830 		goto out;
831 	}
832 	WARN_ON(ret != 1);
833 
834 	spin_lock(&sctx->stat_lock);
835 	++sctx->stat.corrected_errors;
836 	spin_unlock(&sctx->stat_lock);
837 
838 out:
839 	if (trans && !IS_ERR(trans))
840 		btrfs_end_transaction(trans, fixup->root);
841 	if (uncorrectable) {
842 		spin_lock(&sctx->stat_lock);
843 		++sctx->stat.uncorrectable_errors;
844 		spin_unlock(&sctx->stat_lock);
845 		btrfs_dev_replace_stats_inc(
846 			&sctx->dev_root->fs_info->dev_replace.
847 			num_uncorrectable_read_errors);
848 		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
849 		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
850 			fixup->logical, rcu_str_deref(fixup->dev->name));
851 	}
852 
853 	btrfs_free_path(path);
854 	kfree(fixup);
855 
856 	scrub_pending_trans_workers_dec(sctx);
857 }
858 
scrub_get_recover(struct scrub_recover * recover)859 static inline void scrub_get_recover(struct scrub_recover *recover)
860 {
861 	atomic_inc(&recover->refs);
862 }
863 
scrub_put_recover(struct scrub_recover * recover)864 static inline void scrub_put_recover(struct scrub_recover *recover)
865 {
866 	if (atomic_dec_and_test(&recover->refs)) {
867 		btrfs_put_bbio(recover->bbio);
868 		kfree(recover);
869 	}
870 }
871 
872 /*
873  * scrub_handle_errored_block gets called when either verification of the
874  * pages failed or the bio failed to read, e.g. with EIO. In the latter
875  * case, this function handles all pages in the bio, even though only one
876  * may be bad.
877  * The goal of this function is to repair the errored block by using the
878  * contents of one of the mirrors.
879  */
scrub_handle_errored_block(struct scrub_block * sblock_to_check)880 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
881 {
882 	struct scrub_ctx *sctx = sblock_to_check->sctx;
883 	struct btrfs_device *dev;
884 	struct btrfs_fs_info *fs_info;
885 	u64 length;
886 	u64 logical;
887 	unsigned int failed_mirror_index;
888 	unsigned int is_metadata;
889 	unsigned int have_csum;
890 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
891 	struct scrub_block *sblock_bad;
892 	int ret;
893 	int mirror_index;
894 	int page_num;
895 	int success;
896 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
897 				      DEFAULT_RATELIMIT_BURST);
898 
899 	BUG_ON(sblock_to_check->page_count < 1);
900 	fs_info = sctx->dev_root->fs_info;
901 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
902 		/*
903 		 * if we find an error in a super block, we just report it.
904 		 * They will get written with the next transaction commit
905 		 * anyway
906 		 */
907 		spin_lock(&sctx->stat_lock);
908 		++sctx->stat.super_errors;
909 		spin_unlock(&sctx->stat_lock);
910 		return 0;
911 	}
912 	length = sblock_to_check->page_count * PAGE_SIZE;
913 	logical = sblock_to_check->pagev[0]->logical;
914 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
915 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
916 	is_metadata = !(sblock_to_check->pagev[0]->flags &
917 			BTRFS_EXTENT_FLAG_DATA);
918 	have_csum = sblock_to_check->pagev[0]->have_csum;
919 	dev = sblock_to_check->pagev[0]->dev;
920 
921 	/*
922 	 * read all mirrors one after the other. This includes to
923 	 * re-read the extent or metadata block that failed (that was
924 	 * the cause that this fixup code is called) another time,
925 	 * page by page this time in order to know which pages
926 	 * caused I/O errors and which ones are good (for all mirrors).
927 	 * It is the goal to handle the situation when more than one
928 	 * mirror contains I/O errors, but the errors do not
929 	 * overlap, i.e. the data can be repaired by selecting the
930 	 * pages from those mirrors without I/O error on the
931 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
932 	 * would be that mirror #1 has an I/O error on the first page,
933 	 * the second page is good, and mirror #2 has an I/O error on
934 	 * the second page, but the first page is good.
935 	 * Then the first page of the first mirror can be repaired by
936 	 * taking the first page of the second mirror, and the
937 	 * second page of the second mirror can be repaired by
938 	 * copying the contents of the 2nd page of the 1st mirror.
939 	 * One more note: if the pages of one mirror contain I/O
940 	 * errors, the checksum cannot be verified. In order to get
941 	 * the best data for repairing, the first attempt is to find
942 	 * a mirror without I/O errors and with a validated checksum.
943 	 * Only if this is not possible, the pages are picked from
944 	 * mirrors with I/O errors without considering the checksum.
945 	 * If the latter is the case, at the end, the checksum of the
946 	 * repaired area is verified in order to correctly maintain
947 	 * the statistics.
948 	 */
949 
950 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
951 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
952 	if (!sblocks_for_recheck) {
953 		spin_lock(&sctx->stat_lock);
954 		sctx->stat.malloc_errors++;
955 		sctx->stat.read_errors++;
956 		sctx->stat.uncorrectable_errors++;
957 		spin_unlock(&sctx->stat_lock);
958 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
959 		goto out;
960 	}
961 
962 	/* setup the context, map the logical blocks and alloc the pages */
963 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
964 	if (ret) {
965 		spin_lock(&sctx->stat_lock);
966 		sctx->stat.read_errors++;
967 		sctx->stat.uncorrectable_errors++;
968 		spin_unlock(&sctx->stat_lock);
969 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
970 		goto out;
971 	}
972 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
973 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
974 
975 	/* build and submit the bios for the failed mirror, check checksums */
976 	scrub_recheck_block(fs_info, sblock_bad, 1);
977 
978 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
979 	    sblock_bad->no_io_error_seen) {
980 		/*
981 		 * the error disappeared after reading page by page, or
982 		 * the area was part of a huge bio and other parts of the
983 		 * bio caused I/O errors, or the block layer merged several
984 		 * read requests into one and the error is caused by a
985 		 * different bio (usually one of the two latter cases is
986 		 * the cause)
987 		 */
988 		spin_lock(&sctx->stat_lock);
989 		sctx->stat.unverified_errors++;
990 		sblock_to_check->data_corrected = 1;
991 		spin_unlock(&sctx->stat_lock);
992 
993 		if (sctx->is_dev_replace)
994 			scrub_write_block_to_dev_replace(sblock_bad);
995 		goto out;
996 	}
997 
998 	if (!sblock_bad->no_io_error_seen) {
999 		spin_lock(&sctx->stat_lock);
1000 		sctx->stat.read_errors++;
1001 		spin_unlock(&sctx->stat_lock);
1002 		if (__ratelimit(&_rs))
1003 			scrub_print_warning("i/o error", sblock_to_check);
1004 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1005 	} else if (sblock_bad->checksum_error) {
1006 		spin_lock(&sctx->stat_lock);
1007 		sctx->stat.csum_errors++;
1008 		spin_unlock(&sctx->stat_lock);
1009 		if (__ratelimit(&_rs))
1010 			scrub_print_warning("checksum error", sblock_to_check);
1011 		btrfs_dev_stat_inc_and_print(dev,
1012 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1013 	} else if (sblock_bad->header_error) {
1014 		spin_lock(&sctx->stat_lock);
1015 		sctx->stat.verify_errors++;
1016 		spin_unlock(&sctx->stat_lock);
1017 		if (__ratelimit(&_rs))
1018 			scrub_print_warning("checksum/header error",
1019 					    sblock_to_check);
1020 		if (sblock_bad->generation_error)
1021 			btrfs_dev_stat_inc_and_print(dev,
1022 				BTRFS_DEV_STAT_GENERATION_ERRS);
1023 		else
1024 			btrfs_dev_stat_inc_and_print(dev,
1025 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1026 	}
1027 
1028 	if (sctx->readonly) {
1029 		ASSERT(!sctx->is_dev_replace);
1030 		goto out;
1031 	}
1032 
1033 	/*
1034 	 * NOTE: Even for nodatasum case, it's still possible that it's a
1035 	 * compressed data extent, thus scrub_fixup_nodatasum(), which write
1036 	 * inode page cache onto disk, could cause serious data corruption.
1037 	 *
1038 	 * So here we could only read from disk, and hope our recovery could
1039 	 * reach disk before the newer write.
1040 	 */
1041 	if (0 && !is_metadata && !have_csum) {
1042 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1043 
1044 		WARN_ON(sctx->is_dev_replace);
1045 
1046 		/*
1047 		 * !is_metadata and !have_csum, this means that the data
1048 		 * might not be COW'ed, that it might be modified
1049 		 * concurrently. The general strategy to work on the
1050 		 * commit root does not help in the case when COW is not
1051 		 * used.
1052 		 */
1053 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1054 		if (!fixup_nodatasum)
1055 			goto did_not_correct_error;
1056 		fixup_nodatasum->sctx = sctx;
1057 		fixup_nodatasum->dev = dev;
1058 		fixup_nodatasum->logical = logical;
1059 		fixup_nodatasum->root = fs_info->extent_root;
1060 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1061 		scrub_pending_trans_workers_inc(sctx);
1062 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1063 				scrub_fixup_nodatasum, NULL, NULL);
1064 		btrfs_queue_work(fs_info->scrub_workers,
1065 				 &fixup_nodatasum->work);
1066 		goto out;
1067 	}
1068 
1069 	/*
1070 	 * now build and submit the bios for the other mirrors, check
1071 	 * checksums.
1072 	 * First try to pick the mirror which is completely without I/O
1073 	 * errors and also does not have a checksum error.
1074 	 * If one is found, and if a checksum is present, the full block
1075 	 * that is known to contain an error is rewritten. Afterwards
1076 	 * the block is known to be corrected.
1077 	 * If a mirror is found which is completely correct, and no
1078 	 * checksum is present, only those pages are rewritten that had
1079 	 * an I/O error in the block to be repaired, since it cannot be
1080 	 * determined, which copy of the other pages is better (and it
1081 	 * could happen otherwise that a correct page would be
1082 	 * overwritten by a bad one).
1083 	 */
1084 	for (mirror_index = 0;
1085 	     mirror_index < BTRFS_MAX_MIRRORS &&
1086 	     sblocks_for_recheck[mirror_index].page_count > 0;
1087 	     mirror_index++) {
1088 		struct scrub_block *sblock_other;
1089 
1090 		if (mirror_index == failed_mirror_index)
1091 			continue;
1092 		sblock_other = sblocks_for_recheck + mirror_index;
1093 
1094 		/* build and submit the bios, check checksums */
1095 		scrub_recheck_block(fs_info, sblock_other, 0);
1096 
1097 		if (!sblock_other->header_error &&
1098 		    !sblock_other->checksum_error &&
1099 		    sblock_other->no_io_error_seen) {
1100 			if (sctx->is_dev_replace) {
1101 				scrub_write_block_to_dev_replace(sblock_other);
1102 				goto corrected_error;
1103 			} else {
1104 				ret = scrub_repair_block_from_good_copy(
1105 						sblock_bad, sblock_other);
1106 				if (!ret)
1107 					goto corrected_error;
1108 			}
1109 		}
1110 	}
1111 
1112 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1113 		goto did_not_correct_error;
1114 
1115 	/*
1116 	 * In case of I/O errors in the area that is supposed to be
1117 	 * repaired, continue by picking good copies of those pages.
1118 	 * Select the good pages from mirrors to rewrite bad pages from
1119 	 * the area to fix. Afterwards verify the checksum of the block
1120 	 * that is supposed to be repaired. This verification step is
1121 	 * only done for the purpose of statistic counting and for the
1122 	 * final scrub report, whether errors remain.
1123 	 * A perfect algorithm could make use of the checksum and try
1124 	 * all possible combinations of pages from the different mirrors
1125 	 * until the checksum verification succeeds. For example, when
1126 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1127 	 * of mirror #2 is readable but the final checksum test fails,
1128 	 * then the 2nd page of mirror #3 could be tried, whether now
1129 	 * the final checksum succeedes. But this would be a rare
1130 	 * exception and is therefore not implemented. At least it is
1131 	 * avoided that the good copy is overwritten.
1132 	 * A more useful improvement would be to pick the sectors
1133 	 * without I/O error based on sector sizes (512 bytes on legacy
1134 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1135 	 * mirror could be repaired by taking 512 byte of a different
1136 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1137 	 * area are unreadable.
1138 	 */
1139 	success = 1;
1140 	for (page_num = 0; page_num < sblock_bad->page_count;
1141 	     page_num++) {
1142 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1143 		struct scrub_block *sblock_other = NULL;
1144 
1145 		/* skip no-io-error page in scrub */
1146 		if (!page_bad->io_error && !sctx->is_dev_replace)
1147 			continue;
1148 
1149 		/* try to find no-io-error page in mirrors */
1150 		if (page_bad->io_error) {
1151 			for (mirror_index = 0;
1152 			     mirror_index < BTRFS_MAX_MIRRORS &&
1153 			     sblocks_for_recheck[mirror_index].page_count > 0;
1154 			     mirror_index++) {
1155 				if (!sblocks_for_recheck[mirror_index].
1156 				    pagev[page_num]->io_error) {
1157 					sblock_other = sblocks_for_recheck +
1158 						       mirror_index;
1159 					break;
1160 				}
1161 			}
1162 			if (!sblock_other)
1163 				success = 0;
1164 		}
1165 
1166 		if (sctx->is_dev_replace) {
1167 			/*
1168 			 * did not find a mirror to fetch the page
1169 			 * from. scrub_write_page_to_dev_replace()
1170 			 * handles this case (page->io_error), by
1171 			 * filling the block with zeros before
1172 			 * submitting the write request
1173 			 */
1174 			if (!sblock_other)
1175 				sblock_other = sblock_bad;
1176 
1177 			if (scrub_write_page_to_dev_replace(sblock_other,
1178 							    page_num) != 0) {
1179 				btrfs_dev_replace_stats_inc(
1180 					&sctx->dev_root->
1181 					fs_info->dev_replace.
1182 					num_write_errors);
1183 				success = 0;
1184 			}
1185 		} else if (sblock_other) {
1186 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1187 							       sblock_other,
1188 							       page_num, 0);
1189 			if (0 == ret)
1190 				page_bad->io_error = 0;
1191 			else
1192 				success = 0;
1193 		}
1194 	}
1195 
1196 	if (success && !sctx->is_dev_replace) {
1197 		if (is_metadata || have_csum) {
1198 			/*
1199 			 * need to verify the checksum now that all
1200 			 * sectors on disk are repaired (the write
1201 			 * request for data to be repaired is on its way).
1202 			 * Just be lazy and use scrub_recheck_block()
1203 			 * which re-reads the data before the checksum
1204 			 * is verified, but most likely the data comes out
1205 			 * of the page cache.
1206 			 */
1207 			scrub_recheck_block(fs_info, sblock_bad, 1);
1208 			if (!sblock_bad->header_error &&
1209 			    !sblock_bad->checksum_error &&
1210 			    sblock_bad->no_io_error_seen)
1211 				goto corrected_error;
1212 			else
1213 				goto did_not_correct_error;
1214 		} else {
1215 corrected_error:
1216 			spin_lock(&sctx->stat_lock);
1217 			sctx->stat.corrected_errors++;
1218 			sblock_to_check->data_corrected = 1;
1219 			spin_unlock(&sctx->stat_lock);
1220 			btrfs_err_rl_in_rcu(fs_info,
1221 				"fixed up error at logical %llu on dev %s",
1222 				logical, rcu_str_deref(dev->name));
1223 		}
1224 	} else {
1225 did_not_correct_error:
1226 		spin_lock(&sctx->stat_lock);
1227 		sctx->stat.uncorrectable_errors++;
1228 		spin_unlock(&sctx->stat_lock);
1229 		btrfs_err_rl_in_rcu(fs_info,
1230 			"unable to fixup (regular) error at logical %llu on dev %s",
1231 			logical, rcu_str_deref(dev->name));
1232 	}
1233 
1234 out:
1235 	if (sblocks_for_recheck) {
1236 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1237 		     mirror_index++) {
1238 			struct scrub_block *sblock = sblocks_for_recheck +
1239 						     mirror_index;
1240 			struct scrub_recover *recover;
1241 			int page_index;
1242 
1243 			for (page_index = 0; page_index < sblock->page_count;
1244 			     page_index++) {
1245 				sblock->pagev[page_index]->sblock = NULL;
1246 				recover = sblock->pagev[page_index]->recover;
1247 				if (recover) {
1248 					scrub_put_recover(recover);
1249 					sblock->pagev[page_index]->recover =
1250 									NULL;
1251 				}
1252 				scrub_page_put(sblock->pagev[page_index]);
1253 			}
1254 		}
1255 		kfree(sblocks_for_recheck);
1256 	}
1257 
1258 	return 0;
1259 }
1260 
scrub_nr_raid_mirrors(struct btrfs_bio * bbio)1261 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1262 {
1263 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1264 		return 2;
1265 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1266 		return 3;
1267 	else
1268 		return (int)bbio->num_stripes;
1269 }
1270 
scrub_stripe_index_and_offset(u64 logical,u64 map_type,u64 * raid_map,u64 mapped_length,int nstripes,int mirror,int * stripe_index,u64 * stripe_offset)1271 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1272 						 u64 *raid_map,
1273 						 u64 mapped_length,
1274 						 int nstripes, int mirror,
1275 						 int *stripe_index,
1276 						 u64 *stripe_offset)
1277 {
1278 	int i;
1279 
1280 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1281 		/* RAID5/6 */
1282 		for (i = 0; i < nstripes; i++) {
1283 			if (raid_map[i] == RAID6_Q_STRIPE ||
1284 			    raid_map[i] == RAID5_P_STRIPE)
1285 				continue;
1286 
1287 			if (logical >= raid_map[i] &&
1288 			    logical < raid_map[i] + mapped_length)
1289 				break;
1290 		}
1291 
1292 		*stripe_index = i;
1293 		*stripe_offset = logical - raid_map[i];
1294 	} else {
1295 		/* The other RAID type */
1296 		*stripe_index = mirror;
1297 		*stripe_offset = 0;
1298 	}
1299 }
1300 
scrub_setup_recheck_block(struct scrub_block * original_sblock,struct scrub_block * sblocks_for_recheck)1301 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1302 				     struct scrub_block *sblocks_for_recheck)
1303 {
1304 	struct scrub_ctx *sctx = original_sblock->sctx;
1305 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
1306 	u64 length = original_sblock->page_count * PAGE_SIZE;
1307 	u64 logical = original_sblock->pagev[0]->logical;
1308 	u64 generation = original_sblock->pagev[0]->generation;
1309 	u64 flags = original_sblock->pagev[0]->flags;
1310 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1311 	struct scrub_recover *recover;
1312 	struct btrfs_bio *bbio;
1313 	u64 sublen;
1314 	u64 mapped_length;
1315 	u64 stripe_offset;
1316 	int stripe_index;
1317 	int page_index = 0;
1318 	int mirror_index;
1319 	int nmirrors;
1320 	int ret;
1321 
1322 	/*
1323 	 * note: the two members refs and outstanding_pages
1324 	 * are not used (and not set) in the blocks that are used for
1325 	 * the recheck procedure
1326 	 */
1327 
1328 	while (length > 0) {
1329 		sublen = min_t(u64, length, PAGE_SIZE);
1330 		mapped_length = sublen;
1331 		bbio = NULL;
1332 
1333 		/*
1334 		 * with a length of PAGE_SIZE, each returned stripe
1335 		 * represents one mirror
1336 		 */
1337 		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1338 				       &mapped_length, &bbio, 0, 1);
1339 		if (ret || !bbio || mapped_length < sublen) {
1340 			btrfs_put_bbio(bbio);
1341 			return -EIO;
1342 		}
1343 
1344 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1345 		if (!recover) {
1346 			btrfs_put_bbio(bbio);
1347 			return -ENOMEM;
1348 		}
1349 
1350 		atomic_set(&recover->refs, 1);
1351 		recover->bbio = bbio;
1352 		recover->map_length = mapped_length;
1353 
1354 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1355 
1356 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1357 
1358 		for (mirror_index = 0; mirror_index < nmirrors;
1359 		     mirror_index++) {
1360 			struct scrub_block *sblock;
1361 			struct scrub_page *page;
1362 
1363 			sblock = sblocks_for_recheck + mirror_index;
1364 			sblock->sctx = sctx;
1365 
1366 			page = kzalloc(sizeof(*page), GFP_NOFS);
1367 			if (!page) {
1368 leave_nomem:
1369 				spin_lock(&sctx->stat_lock);
1370 				sctx->stat.malloc_errors++;
1371 				spin_unlock(&sctx->stat_lock);
1372 				scrub_put_recover(recover);
1373 				return -ENOMEM;
1374 			}
1375 			scrub_page_get(page);
1376 			sblock->pagev[page_index] = page;
1377 			page->sblock = sblock;
1378 			page->flags = flags;
1379 			page->generation = generation;
1380 			page->logical = logical;
1381 			page->have_csum = have_csum;
1382 			if (have_csum)
1383 				memcpy(page->csum,
1384 				       original_sblock->pagev[0]->csum,
1385 				       sctx->csum_size);
1386 
1387 			scrub_stripe_index_and_offset(logical,
1388 						      bbio->map_type,
1389 						      bbio->raid_map,
1390 						      mapped_length,
1391 						      bbio->num_stripes -
1392 						      bbio->num_tgtdevs,
1393 						      mirror_index,
1394 						      &stripe_index,
1395 						      &stripe_offset);
1396 			page->physical = bbio->stripes[stripe_index].physical +
1397 					 stripe_offset;
1398 			page->dev = bbio->stripes[stripe_index].dev;
1399 
1400 			BUG_ON(page_index >= original_sblock->page_count);
1401 			page->physical_for_dev_replace =
1402 				original_sblock->pagev[page_index]->
1403 				physical_for_dev_replace;
1404 			/* for missing devices, dev->bdev is NULL */
1405 			page->mirror_num = mirror_index + 1;
1406 			sblock->page_count++;
1407 			page->page = alloc_page(GFP_NOFS);
1408 			if (!page->page)
1409 				goto leave_nomem;
1410 
1411 			scrub_get_recover(recover);
1412 			page->recover = recover;
1413 		}
1414 		scrub_put_recover(recover);
1415 		length -= sublen;
1416 		logical += sublen;
1417 		page_index++;
1418 	}
1419 
1420 	return 0;
1421 }
1422 
1423 struct scrub_bio_ret {
1424 	struct completion event;
1425 	int error;
1426 };
1427 
scrub_bio_wait_endio(struct bio * bio)1428 static void scrub_bio_wait_endio(struct bio *bio)
1429 {
1430 	struct scrub_bio_ret *ret = bio->bi_private;
1431 
1432 	ret->error = bio->bi_error;
1433 	complete(&ret->event);
1434 }
1435 
scrub_is_page_on_raid56(struct scrub_page * page)1436 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1437 {
1438 	return page->recover &&
1439 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1440 }
1441 
scrub_submit_raid56_bio_wait(struct btrfs_fs_info * fs_info,struct bio * bio,struct scrub_page * page)1442 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1443 					struct bio *bio,
1444 					struct scrub_page *page)
1445 {
1446 	struct scrub_bio_ret done;
1447 	int ret;
1448 
1449 	init_completion(&done.event);
1450 	done.error = 0;
1451 	bio->bi_iter.bi_sector = page->logical >> 9;
1452 	bio->bi_private = &done;
1453 	bio->bi_end_io = scrub_bio_wait_endio;
1454 
1455 	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
1456 				    page->recover->map_length,
1457 				    page->mirror_num, 0);
1458 	if (ret)
1459 		return ret;
1460 
1461 	wait_for_completion(&done.event);
1462 	if (done.error)
1463 		return -EIO;
1464 
1465 	return 0;
1466 }
1467 
1468 /*
1469  * this function will check the on disk data for checksum errors, header
1470  * errors and read I/O errors. If any I/O errors happen, the exact pages
1471  * which are errored are marked as being bad. The goal is to enable scrub
1472  * to take those pages that are not errored from all the mirrors so that
1473  * the pages that are errored in the just handled mirror can be repaired.
1474  */
scrub_recheck_block(struct btrfs_fs_info * fs_info,struct scrub_block * sblock,int retry_failed_mirror)1475 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1476 				struct scrub_block *sblock,
1477 				int retry_failed_mirror)
1478 {
1479 	int page_num;
1480 
1481 	sblock->no_io_error_seen = 1;
1482 
1483 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1484 		struct bio *bio;
1485 		struct scrub_page *page = sblock->pagev[page_num];
1486 
1487 		if (page->dev->bdev == NULL) {
1488 			page->io_error = 1;
1489 			sblock->no_io_error_seen = 0;
1490 			continue;
1491 		}
1492 
1493 		WARN_ON(!page->page);
1494 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1495 		if (!bio) {
1496 			page->io_error = 1;
1497 			sblock->no_io_error_seen = 0;
1498 			continue;
1499 		}
1500 		bio->bi_bdev = page->dev->bdev;
1501 
1502 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1503 		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1504 			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1505 				sblock->no_io_error_seen = 0;
1506 		} else {
1507 			bio->bi_iter.bi_sector = page->physical >> 9;
1508 
1509 			if (btrfsic_submit_bio_wait(READ, bio))
1510 				sblock->no_io_error_seen = 0;
1511 		}
1512 
1513 		bio_put(bio);
1514 	}
1515 
1516 	if (sblock->no_io_error_seen)
1517 		scrub_recheck_block_checksum(sblock);
1518 
1519 	return;
1520 }
1521 
scrub_check_fsid(u8 fsid[],struct scrub_page * spage)1522 static inline int scrub_check_fsid(u8 fsid[],
1523 				   struct scrub_page *spage)
1524 {
1525 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1526 	int ret;
1527 
1528 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1529 	return !ret;
1530 }
1531 
scrub_recheck_block_checksum(struct scrub_block * sblock)1532 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1533 {
1534 	sblock->header_error = 0;
1535 	sblock->checksum_error = 0;
1536 	sblock->generation_error = 0;
1537 
1538 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1539 		scrub_checksum_data(sblock);
1540 	else
1541 		scrub_checksum_tree_block(sblock);
1542 }
1543 
scrub_repair_block_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good)1544 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1545 					     struct scrub_block *sblock_good)
1546 {
1547 	int page_num;
1548 	int ret = 0;
1549 
1550 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1551 		int ret_sub;
1552 
1553 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1554 							   sblock_good,
1555 							   page_num, 1);
1556 		if (ret_sub)
1557 			ret = ret_sub;
1558 	}
1559 
1560 	return ret;
1561 }
1562 
scrub_repair_page_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good,int page_num,int force_write)1563 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1564 					    struct scrub_block *sblock_good,
1565 					    int page_num, int force_write)
1566 {
1567 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1568 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1569 
1570 	BUG_ON(page_bad->page == NULL);
1571 	BUG_ON(page_good->page == NULL);
1572 	if (force_write || sblock_bad->header_error ||
1573 	    sblock_bad->checksum_error || page_bad->io_error) {
1574 		struct bio *bio;
1575 		int ret;
1576 
1577 		if (!page_bad->dev->bdev) {
1578 			btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info,
1579 				"scrub_repair_page_from_good_copy(bdev == NULL) "
1580 				"is unexpected");
1581 			return -EIO;
1582 		}
1583 
1584 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1585 		if (!bio)
1586 			return -EIO;
1587 		bio->bi_bdev = page_bad->dev->bdev;
1588 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1589 
1590 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1591 		if (PAGE_SIZE != ret) {
1592 			bio_put(bio);
1593 			return -EIO;
1594 		}
1595 
1596 		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1597 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1598 				BTRFS_DEV_STAT_WRITE_ERRS);
1599 			btrfs_dev_replace_stats_inc(
1600 				&sblock_bad->sctx->dev_root->fs_info->
1601 				dev_replace.num_write_errors);
1602 			bio_put(bio);
1603 			return -EIO;
1604 		}
1605 		bio_put(bio);
1606 	}
1607 
1608 	return 0;
1609 }
1610 
scrub_write_block_to_dev_replace(struct scrub_block * sblock)1611 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1612 {
1613 	int page_num;
1614 
1615 	/*
1616 	 * This block is used for the check of the parity on the source device,
1617 	 * so the data needn't be written into the destination device.
1618 	 */
1619 	if (sblock->sparity)
1620 		return;
1621 
1622 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1623 		int ret;
1624 
1625 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1626 		if (ret)
1627 			btrfs_dev_replace_stats_inc(
1628 				&sblock->sctx->dev_root->fs_info->dev_replace.
1629 				num_write_errors);
1630 	}
1631 }
1632 
scrub_write_page_to_dev_replace(struct scrub_block * sblock,int page_num)1633 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1634 					   int page_num)
1635 {
1636 	struct scrub_page *spage = sblock->pagev[page_num];
1637 
1638 	BUG_ON(spage->page == NULL);
1639 	if (spage->io_error) {
1640 		void *mapped_buffer = kmap_atomic(spage->page);
1641 
1642 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1643 		flush_dcache_page(spage->page);
1644 		kunmap_atomic(mapped_buffer);
1645 	}
1646 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1647 }
1648 
scrub_add_page_to_wr_bio(struct scrub_ctx * sctx,struct scrub_page * spage)1649 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1650 				    struct scrub_page *spage)
1651 {
1652 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1653 	struct scrub_bio *sbio;
1654 	int ret;
1655 
1656 	mutex_lock(&wr_ctx->wr_lock);
1657 again:
1658 	if (!wr_ctx->wr_curr_bio) {
1659 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1660 					      GFP_NOFS);
1661 		if (!wr_ctx->wr_curr_bio) {
1662 			mutex_unlock(&wr_ctx->wr_lock);
1663 			return -ENOMEM;
1664 		}
1665 		wr_ctx->wr_curr_bio->sctx = sctx;
1666 		wr_ctx->wr_curr_bio->page_count = 0;
1667 	}
1668 	sbio = wr_ctx->wr_curr_bio;
1669 	if (sbio->page_count == 0) {
1670 		struct bio *bio;
1671 
1672 		sbio->physical = spage->physical_for_dev_replace;
1673 		sbio->logical = spage->logical;
1674 		sbio->dev = wr_ctx->tgtdev;
1675 		bio = sbio->bio;
1676 		if (!bio) {
1677 			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1678 			if (!bio) {
1679 				mutex_unlock(&wr_ctx->wr_lock);
1680 				return -ENOMEM;
1681 			}
1682 			sbio->bio = bio;
1683 		}
1684 
1685 		bio->bi_private = sbio;
1686 		bio->bi_end_io = scrub_wr_bio_end_io;
1687 		bio->bi_bdev = sbio->dev->bdev;
1688 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1689 		sbio->err = 0;
1690 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1691 		   spage->physical_for_dev_replace ||
1692 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1693 		   spage->logical) {
1694 		scrub_wr_submit(sctx);
1695 		goto again;
1696 	}
1697 
1698 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1699 	if (ret != PAGE_SIZE) {
1700 		if (sbio->page_count < 1) {
1701 			bio_put(sbio->bio);
1702 			sbio->bio = NULL;
1703 			mutex_unlock(&wr_ctx->wr_lock);
1704 			return -EIO;
1705 		}
1706 		scrub_wr_submit(sctx);
1707 		goto again;
1708 	}
1709 
1710 	sbio->pagev[sbio->page_count] = spage;
1711 	scrub_page_get(spage);
1712 	sbio->page_count++;
1713 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1714 		scrub_wr_submit(sctx);
1715 	mutex_unlock(&wr_ctx->wr_lock);
1716 
1717 	return 0;
1718 }
1719 
scrub_wr_submit(struct scrub_ctx * sctx)1720 static void scrub_wr_submit(struct scrub_ctx *sctx)
1721 {
1722 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1723 	struct scrub_bio *sbio;
1724 
1725 	if (!wr_ctx->wr_curr_bio)
1726 		return;
1727 
1728 	sbio = wr_ctx->wr_curr_bio;
1729 	wr_ctx->wr_curr_bio = NULL;
1730 	WARN_ON(!sbio->bio->bi_bdev);
1731 	scrub_pending_bio_inc(sctx);
1732 	/* process all writes in a single worker thread. Then the block layer
1733 	 * orders the requests before sending them to the driver which
1734 	 * doubled the write performance on spinning disks when measured
1735 	 * with Linux 3.5 */
1736 	btrfsic_submit_bio(WRITE, sbio->bio);
1737 }
1738 
scrub_wr_bio_end_io(struct bio * bio)1739 static void scrub_wr_bio_end_io(struct bio *bio)
1740 {
1741 	struct scrub_bio *sbio = bio->bi_private;
1742 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1743 
1744 	sbio->err = bio->bi_error;
1745 	sbio->bio = bio;
1746 
1747 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1748 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1749 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1750 }
1751 
scrub_wr_bio_end_io_worker(struct btrfs_work * work)1752 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1753 {
1754 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1755 	struct scrub_ctx *sctx = sbio->sctx;
1756 	int i;
1757 
1758 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1759 	if (sbio->err) {
1760 		struct btrfs_dev_replace *dev_replace =
1761 			&sbio->sctx->dev_root->fs_info->dev_replace;
1762 
1763 		for (i = 0; i < sbio->page_count; i++) {
1764 			struct scrub_page *spage = sbio->pagev[i];
1765 
1766 			spage->io_error = 1;
1767 			btrfs_dev_replace_stats_inc(&dev_replace->
1768 						    num_write_errors);
1769 		}
1770 	}
1771 
1772 	for (i = 0; i < sbio->page_count; i++)
1773 		scrub_page_put(sbio->pagev[i]);
1774 
1775 	bio_put(sbio->bio);
1776 	kfree(sbio);
1777 	scrub_pending_bio_dec(sctx);
1778 }
1779 
scrub_checksum(struct scrub_block * sblock)1780 static int scrub_checksum(struct scrub_block *sblock)
1781 {
1782 	u64 flags;
1783 	int ret;
1784 
1785 	/*
1786 	 * No need to initialize these stats currently,
1787 	 * because this function only use return value
1788 	 * instead of these stats value.
1789 	 *
1790 	 * Todo:
1791 	 * always use stats
1792 	 */
1793 	sblock->header_error = 0;
1794 	sblock->generation_error = 0;
1795 	sblock->checksum_error = 0;
1796 
1797 	WARN_ON(sblock->page_count < 1);
1798 	flags = sblock->pagev[0]->flags;
1799 	ret = 0;
1800 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1801 		ret = scrub_checksum_data(sblock);
1802 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1803 		ret = scrub_checksum_tree_block(sblock);
1804 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1805 		(void)scrub_checksum_super(sblock);
1806 	else
1807 		WARN_ON(1);
1808 	if (ret)
1809 		scrub_handle_errored_block(sblock);
1810 
1811 	return ret;
1812 }
1813 
scrub_checksum_data(struct scrub_block * sblock)1814 static int scrub_checksum_data(struct scrub_block *sblock)
1815 {
1816 	struct scrub_ctx *sctx = sblock->sctx;
1817 	u8 csum[BTRFS_CSUM_SIZE];
1818 	u8 *on_disk_csum;
1819 	struct page *page;
1820 	void *buffer;
1821 	u32 crc = ~(u32)0;
1822 	u64 len;
1823 	int index;
1824 
1825 	BUG_ON(sblock->page_count < 1);
1826 	if (!sblock->pagev[0]->have_csum)
1827 		return 0;
1828 
1829 	on_disk_csum = sblock->pagev[0]->csum;
1830 	page = sblock->pagev[0]->page;
1831 	buffer = kmap_atomic(page);
1832 
1833 	len = sctx->sectorsize;
1834 	index = 0;
1835 	for (;;) {
1836 		u64 l = min_t(u64, len, PAGE_SIZE);
1837 
1838 		crc = btrfs_csum_data(buffer, crc, l);
1839 		kunmap_atomic(buffer);
1840 		len -= l;
1841 		if (len == 0)
1842 			break;
1843 		index++;
1844 		BUG_ON(index >= sblock->page_count);
1845 		BUG_ON(!sblock->pagev[index]->page);
1846 		page = sblock->pagev[index]->page;
1847 		buffer = kmap_atomic(page);
1848 	}
1849 
1850 	btrfs_csum_final(crc, csum);
1851 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1852 		sblock->checksum_error = 1;
1853 
1854 	return sblock->checksum_error;
1855 }
1856 
scrub_checksum_tree_block(struct scrub_block * sblock)1857 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1858 {
1859 	struct scrub_ctx *sctx = sblock->sctx;
1860 	struct btrfs_header *h;
1861 	struct btrfs_root *root = sctx->dev_root;
1862 	struct btrfs_fs_info *fs_info = root->fs_info;
1863 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1864 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1865 	struct page *page;
1866 	void *mapped_buffer;
1867 	u64 mapped_size;
1868 	void *p;
1869 	u32 crc = ~(u32)0;
1870 	u64 len;
1871 	int index;
1872 
1873 	BUG_ON(sblock->page_count < 1);
1874 	page = sblock->pagev[0]->page;
1875 	mapped_buffer = kmap_atomic(page);
1876 	h = (struct btrfs_header *)mapped_buffer;
1877 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1878 
1879 	/*
1880 	 * we don't use the getter functions here, as we
1881 	 * a) don't have an extent buffer and
1882 	 * b) the page is already kmapped
1883 	 */
1884 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1885 		sblock->header_error = 1;
1886 
1887 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1888 		sblock->header_error = 1;
1889 		sblock->generation_error = 1;
1890 	}
1891 
1892 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1893 		sblock->header_error = 1;
1894 
1895 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1896 		   BTRFS_UUID_SIZE))
1897 		sblock->header_error = 1;
1898 
1899 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1900 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1901 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1902 	index = 0;
1903 	for (;;) {
1904 		u64 l = min_t(u64, len, mapped_size);
1905 
1906 		crc = btrfs_csum_data(p, crc, l);
1907 		kunmap_atomic(mapped_buffer);
1908 		len -= l;
1909 		if (len == 0)
1910 			break;
1911 		index++;
1912 		BUG_ON(index >= sblock->page_count);
1913 		BUG_ON(!sblock->pagev[index]->page);
1914 		page = sblock->pagev[index]->page;
1915 		mapped_buffer = kmap_atomic(page);
1916 		mapped_size = PAGE_SIZE;
1917 		p = mapped_buffer;
1918 	}
1919 
1920 	btrfs_csum_final(crc, calculated_csum);
1921 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1922 		sblock->checksum_error = 1;
1923 
1924 	return sblock->header_error || sblock->checksum_error;
1925 }
1926 
scrub_checksum_super(struct scrub_block * sblock)1927 static int scrub_checksum_super(struct scrub_block *sblock)
1928 {
1929 	struct btrfs_super_block *s;
1930 	struct scrub_ctx *sctx = sblock->sctx;
1931 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1932 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1933 	struct page *page;
1934 	void *mapped_buffer;
1935 	u64 mapped_size;
1936 	void *p;
1937 	u32 crc = ~(u32)0;
1938 	int fail_gen = 0;
1939 	int fail_cor = 0;
1940 	u64 len;
1941 	int index;
1942 
1943 	BUG_ON(sblock->page_count < 1);
1944 	page = sblock->pagev[0]->page;
1945 	mapped_buffer = kmap_atomic(page);
1946 	s = (struct btrfs_super_block *)mapped_buffer;
1947 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1948 
1949 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1950 		++fail_cor;
1951 
1952 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1953 		++fail_gen;
1954 
1955 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1956 		++fail_cor;
1957 
1958 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1959 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1960 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1961 	index = 0;
1962 	for (;;) {
1963 		u64 l = min_t(u64, len, mapped_size);
1964 
1965 		crc = btrfs_csum_data(p, crc, l);
1966 		kunmap_atomic(mapped_buffer);
1967 		len -= l;
1968 		if (len == 0)
1969 			break;
1970 		index++;
1971 		BUG_ON(index >= sblock->page_count);
1972 		BUG_ON(!sblock->pagev[index]->page);
1973 		page = sblock->pagev[index]->page;
1974 		mapped_buffer = kmap_atomic(page);
1975 		mapped_size = PAGE_SIZE;
1976 		p = mapped_buffer;
1977 	}
1978 
1979 	btrfs_csum_final(crc, calculated_csum);
1980 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1981 		++fail_cor;
1982 
1983 	if (fail_cor + fail_gen) {
1984 		/*
1985 		 * if we find an error in a super block, we just report it.
1986 		 * They will get written with the next transaction commit
1987 		 * anyway
1988 		 */
1989 		spin_lock(&sctx->stat_lock);
1990 		++sctx->stat.super_errors;
1991 		spin_unlock(&sctx->stat_lock);
1992 		if (fail_cor)
1993 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1994 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1995 		else
1996 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1997 				BTRFS_DEV_STAT_GENERATION_ERRS);
1998 	}
1999 
2000 	return fail_cor + fail_gen;
2001 }
2002 
scrub_block_get(struct scrub_block * sblock)2003 static void scrub_block_get(struct scrub_block *sblock)
2004 {
2005 	atomic_inc(&sblock->refs);
2006 }
2007 
scrub_block_put(struct scrub_block * sblock)2008 static void scrub_block_put(struct scrub_block *sblock)
2009 {
2010 	if (atomic_dec_and_test(&sblock->refs)) {
2011 		int i;
2012 
2013 		if (sblock->sparity)
2014 			scrub_parity_put(sblock->sparity);
2015 
2016 		for (i = 0; i < sblock->page_count; i++)
2017 			scrub_page_put(sblock->pagev[i]);
2018 		kfree(sblock);
2019 	}
2020 }
2021 
scrub_page_get(struct scrub_page * spage)2022 static void scrub_page_get(struct scrub_page *spage)
2023 {
2024 	atomic_inc(&spage->refs);
2025 }
2026 
scrub_page_put(struct scrub_page * spage)2027 static void scrub_page_put(struct scrub_page *spage)
2028 {
2029 	if (atomic_dec_and_test(&spage->refs)) {
2030 		if (spage->page)
2031 			__free_page(spage->page);
2032 		kfree(spage);
2033 	}
2034 }
2035 
scrub_submit(struct scrub_ctx * sctx)2036 static void scrub_submit(struct scrub_ctx *sctx)
2037 {
2038 	struct scrub_bio *sbio;
2039 
2040 	if (sctx->curr == -1)
2041 		return;
2042 
2043 	sbio = sctx->bios[sctx->curr];
2044 	sctx->curr = -1;
2045 	scrub_pending_bio_inc(sctx);
2046 	btrfsic_submit_bio(READ, sbio->bio);
2047 }
2048 
scrub_add_page_to_rd_bio(struct scrub_ctx * sctx,struct scrub_page * spage)2049 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2050 				    struct scrub_page *spage)
2051 {
2052 	struct scrub_block *sblock = spage->sblock;
2053 	struct scrub_bio *sbio;
2054 	int ret;
2055 
2056 again:
2057 	/*
2058 	 * grab a fresh bio or wait for one to become available
2059 	 */
2060 	while (sctx->curr == -1) {
2061 		spin_lock(&sctx->list_lock);
2062 		sctx->curr = sctx->first_free;
2063 		if (sctx->curr != -1) {
2064 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2065 			sctx->bios[sctx->curr]->next_free = -1;
2066 			sctx->bios[sctx->curr]->page_count = 0;
2067 			spin_unlock(&sctx->list_lock);
2068 		} else {
2069 			spin_unlock(&sctx->list_lock);
2070 			wait_event(sctx->list_wait, sctx->first_free != -1);
2071 		}
2072 	}
2073 	sbio = sctx->bios[sctx->curr];
2074 	if (sbio->page_count == 0) {
2075 		struct bio *bio;
2076 
2077 		sbio->physical = spage->physical;
2078 		sbio->logical = spage->logical;
2079 		sbio->dev = spage->dev;
2080 		bio = sbio->bio;
2081 		if (!bio) {
2082 			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2083 			if (!bio)
2084 				return -ENOMEM;
2085 			sbio->bio = bio;
2086 		}
2087 
2088 		bio->bi_private = sbio;
2089 		bio->bi_end_io = scrub_bio_end_io;
2090 		bio->bi_bdev = sbio->dev->bdev;
2091 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2092 		sbio->err = 0;
2093 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2094 		   spage->physical ||
2095 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2096 		   spage->logical ||
2097 		   sbio->dev != spage->dev) {
2098 		scrub_submit(sctx);
2099 		goto again;
2100 	}
2101 
2102 	sbio->pagev[sbio->page_count] = spage;
2103 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2104 	if (ret != PAGE_SIZE) {
2105 		if (sbio->page_count < 1) {
2106 			bio_put(sbio->bio);
2107 			sbio->bio = NULL;
2108 			return -EIO;
2109 		}
2110 		scrub_submit(sctx);
2111 		goto again;
2112 	}
2113 
2114 	scrub_block_get(sblock); /* one for the page added to the bio */
2115 	atomic_inc(&sblock->outstanding_pages);
2116 	sbio->page_count++;
2117 	if (sbio->page_count == sctx->pages_per_rd_bio)
2118 		scrub_submit(sctx);
2119 
2120 	return 0;
2121 }
2122 
scrub_missing_raid56_end_io(struct bio * bio)2123 static void scrub_missing_raid56_end_io(struct bio *bio)
2124 {
2125 	struct scrub_block *sblock = bio->bi_private;
2126 	struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;
2127 
2128 	if (bio->bi_error)
2129 		sblock->no_io_error_seen = 0;
2130 
2131 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2132 }
2133 
scrub_missing_raid56_worker(struct btrfs_work * work)2134 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2135 {
2136 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2137 	struct scrub_ctx *sctx = sblock->sctx;
2138 	u64 logical;
2139 	struct btrfs_device *dev;
2140 
2141 	logical = sblock->pagev[0]->logical;
2142 	dev = sblock->pagev[0]->dev;
2143 
2144 	if (sblock->no_io_error_seen)
2145 		scrub_recheck_block_checksum(sblock);
2146 
2147 	if (!sblock->no_io_error_seen) {
2148 		spin_lock(&sctx->stat_lock);
2149 		sctx->stat.read_errors++;
2150 		spin_unlock(&sctx->stat_lock);
2151 		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2152 			"IO error rebuilding logical %llu for dev %s",
2153 			logical, rcu_str_deref(dev->name));
2154 	} else if (sblock->header_error || sblock->checksum_error) {
2155 		spin_lock(&sctx->stat_lock);
2156 		sctx->stat.uncorrectable_errors++;
2157 		spin_unlock(&sctx->stat_lock);
2158 		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2159 			"failed to rebuild valid logical %llu for dev %s",
2160 			logical, rcu_str_deref(dev->name));
2161 	} else {
2162 		scrub_write_block_to_dev_replace(sblock);
2163 	}
2164 
2165 	scrub_block_put(sblock);
2166 
2167 	if (sctx->is_dev_replace &&
2168 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2169 		mutex_lock(&sctx->wr_ctx.wr_lock);
2170 		scrub_wr_submit(sctx);
2171 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2172 	}
2173 
2174 	scrub_pending_bio_dec(sctx);
2175 }
2176 
scrub_missing_raid56_pages(struct scrub_block * sblock)2177 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2178 {
2179 	struct scrub_ctx *sctx = sblock->sctx;
2180 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2181 	u64 length = sblock->page_count * PAGE_SIZE;
2182 	u64 logical = sblock->pagev[0]->logical;
2183 	struct btrfs_bio *bbio;
2184 	struct bio *bio;
2185 	struct btrfs_raid_bio *rbio;
2186 	int ret;
2187 	int i;
2188 
2189 	ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
2190 			       &bbio, 0, 1);
2191 	if (ret || !bbio || !bbio->raid_map)
2192 		goto bbio_out;
2193 
2194 	if (WARN_ON(!sctx->is_dev_replace ||
2195 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2196 		/*
2197 		 * We shouldn't be scrubbing a missing device. Even for dev
2198 		 * replace, we should only get here for RAID 5/6. We either
2199 		 * managed to mount something with no mirrors remaining or
2200 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2201 		 */
2202 		goto bbio_out;
2203 	}
2204 
2205 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2206 	if (!bio)
2207 		goto bbio_out;
2208 
2209 	bio->bi_iter.bi_sector = logical >> 9;
2210 	bio->bi_private = sblock;
2211 	bio->bi_end_io = scrub_missing_raid56_end_io;
2212 
2213 	rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
2214 	if (!rbio)
2215 		goto rbio_out;
2216 
2217 	for (i = 0; i < sblock->page_count; i++) {
2218 		struct scrub_page *spage = sblock->pagev[i];
2219 
2220 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2221 	}
2222 
2223 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2224 			scrub_missing_raid56_worker, NULL, NULL);
2225 	scrub_block_get(sblock);
2226 	scrub_pending_bio_inc(sctx);
2227 	raid56_submit_missing_rbio(rbio);
2228 	return;
2229 
2230 rbio_out:
2231 	bio_put(bio);
2232 bbio_out:
2233 	btrfs_put_bbio(bbio);
2234 	spin_lock(&sctx->stat_lock);
2235 	sctx->stat.malloc_errors++;
2236 	spin_unlock(&sctx->stat_lock);
2237 }
2238 
scrub_pages(struct scrub_ctx * sctx,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum,int force,u64 physical_for_dev_replace)2239 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2240 		       u64 physical, struct btrfs_device *dev, u64 flags,
2241 		       u64 gen, int mirror_num, u8 *csum, int force,
2242 		       u64 physical_for_dev_replace)
2243 {
2244 	struct scrub_block *sblock;
2245 	int index;
2246 
2247 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2248 	if (!sblock) {
2249 		spin_lock(&sctx->stat_lock);
2250 		sctx->stat.malloc_errors++;
2251 		spin_unlock(&sctx->stat_lock);
2252 		return -ENOMEM;
2253 	}
2254 
2255 	/* one ref inside this function, plus one for each page added to
2256 	 * a bio later on */
2257 	atomic_set(&sblock->refs, 1);
2258 	sblock->sctx = sctx;
2259 	sblock->no_io_error_seen = 1;
2260 
2261 	for (index = 0; len > 0; index++) {
2262 		struct scrub_page *spage;
2263 		u64 l = min_t(u64, len, PAGE_SIZE);
2264 
2265 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2266 		if (!spage) {
2267 leave_nomem:
2268 			spin_lock(&sctx->stat_lock);
2269 			sctx->stat.malloc_errors++;
2270 			spin_unlock(&sctx->stat_lock);
2271 			scrub_block_put(sblock);
2272 			return -ENOMEM;
2273 		}
2274 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2275 		scrub_page_get(spage);
2276 		sblock->pagev[index] = spage;
2277 		spage->sblock = sblock;
2278 		spage->dev = dev;
2279 		spage->flags = flags;
2280 		spage->generation = gen;
2281 		spage->logical = logical;
2282 		spage->physical = physical;
2283 		spage->physical_for_dev_replace = physical_for_dev_replace;
2284 		spage->mirror_num = mirror_num;
2285 		if (csum) {
2286 			spage->have_csum = 1;
2287 			memcpy(spage->csum, csum, sctx->csum_size);
2288 		} else {
2289 			spage->have_csum = 0;
2290 		}
2291 		sblock->page_count++;
2292 		spage->page = alloc_page(GFP_NOFS);
2293 		if (!spage->page)
2294 			goto leave_nomem;
2295 		len -= l;
2296 		logical += l;
2297 		physical += l;
2298 		physical_for_dev_replace += l;
2299 	}
2300 
2301 	WARN_ON(sblock->page_count == 0);
2302 	if (dev->missing) {
2303 		/*
2304 		 * This case should only be hit for RAID 5/6 device replace. See
2305 		 * the comment in scrub_missing_raid56_pages() for details.
2306 		 */
2307 		scrub_missing_raid56_pages(sblock);
2308 	} else {
2309 		for (index = 0; index < sblock->page_count; index++) {
2310 			struct scrub_page *spage = sblock->pagev[index];
2311 			int ret;
2312 
2313 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2314 			if (ret) {
2315 				scrub_block_put(sblock);
2316 				return ret;
2317 			}
2318 		}
2319 
2320 		if (force)
2321 			scrub_submit(sctx);
2322 	}
2323 
2324 	/* last one frees, either here or in bio completion for last page */
2325 	scrub_block_put(sblock);
2326 	return 0;
2327 }
2328 
scrub_bio_end_io(struct bio * bio)2329 static void scrub_bio_end_io(struct bio *bio)
2330 {
2331 	struct scrub_bio *sbio = bio->bi_private;
2332 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2333 
2334 	sbio->err = bio->bi_error;
2335 	sbio->bio = bio;
2336 
2337 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2338 }
2339 
scrub_bio_end_io_worker(struct btrfs_work * work)2340 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2341 {
2342 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2343 	struct scrub_ctx *sctx = sbio->sctx;
2344 	int i;
2345 
2346 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2347 	if (sbio->err) {
2348 		for (i = 0; i < sbio->page_count; i++) {
2349 			struct scrub_page *spage = sbio->pagev[i];
2350 
2351 			spage->io_error = 1;
2352 			spage->sblock->no_io_error_seen = 0;
2353 		}
2354 	}
2355 
2356 	/* now complete the scrub_block items that have all pages completed */
2357 	for (i = 0; i < sbio->page_count; i++) {
2358 		struct scrub_page *spage = sbio->pagev[i];
2359 		struct scrub_block *sblock = spage->sblock;
2360 
2361 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2362 			scrub_block_complete(sblock);
2363 		scrub_block_put(sblock);
2364 	}
2365 
2366 	bio_put(sbio->bio);
2367 	sbio->bio = NULL;
2368 	spin_lock(&sctx->list_lock);
2369 	sbio->next_free = sctx->first_free;
2370 	sctx->first_free = sbio->index;
2371 	spin_unlock(&sctx->list_lock);
2372 
2373 	if (sctx->is_dev_replace &&
2374 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2375 		mutex_lock(&sctx->wr_ctx.wr_lock);
2376 		scrub_wr_submit(sctx);
2377 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2378 	}
2379 
2380 	scrub_pending_bio_dec(sctx);
2381 }
2382 
__scrub_mark_bitmap(struct scrub_parity * sparity,unsigned long * bitmap,u64 start,u64 len)2383 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2384 				       unsigned long *bitmap,
2385 				       u64 start, u64 len)
2386 {
2387 	u32 offset;
2388 	int nsectors;
2389 	int sectorsize = sparity->sctx->dev_root->sectorsize;
2390 
2391 	if (len >= sparity->stripe_len) {
2392 		bitmap_set(bitmap, 0, sparity->nsectors);
2393 		return;
2394 	}
2395 
2396 	start -= sparity->logic_start;
2397 	start = div_u64_rem(start, sparity->stripe_len, &offset);
2398 	offset /= sectorsize;
2399 	nsectors = (int)len / sectorsize;
2400 
2401 	if (offset + nsectors <= sparity->nsectors) {
2402 		bitmap_set(bitmap, offset, nsectors);
2403 		return;
2404 	}
2405 
2406 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2407 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2408 }
2409 
scrub_parity_mark_sectors_error(struct scrub_parity * sparity,u64 start,u64 len)2410 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2411 						   u64 start, u64 len)
2412 {
2413 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2414 }
2415 
scrub_parity_mark_sectors_data(struct scrub_parity * sparity,u64 start,u64 len)2416 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2417 						  u64 start, u64 len)
2418 {
2419 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2420 }
2421 
scrub_block_complete(struct scrub_block * sblock)2422 static void scrub_block_complete(struct scrub_block *sblock)
2423 {
2424 	int corrupted = 0;
2425 
2426 	if (!sblock->no_io_error_seen) {
2427 		corrupted = 1;
2428 		scrub_handle_errored_block(sblock);
2429 	} else {
2430 		/*
2431 		 * if has checksum error, write via repair mechanism in
2432 		 * dev replace case, otherwise write here in dev replace
2433 		 * case.
2434 		 */
2435 		corrupted = scrub_checksum(sblock);
2436 		if (!corrupted && sblock->sctx->is_dev_replace)
2437 			scrub_write_block_to_dev_replace(sblock);
2438 	}
2439 
2440 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2441 		u64 start = sblock->pagev[0]->logical;
2442 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2443 			  PAGE_SIZE;
2444 
2445 		scrub_parity_mark_sectors_error(sblock->sparity,
2446 						start, end - start);
2447 	}
2448 }
2449 
scrub_find_csum(struct scrub_ctx * sctx,u64 logical,u8 * csum)2450 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2451 {
2452 	struct btrfs_ordered_sum *sum = NULL;
2453 	unsigned long index;
2454 	unsigned long num_sectors;
2455 
2456 	while (!list_empty(&sctx->csum_list)) {
2457 		sum = list_first_entry(&sctx->csum_list,
2458 				       struct btrfs_ordered_sum, list);
2459 		if (sum->bytenr > logical)
2460 			return 0;
2461 		if (sum->bytenr + sum->len > logical)
2462 			break;
2463 
2464 		++sctx->stat.csum_discards;
2465 		list_del(&sum->list);
2466 		kfree(sum);
2467 		sum = NULL;
2468 	}
2469 	if (!sum)
2470 		return 0;
2471 
2472 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2473 	num_sectors = sum->len / sctx->sectorsize;
2474 	memcpy(csum, sum->sums + index, sctx->csum_size);
2475 	if (index == num_sectors - 1) {
2476 		list_del(&sum->list);
2477 		kfree(sum);
2478 	}
2479 	return 1;
2480 }
2481 
2482 /* scrub extent tries to collect up to 64 kB for each bio */
scrub_extent(struct scrub_ctx * sctx,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u64 physical_for_dev_replace)2483 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2484 			u64 physical, struct btrfs_device *dev, u64 flags,
2485 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2486 {
2487 	int ret;
2488 	u8 csum[BTRFS_CSUM_SIZE];
2489 	u32 blocksize;
2490 
2491 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2492 		blocksize = sctx->sectorsize;
2493 		spin_lock(&sctx->stat_lock);
2494 		sctx->stat.data_extents_scrubbed++;
2495 		sctx->stat.data_bytes_scrubbed += len;
2496 		spin_unlock(&sctx->stat_lock);
2497 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2498 		blocksize = sctx->nodesize;
2499 		spin_lock(&sctx->stat_lock);
2500 		sctx->stat.tree_extents_scrubbed++;
2501 		sctx->stat.tree_bytes_scrubbed += len;
2502 		spin_unlock(&sctx->stat_lock);
2503 	} else {
2504 		blocksize = sctx->sectorsize;
2505 		WARN_ON(1);
2506 	}
2507 
2508 	while (len) {
2509 		u64 l = min_t(u64, len, blocksize);
2510 		int have_csum = 0;
2511 
2512 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2513 			/* push csums to sbio */
2514 			have_csum = scrub_find_csum(sctx, logical, csum);
2515 			if (have_csum == 0)
2516 				++sctx->stat.no_csum;
2517 			if (0 && sctx->is_dev_replace && !have_csum) {
2518 				ret = copy_nocow_pages(sctx, logical, l,
2519 						       mirror_num,
2520 						      physical_for_dev_replace);
2521 				goto behind_scrub_pages;
2522 			}
2523 		}
2524 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2525 				  mirror_num, have_csum ? csum : NULL, 0,
2526 				  physical_for_dev_replace);
2527 behind_scrub_pages:
2528 		if (ret)
2529 			return ret;
2530 		len -= l;
2531 		logical += l;
2532 		physical += l;
2533 		physical_for_dev_replace += l;
2534 	}
2535 	return 0;
2536 }
2537 
scrub_pages_for_parity(struct scrub_parity * sparity,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum)2538 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2539 				  u64 logical, u64 len,
2540 				  u64 physical, struct btrfs_device *dev,
2541 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2542 {
2543 	struct scrub_ctx *sctx = sparity->sctx;
2544 	struct scrub_block *sblock;
2545 	int index;
2546 
2547 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2548 	if (!sblock) {
2549 		spin_lock(&sctx->stat_lock);
2550 		sctx->stat.malloc_errors++;
2551 		spin_unlock(&sctx->stat_lock);
2552 		return -ENOMEM;
2553 	}
2554 
2555 	/* one ref inside this function, plus one for each page added to
2556 	 * a bio later on */
2557 	atomic_set(&sblock->refs, 1);
2558 	sblock->sctx = sctx;
2559 	sblock->no_io_error_seen = 1;
2560 	sblock->sparity = sparity;
2561 	scrub_parity_get(sparity);
2562 
2563 	for (index = 0; len > 0; index++) {
2564 		struct scrub_page *spage;
2565 		u64 l = min_t(u64, len, PAGE_SIZE);
2566 
2567 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2568 		if (!spage) {
2569 leave_nomem:
2570 			spin_lock(&sctx->stat_lock);
2571 			sctx->stat.malloc_errors++;
2572 			spin_unlock(&sctx->stat_lock);
2573 			scrub_block_put(sblock);
2574 			return -ENOMEM;
2575 		}
2576 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2577 		/* For scrub block */
2578 		scrub_page_get(spage);
2579 		sblock->pagev[index] = spage;
2580 		/* For scrub parity */
2581 		scrub_page_get(spage);
2582 		list_add_tail(&spage->list, &sparity->spages);
2583 		spage->sblock = sblock;
2584 		spage->dev = dev;
2585 		spage->flags = flags;
2586 		spage->generation = gen;
2587 		spage->logical = logical;
2588 		spage->physical = physical;
2589 		spage->mirror_num = mirror_num;
2590 		if (csum) {
2591 			spage->have_csum = 1;
2592 			memcpy(spage->csum, csum, sctx->csum_size);
2593 		} else {
2594 			spage->have_csum = 0;
2595 		}
2596 		sblock->page_count++;
2597 		spage->page = alloc_page(GFP_NOFS);
2598 		if (!spage->page)
2599 			goto leave_nomem;
2600 		len -= l;
2601 		logical += l;
2602 		physical += l;
2603 	}
2604 
2605 	WARN_ON(sblock->page_count == 0);
2606 	for (index = 0; index < sblock->page_count; index++) {
2607 		struct scrub_page *spage = sblock->pagev[index];
2608 		int ret;
2609 
2610 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2611 		if (ret) {
2612 			scrub_block_put(sblock);
2613 			return ret;
2614 		}
2615 	}
2616 
2617 	/* last one frees, either here or in bio completion for last page */
2618 	scrub_block_put(sblock);
2619 	return 0;
2620 }
2621 
scrub_extent_for_parity(struct scrub_parity * sparity,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num)2622 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2623 				   u64 logical, u64 len,
2624 				   u64 physical, struct btrfs_device *dev,
2625 				   u64 flags, u64 gen, int mirror_num)
2626 {
2627 	struct scrub_ctx *sctx = sparity->sctx;
2628 	int ret;
2629 	u8 csum[BTRFS_CSUM_SIZE];
2630 	u32 blocksize;
2631 
2632 	if (dev->missing) {
2633 		scrub_parity_mark_sectors_error(sparity, logical, len);
2634 		return 0;
2635 	}
2636 
2637 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2638 		blocksize = sctx->sectorsize;
2639 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2640 		blocksize = sctx->nodesize;
2641 	} else {
2642 		blocksize = sctx->sectorsize;
2643 		WARN_ON(1);
2644 	}
2645 
2646 	while (len) {
2647 		u64 l = min_t(u64, len, blocksize);
2648 		int have_csum = 0;
2649 
2650 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2651 			/* push csums to sbio */
2652 			have_csum = scrub_find_csum(sctx, logical, csum);
2653 			if (have_csum == 0)
2654 				goto skip;
2655 		}
2656 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2657 					     flags, gen, mirror_num,
2658 					     have_csum ? csum : NULL);
2659 		if (ret)
2660 			return ret;
2661 skip:
2662 		len -= l;
2663 		logical += l;
2664 		physical += l;
2665 	}
2666 	return 0;
2667 }
2668 
2669 /*
2670  * Given a physical address, this will calculate it's
2671  * logical offset. if this is a parity stripe, it will return
2672  * the most left data stripe's logical offset.
2673  *
2674  * return 0 if it is a data stripe, 1 means parity stripe.
2675  */
get_raid56_logic_offset(u64 physical,int num,struct map_lookup * map,u64 * offset,u64 * stripe_start)2676 static int get_raid56_logic_offset(u64 physical, int num,
2677 				   struct map_lookup *map, u64 *offset,
2678 				   u64 *stripe_start)
2679 {
2680 	int i;
2681 	int j = 0;
2682 	u64 stripe_nr;
2683 	u64 last_offset;
2684 	u32 stripe_index;
2685 	u32 rot;
2686 
2687 	last_offset = (physical - map->stripes[num].physical) *
2688 		      nr_data_stripes(map);
2689 	if (stripe_start)
2690 		*stripe_start = last_offset;
2691 
2692 	*offset = last_offset;
2693 	for (i = 0; i < nr_data_stripes(map); i++) {
2694 		*offset = last_offset + i * map->stripe_len;
2695 
2696 		stripe_nr = div_u64(*offset, map->stripe_len);
2697 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2698 
2699 		/* Work out the disk rotation on this stripe-set */
2700 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2701 		/* calculate which stripe this data locates */
2702 		rot += i;
2703 		stripe_index = rot % map->num_stripes;
2704 		if (stripe_index == num)
2705 			return 0;
2706 		if (stripe_index < num)
2707 			j++;
2708 	}
2709 	*offset = last_offset + j * map->stripe_len;
2710 	return 1;
2711 }
2712 
scrub_free_parity(struct scrub_parity * sparity)2713 static void scrub_free_parity(struct scrub_parity *sparity)
2714 {
2715 	struct scrub_ctx *sctx = sparity->sctx;
2716 	struct scrub_page *curr, *next;
2717 	int nbits;
2718 
2719 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2720 	if (nbits) {
2721 		spin_lock(&sctx->stat_lock);
2722 		sctx->stat.read_errors += nbits;
2723 		sctx->stat.uncorrectable_errors += nbits;
2724 		spin_unlock(&sctx->stat_lock);
2725 	}
2726 
2727 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2728 		list_del_init(&curr->list);
2729 		scrub_page_put(curr);
2730 	}
2731 
2732 	kfree(sparity);
2733 }
2734 
scrub_parity_bio_endio_worker(struct btrfs_work * work)2735 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2736 {
2737 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2738 						    work);
2739 	struct scrub_ctx *sctx = sparity->sctx;
2740 
2741 	scrub_free_parity(sparity);
2742 	scrub_pending_bio_dec(sctx);
2743 }
2744 
scrub_parity_bio_endio(struct bio * bio)2745 static void scrub_parity_bio_endio(struct bio *bio)
2746 {
2747 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2748 
2749 	if (bio->bi_error)
2750 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2751 			  sparity->nsectors);
2752 
2753 	bio_put(bio);
2754 
2755 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2756 			scrub_parity_bio_endio_worker, NULL, NULL);
2757 	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
2758 			 &sparity->work);
2759 }
2760 
scrub_parity_check_and_repair(struct scrub_parity * sparity)2761 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2762 {
2763 	struct scrub_ctx *sctx = sparity->sctx;
2764 	struct bio *bio;
2765 	struct btrfs_raid_bio *rbio;
2766 	struct scrub_page *spage;
2767 	struct btrfs_bio *bbio = NULL;
2768 	u64 length;
2769 	int ret;
2770 
2771 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2772 			   sparity->nsectors))
2773 		goto out;
2774 
2775 	length = sparity->logic_end - sparity->logic_start;
2776 	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2777 			       sparity->logic_start,
2778 			       &length, &bbio, 0, 1);
2779 	if (ret || !bbio || !bbio->raid_map)
2780 		goto bbio_out;
2781 
2782 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2783 	if (!bio)
2784 		goto bbio_out;
2785 
2786 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2787 	bio->bi_private = sparity;
2788 	bio->bi_end_io = scrub_parity_bio_endio;
2789 
2790 	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2791 					      length, sparity->scrub_dev,
2792 					      sparity->dbitmap,
2793 					      sparity->nsectors);
2794 	if (!rbio)
2795 		goto rbio_out;
2796 
2797 	list_for_each_entry(spage, &sparity->spages, list)
2798 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2799 
2800 	scrub_pending_bio_inc(sctx);
2801 	raid56_parity_submit_scrub_rbio(rbio);
2802 	return;
2803 
2804 rbio_out:
2805 	bio_put(bio);
2806 bbio_out:
2807 	btrfs_put_bbio(bbio);
2808 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2809 		  sparity->nsectors);
2810 	spin_lock(&sctx->stat_lock);
2811 	sctx->stat.malloc_errors++;
2812 	spin_unlock(&sctx->stat_lock);
2813 out:
2814 	scrub_free_parity(sparity);
2815 }
2816 
scrub_calc_parity_bitmap_len(int nsectors)2817 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2818 {
2819 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
2820 }
2821 
scrub_parity_get(struct scrub_parity * sparity)2822 static void scrub_parity_get(struct scrub_parity *sparity)
2823 {
2824 	atomic_inc(&sparity->refs);
2825 }
2826 
scrub_parity_put(struct scrub_parity * sparity)2827 static void scrub_parity_put(struct scrub_parity *sparity)
2828 {
2829 	if (!atomic_dec_and_test(&sparity->refs))
2830 		return;
2831 
2832 	scrub_parity_check_and_repair(sparity);
2833 }
2834 
scrub_raid56_parity(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * sdev,struct btrfs_path * path,u64 logic_start,u64 logic_end)2835 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2836 						  struct map_lookup *map,
2837 						  struct btrfs_device *sdev,
2838 						  struct btrfs_path *path,
2839 						  u64 logic_start,
2840 						  u64 logic_end)
2841 {
2842 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2843 	struct btrfs_root *root = fs_info->extent_root;
2844 	struct btrfs_root *csum_root = fs_info->csum_root;
2845 	struct btrfs_extent_item *extent;
2846 	struct btrfs_bio *bbio = NULL;
2847 	u64 flags;
2848 	int ret;
2849 	int slot;
2850 	struct extent_buffer *l;
2851 	struct btrfs_key key;
2852 	u64 generation;
2853 	u64 extent_logical;
2854 	u64 extent_physical;
2855 	u64 extent_len;
2856 	u64 mapped_length;
2857 	struct btrfs_device *extent_dev;
2858 	struct scrub_parity *sparity;
2859 	int nsectors;
2860 	int bitmap_len;
2861 	int extent_mirror_num;
2862 	int stop_loop = 0;
2863 
2864 	nsectors = map->stripe_len / root->sectorsize;
2865 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2866 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2867 			  GFP_NOFS);
2868 	if (!sparity) {
2869 		spin_lock(&sctx->stat_lock);
2870 		sctx->stat.malloc_errors++;
2871 		spin_unlock(&sctx->stat_lock);
2872 		return -ENOMEM;
2873 	}
2874 
2875 	sparity->stripe_len = map->stripe_len;
2876 	sparity->nsectors = nsectors;
2877 	sparity->sctx = sctx;
2878 	sparity->scrub_dev = sdev;
2879 	sparity->logic_start = logic_start;
2880 	sparity->logic_end = logic_end;
2881 	atomic_set(&sparity->refs, 1);
2882 	INIT_LIST_HEAD(&sparity->spages);
2883 	sparity->dbitmap = sparity->bitmap;
2884 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2885 
2886 	ret = 0;
2887 	while (logic_start < logic_end) {
2888 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2889 			key.type = BTRFS_METADATA_ITEM_KEY;
2890 		else
2891 			key.type = BTRFS_EXTENT_ITEM_KEY;
2892 		key.objectid = logic_start;
2893 		key.offset = (u64)-1;
2894 
2895 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2896 		if (ret < 0)
2897 			goto out;
2898 
2899 		if (ret > 0) {
2900 			ret = btrfs_previous_extent_item(root, path, 0);
2901 			if (ret < 0)
2902 				goto out;
2903 			if (ret > 0) {
2904 				btrfs_release_path(path);
2905 				ret = btrfs_search_slot(NULL, root, &key,
2906 							path, 0, 0);
2907 				if (ret < 0)
2908 					goto out;
2909 			}
2910 		}
2911 
2912 		stop_loop = 0;
2913 		while (1) {
2914 			u64 bytes;
2915 
2916 			l = path->nodes[0];
2917 			slot = path->slots[0];
2918 			if (slot >= btrfs_header_nritems(l)) {
2919 				ret = btrfs_next_leaf(root, path);
2920 				if (ret == 0)
2921 					continue;
2922 				if (ret < 0)
2923 					goto out;
2924 
2925 				stop_loop = 1;
2926 				break;
2927 			}
2928 			btrfs_item_key_to_cpu(l, &key, slot);
2929 
2930 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2931 			    key.type != BTRFS_METADATA_ITEM_KEY)
2932 				goto next;
2933 
2934 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2935 				bytes = root->nodesize;
2936 			else
2937 				bytes = key.offset;
2938 
2939 			if (key.objectid + bytes <= logic_start)
2940 				goto next;
2941 
2942 			if (key.objectid >= logic_end) {
2943 				stop_loop = 1;
2944 				break;
2945 			}
2946 
2947 			while (key.objectid >= logic_start + map->stripe_len)
2948 				logic_start += map->stripe_len;
2949 
2950 			extent = btrfs_item_ptr(l, slot,
2951 						struct btrfs_extent_item);
2952 			flags = btrfs_extent_flags(l, extent);
2953 			generation = btrfs_extent_generation(l, extent);
2954 
2955 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2956 			    (key.objectid < logic_start ||
2957 			     key.objectid + bytes >
2958 			     logic_start + map->stripe_len)) {
2959 				btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2960 					  key.objectid, logic_start);
2961 				spin_lock(&sctx->stat_lock);
2962 				sctx->stat.uncorrectable_errors++;
2963 				spin_unlock(&sctx->stat_lock);
2964 				goto next;
2965 			}
2966 again:
2967 			extent_logical = key.objectid;
2968 			extent_len = bytes;
2969 
2970 			if (extent_logical < logic_start) {
2971 				extent_len -= logic_start - extent_logical;
2972 				extent_logical = logic_start;
2973 			}
2974 
2975 			if (extent_logical + extent_len >
2976 			    logic_start + map->stripe_len)
2977 				extent_len = logic_start + map->stripe_len -
2978 					     extent_logical;
2979 
2980 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2981 						       extent_len);
2982 
2983 			mapped_length = extent_len;
2984 			ret = btrfs_map_block(fs_info, READ, extent_logical,
2985 					      &mapped_length, &bbio, 0);
2986 			if (!ret) {
2987 				if (!bbio || mapped_length < extent_len)
2988 					ret = -EIO;
2989 			}
2990 			if (ret) {
2991 				btrfs_put_bbio(bbio);
2992 				goto out;
2993 			}
2994 			extent_physical = bbio->stripes[0].physical;
2995 			extent_mirror_num = bbio->mirror_num;
2996 			extent_dev = bbio->stripes[0].dev;
2997 			btrfs_put_bbio(bbio);
2998 
2999 			ret = btrfs_lookup_csums_range(csum_root,
3000 						extent_logical,
3001 						extent_logical + extent_len - 1,
3002 						&sctx->csum_list, 1);
3003 			if (ret)
3004 				goto out;
3005 
3006 			ret = scrub_extent_for_parity(sparity, extent_logical,
3007 						      extent_len,
3008 						      extent_physical,
3009 						      extent_dev, flags,
3010 						      generation,
3011 						      extent_mirror_num);
3012 
3013 			scrub_free_csums(sctx);
3014 
3015 			if (ret)
3016 				goto out;
3017 
3018 			if (extent_logical + extent_len <
3019 			    key.objectid + bytes) {
3020 				logic_start += map->stripe_len;
3021 
3022 				if (logic_start >= logic_end) {
3023 					stop_loop = 1;
3024 					break;
3025 				}
3026 
3027 				if (logic_start < key.objectid + bytes) {
3028 					cond_resched();
3029 					goto again;
3030 				}
3031 			}
3032 next:
3033 			path->slots[0]++;
3034 		}
3035 
3036 		btrfs_release_path(path);
3037 
3038 		if (stop_loop)
3039 			break;
3040 
3041 		logic_start += map->stripe_len;
3042 	}
3043 out:
3044 	if (ret < 0)
3045 		scrub_parity_mark_sectors_error(sparity, logic_start,
3046 						logic_end - logic_start);
3047 	scrub_parity_put(sparity);
3048 	scrub_submit(sctx);
3049 	mutex_lock(&sctx->wr_ctx.wr_lock);
3050 	scrub_wr_submit(sctx);
3051 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3052 
3053 	btrfs_release_path(path);
3054 	return ret < 0 ? ret : 0;
3055 }
3056 
scrub_stripe(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * scrub_dev,int num,u64 base,u64 length,int is_dev_replace)3057 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3058 					   struct map_lookup *map,
3059 					   struct btrfs_device *scrub_dev,
3060 					   int num, u64 base, u64 length,
3061 					   int is_dev_replace)
3062 {
3063 	struct btrfs_path *path, *ppath;
3064 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3065 	struct btrfs_root *root = fs_info->extent_root;
3066 	struct btrfs_root *csum_root = fs_info->csum_root;
3067 	struct btrfs_extent_item *extent;
3068 	struct blk_plug plug;
3069 	u64 flags;
3070 	int ret;
3071 	int slot;
3072 	u64 nstripes;
3073 	struct extent_buffer *l;
3074 	struct btrfs_key key;
3075 	u64 physical;
3076 	u64 logical;
3077 	u64 logic_end;
3078 	u64 physical_end;
3079 	u64 generation;
3080 	int mirror_num;
3081 	struct reada_control *reada1;
3082 	struct reada_control *reada2;
3083 	struct btrfs_key key_start;
3084 	struct btrfs_key key_end;
3085 	u64 increment = map->stripe_len;
3086 	u64 offset;
3087 	u64 extent_logical;
3088 	u64 extent_physical;
3089 	u64 extent_len;
3090 	u64 stripe_logical;
3091 	u64 stripe_end;
3092 	struct btrfs_device *extent_dev;
3093 	int extent_mirror_num;
3094 	int stop_loop = 0;
3095 
3096 	physical = map->stripes[num].physical;
3097 	offset = 0;
3098 	nstripes = div_u64(length, map->stripe_len);
3099 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3100 		offset = map->stripe_len * num;
3101 		increment = map->stripe_len * map->num_stripes;
3102 		mirror_num = 1;
3103 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3104 		int factor = map->num_stripes / map->sub_stripes;
3105 		offset = map->stripe_len * (num / map->sub_stripes);
3106 		increment = map->stripe_len * factor;
3107 		mirror_num = num % map->sub_stripes + 1;
3108 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3109 		increment = map->stripe_len;
3110 		mirror_num = num % map->num_stripes + 1;
3111 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3112 		increment = map->stripe_len;
3113 		mirror_num = num % map->num_stripes + 1;
3114 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3115 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3116 		increment = map->stripe_len * nr_data_stripes(map);
3117 		mirror_num = 1;
3118 	} else {
3119 		increment = map->stripe_len;
3120 		mirror_num = 1;
3121 	}
3122 
3123 	path = btrfs_alloc_path();
3124 	if (!path)
3125 		return -ENOMEM;
3126 
3127 	ppath = btrfs_alloc_path();
3128 	if (!ppath) {
3129 		btrfs_free_path(path);
3130 		return -ENOMEM;
3131 	}
3132 
3133 	/*
3134 	 * work on commit root. The related disk blocks are static as
3135 	 * long as COW is applied. This means, it is save to rewrite
3136 	 * them to repair disk errors without any race conditions
3137 	 */
3138 	path->search_commit_root = 1;
3139 	path->skip_locking = 1;
3140 
3141 	ppath->search_commit_root = 1;
3142 	ppath->skip_locking = 1;
3143 	/*
3144 	 * trigger the readahead for extent tree csum tree and wait for
3145 	 * completion. During readahead, the scrub is officially paused
3146 	 * to not hold off transaction commits
3147 	 */
3148 	logical = base + offset;
3149 	physical_end = physical + nstripes * map->stripe_len;
3150 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3151 		get_raid56_logic_offset(physical_end, num,
3152 					map, &logic_end, NULL);
3153 		logic_end += base;
3154 	} else {
3155 		logic_end = logical + increment * nstripes;
3156 	}
3157 	wait_event(sctx->list_wait,
3158 		   atomic_read(&sctx->bios_in_flight) == 0);
3159 	scrub_blocked_if_needed(fs_info);
3160 
3161 	/* FIXME it might be better to start readahead at commit root */
3162 	key_start.objectid = logical;
3163 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
3164 	key_start.offset = (u64)0;
3165 	key_end.objectid = logic_end;
3166 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3167 	key_end.offset = (u64)-1;
3168 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
3169 
3170 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3171 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
3172 	key_start.offset = logical;
3173 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3174 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3175 	key_end.offset = logic_end;
3176 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
3177 
3178 	if (!IS_ERR(reada1))
3179 		btrfs_reada_wait(reada1);
3180 	if (!IS_ERR(reada2))
3181 		btrfs_reada_wait(reada2);
3182 
3183 
3184 	/*
3185 	 * collect all data csums for the stripe to avoid seeking during
3186 	 * the scrub. This might currently (crc32) end up to be about 1MB
3187 	 */
3188 	blk_start_plug(&plug);
3189 
3190 	/*
3191 	 * now find all extents for each stripe and scrub them
3192 	 */
3193 	ret = 0;
3194 	while (physical < physical_end) {
3195 		/*
3196 		 * canceled?
3197 		 */
3198 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3199 		    atomic_read(&sctx->cancel_req)) {
3200 			ret = -ECANCELED;
3201 			goto out;
3202 		}
3203 		/*
3204 		 * check to see if we have to pause
3205 		 */
3206 		if (atomic_read(&fs_info->scrub_pause_req)) {
3207 			/* push queued extents */
3208 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3209 			scrub_submit(sctx);
3210 			mutex_lock(&sctx->wr_ctx.wr_lock);
3211 			scrub_wr_submit(sctx);
3212 			mutex_unlock(&sctx->wr_ctx.wr_lock);
3213 			wait_event(sctx->list_wait,
3214 				   atomic_read(&sctx->bios_in_flight) == 0);
3215 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3216 			scrub_blocked_if_needed(fs_info);
3217 		}
3218 
3219 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3220 			ret = get_raid56_logic_offset(physical, num, map,
3221 						      &logical,
3222 						      &stripe_logical);
3223 			logical += base;
3224 			if (ret) {
3225 				/* it is parity strip */
3226 				stripe_logical += base;
3227 				stripe_end = stripe_logical + increment;
3228 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3229 							  ppath, stripe_logical,
3230 							  stripe_end);
3231 				if (ret)
3232 					goto out;
3233 				goto skip;
3234 			}
3235 		}
3236 
3237 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3238 			key.type = BTRFS_METADATA_ITEM_KEY;
3239 		else
3240 			key.type = BTRFS_EXTENT_ITEM_KEY;
3241 		key.objectid = logical;
3242 		key.offset = (u64)-1;
3243 
3244 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3245 		if (ret < 0)
3246 			goto out;
3247 
3248 		if (ret > 0) {
3249 			ret = btrfs_previous_extent_item(root, path, 0);
3250 			if (ret < 0)
3251 				goto out;
3252 			if (ret > 0) {
3253 				/* there's no smaller item, so stick with the
3254 				 * larger one */
3255 				btrfs_release_path(path);
3256 				ret = btrfs_search_slot(NULL, root, &key,
3257 							path, 0, 0);
3258 				if (ret < 0)
3259 					goto out;
3260 			}
3261 		}
3262 
3263 		stop_loop = 0;
3264 		while (1) {
3265 			u64 bytes;
3266 
3267 			l = path->nodes[0];
3268 			slot = path->slots[0];
3269 			if (slot >= btrfs_header_nritems(l)) {
3270 				ret = btrfs_next_leaf(root, path);
3271 				if (ret == 0)
3272 					continue;
3273 				if (ret < 0)
3274 					goto out;
3275 
3276 				stop_loop = 1;
3277 				break;
3278 			}
3279 			btrfs_item_key_to_cpu(l, &key, slot);
3280 
3281 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3282 			    key.type != BTRFS_METADATA_ITEM_KEY)
3283 				goto next;
3284 
3285 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3286 				bytes = root->nodesize;
3287 			else
3288 				bytes = key.offset;
3289 
3290 			if (key.objectid + bytes <= logical)
3291 				goto next;
3292 
3293 			if (key.objectid >= logical + map->stripe_len) {
3294 				/* out of this device extent */
3295 				if (key.objectid >= logic_end)
3296 					stop_loop = 1;
3297 				break;
3298 			}
3299 
3300 			extent = btrfs_item_ptr(l, slot,
3301 						struct btrfs_extent_item);
3302 			flags = btrfs_extent_flags(l, extent);
3303 			generation = btrfs_extent_generation(l, extent);
3304 
3305 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3306 			    (key.objectid < logical ||
3307 			     key.objectid + bytes >
3308 			     logical + map->stripe_len)) {
3309 				btrfs_err(fs_info,
3310 					   "scrub: tree block %llu spanning "
3311 					   "stripes, ignored. logical=%llu",
3312 				       key.objectid, logical);
3313 				spin_lock(&sctx->stat_lock);
3314 				sctx->stat.uncorrectable_errors++;
3315 				spin_unlock(&sctx->stat_lock);
3316 				goto next;
3317 			}
3318 
3319 again:
3320 			extent_logical = key.objectid;
3321 			extent_len = bytes;
3322 
3323 			/*
3324 			 * trim extent to this stripe
3325 			 */
3326 			if (extent_logical < logical) {
3327 				extent_len -= logical - extent_logical;
3328 				extent_logical = logical;
3329 			}
3330 			if (extent_logical + extent_len >
3331 			    logical + map->stripe_len) {
3332 				extent_len = logical + map->stripe_len -
3333 					     extent_logical;
3334 			}
3335 
3336 			extent_physical = extent_logical - logical + physical;
3337 			extent_dev = scrub_dev;
3338 			extent_mirror_num = mirror_num;
3339 			if (is_dev_replace)
3340 				scrub_remap_extent(fs_info, extent_logical,
3341 						   extent_len, &extent_physical,
3342 						   &extent_dev,
3343 						   &extent_mirror_num);
3344 
3345 			ret = btrfs_lookup_csums_range(csum_root,
3346 						       extent_logical,
3347 						       extent_logical +
3348 						       extent_len - 1,
3349 						       &sctx->csum_list, 1);
3350 			if (ret)
3351 				goto out;
3352 
3353 			ret = scrub_extent(sctx, extent_logical, extent_len,
3354 					   extent_physical, extent_dev, flags,
3355 					   generation, extent_mirror_num,
3356 					   extent_logical - logical + physical);
3357 
3358 			scrub_free_csums(sctx);
3359 
3360 			if (ret)
3361 				goto out;
3362 
3363 			if (extent_logical + extent_len <
3364 			    key.objectid + bytes) {
3365 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3366 					/*
3367 					 * loop until we find next data stripe
3368 					 * or we have finished all stripes.
3369 					 */
3370 loop:
3371 					physical += map->stripe_len;
3372 					ret = get_raid56_logic_offset(physical,
3373 							num, map, &logical,
3374 							&stripe_logical);
3375 					logical += base;
3376 
3377 					if (ret && physical < physical_end) {
3378 						stripe_logical += base;
3379 						stripe_end = stripe_logical +
3380 								increment;
3381 						ret = scrub_raid56_parity(sctx,
3382 							map, scrub_dev, ppath,
3383 							stripe_logical,
3384 							stripe_end);
3385 						if (ret)
3386 							goto out;
3387 						goto loop;
3388 					}
3389 				} else {
3390 					physical += map->stripe_len;
3391 					logical += increment;
3392 				}
3393 				if (logical < key.objectid + bytes) {
3394 					cond_resched();
3395 					goto again;
3396 				}
3397 
3398 				if (physical >= physical_end) {
3399 					stop_loop = 1;
3400 					break;
3401 				}
3402 			}
3403 next:
3404 			path->slots[0]++;
3405 		}
3406 		btrfs_release_path(path);
3407 skip:
3408 		logical += increment;
3409 		physical += map->stripe_len;
3410 		spin_lock(&sctx->stat_lock);
3411 		if (stop_loop)
3412 			sctx->stat.last_physical = map->stripes[num].physical +
3413 						   length;
3414 		else
3415 			sctx->stat.last_physical = physical;
3416 		spin_unlock(&sctx->stat_lock);
3417 		if (stop_loop)
3418 			break;
3419 	}
3420 out:
3421 	/* push queued extents */
3422 	scrub_submit(sctx);
3423 	mutex_lock(&sctx->wr_ctx.wr_lock);
3424 	scrub_wr_submit(sctx);
3425 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3426 
3427 	blk_finish_plug(&plug);
3428 	btrfs_free_path(path);
3429 	btrfs_free_path(ppath);
3430 	return ret < 0 ? ret : 0;
3431 }
3432 
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 chunk_offset,u64 length,u64 dev_offset,struct btrfs_block_group_cache * cache,int is_dev_replace)3433 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3434 					  struct btrfs_device *scrub_dev,
3435 					  u64 chunk_offset, u64 length,
3436 					  u64 dev_offset,
3437 					  struct btrfs_block_group_cache *cache,
3438 					  int is_dev_replace)
3439 {
3440 	struct btrfs_mapping_tree *map_tree =
3441 		&sctx->dev_root->fs_info->mapping_tree;
3442 	struct map_lookup *map;
3443 	struct extent_map *em;
3444 	int i;
3445 	int ret = 0;
3446 
3447 	read_lock(&map_tree->map_tree.lock);
3448 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3449 	read_unlock(&map_tree->map_tree.lock);
3450 
3451 	if (!em) {
3452 		/*
3453 		 * Might have been an unused block group deleted by the cleaner
3454 		 * kthread or relocation.
3455 		 */
3456 		spin_lock(&cache->lock);
3457 		if (!cache->removed)
3458 			ret = -EINVAL;
3459 		spin_unlock(&cache->lock);
3460 
3461 		return ret;
3462 	}
3463 
3464 	map = em->map_lookup;
3465 	if (em->start != chunk_offset)
3466 		goto out;
3467 
3468 	if (em->len < length)
3469 		goto out;
3470 
3471 	for (i = 0; i < map->num_stripes; ++i) {
3472 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3473 		    map->stripes[i].physical == dev_offset) {
3474 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3475 					   chunk_offset, length,
3476 					   is_dev_replace);
3477 			if (ret)
3478 				goto out;
3479 		}
3480 	}
3481 out:
3482 	free_extent_map(em);
3483 
3484 	return ret;
3485 }
3486 
3487 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end,int is_dev_replace)3488 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3489 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3490 			   int is_dev_replace)
3491 {
3492 	struct btrfs_dev_extent *dev_extent = NULL;
3493 	struct btrfs_path *path;
3494 	struct btrfs_root *root = sctx->dev_root;
3495 	struct btrfs_fs_info *fs_info = root->fs_info;
3496 	u64 length;
3497 	u64 chunk_offset;
3498 	int ret = 0;
3499 	int ro_set;
3500 	int slot;
3501 	struct extent_buffer *l;
3502 	struct btrfs_key key;
3503 	struct btrfs_key found_key;
3504 	struct btrfs_block_group_cache *cache;
3505 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3506 
3507 	path = btrfs_alloc_path();
3508 	if (!path)
3509 		return -ENOMEM;
3510 
3511 	path->reada = 2;
3512 	path->search_commit_root = 1;
3513 	path->skip_locking = 1;
3514 
3515 	key.objectid = scrub_dev->devid;
3516 	key.offset = 0ull;
3517 	key.type = BTRFS_DEV_EXTENT_KEY;
3518 
3519 	while (1) {
3520 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3521 		if (ret < 0)
3522 			break;
3523 		if (ret > 0) {
3524 			if (path->slots[0] >=
3525 			    btrfs_header_nritems(path->nodes[0])) {
3526 				ret = btrfs_next_leaf(root, path);
3527 				if (ret < 0)
3528 					break;
3529 				if (ret > 0) {
3530 					ret = 0;
3531 					break;
3532 				}
3533 			} else {
3534 				ret = 0;
3535 			}
3536 		}
3537 
3538 		l = path->nodes[0];
3539 		slot = path->slots[0];
3540 
3541 		btrfs_item_key_to_cpu(l, &found_key, slot);
3542 
3543 		if (found_key.objectid != scrub_dev->devid)
3544 			break;
3545 
3546 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3547 			break;
3548 
3549 		if (found_key.offset >= end)
3550 			break;
3551 
3552 		if (found_key.offset < key.offset)
3553 			break;
3554 
3555 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3556 		length = btrfs_dev_extent_length(l, dev_extent);
3557 
3558 		if (found_key.offset + length <= start)
3559 			goto skip;
3560 
3561 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3562 
3563 		/*
3564 		 * get a reference on the corresponding block group to prevent
3565 		 * the chunk from going away while we scrub it
3566 		 */
3567 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3568 
3569 		/* some chunks are removed but not committed to disk yet,
3570 		 * continue scrubbing */
3571 		if (!cache)
3572 			goto skip;
3573 
3574 		/*
3575 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3576 		 * to avoid deadlock caused by:
3577 		 * btrfs_inc_block_group_ro()
3578 		 * -> btrfs_wait_for_commit()
3579 		 * -> btrfs_commit_transaction()
3580 		 * -> btrfs_scrub_pause()
3581 		 */
3582 		scrub_pause_on(fs_info);
3583 		ret = btrfs_inc_block_group_ro(root, cache);
3584 		scrub_pause_off(fs_info);
3585 
3586 		if (ret == 0) {
3587 			ro_set = 1;
3588 		} else if (ret == -ENOSPC) {
3589 			/*
3590 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3591 			 * failed in creating new chunk for metadata.
3592 			 * It is not a problem for scrub/replace, because
3593 			 * metadata are always cowed, and our scrub paused
3594 			 * commit_transactions.
3595 			 */
3596 			ro_set = 0;
3597 		} else {
3598 			btrfs_warn(fs_info, "failed setting block group ro, ret=%d\n",
3599 				   ret);
3600 			btrfs_put_block_group(cache);
3601 			break;
3602 		}
3603 
3604 		dev_replace->cursor_right = found_key.offset + length;
3605 		dev_replace->cursor_left = found_key.offset;
3606 		dev_replace->item_needs_writeback = 1;
3607 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3608 				  found_key.offset, cache, is_dev_replace);
3609 
3610 		/*
3611 		 * flush, submit all pending read and write bios, afterwards
3612 		 * wait for them.
3613 		 * Note that in the dev replace case, a read request causes
3614 		 * write requests that are submitted in the read completion
3615 		 * worker. Therefore in the current situation, it is required
3616 		 * that all write requests are flushed, so that all read and
3617 		 * write requests are really completed when bios_in_flight
3618 		 * changes to 0.
3619 		 */
3620 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3621 		scrub_submit(sctx);
3622 		mutex_lock(&sctx->wr_ctx.wr_lock);
3623 		scrub_wr_submit(sctx);
3624 		mutex_unlock(&sctx->wr_ctx.wr_lock);
3625 
3626 		wait_event(sctx->list_wait,
3627 			   atomic_read(&sctx->bios_in_flight) == 0);
3628 
3629 		scrub_pause_on(fs_info);
3630 
3631 		/*
3632 		 * must be called before we decrease @scrub_paused.
3633 		 * make sure we don't block transaction commit while
3634 		 * we are waiting pending workers finished.
3635 		 */
3636 		wait_event(sctx->list_wait,
3637 			   atomic_read(&sctx->workers_pending) == 0);
3638 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3639 
3640 		scrub_pause_off(fs_info);
3641 
3642 		if (ro_set)
3643 			btrfs_dec_block_group_ro(root, cache);
3644 
3645 		/*
3646 		 * We might have prevented the cleaner kthread from deleting
3647 		 * this block group if it was already unused because we raced
3648 		 * and set it to RO mode first. So add it back to the unused
3649 		 * list, otherwise it might not ever be deleted unless a manual
3650 		 * balance is triggered or it becomes used and unused again.
3651 		 */
3652 		spin_lock(&cache->lock);
3653 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3654 		    btrfs_block_group_used(&cache->item) == 0) {
3655 			spin_unlock(&cache->lock);
3656 			spin_lock(&fs_info->unused_bgs_lock);
3657 			if (list_empty(&cache->bg_list)) {
3658 				btrfs_get_block_group(cache);
3659 				list_add_tail(&cache->bg_list,
3660 					      &fs_info->unused_bgs);
3661 			}
3662 			spin_unlock(&fs_info->unused_bgs_lock);
3663 		} else {
3664 			spin_unlock(&cache->lock);
3665 		}
3666 
3667 		btrfs_put_block_group(cache);
3668 		if (ret)
3669 			break;
3670 		if (is_dev_replace &&
3671 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3672 			ret = -EIO;
3673 			break;
3674 		}
3675 		if (sctx->stat.malloc_errors > 0) {
3676 			ret = -ENOMEM;
3677 			break;
3678 		}
3679 
3680 		dev_replace->cursor_left = dev_replace->cursor_right;
3681 		dev_replace->item_needs_writeback = 1;
3682 skip:
3683 		key.offset = found_key.offset + length;
3684 		btrfs_release_path(path);
3685 	}
3686 
3687 	btrfs_free_path(path);
3688 
3689 	return ret;
3690 }
3691 
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)3692 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3693 					   struct btrfs_device *scrub_dev)
3694 {
3695 	int	i;
3696 	u64	bytenr;
3697 	u64	gen;
3698 	int	ret;
3699 	struct btrfs_root *root = sctx->dev_root;
3700 
3701 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3702 		return -EIO;
3703 
3704 	/* Seed devices of a new filesystem has their own generation. */
3705 	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3706 		gen = scrub_dev->generation;
3707 	else
3708 		gen = root->fs_info->last_trans_committed;
3709 
3710 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3711 		bytenr = btrfs_sb_offset(i);
3712 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3713 		    scrub_dev->commit_total_bytes)
3714 			break;
3715 
3716 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3717 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3718 				  NULL, 1, bytenr);
3719 		if (ret)
3720 			return ret;
3721 	}
3722 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3723 
3724 	return 0;
3725 }
3726 
3727 /*
3728  * get a reference count on fs_info->scrub_workers. start worker if necessary
3729  */
scrub_workers_get(struct btrfs_fs_info * fs_info,int is_dev_replace)3730 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3731 						int is_dev_replace)
3732 {
3733 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3734 	int max_active = fs_info->thread_pool_size;
3735 
3736 	if (fs_info->scrub_workers_refcnt == 0) {
3737 		if (is_dev_replace)
3738 			fs_info->scrub_workers =
3739 				btrfs_alloc_workqueue("btrfs-scrub", flags,
3740 						      1, 4);
3741 		else
3742 			fs_info->scrub_workers =
3743 				btrfs_alloc_workqueue("btrfs-scrub", flags,
3744 						      max_active, 4);
3745 		if (!fs_info->scrub_workers)
3746 			goto fail_scrub_workers;
3747 
3748 		fs_info->scrub_wr_completion_workers =
3749 			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
3750 					      max_active, 2);
3751 		if (!fs_info->scrub_wr_completion_workers)
3752 			goto fail_scrub_wr_completion_workers;
3753 
3754 		fs_info->scrub_nocow_workers =
3755 			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3756 		if (!fs_info->scrub_nocow_workers)
3757 			goto fail_scrub_nocow_workers;
3758 		fs_info->scrub_parity_workers =
3759 			btrfs_alloc_workqueue("btrfs-scrubparity", flags,
3760 					      max_active, 2);
3761 		if (!fs_info->scrub_parity_workers)
3762 			goto fail_scrub_parity_workers;
3763 	}
3764 	++fs_info->scrub_workers_refcnt;
3765 	return 0;
3766 
3767 fail_scrub_parity_workers:
3768 	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3769 fail_scrub_nocow_workers:
3770 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3771 fail_scrub_wr_completion_workers:
3772 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3773 fail_scrub_workers:
3774 	return -ENOMEM;
3775 }
3776 
scrub_workers_put(struct btrfs_fs_info * fs_info)3777 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3778 {
3779 	if (--fs_info->scrub_workers_refcnt == 0) {
3780 		btrfs_destroy_workqueue(fs_info->scrub_workers);
3781 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3782 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3783 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3784 	}
3785 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3786 }
3787 
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)3788 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3789 		    u64 end, struct btrfs_scrub_progress *progress,
3790 		    int readonly, int is_dev_replace)
3791 {
3792 	struct scrub_ctx *sctx;
3793 	int ret;
3794 	struct btrfs_device *dev;
3795 	struct rcu_string *name;
3796 
3797 	if (btrfs_fs_closing(fs_info))
3798 		return -EINVAL;
3799 
3800 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3801 		/*
3802 		 * in this case scrub is unable to calculate the checksum
3803 		 * the way scrub is implemented. Do not handle this
3804 		 * situation at all because it won't ever happen.
3805 		 */
3806 		btrfs_err(fs_info,
3807 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3808 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3809 		return -EINVAL;
3810 	}
3811 
3812 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3813 		/* not supported for data w/o checksums */
3814 		btrfs_err(fs_info,
3815 			   "scrub: size assumption sectorsize != PAGE_SIZE "
3816 			   "(%d != %lu) fails",
3817 		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
3818 		return -EINVAL;
3819 	}
3820 
3821 	if (fs_info->chunk_root->nodesize >
3822 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3823 	    fs_info->chunk_root->sectorsize >
3824 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3825 		/*
3826 		 * would exhaust the array bounds of pagev member in
3827 		 * struct scrub_block
3828 		 */
3829 		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3830 			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3831 		       fs_info->chunk_root->nodesize,
3832 		       SCRUB_MAX_PAGES_PER_BLOCK,
3833 		       fs_info->chunk_root->sectorsize,
3834 		       SCRUB_MAX_PAGES_PER_BLOCK);
3835 		return -EINVAL;
3836 	}
3837 
3838 
3839 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3840 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3841 	if (!dev || (dev->missing && !is_dev_replace)) {
3842 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3843 		return -ENODEV;
3844 	}
3845 
3846 	if (!is_dev_replace && !readonly && !dev->writeable) {
3847 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3848 		rcu_read_lock();
3849 		name = rcu_dereference(dev->name);
3850 		btrfs_err(fs_info, "scrub: device %s is not writable",
3851 			  name->str);
3852 		rcu_read_unlock();
3853 		return -EROFS;
3854 	}
3855 
3856 	mutex_lock(&fs_info->scrub_lock);
3857 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3858 		mutex_unlock(&fs_info->scrub_lock);
3859 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3860 		return -EIO;
3861 	}
3862 
3863 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3864 	if (dev->scrub_device ||
3865 	    (!is_dev_replace &&
3866 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3867 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
3868 		mutex_unlock(&fs_info->scrub_lock);
3869 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3870 		return -EINPROGRESS;
3871 	}
3872 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3873 
3874 	ret = scrub_workers_get(fs_info, is_dev_replace);
3875 	if (ret) {
3876 		mutex_unlock(&fs_info->scrub_lock);
3877 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3878 		return ret;
3879 	}
3880 
3881 	sctx = scrub_setup_ctx(dev, is_dev_replace);
3882 	if (IS_ERR(sctx)) {
3883 		mutex_unlock(&fs_info->scrub_lock);
3884 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3885 		scrub_workers_put(fs_info);
3886 		return PTR_ERR(sctx);
3887 	}
3888 	sctx->readonly = readonly;
3889 	dev->scrub_device = sctx;
3890 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3891 
3892 	/*
3893 	 * checking @scrub_pause_req here, we can avoid
3894 	 * race between committing transaction and scrubbing.
3895 	 */
3896 	__scrub_blocked_if_needed(fs_info);
3897 	atomic_inc(&fs_info->scrubs_running);
3898 	mutex_unlock(&fs_info->scrub_lock);
3899 
3900 	if (!is_dev_replace) {
3901 		/*
3902 		 * by holding device list mutex, we can
3903 		 * kick off writing super in log tree sync.
3904 		 */
3905 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3906 		ret = scrub_supers(sctx, dev);
3907 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3908 	}
3909 
3910 	if (!ret)
3911 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3912 					     is_dev_replace);
3913 
3914 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3915 	atomic_dec(&fs_info->scrubs_running);
3916 	wake_up(&fs_info->scrub_pause_wait);
3917 
3918 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3919 
3920 	if (progress)
3921 		memcpy(progress, &sctx->stat, sizeof(*progress));
3922 
3923 	mutex_lock(&fs_info->scrub_lock);
3924 	dev->scrub_device = NULL;
3925 	scrub_workers_put(fs_info);
3926 	mutex_unlock(&fs_info->scrub_lock);
3927 
3928 	scrub_put_ctx(sctx);
3929 
3930 	return ret;
3931 }
3932 
btrfs_scrub_pause(struct btrfs_root * root)3933 void btrfs_scrub_pause(struct btrfs_root *root)
3934 {
3935 	struct btrfs_fs_info *fs_info = root->fs_info;
3936 
3937 	mutex_lock(&fs_info->scrub_lock);
3938 	atomic_inc(&fs_info->scrub_pause_req);
3939 	while (atomic_read(&fs_info->scrubs_paused) !=
3940 	       atomic_read(&fs_info->scrubs_running)) {
3941 		mutex_unlock(&fs_info->scrub_lock);
3942 		wait_event(fs_info->scrub_pause_wait,
3943 			   atomic_read(&fs_info->scrubs_paused) ==
3944 			   atomic_read(&fs_info->scrubs_running));
3945 		mutex_lock(&fs_info->scrub_lock);
3946 	}
3947 	mutex_unlock(&fs_info->scrub_lock);
3948 }
3949 
btrfs_scrub_continue(struct btrfs_root * root)3950 void btrfs_scrub_continue(struct btrfs_root *root)
3951 {
3952 	struct btrfs_fs_info *fs_info = root->fs_info;
3953 
3954 	atomic_dec(&fs_info->scrub_pause_req);
3955 	wake_up(&fs_info->scrub_pause_wait);
3956 }
3957 
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)3958 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3959 {
3960 	mutex_lock(&fs_info->scrub_lock);
3961 	if (!atomic_read(&fs_info->scrubs_running)) {
3962 		mutex_unlock(&fs_info->scrub_lock);
3963 		return -ENOTCONN;
3964 	}
3965 
3966 	atomic_inc(&fs_info->scrub_cancel_req);
3967 	while (atomic_read(&fs_info->scrubs_running)) {
3968 		mutex_unlock(&fs_info->scrub_lock);
3969 		wait_event(fs_info->scrub_pause_wait,
3970 			   atomic_read(&fs_info->scrubs_running) == 0);
3971 		mutex_lock(&fs_info->scrub_lock);
3972 	}
3973 	atomic_dec(&fs_info->scrub_cancel_req);
3974 	mutex_unlock(&fs_info->scrub_lock);
3975 
3976 	return 0;
3977 }
3978 
btrfs_scrub_cancel_dev(struct btrfs_fs_info * fs_info,struct btrfs_device * dev)3979 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3980 			   struct btrfs_device *dev)
3981 {
3982 	struct scrub_ctx *sctx;
3983 
3984 	mutex_lock(&fs_info->scrub_lock);
3985 	sctx = dev->scrub_device;
3986 	if (!sctx) {
3987 		mutex_unlock(&fs_info->scrub_lock);
3988 		return -ENOTCONN;
3989 	}
3990 	atomic_inc(&sctx->cancel_req);
3991 	while (dev->scrub_device) {
3992 		mutex_unlock(&fs_info->scrub_lock);
3993 		wait_event(fs_info->scrub_pause_wait,
3994 			   dev->scrub_device == NULL);
3995 		mutex_lock(&fs_info->scrub_lock);
3996 	}
3997 	mutex_unlock(&fs_info->scrub_lock);
3998 
3999 	return 0;
4000 }
4001 
btrfs_scrub_progress(struct btrfs_root * root,u64 devid,struct btrfs_scrub_progress * progress)4002 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4003 			 struct btrfs_scrub_progress *progress)
4004 {
4005 	struct btrfs_device *dev;
4006 	struct scrub_ctx *sctx = NULL;
4007 
4008 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
4009 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
4010 	if (dev)
4011 		sctx = dev->scrub_device;
4012 	if (sctx)
4013 		memcpy(progress, &sctx->stat, sizeof(*progress));
4014 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
4015 
4016 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4017 }
4018 
scrub_remap_extent(struct btrfs_fs_info * fs_info,u64 extent_logical,u64 extent_len,u64 * extent_physical,struct btrfs_device ** extent_dev,int * extent_mirror_num)4019 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4020 			       u64 extent_logical, u64 extent_len,
4021 			       u64 *extent_physical,
4022 			       struct btrfs_device **extent_dev,
4023 			       int *extent_mirror_num)
4024 {
4025 	u64 mapped_length;
4026 	struct btrfs_bio *bbio = NULL;
4027 	int ret;
4028 
4029 	mapped_length = extent_len;
4030 	ret = btrfs_map_block(fs_info, READ, extent_logical,
4031 			      &mapped_length, &bbio, 0);
4032 	if (ret || !bbio || mapped_length < extent_len ||
4033 	    !bbio->stripes[0].dev->bdev) {
4034 		btrfs_put_bbio(bbio);
4035 		return;
4036 	}
4037 
4038 	*extent_physical = bbio->stripes[0].physical;
4039 	*extent_mirror_num = bbio->mirror_num;
4040 	*extent_dev = bbio->stripes[0].dev;
4041 	btrfs_put_bbio(bbio);
4042 }
4043 
scrub_setup_wr_ctx(struct scrub_ctx * sctx,struct scrub_wr_ctx * wr_ctx,struct btrfs_fs_info * fs_info,struct btrfs_device * dev,int is_dev_replace)4044 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4045 			      struct scrub_wr_ctx *wr_ctx,
4046 			      struct btrfs_fs_info *fs_info,
4047 			      struct btrfs_device *dev,
4048 			      int is_dev_replace)
4049 {
4050 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
4051 
4052 	mutex_init(&wr_ctx->wr_lock);
4053 	wr_ctx->wr_curr_bio = NULL;
4054 	if (!is_dev_replace)
4055 		return 0;
4056 
4057 	WARN_ON(!dev->bdev);
4058 	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4059 	wr_ctx->tgtdev = dev;
4060 	atomic_set(&wr_ctx->flush_all_writes, 0);
4061 	return 0;
4062 }
4063 
scrub_free_wr_ctx(struct scrub_wr_ctx * wr_ctx)4064 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4065 {
4066 	mutex_lock(&wr_ctx->wr_lock);
4067 	kfree(wr_ctx->wr_curr_bio);
4068 	wr_ctx->wr_curr_bio = NULL;
4069 	mutex_unlock(&wr_ctx->wr_lock);
4070 }
4071 
copy_nocow_pages(struct scrub_ctx * sctx,u64 logical,u64 len,int mirror_num,u64 physical_for_dev_replace)4072 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4073 			    int mirror_num, u64 physical_for_dev_replace)
4074 {
4075 	struct scrub_copy_nocow_ctx *nocow_ctx;
4076 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
4077 
4078 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4079 	if (!nocow_ctx) {
4080 		spin_lock(&sctx->stat_lock);
4081 		sctx->stat.malloc_errors++;
4082 		spin_unlock(&sctx->stat_lock);
4083 		return -ENOMEM;
4084 	}
4085 
4086 	scrub_pending_trans_workers_inc(sctx);
4087 
4088 	nocow_ctx->sctx = sctx;
4089 	nocow_ctx->logical = logical;
4090 	nocow_ctx->len = len;
4091 	nocow_ctx->mirror_num = mirror_num;
4092 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4093 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4094 			copy_nocow_pages_worker, NULL, NULL);
4095 	INIT_LIST_HEAD(&nocow_ctx->inodes);
4096 	btrfs_queue_work(fs_info->scrub_nocow_workers,
4097 			 &nocow_ctx->work);
4098 
4099 	return 0;
4100 }
4101 
record_inode_for_nocow(u64 inum,u64 offset,u64 root,void * ctx)4102 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4103 {
4104 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4105 	struct scrub_nocow_inode *nocow_inode;
4106 
4107 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4108 	if (!nocow_inode)
4109 		return -ENOMEM;
4110 	nocow_inode->inum = inum;
4111 	nocow_inode->offset = offset;
4112 	nocow_inode->root = root;
4113 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4114 	return 0;
4115 }
4116 
4117 #define COPY_COMPLETE 1
4118 
copy_nocow_pages_worker(struct btrfs_work * work)4119 static void copy_nocow_pages_worker(struct btrfs_work *work)
4120 {
4121 	struct scrub_copy_nocow_ctx *nocow_ctx =
4122 		container_of(work, struct scrub_copy_nocow_ctx, work);
4123 	struct scrub_ctx *sctx = nocow_ctx->sctx;
4124 	u64 logical = nocow_ctx->logical;
4125 	u64 len = nocow_ctx->len;
4126 	int mirror_num = nocow_ctx->mirror_num;
4127 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4128 	int ret;
4129 	struct btrfs_trans_handle *trans = NULL;
4130 	struct btrfs_fs_info *fs_info;
4131 	struct btrfs_path *path;
4132 	struct btrfs_root *root;
4133 	int not_written = 0;
4134 
4135 	fs_info = sctx->dev_root->fs_info;
4136 	root = fs_info->extent_root;
4137 
4138 	path = btrfs_alloc_path();
4139 	if (!path) {
4140 		spin_lock(&sctx->stat_lock);
4141 		sctx->stat.malloc_errors++;
4142 		spin_unlock(&sctx->stat_lock);
4143 		not_written = 1;
4144 		goto out;
4145 	}
4146 
4147 	trans = btrfs_join_transaction(root);
4148 	if (IS_ERR(trans)) {
4149 		not_written = 1;
4150 		goto out;
4151 	}
4152 
4153 	ret = iterate_inodes_from_logical(logical, fs_info, path,
4154 					  record_inode_for_nocow, nocow_ctx);
4155 	if (ret != 0 && ret != -ENOENT) {
4156 		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
4157 			"phys %llu, len %llu, mir %u, ret %d",
4158 			logical, physical_for_dev_replace, len, mirror_num,
4159 			ret);
4160 		not_written = 1;
4161 		goto out;
4162 	}
4163 
4164 	btrfs_end_transaction(trans, root);
4165 	trans = NULL;
4166 	while (!list_empty(&nocow_ctx->inodes)) {
4167 		struct scrub_nocow_inode *entry;
4168 		entry = list_first_entry(&nocow_ctx->inodes,
4169 					 struct scrub_nocow_inode,
4170 					 list);
4171 		list_del_init(&entry->list);
4172 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4173 						 entry->root, nocow_ctx);
4174 		kfree(entry);
4175 		if (ret == COPY_COMPLETE) {
4176 			ret = 0;
4177 			break;
4178 		} else if (ret) {
4179 			break;
4180 		}
4181 	}
4182 out:
4183 	while (!list_empty(&nocow_ctx->inodes)) {
4184 		struct scrub_nocow_inode *entry;
4185 		entry = list_first_entry(&nocow_ctx->inodes,
4186 					 struct scrub_nocow_inode,
4187 					 list);
4188 		list_del_init(&entry->list);
4189 		kfree(entry);
4190 	}
4191 	if (trans && !IS_ERR(trans))
4192 		btrfs_end_transaction(trans, root);
4193 	if (not_written)
4194 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4195 					    num_uncorrectable_read_errors);
4196 
4197 	btrfs_free_path(path);
4198 	kfree(nocow_ctx);
4199 
4200 	scrub_pending_trans_workers_dec(sctx);
4201 }
4202 
check_extent_to_block(struct inode * inode,u64 start,u64 len,u64 logical)4203 static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4204 				 u64 logical)
4205 {
4206 	struct extent_state *cached_state = NULL;
4207 	struct btrfs_ordered_extent *ordered;
4208 	struct extent_io_tree *io_tree;
4209 	struct extent_map *em;
4210 	u64 lockstart = start, lockend = start + len - 1;
4211 	int ret = 0;
4212 
4213 	io_tree = &BTRFS_I(inode)->io_tree;
4214 
4215 	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
4216 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4217 	if (ordered) {
4218 		btrfs_put_ordered_extent(ordered);
4219 		ret = 1;
4220 		goto out_unlock;
4221 	}
4222 
4223 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4224 	if (IS_ERR(em)) {
4225 		ret = PTR_ERR(em);
4226 		goto out_unlock;
4227 	}
4228 
4229 	/*
4230 	 * This extent does not actually cover the logical extent anymore,
4231 	 * move on to the next inode.
4232 	 */
4233 	if (em->block_start > logical ||
4234 	    em->block_start + em->block_len < logical + len) {
4235 		free_extent_map(em);
4236 		ret = 1;
4237 		goto out_unlock;
4238 	}
4239 	free_extent_map(em);
4240 
4241 out_unlock:
4242 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4243 			     GFP_NOFS);
4244 	return ret;
4245 }
4246 
copy_nocow_pages_for_inode(u64 inum,u64 offset,u64 root,struct scrub_copy_nocow_ctx * nocow_ctx)4247 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4248 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4249 {
4250 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4251 	struct btrfs_key key;
4252 	struct inode *inode;
4253 	struct page *page;
4254 	struct btrfs_root *local_root;
4255 	struct extent_io_tree *io_tree;
4256 	u64 physical_for_dev_replace;
4257 	u64 nocow_ctx_logical;
4258 	u64 len = nocow_ctx->len;
4259 	unsigned long index;
4260 	int srcu_index;
4261 	int ret = 0;
4262 	int err = 0;
4263 
4264 	key.objectid = root;
4265 	key.type = BTRFS_ROOT_ITEM_KEY;
4266 	key.offset = (u64)-1;
4267 
4268 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4269 
4270 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4271 	if (IS_ERR(local_root)) {
4272 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4273 		return PTR_ERR(local_root);
4274 	}
4275 
4276 	key.type = BTRFS_INODE_ITEM_KEY;
4277 	key.objectid = inum;
4278 	key.offset = 0;
4279 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4280 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4281 	if (IS_ERR(inode))
4282 		return PTR_ERR(inode);
4283 
4284 	/* Avoid truncate/dio/punch hole.. */
4285 	mutex_lock(&inode->i_mutex);
4286 	inode_dio_wait(inode);
4287 
4288 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4289 	io_tree = &BTRFS_I(inode)->io_tree;
4290 	nocow_ctx_logical = nocow_ctx->logical;
4291 
4292 	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4293 	if (ret) {
4294 		ret = ret > 0 ? 0 : ret;
4295 		goto out;
4296 	}
4297 
4298 	while (len >= PAGE_CACHE_SIZE) {
4299 		index = offset >> PAGE_CACHE_SHIFT;
4300 again:
4301 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4302 		if (!page) {
4303 			btrfs_err(fs_info, "find_or_create_page() failed");
4304 			ret = -ENOMEM;
4305 			goto out;
4306 		}
4307 
4308 		if (PageUptodate(page)) {
4309 			if (PageDirty(page))
4310 				goto next_page;
4311 		} else {
4312 			ClearPageError(page);
4313 			err = extent_read_full_page(io_tree, page,
4314 							   btrfs_get_extent,
4315 							   nocow_ctx->mirror_num);
4316 			if (err) {
4317 				ret = err;
4318 				goto next_page;
4319 			}
4320 
4321 			lock_page(page);
4322 			/*
4323 			 * If the page has been remove from the page cache,
4324 			 * the data on it is meaningless, because it may be
4325 			 * old one, the new data may be written into the new
4326 			 * page in the page cache.
4327 			 */
4328 			if (page->mapping != inode->i_mapping) {
4329 				unlock_page(page);
4330 				page_cache_release(page);
4331 				goto again;
4332 			}
4333 			if (!PageUptodate(page)) {
4334 				ret = -EIO;
4335 				goto next_page;
4336 			}
4337 		}
4338 
4339 		ret = check_extent_to_block(inode, offset, len,
4340 					    nocow_ctx_logical);
4341 		if (ret) {
4342 			ret = ret > 0 ? 0 : ret;
4343 			goto next_page;
4344 		}
4345 
4346 		err = write_page_nocow(nocow_ctx->sctx,
4347 				       physical_for_dev_replace, page);
4348 		if (err)
4349 			ret = err;
4350 next_page:
4351 		unlock_page(page);
4352 		page_cache_release(page);
4353 
4354 		if (ret)
4355 			break;
4356 
4357 		offset += PAGE_CACHE_SIZE;
4358 		physical_for_dev_replace += PAGE_CACHE_SIZE;
4359 		nocow_ctx_logical += PAGE_CACHE_SIZE;
4360 		len -= PAGE_CACHE_SIZE;
4361 	}
4362 	ret = COPY_COMPLETE;
4363 out:
4364 	mutex_unlock(&inode->i_mutex);
4365 	iput(inode);
4366 	return ret;
4367 }
4368 
write_page_nocow(struct scrub_ctx * sctx,u64 physical_for_dev_replace,struct page * page)4369 static int write_page_nocow(struct scrub_ctx *sctx,
4370 			    u64 physical_for_dev_replace, struct page *page)
4371 {
4372 	struct bio *bio;
4373 	struct btrfs_device *dev;
4374 	int ret;
4375 
4376 	dev = sctx->wr_ctx.tgtdev;
4377 	if (!dev)
4378 		return -EIO;
4379 	if (!dev->bdev) {
4380 		btrfs_warn_rl(dev->dev_root->fs_info,
4381 			"scrub write_page_nocow(bdev == NULL) is unexpected");
4382 		return -EIO;
4383 	}
4384 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4385 	if (!bio) {
4386 		spin_lock(&sctx->stat_lock);
4387 		sctx->stat.malloc_errors++;
4388 		spin_unlock(&sctx->stat_lock);
4389 		return -ENOMEM;
4390 	}
4391 	bio->bi_iter.bi_size = 0;
4392 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4393 	bio->bi_bdev = dev->bdev;
4394 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
4395 	if (ret != PAGE_CACHE_SIZE) {
4396 leave_with_eio:
4397 		bio_put(bio);
4398 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4399 		return -EIO;
4400 	}
4401 
4402 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4403 		goto leave_with_eio;
4404 
4405 	bio_put(bio);
4406 	return 0;
4407 }
4408