• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "xattr.h"
38 
39 static int g_verbose = 0;
40 
41 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
42 
43 /*
44  * A fs_path is a helper to dynamically build path names with unknown size.
45  * It reallocates the internal buffer on demand.
46  * It allows fast adding of path elements on the right side (normal path) and
47  * fast adding to the left side (reversed path). A reversed path can also be
48  * unreversed if needed.
49  */
50 struct fs_path {
51 	union {
52 		struct {
53 			char *start;
54 			char *end;
55 
56 			char *buf;
57 			unsigned short buf_len:15;
58 			unsigned short reversed:1;
59 			char inline_buf[];
60 		};
61 		/*
62 		 * Average path length does not exceed 200 bytes, we'll have
63 		 * better packing in the slab and higher chance to satisfy
64 		 * a allocation later during send.
65 		 */
66 		char pad[256];
67 	};
68 };
69 #define FS_PATH_INLINE_SIZE \
70 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
71 
72 
73 /* reused for each extent */
74 struct clone_root {
75 	struct btrfs_root *root;
76 	u64 ino;
77 	u64 offset;
78 
79 	u64 found_refs;
80 };
81 
82 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
83 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
84 
85 struct send_ctx {
86 	struct file *send_filp;
87 	loff_t send_off;
88 	char *send_buf;
89 	u32 send_size;
90 	u32 send_max_size;
91 	u64 total_send_size;
92 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
93 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
94 
95 	struct btrfs_root *send_root;
96 	struct btrfs_root *parent_root;
97 	struct clone_root *clone_roots;
98 	int clone_roots_cnt;
99 
100 	/* current state of the compare_tree call */
101 	struct btrfs_path *left_path;
102 	struct btrfs_path *right_path;
103 	struct btrfs_key *cmp_key;
104 
105 	/*
106 	 * infos of the currently processed inode. In case of deleted inodes,
107 	 * these are the values from the deleted inode.
108 	 */
109 	u64 cur_ino;
110 	u64 cur_inode_gen;
111 	int cur_inode_new;
112 	int cur_inode_new_gen;
113 	int cur_inode_deleted;
114 	u64 cur_inode_size;
115 	u64 cur_inode_mode;
116 	u64 cur_inode_rdev;
117 	u64 cur_inode_last_extent;
118 
119 	u64 send_progress;
120 
121 	struct list_head new_refs;
122 	struct list_head deleted_refs;
123 
124 	struct radix_tree_root name_cache;
125 	struct list_head name_cache_list;
126 	int name_cache_size;
127 
128 	struct file_ra_state ra;
129 
130 	char *read_buf;
131 
132 	/*
133 	 * We process inodes by their increasing order, so if before an
134 	 * incremental send we reverse the parent/child relationship of
135 	 * directories such that a directory with a lower inode number was
136 	 * the parent of a directory with a higher inode number, and the one
137 	 * becoming the new parent got renamed too, we can't rename/move the
138 	 * directory with lower inode number when we finish processing it - we
139 	 * must process the directory with higher inode number first, then
140 	 * rename/move it and then rename/move the directory with lower inode
141 	 * number. Example follows.
142 	 *
143 	 * Tree state when the first send was performed:
144 	 *
145 	 * .
146 	 * |-- a                   (ino 257)
147 	 *     |-- b               (ino 258)
148 	 *         |
149 	 *         |
150 	 *         |-- c           (ino 259)
151 	 *         |   |-- d       (ino 260)
152 	 *         |
153 	 *         |-- c2          (ino 261)
154 	 *
155 	 * Tree state when the second (incremental) send is performed:
156 	 *
157 	 * .
158 	 * |-- a                   (ino 257)
159 	 *     |-- b               (ino 258)
160 	 *         |-- c2          (ino 261)
161 	 *             |-- d2      (ino 260)
162 	 *                 |-- cc  (ino 259)
163 	 *
164 	 * The sequence of steps that lead to the second state was:
165 	 *
166 	 * mv /a/b/c/d /a/b/c2/d2
167 	 * mv /a/b/c /a/b/c2/d2/cc
168 	 *
169 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
170 	 * before we move "d", which has higher inode number.
171 	 *
172 	 * So we just memorize which move/rename operations must be performed
173 	 * later when their respective parent is processed and moved/renamed.
174 	 */
175 
176 	/* Indexed by parent directory inode number. */
177 	struct rb_root pending_dir_moves;
178 
179 	/*
180 	 * Reverse index, indexed by the inode number of a directory that
181 	 * is waiting for the move/rename of its immediate parent before its
182 	 * own move/rename can be performed.
183 	 */
184 	struct rb_root waiting_dir_moves;
185 
186 	/*
187 	 * A directory that is going to be rm'ed might have a child directory
188 	 * which is in the pending directory moves index above. In this case,
189 	 * the directory can only be removed after the move/rename of its child
190 	 * is performed. Example:
191 	 *
192 	 * Parent snapshot:
193 	 *
194 	 * .                        (ino 256)
195 	 * |-- a/                   (ino 257)
196 	 *     |-- b/               (ino 258)
197 	 *         |-- c/           (ino 259)
198 	 *         |   |-- x/       (ino 260)
199 	 *         |
200 	 *         |-- y/           (ino 261)
201 	 *
202 	 * Send snapshot:
203 	 *
204 	 * .                        (ino 256)
205 	 * |-- a/                   (ino 257)
206 	 *     |-- b/               (ino 258)
207 	 *         |-- YY/          (ino 261)
208 	 *              |-- x/      (ino 260)
209 	 *
210 	 * Sequence of steps that lead to the send snapshot:
211 	 * rm -f /a/b/c/foo.txt
212 	 * mv /a/b/y /a/b/YY
213 	 * mv /a/b/c/x /a/b/YY
214 	 * rmdir /a/b/c
215 	 *
216 	 * When the child is processed, its move/rename is delayed until its
217 	 * parent is processed (as explained above), but all other operations
218 	 * like update utimes, chown, chgrp, etc, are performed and the paths
219 	 * that it uses for those operations must use the orphanized name of
220 	 * its parent (the directory we're going to rm later), so we need to
221 	 * memorize that name.
222 	 *
223 	 * Indexed by the inode number of the directory to be deleted.
224 	 */
225 	struct rb_root orphan_dirs;
226 };
227 
228 struct pending_dir_move {
229 	struct rb_node node;
230 	struct list_head list;
231 	u64 parent_ino;
232 	u64 ino;
233 	u64 gen;
234 	bool is_orphan;
235 	struct list_head update_refs;
236 };
237 
238 struct waiting_dir_move {
239 	struct rb_node node;
240 	u64 ino;
241 	/*
242 	 * There might be some directory that could not be removed because it
243 	 * was waiting for this directory inode to be moved first. Therefore
244 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
245 	 */
246 	u64 rmdir_ino;
247 	bool orphanized;
248 };
249 
250 struct orphan_dir_info {
251 	struct rb_node node;
252 	u64 ino;
253 	u64 gen;
254 };
255 
256 struct name_cache_entry {
257 	struct list_head list;
258 	/*
259 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
260 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
261 	 * more then one inum would fall into the same entry, we use radix_list
262 	 * to store the additional entries. radix_list is also used to store
263 	 * entries where two entries have the same inum but different
264 	 * generations.
265 	 */
266 	struct list_head radix_list;
267 	u64 ino;
268 	u64 gen;
269 	u64 parent_ino;
270 	u64 parent_gen;
271 	int ret;
272 	int need_later_update;
273 	int name_len;
274 	char name[];
275 };
276 
277 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
278 
279 static struct waiting_dir_move *
280 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
281 
282 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
283 
need_send_hole(struct send_ctx * sctx)284 static int need_send_hole(struct send_ctx *sctx)
285 {
286 	return (sctx->parent_root && !sctx->cur_inode_new &&
287 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
288 		S_ISREG(sctx->cur_inode_mode));
289 }
290 
fs_path_reset(struct fs_path * p)291 static void fs_path_reset(struct fs_path *p)
292 {
293 	if (p->reversed) {
294 		p->start = p->buf + p->buf_len - 1;
295 		p->end = p->start;
296 		*p->start = 0;
297 	} else {
298 		p->start = p->buf;
299 		p->end = p->start;
300 		*p->start = 0;
301 	}
302 }
303 
fs_path_alloc(void)304 static struct fs_path *fs_path_alloc(void)
305 {
306 	struct fs_path *p;
307 
308 	p = kmalloc(sizeof(*p), GFP_NOFS);
309 	if (!p)
310 		return NULL;
311 	p->reversed = 0;
312 	p->buf = p->inline_buf;
313 	p->buf_len = FS_PATH_INLINE_SIZE;
314 	fs_path_reset(p);
315 	return p;
316 }
317 
fs_path_alloc_reversed(void)318 static struct fs_path *fs_path_alloc_reversed(void)
319 {
320 	struct fs_path *p;
321 
322 	p = fs_path_alloc();
323 	if (!p)
324 		return NULL;
325 	p->reversed = 1;
326 	fs_path_reset(p);
327 	return p;
328 }
329 
fs_path_free(struct fs_path * p)330 static void fs_path_free(struct fs_path *p)
331 {
332 	if (!p)
333 		return;
334 	if (p->buf != p->inline_buf)
335 		kfree(p->buf);
336 	kfree(p);
337 }
338 
fs_path_len(struct fs_path * p)339 static int fs_path_len(struct fs_path *p)
340 {
341 	return p->end - p->start;
342 }
343 
fs_path_ensure_buf(struct fs_path * p,int len)344 static int fs_path_ensure_buf(struct fs_path *p, int len)
345 {
346 	char *tmp_buf;
347 	int path_len;
348 	int old_buf_len;
349 
350 	len++;
351 
352 	if (p->buf_len >= len)
353 		return 0;
354 
355 	if (len > PATH_MAX) {
356 		WARN_ON(1);
357 		return -ENOMEM;
358 	}
359 
360 	path_len = p->end - p->start;
361 	old_buf_len = p->buf_len;
362 
363 	/*
364 	 * First time the inline_buf does not suffice
365 	 */
366 	if (p->buf == p->inline_buf) {
367 		tmp_buf = kmalloc(len, GFP_NOFS);
368 		if (tmp_buf)
369 			memcpy(tmp_buf, p->buf, old_buf_len);
370 	} else {
371 		tmp_buf = krealloc(p->buf, len, GFP_NOFS);
372 	}
373 	if (!tmp_buf)
374 		return -ENOMEM;
375 	p->buf = tmp_buf;
376 	/*
377 	 * The real size of the buffer is bigger, this will let the fast path
378 	 * happen most of the time
379 	 */
380 	p->buf_len = ksize(p->buf);
381 
382 	if (p->reversed) {
383 		tmp_buf = p->buf + old_buf_len - path_len - 1;
384 		p->end = p->buf + p->buf_len - 1;
385 		p->start = p->end - path_len;
386 		memmove(p->start, tmp_buf, path_len + 1);
387 	} else {
388 		p->start = p->buf;
389 		p->end = p->start + path_len;
390 	}
391 	return 0;
392 }
393 
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)394 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
395 				   char **prepared)
396 {
397 	int ret;
398 	int new_len;
399 
400 	new_len = p->end - p->start + name_len;
401 	if (p->start != p->end)
402 		new_len++;
403 	ret = fs_path_ensure_buf(p, new_len);
404 	if (ret < 0)
405 		goto out;
406 
407 	if (p->reversed) {
408 		if (p->start != p->end)
409 			*--p->start = '/';
410 		p->start -= name_len;
411 		*prepared = p->start;
412 	} else {
413 		if (p->start != p->end)
414 			*p->end++ = '/';
415 		*prepared = p->end;
416 		p->end += name_len;
417 		*p->end = 0;
418 	}
419 
420 out:
421 	return ret;
422 }
423 
fs_path_add(struct fs_path * p,const char * name,int name_len)424 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
425 {
426 	int ret;
427 	char *prepared;
428 
429 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
430 	if (ret < 0)
431 		goto out;
432 	memcpy(prepared, name, name_len);
433 
434 out:
435 	return ret;
436 }
437 
fs_path_add_path(struct fs_path * p,struct fs_path * p2)438 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
439 {
440 	int ret;
441 	char *prepared;
442 
443 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
444 	if (ret < 0)
445 		goto out;
446 	memcpy(prepared, p2->start, p2->end - p2->start);
447 
448 out:
449 	return ret;
450 }
451 
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)452 static int fs_path_add_from_extent_buffer(struct fs_path *p,
453 					  struct extent_buffer *eb,
454 					  unsigned long off, int len)
455 {
456 	int ret;
457 	char *prepared;
458 
459 	ret = fs_path_prepare_for_add(p, len, &prepared);
460 	if (ret < 0)
461 		goto out;
462 
463 	read_extent_buffer(eb, prepared, off, len);
464 
465 out:
466 	return ret;
467 }
468 
fs_path_copy(struct fs_path * p,struct fs_path * from)469 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
470 {
471 	int ret;
472 
473 	p->reversed = from->reversed;
474 	fs_path_reset(p);
475 
476 	ret = fs_path_add_path(p, from);
477 
478 	return ret;
479 }
480 
481 
fs_path_unreverse(struct fs_path * p)482 static void fs_path_unreverse(struct fs_path *p)
483 {
484 	char *tmp;
485 	int len;
486 
487 	if (!p->reversed)
488 		return;
489 
490 	tmp = p->start;
491 	len = p->end - p->start;
492 	p->start = p->buf;
493 	p->end = p->start + len;
494 	memmove(p->start, tmp, len + 1);
495 	p->reversed = 0;
496 }
497 
alloc_path_for_send(void)498 static struct btrfs_path *alloc_path_for_send(void)
499 {
500 	struct btrfs_path *path;
501 
502 	path = btrfs_alloc_path();
503 	if (!path)
504 		return NULL;
505 	path->search_commit_root = 1;
506 	path->skip_locking = 1;
507 	path->need_commit_sem = 1;
508 	return path;
509 }
510 
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)511 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
512 {
513 	int ret;
514 	mm_segment_t old_fs;
515 	u32 pos = 0;
516 
517 	old_fs = get_fs();
518 	set_fs(KERNEL_DS);
519 
520 	while (pos < len) {
521 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
522 				len - pos, off);
523 		/* TODO handle that correctly */
524 		/*if (ret == -ERESTARTSYS) {
525 			continue;
526 		}*/
527 		if (ret < 0)
528 			goto out;
529 		if (ret == 0) {
530 			ret = -EIO;
531 			goto out;
532 		}
533 		pos += ret;
534 	}
535 
536 	ret = 0;
537 
538 out:
539 	set_fs(old_fs);
540 	return ret;
541 }
542 
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)543 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
544 {
545 	struct btrfs_tlv_header *hdr;
546 	int total_len = sizeof(*hdr) + len;
547 	int left = sctx->send_max_size - sctx->send_size;
548 
549 	if (unlikely(left < total_len))
550 		return -EOVERFLOW;
551 
552 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
553 	hdr->tlv_type = cpu_to_le16(attr);
554 	hdr->tlv_len = cpu_to_le16(len);
555 	memcpy(hdr + 1, data, len);
556 	sctx->send_size += total_len;
557 
558 	return 0;
559 }
560 
561 #define TLV_PUT_DEFINE_INT(bits) \
562 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
563 			u##bits attr, u##bits value)			\
564 	{								\
565 		__le##bits __tmp = cpu_to_le##bits(value);		\
566 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
567 	}
568 
569 TLV_PUT_DEFINE_INT(64)
570 
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)571 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
572 			  const char *str, int len)
573 {
574 	if (len == -1)
575 		len = strlen(str);
576 	return tlv_put(sctx, attr, str, len);
577 }
578 
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)579 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
580 			const u8 *uuid)
581 {
582 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
583 }
584 
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)585 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
586 				  struct extent_buffer *eb,
587 				  struct btrfs_timespec *ts)
588 {
589 	struct btrfs_timespec bts;
590 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
591 	return tlv_put(sctx, attr, &bts, sizeof(bts));
592 }
593 
594 
595 #define TLV_PUT(sctx, attrtype, attrlen, data) \
596 	do { \
597 		ret = tlv_put(sctx, attrtype, attrlen, data); \
598 		if (ret < 0) \
599 			goto tlv_put_failure; \
600 	} while (0)
601 
602 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
603 	do { \
604 		ret = tlv_put_u##bits(sctx, attrtype, value); \
605 		if (ret < 0) \
606 			goto tlv_put_failure; \
607 	} while (0)
608 
609 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
610 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
611 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
612 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
613 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
614 	do { \
615 		ret = tlv_put_string(sctx, attrtype, str, len); \
616 		if (ret < 0) \
617 			goto tlv_put_failure; \
618 	} while (0)
619 #define TLV_PUT_PATH(sctx, attrtype, p) \
620 	do { \
621 		ret = tlv_put_string(sctx, attrtype, p->start, \
622 			p->end - p->start); \
623 		if (ret < 0) \
624 			goto tlv_put_failure; \
625 	} while(0)
626 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
627 	do { \
628 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
629 		if (ret < 0) \
630 			goto tlv_put_failure; \
631 	} while (0)
632 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
633 	do { \
634 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
635 		if (ret < 0) \
636 			goto tlv_put_failure; \
637 	} while (0)
638 
send_header(struct send_ctx * sctx)639 static int send_header(struct send_ctx *sctx)
640 {
641 	struct btrfs_stream_header hdr;
642 
643 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
644 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
645 
646 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
647 					&sctx->send_off);
648 }
649 
650 /*
651  * For each command/item we want to send to userspace, we call this function.
652  */
begin_cmd(struct send_ctx * sctx,int cmd)653 static int begin_cmd(struct send_ctx *sctx, int cmd)
654 {
655 	struct btrfs_cmd_header *hdr;
656 
657 	if (WARN_ON(!sctx->send_buf))
658 		return -EINVAL;
659 
660 	BUG_ON(sctx->send_size);
661 
662 	sctx->send_size += sizeof(*hdr);
663 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
664 	hdr->cmd = cpu_to_le16(cmd);
665 
666 	return 0;
667 }
668 
send_cmd(struct send_ctx * sctx)669 static int send_cmd(struct send_ctx *sctx)
670 {
671 	int ret;
672 	struct btrfs_cmd_header *hdr;
673 	u32 crc;
674 
675 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
676 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
677 	hdr->crc = 0;
678 
679 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
680 	hdr->crc = cpu_to_le32(crc);
681 
682 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
683 					&sctx->send_off);
684 
685 	sctx->total_send_size += sctx->send_size;
686 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
687 	sctx->send_size = 0;
688 
689 	return ret;
690 }
691 
692 /*
693  * Sends a move instruction to user space
694  */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)695 static int send_rename(struct send_ctx *sctx,
696 		     struct fs_path *from, struct fs_path *to)
697 {
698 	int ret;
699 
700 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
701 
702 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
703 	if (ret < 0)
704 		goto out;
705 
706 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
707 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
708 
709 	ret = send_cmd(sctx);
710 
711 tlv_put_failure:
712 out:
713 	return ret;
714 }
715 
716 /*
717  * Sends a link instruction to user space
718  */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)719 static int send_link(struct send_ctx *sctx,
720 		     struct fs_path *path, struct fs_path *lnk)
721 {
722 	int ret;
723 
724 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
725 
726 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
727 	if (ret < 0)
728 		goto out;
729 
730 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
731 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
732 
733 	ret = send_cmd(sctx);
734 
735 tlv_put_failure:
736 out:
737 	return ret;
738 }
739 
740 /*
741  * Sends an unlink instruction to user space
742  */
send_unlink(struct send_ctx * sctx,struct fs_path * path)743 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
744 {
745 	int ret;
746 
747 verbose_printk("btrfs: send_unlink %s\n", path->start);
748 
749 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
750 	if (ret < 0)
751 		goto out;
752 
753 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
754 
755 	ret = send_cmd(sctx);
756 
757 tlv_put_failure:
758 out:
759 	return ret;
760 }
761 
762 /*
763  * Sends a rmdir instruction to user space
764  */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)765 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
766 {
767 	int ret;
768 
769 verbose_printk("btrfs: send_rmdir %s\n", path->start);
770 
771 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
772 	if (ret < 0)
773 		goto out;
774 
775 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
776 
777 	ret = send_cmd(sctx);
778 
779 tlv_put_failure:
780 out:
781 	return ret;
782 }
783 
784 /*
785  * Helper function to retrieve some fields from an inode item.
786  */
__get_inode_info(struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 * size,u64 * gen,u64 * mode,u64 * uid,u64 * gid,u64 * rdev)787 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
788 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
789 			  u64 *gid, u64 *rdev)
790 {
791 	int ret;
792 	struct btrfs_inode_item *ii;
793 	struct btrfs_key key;
794 
795 	key.objectid = ino;
796 	key.type = BTRFS_INODE_ITEM_KEY;
797 	key.offset = 0;
798 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
799 	if (ret) {
800 		if (ret > 0)
801 			ret = -ENOENT;
802 		return ret;
803 	}
804 
805 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
806 			struct btrfs_inode_item);
807 	if (size)
808 		*size = btrfs_inode_size(path->nodes[0], ii);
809 	if (gen)
810 		*gen = btrfs_inode_generation(path->nodes[0], ii);
811 	if (mode)
812 		*mode = btrfs_inode_mode(path->nodes[0], ii);
813 	if (uid)
814 		*uid = btrfs_inode_uid(path->nodes[0], ii);
815 	if (gid)
816 		*gid = btrfs_inode_gid(path->nodes[0], ii);
817 	if (rdev)
818 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
819 
820 	return ret;
821 }
822 
get_inode_info(struct btrfs_root * root,u64 ino,u64 * size,u64 * gen,u64 * mode,u64 * uid,u64 * gid,u64 * rdev)823 static int get_inode_info(struct btrfs_root *root,
824 			  u64 ino, u64 *size, u64 *gen,
825 			  u64 *mode, u64 *uid, u64 *gid,
826 			  u64 *rdev)
827 {
828 	struct btrfs_path *path;
829 	int ret;
830 
831 	path = alloc_path_for_send();
832 	if (!path)
833 		return -ENOMEM;
834 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
835 			       rdev);
836 	btrfs_free_path(path);
837 	return ret;
838 }
839 
840 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
841 				   struct fs_path *p,
842 				   void *ctx);
843 
844 /*
845  * Helper function to iterate the entries in ONE btrfs_inode_ref or
846  * btrfs_inode_extref.
847  * The iterate callback may return a non zero value to stop iteration. This can
848  * be a negative value for error codes or 1 to simply stop it.
849  *
850  * path must point to the INODE_REF or INODE_EXTREF when called.
851  */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)852 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
853 			     struct btrfs_key *found_key, int resolve,
854 			     iterate_inode_ref_t iterate, void *ctx)
855 {
856 	struct extent_buffer *eb = path->nodes[0];
857 	struct btrfs_item *item;
858 	struct btrfs_inode_ref *iref;
859 	struct btrfs_inode_extref *extref;
860 	struct btrfs_path *tmp_path;
861 	struct fs_path *p;
862 	u32 cur = 0;
863 	u32 total;
864 	int slot = path->slots[0];
865 	u32 name_len;
866 	char *start;
867 	int ret = 0;
868 	int num = 0;
869 	int index;
870 	u64 dir;
871 	unsigned long name_off;
872 	unsigned long elem_size;
873 	unsigned long ptr;
874 
875 	p = fs_path_alloc_reversed();
876 	if (!p)
877 		return -ENOMEM;
878 
879 	tmp_path = alloc_path_for_send();
880 	if (!tmp_path) {
881 		fs_path_free(p);
882 		return -ENOMEM;
883 	}
884 
885 
886 	if (found_key->type == BTRFS_INODE_REF_KEY) {
887 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
888 						    struct btrfs_inode_ref);
889 		item = btrfs_item_nr(slot);
890 		total = btrfs_item_size(eb, item);
891 		elem_size = sizeof(*iref);
892 	} else {
893 		ptr = btrfs_item_ptr_offset(eb, slot);
894 		total = btrfs_item_size_nr(eb, slot);
895 		elem_size = sizeof(*extref);
896 	}
897 
898 	while (cur < total) {
899 		fs_path_reset(p);
900 
901 		if (found_key->type == BTRFS_INODE_REF_KEY) {
902 			iref = (struct btrfs_inode_ref *)(ptr + cur);
903 			name_len = btrfs_inode_ref_name_len(eb, iref);
904 			name_off = (unsigned long)(iref + 1);
905 			index = btrfs_inode_ref_index(eb, iref);
906 			dir = found_key->offset;
907 		} else {
908 			extref = (struct btrfs_inode_extref *)(ptr + cur);
909 			name_len = btrfs_inode_extref_name_len(eb, extref);
910 			name_off = (unsigned long)&extref->name;
911 			index = btrfs_inode_extref_index(eb, extref);
912 			dir = btrfs_inode_extref_parent(eb, extref);
913 		}
914 
915 		if (resolve) {
916 			start = btrfs_ref_to_path(root, tmp_path, name_len,
917 						  name_off, eb, dir,
918 						  p->buf, p->buf_len);
919 			if (IS_ERR(start)) {
920 				ret = PTR_ERR(start);
921 				goto out;
922 			}
923 			if (start < p->buf) {
924 				/* overflow , try again with larger buffer */
925 				ret = fs_path_ensure_buf(p,
926 						p->buf_len + p->buf - start);
927 				if (ret < 0)
928 					goto out;
929 				start = btrfs_ref_to_path(root, tmp_path,
930 							  name_len, name_off,
931 							  eb, dir,
932 							  p->buf, p->buf_len);
933 				if (IS_ERR(start)) {
934 					ret = PTR_ERR(start);
935 					goto out;
936 				}
937 				BUG_ON(start < p->buf);
938 			}
939 			p->start = start;
940 		} else {
941 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
942 							     name_len);
943 			if (ret < 0)
944 				goto out;
945 		}
946 
947 		cur += elem_size + name_len;
948 		ret = iterate(num, dir, index, p, ctx);
949 		if (ret)
950 			goto out;
951 		num++;
952 	}
953 
954 out:
955 	btrfs_free_path(tmp_path);
956 	fs_path_free(p);
957 	return ret;
958 }
959 
960 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
961 				  const char *name, int name_len,
962 				  const char *data, int data_len,
963 				  u8 type, void *ctx);
964 
965 /*
966  * Helper function to iterate the entries in ONE btrfs_dir_item.
967  * The iterate callback may return a non zero value to stop iteration. This can
968  * be a negative value for error codes or 1 to simply stop it.
969  *
970  * path must point to the dir item when called.
971  */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,iterate_dir_item_t iterate,void * ctx)972 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
973 			    struct btrfs_key *found_key,
974 			    iterate_dir_item_t iterate, void *ctx)
975 {
976 	int ret = 0;
977 	struct extent_buffer *eb;
978 	struct btrfs_item *item;
979 	struct btrfs_dir_item *di;
980 	struct btrfs_key di_key;
981 	char *buf = NULL;
982 	int buf_len;
983 	u32 name_len;
984 	u32 data_len;
985 	u32 cur;
986 	u32 len;
987 	u32 total;
988 	int slot;
989 	int num;
990 	u8 type;
991 
992 	/*
993 	 * Start with a small buffer (1 page). If later we end up needing more
994 	 * space, which can happen for xattrs on a fs with a leaf size greater
995 	 * then the page size, attempt to increase the buffer. Typically xattr
996 	 * values are small.
997 	 */
998 	buf_len = PATH_MAX;
999 	buf = kmalloc(buf_len, GFP_NOFS);
1000 	if (!buf) {
1001 		ret = -ENOMEM;
1002 		goto out;
1003 	}
1004 
1005 	eb = path->nodes[0];
1006 	slot = path->slots[0];
1007 	item = btrfs_item_nr(slot);
1008 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1009 	cur = 0;
1010 	len = 0;
1011 	total = btrfs_item_size(eb, item);
1012 
1013 	num = 0;
1014 	while (cur < total) {
1015 		name_len = btrfs_dir_name_len(eb, di);
1016 		data_len = btrfs_dir_data_len(eb, di);
1017 		type = btrfs_dir_type(eb, di);
1018 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1019 
1020 		if (type == BTRFS_FT_XATTR) {
1021 			if (name_len > XATTR_NAME_MAX) {
1022 				ret = -ENAMETOOLONG;
1023 				goto out;
1024 			}
1025 			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1026 				ret = -E2BIG;
1027 				goto out;
1028 			}
1029 		} else {
1030 			/*
1031 			 * Path too long
1032 			 */
1033 			if (name_len + data_len > PATH_MAX) {
1034 				ret = -ENAMETOOLONG;
1035 				goto out;
1036 			}
1037 		}
1038 
1039 		if (name_len + data_len > buf_len) {
1040 			buf_len = name_len + data_len;
1041 			if (is_vmalloc_addr(buf)) {
1042 				vfree(buf);
1043 				buf = NULL;
1044 			} else {
1045 				char *tmp = krealloc(buf, buf_len,
1046 						     GFP_NOFS | __GFP_NOWARN);
1047 
1048 				if (!tmp)
1049 					kfree(buf);
1050 				buf = tmp;
1051 			}
1052 			if (!buf) {
1053 				buf = vmalloc(buf_len);
1054 				if (!buf) {
1055 					ret = -ENOMEM;
1056 					goto out;
1057 				}
1058 			}
1059 		}
1060 
1061 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1062 				name_len + data_len);
1063 
1064 		len = sizeof(*di) + name_len + data_len;
1065 		di = (struct btrfs_dir_item *)((char *)di + len);
1066 		cur += len;
1067 
1068 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1069 				data_len, type, ctx);
1070 		if (ret < 0)
1071 			goto out;
1072 		if (ret) {
1073 			ret = 0;
1074 			goto out;
1075 		}
1076 
1077 		num++;
1078 	}
1079 
1080 out:
1081 	kvfree(buf);
1082 	return ret;
1083 }
1084 
__copy_first_ref(int num,u64 dir,int index,struct fs_path * p,void * ctx)1085 static int __copy_first_ref(int num, u64 dir, int index,
1086 			    struct fs_path *p, void *ctx)
1087 {
1088 	int ret;
1089 	struct fs_path *pt = ctx;
1090 
1091 	ret = fs_path_copy(pt, p);
1092 	if (ret < 0)
1093 		return ret;
1094 
1095 	/* we want the first only */
1096 	return 1;
1097 }
1098 
1099 /*
1100  * Retrieve the first path of an inode. If an inode has more then one
1101  * ref/hardlink, this is ignored.
1102  */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1103 static int get_inode_path(struct btrfs_root *root,
1104 			  u64 ino, struct fs_path *path)
1105 {
1106 	int ret;
1107 	struct btrfs_key key, found_key;
1108 	struct btrfs_path *p;
1109 
1110 	p = alloc_path_for_send();
1111 	if (!p)
1112 		return -ENOMEM;
1113 
1114 	fs_path_reset(path);
1115 
1116 	key.objectid = ino;
1117 	key.type = BTRFS_INODE_REF_KEY;
1118 	key.offset = 0;
1119 
1120 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1121 	if (ret < 0)
1122 		goto out;
1123 	if (ret) {
1124 		ret = 1;
1125 		goto out;
1126 	}
1127 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1128 	if (found_key.objectid != ino ||
1129 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1130 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1131 		ret = -ENOENT;
1132 		goto out;
1133 	}
1134 
1135 	ret = iterate_inode_ref(root, p, &found_key, 1,
1136 				__copy_first_ref, path);
1137 	if (ret < 0)
1138 		goto out;
1139 	ret = 0;
1140 
1141 out:
1142 	btrfs_free_path(p);
1143 	return ret;
1144 }
1145 
1146 struct backref_ctx {
1147 	struct send_ctx *sctx;
1148 
1149 	struct btrfs_path *path;
1150 	/* number of total found references */
1151 	u64 found;
1152 
1153 	/*
1154 	 * used for clones found in send_root. clones found behind cur_objectid
1155 	 * and cur_offset are not considered as allowed clones.
1156 	 */
1157 	u64 cur_objectid;
1158 	u64 cur_offset;
1159 
1160 	/* may be truncated in case it's the last extent in a file */
1161 	u64 extent_len;
1162 
1163 	/* data offset in the file extent item */
1164 	u64 data_offset;
1165 
1166 	/* Just to check for bugs in backref resolving */
1167 	int found_itself;
1168 };
1169 
__clone_root_cmp_bsearch(const void * key,const void * elt)1170 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1171 {
1172 	u64 root = (u64)(uintptr_t)key;
1173 	struct clone_root *cr = (struct clone_root *)elt;
1174 
1175 	if (root < cr->root->objectid)
1176 		return -1;
1177 	if (root > cr->root->objectid)
1178 		return 1;
1179 	return 0;
1180 }
1181 
__clone_root_cmp_sort(const void * e1,const void * e2)1182 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1183 {
1184 	struct clone_root *cr1 = (struct clone_root *)e1;
1185 	struct clone_root *cr2 = (struct clone_root *)e2;
1186 
1187 	if (cr1->root->objectid < cr2->root->objectid)
1188 		return -1;
1189 	if (cr1->root->objectid > cr2->root->objectid)
1190 		return 1;
1191 	return 0;
1192 }
1193 
1194 /*
1195  * Called for every backref that is found for the current extent.
1196  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1197  */
__iterate_backrefs(u64 ino,u64 offset,u64 root,void * ctx_)1198 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1199 {
1200 	struct backref_ctx *bctx = ctx_;
1201 	struct clone_root *found;
1202 	int ret;
1203 	u64 i_size;
1204 
1205 	/* First check if the root is in the list of accepted clone sources */
1206 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1207 			bctx->sctx->clone_roots_cnt,
1208 			sizeof(struct clone_root),
1209 			__clone_root_cmp_bsearch);
1210 	if (!found)
1211 		return 0;
1212 
1213 	if (found->root == bctx->sctx->send_root &&
1214 	    ino == bctx->cur_objectid &&
1215 	    offset == bctx->cur_offset) {
1216 		bctx->found_itself = 1;
1217 	}
1218 
1219 	/*
1220 	 * There are inodes that have extents that lie behind its i_size. Don't
1221 	 * accept clones from these extents.
1222 	 */
1223 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1224 			       NULL, NULL, NULL);
1225 	btrfs_release_path(bctx->path);
1226 	if (ret < 0)
1227 		return ret;
1228 
1229 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1230 		return 0;
1231 
1232 	/*
1233 	 * Make sure we don't consider clones from send_root that are
1234 	 * behind the current inode/offset.
1235 	 */
1236 	if (found->root == bctx->sctx->send_root) {
1237 		/*
1238 		 * TODO for the moment we don't accept clones from the inode
1239 		 * that is currently send. We may change this when
1240 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1241 		 * file.
1242 		 */
1243 		if (ino >= bctx->cur_objectid)
1244 			return 0;
1245 #if 0
1246 		if (ino > bctx->cur_objectid)
1247 			return 0;
1248 		if (offset + bctx->extent_len > bctx->cur_offset)
1249 			return 0;
1250 #endif
1251 	}
1252 
1253 	bctx->found++;
1254 	found->found_refs++;
1255 	if (ino < found->ino) {
1256 		found->ino = ino;
1257 		found->offset = offset;
1258 	} else if (found->ino == ino) {
1259 		/*
1260 		 * same extent found more then once in the same file.
1261 		 */
1262 		if (found->offset > offset + bctx->extent_len)
1263 			found->offset = offset;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 /*
1270  * Given an inode, offset and extent item, it finds a good clone for a clone
1271  * instruction. Returns -ENOENT when none could be found. The function makes
1272  * sure that the returned clone is usable at the point where sending is at the
1273  * moment. This means, that no clones are accepted which lie behind the current
1274  * inode+offset.
1275  *
1276  * path must point to the extent item when called.
1277  */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1278 static int find_extent_clone(struct send_ctx *sctx,
1279 			     struct btrfs_path *path,
1280 			     u64 ino, u64 data_offset,
1281 			     u64 ino_size,
1282 			     struct clone_root **found)
1283 {
1284 	int ret;
1285 	int extent_type;
1286 	u64 logical;
1287 	u64 disk_byte;
1288 	u64 num_bytes;
1289 	u64 extent_item_pos;
1290 	u64 flags = 0;
1291 	struct btrfs_file_extent_item *fi;
1292 	struct extent_buffer *eb = path->nodes[0];
1293 	struct backref_ctx *backref_ctx = NULL;
1294 	struct clone_root *cur_clone_root;
1295 	struct btrfs_key found_key;
1296 	struct btrfs_path *tmp_path;
1297 	int compressed;
1298 	u32 i;
1299 
1300 	tmp_path = alloc_path_for_send();
1301 	if (!tmp_path)
1302 		return -ENOMEM;
1303 
1304 	/* We only use this path under the commit sem */
1305 	tmp_path->need_commit_sem = 0;
1306 
1307 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1308 	if (!backref_ctx) {
1309 		ret = -ENOMEM;
1310 		goto out;
1311 	}
1312 
1313 	backref_ctx->path = tmp_path;
1314 
1315 	if (data_offset >= ino_size) {
1316 		/*
1317 		 * There may be extents that lie behind the file's size.
1318 		 * I at least had this in combination with snapshotting while
1319 		 * writing large files.
1320 		 */
1321 		ret = 0;
1322 		goto out;
1323 	}
1324 
1325 	fi = btrfs_item_ptr(eb, path->slots[0],
1326 			struct btrfs_file_extent_item);
1327 	extent_type = btrfs_file_extent_type(eb, fi);
1328 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1329 		ret = -ENOENT;
1330 		goto out;
1331 	}
1332 	compressed = btrfs_file_extent_compression(eb, fi);
1333 
1334 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1335 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1336 	if (disk_byte == 0) {
1337 		ret = -ENOENT;
1338 		goto out;
1339 	}
1340 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1341 
1342 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1343 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1344 				  &found_key, &flags);
1345 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1346 	btrfs_release_path(tmp_path);
1347 
1348 	if (ret < 0)
1349 		goto out;
1350 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1351 		ret = -EIO;
1352 		goto out;
1353 	}
1354 
1355 	/*
1356 	 * Setup the clone roots.
1357 	 */
1358 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1359 		cur_clone_root = sctx->clone_roots + i;
1360 		cur_clone_root->ino = (u64)-1;
1361 		cur_clone_root->offset = 0;
1362 		cur_clone_root->found_refs = 0;
1363 	}
1364 
1365 	backref_ctx->sctx = sctx;
1366 	backref_ctx->found = 0;
1367 	backref_ctx->cur_objectid = ino;
1368 	backref_ctx->cur_offset = data_offset;
1369 	backref_ctx->found_itself = 0;
1370 	backref_ctx->extent_len = num_bytes;
1371 	/*
1372 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1373 	 * offsets that already take into account the data offset, but not for
1374 	 * compressed extents, since the offset is logical and not relative to
1375 	 * the physical extent locations. We must take this into account to
1376 	 * avoid sending clone offsets that go beyond the source file's size,
1377 	 * which would result in the clone ioctl failing with -EINVAL on the
1378 	 * receiving end.
1379 	 */
1380 	if (compressed == BTRFS_COMPRESS_NONE)
1381 		backref_ctx->data_offset = 0;
1382 	else
1383 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1384 
1385 	/*
1386 	 * The last extent of a file may be too large due to page alignment.
1387 	 * We need to adjust extent_len in this case so that the checks in
1388 	 * __iterate_backrefs work.
1389 	 */
1390 	if (data_offset + num_bytes >= ino_size)
1391 		backref_ctx->extent_len = ino_size - data_offset;
1392 
1393 	/*
1394 	 * Now collect all backrefs.
1395 	 */
1396 	if (compressed == BTRFS_COMPRESS_NONE)
1397 		extent_item_pos = logical - found_key.objectid;
1398 	else
1399 		extent_item_pos = 0;
1400 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1401 					found_key.objectid, extent_item_pos, 1,
1402 					__iterate_backrefs, backref_ctx);
1403 
1404 	if (ret < 0)
1405 		goto out;
1406 
1407 	if (!backref_ctx->found_itself) {
1408 		/* found a bug in backref code? */
1409 		ret = -EIO;
1410 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1411 				"send_root. inode=%llu, offset=%llu, "
1412 				"disk_byte=%llu found extent=%llu",
1413 				ino, data_offset, disk_byte, found_key.objectid);
1414 		goto out;
1415 	}
1416 
1417 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1418 		"ino=%llu, "
1419 		"num_bytes=%llu, logical=%llu\n",
1420 		data_offset, ino, num_bytes, logical);
1421 
1422 	if (!backref_ctx->found)
1423 		verbose_printk("btrfs:    no clones found\n");
1424 
1425 	cur_clone_root = NULL;
1426 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1427 		if (sctx->clone_roots[i].found_refs) {
1428 			if (!cur_clone_root)
1429 				cur_clone_root = sctx->clone_roots + i;
1430 			else if (sctx->clone_roots[i].root == sctx->send_root)
1431 				/* prefer clones from send_root over others */
1432 				cur_clone_root = sctx->clone_roots + i;
1433 		}
1434 
1435 	}
1436 
1437 	if (cur_clone_root) {
1438 		*found = cur_clone_root;
1439 		ret = 0;
1440 	} else {
1441 		ret = -ENOENT;
1442 	}
1443 
1444 out:
1445 	btrfs_free_path(tmp_path);
1446 	kfree(backref_ctx);
1447 	return ret;
1448 }
1449 
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1450 static int read_symlink(struct btrfs_root *root,
1451 			u64 ino,
1452 			struct fs_path *dest)
1453 {
1454 	int ret;
1455 	struct btrfs_path *path;
1456 	struct btrfs_key key;
1457 	struct btrfs_file_extent_item *ei;
1458 	u8 type;
1459 	u8 compression;
1460 	unsigned long off;
1461 	int len;
1462 
1463 	path = alloc_path_for_send();
1464 	if (!path)
1465 		return -ENOMEM;
1466 
1467 	key.objectid = ino;
1468 	key.type = BTRFS_EXTENT_DATA_KEY;
1469 	key.offset = 0;
1470 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1471 	if (ret < 0)
1472 		goto out;
1473 	if (ret) {
1474 		/*
1475 		 * An empty symlink inode. Can happen in rare error paths when
1476 		 * creating a symlink (transaction committed before the inode
1477 		 * eviction handler removed the symlink inode items and a crash
1478 		 * happened in between or the subvol was snapshoted in between).
1479 		 * Print an informative message to dmesg/syslog so that the user
1480 		 * can delete the symlink.
1481 		 */
1482 		btrfs_err(root->fs_info,
1483 			  "Found empty symlink inode %llu at root %llu",
1484 			  ino, root->root_key.objectid);
1485 		ret = -EIO;
1486 		goto out;
1487 	}
1488 
1489 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1490 			struct btrfs_file_extent_item);
1491 	type = btrfs_file_extent_type(path->nodes[0], ei);
1492 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1493 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1494 	BUG_ON(compression);
1495 
1496 	off = btrfs_file_extent_inline_start(ei);
1497 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1498 
1499 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1500 
1501 out:
1502 	btrfs_free_path(path);
1503 	return ret;
1504 }
1505 
1506 /*
1507  * Helper function to generate a file name that is unique in the root of
1508  * send_root and parent_root. This is used to generate names for orphan inodes.
1509  */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1510 static int gen_unique_name(struct send_ctx *sctx,
1511 			   u64 ino, u64 gen,
1512 			   struct fs_path *dest)
1513 {
1514 	int ret = 0;
1515 	struct btrfs_path *path;
1516 	struct btrfs_dir_item *di;
1517 	char tmp[64];
1518 	int len;
1519 	u64 idx = 0;
1520 
1521 	path = alloc_path_for_send();
1522 	if (!path)
1523 		return -ENOMEM;
1524 
1525 	while (1) {
1526 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1527 				ino, gen, idx);
1528 		ASSERT(len < sizeof(tmp));
1529 
1530 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1531 				path, BTRFS_FIRST_FREE_OBJECTID,
1532 				tmp, strlen(tmp), 0);
1533 		btrfs_release_path(path);
1534 		if (IS_ERR(di)) {
1535 			ret = PTR_ERR(di);
1536 			goto out;
1537 		}
1538 		if (di) {
1539 			/* not unique, try again */
1540 			idx++;
1541 			continue;
1542 		}
1543 
1544 		if (!sctx->parent_root) {
1545 			/* unique */
1546 			ret = 0;
1547 			break;
1548 		}
1549 
1550 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1551 				path, BTRFS_FIRST_FREE_OBJECTID,
1552 				tmp, strlen(tmp), 0);
1553 		btrfs_release_path(path);
1554 		if (IS_ERR(di)) {
1555 			ret = PTR_ERR(di);
1556 			goto out;
1557 		}
1558 		if (di) {
1559 			/* not unique, try again */
1560 			idx++;
1561 			continue;
1562 		}
1563 		/* unique */
1564 		break;
1565 	}
1566 
1567 	ret = fs_path_add(dest, tmp, strlen(tmp));
1568 
1569 out:
1570 	btrfs_free_path(path);
1571 	return ret;
1572 }
1573 
1574 enum inode_state {
1575 	inode_state_no_change,
1576 	inode_state_will_create,
1577 	inode_state_did_create,
1578 	inode_state_will_delete,
1579 	inode_state_did_delete,
1580 };
1581 
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen)1582 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1583 {
1584 	int ret;
1585 	int left_ret;
1586 	int right_ret;
1587 	u64 left_gen;
1588 	u64 right_gen;
1589 
1590 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1591 			NULL, NULL);
1592 	if (ret < 0 && ret != -ENOENT)
1593 		goto out;
1594 	left_ret = ret;
1595 
1596 	if (!sctx->parent_root) {
1597 		right_ret = -ENOENT;
1598 	} else {
1599 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1600 				NULL, NULL, NULL, NULL);
1601 		if (ret < 0 && ret != -ENOENT)
1602 			goto out;
1603 		right_ret = ret;
1604 	}
1605 
1606 	if (!left_ret && !right_ret) {
1607 		if (left_gen == gen && right_gen == gen) {
1608 			ret = inode_state_no_change;
1609 		} else if (left_gen == gen) {
1610 			if (ino < sctx->send_progress)
1611 				ret = inode_state_did_create;
1612 			else
1613 				ret = inode_state_will_create;
1614 		} else if (right_gen == gen) {
1615 			if (ino < sctx->send_progress)
1616 				ret = inode_state_did_delete;
1617 			else
1618 				ret = inode_state_will_delete;
1619 		} else  {
1620 			ret = -ENOENT;
1621 		}
1622 	} else if (!left_ret) {
1623 		if (left_gen == gen) {
1624 			if (ino < sctx->send_progress)
1625 				ret = inode_state_did_create;
1626 			else
1627 				ret = inode_state_will_create;
1628 		} else {
1629 			ret = -ENOENT;
1630 		}
1631 	} else if (!right_ret) {
1632 		if (right_gen == gen) {
1633 			if (ino < sctx->send_progress)
1634 				ret = inode_state_did_delete;
1635 			else
1636 				ret = inode_state_will_delete;
1637 		} else {
1638 			ret = -ENOENT;
1639 		}
1640 	} else {
1641 		ret = -ENOENT;
1642 	}
1643 
1644 out:
1645 	return ret;
1646 }
1647 
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen)1648 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1649 {
1650 	int ret;
1651 
1652 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1653 		return 1;
1654 
1655 	ret = get_cur_inode_state(sctx, ino, gen);
1656 	if (ret < 0)
1657 		goto out;
1658 
1659 	if (ret == inode_state_no_change ||
1660 	    ret == inode_state_did_create ||
1661 	    ret == inode_state_will_delete)
1662 		ret = 1;
1663 	else
1664 		ret = 0;
1665 
1666 out:
1667 	return ret;
1668 }
1669 
1670 /*
1671  * Helper function to lookup a dir item in a dir.
1672  */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode,u8 * found_type)1673 static int lookup_dir_item_inode(struct btrfs_root *root,
1674 				 u64 dir, const char *name, int name_len,
1675 				 u64 *found_inode,
1676 				 u8 *found_type)
1677 {
1678 	int ret = 0;
1679 	struct btrfs_dir_item *di;
1680 	struct btrfs_key key;
1681 	struct btrfs_path *path;
1682 
1683 	path = alloc_path_for_send();
1684 	if (!path)
1685 		return -ENOMEM;
1686 
1687 	di = btrfs_lookup_dir_item(NULL, root, path,
1688 			dir, name, name_len, 0);
1689 	if (!di) {
1690 		ret = -ENOENT;
1691 		goto out;
1692 	}
1693 	if (IS_ERR(di)) {
1694 		ret = PTR_ERR(di);
1695 		goto out;
1696 	}
1697 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1698 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1699 		ret = -ENOENT;
1700 		goto out;
1701 	}
1702 	*found_inode = key.objectid;
1703 	*found_type = btrfs_dir_type(path->nodes[0], di);
1704 
1705 out:
1706 	btrfs_free_path(path);
1707 	return ret;
1708 }
1709 
1710 /*
1711  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1712  * generation of the parent dir and the name of the dir entry.
1713  */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)1714 static int get_first_ref(struct btrfs_root *root, u64 ino,
1715 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1716 {
1717 	int ret;
1718 	struct btrfs_key key;
1719 	struct btrfs_key found_key;
1720 	struct btrfs_path *path;
1721 	int len;
1722 	u64 parent_dir;
1723 
1724 	path = alloc_path_for_send();
1725 	if (!path)
1726 		return -ENOMEM;
1727 
1728 	key.objectid = ino;
1729 	key.type = BTRFS_INODE_REF_KEY;
1730 	key.offset = 0;
1731 
1732 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1733 	if (ret < 0)
1734 		goto out;
1735 	if (!ret)
1736 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1737 				path->slots[0]);
1738 	if (ret || found_key.objectid != ino ||
1739 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1740 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1741 		ret = -ENOENT;
1742 		goto out;
1743 	}
1744 
1745 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1746 		struct btrfs_inode_ref *iref;
1747 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1748 				      struct btrfs_inode_ref);
1749 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1750 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1751 						     (unsigned long)(iref + 1),
1752 						     len);
1753 		parent_dir = found_key.offset;
1754 	} else {
1755 		struct btrfs_inode_extref *extref;
1756 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1757 					struct btrfs_inode_extref);
1758 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1759 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1760 					(unsigned long)&extref->name, len);
1761 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1762 	}
1763 	if (ret < 0)
1764 		goto out;
1765 	btrfs_release_path(path);
1766 
1767 	if (dir_gen) {
1768 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1769 				     NULL, NULL, NULL);
1770 		if (ret < 0)
1771 			goto out;
1772 	}
1773 
1774 	*dir = parent_dir;
1775 
1776 out:
1777 	btrfs_free_path(path);
1778 	return ret;
1779 }
1780 
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)1781 static int is_first_ref(struct btrfs_root *root,
1782 			u64 ino, u64 dir,
1783 			const char *name, int name_len)
1784 {
1785 	int ret;
1786 	struct fs_path *tmp_name;
1787 	u64 tmp_dir;
1788 
1789 	tmp_name = fs_path_alloc();
1790 	if (!tmp_name)
1791 		return -ENOMEM;
1792 
1793 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1794 	if (ret < 0)
1795 		goto out;
1796 
1797 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1798 		ret = 0;
1799 		goto out;
1800 	}
1801 
1802 	ret = !memcmp(tmp_name->start, name, name_len);
1803 
1804 out:
1805 	fs_path_free(tmp_name);
1806 	return ret;
1807 }
1808 
1809 /*
1810  * Used by process_recorded_refs to determine if a new ref would overwrite an
1811  * already existing ref. In case it detects an overwrite, it returns the
1812  * inode/gen in who_ino/who_gen.
1813  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1814  * to make sure later references to the overwritten inode are possible.
1815  * Orphanizing is however only required for the first ref of an inode.
1816  * process_recorded_refs does an additional is_first_ref check to see if
1817  * orphanizing is really required.
1818  */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen)1819 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1820 			      const char *name, int name_len,
1821 			      u64 *who_ino, u64 *who_gen)
1822 {
1823 	int ret = 0;
1824 	u64 gen;
1825 	u64 other_inode = 0;
1826 	u8 other_type = 0;
1827 
1828 	if (!sctx->parent_root)
1829 		goto out;
1830 
1831 	ret = is_inode_existent(sctx, dir, dir_gen);
1832 	if (ret <= 0)
1833 		goto out;
1834 
1835 	/*
1836 	 * If we have a parent root we need to verify that the parent dir was
1837 	 * not delted and then re-created, if it was then we have no overwrite
1838 	 * and we can just unlink this entry.
1839 	 */
1840 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1841 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1842 				     NULL, NULL, NULL);
1843 		if (ret < 0 && ret != -ENOENT)
1844 			goto out;
1845 		if (ret) {
1846 			ret = 0;
1847 			goto out;
1848 		}
1849 		if (gen != dir_gen)
1850 			goto out;
1851 	}
1852 
1853 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1854 			&other_inode, &other_type);
1855 	if (ret < 0 && ret != -ENOENT)
1856 		goto out;
1857 	if (ret) {
1858 		ret = 0;
1859 		goto out;
1860 	}
1861 
1862 	/*
1863 	 * Check if the overwritten ref was already processed. If yes, the ref
1864 	 * was already unlinked/moved, so we can safely assume that we will not
1865 	 * overwrite anything at this point in time.
1866 	 */
1867 	if (other_inode > sctx->send_progress) {
1868 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1869 				who_gen, NULL, NULL, NULL, NULL);
1870 		if (ret < 0)
1871 			goto out;
1872 
1873 		ret = 1;
1874 		*who_ino = other_inode;
1875 	} else {
1876 		ret = 0;
1877 	}
1878 
1879 out:
1880 	return ret;
1881 }
1882 
1883 /*
1884  * Checks if the ref was overwritten by an already processed inode. This is
1885  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1886  * thus the orphan name needs be used.
1887  * process_recorded_refs also uses it to avoid unlinking of refs that were
1888  * overwritten.
1889  */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)1890 static int did_overwrite_ref(struct send_ctx *sctx,
1891 			    u64 dir, u64 dir_gen,
1892 			    u64 ino, u64 ino_gen,
1893 			    const char *name, int name_len)
1894 {
1895 	int ret = 0;
1896 	u64 gen;
1897 	u64 ow_inode;
1898 	u8 other_type;
1899 
1900 	if (!sctx->parent_root)
1901 		goto out;
1902 
1903 	ret = is_inode_existent(sctx, dir, dir_gen);
1904 	if (ret <= 0)
1905 		goto out;
1906 
1907 	/* check if the ref was overwritten by another ref */
1908 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1909 			&ow_inode, &other_type);
1910 	if (ret < 0 && ret != -ENOENT)
1911 		goto out;
1912 	if (ret) {
1913 		/* was never and will never be overwritten */
1914 		ret = 0;
1915 		goto out;
1916 	}
1917 
1918 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1919 			NULL, NULL);
1920 	if (ret < 0)
1921 		goto out;
1922 
1923 	if (ow_inode == ino && gen == ino_gen) {
1924 		ret = 0;
1925 		goto out;
1926 	}
1927 
1928 	/*
1929 	 * We know that it is or will be overwritten. Check this now.
1930 	 * The current inode being processed might have been the one that caused
1931 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1932 	 * the current inode being processed.
1933 	 */
1934 	if ((ow_inode < sctx->send_progress) ||
1935 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1936 	     gen == sctx->cur_inode_gen))
1937 		ret = 1;
1938 	else
1939 		ret = 0;
1940 
1941 out:
1942 	return ret;
1943 }
1944 
1945 /*
1946  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1947  * that got overwritten. This is used by process_recorded_refs to determine
1948  * if it has to use the path as returned by get_cur_path or the orphan name.
1949  */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)1950 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1951 {
1952 	int ret = 0;
1953 	struct fs_path *name = NULL;
1954 	u64 dir;
1955 	u64 dir_gen;
1956 
1957 	if (!sctx->parent_root)
1958 		goto out;
1959 
1960 	name = fs_path_alloc();
1961 	if (!name)
1962 		return -ENOMEM;
1963 
1964 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1965 	if (ret < 0)
1966 		goto out;
1967 
1968 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1969 			name->start, fs_path_len(name));
1970 
1971 out:
1972 	fs_path_free(name);
1973 	return ret;
1974 }
1975 
1976 /*
1977  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1978  * so we need to do some special handling in case we have clashes. This function
1979  * takes care of this with the help of name_cache_entry::radix_list.
1980  * In case of error, nce is kfreed.
1981  */
name_cache_insert(struct send_ctx * sctx,struct name_cache_entry * nce)1982 static int name_cache_insert(struct send_ctx *sctx,
1983 			     struct name_cache_entry *nce)
1984 {
1985 	int ret = 0;
1986 	struct list_head *nce_head;
1987 
1988 	nce_head = radix_tree_lookup(&sctx->name_cache,
1989 			(unsigned long)nce->ino);
1990 	if (!nce_head) {
1991 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1992 		if (!nce_head) {
1993 			kfree(nce);
1994 			return -ENOMEM;
1995 		}
1996 		INIT_LIST_HEAD(nce_head);
1997 
1998 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1999 		if (ret < 0) {
2000 			kfree(nce_head);
2001 			kfree(nce);
2002 			return ret;
2003 		}
2004 	}
2005 	list_add_tail(&nce->radix_list, nce_head);
2006 	list_add_tail(&nce->list, &sctx->name_cache_list);
2007 	sctx->name_cache_size++;
2008 
2009 	return ret;
2010 }
2011 
name_cache_delete(struct send_ctx * sctx,struct name_cache_entry * nce)2012 static void name_cache_delete(struct send_ctx *sctx,
2013 			      struct name_cache_entry *nce)
2014 {
2015 	struct list_head *nce_head;
2016 
2017 	nce_head = radix_tree_lookup(&sctx->name_cache,
2018 			(unsigned long)nce->ino);
2019 	if (!nce_head) {
2020 		btrfs_err(sctx->send_root->fs_info,
2021 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2022 			nce->ino, sctx->name_cache_size);
2023 	}
2024 
2025 	list_del(&nce->radix_list);
2026 	list_del(&nce->list);
2027 	sctx->name_cache_size--;
2028 
2029 	/*
2030 	 * We may not get to the final release of nce_head if the lookup fails
2031 	 */
2032 	if (nce_head && list_empty(nce_head)) {
2033 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2034 		kfree(nce_head);
2035 	}
2036 }
2037 
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2038 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2039 						    u64 ino, u64 gen)
2040 {
2041 	struct list_head *nce_head;
2042 	struct name_cache_entry *cur;
2043 
2044 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2045 	if (!nce_head)
2046 		return NULL;
2047 
2048 	list_for_each_entry(cur, nce_head, radix_list) {
2049 		if (cur->ino == ino && cur->gen == gen)
2050 			return cur;
2051 	}
2052 	return NULL;
2053 }
2054 
2055 /*
2056  * Removes the entry from the list and adds it back to the end. This marks the
2057  * entry as recently used so that name_cache_clean_unused does not remove it.
2058  */
name_cache_used(struct send_ctx * sctx,struct name_cache_entry * nce)2059 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2060 {
2061 	list_del(&nce->list);
2062 	list_add_tail(&nce->list, &sctx->name_cache_list);
2063 }
2064 
2065 /*
2066  * Remove some entries from the beginning of name_cache_list.
2067  */
name_cache_clean_unused(struct send_ctx * sctx)2068 static void name_cache_clean_unused(struct send_ctx *sctx)
2069 {
2070 	struct name_cache_entry *nce;
2071 
2072 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2073 		return;
2074 
2075 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2076 		nce = list_entry(sctx->name_cache_list.next,
2077 				struct name_cache_entry, list);
2078 		name_cache_delete(sctx, nce);
2079 		kfree(nce);
2080 	}
2081 }
2082 
name_cache_free(struct send_ctx * sctx)2083 static void name_cache_free(struct send_ctx *sctx)
2084 {
2085 	struct name_cache_entry *nce;
2086 
2087 	while (!list_empty(&sctx->name_cache_list)) {
2088 		nce = list_entry(sctx->name_cache_list.next,
2089 				struct name_cache_entry, list);
2090 		name_cache_delete(sctx, nce);
2091 		kfree(nce);
2092 	}
2093 }
2094 
2095 /*
2096  * Used by get_cur_path for each ref up to the root.
2097  * Returns 0 if it succeeded.
2098  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2099  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2100  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2101  * Returns <0 in case of error.
2102  */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2103 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2104 				     u64 ino, u64 gen,
2105 				     u64 *parent_ino,
2106 				     u64 *parent_gen,
2107 				     struct fs_path *dest)
2108 {
2109 	int ret;
2110 	int nce_ret;
2111 	struct name_cache_entry *nce = NULL;
2112 
2113 	/*
2114 	 * First check if we already did a call to this function with the same
2115 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2116 	 * return the cached result.
2117 	 */
2118 	nce = name_cache_search(sctx, ino, gen);
2119 	if (nce) {
2120 		if (ino < sctx->send_progress && nce->need_later_update) {
2121 			name_cache_delete(sctx, nce);
2122 			kfree(nce);
2123 			nce = NULL;
2124 		} else {
2125 			name_cache_used(sctx, nce);
2126 			*parent_ino = nce->parent_ino;
2127 			*parent_gen = nce->parent_gen;
2128 			ret = fs_path_add(dest, nce->name, nce->name_len);
2129 			if (ret < 0)
2130 				goto out;
2131 			ret = nce->ret;
2132 			goto out;
2133 		}
2134 	}
2135 
2136 	/*
2137 	 * If the inode is not existent yet, add the orphan name and return 1.
2138 	 * This should only happen for the parent dir that we determine in
2139 	 * __record_new_ref
2140 	 */
2141 	ret = is_inode_existent(sctx, ino, gen);
2142 	if (ret < 0)
2143 		goto out;
2144 
2145 	if (!ret) {
2146 		ret = gen_unique_name(sctx, ino, gen, dest);
2147 		if (ret < 0)
2148 			goto out;
2149 		ret = 1;
2150 		goto out_cache;
2151 	}
2152 
2153 	/*
2154 	 * Depending on whether the inode was already processed or not, use
2155 	 * send_root or parent_root for ref lookup.
2156 	 */
2157 	if (ino < sctx->send_progress)
2158 		ret = get_first_ref(sctx->send_root, ino,
2159 				    parent_ino, parent_gen, dest);
2160 	else
2161 		ret = get_first_ref(sctx->parent_root, ino,
2162 				    parent_ino, parent_gen, dest);
2163 	if (ret < 0)
2164 		goto out;
2165 
2166 	/*
2167 	 * Check if the ref was overwritten by an inode's ref that was processed
2168 	 * earlier. If yes, treat as orphan and return 1.
2169 	 */
2170 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2171 			dest->start, dest->end - dest->start);
2172 	if (ret < 0)
2173 		goto out;
2174 	if (ret) {
2175 		fs_path_reset(dest);
2176 		ret = gen_unique_name(sctx, ino, gen, dest);
2177 		if (ret < 0)
2178 			goto out;
2179 		ret = 1;
2180 	}
2181 
2182 out_cache:
2183 	/*
2184 	 * Store the result of the lookup in the name cache.
2185 	 */
2186 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2187 	if (!nce) {
2188 		ret = -ENOMEM;
2189 		goto out;
2190 	}
2191 
2192 	nce->ino = ino;
2193 	nce->gen = gen;
2194 	nce->parent_ino = *parent_ino;
2195 	nce->parent_gen = *parent_gen;
2196 	nce->name_len = fs_path_len(dest);
2197 	nce->ret = ret;
2198 	strcpy(nce->name, dest->start);
2199 
2200 	if (ino < sctx->send_progress)
2201 		nce->need_later_update = 0;
2202 	else
2203 		nce->need_later_update = 1;
2204 
2205 	nce_ret = name_cache_insert(sctx, nce);
2206 	if (nce_ret < 0)
2207 		ret = nce_ret;
2208 	name_cache_clean_unused(sctx);
2209 
2210 out:
2211 	return ret;
2212 }
2213 
2214 /*
2215  * Magic happens here. This function returns the first ref to an inode as it
2216  * would look like while receiving the stream at this point in time.
2217  * We walk the path up to the root. For every inode in between, we check if it
2218  * was already processed/sent. If yes, we continue with the parent as found
2219  * in send_root. If not, we continue with the parent as found in parent_root.
2220  * If we encounter an inode that was deleted at this point in time, we use the
2221  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2222  * that were not created yet and overwritten inodes/refs.
2223  *
2224  * When do we have have orphan inodes:
2225  * 1. When an inode is freshly created and thus no valid refs are available yet
2226  * 2. When a directory lost all it's refs (deleted) but still has dir items
2227  *    inside which were not processed yet (pending for move/delete). If anyone
2228  *    tried to get the path to the dir items, it would get a path inside that
2229  *    orphan directory.
2230  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2231  *    of an unprocessed inode. If in that case the first ref would be
2232  *    overwritten, the overwritten inode gets "orphanized". Later when we
2233  *    process this overwritten inode, it is restored at a new place by moving
2234  *    the orphan inode.
2235  *
2236  * sctx->send_progress tells this function at which point in time receiving
2237  * would be.
2238  */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2239 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2240 			struct fs_path *dest)
2241 {
2242 	int ret = 0;
2243 	struct fs_path *name = NULL;
2244 	u64 parent_inode = 0;
2245 	u64 parent_gen = 0;
2246 	int stop = 0;
2247 
2248 	name = fs_path_alloc();
2249 	if (!name) {
2250 		ret = -ENOMEM;
2251 		goto out;
2252 	}
2253 
2254 	dest->reversed = 1;
2255 	fs_path_reset(dest);
2256 
2257 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2258 		struct waiting_dir_move *wdm;
2259 
2260 		fs_path_reset(name);
2261 
2262 		if (is_waiting_for_rm(sctx, ino)) {
2263 			ret = gen_unique_name(sctx, ino, gen, name);
2264 			if (ret < 0)
2265 				goto out;
2266 			ret = fs_path_add_path(dest, name);
2267 			break;
2268 		}
2269 
2270 		wdm = get_waiting_dir_move(sctx, ino);
2271 		if (wdm && wdm->orphanized) {
2272 			ret = gen_unique_name(sctx, ino, gen, name);
2273 			stop = 1;
2274 		} else if (wdm) {
2275 			ret = get_first_ref(sctx->parent_root, ino,
2276 					    &parent_inode, &parent_gen, name);
2277 		} else {
2278 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2279 							&parent_inode,
2280 							&parent_gen, name);
2281 			if (ret)
2282 				stop = 1;
2283 		}
2284 
2285 		if (ret < 0)
2286 			goto out;
2287 
2288 		ret = fs_path_add_path(dest, name);
2289 		if (ret < 0)
2290 			goto out;
2291 
2292 		ino = parent_inode;
2293 		gen = parent_gen;
2294 	}
2295 
2296 out:
2297 	fs_path_free(name);
2298 	if (!ret)
2299 		fs_path_unreverse(dest);
2300 	return ret;
2301 }
2302 
2303 /*
2304  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2305  */
send_subvol_begin(struct send_ctx * sctx)2306 static int send_subvol_begin(struct send_ctx *sctx)
2307 {
2308 	int ret;
2309 	struct btrfs_root *send_root = sctx->send_root;
2310 	struct btrfs_root *parent_root = sctx->parent_root;
2311 	struct btrfs_path *path;
2312 	struct btrfs_key key;
2313 	struct btrfs_root_ref *ref;
2314 	struct extent_buffer *leaf;
2315 	char *name = NULL;
2316 	int namelen;
2317 
2318 	path = btrfs_alloc_path();
2319 	if (!path)
2320 		return -ENOMEM;
2321 
2322 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2323 	if (!name) {
2324 		btrfs_free_path(path);
2325 		return -ENOMEM;
2326 	}
2327 
2328 	key.objectid = send_root->objectid;
2329 	key.type = BTRFS_ROOT_BACKREF_KEY;
2330 	key.offset = 0;
2331 
2332 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2333 				&key, path, 1, 0);
2334 	if (ret < 0)
2335 		goto out;
2336 	if (ret) {
2337 		ret = -ENOENT;
2338 		goto out;
2339 	}
2340 
2341 	leaf = path->nodes[0];
2342 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2343 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2344 	    key.objectid != send_root->objectid) {
2345 		ret = -ENOENT;
2346 		goto out;
2347 	}
2348 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2349 	namelen = btrfs_root_ref_name_len(leaf, ref);
2350 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2351 	btrfs_release_path(path);
2352 
2353 	if (parent_root) {
2354 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2355 		if (ret < 0)
2356 			goto out;
2357 	} else {
2358 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2359 		if (ret < 0)
2360 			goto out;
2361 	}
2362 
2363 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2364 
2365 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2366 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2367 			    sctx->send_root->root_item.received_uuid);
2368 	else
2369 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2370 			    sctx->send_root->root_item.uuid);
2371 
2372 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2373 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2374 	if (parent_root) {
2375 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2376 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2377 				     parent_root->root_item.received_uuid);
2378 		else
2379 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2380 				     parent_root->root_item.uuid);
2381 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2382 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2383 	}
2384 
2385 	ret = send_cmd(sctx);
2386 
2387 tlv_put_failure:
2388 out:
2389 	btrfs_free_path(path);
2390 	kfree(name);
2391 	return ret;
2392 }
2393 
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2394 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2395 {
2396 	int ret = 0;
2397 	struct fs_path *p;
2398 
2399 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2400 
2401 	p = fs_path_alloc();
2402 	if (!p)
2403 		return -ENOMEM;
2404 
2405 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2406 	if (ret < 0)
2407 		goto out;
2408 
2409 	ret = get_cur_path(sctx, ino, gen, p);
2410 	if (ret < 0)
2411 		goto out;
2412 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2413 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2414 
2415 	ret = send_cmd(sctx);
2416 
2417 tlv_put_failure:
2418 out:
2419 	fs_path_free(p);
2420 	return ret;
2421 }
2422 
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2423 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2424 {
2425 	int ret = 0;
2426 	struct fs_path *p;
2427 
2428 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2429 
2430 	p = fs_path_alloc();
2431 	if (!p)
2432 		return -ENOMEM;
2433 
2434 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2435 	if (ret < 0)
2436 		goto out;
2437 
2438 	ret = get_cur_path(sctx, ino, gen, p);
2439 	if (ret < 0)
2440 		goto out;
2441 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2442 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2443 
2444 	ret = send_cmd(sctx);
2445 
2446 tlv_put_failure:
2447 out:
2448 	fs_path_free(p);
2449 	return ret;
2450 }
2451 
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2452 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2453 {
2454 	int ret = 0;
2455 	struct fs_path *p;
2456 
2457 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2458 
2459 	p = fs_path_alloc();
2460 	if (!p)
2461 		return -ENOMEM;
2462 
2463 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2464 	if (ret < 0)
2465 		goto out;
2466 
2467 	ret = get_cur_path(sctx, ino, gen, p);
2468 	if (ret < 0)
2469 		goto out;
2470 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2471 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2472 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2473 
2474 	ret = send_cmd(sctx);
2475 
2476 tlv_put_failure:
2477 out:
2478 	fs_path_free(p);
2479 	return ret;
2480 }
2481 
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2482 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2483 {
2484 	int ret = 0;
2485 	struct fs_path *p = NULL;
2486 	struct btrfs_inode_item *ii;
2487 	struct btrfs_path *path = NULL;
2488 	struct extent_buffer *eb;
2489 	struct btrfs_key key;
2490 	int slot;
2491 
2492 verbose_printk("btrfs: send_utimes %llu\n", ino);
2493 
2494 	p = fs_path_alloc();
2495 	if (!p)
2496 		return -ENOMEM;
2497 
2498 	path = alloc_path_for_send();
2499 	if (!path) {
2500 		ret = -ENOMEM;
2501 		goto out;
2502 	}
2503 
2504 	key.objectid = ino;
2505 	key.type = BTRFS_INODE_ITEM_KEY;
2506 	key.offset = 0;
2507 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2508 	if (ret < 0)
2509 		goto out;
2510 
2511 	eb = path->nodes[0];
2512 	slot = path->slots[0];
2513 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2514 
2515 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2516 	if (ret < 0)
2517 		goto out;
2518 
2519 	ret = get_cur_path(sctx, ino, gen, p);
2520 	if (ret < 0)
2521 		goto out;
2522 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2523 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2524 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2525 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2526 	/* TODO Add otime support when the otime patches get into upstream */
2527 
2528 	ret = send_cmd(sctx);
2529 
2530 tlv_put_failure:
2531 out:
2532 	fs_path_free(p);
2533 	btrfs_free_path(path);
2534 	return ret;
2535 }
2536 
2537 /*
2538  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2539  * a valid path yet because we did not process the refs yet. So, the inode
2540  * is created as orphan.
2541  */
send_create_inode(struct send_ctx * sctx,u64 ino)2542 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2543 {
2544 	int ret = 0;
2545 	struct fs_path *p;
2546 	int cmd;
2547 	u64 gen;
2548 	u64 mode;
2549 	u64 rdev;
2550 
2551 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2552 
2553 	p = fs_path_alloc();
2554 	if (!p)
2555 		return -ENOMEM;
2556 
2557 	if (ino != sctx->cur_ino) {
2558 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2559 				     NULL, NULL, &rdev);
2560 		if (ret < 0)
2561 			goto out;
2562 	} else {
2563 		gen = sctx->cur_inode_gen;
2564 		mode = sctx->cur_inode_mode;
2565 		rdev = sctx->cur_inode_rdev;
2566 	}
2567 
2568 	if (S_ISREG(mode)) {
2569 		cmd = BTRFS_SEND_C_MKFILE;
2570 	} else if (S_ISDIR(mode)) {
2571 		cmd = BTRFS_SEND_C_MKDIR;
2572 	} else if (S_ISLNK(mode)) {
2573 		cmd = BTRFS_SEND_C_SYMLINK;
2574 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2575 		cmd = BTRFS_SEND_C_MKNOD;
2576 	} else if (S_ISFIFO(mode)) {
2577 		cmd = BTRFS_SEND_C_MKFIFO;
2578 	} else if (S_ISSOCK(mode)) {
2579 		cmd = BTRFS_SEND_C_MKSOCK;
2580 	} else {
2581 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2582 				(int)(mode & S_IFMT));
2583 		ret = -ENOTSUPP;
2584 		goto out;
2585 	}
2586 
2587 	ret = begin_cmd(sctx, cmd);
2588 	if (ret < 0)
2589 		goto out;
2590 
2591 	ret = gen_unique_name(sctx, ino, gen, p);
2592 	if (ret < 0)
2593 		goto out;
2594 
2595 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2596 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2597 
2598 	if (S_ISLNK(mode)) {
2599 		fs_path_reset(p);
2600 		ret = read_symlink(sctx->send_root, ino, p);
2601 		if (ret < 0)
2602 			goto out;
2603 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2604 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2605 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2606 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2607 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2608 	}
2609 
2610 	ret = send_cmd(sctx);
2611 	if (ret < 0)
2612 		goto out;
2613 
2614 
2615 tlv_put_failure:
2616 out:
2617 	fs_path_free(p);
2618 	return ret;
2619 }
2620 
2621 /*
2622  * We need some special handling for inodes that get processed before the parent
2623  * directory got created. See process_recorded_refs for details.
2624  * This function does the check if we already created the dir out of order.
2625  */
did_create_dir(struct send_ctx * sctx,u64 dir)2626 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2627 {
2628 	int ret = 0;
2629 	struct btrfs_path *path = NULL;
2630 	struct btrfs_key key;
2631 	struct btrfs_key found_key;
2632 	struct btrfs_key di_key;
2633 	struct extent_buffer *eb;
2634 	struct btrfs_dir_item *di;
2635 	int slot;
2636 
2637 	path = alloc_path_for_send();
2638 	if (!path) {
2639 		ret = -ENOMEM;
2640 		goto out;
2641 	}
2642 
2643 	key.objectid = dir;
2644 	key.type = BTRFS_DIR_INDEX_KEY;
2645 	key.offset = 0;
2646 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2647 	if (ret < 0)
2648 		goto out;
2649 
2650 	while (1) {
2651 		eb = path->nodes[0];
2652 		slot = path->slots[0];
2653 		if (slot >= btrfs_header_nritems(eb)) {
2654 			ret = btrfs_next_leaf(sctx->send_root, path);
2655 			if (ret < 0) {
2656 				goto out;
2657 			} else if (ret > 0) {
2658 				ret = 0;
2659 				break;
2660 			}
2661 			continue;
2662 		}
2663 
2664 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2665 		if (found_key.objectid != key.objectid ||
2666 		    found_key.type != key.type) {
2667 			ret = 0;
2668 			goto out;
2669 		}
2670 
2671 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2672 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2673 
2674 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2675 		    di_key.objectid < sctx->send_progress) {
2676 			ret = 1;
2677 			goto out;
2678 		}
2679 
2680 		path->slots[0]++;
2681 	}
2682 
2683 out:
2684 	btrfs_free_path(path);
2685 	return ret;
2686 }
2687 
2688 /*
2689  * Only creates the inode if it is:
2690  * 1. Not a directory
2691  * 2. Or a directory which was not created already due to out of order
2692  *    directories. See did_create_dir and process_recorded_refs for details.
2693  */
send_create_inode_if_needed(struct send_ctx * sctx)2694 static int send_create_inode_if_needed(struct send_ctx *sctx)
2695 {
2696 	int ret;
2697 
2698 	if (S_ISDIR(sctx->cur_inode_mode)) {
2699 		ret = did_create_dir(sctx, sctx->cur_ino);
2700 		if (ret < 0)
2701 			goto out;
2702 		if (ret) {
2703 			ret = 0;
2704 			goto out;
2705 		}
2706 	}
2707 
2708 	ret = send_create_inode(sctx, sctx->cur_ino);
2709 	if (ret < 0)
2710 		goto out;
2711 
2712 out:
2713 	return ret;
2714 }
2715 
2716 struct recorded_ref {
2717 	struct list_head list;
2718 	char *dir_path;
2719 	char *name;
2720 	struct fs_path *full_path;
2721 	u64 dir;
2722 	u64 dir_gen;
2723 	int dir_path_len;
2724 	int name_len;
2725 };
2726 
2727 /*
2728  * We need to process new refs before deleted refs, but compare_tree gives us
2729  * everything mixed. So we first record all refs and later process them.
2730  * This function is a helper to record one ref.
2731  */
__record_ref(struct list_head * head,u64 dir,u64 dir_gen,struct fs_path * path)2732 static int __record_ref(struct list_head *head, u64 dir,
2733 		      u64 dir_gen, struct fs_path *path)
2734 {
2735 	struct recorded_ref *ref;
2736 
2737 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2738 	if (!ref)
2739 		return -ENOMEM;
2740 
2741 	ref->dir = dir;
2742 	ref->dir_gen = dir_gen;
2743 	ref->full_path = path;
2744 
2745 	ref->name = (char *)kbasename(ref->full_path->start);
2746 	ref->name_len = ref->full_path->end - ref->name;
2747 	ref->dir_path = ref->full_path->start;
2748 	if (ref->name == ref->full_path->start)
2749 		ref->dir_path_len = 0;
2750 	else
2751 		ref->dir_path_len = ref->full_path->end -
2752 				ref->full_path->start - 1 - ref->name_len;
2753 
2754 	list_add_tail(&ref->list, head);
2755 	return 0;
2756 }
2757 
dup_ref(struct recorded_ref * ref,struct list_head * list)2758 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2759 {
2760 	struct recorded_ref *new;
2761 
2762 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2763 	if (!new)
2764 		return -ENOMEM;
2765 
2766 	new->dir = ref->dir;
2767 	new->dir_gen = ref->dir_gen;
2768 	new->full_path = NULL;
2769 	INIT_LIST_HEAD(&new->list);
2770 	list_add_tail(&new->list, list);
2771 	return 0;
2772 }
2773 
__free_recorded_refs(struct list_head * head)2774 static void __free_recorded_refs(struct list_head *head)
2775 {
2776 	struct recorded_ref *cur;
2777 
2778 	while (!list_empty(head)) {
2779 		cur = list_entry(head->next, struct recorded_ref, list);
2780 		fs_path_free(cur->full_path);
2781 		list_del(&cur->list);
2782 		kfree(cur);
2783 	}
2784 }
2785 
free_recorded_refs(struct send_ctx * sctx)2786 static void free_recorded_refs(struct send_ctx *sctx)
2787 {
2788 	__free_recorded_refs(&sctx->new_refs);
2789 	__free_recorded_refs(&sctx->deleted_refs);
2790 }
2791 
2792 /*
2793  * Renames/moves a file/dir to its orphan name. Used when the first
2794  * ref of an unprocessed inode gets overwritten and for all non empty
2795  * directories.
2796  */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)2797 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2798 			  struct fs_path *path)
2799 {
2800 	int ret;
2801 	struct fs_path *orphan;
2802 
2803 	orphan = fs_path_alloc();
2804 	if (!orphan)
2805 		return -ENOMEM;
2806 
2807 	ret = gen_unique_name(sctx, ino, gen, orphan);
2808 	if (ret < 0)
2809 		goto out;
2810 
2811 	ret = send_rename(sctx, path, orphan);
2812 
2813 out:
2814 	fs_path_free(orphan);
2815 	return ret;
2816 }
2817 
2818 static struct orphan_dir_info *
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino)2819 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2820 {
2821 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2822 	struct rb_node *parent = NULL;
2823 	struct orphan_dir_info *entry, *odi;
2824 
2825 	odi = kmalloc(sizeof(*odi), GFP_NOFS);
2826 	if (!odi)
2827 		return ERR_PTR(-ENOMEM);
2828 	odi->ino = dir_ino;
2829 	odi->gen = 0;
2830 
2831 	while (*p) {
2832 		parent = *p;
2833 		entry = rb_entry(parent, struct orphan_dir_info, node);
2834 		if (dir_ino < entry->ino) {
2835 			p = &(*p)->rb_left;
2836 		} else if (dir_ino > entry->ino) {
2837 			p = &(*p)->rb_right;
2838 		} else {
2839 			kfree(odi);
2840 			return entry;
2841 		}
2842 	}
2843 
2844 	rb_link_node(&odi->node, parent, p);
2845 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2846 	return odi;
2847 }
2848 
2849 static struct orphan_dir_info *
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino)2850 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2851 {
2852 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2853 	struct orphan_dir_info *entry;
2854 
2855 	while (n) {
2856 		entry = rb_entry(n, struct orphan_dir_info, node);
2857 		if (dir_ino < entry->ino)
2858 			n = n->rb_left;
2859 		else if (dir_ino > entry->ino)
2860 			n = n->rb_right;
2861 		else
2862 			return entry;
2863 	}
2864 	return NULL;
2865 }
2866 
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino)2867 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2868 {
2869 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2870 
2871 	return odi != NULL;
2872 }
2873 
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)2874 static void free_orphan_dir_info(struct send_ctx *sctx,
2875 				 struct orphan_dir_info *odi)
2876 {
2877 	if (!odi)
2878 		return;
2879 	rb_erase(&odi->node, &sctx->orphan_dirs);
2880 	kfree(odi);
2881 }
2882 
2883 /*
2884  * Returns 1 if a directory can be removed at this point in time.
2885  * We check this by iterating all dir items and checking if the inode behind
2886  * the dir item was already processed.
2887  */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 send_progress)2888 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2889 		     u64 send_progress)
2890 {
2891 	int ret = 0;
2892 	struct btrfs_root *root = sctx->parent_root;
2893 	struct btrfs_path *path;
2894 	struct btrfs_key key;
2895 	struct btrfs_key found_key;
2896 	struct btrfs_key loc;
2897 	struct btrfs_dir_item *di;
2898 
2899 	/*
2900 	 * Don't try to rmdir the top/root subvolume dir.
2901 	 */
2902 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2903 		return 0;
2904 
2905 	path = alloc_path_for_send();
2906 	if (!path)
2907 		return -ENOMEM;
2908 
2909 	key.objectid = dir;
2910 	key.type = BTRFS_DIR_INDEX_KEY;
2911 	key.offset = 0;
2912 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2913 	if (ret < 0)
2914 		goto out;
2915 
2916 	while (1) {
2917 		struct waiting_dir_move *dm;
2918 
2919 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2920 			ret = btrfs_next_leaf(root, path);
2921 			if (ret < 0)
2922 				goto out;
2923 			else if (ret > 0)
2924 				break;
2925 			continue;
2926 		}
2927 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2928 				      path->slots[0]);
2929 		if (found_key.objectid != key.objectid ||
2930 		    found_key.type != key.type)
2931 			break;
2932 
2933 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2934 				struct btrfs_dir_item);
2935 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2936 
2937 		dm = get_waiting_dir_move(sctx, loc.objectid);
2938 		if (dm) {
2939 			struct orphan_dir_info *odi;
2940 
2941 			odi = add_orphan_dir_info(sctx, dir);
2942 			if (IS_ERR(odi)) {
2943 				ret = PTR_ERR(odi);
2944 				goto out;
2945 			}
2946 			odi->gen = dir_gen;
2947 			dm->rmdir_ino = dir;
2948 			ret = 0;
2949 			goto out;
2950 		}
2951 
2952 		if (loc.objectid > send_progress) {
2953 			ret = 0;
2954 			goto out;
2955 		}
2956 
2957 		path->slots[0]++;
2958 	}
2959 
2960 	ret = 1;
2961 
2962 out:
2963 	btrfs_free_path(path);
2964 	return ret;
2965 }
2966 
is_waiting_for_move(struct send_ctx * sctx,u64 ino)2967 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2968 {
2969 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2970 
2971 	return entry != NULL;
2972 }
2973 
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)2974 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2975 {
2976 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2977 	struct rb_node *parent = NULL;
2978 	struct waiting_dir_move *entry, *dm;
2979 
2980 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2981 	if (!dm)
2982 		return -ENOMEM;
2983 	dm->ino = ino;
2984 	dm->rmdir_ino = 0;
2985 	dm->orphanized = orphanized;
2986 
2987 	while (*p) {
2988 		parent = *p;
2989 		entry = rb_entry(parent, struct waiting_dir_move, node);
2990 		if (ino < entry->ino) {
2991 			p = &(*p)->rb_left;
2992 		} else if (ino > entry->ino) {
2993 			p = &(*p)->rb_right;
2994 		} else {
2995 			kfree(dm);
2996 			return -EEXIST;
2997 		}
2998 	}
2999 
3000 	rb_link_node(&dm->node, parent, p);
3001 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3002 	return 0;
3003 }
3004 
3005 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3006 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3007 {
3008 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3009 	struct waiting_dir_move *entry;
3010 
3011 	while (n) {
3012 		entry = rb_entry(n, struct waiting_dir_move, node);
3013 		if (ino < entry->ino)
3014 			n = n->rb_left;
3015 		else if (ino > entry->ino)
3016 			n = n->rb_right;
3017 		else
3018 			return entry;
3019 	}
3020 	return NULL;
3021 }
3022 
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3023 static void free_waiting_dir_move(struct send_ctx *sctx,
3024 				  struct waiting_dir_move *dm)
3025 {
3026 	if (!dm)
3027 		return;
3028 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3029 	kfree(dm);
3030 }
3031 
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3032 static int add_pending_dir_move(struct send_ctx *sctx,
3033 				u64 ino,
3034 				u64 ino_gen,
3035 				u64 parent_ino,
3036 				struct list_head *new_refs,
3037 				struct list_head *deleted_refs,
3038 				const bool is_orphan)
3039 {
3040 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3041 	struct rb_node *parent = NULL;
3042 	struct pending_dir_move *entry = NULL, *pm;
3043 	struct recorded_ref *cur;
3044 	int exists = 0;
3045 	int ret;
3046 
3047 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
3048 	if (!pm)
3049 		return -ENOMEM;
3050 	pm->parent_ino = parent_ino;
3051 	pm->ino = ino;
3052 	pm->gen = ino_gen;
3053 	pm->is_orphan = is_orphan;
3054 	INIT_LIST_HEAD(&pm->list);
3055 	INIT_LIST_HEAD(&pm->update_refs);
3056 	RB_CLEAR_NODE(&pm->node);
3057 
3058 	while (*p) {
3059 		parent = *p;
3060 		entry = rb_entry(parent, struct pending_dir_move, node);
3061 		if (parent_ino < entry->parent_ino) {
3062 			p = &(*p)->rb_left;
3063 		} else if (parent_ino > entry->parent_ino) {
3064 			p = &(*p)->rb_right;
3065 		} else {
3066 			exists = 1;
3067 			break;
3068 		}
3069 	}
3070 
3071 	list_for_each_entry(cur, deleted_refs, list) {
3072 		ret = dup_ref(cur, &pm->update_refs);
3073 		if (ret < 0)
3074 			goto out;
3075 	}
3076 	list_for_each_entry(cur, new_refs, list) {
3077 		ret = dup_ref(cur, &pm->update_refs);
3078 		if (ret < 0)
3079 			goto out;
3080 	}
3081 
3082 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3083 	if (ret)
3084 		goto out;
3085 
3086 	if (exists) {
3087 		list_add_tail(&pm->list, &entry->list);
3088 	} else {
3089 		rb_link_node(&pm->node, parent, p);
3090 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3091 	}
3092 	ret = 0;
3093 out:
3094 	if (ret) {
3095 		__free_recorded_refs(&pm->update_refs);
3096 		kfree(pm);
3097 	}
3098 	return ret;
3099 }
3100 
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3101 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3102 						      u64 parent_ino)
3103 {
3104 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3105 	struct pending_dir_move *entry;
3106 
3107 	while (n) {
3108 		entry = rb_entry(n, struct pending_dir_move, node);
3109 		if (parent_ino < entry->parent_ino)
3110 			n = n->rb_left;
3111 		else if (parent_ino > entry->parent_ino)
3112 			n = n->rb_right;
3113 		else
3114 			return entry;
3115 	}
3116 	return NULL;
3117 }
3118 
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3119 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3120 {
3121 	struct fs_path *from_path = NULL;
3122 	struct fs_path *to_path = NULL;
3123 	struct fs_path *name = NULL;
3124 	u64 orig_progress = sctx->send_progress;
3125 	struct recorded_ref *cur;
3126 	u64 parent_ino, parent_gen;
3127 	struct waiting_dir_move *dm = NULL;
3128 	u64 rmdir_ino = 0;
3129 	int ret;
3130 
3131 	name = fs_path_alloc();
3132 	from_path = fs_path_alloc();
3133 	if (!name || !from_path) {
3134 		ret = -ENOMEM;
3135 		goto out;
3136 	}
3137 
3138 	dm = get_waiting_dir_move(sctx, pm->ino);
3139 	ASSERT(dm);
3140 	rmdir_ino = dm->rmdir_ino;
3141 	free_waiting_dir_move(sctx, dm);
3142 
3143 	if (pm->is_orphan) {
3144 		ret = gen_unique_name(sctx, pm->ino,
3145 				      pm->gen, from_path);
3146 	} else {
3147 		ret = get_first_ref(sctx->parent_root, pm->ino,
3148 				    &parent_ino, &parent_gen, name);
3149 		if (ret < 0)
3150 			goto out;
3151 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3152 				   from_path);
3153 		if (ret < 0)
3154 			goto out;
3155 		ret = fs_path_add_path(from_path, name);
3156 	}
3157 	if (ret < 0)
3158 		goto out;
3159 
3160 	sctx->send_progress = sctx->cur_ino + 1;
3161 	fs_path_reset(name);
3162 	to_path = name;
3163 	name = NULL;
3164 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3165 	if (ret < 0)
3166 		goto out;
3167 
3168 	ret = send_rename(sctx, from_path, to_path);
3169 	if (ret < 0)
3170 		goto out;
3171 
3172 	if (rmdir_ino) {
3173 		struct orphan_dir_info *odi;
3174 
3175 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3176 		if (!odi) {
3177 			/* already deleted */
3178 			goto finish;
3179 		}
3180 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3181 		if (ret < 0)
3182 			goto out;
3183 		if (!ret)
3184 			goto finish;
3185 
3186 		name = fs_path_alloc();
3187 		if (!name) {
3188 			ret = -ENOMEM;
3189 			goto out;
3190 		}
3191 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3192 		if (ret < 0)
3193 			goto out;
3194 		ret = send_rmdir(sctx, name);
3195 		if (ret < 0)
3196 			goto out;
3197 		free_orphan_dir_info(sctx, odi);
3198 	}
3199 
3200 finish:
3201 	ret = send_utimes(sctx, pm->ino, pm->gen);
3202 	if (ret < 0)
3203 		goto out;
3204 
3205 	/*
3206 	 * After rename/move, need to update the utimes of both new parent(s)
3207 	 * and old parent(s).
3208 	 */
3209 	list_for_each_entry(cur, &pm->update_refs, list) {
3210 		if (cur->dir == rmdir_ino)
3211 			continue;
3212 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3213 		if (ret < 0)
3214 			goto out;
3215 	}
3216 
3217 out:
3218 	fs_path_free(name);
3219 	fs_path_free(from_path);
3220 	fs_path_free(to_path);
3221 	sctx->send_progress = orig_progress;
3222 
3223 	return ret;
3224 }
3225 
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3226 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3227 {
3228 	if (!list_empty(&m->list))
3229 		list_del(&m->list);
3230 	if (!RB_EMPTY_NODE(&m->node))
3231 		rb_erase(&m->node, &sctx->pending_dir_moves);
3232 	__free_recorded_refs(&m->update_refs);
3233 	kfree(m);
3234 }
3235 
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3236 static void tail_append_pending_moves(struct send_ctx *sctx,
3237 				      struct pending_dir_move *moves,
3238 				      struct list_head *stack)
3239 {
3240 	if (list_empty(&moves->list)) {
3241 		list_add_tail(&moves->list, stack);
3242 	} else {
3243 		LIST_HEAD(list);
3244 		list_splice_init(&moves->list, &list);
3245 		list_add_tail(&moves->list, stack);
3246 		list_splice_tail(&list, stack);
3247 	}
3248 	if (!RB_EMPTY_NODE(&moves->node)) {
3249 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3250 		RB_CLEAR_NODE(&moves->node);
3251 	}
3252 }
3253 
apply_children_dir_moves(struct send_ctx * sctx)3254 static int apply_children_dir_moves(struct send_ctx *sctx)
3255 {
3256 	struct pending_dir_move *pm;
3257 	struct list_head stack;
3258 	u64 parent_ino = sctx->cur_ino;
3259 	int ret = 0;
3260 
3261 	pm = get_pending_dir_moves(sctx, parent_ino);
3262 	if (!pm)
3263 		return 0;
3264 
3265 	INIT_LIST_HEAD(&stack);
3266 	tail_append_pending_moves(sctx, pm, &stack);
3267 
3268 	while (!list_empty(&stack)) {
3269 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3270 		parent_ino = pm->ino;
3271 		ret = apply_dir_move(sctx, pm);
3272 		free_pending_move(sctx, pm);
3273 		if (ret)
3274 			goto out;
3275 		pm = get_pending_dir_moves(sctx, parent_ino);
3276 		if (pm)
3277 			tail_append_pending_moves(sctx, pm, &stack);
3278 	}
3279 	return 0;
3280 
3281 out:
3282 	while (!list_empty(&stack)) {
3283 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3284 		free_pending_move(sctx, pm);
3285 	}
3286 	return ret;
3287 }
3288 
3289 /*
3290  * We might need to delay a directory rename even when no ancestor directory
3291  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3292  * renamed. This happens when we rename a directory to the old name (the name
3293  * in the parent root) of some other unrelated directory that got its rename
3294  * delayed due to some ancestor with higher number that got renamed.
3295  *
3296  * Example:
3297  *
3298  * Parent snapshot:
3299  * .                                       (ino 256)
3300  * |---- a/                                (ino 257)
3301  * |     |---- file                        (ino 260)
3302  * |
3303  * |---- b/                                (ino 258)
3304  * |---- c/                                (ino 259)
3305  *
3306  * Send snapshot:
3307  * .                                       (ino 256)
3308  * |---- a/                                (ino 258)
3309  * |---- x/                                (ino 259)
3310  *       |---- y/                          (ino 257)
3311  *             |----- file                 (ino 260)
3312  *
3313  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3314  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3315  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3316  * must issue is:
3317  *
3318  * 1 - rename 259 from 'c' to 'x'
3319  * 2 - rename 257 from 'a' to 'x/y'
3320  * 3 - rename 258 from 'b' to 'a'
3321  *
3322  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3323  * be done right away and < 0 on error.
3324  */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3325 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3326 				  struct recorded_ref *parent_ref,
3327 				  const bool is_orphan)
3328 {
3329 	struct btrfs_path *path;
3330 	struct btrfs_key key;
3331 	struct btrfs_key di_key;
3332 	struct btrfs_dir_item *di;
3333 	u64 left_gen;
3334 	u64 right_gen;
3335 	int ret = 0;
3336 
3337 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3338 		return 0;
3339 
3340 	path = alloc_path_for_send();
3341 	if (!path)
3342 		return -ENOMEM;
3343 
3344 	key.objectid = parent_ref->dir;
3345 	key.type = BTRFS_DIR_ITEM_KEY;
3346 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3347 
3348 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3349 	if (ret < 0) {
3350 		goto out;
3351 	} else if (ret > 0) {
3352 		ret = 0;
3353 		goto out;
3354 	}
3355 
3356 	di = btrfs_match_dir_item_name(sctx->parent_root, path,
3357 				       parent_ref->name, parent_ref->name_len);
3358 	if (!di) {
3359 		ret = 0;
3360 		goto out;
3361 	}
3362 	/*
3363 	 * di_key.objectid has the number of the inode that has a dentry in the
3364 	 * parent directory with the same name that sctx->cur_ino is being
3365 	 * renamed to. We need to check if that inode is in the send root as
3366 	 * well and if it is currently marked as an inode with a pending rename,
3367 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3368 	 * that it happens after that other inode is renamed.
3369 	 */
3370 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3371 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3372 		ret = 0;
3373 		goto out;
3374 	}
3375 
3376 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3377 			     &left_gen, NULL, NULL, NULL, NULL);
3378 	if (ret < 0)
3379 		goto out;
3380 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3381 			     &right_gen, NULL, NULL, NULL, NULL);
3382 	if (ret < 0) {
3383 		if (ret == -ENOENT)
3384 			ret = 0;
3385 		goto out;
3386 	}
3387 
3388 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3389 	if (right_gen != left_gen) {
3390 		ret = 0;
3391 		goto out;
3392 	}
3393 
3394 	if (is_waiting_for_move(sctx, di_key.objectid)) {
3395 		ret = add_pending_dir_move(sctx,
3396 					   sctx->cur_ino,
3397 					   sctx->cur_inode_gen,
3398 					   di_key.objectid,
3399 					   &sctx->new_refs,
3400 					   &sctx->deleted_refs,
3401 					   is_orphan);
3402 		if (!ret)
3403 			ret = 1;
3404 	}
3405 out:
3406 	btrfs_free_path(path);
3407 	return ret;
3408 }
3409 
3410 /*
3411  * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3412  * Return 1 if true, 0 if false and < 0 on error.
3413  */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3414 static int is_ancestor(struct btrfs_root *root,
3415 		       const u64 ino1,
3416 		       const u64 ino1_gen,
3417 		       const u64 ino2,
3418 		       struct fs_path *fs_path)
3419 {
3420 	u64 ino = ino2;
3421 
3422 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3423 		int ret;
3424 		u64 parent;
3425 		u64 parent_gen;
3426 
3427 		fs_path_reset(fs_path);
3428 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3429 		if (ret < 0) {
3430 			if (ret == -ENOENT && ino == ino2)
3431 				ret = 0;
3432 			return ret;
3433 		}
3434 		if (parent == ino1)
3435 			return parent_gen == ino1_gen ? 1 : 0;
3436 		ino = parent;
3437 	}
3438 	return 0;
3439 }
3440 
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3441 static int wait_for_parent_move(struct send_ctx *sctx,
3442 				struct recorded_ref *parent_ref,
3443 				const bool is_orphan)
3444 {
3445 	int ret = 0;
3446 	u64 ino = parent_ref->dir;
3447 	u64 parent_ino_before, parent_ino_after;
3448 	struct fs_path *path_before = NULL;
3449 	struct fs_path *path_after = NULL;
3450 	int len1, len2;
3451 
3452 	path_after = fs_path_alloc();
3453 	path_before = fs_path_alloc();
3454 	if (!path_after || !path_before) {
3455 		ret = -ENOMEM;
3456 		goto out;
3457 	}
3458 
3459 	/*
3460 	 * Our current directory inode may not yet be renamed/moved because some
3461 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3462 	 * such ancestor exists and make sure our own rename/move happens after
3463 	 * that ancestor is processed to avoid path build infinite loops (done
3464 	 * at get_cur_path()).
3465 	 */
3466 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3467 		if (is_waiting_for_move(sctx, ino)) {
3468 			/*
3469 			 * If the current inode is an ancestor of ino in the
3470 			 * parent root, we need to delay the rename of the
3471 			 * current inode, otherwise don't delayed the rename
3472 			 * because we can end up with a circular dependency
3473 			 * of renames, resulting in some directories never
3474 			 * getting the respective rename operations issued in
3475 			 * the send stream or getting into infinite path build
3476 			 * loops.
3477 			 */
3478 			ret = is_ancestor(sctx->parent_root,
3479 					  sctx->cur_ino, sctx->cur_inode_gen,
3480 					  ino, path_before);
3481 			break;
3482 		}
3483 
3484 		fs_path_reset(path_before);
3485 		fs_path_reset(path_after);
3486 
3487 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3488 				    NULL, path_after);
3489 		if (ret < 0)
3490 			goto out;
3491 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3492 				    NULL, path_before);
3493 		if (ret < 0 && ret != -ENOENT) {
3494 			goto out;
3495 		} else if (ret == -ENOENT) {
3496 			ret = 0;
3497 			break;
3498 		}
3499 
3500 		len1 = fs_path_len(path_before);
3501 		len2 = fs_path_len(path_after);
3502 		if (ino > sctx->cur_ino &&
3503 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3504 		     memcmp(path_before->start, path_after->start, len1))) {
3505 			ret = 1;
3506 			break;
3507 		}
3508 		ino = parent_ino_after;
3509 	}
3510 
3511 out:
3512 	fs_path_free(path_before);
3513 	fs_path_free(path_after);
3514 
3515 	if (ret == 1) {
3516 		ret = add_pending_dir_move(sctx,
3517 					   sctx->cur_ino,
3518 					   sctx->cur_inode_gen,
3519 					   ino,
3520 					   &sctx->new_refs,
3521 					   &sctx->deleted_refs,
3522 					   is_orphan);
3523 		if (!ret)
3524 			ret = 1;
3525 	}
3526 
3527 	return ret;
3528 }
3529 
3530 /*
3531  * This does all the move/link/unlink/rmdir magic.
3532  */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)3533 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3534 {
3535 	int ret = 0;
3536 	struct recorded_ref *cur;
3537 	struct recorded_ref *cur2;
3538 	struct list_head check_dirs;
3539 	struct fs_path *valid_path = NULL;
3540 	u64 ow_inode = 0;
3541 	u64 ow_gen;
3542 	int did_overwrite = 0;
3543 	int is_orphan = 0;
3544 	u64 last_dir_ino_rm = 0;
3545 	bool can_rename = true;
3546 
3547 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3548 
3549 	/*
3550 	 * This should never happen as the root dir always has the same ref
3551 	 * which is always '..'
3552 	 */
3553 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3554 	INIT_LIST_HEAD(&check_dirs);
3555 
3556 	valid_path = fs_path_alloc();
3557 	if (!valid_path) {
3558 		ret = -ENOMEM;
3559 		goto out;
3560 	}
3561 
3562 	/*
3563 	 * First, check if the first ref of the current inode was overwritten
3564 	 * before. If yes, we know that the current inode was already orphanized
3565 	 * and thus use the orphan name. If not, we can use get_cur_path to
3566 	 * get the path of the first ref as it would like while receiving at
3567 	 * this point in time.
3568 	 * New inodes are always orphan at the beginning, so force to use the
3569 	 * orphan name in this case.
3570 	 * The first ref is stored in valid_path and will be updated if it
3571 	 * gets moved around.
3572 	 */
3573 	if (!sctx->cur_inode_new) {
3574 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3575 				sctx->cur_inode_gen);
3576 		if (ret < 0)
3577 			goto out;
3578 		if (ret)
3579 			did_overwrite = 1;
3580 	}
3581 	if (sctx->cur_inode_new || did_overwrite) {
3582 		ret = gen_unique_name(sctx, sctx->cur_ino,
3583 				sctx->cur_inode_gen, valid_path);
3584 		if (ret < 0)
3585 			goto out;
3586 		is_orphan = 1;
3587 	} else {
3588 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3589 				valid_path);
3590 		if (ret < 0)
3591 			goto out;
3592 	}
3593 
3594 	list_for_each_entry(cur, &sctx->new_refs, list) {
3595 		/*
3596 		 * We may have refs where the parent directory does not exist
3597 		 * yet. This happens if the parent directories inum is higher
3598 		 * the the current inum. To handle this case, we create the
3599 		 * parent directory out of order. But we need to check if this
3600 		 * did already happen before due to other refs in the same dir.
3601 		 */
3602 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3603 		if (ret < 0)
3604 			goto out;
3605 		if (ret == inode_state_will_create) {
3606 			ret = 0;
3607 			/*
3608 			 * First check if any of the current inodes refs did
3609 			 * already create the dir.
3610 			 */
3611 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3612 				if (cur == cur2)
3613 					break;
3614 				if (cur2->dir == cur->dir) {
3615 					ret = 1;
3616 					break;
3617 				}
3618 			}
3619 
3620 			/*
3621 			 * If that did not happen, check if a previous inode
3622 			 * did already create the dir.
3623 			 */
3624 			if (!ret)
3625 				ret = did_create_dir(sctx, cur->dir);
3626 			if (ret < 0)
3627 				goto out;
3628 			if (!ret) {
3629 				ret = send_create_inode(sctx, cur->dir);
3630 				if (ret < 0)
3631 					goto out;
3632 			}
3633 		}
3634 
3635 		/*
3636 		 * Check if this new ref would overwrite the first ref of
3637 		 * another unprocessed inode. If yes, orphanize the
3638 		 * overwritten inode. If we find an overwritten ref that is
3639 		 * not the first ref, simply unlink it.
3640 		 */
3641 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3642 				cur->name, cur->name_len,
3643 				&ow_inode, &ow_gen);
3644 		if (ret < 0)
3645 			goto out;
3646 		if (ret) {
3647 			ret = is_first_ref(sctx->parent_root,
3648 					   ow_inode, cur->dir, cur->name,
3649 					   cur->name_len);
3650 			if (ret < 0)
3651 				goto out;
3652 			if (ret) {
3653 				struct name_cache_entry *nce;
3654 
3655 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3656 						cur->full_path);
3657 				if (ret < 0)
3658 					goto out;
3659 				/*
3660 				 * Make sure we clear our orphanized inode's
3661 				 * name from the name cache. This is because the
3662 				 * inode ow_inode might be an ancestor of some
3663 				 * other inode that will be orphanized as well
3664 				 * later and has an inode number greater than
3665 				 * sctx->send_progress. We need to prevent
3666 				 * future name lookups from using the old name
3667 				 * and get instead the orphan name.
3668 				 */
3669 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3670 				if (nce) {
3671 					name_cache_delete(sctx, nce);
3672 					kfree(nce);
3673 				}
3674 			} else {
3675 				ret = send_unlink(sctx, cur->full_path);
3676 				if (ret < 0)
3677 					goto out;
3678 			}
3679 		}
3680 
3681 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3682 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3683 			if (ret < 0)
3684 				goto out;
3685 			if (ret == 1) {
3686 				can_rename = false;
3687 				*pending_move = 1;
3688 			}
3689 		}
3690 
3691 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3692 		    can_rename) {
3693 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3694 			if (ret < 0)
3695 				goto out;
3696 			if (ret == 1) {
3697 				can_rename = false;
3698 				*pending_move = 1;
3699 			}
3700 		}
3701 
3702 		/*
3703 		 * link/move the ref to the new place. If we have an orphan
3704 		 * inode, move it and update valid_path. If not, link or move
3705 		 * it depending on the inode mode.
3706 		 */
3707 		if (is_orphan && can_rename) {
3708 			ret = send_rename(sctx, valid_path, cur->full_path);
3709 			if (ret < 0)
3710 				goto out;
3711 			is_orphan = 0;
3712 			ret = fs_path_copy(valid_path, cur->full_path);
3713 			if (ret < 0)
3714 				goto out;
3715 		} else if (can_rename) {
3716 			if (S_ISDIR(sctx->cur_inode_mode)) {
3717 				/*
3718 				 * Dirs can't be linked, so move it. For moved
3719 				 * dirs, we always have one new and one deleted
3720 				 * ref. The deleted ref is ignored later.
3721 				 */
3722 				ret = send_rename(sctx, valid_path,
3723 						  cur->full_path);
3724 				if (!ret)
3725 					ret = fs_path_copy(valid_path,
3726 							   cur->full_path);
3727 				if (ret < 0)
3728 					goto out;
3729 			} else {
3730 				ret = send_link(sctx, cur->full_path,
3731 						valid_path);
3732 				if (ret < 0)
3733 					goto out;
3734 			}
3735 		}
3736 		ret = dup_ref(cur, &check_dirs);
3737 		if (ret < 0)
3738 			goto out;
3739 	}
3740 
3741 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3742 		/*
3743 		 * Check if we can already rmdir the directory. If not,
3744 		 * orphanize it. For every dir item inside that gets deleted
3745 		 * later, we do this check again and rmdir it then if possible.
3746 		 * See the use of check_dirs for more details.
3747 		 */
3748 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3749 				sctx->cur_ino);
3750 		if (ret < 0)
3751 			goto out;
3752 		if (ret) {
3753 			ret = send_rmdir(sctx, valid_path);
3754 			if (ret < 0)
3755 				goto out;
3756 		} else if (!is_orphan) {
3757 			ret = orphanize_inode(sctx, sctx->cur_ino,
3758 					sctx->cur_inode_gen, valid_path);
3759 			if (ret < 0)
3760 				goto out;
3761 			is_orphan = 1;
3762 		}
3763 
3764 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3765 			ret = dup_ref(cur, &check_dirs);
3766 			if (ret < 0)
3767 				goto out;
3768 		}
3769 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3770 		   !list_empty(&sctx->deleted_refs)) {
3771 		/*
3772 		 * We have a moved dir. Add the old parent to check_dirs
3773 		 */
3774 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3775 				list);
3776 		ret = dup_ref(cur, &check_dirs);
3777 		if (ret < 0)
3778 			goto out;
3779 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3780 		/*
3781 		 * We have a non dir inode. Go through all deleted refs and
3782 		 * unlink them if they were not already overwritten by other
3783 		 * inodes.
3784 		 */
3785 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3786 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3787 					sctx->cur_ino, sctx->cur_inode_gen,
3788 					cur->name, cur->name_len);
3789 			if (ret < 0)
3790 				goto out;
3791 			if (!ret) {
3792 				ret = send_unlink(sctx, cur->full_path);
3793 				if (ret < 0)
3794 					goto out;
3795 			}
3796 			ret = dup_ref(cur, &check_dirs);
3797 			if (ret < 0)
3798 				goto out;
3799 		}
3800 		/*
3801 		 * If the inode is still orphan, unlink the orphan. This may
3802 		 * happen when a previous inode did overwrite the first ref
3803 		 * of this inode and no new refs were added for the current
3804 		 * inode. Unlinking does not mean that the inode is deleted in
3805 		 * all cases. There may still be links to this inode in other
3806 		 * places.
3807 		 */
3808 		if (is_orphan) {
3809 			ret = send_unlink(sctx, valid_path);
3810 			if (ret < 0)
3811 				goto out;
3812 		}
3813 	}
3814 
3815 	/*
3816 	 * We did collect all parent dirs where cur_inode was once located. We
3817 	 * now go through all these dirs and check if they are pending for
3818 	 * deletion and if it's finally possible to perform the rmdir now.
3819 	 * We also update the inode stats of the parent dirs here.
3820 	 */
3821 	list_for_each_entry(cur, &check_dirs, list) {
3822 		/*
3823 		 * In case we had refs into dirs that were not processed yet,
3824 		 * we don't need to do the utime and rmdir logic for these dirs.
3825 		 * The dir will be processed later.
3826 		 */
3827 		if (cur->dir > sctx->cur_ino)
3828 			continue;
3829 
3830 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3831 		if (ret < 0)
3832 			goto out;
3833 
3834 		if (ret == inode_state_did_create ||
3835 		    ret == inode_state_no_change) {
3836 			/* TODO delayed utimes */
3837 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3838 			if (ret < 0)
3839 				goto out;
3840 		} else if (ret == inode_state_did_delete &&
3841 			   cur->dir != last_dir_ino_rm) {
3842 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3843 					sctx->cur_ino);
3844 			if (ret < 0)
3845 				goto out;
3846 			if (ret) {
3847 				ret = get_cur_path(sctx, cur->dir,
3848 						   cur->dir_gen, valid_path);
3849 				if (ret < 0)
3850 					goto out;
3851 				ret = send_rmdir(sctx, valid_path);
3852 				if (ret < 0)
3853 					goto out;
3854 				last_dir_ino_rm = cur->dir;
3855 			}
3856 		}
3857 	}
3858 
3859 	ret = 0;
3860 
3861 out:
3862 	__free_recorded_refs(&check_dirs);
3863 	free_recorded_refs(sctx);
3864 	fs_path_free(valid_path);
3865 	return ret;
3866 }
3867 
record_ref(struct btrfs_root * root,int num,u64 dir,int index,struct fs_path * name,void * ctx,struct list_head * refs)3868 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3869 		      struct fs_path *name, void *ctx, struct list_head *refs)
3870 {
3871 	int ret = 0;
3872 	struct send_ctx *sctx = ctx;
3873 	struct fs_path *p;
3874 	u64 gen;
3875 
3876 	p = fs_path_alloc();
3877 	if (!p)
3878 		return -ENOMEM;
3879 
3880 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3881 			NULL, NULL);
3882 	if (ret < 0)
3883 		goto out;
3884 
3885 	ret = get_cur_path(sctx, dir, gen, p);
3886 	if (ret < 0)
3887 		goto out;
3888 	ret = fs_path_add_path(p, name);
3889 	if (ret < 0)
3890 		goto out;
3891 
3892 	ret = __record_ref(refs, dir, gen, p);
3893 
3894 out:
3895 	if (ret)
3896 		fs_path_free(p);
3897 	return ret;
3898 }
3899 
__record_new_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)3900 static int __record_new_ref(int num, u64 dir, int index,
3901 			    struct fs_path *name,
3902 			    void *ctx)
3903 {
3904 	struct send_ctx *sctx = ctx;
3905 	return record_ref(sctx->send_root, num, dir, index, name,
3906 			  ctx, &sctx->new_refs);
3907 }
3908 
3909 
__record_deleted_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)3910 static int __record_deleted_ref(int num, u64 dir, int index,
3911 				struct fs_path *name,
3912 				void *ctx)
3913 {
3914 	struct send_ctx *sctx = ctx;
3915 	return record_ref(sctx->parent_root, num, dir, index, name,
3916 			  ctx, &sctx->deleted_refs);
3917 }
3918 
record_new_ref(struct send_ctx * sctx)3919 static int record_new_ref(struct send_ctx *sctx)
3920 {
3921 	int ret;
3922 
3923 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3924 				sctx->cmp_key, 0, __record_new_ref, sctx);
3925 	if (ret < 0)
3926 		goto out;
3927 	ret = 0;
3928 
3929 out:
3930 	return ret;
3931 }
3932 
record_deleted_ref(struct send_ctx * sctx)3933 static int record_deleted_ref(struct send_ctx *sctx)
3934 {
3935 	int ret;
3936 
3937 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3938 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3939 	if (ret < 0)
3940 		goto out;
3941 	ret = 0;
3942 
3943 out:
3944 	return ret;
3945 }
3946 
3947 struct find_ref_ctx {
3948 	u64 dir;
3949 	u64 dir_gen;
3950 	struct btrfs_root *root;
3951 	struct fs_path *name;
3952 	int found_idx;
3953 };
3954 
__find_iref(int num,u64 dir,int index,struct fs_path * name,void * ctx_)3955 static int __find_iref(int num, u64 dir, int index,
3956 		       struct fs_path *name,
3957 		       void *ctx_)
3958 {
3959 	struct find_ref_ctx *ctx = ctx_;
3960 	u64 dir_gen;
3961 	int ret;
3962 
3963 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3964 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3965 		/*
3966 		 * To avoid doing extra lookups we'll only do this if everything
3967 		 * else matches.
3968 		 */
3969 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3970 				     NULL, NULL, NULL);
3971 		if (ret)
3972 			return ret;
3973 		if (dir_gen != ctx->dir_gen)
3974 			return 0;
3975 		ctx->found_idx = num;
3976 		return 1;
3977 	}
3978 	return 0;
3979 }
3980 
find_iref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,u64 dir,u64 dir_gen,struct fs_path * name)3981 static int find_iref(struct btrfs_root *root,
3982 		     struct btrfs_path *path,
3983 		     struct btrfs_key *key,
3984 		     u64 dir, u64 dir_gen, struct fs_path *name)
3985 {
3986 	int ret;
3987 	struct find_ref_ctx ctx;
3988 
3989 	ctx.dir = dir;
3990 	ctx.name = name;
3991 	ctx.dir_gen = dir_gen;
3992 	ctx.found_idx = -1;
3993 	ctx.root = root;
3994 
3995 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3996 	if (ret < 0)
3997 		return ret;
3998 
3999 	if (ctx.found_idx == -1)
4000 		return -ENOENT;
4001 
4002 	return ctx.found_idx;
4003 }
4004 
__record_changed_new_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4005 static int __record_changed_new_ref(int num, u64 dir, int index,
4006 				    struct fs_path *name,
4007 				    void *ctx)
4008 {
4009 	u64 dir_gen;
4010 	int ret;
4011 	struct send_ctx *sctx = ctx;
4012 
4013 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4014 			     NULL, NULL, NULL);
4015 	if (ret)
4016 		return ret;
4017 
4018 	ret = find_iref(sctx->parent_root, sctx->right_path,
4019 			sctx->cmp_key, dir, dir_gen, name);
4020 	if (ret == -ENOENT)
4021 		ret = __record_new_ref(num, dir, index, name, sctx);
4022 	else if (ret > 0)
4023 		ret = 0;
4024 
4025 	return ret;
4026 }
4027 
__record_changed_deleted_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4028 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4029 					struct fs_path *name,
4030 					void *ctx)
4031 {
4032 	u64 dir_gen;
4033 	int ret;
4034 	struct send_ctx *sctx = ctx;
4035 
4036 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4037 			     NULL, NULL, NULL);
4038 	if (ret)
4039 		return ret;
4040 
4041 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4042 			dir, dir_gen, name);
4043 	if (ret == -ENOENT)
4044 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4045 	else if (ret > 0)
4046 		ret = 0;
4047 
4048 	return ret;
4049 }
4050 
record_changed_ref(struct send_ctx * sctx)4051 static int record_changed_ref(struct send_ctx *sctx)
4052 {
4053 	int ret = 0;
4054 
4055 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4056 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4057 	if (ret < 0)
4058 		goto out;
4059 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4060 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4061 	if (ret < 0)
4062 		goto out;
4063 	ret = 0;
4064 
4065 out:
4066 	return ret;
4067 }
4068 
4069 /*
4070  * Record and process all refs at once. Needed when an inode changes the
4071  * generation number, which means that it was deleted and recreated.
4072  */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4073 static int process_all_refs(struct send_ctx *sctx,
4074 			    enum btrfs_compare_tree_result cmd)
4075 {
4076 	int ret;
4077 	struct btrfs_root *root;
4078 	struct btrfs_path *path;
4079 	struct btrfs_key key;
4080 	struct btrfs_key found_key;
4081 	struct extent_buffer *eb;
4082 	int slot;
4083 	iterate_inode_ref_t cb;
4084 	int pending_move = 0;
4085 
4086 	path = alloc_path_for_send();
4087 	if (!path)
4088 		return -ENOMEM;
4089 
4090 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4091 		root = sctx->send_root;
4092 		cb = __record_new_ref;
4093 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4094 		root = sctx->parent_root;
4095 		cb = __record_deleted_ref;
4096 	} else {
4097 		btrfs_err(sctx->send_root->fs_info,
4098 				"Wrong command %d in process_all_refs", cmd);
4099 		ret = -EINVAL;
4100 		goto out;
4101 	}
4102 
4103 	key.objectid = sctx->cmp_key->objectid;
4104 	key.type = BTRFS_INODE_REF_KEY;
4105 	key.offset = 0;
4106 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4107 	if (ret < 0)
4108 		goto out;
4109 
4110 	while (1) {
4111 		eb = path->nodes[0];
4112 		slot = path->slots[0];
4113 		if (slot >= btrfs_header_nritems(eb)) {
4114 			ret = btrfs_next_leaf(root, path);
4115 			if (ret < 0)
4116 				goto out;
4117 			else if (ret > 0)
4118 				break;
4119 			continue;
4120 		}
4121 
4122 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4123 
4124 		if (found_key.objectid != key.objectid ||
4125 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4126 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4127 			break;
4128 
4129 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4130 		if (ret < 0)
4131 			goto out;
4132 
4133 		path->slots[0]++;
4134 	}
4135 	btrfs_release_path(path);
4136 
4137 	ret = process_recorded_refs(sctx, &pending_move);
4138 	/* Only applicable to an incremental send. */
4139 	ASSERT(pending_move == 0);
4140 
4141 out:
4142 	btrfs_free_path(path);
4143 	return ret;
4144 }
4145 
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4146 static int send_set_xattr(struct send_ctx *sctx,
4147 			  struct fs_path *path,
4148 			  const char *name, int name_len,
4149 			  const char *data, int data_len)
4150 {
4151 	int ret = 0;
4152 
4153 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4154 	if (ret < 0)
4155 		goto out;
4156 
4157 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4158 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4159 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4160 
4161 	ret = send_cmd(sctx);
4162 
4163 tlv_put_failure:
4164 out:
4165 	return ret;
4166 }
4167 
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4168 static int send_remove_xattr(struct send_ctx *sctx,
4169 			  struct fs_path *path,
4170 			  const char *name, int name_len)
4171 {
4172 	int ret = 0;
4173 
4174 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4175 	if (ret < 0)
4176 		goto out;
4177 
4178 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4179 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4180 
4181 	ret = send_cmd(sctx);
4182 
4183 tlv_put_failure:
4184 out:
4185 	return ret;
4186 }
4187 
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4188 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4189 			       const char *name, int name_len,
4190 			       const char *data, int data_len,
4191 			       u8 type, void *ctx)
4192 {
4193 	int ret;
4194 	struct send_ctx *sctx = ctx;
4195 	struct fs_path *p;
4196 	posix_acl_xattr_header dummy_acl;
4197 
4198 	/* Capabilities are emitted by finish_inode_if_needed */
4199 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4200 		return 0;
4201 
4202 	p = fs_path_alloc();
4203 	if (!p)
4204 		return -ENOMEM;
4205 
4206 	/*
4207 	 * This hack is needed because empty acl's are stored as zero byte
4208 	 * data in xattrs. Problem with that is, that receiving these zero byte
4209 	 * acl's will fail later. To fix this, we send a dummy acl list that
4210 	 * only contains the version number and no entries.
4211 	 */
4212 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4213 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4214 		if (data_len == 0) {
4215 			dummy_acl.a_version =
4216 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4217 			data = (char *)&dummy_acl;
4218 			data_len = sizeof(dummy_acl);
4219 		}
4220 	}
4221 
4222 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4223 	if (ret < 0)
4224 		goto out;
4225 
4226 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4227 
4228 out:
4229 	fs_path_free(p);
4230 	return ret;
4231 }
4232 
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4233 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4234 				   const char *name, int name_len,
4235 				   const char *data, int data_len,
4236 				   u8 type, void *ctx)
4237 {
4238 	int ret;
4239 	struct send_ctx *sctx = ctx;
4240 	struct fs_path *p;
4241 
4242 	p = fs_path_alloc();
4243 	if (!p)
4244 		return -ENOMEM;
4245 
4246 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4247 	if (ret < 0)
4248 		goto out;
4249 
4250 	ret = send_remove_xattr(sctx, p, name, name_len);
4251 
4252 out:
4253 	fs_path_free(p);
4254 	return ret;
4255 }
4256 
process_new_xattr(struct send_ctx * sctx)4257 static int process_new_xattr(struct send_ctx *sctx)
4258 {
4259 	int ret = 0;
4260 
4261 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4262 			       sctx->cmp_key, __process_new_xattr, sctx);
4263 
4264 	return ret;
4265 }
4266 
process_deleted_xattr(struct send_ctx * sctx)4267 static int process_deleted_xattr(struct send_ctx *sctx)
4268 {
4269 	int ret;
4270 
4271 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4272 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4273 
4274 	return ret;
4275 }
4276 
4277 struct find_xattr_ctx {
4278 	const char *name;
4279 	int name_len;
4280 	int found_idx;
4281 	char *found_data;
4282 	int found_data_len;
4283 };
4284 
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * vctx)4285 static int __find_xattr(int num, struct btrfs_key *di_key,
4286 			const char *name, int name_len,
4287 			const char *data, int data_len,
4288 			u8 type, void *vctx)
4289 {
4290 	struct find_xattr_ctx *ctx = vctx;
4291 
4292 	if (name_len == ctx->name_len &&
4293 	    strncmp(name, ctx->name, name_len) == 0) {
4294 		ctx->found_idx = num;
4295 		ctx->found_data_len = data_len;
4296 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4297 		if (!ctx->found_data)
4298 			return -ENOMEM;
4299 		return 1;
4300 	}
4301 	return 0;
4302 }
4303 
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)4304 static int find_xattr(struct btrfs_root *root,
4305 		      struct btrfs_path *path,
4306 		      struct btrfs_key *key,
4307 		      const char *name, int name_len,
4308 		      char **data, int *data_len)
4309 {
4310 	int ret;
4311 	struct find_xattr_ctx ctx;
4312 
4313 	ctx.name = name;
4314 	ctx.name_len = name_len;
4315 	ctx.found_idx = -1;
4316 	ctx.found_data = NULL;
4317 	ctx.found_data_len = 0;
4318 
4319 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4320 	if (ret < 0)
4321 		return ret;
4322 
4323 	if (ctx.found_idx == -1)
4324 		return -ENOENT;
4325 	if (data) {
4326 		*data = ctx.found_data;
4327 		*data_len = ctx.found_data_len;
4328 	} else {
4329 		kfree(ctx.found_data);
4330 	}
4331 	return ctx.found_idx;
4332 }
4333 
4334 
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4335 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4336 				       const char *name, int name_len,
4337 				       const char *data, int data_len,
4338 				       u8 type, void *ctx)
4339 {
4340 	int ret;
4341 	struct send_ctx *sctx = ctx;
4342 	char *found_data = NULL;
4343 	int found_data_len  = 0;
4344 
4345 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4346 			 sctx->cmp_key, name, name_len, &found_data,
4347 			 &found_data_len);
4348 	if (ret == -ENOENT) {
4349 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4350 				data_len, type, ctx);
4351 	} else if (ret >= 0) {
4352 		if (data_len != found_data_len ||
4353 		    memcmp(data, found_data, data_len)) {
4354 			ret = __process_new_xattr(num, di_key, name, name_len,
4355 					data, data_len, type, ctx);
4356 		} else {
4357 			ret = 0;
4358 		}
4359 	}
4360 
4361 	kfree(found_data);
4362 	return ret;
4363 }
4364 
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4365 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4366 					   const char *name, int name_len,
4367 					   const char *data, int data_len,
4368 					   u8 type, void *ctx)
4369 {
4370 	int ret;
4371 	struct send_ctx *sctx = ctx;
4372 
4373 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4374 			 name, name_len, NULL, NULL);
4375 	if (ret == -ENOENT)
4376 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4377 				data_len, type, ctx);
4378 	else if (ret >= 0)
4379 		ret = 0;
4380 
4381 	return ret;
4382 }
4383 
process_changed_xattr(struct send_ctx * sctx)4384 static int process_changed_xattr(struct send_ctx *sctx)
4385 {
4386 	int ret = 0;
4387 
4388 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4389 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4390 	if (ret < 0)
4391 		goto out;
4392 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4393 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4394 
4395 out:
4396 	return ret;
4397 }
4398 
process_all_new_xattrs(struct send_ctx * sctx)4399 static int process_all_new_xattrs(struct send_ctx *sctx)
4400 {
4401 	int ret;
4402 	struct btrfs_root *root;
4403 	struct btrfs_path *path;
4404 	struct btrfs_key key;
4405 	struct btrfs_key found_key;
4406 	struct extent_buffer *eb;
4407 	int slot;
4408 
4409 	path = alloc_path_for_send();
4410 	if (!path)
4411 		return -ENOMEM;
4412 
4413 	root = sctx->send_root;
4414 
4415 	key.objectid = sctx->cmp_key->objectid;
4416 	key.type = BTRFS_XATTR_ITEM_KEY;
4417 	key.offset = 0;
4418 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4419 	if (ret < 0)
4420 		goto out;
4421 
4422 	while (1) {
4423 		eb = path->nodes[0];
4424 		slot = path->slots[0];
4425 		if (slot >= btrfs_header_nritems(eb)) {
4426 			ret = btrfs_next_leaf(root, path);
4427 			if (ret < 0) {
4428 				goto out;
4429 			} else if (ret > 0) {
4430 				ret = 0;
4431 				break;
4432 			}
4433 			continue;
4434 		}
4435 
4436 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4437 		if (found_key.objectid != key.objectid ||
4438 		    found_key.type != key.type) {
4439 			ret = 0;
4440 			goto out;
4441 		}
4442 
4443 		ret = iterate_dir_item(root, path, &found_key,
4444 				       __process_new_xattr, sctx);
4445 		if (ret < 0)
4446 			goto out;
4447 
4448 		path->slots[0]++;
4449 	}
4450 
4451 out:
4452 	btrfs_free_path(path);
4453 	return ret;
4454 }
4455 
fill_read_buf(struct send_ctx * sctx,u64 offset,u32 len)4456 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4457 {
4458 	struct btrfs_root *root = sctx->send_root;
4459 	struct btrfs_fs_info *fs_info = root->fs_info;
4460 	struct inode *inode;
4461 	struct page *page;
4462 	char *addr;
4463 	struct btrfs_key key;
4464 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4465 	pgoff_t last_index;
4466 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4467 	ssize_t ret = 0;
4468 
4469 	key.objectid = sctx->cur_ino;
4470 	key.type = BTRFS_INODE_ITEM_KEY;
4471 	key.offset = 0;
4472 
4473 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4474 	if (IS_ERR(inode))
4475 		return PTR_ERR(inode);
4476 
4477 	if (offset + len > i_size_read(inode)) {
4478 		if (offset > i_size_read(inode))
4479 			len = 0;
4480 		else
4481 			len = offset - i_size_read(inode);
4482 	}
4483 	if (len == 0)
4484 		goto out;
4485 
4486 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4487 
4488 	/* initial readahead */
4489 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4490 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4491 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4492 		       last_index - index + 1);
4493 
4494 	while (index <= last_index) {
4495 		unsigned cur_len = min_t(unsigned, len,
4496 					 PAGE_CACHE_SIZE - pg_offset);
4497 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4498 		if (!page) {
4499 			ret = -ENOMEM;
4500 			break;
4501 		}
4502 
4503 		if (!PageUptodate(page)) {
4504 			btrfs_readpage(NULL, page);
4505 			lock_page(page);
4506 			if (!PageUptodate(page)) {
4507 				unlock_page(page);
4508 				page_cache_release(page);
4509 				ret = -EIO;
4510 				break;
4511 			}
4512 		}
4513 
4514 		addr = kmap(page);
4515 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4516 		kunmap(page);
4517 		unlock_page(page);
4518 		page_cache_release(page);
4519 		index++;
4520 		pg_offset = 0;
4521 		len -= cur_len;
4522 		ret += cur_len;
4523 	}
4524 out:
4525 	iput(inode);
4526 	return ret;
4527 }
4528 
4529 /*
4530  * Read some bytes from the current inode/file and send a write command to
4531  * user space.
4532  */
send_write(struct send_ctx * sctx,u64 offset,u32 len)4533 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4534 {
4535 	int ret = 0;
4536 	struct fs_path *p;
4537 	ssize_t num_read = 0;
4538 
4539 	p = fs_path_alloc();
4540 	if (!p)
4541 		return -ENOMEM;
4542 
4543 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4544 
4545 	num_read = fill_read_buf(sctx, offset, len);
4546 	if (num_read <= 0) {
4547 		if (num_read < 0)
4548 			ret = num_read;
4549 		goto out;
4550 	}
4551 
4552 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4553 	if (ret < 0)
4554 		goto out;
4555 
4556 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4557 	if (ret < 0)
4558 		goto out;
4559 
4560 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4561 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4562 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4563 
4564 	ret = send_cmd(sctx);
4565 
4566 tlv_put_failure:
4567 out:
4568 	fs_path_free(p);
4569 	if (ret < 0)
4570 		return ret;
4571 	return num_read;
4572 }
4573 
4574 /*
4575  * Send a clone command to user space.
4576  */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)4577 static int send_clone(struct send_ctx *sctx,
4578 		      u64 offset, u32 len,
4579 		      struct clone_root *clone_root)
4580 {
4581 	int ret = 0;
4582 	struct fs_path *p;
4583 	u64 gen;
4584 
4585 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4586 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4587 		clone_root->root->objectid, clone_root->ino,
4588 		clone_root->offset);
4589 
4590 	p = fs_path_alloc();
4591 	if (!p)
4592 		return -ENOMEM;
4593 
4594 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4595 	if (ret < 0)
4596 		goto out;
4597 
4598 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4599 	if (ret < 0)
4600 		goto out;
4601 
4602 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4603 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4604 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4605 
4606 	if (clone_root->root == sctx->send_root) {
4607 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4608 				&gen, NULL, NULL, NULL, NULL);
4609 		if (ret < 0)
4610 			goto out;
4611 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4612 	} else {
4613 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4614 	}
4615 	if (ret < 0)
4616 		goto out;
4617 
4618 	/*
4619 	 * If the parent we're using has a received_uuid set then use that as
4620 	 * our clone source as that is what we will look for when doing a
4621 	 * receive.
4622 	 *
4623 	 * This covers the case that we create a snapshot off of a received
4624 	 * subvolume and then use that as the parent and try to receive on a
4625 	 * different host.
4626 	 */
4627 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4628 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4629 			     clone_root->root->root_item.received_uuid);
4630 	else
4631 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4632 			     clone_root->root->root_item.uuid);
4633 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4634 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4635 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4636 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4637 			clone_root->offset);
4638 
4639 	ret = send_cmd(sctx);
4640 
4641 tlv_put_failure:
4642 out:
4643 	fs_path_free(p);
4644 	return ret;
4645 }
4646 
4647 /*
4648  * Send an update extent command to user space.
4649  */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)4650 static int send_update_extent(struct send_ctx *sctx,
4651 			      u64 offset, u32 len)
4652 {
4653 	int ret = 0;
4654 	struct fs_path *p;
4655 
4656 	p = fs_path_alloc();
4657 	if (!p)
4658 		return -ENOMEM;
4659 
4660 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4661 	if (ret < 0)
4662 		goto out;
4663 
4664 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4665 	if (ret < 0)
4666 		goto out;
4667 
4668 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4669 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4670 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4671 
4672 	ret = send_cmd(sctx);
4673 
4674 tlv_put_failure:
4675 out:
4676 	fs_path_free(p);
4677 	return ret;
4678 }
4679 
send_hole(struct send_ctx * sctx,u64 end)4680 static int send_hole(struct send_ctx *sctx, u64 end)
4681 {
4682 	struct fs_path *p = NULL;
4683 	u64 offset = sctx->cur_inode_last_extent;
4684 	u64 len;
4685 	int ret = 0;
4686 
4687 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4688 		return send_update_extent(sctx, offset, end - offset);
4689 
4690 	p = fs_path_alloc();
4691 	if (!p)
4692 		return -ENOMEM;
4693 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4694 	if (ret < 0)
4695 		goto tlv_put_failure;
4696 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4697 	while (offset < end) {
4698 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4699 
4700 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4701 		if (ret < 0)
4702 			break;
4703 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4704 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4705 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4706 		ret = send_cmd(sctx);
4707 		if (ret < 0)
4708 			break;
4709 		offset += len;
4710 	}
4711 tlv_put_failure:
4712 	fs_path_free(p);
4713 	return ret;
4714 }
4715 
send_extent_data(struct send_ctx * sctx,const u64 offset,const u64 len)4716 static int send_extent_data(struct send_ctx *sctx,
4717 			    const u64 offset,
4718 			    const u64 len)
4719 {
4720 	u64 sent = 0;
4721 
4722 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4723 		return send_update_extent(sctx, offset, len);
4724 
4725 	while (sent < len) {
4726 		u64 size = len - sent;
4727 		int ret;
4728 
4729 		if (size > BTRFS_SEND_READ_SIZE)
4730 			size = BTRFS_SEND_READ_SIZE;
4731 		ret = send_write(sctx, offset + sent, size);
4732 		if (ret < 0)
4733 			return ret;
4734 		if (!ret)
4735 			break;
4736 		sent += ret;
4737 	}
4738 	return 0;
4739 }
4740 
4741 /*
4742  * Search for a capability xattr related to sctx->cur_ino. If the capability is
4743  * found, call send_set_xattr function to emit it.
4744  *
4745  * Return 0 if there isn't a capability, or when the capability was emitted
4746  * successfully, or < 0 if an error occurred.
4747  */
send_capabilities(struct send_ctx * sctx)4748 static int send_capabilities(struct send_ctx *sctx)
4749 {
4750 	struct fs_path *fspath = NULL;
4751 	struct btrfs_path *path;
4752 	struct btrfs_dir_item *di;
4753 	struct extent_buffer *leaf;
4754 	unsigned long data_ptr;
4755 	char *buf = NULL;
4756 	int buf_len;
4757 	int ret = 0;
4758 
4759 	path = alloc_path_for_send();
4760 	if (!path)
4761 		return -ENOMEM;
4762 
4763 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
4764 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
4765 	if (!di) {
4766 		/* There is no xattr for this inode */
4767 		goto out;
4768 	} else if (IS_ERR(di)) {
4769 		ret = PTR_ERR(di);
4770 		goto out;
4771 	}
4772 
4773 	leaf = path->nodes[0];
4774 	buf_len = btrfs_dir_data_len(leaf, di);
4775 
4776 	fspath = fs_path_alloc();
4777 	buf = kmalloc(buf_len, GFP_KERNEL);
4778 	if (!fspath || !buf) {
4779 		ret = -ENOMEM;
4780 		goto out;
4781 	}
4782 
4783 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
4784 	if (ret < 0)
4785 		goto out;
4786 
4787 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
4788 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
4789 
4790 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
4791 			strlen(XATTR_NAME_CAPS), buf, buf_len);
4792 out:
4793 	kfree(buf);
4794 	fs_path_free(fspath);
4795 	btrfs_free_path(path);
4796 	return ret;
4797 }
4798 
clone_range(struct send_ctx * sctx,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)4799 static int clone_range(struct send_ctx *sctx,
4800 		       struct clone_root *clone_root,
4801 		       const u64 disk_byte,
4802 		       u64 data_offset,
4803 		       u64 offset,
4804 		       u64 len)
4805 {
4806 	struct btrfs_path *path;
4807 	struct btrfs_key key;
4808 	int ret;
4809 
4810 	path = alloc_path_for_send();
4811 	if (!path)
4812 		return -ENOMEM;
4813 
4814 	/*
4815 	 * We can't send a clone operation for the entire range if we find
4816 	 * extent items in the respective range in the source file that
4817 	 * refer to different extents or if we find holes.
4818 	 * So check for that and do a mix of clone and regular write/copy
4819 	 * operations if needed.
4820 	 *
4821 	 * Example:
4822 	 *
4823 	 * mkfs.btrfs -f /dev/sda
4824 	 * mount /dev/sda /mnt
4825 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4826 	 * cp --reflink=always /mnt/foo /mnt/bar
4827 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4828 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
4829 	 *
4830 	 * If when we send the snapshot and we are processing file bar (which
4831 	 * has a higher inode number than foo) we blindly send a clone operation
4832 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4833 	 * a file bar that matches the content of file foo - iow, doesn't match
4834 	 * the content from bar in the original filesystem.
4835 	 */
4836 	key.objectid = clone_root->ino;
4837 	key.type = BTRFS_EXTENT_DATA_KEY;
4838 	key.offset = clone_root->offset;
4839 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4840 	if (ret < 0)
4841 		goto out;
4842 	if (ret > 0 && path->slots[0] > 0) {
4843 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4844 		if (key.objectid == clone_root->ino &&
4845 		    key.type == BTRFS_EXTENT_DATA_KEY)
4846 			path->slots[0]--;
4847 	}
4848 
4849 	while (true) {
4850 		struct extent_buffer *leaf = path->nodes[0];
4851 		int slot = path->slots[0];
4852 		struct btrfs_file_extent_item *ei;
4853 		u8 type;
4854 		u64 ext_len;
4855 		u64 clone_len;
4856 
4857 		if (slot >= btrfs_header_nritems(leaf)) {
4858 			ret = btrfs_next_leaf(clone_root->root, path);
4859 			if (ret < 0)
4860 				goto out;
4861 			else if (ret > 0)
4862 				break;
4863 			continue;
4864 		}
4865 
4866 		btrfs_item_key_to_cpu(leaf, &key, slot);
4867 
4868 		/*
4869 		 * We might have an implicit trailing hole (NO_HOLES feature
4870 		 * enabled). We deal with it after leaving this loop.
4871 		 */
4872 		if (key.objectid != clone_root->ino ||
4873 		    key.type != BTRFS_EXTENT_DATA_KEY)
4874 			break;
4875 
4876 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4877 		type = btrfs_file_extent_type(leaf, ei);
4878 		if (type == BTRFS_FILE_EXTENT_INLINE) {
4879 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4880 			ext_len = PAGE_CACHE_ALIGN(ext_len);
4881 		} else {
4882 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4883 		}
4884 
4885 		if (key.offset + ext_len <= clone_root->offset)
4886 			goto next;
4887 
4888 		if (key.offset > clone_root->offset) {
4889 			/* Implicit hole, NO_HOLES feature enabled. */
4890 			u64 hole_len = key.offset - clone_root->offset;
4891 
4892 			if (hole_len > len)
4893 				hole_len = len;
4894 			ret = send_extent_data(sctx, offset, hole_len);
4895 			if (ret < 0)
4896 				goto out;
4897 
4898 			len -= hole_len;
4899 			if (len == 0)
4900 				break;
4901 			offset += hole_len;
4902 			clone_root->offset += hole_len;
4903 			data_offset += hole_len;
4904 		}
4905 
4906 		if (key.offset >= clone_root->offset + len)
4907 			break;
4908 
4909 		clone_len = min_t(u64, ext_len, len);
4910 
4911 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4912 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
4913 			ret = send_clone(sctx, offset, clone_len, clone_root);
4914 		else
4915 			ret = send_extent_data(sctx, offset, clone_len);
4916 
4917 		if (ret < 0)
4918 			goto out;
4919 
4920 		len -= clone_len;
4921 		if (len == 0)
4922 			break;
4923 		offset += clone_len;
4924 		clone_root->offset += clone_len;
4925 		data_offset += clone_len;
4926 next:
4927 		path->slots[0]++;
4928 	}
4929 
4930 	if (len > 0)
4931 		ret = send_extent_data(sctx, offset, len);
4932 	else
4933 		ret = 0;
4934 out:
4935 	btrfs_free_path(path);
4936 	return ret;
4937 }
4938 
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)4939 static int send_write_or_clone(struct send_ctx *sctx,
4940 			       struct btrfs_path *path,
4941 			       struct btrfs_key *key,
4942 			       struct clone_root *clone_root)
4943 {
4944 	int ret = 0;
4945 	struct btrfs_file_extent_item *ei;
4946 	u64 offset = key->offset;
4947 	u64 len;
4948 	u8 type;
4949 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4950 
4951 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4952 			struct btrfs_file_extent_item);
4953 	type = btrfs_file_extent_type(path->nodes[0], ei);
4954 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4955 		len = btrfs_file_extent_inline_len(path->nodes[0],
4956 						   path->slots[0], ei);
4957 		/*
4958 		 * it is possible the inline item won't cover the whole page,
4959 		 * but there may be items after this page.  Make
4960 		 * sure to send the whole thing
4961 		 */
4962 		len = PAGE_CACHE_ALIGN(len);
4963 	} else {
4964 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4965 	}
4966 
4967 	if (offset + len > sctx->cur_inode_size)
4968 		len = sctx->cur_inode_size - offset;
4969 	if (len == 0) {
4970 		ret = 0;
4971 		goto out;
4972 	}
4973 
4974 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4975 		u64 disk_byte;
4976 		u64 data_offset;
4977 
4978 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
4979 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
4980 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
4981 				  offset, len);
4982 	} else {
4983 		ret = send_extent_data(sctx, offset, len);
4984 	}
4985 out:
4986 	return ret;
4987 }
4988 
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)4989 static int is_extent_unchanged(struct send_ctx *sctx,
4990 			       struct btrfs_path *left_path,
4991 			       struct btrfs_key *ekey)
4992 {
4993 	int ret = 0;
4994 	struct btrfs_key key;
4995 	struct btrfs_path *path = NULL;
4996 	struct extent_buffer *eb;
4997 	int slot;
4998 	struct btrfs_key found_key;
4999 	struct btrfs_file_extent_item *ei;
5000 	u64 left_disknr;
5001 	u64 right_disknr;
5002 	u64 left_offset;
5003 	u64 right_offset;
5004 	u64 left_offset_fixed;
5005 	u64 left_len;
5006 	u64 right_len;
5007 	u64 left_gen;
5008 	u64 right_gen;
5009 	u8 left_type;
5010 	u8 right_type;
5011 
5012 	path = alloc_path_for_send();
5013 	if (!path)
5014 		return -ENOMEM;
5015 
5016 	eb = left_path->nodes[0];
5017 	slot = left_path->slots[0];
5018 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5019 	left_type = btrfs_file_extent_type(eb, ei);
5020 
5021 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5022 		ret = 0;
5023 		goto out;
5024 	}
5025 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5026 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5027 	left_offset = btrfs_file_extent_offset(eb, ei);
5028 	left_gen = btrfs_file_extent_generation(eb, ei);
5029 
5030 	/*
5031 	 * Following comments will refer to these graphics. L is the left
5032 	 * extents which we are checking at the moment. 1-8 are the right
5033 	 * extents that we iterate.
5034 	 *
5035 	 *       |-----L-----|
5036 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5037 	 *
5038 	 *       |-----L-----|
5039 	 * |--1--|-2b-|...(same as above)
5040 	 *
5041 	 * Alternative situation. Happens on files where extents got split.
5042 	 *       |-----L-----|
5043 	 * |-----------7-----------|-6-|
5044 	 *
5045 	 * Alternative situation. Happens on files which got larger.
5046 	 *       |-----L-----|
5047 	 * |-8-|
5048 	 * Nothing follows after 8.
5049 	 */
5050 
5051 	key.objectid = ekey->objectid;
5052 	key.type = BTRFS_EXTENT_DATA_KEY;
5053 	key.offset = ekey->offset;
5054 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5055 	if (ret < 0)
5056 		goto out;
5057 	if (ret) {
5058 		ret = 0;
5059 		goto out;
5060 	}
5061 
5062 	/*
5063 	 * Handle special case where the right side has no extents at all.
5064 	 */
5065 	eb = path->nodes[0];
5066 	slot = path->slots[0];
5067 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5068 	if (found_key.objectid != key.objectid ||
5069 	    found_key.type != key.type) {
5070 		/* If we're a hole then just pretend nothing changed */
5071 		ret = (left_disknr) ? 0 : 1;
5072 		goto out;
5073 	}
5074 
5075 	/*
5076 	 * We're now on 2a, 2b or 7.
5077 	 */
5078 	key = found_key;
5079 	while (key.offset < ekey->offset + left_len) {
5080 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5081 		right_type = btrfs_file_extent_type(eb, ei);
5082 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5083 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5084 			ret = 0;
5085 			goto out;
5086 		}
5087 
5088 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5089 			right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5090 			right_len = PAGE_ALIGN(right_len);
5091 		} else {
5092 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5093 		}
5094 
5095 		/*
5096 		 * Are we at extent 8? If yes, we know the extent is changed.
5097 		 * This may only happen on the first iteration.
5098 		 */
5099 		if (found_key.offset + right_len <= ekey->offset) {
5100 			/* If we're a hole just pretend nothing changed */
5101 			ret = (left_disknr) ? 0 : 1;
5102 			goto out;
5103 		}
5104 
5105 		/*
5106 		 * We just wanted to see if when we have an inline extent, what
5107 		 * follows it is a regular extent (wanted to check the above
5108 		 * condition for inline extents too). This should normally not
5109 		 * happen but it's possible for example when we have an inline
5110 		 * compressed extent representing data with a size matching
5111 		 * the page size (currently the same as sector size).
5112 		 */
5113 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5114 			ret = 0;
5115 			goto out;
5116 		}
5117 
5118 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5119 		right_offset = btrfs_file_extent_offset(eb, ei);
5120 		right_gen = btrfs_file_extent_generation(eb, ei);
5121 
5122 		left_offset_fixed = left_offset;
5123 		if (key.offset < ekey->offset) {
5124 			/* Fix the right offset for 2a and 7. */
5125 			right_offset += ekey->offset - key.offset;
5126 		} else {
5127 			/* Fix the left offset for all behind 2a and 2b */
5128 			left_offset_fixed += key.offset - ekey->offset;
5129 		}
5130 
5131 		/*
5132 		 * Check if we have the same extent.
5133 		 */
5134 		if (left_disknr != right_disknr ||
5135 		    left_offset_fixed != right_offset ||
5136 		    left_gen != right_gen) {
5137 			ret = 0;
5138 			goto out;
5139 		}
5140 
5141 		/*
5142 		 * Go to the next extent.
5143 		 */
5144 		ret = btrfs_next_item(sctx->parent_root, path);
5145 		if (ret < 0)
5146 			goto out;
5147 		if (!ret) {
5148 			eb = path->nodes[0];
5149 			slot = path->slots[0];
5150 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5151 		}
5152 		if (ret || found_key.objectid != key.objectid ||
5153 		    found_key.type != key.type) {
5154 			key.offset += right_len;
5155 			break;
5156 		}
5157 		if (found_key.offset != key.offset + right_len) {
5158 			ret = 0;
5159 			goto out;
5160 		}
5161 		key = found_key;
5162 	}
5163 
5164 	/*
5165 	 * We're now behind the left extent (treat as unchanged) or at the end
5166 	 * of the right side (treat as changed).
5167 	 */
5168 	if (key.offset >= ekey->offset + left_len)
5169 		ret = 1;
5170 	else
5171 		ret = 0;
5172 
5173 
5174 out:
5175 	btrfs_free_path(path);
5176 	return ret;
5177 }
5178 
get_last_extent(struct send_ctx * sctx,u64 offset)5179 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5180 {
5181 	struct btrfs_path *path;
5182 	struct btrfs_root *root = sctx->send_root;
5183 	struct btrfs_file_extent_item *fi;
5184 	struct btrfs_key key;
5185 	u64 extent_end;
5186 	u8 type;
5187 	int ret;
5188 
5189 	path = alloc_path_for_send();
5190 	if (!path)
5191 		return -ENOMEM;
5192 
5193 	sctx->cur_inode_last_extent = 0;
5194 
5195 	key.objectid = sctx->cur_ino;
5196 	key.type = BTRFS_EXTENT_DATA_KEY;
5197 	key.offset = offset;
5198 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5199 	if (ret < 0)
5200 		goto out;
5201 	ret = 0;
5202 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5203 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5204 		goto out;
5205 
5206 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5207 			    struct btrfs_file_extent_item);
5208 	type = btrfs_file_extent_type(path->nodes[0], fi);
5209 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5210 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5211 							path->slots[0], fi);
5212 		extent_end = ALIGN(key.offset + size,
5213 				   sctx->send_root->sectorsize);
5214 	} else {
5215 		extent_end = key.offset +
5216 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5217 	}
5218 	sctx->cur_inode_last_extent = extent_end;
5219 out:
5220 	btrfs_free_path(path);
5221 	return ret;
5222 }
5223 
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)5224 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5225 			   struct btrfs_key *key)
5226 {
5227 	struct btrfs_file_extent_item *fi;
5228 	u64 extent_end;
5229 	u8 type;
5230 	int ret = 0;
5231 
5232 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5233 		return 0;
5234 
5235 	if (sctx->cur_inode_last_extent == (u64)-1) {
5236 		ret = get_last_extent(sctx, key->offset - 1);
5237 		if (ret)
5238 			return ret;
5239 	}
5240 
5241 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5242 			    struct btrfs_file_extent_item);
5243 	type = btrfs_file_extent_type(path->nodes[0], fi);
5244 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5245 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5246 							path->slots[0], fi);
5247 		extent_end = ALIGN(key->offset + size,
5248 				   sctx->send_root->sectorsize);
5249 	} else {
5250 		extent_end = key->offset +
5251 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5252 	}
5253 
5254 	if (path->slots[0] == 0 &&
5255 	    sctx->cur_inode_last_extent < key->offset) {
5256 		/*
5257 		 * We might have skipped entire leafs that contained only
5258 		 * file extent items for our current inode. These leafs have
5259 		 * a generation number smaller (older) than the one in the
5260 		 * current leaf and the leaf our last extent came from, and
5261 		 * are located between these 2 leafs.
5262 		 */
5263 		ret = get_last_extent(sctx, key->offset - 1);
5264 		if (ret)
5265 			return ret;
5266 	}
5267 
5268 	if (sctx->cur_inode_last_extent < key->offset)
5269 		ret = send_hole(sctx, key->offset);
5270 	sctx->cur_inode_last_extent = extent_end;
5271 	return ret;
5272 }
5273 
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)5274 static int process_extent(struct send_ctx *sctx,
5275 			  struct btrfs_path *path,
5276 			  struct btrfs_key *key)
5277 {
5278 	struct clone_root *found_clone = NULL;
5279 	int ret = 0;
5280 
5281 	if (S_ISLNK(sctx->cur_inode_mode))
5282 		return 0;
5283 
5284 	if (sctx->parent_root && !sctx->cur_inode_new) {
5285 		ret = is_extent_unchanged(sctx, path, key);
5286 		if (ret < 0)
5287 			goto out;
5288 		if (ret) {
5289 			ret = 0;
5290 			goto out_hole;
5291 		}
5292 	} else {
5293 		struct btrfs_file_extent_item *ei;
5294 		u8 type;
5295 
5296 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5297 				    struct btrfs_file_extent_item);
5298 		type = btrfs_file_extent_type(path->nodes[0], ei);
5299 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5300 		    type == BTRFS_FILE_EXTENT_REG) {
5301 			/*
5302 			 * The send spec does not have a prealloc command yet,
5303 			 * so just leave a hole for prealloc'ed extents until
5304 			 * we have enough commands queued up to justify rev'ing
5305 			 * the send spec.
5306 			 */
5307 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5308 				ret = 0;
5309 				goto out;
5310 			}
5311 
5312 			/* Have a hole, just skip it. */
5313 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5314 				ret = 0;
5315 				goto out;
5316 			}
5317 		}
5318 	}
5319 
5320 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5321 			sctx->cur_inode_size, &found_clone);
5322 	if (ret != -ENOENT && ret < 0)
5323 		goto out;
5324 
5325 	ret = send_write_or_clone(sctx, path, key, found_clone);
5326 	if (ret)
5327 		goto out;
5328 out_hole:
5329 	ret = maybe_send_hole(sctx, path, key);
5330 out:
5331 	return ret;
5332 }
5333 
process_all_extents(struct send_ctx * sctx)5334 static int process_all_extents(struct send_ctx *sctx)
5335 {
5336 	int ret;
5337 	struct btrfs_root *root;
5338 	struct btrfs_path *path;
5339 	struct btrfs_key key;
5340 	struct btrfs_key found_key;
5341 	struct extent_buffer *eb;
5342 	int slot;
5343 
5344 	root = sctx->send_root;
5345 	path = alloc_path_for_send();
5346 	if (!path)
5347 		return -ENOMEM;
5348 
5349 	key.objectid = sctx->cmp_key->objectid;
5350 	key.type = BTRFS_EXTENT_DATA_KEY;
5351 	key.offset = 0;
5352 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5353 	if (ret < 0)
5354 		goto out;
5355 
5356 	while (1) {
5357 		eb = path->nodes[0];
5358 		slot = path->slots[0];
5359 
5360 		if (slot >= btrfs_header_nritems(eb)) {
5361 			ret = btrfs_next_leaf(root, path);
5362 			if (ret < 0) {
5363 				goto out;
5364 			} else if (ret > 0) {
5365 				ret = 0;
5366 				break;
5367 			}
5368 			continue;
5369 		}
5370 
5371 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5372 
5373 		if (found_key.objectid != key.objectid ||
5374 		    found_key.type != key.type) {
5375 			ret = 0;
5376 			goto out;
5377 		}
5378 
5379 		ret = process_extent(sctx, path, &found_key);
5380 		if (ret < 0)
5381 			goto out;
5382 
5383 		path->slots[0]++;
5384 	}
5385 
5386 out:
5387 	btrfs_free_path(path);
5388 	return ret;
5389 }
5390 
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)5391 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5392 					   int *pending_move,
5393 					   int *refs_processed)
5394 {
5395 	int ret = 0;
5396 
5397 	if (sctx->cur_ino == 0)
5398 		goto out;
5399 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5400 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5401 		goto out;
5402 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5403 		goto out;
5404 
5405 	ret = process_recorded_refs(sctx, pending_move);
5406 	if (ret < 0)
5407 		goto out;
5408 
5409 	*refs_processed = 1;
5410 out:
5411 	return ret;
5412 }
5413 
finish_inode_if_needed(struct send_ctx * sctx,int at_end)5414 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5415 {
5416 	int ret = 0;
5417 	u64 left_mode;
5418 	u64 left_uid;
5419 	u64 left_gid;
5420 	u64 right_mode;
5421 	u64 right_uid;
5422 	u64 right_gid;
5423 	int need_chmod = 0;
5424 	int need_chown = 0;
5425 	int pending_move = 0;
5426 	int refs_processed = 0;
5427 
5428 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5429 					      &refs_processed);
5430 	if (ret < 0)
5431 		goto out;
5432 
5433 	/*
5434 	 * We have processed the refs and thus need to advance send_progress.
5435 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5436 	 * inode into account.
5437 	 *
5438 	 * On the other hand, if our current inode is a directory and couldn't
5439 	 * be moved/renamed because its parent was renamed/moved too and it has
5440 	 * a higher inode number, we can only move/rename our current inode
5441 	 * after we moved/renamed its parent. Therefore in this case operate on
5442 	 * the old path (pre move/rename) of our current inode, and the
5443 	 * move/rename will be performed later.
5444 	 */
5445 	if (refs_processed && !pending_move)
5446 		sctx->send_progress = sctx->cur_ino + 1;
5447 
5448 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5449 		goto out;
5450 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5451 		goto out;
5452 
5453 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5454 			&left_mode, &left_uid, &left_gid, NULL);
5455 	if (ret < 0)
5456 		goto out;
5457 
5458 	if (!sctx->parent_root || sctx->cur_inode_new) {
5459 		need_chown = 1;
5460 		if (!S_ISLNK(sctx->cur_inode_mode))
5461 			need_chmod = 1;
5462 	} else {
5463 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5464 				NULL, NULL, &right_mode, &right_uid,
5465 				&right_gid, NULL);
5466 		if (ret < 0)
5467 			goto out;
5468 
5469 		if (left_uid != right_uid || left_gid != right_gid)
5470 			need_chown = 1;
5471 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5472 			need_chmod = 1;
5473 	}
5474 
5475 	if (S_ISREG(sctx->cur_inode_mode)) {
5476 		if (need_send_hole(sctx)) {
5477 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5478 			    sctx->cur_inode_last_extent <
5479 			    sctx->cur_inode_size) {
5480 				ret = get_last_extent(sctx, (u64)-1);
5481 				if (ret)
5482 					goto out;
5483 			}
5484 			if (sctx->cur_inode_last_extent <
5485 			    sctx->cur_inode_size) {
5486 				ret = send_hole(sctx, sctx->cur_inode_size);
5487 				if (ret)
5488 					goto out;
5489 			}
5490 		}
5491 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5492 				sctx->cur_inode_size);
5493 		if (ret < 0)
5494 			goto out;
5495 	}
5496 
5497 	if (need_chown) {
5498 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5499 				left_uid, left_gid);
5500 		if (ret < 0)
5501 			goto out;
5502 	}
5503 	if (need_chmod) {
5504 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5505 				left_mode);
5506 		if (ret < 0)
5507 			goto out;
5508 	}
5509 
5510 	ret = send_capabilities(sctx);
5511 	if (ret < 0)
5512 		goto out;
5513 
5514 	/*
5515 	 * If other directory inodes depended on our current directory
5516 	 * inode's move/rename, now do their move/rename operations.
5517 	 */
5518 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5519 		ret = apply_children_dir_moves(sctx);
5520 		if (ret)
5521 			goto out;
5522 		/*
5523 		 * Need to send that every time, no matter if it actually
5524 		 * changed between the two trees as we have done changes to
5525 		 * the inode before. If our inode is a directory and it's
5526 		 * waiting to be moved/renamed, we will send its utimes when
5527 		 * it's moved/renamed, therefore we don't need to do it here.
5528 		 */
5529 		sctx->send_progress = sctx->cur_ino + 1;
5530 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5531 		if (ret < 0)
5532 			goto out;
5533 	}
5534 
5535 out:
5536 	return ret;
5537 }
5538 
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)5539 static int changed_inode(struct send_ctx *sctx,
5540 			 enum btrfs_compare_tree_result result)
5541 {
5542 	int ret = 0;
5543 	struct btrfs_key *key = sctx->cmp_key;
5544 	struct btrfs_inode_item *left_ii = NULL;
5545 	struct btrfs_inode_item *right_ii = NULL;
5546 	u64 left_gen = 0;
5547 	u64 right_gen = 0;
5548 
5549 	sctx->cur_ino = key->objectid;
5550 	sctx->cur_inode_new_gen = 0;
5551 	sctx->cur_inode_last_extent = (u64)-1;
5552 
5553 	/*
5554 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5555 	 * functions that the current inode's refs are not updated yet. Later,
5556 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5557 	 */
5558 	sctx->send_progress = sctx->cur_ino;
5559 
5560 	if (result == BTRFS_COMPARE_TREE_NEW ||
5561 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5562 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5563 				sctx->left_path->slots[0],
5564 				struct btrfs_inode_item);
5565 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5566 				left_ii);
5567 	} else {
5568 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5569 				sctx->right_path->slots[0],
5570 				struct btrfs_inode_item);
5571 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5572 				right_ii);
5573 	}
5574 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5575 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5576 				sctx->right_path->slots[0],
5577 				struct btrfs_inode_item);
5578 
5579 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5580 				right_ii);
5581 
5582 		/*
5583 		 * The cur_ino = root dir case is special here. We can't treat
5584 		 * the inode as deleted+reused because it would generate a
5585 		 * stream that tries to delete/mkdir the root dir.
5586 		 */
5587 		if (left_gen != right_gen &&
5588 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5589 			sctx->cur_inode_new_gen = 1;
5590 	}
5591 
5592 	if (result == BTRFS_COMPARE_TREE_NEW) {
5593 		sctx->cur_inode_gen = left_gen;
5594 		sctx->cur_inode_new = 1;
5595 		sctx->cur_inode_deleted = 0;
5596 		sctx->cur_inode_size = btrfs_inode_size(
5597 				sctx->left_path->nodes[0], left_ii);
5598 		sctx->cur_inode_mode = btrfs_inode_mode(
5599 				sctx->left_path->nodes[0], left_ii);
5600 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5601 				sctx->left_path->nodes[0], left_ii);
5602 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5603 			ret = send_create_inode_if_needed(sctx);
5604 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5605 		sctx->cur_inode_gen = right_gen;
5606 		sctx->cur_inode_new = 0;
5607 		sctx->cur_inode_deleted = 1;
5608 		sctx->cur_inode_size = btrfs_inode_size(
5609 				sctx->right_path->nodes[0], right_ii);
5610 		sctx->cur_inode_mode = btrfs_inode_mode(
5611 				sctx->right_path->nodes[0], right_ii);
5612 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5613 		/*
5614 		 * We need to do some special handling in case the inode was
5615 		 * reported as changed with a changed generation number. This
5616 		 * means that the original inode was deleted and new inode
5617 		 * reused the same inum. So we have to treat the old inode as
5618 		 * deleted and the new one as new.
5619 		 */
5620 		if (sctx->cur_inode_new_gen) {
5621 			/*
5622 			 * First, process the inode as if it was deleted.
5623 			 */
5624 			sctx->cur_inode_gen = right_gen;
5625 			sctx->cur_inode_new = 0;
5626 			sctx->cur_inode_deleted = 1;
5627 			sctx->cur_inode_size = btrfs_inode_size(
5628 					sctx->right_path->nodes[0], right_ii);
5629 			sctx->cur_inode_mode = btrfs_inode_mode(
5630 					sctx->right_path->nodes[0], right_ii);
5631 			ret = process_all_refs(sctx,
5632 					BTRFS_COMPARE_TREE_DELETED);
5633 			if (ret < 0)
5634 				goto out;
5635 
5636 			/*
5637 			 * Now process the inode as if it was new.
5638 			 */
5639 			sctx->cur_inode_gen = left_gen;
5640 			sctx->cur_inode_new = 1;
5641 			sctx->cur_inode_deleted = 0;
5642 			sctx->cur_inode_size = btrfs_inode_size(
5643 					sctx->left_path->nodes[0], left_ii);
5644 			sctx->cur_inode_mode = btrfs_inode_mode(
5645 					sctx->left_path->nodes[0], left_ii);
5646 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5647 					sctx->left_path->nodes[0], left_ii);
5648 			ret = send_create_inode_if_needed(sctx);
5649 			if (ret < 0)
5650 				goto out;
5651 
5652 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5653 			if (ret < 0)
5654 				goto out;
5655 			/*
5656 			 * Advance send_progress now as we did not get into
5657 			 * process_recorded_refs_if_needed in the new_gen case.
5658 			 */
5659 			sctx->send_progress = sctx->cur_ino + 1;
5660 
5661 			/*
5662 			 * Now process all extents and xattrs of the inode as if
5663 			 * they were all new.
5664 			 */
5665 			ret = process_all_extents(sctx);
5666 			if (ret < 0)
5667 				goto out;
5668 			ret = process_all_new_xattrs(sctx);
5669 			if (ret < 0)
5670 				goto out;
5671 		} else {
5672 			sctx->cur_inode_gen = left_gen;
5673 			sctx->cur_inode_new = 0;
5674 			sctx->cur_inode_new_gen = 0;
5675 			sctx->cur_inode_deleted = 0;
5676 			sctx->cur_inode_size = btrfs_inode_size(
5677 					sctx->left_path->nodes[0], left_ii);
5678 			sctx->cur_inode_mode = btrfs_inode_mode(
5679 					sctx->left_path->nodes[0], left_ii);
5680 		}
5681 	}
5682 
5683 out:
5684 	return ret;
5685 }
5686 
5687 /*
5688  * We have to process new refs before deleted refs, but compare_trees gives us
5689  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5690  * first and later process them in process_recorded_refs.
5691  * For the cur_inode_new_gen case, we skip recording completely because
5692  * changed_inode did already initiate processing of refs. The reason for this is
5693  * that in this case, compare_tree actually compares the refs of 2 different
5694  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5695  * refs of the right tree as deleted and all refs of the left tree as new.
5696  */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)5697 static int changed_ref(struct send_ctx *sctx,
5698 		       enum btrfs_compare_tree_result result)
5699 {
5700 	int ret = 0;
5701 
5702 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5703 
5704 	if (!sctx->cur_inode_new_gen &&
5705 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5706 		if (result == BTRFS_COMPARE_TREE_NEW)
5707 			ret = record_new_ref(sctx);
5708 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5709 			ret = record_deleted_ref(sctx);
5710 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5711 			ret = record_changed_ref(sctx);
5712 	}
5713 
5714 	return ret;
5715 }
5716 
5717 /*
5718  * Process new/deleted/changed xattrs. We skip processing in the
5719  * cur_inode_new_gen case because changed_inode did already initiate processing
5720  * of xattrs. The reason is the same as in changed_ref
5721  */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)5722 static int changed_xattr(struct send_ctx *sctx,
5723 			 enum btrfs_compare_tree_result result)
5724 {
5725 	int ret = 0;
5726 
5727 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5728 
5729 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5730 		if (result == BTRFS_COMPARE_TREE_NEW)
5731 			ret = process_new_xattr(sctx);
5732 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5733 			ret = process_deleted_xattr(sctx);
5734 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5735 			ret = process_changed_xattr(sctx);
5736 	}
5737 
5738 	return ret;
5739 }
5740 
5741 /*
5742  * Process new/deleted/changed extents. We skip processing in the
5743  * cur_inode_new_gen case because changed_inode did already initiate processing
5744  * of extents. The reason is the same as in changed_ref
5745  */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)5746 static int changed_extent(struct send_ctx *sctx,
5747 			  enum btrfs_compare_tree_result result)
5748 {
5749 	int ret = 0;
5750 
5751 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5752 
5753 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5754 		if (result != BTRFS_COMPARE_TREE_DELETED)
5755 			ret = process_extent(sctx, sctx->left_path,
5756 					sctx->cmp_key);
5757 	}
5758 
5759 	return ret;
5760 }
5761 
dir_changed(struct send_ctx * sctx,u64 dir)5762 static int dir_changed(struct send_ctx *sctx, u64 dir)
5763 {
5764 	u64 orig_gen, new_gen;
5765 	int ret;
5766 
5767 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5768 			     NULL, NULL);
5769 	if (ret)
5770 		return ret;
5771 
5772 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5773 			     NULL, NULL, NULL);
5774 	if (ret)
5775 		return ret;
5776 
5777 	return (orig_gen != new_gen) ? 1 : 0;
5778 }
5779 
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)5780 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5781 			struct btrfs_key *key)
5782 {
5783 	struct btrfs_inode_extref *extref;
5784 	struct extent_buffer *leaf;
5785 	u64 dirid = 0, last_dirid = 0;
5786 	unsigned long ptr;
5787 	u32 item_size;
5788 	u32 cur_offset = 0;
5789 	int ref_name_len;
5790 	int ret = 0;
5791 
5792 	/* Easy case, just check this one dirid */
5793 	if (key->type == BTRFS_INODE_REF_KEY) {
5794 		dirid = key->offset;
5795 
5796 		ret = dir_changed(sctx, dirid);
5797 		goto out;
5798 	}
5799 
5800 	leaf = path->nodes[0];
5801 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5802 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5803 	while (cur_offset < item_size) {
5804 		extref = (struct btrfs_inode_extref *)(ptr +
5805 						       cur_offset);
5806 		dirid = btrfs_inode_extref_parent(leaf, extref);
5807 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5808 		cur_offset += ref_name_len + sizeof(*extref);
5809 		if (dirid == last_dirid)
5810 			continue;
5811 		ret = dir_changed(sctx, dirid);
5812 		if (ret)
5813 			break;
5814 		last_dirid = dirid;
5815 	}
5816 out:
5817 	return ret;
5818 }
5819 
5820 /*
5821  * Updates compare related fields in sctx and simply forwards to the actual
5822  * changed_xxx functions.
5823  */
changed_cb(struct btrfs_root * left_root,struct btrfs_root * right_root,struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,void * ctx)5824 static int changed_cb(struct btrfs_root *left_root,
5825 		      struct btrfs_root *right_root,
5826 		      struct btrfs_path *left_path,
5827 		      struct btrfs_path *right_path,
5828 		      struct btrfs_key *key,
5829 		      enum btrfs_compare_tree_result result,
5830 		      void *ctx)
5831 {
5832 	int ret = 0;
5833 	struct send_ctx *sctx = ctx;
5834 
5835 	if (result == BTRFS_COMPARE_TREE_SAME) {
5836 		if (key->type == BTRFS_INODE_REF_KEY ||
5837 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5838 			ret = compare_refs(sctx, left_path, key);
5839 			if (!ret)
5840 				return 0;
5841 			if (ret < 0)
5842 				return ret;
5843 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5844 			return maybe_send_hole(sctx, left_path, key);
5845 		} else {
5846 			return 0;
5847 		}
5848 		result = BTRFS_COMPARE_TREE_CHANGED;
5849 		ret = 0;
5850 	}
5851 
5852 	sctx->left_path = left_path;
5853 	sctx->right_path = right_path;
5854 	sctx->cmp_key = key;
5855 
5856 	ret = finish_inode_if_needed(sctx, 0);
5857 	if (ret < 0)
5858 		goto out;
5859 
5860 	/* Ignore non-FS objects */
5861 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5862 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5863 		goto out;
5864 
5865 	if (key->type == BTRFS_INODE_ITEM_KEY)
5866 		ret = changed_inode(sctx, result);
5867 	else if (key->type == BTRFS_INODE_REF_KEY ||
5868 		 key->type == BTRFS_INODE_EXTREF_KEY)
5869 		ret = changed_ref(sctx, result);
5870 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5871 		ret = changed_xattr(sctx, result);
5872 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5873 		ret = changed_extent(sctx, result);
5874 
5875 out:
5876 	return ret;
5877 }
5878 
full_send_tree(struct send_ctx * sctx)5879 static int full_send_tree(struct send_ctx *sctx)
5880 {
5881 	int ret;
5882 	struct btrfs_root *send_root = sctx->send_root;
5883 	struct btrfs_key key;
5884 	struct btrfs_key found_key;
5885 	struct btrfs_path *path;
5886 	struct extent_buffer *eb;
5887 	int slot;
5888 
5889 	path = alloc_path_for_send();
5890 	if (!path)
5891 		return -ENOMEM;
5892 
5893 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5894 	key.type = BTRFS_INODE_ITEM_KEY;
5895 	key.offset = 0;
5896 
5897 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5898 	if (ret < 0)
5899 		goto out;
5900 	if (ret)
5901 		goto out_finish;
5902 
5903 	while (1) {
5904 		eb = path->nodes[0];
5905 		slot = path->slots[0];
5906 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5907 
5908 		ret = changed_cb(send_root, NULL, path, NULL,
5909 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5910 		if (ret < 0)
5911 			goto out;
5912 
5913 		key.objectid = found_key.objectid;
5914 		key.type = found_key.type;
5915 		key.offset = found_key.offset + 1;
5916 
5917 		ret = btrfs_next_item(send_root, path);
5918 		if (ret < 0)
5919 			goto out;
5920 		if (ret) {
5921 			ret  = 0;
5922 			break;
5923 		}
5924 	}
5925 
5926 out_finish:
5927 	ret = finish_inode_if_needed(sctx, 1);
5928 
5929 out:
5930 	btrfs_free_path(path);
5931 	return ret;
5932 }
5933 
send_subvol(struct send_ctx * sctx)5934 static int send_subvol(struct send_ctx *sctx)
5935 {
5936 	int ret;
5937 
5938 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5939 		ret = send_header(sctx);
5940 		if (ret < 0)
5941 			goto out;
5942 	}
5943 
5944 	ret = send_subvol_begin(sctx);
5945 	if (ret < 0)
5946 		goto out;
5947 
5948 	if (sctx->parent_root) {
5949 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5950 				changed_cb, sctx);
5951 		if (ret < 0)
5952 			goto out;
5953 		ret = finish_inode_if_needed(sctx, 1);
5954 		if (ret < 0)
5955 			goto out;
5956 	} else {
5957 		ret = full_send_tree(sctx);
5958 		if (ret < 0)
5959 			goto out;
5960 	}
5961 
5962 out:
5963 	free_recorded_refs(sctx);
5964 	return ret;
5965 }
5966 
5967 /*
5968  * If orphan cleanup did remove any orphans from a root, it means the tree
5969  * was modified and therefore the commit root is not the same as the current
5970  * root anymore. This is a problem, because send uses the commit root and
5971  * therefore can see inode items that don't exist in the current root anymore,
5972  * and for example make calls to btrfs_iget, which will do tree lookups based
5973  * on the current root and not on the commit root. Those lookups will fail,
5974  * returning a -ESTALE error, and making send fail with that error. So make
5975  * sure a send does not see any orphans we have just removed, and that it will
5976  * see the same inodes regardless of whether a transaction commit happened
5977  * before it started (meaning that the commit root will be the same as the
5978  * current root) or not.
5979  */
ensure_commit_roots_uptodate(struct send_ctx * sctx)5980 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5981 {
5982 	int i;
5983 	struct btrfs_trans_handle *trans = NULL;
5984 
5985 again:
5986 	if (sctx->parent_root &&
5987 	    sctx->parent_root->node != sctx->parent_root->commit_root)
5988 		goto commit_trans;
5989 
5990 	for (i = 0; i < sctx->clone_roots_cnt; i++)
5991 		if (sctx->clone_roots[i].root->node !=
5992 		    sctx->clone_roots[i].root->commit_root)
5993 			goto commit_trans;
5994 
5995 	if (trans)
5996 		return btrfs_end_transaction(trans, sctx->send_root);
5997 
5998 	return 0;
5999 
6000 commit_trans:
6001 	/* Use any root, all fs roots will get their commit roots updated. */
6002 	if (!trans) {
6003 		trans = btrfs_join_transaction(sctx->send_root);
6004 		if (IS_ERR(trans))
6005 			return PTR_ERR(trans);
6006 		goto again;
6007 	}
6008 
6009 	return btrfs_commit_transaction(trans, sctx->send_root);
6010 }
6011 
btrfs_root_dec_send_in_progress(struct btrfs_root * root)6012 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6013 {
6014 	spin_lock(&root->root_item_lock);
6015 	root->send_in_progress--;
6016 	/*
6017 	 * Not much left to do, we don't know why it's unbalanced and
6018 	 * can't blindly reset it to 0.
6019 	 */
6020 	if (root->send_in_progress < 0)
6021 		btrfs_err(root->fs_info,
6022 			"send_in_progres unbalanced %d root %llu",
6023 			root->send_in_progress, root->root_key.objectid);
6024 	spin_unlock(&root->root_item_lock);
6025 }
6026 
btrfs_ioctl_send(struct file * mnt_file,void __user * arg_)6027 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6028 {
6029 	int ret = 0;
6030 	struct btrfs_root *send_root;
6031 	struct btrfs_root *clone_root;
6032 	struct btrfs_fs_info *fs_info;
6033 	struct btrfs_ioctl_send_args *arg = NULL;
6034 	struct btrfs_key key;
6035 	struct send_ctx *sctx = NULL;
6036 	u32 i;
6037 	u64 *clone_sources_tmp = NULL;
6038 	int clone_sources_to_rollback = 0;
6039 	int sort_clone_roots = 0;
6040 	int index;
6041 
6042 	if (!capable(CAP_SYS_ADMIN))
6043 		return -EPERM;
6044 
6045 	send_root = BTRFS_I(file_inode(mnt_file))->root;
6046 	fs_info = send_root->fs_info;
6047 
6048 	/*
6049 	 * The subvolume must remain read-only during send, protect against
6050 	 * making it RW. This also protects against deletion.
6051 	 */
6052 	spin_lock(&send_root->root_item_lock);
6053 	send_root->send_in_progress++;
6054 	spin_unlock(&send_root->root_item_lock);
6055 
6056 	/*
6057 	 * This is done when we lookup the root, it should already be complete
6058 	 * by the time we get here.
6059 	 */
6060 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6061 
6062 	/*
6063 	 * Userspace tools do the checks and warn the user if it's
6064 	 * not RO.
6065 	 */
6066 	if (!btrfs_root_readonly(send_root)) {
6067 		ret = -EPERM;
6068 		goto out;
6069 	}
6070 
6071 	arg = memdup_user(arg_, sizeof(*arg));
6072 	if (IS_ERR(arg)) {
6073 		ret = PTR_ERR(arg);
6074 		arg = NULL;
6075 		goto out;
6076 	}
6077 
6078 	if (!access_ok(VERIFY_READ, arg->clone_sources,
6079 			sizeof(*arg->clone_sources) *
6080 			arg->clone_sources_count)) {
6081 		ret = -EFAULT;
6082 		goto out;
6083 	}
6084 
6085 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6086 		ret = -EINVAL;
6087 		goto out;
6088 	}
6089 
6090 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
6091 	if (!sctx) {
6092 		ret = -ENOMEM;
6093 		goto out;
6094 	}
6095 
6096 	INIT_LIST_HEAD(&sctx->new_refs);
6097 	INIT_LIST_HEAD(&sctx->deleted_refs);
6098 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
6099 	INIT_LIST_HEAD(&sctx->name_cache_list);
6100 
6101 	sctx->flags = arg->flags;
6102 
6103 	sctx->send_filp = fget(arg->send_fd);
6104 	if (!sctx->send_filp) {
6105 		ret = -EBADF;
6106 		goto out;
6107 	}
6108 
6109 	sctx->send_root = send_root;
6110 	/*
6111 	 * Unlikely but possible, if the subvolume is marked for deletion but
6112 	 * is slow to remove the directory entry, send can still be started
6113 	 */
6114 	if (btrfs_root_dead(sctx->send_root)) {
6115 		ret = -EPERM;
6116 		goto out;
6117 	}
6118 
6119 	sctx->clone_roots_cnt = arg->clone_sources_count;
6120 
6121 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6122 	sctx->send_buf = vmalloc(sctx->send_max_size);
6123 	if (!sctx->send_buf) {
6124 		ret = -ENOMEM;
6125 		goto out;
6126 	}
6127 
6128 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6129 	if (!sctx->read_buf) {
6130 		ret = -ENOMEM;
6131 		goto out;
6132 	}
6133 
6134 	sctx->pending_dir_moves = RB_ROOT;
6135 	sctx->waiting_dir_moves = RB_ROOT;
6136 	sctx->orphan_dirs = RB_ROOT;
6137 
6138 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
6139 			(arg->clone_sources_count + 1));
6140 	if (!sctx->clone_roots) {
6141 		ret = -ENOMEM;
6142 		goto out;
6143 	}
6144 
6145 	if (arg->clone_sources_count) {
6146 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
6147 				sizeof(*arg->clone_sources));
6148 		if (!clone_sources_tmp) {
6149 			ret = -ENOMEM;
6150 			goto out;
6151 		}
6152 
6153 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6154 				arg->clone_sources_count *
6155 				sizeof(*arg->clone_sources));
6156 		if (ret) {
6157 			ret = -EFAULT;
6158 			goto out;
6159 		}
6160 
6161 		for (i = 0; i < arg->clone_sources_count; i++) {
6162 			key.objectid = clone_sources_tmp[i];
6163 			key.type = BTRFS_ROOT_ITEM_KEY;
6164 			key.offset = (u64)-1;
6165 
6166 			index = srcu_read_lock(&fs_info->subvol_srcu);
6167 
6168 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6169 			if (IS_ERR(clone_root)) {
6170 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6171 				ret = PTR_ERR(clone_root);
6172 				goto out;
6173 			}
6174 			spin_lock(&clone_root->root_item_lock);
6175 			if (!btrfs_root_readonly(clone_root) ||
6176 			    btrfs_root_dead(clone_root)) {
6177 				spin_unlock(&clone_root->root_item_lock);
6178 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6179 				ret = -EPERM;
6180 				goto out;
6181 			}
6182 			clone_root->send_in_progress++;
6183 			spin_unlock(&clone_root->root_item_lock);
6184 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6185 
6186 			sctx->clone_roots[i].root = clone_root;
6187 			clone_sources_to_rollback = i + 1;
6188 		}
6189 		vfree(clone_sources_tmp);
6190 		clone_sources_tmp = NULL;
6191 	}
6192 
6193 	if (arg->parent_root) {
6194 		key.objectid = arg->parent_root;
6195 		key.type = BTRFS_ROOT_ITEM_KEY;
6196 		key.offset = (u64)-1;
6197 
6198 		index = srcu_read_lock(&fs_info->subvol_srcu);
6199 
6200 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6201 		if (IS_ERR(sctx->parent_root)) {
6202 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6203 			ret = PTR_ERR(sctx->parent_root);
6204 			goto out;
6205 		}
6206 
6207 		spin_lock(&sctx->parent_root->root_item_lock);
6208 		sctx->parent_root->send_in_progress++;
6209 		if (!btrfs_root_readonly(sctx->parent_root) ||
6210 				btrfs_root_dead(sctx->parent_root)) {
6211 			spin_unlock(&sctx->parent_root->root_item_lock);
6212 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6213 			ret = -EPERM;
6214 			goto out;
6215 		}
6216 		spin_unlock(&sctx->parent_root->root_item_lock);
6217 
6218 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6219 	}
6220 
6221 	/*
6222 	 * Clones from send_root are allowed, but only if the clone source
6223 	 * is behind the current send position. This is checked while searching
6224 	 * for possible clone sources.
6225 	 */
6226 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6227 
6228 	/* We do a bsearch later */
6229 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6230 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6231 			NULL);
6232 	sort_clone_roots = 1;
6233 
6234 	ret = ensure_commit_roots_uptodate(sctx);
6235 	if (ret)
6236 		goto out;
6237 
6238 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6239 	ret = send_subvol(sctx);
6240 	current->journal_info = NULL;
6241 	if (ret < 0)
6242 		goto out;
6243 
6244 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6245 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6246 		if (ret < 0)
6247 			goto out;
6248 		ret = send_cmd(sctx);
6249 		if (ret < 0)
6250 			goto out;
6251 	}
6252 
6253 out:
6254 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6255 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6256 		struct rb_node *n;
6257 		struct pending_dir_move *pm;
6258 
6259 		n = rb_first(&sctx->pending_dir_moves);
6260 		pm = rb_entry(n, struct pending_dir_move, node);
6261 		while (!list_empty(&pm->list)) {
6262 			struct pending_dir_move *pm2;
6263 
6264 			pm2 = list_first_entry(&pm->list,
6265 					       struct pending_dir_move, list);
6266 			free_pending_move(sctx, pm2);
6267 		}
6268 		free_pending_move(sctx, pm);
6269 	}
6270 
6271 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6272 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6273 		struct rb_node *n;
6274 		struct waiting_dir_move *dm;
6275 
6276 		n = rb_first(&sctx->waiting_dir_moves);
6277 		dm = rb_entry(n, struct waiting_dir_move, node);
6278 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6279 		kfree(dm);
6280 	}
6281 
6282 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6283 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6284 		struct rb_node *n;
6285 		struct orphan_dir_info *odi;
6286 
6287 		n = rb_first(&sctx->orphan_dirs);
6288 		odi = rb_entry(n, struct orphan_dir_info, node);
6289 		free_orphan_dir_info(sctx, odi);
6290 	}
6291 
6292 	if (sort_clone_roots) {
6293 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6294 			btrfs_root_dec_send_in_progress(
6295 					sctx->clone_roots[i].root);
6296 	} else {
6297 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6298 			btrfs_root_dec_send_in_progress(
6299 					sctx->clone_roots[i].root);
6300 
6301 		btrfs_root_dec_send_in_progress(send_root);
6302 	}
6303 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6304 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6305 
6306 	kfree(arg);
6307 	vfree(clone_sources_tmp);
6308 
6309 	if (sctx) {
6310 		if (sctx->send_filp)
6311 			fput(sctx->send_filp);
6312 
6313 		vfree(sctx->clone_roots);
6314 		vfree(sctx->send_buf);
6315 		vfree(sctx->read_buf);
6316 
6317 		name_cache_free(sctx);
6318 
6319 		kfree(sctx);
6320 	}
6321 
6322 	return ret;
6323 }
6324